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Abstract We show that every rank two p-group acts freely and smoothly on a product of
two spheres. This follows from a more general construction: given a smooth action of a finite
group G on a manifold M , we construct a smooth free action on M × S

n1 × · · · × S
nk when

the set of isotropy subgroups of the G-action on M can be associated to a fusion system satis-
fying certain properties. Another consequence of this construction is that if G is an (almost)
extra-special p-group of rank r , then it acts freely and smoothly on a product of r spheres.

Mathematics Subject Classification (2000) Primary 57S25; Secondary 20D20

1 Introduction

In [25], Smith proved that if a finite group G acts freely on a sphere, then G has no subgroup
isomorphic to the elementary abelian group Z/p × Z/p for any prime number p. Later in
[21], Milnor showed that there are other restrictions on such a G, more precisely, he proved
that if G acts freely on a sphere S

n , then G has no subgroup isomorphic to the dihedral group
D2p of order 2p for any odd prime number p.

Conversely, Madsen–Thomas–Wall [19] proved that Smith’s condition together with
Milnor’s condition is enough to ensure the existence of a free smooth action on a sphere
S

n for some n ≥ 1. The existence proof of Madsen–Thomas–Wall used surgery theory and
exploited some natural constructions of free group actions on spheres. Specifically, they con-
sidered the unit spheres of linear representations of subgroups to show that certain surgery
obstructions vanish.
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940 Ö. Ünlü, E. Yalçın

As a generalization of the above problem, we are interested in the problem of characterizing
those finite groups which can act freely and smoothly on a product of two spheres. Heller
[13] found a restriction on the existence of such actions similar to Smith’s condition: if a
finite group G acts freely on a product of two spheres, then G has no subgroup isomorphic to
the elementary abelian group Z/p×Z/p×Z/p. The maximum rank of elementary abelian
subgroups (Z/p)k ≤ G is called the rank of G. So, Heller’s result says that if a finite group
G acts freely on a product of two spheres, then G must have rk(G) ≤ 2. So far, no condition
analogous to Milnor’s condition is found for the existence of smooth actions and it appears
as if to prove a converse, we need more constructions of natural actions.

As a first attempt to construct free actions on products of two spheres, one can take a
product of two unit spheres S(V1)× S(V2) where V1 and V2 are linear representations of the
group. However, it is not hard to see that for many groups of rank 2, it is not possible to find
two linear spheres such that the action on their product is free. For example, when p is an
odd prime, the extraspecial p-group order p3 and exponent p does not act freely on a product
of two linear spheres although this group has rank equal to two.

Another natural construction is to take a representation with small fixity and consider the
Stiefel manifolds associated to this representation. The fixity of a G-representation V is the
maximum dimension of fixed subspaces V g over all nontrivial elements g in G. If G has an
n-dimensional complex representation of fixity 1, then G acts freely on the Stiefel manifold
Vn,2(C) � U (n)/U (n − 2). This space is the total space of a sphere bundle over a sphere,
and taking fiber joins, one obtains a free action on a product of two spheres. This method
was used by Adem et al. [1] to show that for p ≥ 5, every rank two p-group acts freely and
smoothly on a product of two spheres. However, there are examples of rank two 2-groups
and 3-groups which have no representation with fixity 1, so this method is not enough to
construct free actions of rank two p-groups on products of two spheres for all primes p.

A more general idea for constructing free actions on a product of two spheres is to start
with a representation sphere S(V ) and construct a G-equivariant sphere bundle over it so
that the action on the total space is free and the bundle is non-equivariantly trivial. In the
homotopy category, a similar idea was used by Adem and Smith [2] to show that many rank
two finite groups can act freely on a finite complex homotopy equivalent to a product of
two spheres. In particular, they showed that every rank two p-group acts freely on a finite
CW-complex homotopy equivalent to a product of two spheres.

In this paper, we prove the following:

Theorem 1.1 A finite p-group G acts freely and smoothly on a product of two spheres if and
only if rk(G) ≤ 2.

The proof uses another method of construction of free actions on products of spheres
which was introduced by Ünlü [27] in his thesis. The method uses a theorem of Lück-Oliver
[18, Thm. 2.6] on constructions of equivariant vector bundles over a finite dimensional
G–CW-complex. We now describe briefly the main idea of the Lück-Oliver construction:
Let X be a finite dimensional G–CW-complex and H be the family of isotropy subgroups of
X . Given a compatible family of unitary representations ρH : H → U (n)where H ∈ H, one
would like to construct a G-equivariant vector bundle over X so that the representation over
a point with isotropy H is isomorphic to (ρH )

⊕k for some k. Lück and Oliver [18] shows
that this can be done if there is a finite group � which satisfies the following two conditions:

(i) There is a family of maps {αH : H → � | H ∈ H} which is compatible in the sense
that if cg : H → K is a map induced by conjugation with g ∈ G, then there is a
γ ∈ � such that the following diagram commutes:
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Fusion systems and constructing free actions 941

H

cg

��

αH �� �

cγ

��

K
αK �� �

(ii) � has a representation ρ : �→ U (n) such that ρH = ρ ◦ αH for all H ∈ H.

In [27], Ünlü showed that when all the groups in the family H are cyclic p-groups, there is
a finite group � satisfying the above conditions for a family of representations ρH such that
H action on the unit sphere S(ρH ) is free. As a result of this, Ünlü [27] was able to show that
when p is odd, every rank two p-group acts freely and smoothly on a product of two spheres.
When p = 2, the groups one has to deal with are rank one 2-groups and these can be cyclic
or generalized quaternion. It turns out that maps between subgroups of quaternion groups
have a much richer structure, so the method given in does not extend directly to families of
rank one 2-groups.

In this paper, we find a systemic way of constructing a finite group � satisfying the above
conditions (i) and (ii) for some suitable representation families. We first choose a finite group
S and map all subgroups in the family H into S via some maps ιH : H → S. Then, we
study the fusion system on S that comes from the conjugations in G and different choices of
mappings ιH (see [7] or [24] for a definition of a fusion system). Although the fusion systems
that arise in this way are not necessarily saturated, we use some of the machinery developed
for studying saturated fusion systems. In particular, we use a theorem of Park [23] to find �
as the automorphism group of an S–S-biset.

This method of finding a finite group � works for more general groups then the families
formed by rank one 2-groups. For example, for a family H formed by elementary abelian
p-groups, we can easily find a finite group� by choosing an appropriate S–S-biset. Moreover,
this process can be recursively continued to obtain the following theorem.

Theorem 1.2 Let G be a finite group acting smoothly on a manifold M. If all the isotropy
subgroups of M are elementary abelian groups with rank≤ k, then G acts freely and smoothly
on M × S

n1 × · · · × S
nk for some positive integers n1, . . . , nk.

As a corollary, we obtain the following:

Corollary 1.3 Let G be an (almost) extraspecial p-group of rank r. Then, G acts freely and
smoothly on a product of r spheres.

The paper is organized as follows: Sects. 2 and 3 are preliminary sections on equivariant
principal bundles and equivariant obstruction theory. In Sect. 4, we review the work of Lück
and Oliver [18] on constructions of equivariant bundles and prove Theorem 4.3 which is a
slightly different version of Theorem 2.7 in [18]. Then, in Sect. 5, we introduce a method for
constructing finite groups � satisfying the properties explained above. This is done using a
theorem of Park [23] on bisets associated to fusion systems. Finally, in Sect. 6, we prove our
main theorems, Theorems 1.1 and 1.2.

2 Equivariant principal bundles

In this section, we introduce the basic definitions of equivariant bundle theory. We refer the
reader to [16,17], and [18] for more details.
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942 Ö. Ünlü, E. Yalçın

Let G be a compact Lie group. A relative G–CW-complex (X, A) is a pair of G-spaces
together with a G-invariant filtration

A = X (−1) ⊆ X (0) ⊆ X (1) ⊆ · · · ⊆ X (n) ⊆ · · · ⊆
⋃

n≥−1

X (n) = X

such that A is a Hausdorff space, X carries the colimit topology with respect to this fil-
tration and for all n ≥ 0, the space X (n) is obtained from X (n−1) by attaching equivariant
n-dimensional cells, i.e., there exists a G-pushout diagram as follows

∐
σ∈In

G/Hσ × S
n−1 −−−−→ X (n−1)

⏐⏐�
⏐⏐�

∐
σ∈In

G/Hσ × D
n −−−−→ X (n)

where In is an index set, Hσ is a subgroup of G for σ ∈ In , and n ≥ 0. Elements of In

are called equivariant n-cells and for σ ∈ In , the map G/Hσ × S
n−1 → X (n−1) is called

the attaching map and the map G/Hσ × D
n → X (n) is called the characteristics map of the

cell. Here we consider S
−1 = ∅ and D

0 = {a point}. The space X (n) is called the n-skeleton
of (X, A) for n ≥ −1. For more details about G-CW-complexes, see Sect. II.1-2 in [9] and
Sect. I.1-2 in [16].

We now give the definition for the classifying space of a group relative to a family.

Definition 2.1 Let H be a family of closed subgroups of G closed under conjugation. Define
EH(G) as the realization of the nerve of the category EH(G) whose objects are pairs
(G/H, x H) where H ∈ H and x ∈ G and morphisms from (G/H, x H) to (G/K , yK )
are the G-maps from G/H to G/K which sends x H to yK .

We can consider the space EH(G) as a G-CW-complex with the G-action induced by
g(G/H, x H) = (G/H, gx H) on the objects of the category EH(G). For any H ∈ H, the
space EH(G)H is the realization of the nerve of the full subcategory of EH(G) with objects
(G/K , x K ) where H ≤ K x . The object (G/H, H) is an initial object in this subcategory.
Hence EH(G)H is contractible for any H ∈ H and we get the following classifying property
of EH(G).

Proposition 2.2 [16, Prop 2.3] Let (X, A) be a relative G–CW-complex such that Gx ∈ H
for all x ∈ X. Then, any G-map from A to EH(G) extends to a G-map from X to EH(G)
and any two such extensions are G-homotopic relative to A.

Let G be a finite group and � be a compact Lie group. A G-equivariant �-bundle over
a left G-space X is a �-principal bundle p : E → X where E is a left G-space, p is a
G-equivariant map, and the right action of � on E and the left action of G on E commute.
Let BdlG,�(X) denote the isomorphism classes of G-equivariant �-bundles over X .

Let OrH(G) denote the orbit category whose objects are orbits G/H where H ∈ H and
morphisms are G-maps from G/H to G/K . Assume that we are given an element

A = (pH ) ∈ lim←−
(G/H)∈OrH(G)

BdlG,�(G/H) ⊆
∏

H∈H
BdlG,�(G/H)

where a G-map from G/H to G/K induces a function from BdlG,�(G/K ) to BdlG,�(G/H)
by pullbacks. A G-equivariant A-bundle over a left G-space X is a G-equivariant �-bundle
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Fusion systems and constructing free actions 943

p : E → X such that for any H ∈ H and any G-equivariant map i : G/H → X , the pullback
i∗(p) is isomorphic to pH in BdlG,�(G/H). Let BdlG,A(X) denote the isomorphism classes
of G-equivariant A-bundles over X .

Lemma 2.3 We have

BdlG,�(G/H) ∼= Rep(H, �) := Hom(H, �)/ Inn(�)

where Hom(H, �) is the set of homomorphisms from H to � and Inn(�) is the group of inner
automorphisms of � and the action of Inn(�) on Hom(H, �) is given by composition.

Proof For a G-equivariant �-bundle pH over the G-space G/H , let E(pH ) denote the total
space of the bundle pH . Take a point x ∈ p−1

H (H) ⊆ E(pH ). Since G × � acts transitively
on E(pH ), we have E(pH ) = (G × �)/(G × �)x and (G × �)x ∩ (1 × �) = {1}. So, by
Goursat’s lemma,

(G × �)x = �(αx ) := {(h, αx (h)) | h ∈ H}
where the homomorphism αx : H → � is defined by the equation hx(αx (h))−1 = x for
h ∈ H . Let f be a bundle isomorphism from pH to another G-equivariant �-bundle qH over
the G-space G/H . Take y ∈ q−1

H (H) ⊆ E(qH ) and define αy : H → � as above. Then there
exists γx,y ∈ � such that f (x) = yγx,y . So, for all h ∈ H , we have αy(h) = γx,yαx (h)γ−1

x,y .
Hence, up to composition with an inner automorphism of �, there exists a unique map
αH : H → � such that E(pH ) ∼= G ×H � where the action of H on G × � is given by
h(g, γ ) = (gh−1, αH (h)γ ). ��

We can view the family H as a category where the elements of H are the objects of the
category and morphisms are compositions of conjugations in G with inclusions. A mor-
phism in the category OrH(G) is a G-map from G/H to G/K and can be written in the
form â : G/H → G/K where â(gH) = ga−1 K for a ∈ G such that aHa−1 ≤ K . Now
the map induced by â from BdlG,�(G/K ) to BdlG,�(G/H) by pullbacks is equivalent to
the map from Rep(K , �) to Rep(H, �) induced by conjugation ca : H → K given by
ca(h) = aha−1. Hence we can consider

A = (pH ) ∈ lim←−
(G/H)∈OrH(G)

BdlG,�(G/H)

as an element

A = (αH ) ∈ lim←−
H∈H

Rep(H, �) ⊆
∏

H∈H
Rep(H, �).

A family of representations αH : H → � is called a compatible family of representations if
it is an element of a limit as above. We now describe the classifying space for G-equivariant
A-bundles.

Definition 2.4 Let A = (αH ) be as above and let HA be the family of subgroups W ≤ G×�
such that W = �(αH ) for some representation αH in A. Define

EH(G,A) = EHA(G × �) and BH(G,A) = EHA(G,A)/({1} × �).
Note that the G-equivariant �-principal bundle EH(G,A) → BH(G,A) is indeed a

G-equivariant A-bundle. This is because for any x ∈ EH(G,A), we have x� ∈ BH(G,A)
and the pullback of the bundle EH(G,A) → BH(G,A) by the natural inclusion of
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944 Ö. Ünlü, E. Yalçın

G/Gx� → BH(G,A) is isomorphic to the bundle (G × �)/(G × �)x → G/Gx� . We
also know that (G × �)x ∈ HA hence (G × �)x = �(αH ) for some αH in A. In particu-
lar, H = Gx� . Hence the pullback of the bundle EH(G,A) → BH(G,A) by the natural
inclusion of G/Gx� → BH(G,A) is isomorphic to pGx� in A. We have the following:

Proposition 2.5 [18, Lemma 2.4] Let A = (αH : H → �) be a compatible family of
representations. Then, the following hold:

(i) The bundle EH(G,A)→ BH(G,A) is the universal G-equivariant A-bundle: If X is
a G-CW-complex such that Gx ∈ H for all x ∈ X, then the map defined by pullbacks
[X, BH(G,A)]G → BdlG,A(X) is a bijection.

(ii) For all H ∈ H, we have BH(G,A)H � BC�(αH ) where C�(αH ) denotes the cen-
tralizer of the image of αH in �.

Proof For the first statement observe that if E → X is a G-equivariant A-bundle, then by
construction there is a (G × �)-map from E to EH(G,A). Since both spaces have free
�-action, taking orbit spaces we get a G-map X → BH(G,A) where the bundle E → X is
the pullback bundle via this map.

To prove the second statement, let αH : H → � be a representation and let C =
{1} × C�(αH ). Then C acts freely on the contractible space EH(G,A)�(αH ) and

EH(G,A)�(αH )/C ∼= BH(G,A)H

where the homeomorphism is given by f (xC) = x� for x ∈ EH(G,A)�(αH ). To see that f
is a homeomorphism, first note that f is well-defined and the image of f is in BH(G,A)H .
Now, take x, y ∈ EH(G,A) such that f (xC) = f (yC). Then, x = yγ for some γ ∈ �.
Since hx = xαH (h) and hy = yαH (h) for all h ∈ H , we get αH (h)γ = γαH (h) for all
h ∈ H . Thus γ ∈ C�(αH ) and xC = yC . This proves that f is one-to-one. To show that
f is onto, let x� ∈ BH(G,A)H . Then H ≤ Gx� and there exists β : Gx� → � in A such
that (G ×�)x = �(β). Since the family of maps in A are compatible, there is a γ ∈ � such
that cγ ◦β|H = αH . Then�(αH ) ≤ (G×�)xγ . This means that xγ ∈ EH(G,A)�(αH ) and
applying f to it, we get f (xγC) = x�. So, f is onto. Hence we conclude that BH(G,A)H

is homotopy equivalent to BC�(αH ). ��

3 Equivariant obstruction theory

In this section, we fix our notation for Bredon cohomology and state the main theorem of
the equivariant obstruction theory that will be used in the next section. We refer the reader
to [5,16], and [18] for more details.

Let G be a finite group and H be a family of subgroups closed under conjugation. As
before we denote the orbit category of G relative to the family H by OrH(G). Let (X, A)
be a relative G–CW-complex whose all isotropy groups are in H. A coefficient system for
Bredon cohomology is a contravariant functor M : OrH(G) → Ab where Ab denotes the
category of abelian groups and group homomorphisms between them. A coefficient system
is sometimes called a Z OrH(G)-module with the usual convention of modules over a small
category. So, morphisms between Z OrH(G)-modules are given by a natural transformation
of functors. Notice that the Z OrH(G)-module category is an abelian category, so the usual
constructions of modules over a ring are available to do homological algebra. To simplify
the notation, we call a Z OrH(G)-module, a ZOH-module.
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Fusion systems and constructing free actions 945

Now, let us fix some notation for some of the ZOH-modules that we will be considering.
For example, consider the contravariant functor πn(X ?, A?) : OrH(G) → Ab given by
πn(X ?, A?)(G/H) = πn(X H , AH ) for any object G/H in OrH(G) and a morphism
â : G/H → G/K in OrH(G) defined by gH → ga−1 K is sent to the morphism from
πn(X K , AK ) to πn(X H , AH ) induced by left multiplication x → a−1x considered as a map
from (X K , AK ) to (X H , AH ).

Similarly, we set Cn(X ?, A?;M) : OrH(G)→ Ab as

Cn(X
?, A?)(G/H) = Cn(X

H , AH ;Z)
and morphisms defined in a similar way as above. The boundary maps of the chain com-
plexes C∗(X H , AH ;Z) commute with conjugation and restriction maps, so when we put
them together, we obtain a chain complex of ZOH-modules

· · · −−−−→ C2(X ?, A?)
∂1−−−−→ C1(X ?, A?)

∂0−−−−→ C0(X ?, A?) −−−−→ 0.

We define Hn(X ?, A?) as the cohomology of this chain complex. Note that the ZOH-module
Hn(X ?, A?;M) : OrH(G)→ Ab satisfies

Hn(X
?, A?)(G/H) = Hn(X

H , AH ;Z).
Definition 3.1 Let (X, A) be a relative G-CW-complex and M be a ZOH-module. The
Bredon cohomology H∗G(X, A;M) of the pair (X, A) with coefficients in M is defined as
the cohomology of the cochain complex

0 −−−−→ HomZOH(C0(X ?, A?),M)
δ0−−−−→ HomZOH(C1(X ?, A?),M)

δ1−−−−→ · · ·
Bredon cohomology is useful to describe obstructions for extending equivariant maps. Let

(X, A) be a relative G-CW-complex and Y be a G-space such that for all H ≤ G the invariant
space Y H is an (n − 1)-simple space. Assume f : X (n) → Y is a G-equivariant map. Then
we define an element c f in HomZOH(Cn(X ?, A?), πn−1(Y ?)) for H ∈ H as follows: For
every H ∈ H, the homomorphism c f (H) is the map

c f (H) : Cn(X
H , AH )→ πn−1(Y

H )

which takes σ ∈ Cn(X H , AH ) to the homotopy class of the map f ◦φσ : Sn−1 → Y H where
φσ is the attaching map of the cell σ in the following pushout diagram:

∂(σ )
φσ−−−−→ X (n−1)

⏐⏐�
⏐⏐�

σ −−−−→ X (n)

The cochain c f is a cocyle by Proposition II.1.1 in [5]. Hence we can define obs( f ) = [c f ] ∈
Hn

G(X, A;πn−1(Y ?)). The cohomology class obs( f ) is the obstruction to extending f |X (n−1)

to X (n+1). More precisely:

Proposition 3.2 Let (X, A) be a relative G-CW-complex and Y be a G-space such that for
all H ≤ G, the invariant space Y H is a simple space. Let f : X (n) → Y be a G-equivariant
map. Then f |X (n−1) can be extended to an equivariant map from X (n+1) to Y if and only if
obs( f ) = 0 in Hn+1

G (X, A;πn(Y ?)).

Proof See Proposition II.1.2 in [5]. ��
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946 Ö. Ünlü, E. Yalçın

Note that the category of ZOH-modules has enough injectives (see [5, p. 24]). Hence for
any ZOH-module M , there exists an injective resolution

0 −−−−→ M
ε−−−−→ I 0 ρ0

−−−−→ I 1 ρ1

−−−−→ · · ·
For a ZOH-module N , we define the ext-group Extn

ZOH(N ,M) as the cohomology of the
cochain complex

0 −−−−→ HomZOH(N , I 0)
(ρ0)∗−−−−→ HomZOH(N , I 1)

(ρ1)∗−−−−→ · · ·
Note that since we already know that the ZOH-module category has enough projectives,

one can also calculate the above ext-groups using a projective resolutions of N .
The following proposition is used in the next section. We include a proof of it here for the

convenience of the reader. The proof is given by standard homological algebra and can be
found in the literature (see [5, Chap. 1, 10.4] or [20, Chap. 1, Thm 6.2]).

Proposition 3.3 Let (X, A) be a G-CW-complex and H be a family of subgroups of G closed
under conjugation such that for all x ∈ X, the isotropy subgroup Gx is in the family H. Then
for any ZOH-module M,

E p,q
2 = Ext p

ZOH(Hq(X
?, A?),M) �⇒ H p+q

G (X, A;M).

Proof Let (C∗(X ?, A?), ∂) denote the chain complex of (X, A) and let

0 −−−−→ M
ε−−−−→ I 0 ρ0

−−−−→ I 1 ρ1

−−−−→ I 2 ρ2

−−−−→ · · ·
be an injective resolution of M as a ZOH-module. Define a double complex

D p,q = HomZOH(Cq(X
?, A?), I p)

where d1 : D p,q → D p+1,q is given by d1( f ) = ρ p ◦ f and d2 : D p,q → D p,q+1 is given
by d2( f ) = (−1)p f ◦∂q+1 for f ∈ D p,q . Now the spectral sequence of this double complex
is in the form

E p,q
2 = H p (

Hq (
D∗,∗, d2

)
, d1

) �⇒ H p+q(Tot(D∗,∗), d1 + d2)

where Tot(D∗,∗) is the total complex of the double complex D∗,∗ (see p. 108 in [4]).
Since I p is injective for all p ≥ 0, we have

Hq (
D p,∗, d2

) = Hq (
HomZOH(C∗(X

?, A?), I p), d2
) = HomZOH(Hq(X

?, A?), I p).

Using this and the definition of ext-groups, we obtain

E p,q
2 = H p (

HomZOH(Hq(X
?, A?), I ∗), d1

) = Ext p
ZOH(Hq(X

?, A?),M)).

Since Cq(X ?, A?) is projective as a ZOH-module for all q ≥ 0, the following two cochain
complexes are chain homotopy equivalent

(Tot(D∗,∗), d1 + d2) � (HomZOH(C∗(X
?, A?),M), d2)

(see p. 45 in [3]). Hence

H p+q(Tot(D∗,∗), d1 + d2) = H p+q
G (X, A;M).

Therefore the spectral sequence for the double complex D∗,∗ gives a spectral sequence

E p,q
2 = Ext p

ZOH(Hq(X
?, A?),M)) �⇒ H p+q

G (X, A;M).

��
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4 Construction of equivariant bundles

The main theorem of this section is a slightly different version of a theorem of Lück and
Oliver [18, Thm 2.7] on construction of equivariant bundles. This is the theorem that was
mentioned in the introduction and it is the starting point of our construction of free actions
on products of spheres.

Letϒk be a family of topological groups indexed by the positive integers. Given two maps
f, g : ϒk → ϒm , the product [ f ] · [g] of homotopy classes [ f ] and [g] in [ϒk, ϒm] is defined
as the homotopy class of the composition

ϒk
�−→ ϒk × ϒk

f×g−→ ϒm × ϒm
μ−→ ϒm

where � denotes the diagonal map and μ is the multiplication in ϒm .
For each k, let ik and jk be injective homomorphisms fromϒk toϒk+1. For every m > k,

let

ik,m, jk,m : ϒk → ϒm

denote the compositions im−1 ◦ im−2 ◦ · · · ◦ ik and jm−1 ◦ jm−2 ◦ · · · ◦ jk , respectively.

Definition 4.1 We call a sequence of triples {(ϒk, ik, jk)}∞k=1 an r -powering tower if for
every k ≥ 1, the centralizer of every finite subgroup ofϒk is a path connected group, and for
every m > k, we have

[ik,m] = [ jk,m] · [ jk,m] · . . . · [ jk,m]︸ ︷︷ ︸
r (m−k)−many

.

The main example of a powering tower is the following:

Example 4.2 For k ≥ 1, let ϒk = U (nrk−1) and ik and jk be the inclusions from U (nrk−1)

to U (nrk) given by

ik(A) =

⎡

⎢⎢⎢⎣

A
A
. . .

A

⎤

⎥⎥⎥⎦ and jk(A) =

⎡

⎢⎢⎢⎣

A
I
. . .

I

⎤

⎥⎥⎥⎦ .

The centralizer of a finite group in ϒk = U (nrk−1) for k ≥ 1 is isomorphic to a product∏
i U (mi ) of unitary groups, hence it is path connected. Let Hs : [0, 1] → U (nrk) be a path

with the following end points:

Hs(0) =

⎡

⎢⎢⎢⎣

A
I
. . .

I

⎤

⎥⎥⎥⎦ and Hs(1) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
. . .

I
A

I
. . .

I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

←− sth position

Now
∏r

s=1 Hs is a path from jk(A)r to ik(A), so we get ik � ( jk)r for all k ≥ 1. Applying

this recursively, we obtain ik,m � ( jk,m)r
m−k

for every m > k. Hence (ϒk, ik, jk) is an
r -powering tower. ��
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In our applications, the only r -powering tower we consider is the tower given in the above
example. So, one can read the rest of this section with this particular tower in mind. The
reason we keep the exposition more general is that we believe this more general set up can
be useful for constructing equivariant fibre bundles with fibres homeomorphic to a product
of spheres.

Now we give our main construction.

Theorem 4.3 (Compare to Theorem 2.7 in [18]). Let G be a finite group and H be a family
of subgroups of G closed under conjugation. Suppose that � is a finite group and

A = (αH ) ∈ lim←−
H∈H

Rep(H, �).

Let {(ϒk, ik, jk)}∞k=1 be a |�|-powering tower. Then, for any representation ρ : �→ ϒ1 and
for any d ≥ 1, there exist an m ≥ 1 and a G-equivariant (i1,m ◦ ρ)∗(A)-bundle

ϒm → E → EHG(d)

which is (non-equivariantly) trivial as an ϒm-principal bundle.

Proof Let Z be the mapping cylinder of the (unique up to homotopy) map

BH(G,A)→ EHG

and let B denote BH(G,A) in Z . Let

Am = (i1,m ◦ ρ)∗(A) and Bm = BH(G,Am)

for every m ≥ 1, and let

f : B → B1, Ik,m : Bk → Bm, and Jk,m : Bk → Bm

be the maps induced, respectively, by ρ, ik,m , and jk,m for every 1 ≤ k < m. For any H ∈ H,
we have B H

1 � BCϒ1(ρ ◦ αH ) by Proposition 2.5, so B H
1 is simply connected. Therefore,

we can extend f to a G-map f2 : Z (2) → B1. Assume that we have a G-map

fn : Z (n) → Bk

for some n ≥ 2 where k ≥ 1. For every m > k, let the elements

obs(Ik,m ◦ fn), obs(Jk,m ◦ fn) ∈ Hn+1
G (Z , B;πn(B

?
m))

be the obstructions to extending the restrictions Ik,m ◦ fn|Z (n−1) and Jk,m ◦ fn |Z (n−1) to G-maps
from Z (n+1) to Bm as in Proposition 3.2. Since {(ϒk, ik, jk)}∞k=1 is a |�|-powering tower, we
have

obs(Ik,m ◦ fn) = |�|m−k obs(Jk,m ◦ fn)

for every m > k. Here we use the fact that for a Lie group G, the map πn(μ) : πn(G) ×
πn(G)→ πn(G) induced by multiplication μ : G × G → G coincides with the usual group
operation in πn(G) (see [26, p. 44, Cor 10]).

By Proposition 3.3, there is a cohomology spectral sequence

E p,q
2 = Ext p

ZOH(Hq(Z
?, B?), πn(B

?
m)) �⇒ H p+q

G (Z , B;πn(B
?
m)).
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Fusion systems and constructing free actions 949

Note that for every H ∈ H, we have Hq(Z H , B H ) ∼= H̃q−1(B H ) ∼= H̃q−1(BC�(αH )) by
Proposition 2.5. So, |�| annihilates Hq(Z H , B H ) for every H ∈ H. Therefore, we can find
an m > k such that

obs(Ik,m ◦ fn) = 0.

This implies that for any d ≥ 1, there exists an m > k such that there is a G-map

Z (d+1) fd+1−−−−→ Bm .

The pullback of the bundle EH(G,Am)→ Bm by the composition map

EHG(d+1) −−−−→ Z (d+1) fd+1−−−−→ Bm .

is a G-equivariant (i1,m ◦ ρ)∗(A)-bundle

ξd+1 : �m → E → EHG(d+1).

If {1} ∈ H, then EHG is contractible and we obtain a trivial ϒm-principal bundle when
we pullback the bundle ξd+1 to a bundle ξd over EHG(d) by the inclusion map. If H does
not include {1}, then we can extend H to a larger family H′ which is defined by

H′ = {K ≤ H | H ∈ H}.
We can also extend the compatible family of representations A to a compatible family of
representation A′ for H′ by taking the restrictions of representations in A. Then, by the above
argument, there is an m ≥ 1 and a G-equivariant (i1,m ◦ ρ)∗(A)-bundle

ξ ′d : ϒm → E → EH′G(d)

which is trivial as anϒm-principal bundle. Since there is a G-map EHG(d) → EH′G(d), we
can consider the pullback of ξ ′d to a bundle ξd over EHG(d). The bundle ξd has the desired
properties. ��

Corollary 4.4 Let G be a finite group and M be a finite dimensional smooth manifold with
a smooth G-action. Let H denote the family of isotropy subgroups of the G action on M. Let
� be a finite group and

A = (αH ) ∈ lim←−
H∈H

Rep(H, �)

be a family of compatible representations. Then, for every ρ : � → U (n), there exist
positive integers N and k, and a smooth G-action on M×S

N such that for every x ∈ M, the
Gx -action on the sphere {x} × S

N is diffeomorphic to the linear G-action on S(V⊕k) where
V = ρ ◦ αGx .

Proof Let {(ϒk, ik, jk)}∞k=1 be the |�|-powering tower described in Example 4.2. Then, by
Theorem 4.3, for any d ≥ 1, there exist an m > 1 and a G-equivariant (i1,m ◦ρ)∗(A)-bundle

ϒm → E → EHG(d)

which is trivial as an ϒm-principal bundle. Consider the vector bundle

C
s → E ×ϒm C

s π→ EHG(d)
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950 Ö. Ünlü, E. Yalçın

where s = n|�|m−1. Choose d larger than the dimension of M . Since the isotropy subgroups
of the G-action on M are all in H, there is a G-map f : M → EHG(d) which is unique up
to homotopy. Consider the following pullback

E

p

��

�� E ×ϒm C
s

π

��

M
f

�� EHG(d).

The bundle E
p−→M is a topological bundle, so the total space is not necessarily a smooth

manifold. To get a smooth total space, we need to replace the bundle E
p−→M with a smooth

bundle. This is done by considering a smooth universal bundle which is constructed as fol-
lows: Let V be the direct sum of infinitely many copies of the regular representation of G over
the real numbers R. Let BO(2s, V ) denote the G-space of 2s-planes in V and E O(2s, V )
denote the G-space whose points are pairs (W, w) where W is a 2s-plane in V and w ∈ W .
The map E O(2s, V )→ BO(2s, V ) defined by (W, w)→ W gives a G-equivariant vector
bundle which is the universal bundle of 2s-dimensional G-equivariant vector bundles. So we
can consider p as a pullback

E

p

��

�� E O(2s, V )

��

M
h �� BO(2s, V )

for some map h : M → BO(2s, V ). In fact, since M is a finite dimensional manifold, the
same is true if we replace V with a direct sum of q copies of the regular representation for a
large q (see Proposition III.9.3 in [22]).

Note that h is G-homotopic to a smooth G-map (see Theorem VI.4.2 in [6]), so there
is a smooth G-equivariant vector bundle p′ : E ′ → M topologically equivalent to the G-
equivariant vector bundle p : E → M . For every x ∈ M , the Gx -action on S((p′)−1(x)) is the
same as the Gx -action on S(p−1(x))which is given by the linear Gx -action on S((ρ◦αGx )

⊕k)

where k is some positive integer.
The bundle p : E → M has a (nonequivariant) topological trivialization, so does p′ :

E ′ → M . Now a continuous trivialization can be replaced by a smooth trivialization leading
to a diffeomorphism S(E ′) ≈ M × S

N where S(E ′) is the total space of the corresponding
sphere bundle and N = 2s − 1. This is explained in detail in Chap. 4 of [14] (see also
Proposition 6.20 in [15]). Note that the differential structure on the product M × S

N is the
product differential structure and S

N denotes the standard sphere, not an exotic one. ��
Remark 4.5 The dimension of the sphere in the above corollary is usually very big and it
depends on the dimension of M . So, this construction is not very useful for constructing
free actions on products of two equal dimensional spheres. It is an interesting problem to
classify all rank two finite groups which can act freely and smoothly on S

n × S
n for some n.

See [10,11], and [12] for more details on this problem.

5 Embedding fusion systems

A key ingredient in the construction of an equivariant vector bundle is the existence of a finite
group � and a family of compatible representations A = (αH : H → �). The compatibility
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Fusion systems and constructing free actions 951

of representations (αH ) means that for each map cg : H → K induced by conjugation
cg(h) = ghg−1, there exists a γ ∈ � such that the following diagram commutes:

H

cg

��

αH �� �

cγ

��

K
αK �� �

(1)

To find � and a family of compatible representations, we use an intermediate finite group S
and define � in terms of S and a fusion system on S. More precisely, we assume that there
is a finite group S and a family of maps ιH : H → S such that the diagram (1) above comes
from a diagram of the following form:

H

cg

��

ιH ��

αH

��

ιH (H)��

f

��

� � �� S
� � ι �� �

cγ

��

K
ιK ��

αK

��
ιK (K )

� � �� S
� � ι �� �

(2)

In general, the monomorphisms f : ιH (H) → ιK (K ) that complete these diagrams do
not have to exist, but we assume that they always exist. In fact, in our applications the maps
ιH are always injective, so we can take f as the composition ιK ◦ cg ◦ ι−1

H . Note that the
monomorphisms f : ιH (H)→ ιK (K ) do not only depend on the conjugations cg , but also
depend on different choices of maps ιH . These monomorphisms between subgroups of S
satisfy certain properties and the best way to study them is via the theory of abstract fusion
systems. We now introduce the terminology of fusion systems.

Definition 5.1 Let S be a finite group. A fusion system F on S is a category whose objects
are subgroups of S and whose morphisms are injective group homomorphisms where the
composition of morphisms in F is the usual composition of group homomorphisms and
where for every P, Q ≤ S, the morphism set HomF (P, Q) satisfies the following:

(i) HomS(P, Q) ⊆ HomF (P, Q)where HomS(P, Q) is the set of all conjugation homo-
morphisms induced by elements in S.

(ii) For every morphism ϕ in HomF (P, Q), the induced group isomorphism P → ϕ(P)
and its inverse are also morphisms in F .

An obvious example of a fusion system is the fusion system FS(G) where G is a finite
group, S a subgroup of G, and the set of morphisms HomF (P, Q) is defined as the set of
all maps induced by conjugations by elements of G. If F1 and F2 are two fusion systems on
a group S, then we write F1 ⊆ F2 to mean that all morphisms in F1 are also morphisms in
F2. We have the following:

Lemma 5.2 Let G be a finite group and H be a family of subgroups of G. Let S be a finite
group and {ιH : H → S | H ∈ H} be a family of maps. Suppose that F is a fusion system on
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S such that for every map cg : H → K induced by conjugation, there is a monomorphism
f in F such that the following diagram commutes

H

cg

��

ιH �� ιH (H)��

f

��

K
ιK �� ιK (K ).

If � is a finite group which includes S as a subgroup and satisfies F ⊆ FS(�), then the
family of maps (αH ), where αH is defined as the composition

αH : H
ιH−→ S ↪→ �

for all H ∈ H, is a compatible family.

Given a fusion system on S, a good way to find a finite group � satisfying F ⊆ FS(�)

is to use certain S–S-bisets. Before we explain this construction, we first introduce some
terminology about bisets.

An S–S-biset � is a non-empty set where S acts both from right and from left in such a
way that for all s, s′ ∈ S and x ∈ �, we have (sx)s′ = s(xs′). Let � be an S–S-biset, Q
be a subgroup of S, and ϕ : Q → S be a monomorphism. Then, we write Q� to denote the
Q–S-biset obtained from � by restricting the left S-action to Q and we write ϕ� to denote
the Q–S-biset obtained from � where the left Q-action is induced by ϕ.

We now discuss the construction of the finite group� for a given biset. This construction is
the same as the construction given by Park in [23] for saturated fusion systems on p-groups.
Let S be a finite group and � be an S–S-biset. Let

�� = { f : �→ � | f (xs) = f (x)s for all s ∈ S, x ∈ �}
denote the group of automorphisms of � preserving the right S-action. Define ι : S → ��
as the homomorphism satisfying ι(s)(x) = sx for all x ∈ �. If the left S-action on � is free
and � is non-empty, then ι is a monomorphism, hence in that case we can consider S as a
subgroup of ��.

Lemma 5.3 (Theorem 3, [23]). Let � be an S-S-biset with a free left S-action and let Q be
a subgroup of S and ϕ : Q → S be a monomorphism. Then, ϕ� and Q� are isomorphic as
Q-S-bisets if and only if ϕ is a morphism in the fusion system FS(��).

Proof Let η : Q�→ ϕ� be a function. Note that η is a Q–S-biset isomorphism if and only
if η is an element in �� and the conjugation cη restricted to Q is equal to ϕ : Q → S. This
is because

cη(q)(x) = η(qη−1(x)) = ϕ(q)η(η−1(x)) = ϕ(q)(x)
for all q ∈ Q and x ∈ �. ��

We make the following definition for the situation considered in Lemma 5.3.

Definition 5.4 Let F be a fusion system on a finite group S. Then, a left free S-S-biset � is
called left F-stable if for every subgroup Q ≤ S and ϕ ∈ HomF (Q, S), the Q-S-bisets Q�

and ϕ� are isomorphic.

Hence, by Lemma 5.3, we have the following.
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Theorem 5.5 Let F be a fusion system on a finite group S. If � is a left F-stable S-S-biset,
then F ⊆ FS(��).

This theorem together with Lemma 5.2 gives an explicit way to construct a finite group
� and a compatible family of representations (αH : H → �). Note that if� is also free as a
right S-set, then the group � can be described in a simple way as follows: If |�/S| = n, then
� is the wreath product S ��n := (S× · · · × S)��n where the product of S’s is n-fold and
the symmetry group �n acts on the product by permuting the coordinates. The fusion data
is encoded in the way S is embedded in �. In general, the image of ι : S → � is not in the
product S × · · · × S (see [23] for more details).

For our constructions, we also need to find a representation of � such that its restriction
via the maps αH is in a desired form. For this, we again use S as an intermediate step, start
with a representation V of S and obtain a representation of � in terms of V .

Definition 5.6 Let V be a left CS-module and let � be a S-S-biset. Then we define C��-
module Ṽ as the module

Ṽ = C�⊗CS V

where C� is the permutation CS-CS-bimodule with basis given by �. The left C��-action
on C� is given by evaluation of the bijections in �� at the elements of� and Ṽ is considered
as a left C��-module via this action.

Note that every transitive S–S-biset is of the form S ×� S for some � ≤ S × S, where
S ×� S is the equivalence class of pairs (s1, s2) where (s1t1, s2) ∼ (s1, t2s2) if and only if
(t1, t2) ∈ �. The left and right actions are given by usual left and right multiplication in S.
An S-S-biset is called bifree if both left and right S actions are free. It is clear from the above
description that a transitive bifree S-S-biset S ×� S has the property that � ∩ (S × 1) = 1
and�∩ (1× S) = 1. Applying Goursat’s theorem, we obtain that� is a graph of an injective
map ϕ : Q → S where Q ≤ S. In this case we denote � by

�(ϕ) = {(s, ϕ(s)) | s ∈ Q}.
So, a bifree S-S-biset is a disjoint union of bisets of the form S ×�(ϕ) S where ϕ : Q → S
is a monomorphism.

Definition 5.7 Let � be a finite bifree S–S-biset. Then we define the isotropy of � as the
family

Isot(�) = {
ϕ : Q → S

∣∣ S ×�(ϕ) S is isomorphic to a transitive summand of �
}
.

It is known that every transitive biset can be written as a product of five basic bisets (see
Lemma 2.3.26 in [8]). Since � is bifree, only three of these basic bisets, namely restriction,
isogation, and induction, are needed to write the transitive summands of� as a composition
of basic bisets. This gives us the following calculation:

Proposition 5.8 Let V be a left CS-module and� be a bifree S-S-biset. Let Ṽ be the C��-
module constructed as above. Then, for H ≤ S, the CH-module Res��H Ṽ is a direct sum of
modules in the form

IndH
H∩Qx Iso∗(ϕ ◦ cx )ResS

ϕ(xH∩Q) V

where x ∈ S and ϕ : Q → S is in Isot(�).
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Proof By writing the transitive summands of � as a composition of the three basic bisets,
we can express

Res��S Ṽ = C�⊗CS V

as a direct sum of CS-modules in the form

IndS
Q Iso∗(ϕ)ResS

ϕ(Q) V

where ϕ : Q → S is in Isot(�). Note that Iso∗(ϕ) is the contravariant isogation defined by
Iso∗(ϕ)(M) = ϕ∗(M) where M is a ϕ(Q)-module.

Let H be a subgroup of S. Then, the CH -module Res��H Ṽ is a direct sum of CH -modules
in the form

ResS
H IndS

Q Iso∗(ϕ)ResS
ϕ(Q) V .

Using the Mackey decomposition formula, we can decompose ResS
H IndS

Q further. We obtain
a direct sum with summands of the form

IndH
H∩Qx Iso∗(cx )ResQ

xH∩Q Iso∗(ϕ)ResS
ϕ(Q) V

which is isomorphic to

IndH
H∩Qx Iso∗(ϕ ◦ cx )ResS

ϕ(xH∩Q) V .

This completes the proof. ��

This proposition shows that if we want to use this method of construction of a finite group
� using a left F-stable biset�, we need to put some restrictions on the isotropy subgroups of
�. The existence of left F-stable bisets with certain restrictions on their isotropy subgroups
is an interesting problem and we plan to discuss this in a future paper. For the main theorems
of this paper, it is possible to avoid this discussion by finding specific bisets with desired
properties using ad hoc methods. These bisets will be described in the next section.

6 Constructions of free actions on products of spheres

In this section, we prove our main theorems, Theorems 1.1 and 1.2, stated in the introduction.
We will first prove Theorem 1.1 which states that a p-group G acts freely and smoothly on a
product of two spheres if and only if rk(G) ≤ 2. We start with a well-known lemma which
is often used as a starting point for constructing free actions.

Lemma 6.1 Let G be a p-group with rk G = r . If rk Z(G) = k, then G acts smoothly on a
product of k spheres with isotropy subgroups having rank at most r − k.

Proof Let the center of G be of the form Z(G) ∼= Z/pn1 × · · · × Z/pnk with generators
a1, . . . , ak . For j ∈ {1, 2, . . . , k}, let χ j : Z(G)→ C denote the one-dimensional represen-

tation of Z(G) defined by a j �→ e2π i/pn j
, and a j ′ �→ 1 for j ′ �= j . Let θ j = IndG

Z(G)(χ j ).
Define M = S(θ1) × · · · × S(θk) with the diagonal G-action. Note that Z(G) acts freely
on M , so if H is an isotropy subgroup of G, then we must have H ∩ Z(G) = {1}. Thus,
H Z(G) ∼= H × Z(G) is a subgroup of G. This proves that k + rk H ≤ r . ��
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The above lemma, in particular, says that if rk G = r and rk Z(G) = r − 1, then G acts
smoothly on a product of (r − 1)-many spheres with rank one isotropy subgroups. When p
is odd, all rank one p-groups are cyclic. In the case of 2-groups, in addition to cyclic groups,
we also have the family of generalized quaternions Q2n where n ≥ 3. In either case, given a
finite collection of rank one p-groups, we can find a rank one p-group into which all other
rank one p-groups can be embedded. In the proof of Theorem 1.1, S will be this large rank
one p-group into which all isotropy subgroups can be embedded. So, when p is odd, S will
be a cyclic group of order pN and when p = 2, it will be a quaternion group Q2N where N
is a large enough positive integer.

As a fusion system on S we will always consider the fusion system F where all the mono-
morphisms between subgroups of S are in F . For this S and F , we construct left F-stable
bisets with reasonable isotropy structures. We construct these bisets using a more general
lemma. Before we state this lemma, we introduce a definition.

Definition 6.2 Let F be a fusion system on a finite group S. Then we say K is an F-
characteristic subgroup of S if for any subgroup L ≤ K and for any morphism ϕ : L → S
in F , there exists a morphism ϕ̃ : K → K in F such that ϕ̃(l) = ϕ(l) for all l ∈ L .

Now, we have the following:

Lemma 6.3 Let F be a fusion system on a finite group S and K be an abelian F-
characteristic subgroup of S. Assume that � is the S-S-biset defined as follows

� =
∐

ϕ∈AutF (K )
S ×�(ϕ) S.

Then the S-S-biset � is left F-stable.

Proof We first prove that for any F-morphism ψ : K → S, the K –S-bisets K� and ψ�

are isomorphic. For this, let {s1, . . . , sm} be a set of coset representatives for K so that
S = �i si K . Using this decomposition, we can write

� =
∐

ϕ∈AutF (K )

m∐

i=1

Ei,ϕ

where Ei,ϕ = {[si , s] | [si , s] ∈ S ×�(ϕ) S}. Define θ : K�→ ψ� as the map which takes
[si , s] ∈ Ei,ϕ to [si , s] ∈ Ei,ϕ′ where

ϕ′ = ϕ ◦ c−1
si
◦ ψ−1 ◦ csi .

Note that since K is F-characteristic, we have ψ(K ) = K = csi (K ), so ϕ′ is also in
AutF (K ). It is straight forward to check that θ is a bijection and satisfies θ(kx) = ψ(k)θ(x)
for every k ∈ K and x ∈ �.

Now take any subgroup Q ≤ S and ψ ∈ HomF (Q, S). We want to show that Q–S-bisets
Q� and ψ� are isomorphic. We can think of a Q-S-biset as a left (Q × S)-set by defining
the left (Q× S)-action by (q, s)x = qxs−1 for all q ∈ Q and s ∈ S. This allows us to apply
the usual theory of left sets to bisets. In particular, to show that Q� and ψ� are isomorphic,
it is enough to show that for every H ≤ Q × S, the number of fixed points of left H - and
Hψ -actions on � are equal where Hψ = {(ψ(x), y) | (x, y) ∈ H}.

Take any subgroup H ≤ Q × S. If H is not a group in the form �(θ), where θ : L → S
is a F-morphism and L is a subgroup of K , then |�H | = 0 = |�Hψ |. If H is a group in
the form �(θ) where θ : L → S is a F-morphism and L is a subgroup of K , then there
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exists a morphism ψ̃ : K → K in F such that ψ̃(l) = ψ(l) for all l ∈ L . This implies
that |�H | = |�Hψ | because K –S-bisets K� and ψ̃� are isomorphic. From these we can
conclude that Q–S-bisets Q� and ψ� are isomorphic. ��

Lemma 6.3 is used to show that the bisets given in the following two examples are left
F-stable.

Example 6.4 Let p be a prime number and S be the cyclic group of order pN where N > 1.
Let F be the fusion system on S such that all monomorphisms between the subgroups of S
are morphisms in F . Define

� =
∐

ϕ∈Aut(S)

S ×�(ϕ) S.

By Lemma 6.3, � is left F-stable. So, by Theorem 5.5, F ⊆ FS(��). This implies that if a
finite group G acts on a space with cyclic p-group isotropy, then its isotropy subgroups can
be embedded in �� in a compatible way. To obtain the maps αH : H → ��, we first choose
a family of injective maps ιH : H → S for all isotropy subgroups H , then we apply Lemma
5.2 to conclude that the compositions αH = ι ◦ ιH form a compatible family of maps. Here
ι : S→ �� is the canonical inclusion defined in Sect. 5 which satisfies ι(s)(x) = sx for all
s ∈ S and x ∈ �.

As a representation V of S, we can take the one dimensional complex representation given
by multiplication with the pN -th root of unity. Then, for every H ≤ S, the representation
Res�H Ṽ is isomorphic to the direct sum ⊕ϕ ResS

H ϕ
∗(V ), hence H acts freely on S(Ṽ ). ��

Remark 6.5 Note that the finite group �� that is constructed in the above example is exactly
the same as the construction given in Sect. 4.2 of [27]. To see this, note that the group ��
constructed above can be expressed as wreath product S � �n where n = |Aut(S)|. We can
write a specific group isomorphism�� → S ��n as follows: Observe that there is a S-S-biset
isomorphism between S ×�(ϕ) S and the S-S-biset ϕS where the left S action on ϕS is via
the automorphism ϕ. This isomorphism is given by the map θ : S×�(ϕ) S→ ϕS defined by
θ([(s1, s2]) = ϕ(s1)s2. So, we have

� ∼=
∐

ϕ∈Aut(S)

ϕS.

Giving an ordering for the elements of Aut(S), we can write Aut(S) = {ϕ1, . . . , ϕn}. Now
we define a map from �� to the wreath product S � �n := (S × · · · × S) � �n by sending
an automorphism f : � → � to the element ( f (e1), . . . , f (en); σ) where ei denotes the
identity element of the i-th component in the above disjoint union and σ is the permutation
of the components induced by the automorphism f . This map induces an isomorphism and
under this isomorphism the embedding ι : S → �� becomes the embedding S → S � �n

defined by ι(s) = (ϕ1(s), . . . , ϕn(s); id). One can easily check that the representation of ��
is also the same as the one given in Sect. 4.2 of [27]. ��
Example 6.6 Let S be the generalized quaternion group Q2N of order 2N where N ≥ 3. Let
F be the fusion system on S such that all monomorphisms between the subgroups of S are
morphisms in F . Define

� = S ×�(idC2 )
S

where C2 is the unique cyclic group of order 2 in S. Since C2 is a F-characteristic subgroup
and Aut(C2) = {idC2}, by Lemma 6.3, we can conclude that � is left F-stable, and hence
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F ⊆ FS(��). Let G be a finite group acting on a space X and let H denote the family of
isotropy subgroups of G-action on X . If every element in H is a rank one 2-group, then we
can choose a large N and embed every element H ∈ H into S = Q2N via some embedding
ιH : H → S. Since the fusion system F includes all possible monomorphisms between
subgroups of S, the condition in Lemma 5.2 holds. So, the isotropy subgroups H ∈ H can
be embedded in �� in a compatible way.

If V is a representation of S, then for any H ≤ S, the representation ResS
H Ṽ is isomorphic

to a multiple of the representation

IndH
C2

ResS
C2

V .

So, if we choose V with the property that C2 acts freely on S(V ), then ResS
H Ṽ also has the

same property. ��

The finite group �� constructed in the above example can also be expressed as a wreath
product S � �n where n = |�/S| = |S : C2|. But in this case, the image of ι : S → �� is
not in the subgroup S × · · · × S. Under the natural projection π : �� → �n , the element
π(ι(s)), where s ∈ S, corresponds to the permutation induced by the s action on the coset
set S/C2.

Now we are ready to prove the following.

Theorem 6.7 Let G be a finite group acting smoothly on a manifold M so that the isotropy
subgroup Gx for every point x ∈ M is a rank one p-group. Then, there exists a positive
integer N such that G acts freely and smoothly on M × S

N .

Proof Let H denote the family of isotropy subgroups of the G-action on M . By Examples 6.4
and 6.6, we know that there exists a finite group � and a family of compatible representations

A = (αH ) ∈ lim←−
H∈H

Rep(H, �).

In these examples we also showed that there is a representation ρ : � → U (n) such that
the composition ρ ◦ αH : H → U (n) is a free representation for every H ∈ H. Hence, by
Corollary 4.4, G acts freely and smoothly on M × S

N for some positive integer N . ��

As an immediate corollary, we obtain the following.

Theorem 6.8 Let G be a p-group with rk G = r . If rk Z(G) ≥ r −1, then G acts freely and
smoothly on a product of r spheres.

Proof This follows from Lemma 6.1 and Theorem 6.7. ��

Now Theorem 1.1 follows as a special case.

Proof of Theorem 1.1 It is proved in [13] that (Z/p)3 does not act freely on a product of two
spheres. Hence it is enough to construct free actions of p-groups which has rk(G) ≤ 2. Note
that every finite p-group has a nontrivial center, so the existence of such actions follows from
Theorem 6.8. ��

In the rest of the section, we prove Theorem 1.2. The proof is similar to the above proof.
We first consider the following example.
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Example 6.9 Let p be a prime number and S be the elementary abelian p-group of order pN

for some N ≥ 1. Let F be the fusion system on S such that all monomorphisms between the
subgroups of S are morphisms in the fusion system S. Define

� =
∐

ϕ∈Aut(S)

S ×�(ϕ) S.

Note that� is left F-stable by Lemma 6.3 and hence, by Theorem 5.5, we have F ⊆ FS(�).
If G is a finite group acting on a space with elementary abelian isotropy subgroups, then we
can find a compatible family of representations αH : H → � by first choosing embeddings
ιH : H → S and then by applying Lemma 5.2.

In the following application, we can take the representation V of S as the augmented
regular representation V = CG − C, and then construct Ṽ in the usual way. Note that for
any isotropy subgroup H , the representation α∗H (Ṽ ) is isomorphic to the direct sum

⊕

ϕ∈Aut(S)

(ιH )
∗ϕ∗(V )

which is isomorphic to (ιH )∗(V⊕n) where n = |Aut(S)|. Note that we can choose S so
that when H is an isotropy subgroup of maximal rank the embedding ιH : H → S is an
isomorphism. The action of an isotropy subgroup H on S(Ṽ ) will have no fixed points if H
has maximal rank.

Proof of Theorem 1.2 Let H denote the family of isotropy subgroups of G action on M . By
Example 6.9, there is a finite group � and a family of compatible representations

A = (αH ) ∈ lim←−
H∈H

Rep(H, �)

together with a representation ρ : � → U (n) such that for every H ∈ H of maximal rank,
the representation ρH = ρ ◦αH : H → U (n) has the property that H acts on S(ρH )without
fixed points. By Corollary 4.4, there is a smooth action on M ×S

n1 for some positive integer
n1 such that for every Gx ∈ H of maximal rank, Gx action on {x} × S

n1 is without fixed
points. So, the isotropy subgroups of G action on M × S

n1 has rank ≤ k − 1. Repeating the
argument recursively, we can conclude that G acts freely and smoothly on M×S

n1 ×· · · Snk

for some positive integers n1, . . . , nk . ��
The proof of Corollary 1.3 follows easily from Theorem 1.2. To see this, observe that

if G is an (almost) extraspecial p-group of rank r , then every subgroup which intersects
trivially with the center is an elementary abelian subgroup with rank less than or equal to
r − 1. This is because the Frattini subgroup of G is included in the center Z(G) of G and
that Z(G) is cyclic. Let a be a central element of order p in G. Let χ be the one-dimensional
representation of 〈a〉 defined by a �→ e2π i/p, and define θ = IndG〈a〉(χ). Then, G action on
M = S(θ) has all its isotropy groups elementary abelian with rank less than or equal to r−1.
So, the result follows from Theorem 1.2.

Note that Theorem 1.2 applies to a larger class of groups than (almost) extra-special
p-groups. For example, if G is a p-group such that the elements of order p in the Frattini
subgroup �(G) of G are all central, then the action constructed in Lemma 6.1 will satisfy
the assumptions of Theorem 1.2, so we can obtain free smooth actions of these groups on r
many spheres where r is the rank of the group. A particular example of such a group would
be a p-group G which is a central extension of two elementary abelian p-groups.
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