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ABSTRACT

We enumerate and classify up to equisingular deformation all irreducible plane sextics
constituting the so called classical Zariski pairs. In most cases we obtain two deforma-
tion families, called abundant and non-abundant. Four sets of singularities are realized
by abundant sextics only, and one exceptional set of singularities is realized by three
families, one abundant and two complex conjugate non-abundant. This exceptional set
of singularities has submaximal total Milnor number 18.

Keywords: Zariski pair; plane sextic; singularity.
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1. Introduction

For the purpose of this paper, we define a Zariski pair as a pair of irreducible plane
sextics C1 and C2 having the same set of singularities but not homeomorphic com-
plements P2�C1 and P2�C2, see Definition 2.12 for details. Historically, the first
example of such a pair was constructed by Zariski [16]. In this example, both curves
have six cusps and one of them is of the so called torus type, i.e. its equation can be
represented in the form f3

2 + f2
3 = 0, where f2 and f3 are certain homogenous poly-

nomials of degree 2 and 3, respectively. It is shown in [16] that the two curves differ
by the fundamental groups π1(P2�Ci), i = 1, 2 and, moreover, by the Alexander
polynomials ∆C(t) (see Libgober [10] for the definition and basic properties of the
Alexander polynomial of a plane algebraic curve). Following Degtyarev [2, 3], we
call such pairs of sextics classical Zariski pairs.

Zariski’s example was generalized in [2, 3], where it was shown that the Alexan-
der polynomial of an irreducible plane sextic C is ∆C(t) = (t2 − t + 1)d, d ≥ 0.
Moreover, the exponent d is uniquely determined by the set of singularities of the
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curve unless this set of singularities is of the form

Σ = eE6 ⊕
6⊕

i=1

aiA3i−1 ⊕ nA1, 2e +
∑

iai = 6, (1.1)

in which case one may have d = 0 or d = 1. According to the value of d, such a
sextic is said to be abundant (if d = 1) or non-abundant (d = 0); this terminology is
due to the fact that the value of d is given by the superabundance of a certain linear
system related to the curve. Thus, if two sextics C1, C2 form a classical Zariski pair,
their common set of singularities must be as in (1.1).

According to [2, 3], just as in Zariski’s original example, abundant sextics are
necessarily of torus type, whereas non-abundant are not. In fact, it was recently
shown in [5] that an irreducible plane sextic C is of torus type if and only if its
Alexander polynomial ∆C(t) is non-trivial. This correspondence was first conjec-
tured by Oka [8].

In this paper, we complete the classification of classical Zariski pairs and our
principal result is the following theorem.

Theorem 1.1. The number of rigid isotopy classes of irreducible plane sextics
realizing a set of singularities as in (1.1) is as follows:

• Each of the set of singularities 6A2 ⊕ 4A1, 2A2 ⊕ 2E6 ⊕ 2A1, 4A2 ⊕E6 ⊕ 3A1,

3E6 ⊕A1 is realized by only one rigid isotopy class which is abundant;
• The set of singularities Σ = A11 ⊕ E6 ⊕ A1 is realized by three distinct rigid

isotopy classes, one abundant and two complex conjugate non-abundant;
• Any other set of singularities as in (1.1) is realized by exactly two rigid isotopy

classes, one abundant and one not.

It is worth mentioning that the set of singularities Σ = A11 ⊕E6 ⊕A1 realized
by three distinct rigid isotopy classes has submaximal total Milnor number 18.
(Recall that the total Milnor number of a simple plane sextic does not exceed 19.)
To our knowledge, the corresponding non-abundant type is the first example of a
non-maximizing configuration realized by two distinct rigid isotopy classes.

Theorem 1.1 is proved in Sec. 3. Section 2 contains the necessary preliminaries.
First, following Nikulin’s renowned paper [13], we recall some basic notions and
facts concerning integral lattices and their discriminant forms. Then we describe
the moduli spaces of plane sextics possessing a given set of singularities and, in
particular, explain the construction of classical Zariski pairs; this part is mainly
based on [4].

Remark 1.2. It would be interesting to have explicit equations for the curves
having these sets of singularities, but I do not know how to write them down.
In [8], Eyral and Oka give examples of equations for non-abundant types of seven
sets of singularities as in (1.1) with n = 0. In addition, in [14] and [6], other explicit
constructions for some pairs of curves are found.
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2. Preliminaries

2.1. Quadratic forms and integral lattices

2.1.1. Definitions and properties

A finite quadratic form is a finite abelian group L with a map q : L → Q/2Z

satisfying q(x+y) = q(x)+q(y)+2b(x, y) and q(nx) = n2q(x), x, y ∈ L, n ∈ Z, where
b : L⊗L → Q/Z is a symmetric bilinear form. AutL is the group of automorphisms
of L preserving q.

Any finite quadratic form can be decomposed into its primary components as
orthogonal summands; L =

⊕Lp =
⊕

(L⊗Zp), summation over all primes p, where
Zp is the ring of p-adic integers. For any prime p, Lp is said to be the p-primary
part of L. Denote by �(L) the minimal number of generators of L.

Let 〈mn 〉 be the non-degenerate quadratic form on Z/nZ sending the generator to
m
n , where m

n ∈ Q/2Z with (m, n) = 1 and mn = 0 mod 2. For an integer k ≥ 1, let
U2k and V2k be the quadratic forms on the group (Z/2kZ)2 defined by the matrices

U2k =


 0

1
2k

1
2k

0


 and V2k =




1
2k−1

1
2k

1
2k

1
2k−1


 .

According to [13], each finite quadratic form is an orthogonal sum of cyclic sum-
mands 〈mn 〉 and copies of U2k , V2k .

A finite quadratic form is called even if x2 is an integer for each element x ∈ L of
order 2; otherwise it is called odd. A quadratic form is odd if and only if it contains
〈± 1

2 〉 as an orthogonal summand.
The Brown invariant of a finite quadratic form L is the residue BrL ∈ Z/8Z

defined by the Gauss sum

exp
(

1
4
iπ BrL

)
= |L|−1

2

∑
i∈L

exp(iπx2).

The Brown invariants of p-primary blocks are as follows:

Br〈 2a
p2s−1 〉 = 2(a

p )− (−1
p )− 1, Br〈 2a

p2s 〉 = 0 (for s ≥ 1 and (a, p) = 1)
Br〈 a

2k 〉 = a + 1
2k(a2 − 1) mod 8 (for k ≥ 1, p = 2 and odd a ∈ Z)

BrU2k = 0 BrV2k = 4k mod 8 (for all k ≥ 1).

2.1.2. Integral lattices

An integral lattice is a free abelian group L of finite rank with a symmetric bilinear
form b : L⊗L→ Z. When b(x, y) is understood, we use the multiplicative notation
x · y instead of b(x, y). A lattice L is called even if x2 = 0 mod 2 for all x ∈ L or
odd otherwise.

The transition matrix from one integral basis to another one has determi-
nant ±1, and hence the determinant of lattice L can be defined as detL = det b ∈ Z.
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The lattice L is non-degenerate if detL �= 0 and it is unimodular if detL = ±1. The
signature of a non-degenerate lattice L is the pair (σ+L, σ−L) of inertia indices of
L. If L is a non-degenerate integral lattice, the dual group L∗ = Hom(L, Z) can
be identified with the subgroup {x ∈ L ⊗ Q|x · y ∈ Z for all y ∈ L}. The quotient
group L∗/L is called the discriminant group and is denoted by L or disk L. One
has |L| = |det L| and �(L) ≤ rk(L). The quotient group L∗/L inherits from L ⊗ Q

a non-degenerate symmetric bilinear form b : L ⊗ L → Q/Z and, if L is even, its
quadratic extension q : L → Q/2Z. Hence the discriminant group of an even lattice
is a finite quadratic form.

Two non-degenerate integral lattices are said to have the same genus if their
localization on R-valued and Qp-valued forms are isomorphic.

Theorem 2.1 (see [13]). The genus of an even integral lattice L is determined
by its signature (σ+L, σ−L) and discriminant form L.

2.1.3. Automorphisms of lattices

Let us denote by O(L), the group of auto-isometries of lattice L. Recall that σ+L

is the dimension of any maximal positive definite subspace of vector space L ⊗ R.
Any two maximal positive definite subspaces are oriented in a coherent way. The
subgroup O∗(L) ⊂ O(L) is the group of isometries preserving the orientation of
maximal positive definite subspaces. Any isometry of L preserves (∈ O∗(L)) or
reverses (∈ O(L)\O∗(L)) this orientation; in the latter case we call this isometry
+-disorienting isometry.

Given a vector a ∈ L with a2 �= 0, the reflection is the automorphism ta : L→ L

defined by ta : x �→ x− 2a·x
a2 a. The reflection ta is an involution, i.e. t2a = id.

The image of the canonical homomorphism O(L)→ AutL is denoted by AutL L.

2.1.4. Existence and uniqueness of a lattice

According to the following statement each p-primary finite quadratic form Lp is
represented by a certain “minimal” p-adic lattice K(Lp).

Theorem 2.2 (see [13]). Let Lp be the p-primary part of L. Then there exists a
unique p-adic lattice K(Lp) of rank �(Lp) whose discriminant form is isomorphic
to Lp, except in the case when p = 2 and L2 is even.

If p = 2 and L2 is even, then there exist exactly two 2-adic lattices L1
2 and L2

2

of rank �(L2) whose discriminant forms are L2.

Theorem 2.3 (see [13, Theorem 1.10.1]). Let L be a finite quadratic form and
let σ± be a pair of integers. Then, the following four conditions are necessary and
sufficient for the existence of an even integral lattice L whose signature is (σ+, σ−)
and whose discriminant form is L:

(1) σ± ≥ 0 and σ+ + σ− ≥ �(L);
(2) σ+ − σ− = BrLmod 8;

1250091-4
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(3) For each p �= 2, either σ+ +σ− > �p(L) or detK(Lp) ≡ (−1)σ− · |L|mod (Z∗
p)

2;
(4) Either σ+ + σ− > �2(L), or L2 is odd, or det K(L2) ≡ ±1|L|mod (Z∗

2)
2.

The following theorem gives a partial answer to the problem of uniqueness of
an even lattice in its genus.

Theorem 2.4 (see [13, Theorem 1.13.2]). Let L be an indefinite even integral
lattice, rk ≥ 3. The following two conditions are sufficient for L to be unique in its
genus:

(1) For each p �= 2, either rkL ≥ �p(L) + 2 or Lp contains a subform isomorphic
to 〈 a

pk 〉 ⊕ 〈 b
pk 〉, k ≥ 1, as an orthogonal summand;

(2) Either rkL ≥ �2(L) + 2 or L2 contains a subform isomorphic to U2k , V2k , or
〈 a
2k 〉 ⊕ 〈 b

2k 〉, k ≥ 1, as an orthogonal summand.

Theorem 2.5 (see [13, Theorem 1.14.2]). Let L be an indefinite even integral
lattice, rkL ≥ 3. The following two conditions are sufficient for L to be unique in
its genus and for the canonical homomorphism O(L)→ Aut(L) to be onto:

(1) for each p �= 2, rkL ≥ �p(L) + 2;
(2) either rkL ≥ �2(L) + 2 or L2 contains a subform isomorphic to U2k , V2k as an

orthogonal summand.

2.1.5. Special lattices U and root systems

The hyperbolic plane is the lattice U spanned by two vectors u, v so that u2 = v2 =
0, u · v = 1. The hyperbolic plane is the only even unimodular lattice of signature
(1, 1). Generalizing, we denote by Ui, i ∈ Z+ the lattice spanned by vectors u, v

with the property u2 = v2 = 0, u · v = i.
A Root system is a negative definite lattice generated by elements of square −2.

These elements are called roots. Every root system admits a unique decomposition
into orthogonal sum of irreducible root systems. Irreducible root systems are Ap,
p ≥ 1, Dq, q ≥ 4, E6, E7, E8, but we deal only with Ap, p ≥ 1 and E6. Their
discriminant forms are diskAp = 〈 −p

p+1 〉, diskE6 = 〈23 〉.

2.1.6. Extensions

An even integral lattice L containing even lattice S for which L/S is a finite abelian
group, is called a finite index extension of S. For a finite index extension L ⊃ S, one
has the inclusion S ⊂ L ⊂ L∗ ⊂ S∗. The group K = L/S is an isotropic subgroup
of S = S∗/S and K is called the kernel of the extension.

Two extensions L1 ⊃ S and L2 ⊃ S are isomorphic if there is an isomorphism
L1 → L2 fixing S. For a fixed subgroup A ⊂ O(S), A-isomorphism of extensions is
an isomorphism whose restriction to S belongs to A.

Proposition 2.6 (see [13]). Let S be a non-degenerate even lattice, and fix
a subgroup A ⊂ O(S). The map L �→ K = L/S ⊂ S establishes a one-to-one
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correspondence between the set of A-isomorphism classes of finite index extensions
L ⊃ S and the set of A-orbits of isotropic subgroups K ⊂ S. Under this correspon-
dence one has L = K⊥/K.

An isometry f : S → S extends to a finite index extension L ⊃ S defined by
an isotropic subgroup K ⊂ S if and only if the automorphism S → S induced by f

preserves K.

Another extreme case is when S is a primitive non-degenerate sublattice of a
unimodular lattice L. In this case S⊥ is also primitive in L and L is a finite index
extension of S⊕S⊥. Since disk L = 0, the kernel K ⊂ S⊕ disk S⊥ is the graph of an
anti-isometry κ : S → disk S⊥. Conversely, given a lattice N and an anti-isometry
κ : S → N , the graph of κ is an isotropic subgroup K ⊂ S ⊕ N and the resulting
extension L ⊃ S ⊕N ⊃ S is a unimodular primitive extension of S with S⊥ = N .

Let s : S → S and t : N → N be isometries. Then the direct sum s⊕ t : S⊕N →
S ⊕N preserves the graph of κ if and only if κ ◦ s = t ◦ κ.

Proposition 2.7 (see [13]). Let S be a non-degenerate even lattice, let s+, s− be
non-negative integers. Fix a subgroup A ⊂ O(S). Then the A-isomorphism class of
a primitive extension L ⊃ S of S to a unimodular lattice L of signature (s+, s−) is
determined by

(1) A choice of a lattice N in the genus (s+ − σ+S, s− − σ−S;−S), and
(2) A choice of a bi-coset of the canonical left–right action of A×AutN N on the

set of anti-isometries S → N .

If a lattice N and an anti-isometry κ : S → N as above are chosen (and thus
an extension L is fixed ), an isometry t : N → N extends to an A-automorphism of
L if and only if the composition κ−1 ◦ t ◦ κ ∈ AutS is in the image of A.

Two primitive embeddings ϕ1, ϕ2 : S → L are +-equivalent if there exists an
isometry t ∈ O∗(L) such that t ◦ ϕ1 = ϕ2.

Let g(N) denote the set of isomorphism classes of non-degenerate integral lat-
tice with same genus as N . The following statement is a corollary of Miranda,
Morrison [11] and the previous statement.

Theorem 2.8. Let S be a primitive non-degenerate sublattice of an even unimod-
ular lattice L. Then there are exactly

e(N) =
∑

N∈g(N)

[Aut(N ) : Image(O(N)→ Aut(N ))]

equivalence classes of primitive embeddings of S into L and exactly

e∗(N) =
∑

N∈g(N)

[Aut(N ) : Image(O∗(N)→ Aut(N ))]

+-equivalence classes of such embeddings, where N = S⊥
L and N = disk(S⊥

L ).
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A way to compute the numbers e(N) and e∗(N) is outlined in [11, 12]. Note
that, if e(N) = 1 (respectively, e∗(N) = 1), the canonical map O(N) → Aut(N )
(respectively, O∗(N)→ Aut(N )) is onto.

2.2. Moduli spaces

A simple singularity can be defined as a singularity whose differential type is deter-
mined by its topological type. Isomorphism classes of simple singularities are known
to be in a one to one correspondence (described below) with those of irreducible
root systems (see Durfee [7] for details). Thus a set of simple singularities can be
identified with a root system, namely the orthogonal direct sum of the irreducible
summands. For this reason we use direct the summation symbol ⊕ in the notation.

Let C ⊂ P2 be a reduced sextic with simple singularities. Consider the double
covering X of P2 branched at C and its minimal resolution of singularities X̄ → X .
It is known that X̄ is a K3 surface and the homology group LX = H2(X̄; Z)
together with the scalar product defined by the intersection index is isomorphic to
2E8 ⊕ 3U. The exceptional divisors in X̄ contracted to a single singular point p

in X are smooth rational (−2)-curves spanning in LX an irreducible root system
corresponding to p. Hence the sublattice of LX spanned by all exceptional divisors
is the set of singularities of C (regarded as a root system as agreed above).

Introduce the following objects
σX ⊂ LX : the set of classes of exceptional divisors appeared in the blow-up

X̄ → X ;
ΣX ⊂ LX : the sublattice generated by σX ;
hX ∈ LX : the pull-back of the class of a hyperplane section;
SX = ΣX ⊕ 〈hX〉: the sublattice of LX ;
Σ̃X ⊂ S̃X ⊂ LX : the respective primitive hulls;
ωX ⊂ S̃⊥

X ⊗ R ⊂ LX ⊗ R: the oriented 2-subspace spanned by the real and
imaginary parts of a holomorphic 2-form on X̄. The orientation of ωX is denoted
by θX .

An isomorphism between two triples (LXi , hXi , σXi), i = 1, 2, as above is an
isometry LX1 → LX2 , taking hX1 to hX2 , σX1 to σX2 . The isomorphism class of
the triple (LX , hX , σX) associated to a sextic C is called the homological type of C.

Definition 2.9. Let Σ be a root system and h a vector of square 2. A configuration
is a finite index extension S̃ ⊃ S = Σ⊕ 〈h〉 satisfying the following conditions:

(1) The primitive hull Σ̃ = h⊥
eS

of Σ in S̃ has no roots other than those in Σ;

(2) There is no root r ∈ Σ such that 1
2 (r + h) ∈ S̃.

Definition 2.10. For a fixed set of simple singularities Σ, an abstract homological
type is an extension of S = Σ⊕ 〈h〉, (h2 = 2) to a lattice isomorphic to 2E8 ⊕ 3U,
so that the primitive hull S̃ of S in L is a configuration.
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Let S = Σ⊕ 〈h〉, h2 = 2. One has S = disk Σ⊕ 〈12 〉. An isometry of S is called
admissible if it preserves both h and σ, and an isometry of S̃ is called admissible
if it preserves S and induces an admissible isometry of S. Groups of admissible
isometries of S and S̃ are denoted by Oh(S) and Oh(S̃), respectively. The image of
the group of admissible isometries Oh(S̃) in Aut S̃ is denoted by Auth S̃. One has
Auth S̃ = {s ∈ Auth S|s(K) = K} where K is the kernel of the extension S̃ ⊃ S.

An orientation of an abstract homological type H = (L, h, σ) is one of two
orientations of positive definite 2-subspaces of S̃⊥ ⊗ R. For a fixed orientation θ,
the abstract homological type H is called symmetric if (H, θ) is isomorphic to
(H,−θ). In other words, H is symmetric if it has an automorphism t such that the
restriction of t to S̃⊥ is a +-disorienting isometry.

The following theorem is essential for classifying sextics with simple singularities.

Theorem 2.11 (see [4, Theorem 3.4.2]). The map sending a plane sextic C ⊂
P2 to the pair consisting of its homological type (LX , hX , σX) and the orientation
θX establishes a one-to-one correspondence between the set of rigid isotopy classes
of sextics with a given set of singularities Σ and the set of isomorphism classes of
oriented abstract homological types extending Σ.

2.3. Zariski pairs

Original definition of Zariski pair in [1] is as follows.

Definition 2.12. Two reduced curves C1, C2 ⊂ P2 are said to form a Zariski
pair if

— (T1, C1) and (T2, C2) are diffeomorphic where Ti is a regular neighborhood of
Ci, i = 1, 2, and

— the pairs (P2, C1) and (P2, C2) are not homeomorphic.

Definition 2.13. Two reduced curves C1, C2 ⊂ P2 are said to have the same
combinatorial data if there exist irreducible decompositions Ci = Ci,1 + · · ·+ Ci,ki ,
i = 1, 2, such that:

(1) k1 = k2 and deg C1,j = deg C2,j for all j = 1, . . . , k1;
(2) There is a one-to-one correspondence between the singular points of C1 and

C2, preserving the topological types of the points;
(3) Two singular points Pi ∈ Ci, i = 1, 2 corresponding to each other are related

by a local homeomorphism such that if a branch at P1 belongs to a component
B1,j then its image belongs to B2,j .

If the singularities of C1, C2 are simple then the first condition in Definition 2.12
can be replaced with the condition that the curves have the same combinatorial
data. Another related definition is as follows.
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Definition 2.14. Two reduced curves C1, C2 ⊂ P2 form a classical Zariski pair if

— C1 and C2 have the same combinatorial data, and
— the Alexander polynomials ∆C1(t), ∆C2(t) differ.

Let C1, C2 ⊂ P2 be a pair of irreducible sextics with the same set of simple
singularities. As described in Sec. 1, Alexander polynomials of C1, C2 differ if and
only if one is abundant and the other is not. The following statement is a crucial
step in checking the existence of abundant and non-abundant types for a given set
of singularities.

Theorem 2.15 (see [3, 4]). Each set of singularities Σ as in (1.1) extends to
two isomorphism classes of configurations S̃ ⊃ S = Σ⊕〈h〉 that may correspond to
irreducible sextics, one abundant (K = Z/3Z) and one not (K = 0).

For any set of singularities, if there exist two abstract homological types, one
with a configuration S̃ ⊃ S such that S̃/S ∼= Z/3Z and one with S̃/S ∼= 0, then
this set of singularities is realized by two irreducible plane sextics which have the
same combinatorial data and different Alexander polynomials. This is an efficient
way to find classical Zariski pairs of sextics.

2.4. Enumerating abstract homological types

An approach to the classification of the oriented abstract homological types extend-
ing a given set of singularities Σ is outlined in [4]. It can be carried out in four steps.

(1) Enumerating the configurations S̃ extending Σ. Due to Proposition 2.6, a con-
figuration is determined by a choice K = 0 or K = Z/3Z.

(2) Enumerating the isomorphism classes of S̃⊥. Orthogonal complement of S̃ has
genus (2, 19− rkΣ;−S̃). The existence of a lattice in this genus can be checked
by Theorem 2.3 and its uniqueness can be checked by Theorems 2.4 and 2.5.

(3) Enumerating the bi-cosets of Auth S̃ × AutN N . Once the lattice S̃⊥ = N is
chosen, one can fix an anti-isometry S̃ → N for N = disk S̃⊥ and, hence there
exists an isomorphism AutN = Aut S̃. Then the extensions are classified by
the quotient set Auth S̃\Aut S̃/AutN N .

(4) Detecting whether the abstract homological types are symmetric. An abstract
homological type is symmetric if and only if N has a +-disorienting isometry t

whose image in AutN = Aut S̃ belongs to the product of the image of subgroup
Oh(S̃) and the image of O∗(N).

The following statement provides a sufficient condition for an abstract homo-
logical type to be symmetric.

Proposition 2.16 (see [4]). Let H = (L, h, σ) be an abstract homological type.
If the lattice S̃⊥ contains a vector v of square 2, then H is symmetric.
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On the other hand, instead of the above steps, by the following statement one
can obtain unique abstract homological type for each configuration S̃.

Theorem 2.17. Each configuration extending a set of singularities Σ satisfying
the inequality �(disk Σ) + rkΣ ≤ 19 is realized by a unique rigid isotopy class of
plane sextics.

3. Proof of Theorem 1.1

In this section we complete the classification of classical Zariski pairs. The case n = 0
was settled in [4]. In the remaining part, there are 36 different sets of singularities
obtainable from (1.1) with n �= 0. By Theorem 2.15 each set of singularities should
be examined in two types, abundant and non-abundant. Therefore, there are 72
different configurations to be investigated.

In Table 1, the last eight sets of singularities (with the bullet sign) satisfy the
inequality �(disk Σ) + rkΣ ≤ 19. They are definitely realized by two types of irre-
ducible sextics (abundant and non-abundant) by Theorem 2.17. For the others we
follow the steps listed in Subsec. 2.4.

The first step, the choice K = 0 or K = Z/3Z is straightforward according to
Theorem 2.15. According to this choice, one has S̃ = S or |S̃| = |S|/9, respectively.

In the second step, we look for the existence and uniqueness of a lattice N

to serve as the orthogonal complement of S̃ in L. In Table 1, the cases for which
the genus of N (assuming the existence) does or does not satisfy the hypothesis
of Theorems 2.3–2.5 are shown by the plus or minus signs, respectively. By Theo-
rem 2.3, the four sets

6A2 ⊕ 4A1, 2A2 ⊕ 2E6 ⊕ 2A1, 4A2 ⊕E6 ⊕ 3A1, 3E6 ⊕A1 (3.1)

are realized by abundant curves only whereas any other set of singularities as in (1.1)
is realized by both abundant and non-abundant curves. Hence only abundant types
of these sets of singularities exist. For the uniqueness, it suffices to show that the
lattice N found satisfies the hypothesis of Theorem 2.4 or Theorem 2.5. As stated
in Table 1, this is the case for all sets of singularities except Σ = 3E6 ⊕A1. The
latter has a definite lattice N of rank 2 in which case Theorems 2.4 and 2.5 are not
applicable; however the existence of N and uniqueness in its genus can easily be
shown using Gauss [9].

The third step is to enumerate the bi-cosets of Auth S̃ × AutN N . To have a
unique class for each S, it is sufficient to have the homomorphism O(N) −→ AutN
surjective, i.e. AutN N = AutN . The set of singularities satisfying the hypothesis
of Theorem 2.5 have this homomorphism surjective. They are listed in Table 1.
Others have e(N) = 1 (see Theorem 2.8) by the calculations in [11] and so their
configurations also have this homomorphism surjective. Hence each abundant and
non-abundant extensions of (1.1) other than (3.1) and each abundant extensions
of (3.1) give rise to a unique abstract homological type.
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Table 1.

Singularities Abundant Non-abundant

2.3 2.4 2.5 e(eS⊥) 2.3 2.4 2.5 e(eS⊥)

Σ1 = A17 ⊕ A1 + + + +

Σ3 = A14 ⊕ A2 ⊕ 2A1 + + + – + 1

Σ4 = A11 ⊕ E6 ⊕ A1 + – + 1 + – + 1

Σ6 = A11 ⊕ 2A2 ⊕ 2A1 + + + – + 1

Σ7 = A11 ⊕ A5 ⊕ A1 + + + +

Σ8 = A8 ⊕ E6 ⊕ A2 ⊕ A1 + + + – + 1

Σ9 = A8 ⊕ E6 ⊕ A2 ⊕ 2A1 + + + – + 1

Σ11 = A8 ⊕ 3A2 ⊕ 2A1 + + + – + 1

Σ12 = A8 ⊕ 3A2 ⊕ 3A1 + + + – + 1

Σ14 = A8 ⊕ A5 ⊕ A2 ⊕ 2A1 + + + – + 1

Σ16 = 2A8 ⊕ 2A1 + + + – + 1

Σ17 = 3A5 ⊕ A1 + + + +

Σ18 = 2A5 ⊕ E6 ⊕ A1 + + + – + 1

Σ20 = 2A5 ⊕ 2A2 ⊕ 2A1 + + + – + 1

Σ21 = A5 ⊕ 2E6 ⊕ A1 + + + – + 1

Σ23 = A5 ⊕ 4A2 ⊕ 2A1 + + + – + 1

Σ24 = A5 ⊕ 4A2 ⊕ 3A1 + + + – + 1

Σ25 = A5 ⊕ E6 ⊕ 2A2 ⊕ A1 + + + – + 1

Σ26 = A5 ⊕ E6 ⊕ 2A2 ⊕ 2A1 + + + – + 1

Σ28 = 6A2 ⊕ 2A1 + + + – + 1

Σ29 = 6A2 ⊕ 3A1 + + + – + 1

Σ30 = 6A2 ⊕ 4A1 + – + 1 does not exist

Σ31 = 2A2 ⊕ 2E6 ⊕ A1 + + + – + 1

Σ32 = 2A2 ⊕ 2E6 ⊕ 2A1 + – + 1 does not exist

Σ33 = 4A2 ⊕ E6 ⊕ A1 + + + – + 1

Σ34 = 4A2 ⊕ E6 ⊕ 2A1 + + + – + 1

Σ35 = 4A2 ⊕ E6 ⊕ 3A1 + – + 1 does not exist

Σ36 = 3E6 ⊕ A1 + not applicable does not exist

•Σ2 = A14 ⊕ A2 ⊕ A1

•Σ5 = A11 ⊕ 2A2 ⊕ A1

•Σ10 = A8 ⊕ 3A2 ⊕ A1

•Σ13 = A8 ⊕ A5 ⊕ A2 ⊕ A1

•Σ15 = 2A8 ⊕ A1

•Σ19 = 2A5 ⊕ 2A2 ⊕ A1

•Σ22 = A5 ⊕ 4A2 ⊕ A1

•Σ27 = 6A2 ⊕ A1

The last step is to check whether the abstract homological types are symmet-
ric. The sets of singularities whose lattices N contain a 〈2〉-summand are realized
by symmetric rigid isotopy type by Proposition 2.16. By the uniqueness of N just
proved, it suffices to examine a particular representative of each genus. All lat-
tices can easily be written down and one can see that Proposition 2.16 applies to
abundant cases in Table 2 and to the non-abundant case Σ1.
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Table 2.

Singularities Non-abundant

Theorem 2.16 e∗(eS⊥)

Σ1 = A17 ⊕ A1 +

Σ3 = A14 ⊕ A2 ⊕ 2A1 – 2 ∗
Σ4 = A11 ⊕ E6 ⊕ A1 – 2 ∗
Σ6 = A11 ⊕ 2A2 ⊕ 2A1 – 1

Σ7 = A11 ⊕ A5 ⊕ A1 – 1

Σ8 = A8 ⊕ E6 ⊕ A2 ⊕ A1 – 1

Σ9 = A8 ⊕ E6 ⊕ A2 ⊕ 2A1 – 2 ∗
Σ11 = A8 ⊕ 3A2 ⊕ 2A1 – 2 ∗
Σ12 = A8 ⊕ 3A2 ⊕ 3A1 – 2 ∗
Σ14 = A8 ⊕ A5 ⊕ A2 ⊕ 2A1 – 1

Σ16 = 2A8 ⊕ 2A1 – 2 ∗
Σ17 = 3A5 ⊕ A1 – 1

Σ18 = 2A5 ⊕ E6 ⊕ A1 – 1

Σ20 = 2A5 ⊕ 2A2 ⊕ 2A1 – 2 ∗
Σ21 = A5 ⊕ 2E6 ⊕ A1 – 2 ∗
Σ23 = A5 ⊕ 4A2 ⊕ 2A1 – 1

Σ24 = A5 ⊕ 4A2 ⊕ 3A1 – 2 ∗
Σ25 = A5 ⊕ E6 ⊕ 2A2 ⊕ A1 – 2 ∗
Σ26 = A5 ⊕ E6 ⊕ 2A2 ⊕ 2A1 – 2 ∗
Σ28 = 6A2 ⊕ 2A1 – 2 ∗
Σ29 = 6A2 ⊕ 3A1 – 2 ∗
Σ31 = 2A2 ⊕ 2E6 ⊕ A1 – 2 ∗
Σ33 = 4A2 ⊕ E6 ⊕ A1 – 1

Σ34 = 4A2 ⊕ E6 ⊕ 2A1 – 2 ∗

For the remaining sets of singularities, fix an anti-isometry S̃ → N , identify
Aut S̃ ∼= AutN , and consider two homomorphisms

O∗(N) ⊆ O(N)
ϕ−→ Aut(N ) = Aut(S̃)

φ←− O(S̃) ⊇ Oh(S̃). (3.2)

We are looking for a +-disorienting isometry t ∈ O(N) such that image of t in
Aut(N ) = Aut(S̃) belongs to the product of the image of subgroup Oh(S̃) and the
image of O∗(N). Hence it suffices to have a +-disorienting isometry of N which is
also an element of the image of O∗(N) or which is also an element of the image of
Oh(S̃). By the definition of e∗(N) in Theorem 2.8, one can say that if e∗(N) = 1,
then O∗(N) −→ Aut(N ) is surjective. For each set of singularities as in (1.1),
there does exist a +-disorienting isometry of N and so S̃ is symmetric whenever
e∗(N) = 1. In Table 2, the cases which have e∗(N) �= 1 are marked with “∗” sign.
In the following part, for each of these cases we look for a +-disorienting isometry
whose image is an element in the image of Oh(S̃).

Let a be a direct summand of N with a2 > 2. Then the reflection ta ∈ O(N) is a
+-disorienting isometry and it sends a ∈ N to −a. We try to choose a so that ϕ(ta)
is the image of some automorphism in Oh(S̃). In Table 3, the discriminant groups
N and the lattices N of the sets of singularities marked with ∗ signs are listed, and
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Table 3.

Non-abundant Σ DiskeS⊥ eS⊥

Σ3 = A14 ⊕ A2 ⊕ 2A1 2〈 1
2
〉 ⊕ 〈−1

2
〉 ⊕ 〈 2

3
〉 ⊕ 〈−2

3
〉 ⊕ 〈 2

5
〉 〈6〉 ⊕ 〈−6〉 ⊕ 〈10〉

Σ4 = A11 ⊕ E6 ⊕ A1 〈 1
2
〉 ⊕ 〈−1

2
〉 ⊕ 〈 2

3
〉 ⊕ 〈−2

3
〉 ⊕ 〈 1

4
〉 〈6〉 ⊕ 〈−6〉 ⊕ 〈4〉

Σ9 = A8 ⊕ E6 ⊕ A2 ⊕ 2A1 2〈 1
2
〉 ⊕ 〈−1

2
〉 ⊕ 〈 2

3
〉 ⊕ 〈−2

3
〉 ⊕ 〈 8

9
〉 〈6〉 ⊕ 〈−6〉 ⊕ 〈18〉

Σ11 = A8 ⊕ 3A2 ⊕ 2A1 2〈 1
2
〉 ⊕ 〈−1

2
〉 ⊕ 〈 2

3
〉 ⊕ 2〈−2

3
〉 ⊕ 〈 8

9
〉 〈−6〉 ⊕ U3 ⊕ 〈−2〉 ⊕ 〈18〉

Σ12 = A8 ⊕ 3A2 ⊕ 3A1 3〈 1
2
〉 ⊕ 〈−1

2
〉 ⊕ 〈 2

3
〉 ⊕ 2〈−2

3
〉 ⊕ 〈 8

9
〉 〈6〉 ⊕ 2〈−6〉 ⊕ 〈18〉

Σ16 = 2A8 ⊕ 2A1 2〈 1
2
〉 ⊕ 〈−1

2
〉 ⊕ 2〈 8

9
〉 〈−2〉 ⊕ 2〈18〉

Σ20 = 2A5 ⊕ 2A2 ⊕ 2A1 2〈 1
2
〉 ⊕ 3〈−1

2
〉 ⊕ 2〈 2

3
〉 ⊕ 2〈−2

3
〉 2〈6〉 ⊕ 2〈−6〉 ⊕ 〈−2〉

Σ21 = A5 ⊕ 2E6 ⊕ A1 〈 1
2
〉 ⊕ 2〈−1

2
〉 ⊕ 2〈 2

3
〉 ⊕ 〈−2

3
〉 2〈6〉 ⊕ 〈−6〉

Σ24 = A5 ⊕ 4A2 ⊕ 3A1 3〈 1
2
〉 ⊕ 2〈−1

2
〉 ⊕ 2〈 2

3
〉 ⊕ 3〈−2

3
〉 2〈6〉 ⊕ 3〈−6〉

Σ25 = A5 ⊕ E6 ⊕ 2A2 ⊕ A1 〈 1
2
〉 ⊕ 2〈−1

2
〉 ⊕ 2〈 2

3
〉 ⊕ 2〈−2

3
〉 〈6〉 ⊕ 〈−6〉 ⊕ U3 ⊕ 〈−2〉

Σ26 = A5 ⊕ E6 ⊕ 2A2 ⊕ 2A1 2〈 1
2
〉 ⊕ 2〈−1

2
〉 ⊕ 2〈 2

3
〉 ⊕ 2〈−2

3
〉 2〈6〉 ⊕ 2〈−6〉

Σ28 = 6A2 ⊕ 2A1 2〈 1
2
〉 ⊕ 〈−1

2
〉 ⊕ 2〈 2

3
〉 ⊕ 4〈−2

3
〉 2〈−6〉 ⊕ 2U3 ⊕ 〈−2〉

Σ29 = 6A2 ⊕ 3A1 3〈 1
2
〉 ⊕ 〈−1

2
〉 ⊕ 2〈 2

3
〉 ⊕ 4〈−2

3
〉 〈6〉 ⊕ 3〈−6〉 ⊕ U3

Σ31 = 2A2 ⊕ 2E6 ⊕ A1 〈 1
2
〉 ⊕ 〈−1

2
〉 ⊕ 2〈 2

3
〉 ⊕ 2〈−2

3
〉 〈6〉 ⊕ 〈−6〉 ⊕ U3

Σ34 = 4A2 ⊕ E6 ⊕ 2A1 2〈 1
2
〉 ⊕ 〈−1

2
〉 ⊕ 2〈 2

3
〉 ⊕ 3〈−2

3
〉 〈6〉 ⊕ 2〈−6〉 ⊕ U3

we consider them one by one. Note that, due to the uniqueness of the embedding
S̃ ↪→ L, we can choose an anti-isometry S̃ → N arbitrarily, and in the discussion
below we make the convenient choice after all necessary objects have been fixed.

• In Σ3, Σ20, Σ24, Σ25, Σ26, Σ29, Σ31, Σ34, let a denote the generator of a 〈6〉
summand of N and let α = [a

3 ], β = [a
2 ] denote the generators of 〈12 〉, 〈23 〉 sum-

mands of N , respectively. One has the reflection ta : a �→ −a and ϕ(ta) : α �→ −α.
By a proper choice of φ, one can say that ϕ(ta) is induced under φ by a symmetry
of the Dynkin graph of A2 ∈ S̃.
• In Σ21, let a1 and a2 denote the generators of the two 〈6〉 summands of N and

let α1 = [a1
3 ], α2 = [a2

3 ] denote the generators of the two 〈23 〉 summands. We can
redecompose 〈α1〉 ⊕ 〈α2〉 ∼= 〈β1〉 ⊕ 〈β2〉, where β1 = α1 + α2 and β2 = α1 − α2

so that β2
1 = β2

2 = − 2
3 . One has the reflection ta1 : a1 �→ −a1 and its image

ϕ(ta1) : α1 �→ −α1 acts via β1 �→ −β2, β2 �→ −β1. By a proper choice of φ,
one can say that ϕ(ta1 ) is induced under φ by the transposition of the two E6

summands and a non-trivial symmetry of one of them.
• In Σ28, let u, v denote the standard basis of one of the U3 summand in N and

let α = [u+v
3 ], β = [u−v

3 ] denote the generators of the 〈23 〉, 〈−2
3 〉 summands in N ,

respectively. Say a = u + v, then ta : a �→ −a is well-defined and ϕ(ta) : α �→ −α.
By a proper choice of φ, one can say that ϕ(ta) is induced under φ by a symmetry
of the Dynkin graph of A2 ∈ S̃.
• In Σ9, Σ11, Σ12, Σ16, let a denote the generator of the 〈18〉 summand in N and let

α = [2a
9 ], β = [a

2 ] denote the generators of 〈89 〉, 〈12 〉 summands in N , respectively.
One has ta : a �→ −a and ϕ(ta) : α �→ −α. By a proper choice of φ, one can say
that ϕ(ta) is induced under φ by a symmetry of the Dynkin graph of A8 ∈ S̃.
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Proposition 3.1. The set of singularities Σ4 = A11 ⊕E6 ⊕A1 extends to a non-
abundant homological type which is asymmetric.

Proof. It is sufficient to describe the set of automorphisms φ(Oh(S̃))×ϕ(O∗(N)) ⊆
Aut(N ), see (3.2), and show that this set does not include the image of
any +-disorienting isometry in N .

One has disk S̃⊥ = N = 〈12 〉 ⊕ 〈−1
2 〉 ⊕ 〈23 〉 ⊕ 〈−2

3 〉 ⊕ 〈14 〉 and σN = (2, 1) and one
can take S̃⊥ = N = 〈6〉 ⊕ 〈−6〉 ⊕ 〈4〉. To find all possible isometries of N , one can
make use of a larger lattice N2 = 〈2〉 ⊕ 〈−2〉 ⊕ 〈4〉 and its rescaling (1

2 )N2 denoted
by N1 = 〈1〉 ⊕ 〈−1〉 ⊕ 〈2〉 ∼= 〈1〉 ⊕ 〈1〉 ⊕ 〈−2〉.

Let a, b, c be the generators of the 〈6〉, 〈−6〉, 〈4〉-summands in N , respectively.
Consider the generators δ = [ b

2 ], θ = [a
2 ], α = [a

3 ], β = [ b
3 ], γ = [ c

4 ] of the 〈12 〉, 〈−1
2 〉,

〈23 〉, 〈−2
3 〉, 〈14 〉-summands of N , respectively. Let y1, y2 and y3 be the generators

of the 〈2〉, 〈−2〉 and 〈4〉 summands of N2, respectively; they can be chosen as
y1 = b−2a

3 , y2 = a−2b
3 , y3 = c. Also let x1 = y2 + y3, x2 = y1, x3 = 2y2 + y3 be the

generators of 〈1〉, 〈1〉 and 〈−2〉 summands in N1, respectively.
Obviously, N2 is a finite index extension of N , and N can be identified with

N = {v|v · (y1 − y2) = 0 mod 3, v ∈ N2}. Let K denote the kernel of this extension.
Then K is the 3-primary part; namely the subgroup generated by α + β, since
the discriminant of N2, N2 = 〈12 〉 ⊕ 〈−1

2 〉 ⊕ 〈14 〉 is the same as that of N without
3-primary part. Let us define AutKN = {tN ∈ Aut(N ) : tN preserves K} and
OK(N) = {tN ∈ O(N) : ϕ(tN ) preserves K} to make a connection between lattices
N and N2.

By the above constructions one has O(N) ⊃ OK(N) ⊂ O(N2), where OKN is
generated by the automorphisms of N2 preserving (y1− y2) mod 3N2, and O(N) is
generated by OKN and tb. Indeed, the preserved part α + β can be sent to α± β.
Since tb : (α + β) �→ (α− β), any automorphism in O(N) non-preserving α + β can
be obtained by the composition of tb and some tN ∈ OK(N).

It remains to calculate O(N). Obviously O(N2) = O(N1) and according to
Vinberg [15], any automorphism on N1 = 〈1〉⊕〈1〉⊕〈−2〉 is generated by reflections
tx2 , tx1−x2 , tx3−2x1 which are ty1 , t−y1+y2+y3 , t−y3 in terms of y1, y2, y3. Hence one
can find OKN = {automorphisms of N2 preserving (y1 − y2) mod 3N2} by these
reflections.

Since (y1 − y2)2 = 0 mod 6, in O(N2) the image of (y1 − y2) mod 3N2 is a
(mod 3)-isotropic element in N2/3N2, all such elements being (y1 ± y2), (y1 ± y3)
in N2 mod 3N2. The action of O(N2) on these elements is given by the following
table:

y1 − y2 y1 + y2 y1 + y3 y1 − y3

ty1 y1 + y2 y1 − y2 y1 − y3 y1 + y3

t−y1+y2+y3 y1 − y2 y1 + y3 y1 + y2 y1 − y3

t−y3 y1 − y2 y1 + y2 y1 − y3 y1 + y3
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Denote G = O(N2) and let G ⊃ H be the stabilizer of (y1 − y2) mod 3. Then
OKN = H and G/H ∼= orbit{y1 − y2}. As mentioned above, G is generated by the
reflections ty1 , t−y1+y2+y3 , t−y3 .

Fix 


1

ty1 ,

t−y1+y2+y3 ◦ ty1 ,

ty1 ◦ t−y1+y2+y3 ◦ ty1

as representatives of the cosets mod H . Then H is generated by

t−y1+y2+y3 ,

t−y3 ,

ty1 ◦ t−y1+y2+y3 ◦ ty1 ◦ t−y1+y2+y3 ◦ ty1 ◦ t−y1+y2+y3 ◦ ty1 ,

ty1 ◦ t−y1+y2+y3 ◦ t−y3 ◦ ty1 ◦ t−y1+y2+y3 ◦ ty1

by the Reidemeister–Schreier method. Then, in terms of the generators of N ,
OKN = H is generated by tc, ta−b+c, X, Y where

X := tb−2a ◦ ta−b+c ◦ tb−2a ◦ ta−b+c ◦ tb−2a ◦ ta−b+c ◦ tb−2a,

Y := tb−2a ◦ ta−b+c ◦ tc ◦ tb−2a ◦ ta−b+c ◦ tb−2a.

Computing the matrix representations, one can easily see that ta−b+c = X .
Hence, OK(N) is generated by tc, ta−b+c, Y and O(N) is generated by
tb, tc, ta−b+c, Y . On the other hand, we have O(N)/O∗(N) = Z2 and choosing 1, tc
as the coset representatives we can apply the Reidemeister–Schreier method. Then
we obtain that O∗(N) is generated by tb, Y, tcta−b+c, ta−b+ctc, tcY tc.

The group of automorphisms of N is isomorphic to (Z2)4. Let us call its gener-
ators g1, g2, g3, g4 so that g1 is the automorphism multiplying α by (−1), g2 mul-
tiplying β by (−1), g3 multiplying γ by (−1) and g4 is the only automorphism of
the 2-primary part taking δ + θ + γ to γ. The group of admissible isometries of S̃ is
generated by the non-trivial symmetry of the Dynkin graph of A11 and non-trivial
symmetry of the Dynkin graph of E6. Hence, φ can be chosen so that φ(Oh(S̃)) in
Aut(N ) is generated by g1, g3 and g2.

To have the homological type symmetric, we need to find an element in
ϕ(O(N)\O∗(N)) ∩ φ(Oh(S̃)) × ϕ(O∗(N)). According to the calculations above we
have the following statements:

* Aut(N ) = Aut(S̃) is generated by g1, g2, g3, g4,
* φ(Oh(S̃)) is generated by g2, g1g3,
* ϕ(O∗(N)) is generated by g2, g1g3, g4.
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It is seen that φ(Oh(S̃)) ⊂ ϕ(O∗(N)). On the other hand tc ∈ O(N)\O∗(N)
such that ϕ(tc) = g3 mod ϕ(O∗(N)). Hence ϕ(O(N)\O∗(N)) ∩ ϕ(O∗(N)) = ∅ and
there is no +-disorienting isometry whose image is in ϕ(O∗(N)).
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