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a b s t r a c t

We have performed a first principles study of structural, mechanical, electronic, and optical properties of
orthorhombic Sb2S3 and Sb2Se3 compounds using the density functional theory within the local density
approximation. The lattice parameters, bulk modulus, and its pressure derivatives of these compounds
have been obtained. The second-order elastic constants have been calculated, and the other related
quantities such as the Young’s modulus, shear modulus, Poisson’s ratio, anisotropy factor, sound veloc-
ities, Debye temperature, and hardness have also been estimated in the present work. The linear photon-
energy dependent dielectric functions and some optical properties such as the energy-loss function, the
effective number of valence electrons and the effective optical dielectric constant are calculated. Our
structural estimation and some other results are in agreement with the available experimental and
theoretical data.

� 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

Sb2S3 and Sb2Se3, a member of compounds with the general
formula A2

VB3
VI (A ¼ Bi, Sb and B ¼ S, Se), are layer-structured

semiconductors with orthorhombic crystal structure (space group
Pnma; No: 62), in which each Sb-atom and each Se(S)-atom is
bound to three atoms of the opposite kind that are then held
together in the crystal by weak secondary bond [1,2]. In the last few
years, Sb2Se3 has received a great deal of attention due to its
switching effects [3] and its excellent photovoltaic properties and
high thermoelectric power [4], which make it possess promising
applications in solar selective and decorative coating, optical and
thermoelectric cooling devices [5]. On the other hand, Sb2S3 has
attracted attention for its applications as a target material for TV
systems [6,7], as well as in microwave [8], switching [9], and
optoelectronic devices [10e12].

The crystal structure of Sb2S3 and Sb2Se3 are shown in Fig. 1. The
positions corresponding to the orthorhombic Sb2S3 and Sb2Se3
have been obtained from experimental data [13e15]. The atomic
positions are given in Table 1. These crystals have four Sb2B3 (B ¼ S,
c).
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Se) molecules (20 atoms) in unit cell. Therefore, these compounds
have a complex structure with 112 valence electrons per unit cell.

In the past, some detailed works [15e17] have been carried out
on the structural and electronic properties of these compounds.
The valence electron density, the electron band structure, and the
corresponding electronic density-of-states (DOS) of A2B3 (A¼ Bi, Sb
and B ¼ S, Se) compounds using the density functional theory were
studied by Caracas et al. [15]. Ben Nasr et al. [16] computed the
electronic band structure, density of states, charge density and
optical properties, such as the dielectric function, reflectivity
spectra, refractive index and the loss function using the full
potential linearized augmented plane waves (FP-LAPW) method as
implemented in the Wien2k code for Sb2S3. Kuganathan et al. [17]
used density functional methods as embedded in the SIESTA code,
to test the proposed model theoretically and investigate the
perturbations on the molecular and electronic structure of the
crystal and the SWNT (single walled carbon nanotubes) and the
energy of formation of the Sb2Se3 SWNT composite.

As far as we know, no ab initio general potential calculations of
the elastic constants, Young’s modulus, shear modulus, Poisson’s
ratio, anisotropy factor, sound velocities, Debye temperature, and
optical properties such as the energy-loss function, the effective
number of valence electrons and the effective optical dielectric
constant along y- and z-axes of the Sb2S3 and Sb2Se3 have been
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Fig. 1. Crystal structure of Sb2X3 (X ¼ S, Se).
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reported in detail. In the present work, we have investigated the
structural, electronic, mechanical, and photon energy-dependent
optical properties of the Sb2S3 and Sb2Se3 crystals. The method of
calculation is given in Section 2; the results are discussed in Section
3. Finally, the summary and conclusion are given in Section 4.

2. Method of calculation

Simulations of Sb2S3 and Sb2Se3 compounds were conducted,
using two different Quantum Mechanical (QM) DFT programs. The
first, freely accessible code, SIESTA combines norm conserving
pseudopotentialswith the local basis functions. The calculationswere
performed using the density functional formalism and local density
approximation (LDA) [18] through the Ceperley and Alder functional
[19] as parameterized by Perdew and Zunger [20] for the exchange-
correlation energy in the SIESTA code [21,22]. This code calculates
the total energies and atomic forces using a linear combination of
atomic orbitals as the basis set. The basis set is based on the finite
range pseudoatomic orbitals (PAOs) of the SankeyeNiklewsky type
[23], generalized to include multiple-zeta decays.

The interactions between electrons and core ions are simulated
with separable TroulliereMartins [24] norm-conserving pseudopo-
tentials. We have generated atomic pseudopotentials separately for
Table 1
Experimental crystal structure data of orthorhombic Sb2S3 and Sb2Se3.

Space group: Pnmadorthorhombic
Atomic positions

Atom Wyckoff x y z

Sb1 4c 0.5293 0.25 0.1739
Sb2 4c 0.6495 0.75 0.4640
S1 4c 0.6251 0.75 0.0614
S2 4c 0.7079 0.25 0.3083
S3 4c 0.4503 0.75 0.3769
Sb1 4c 0.5304 0.25 0.1721
Sb2 4c 0.6475 0.75 0.4604
Se1 4c 0.6289 0.75 0.0553
Se2 4c 0.7141 0.25 0.3051
Se3 4c 0.4464 0.75 0.3713
atoms, Sb, S and Se by using the 5s25p3, 3s23p4 and 4s24p4 configu-
rations, respectively. The cut-off radii for present atomic pseudopo-
tentials are taken as s: 1.63 au, p: 1.76 au, 1.94 au for the d and f
channels of S, s: 1.94 au, p: 2.14 au, d: 1.94 au. f: 2.49 of Se and 2.35 for
the s, p, d and f channels of Sb.

Siesta calculates the self-consistent potential on a grid in real
space. The fineness of this grid is determined in terms of an energy
cut-off Ec in analogy to the energy cut-off when the basis set
involves planewaves. Here by using a double-zeta plus polarization
(DZP) orbitals basis and the cut-off energies between 100 and 450
Rywith various basis sets, we found an optimal value of around 350
Ry for Sb2S3 and Sb2Se3. For the final computations, 256 k-points for
Sb2S3 and Sb2Se3 were enough to obtain the converged total
energies DE to about 1 meV/atoms.

The second, commercially available (VASP) [25e28] code,
employs plane wave basis functions. The calculations were per-
formed with this code and reported here also use the LDA. The
electroneion interaction was considered in the form of the
projector-augmented-wave (PAW) method with plane wave up to
energy of 450 eV [28,29]. This cut-off was found to be adequate for
studying the structural and elastic properties. The 8 � 11 � 8
Monkhorst and Pack [30] grid of k-points have been used for these
compounds.

3. Results and discussion

3.1. Structural properties

All physical properties are related to the total energy. For
instance, the equilibrium lattice constant of a crystal is the lattice
constant that minimizes the total energy. If the total energy is
calculated, any physical property related to the total energy can be
determined.

For Sb2S3 and Sb2Se3, structures which are orthorhombic are
considered. The equilibrium lattice parameters, the bulk modulus,
and its pressure derivative have been computed minimizing the
crystal’s total energy calculated for the different values of lattice
constant by means of Murnaghan’s equation of states (eos) [31] for
SIESTA calculations. We have fully relaxed the cell volume and the
ionic positions of atoms in reciprocal coordinates which is sup-
ported by VASP code [25e28] for all considered compounds. In all
calculations, we have used these relaxed parameters for VASP
calculations. The results for SIESTA and VASP calculations are
shown in Table 2 along with the experimental and theoretical
values. The lattice parameters obtained using SIESTA and VASP for
Sb2S3 and Sb2Se3 are in a good agreement with the experimental
and theoretical values. It is seen that the lattice parameter values of
SIESTA compared to experimental and theoretical values are better
than values obtained by VASP. In all our further calculations, we
have used the computed lattice parameters. In the present case, the
calculated bulk moduli of SIESTA for Sb2S3 and Sb2Se3 are 73.64 and
64.78 GPa, respectively. The bulkmodulus for Sb2S3 is higher (about
2.7%) than the other theoretical result given in Ref. [16]. This small
difference may stem from the different density- functional-based
electronic structure methods.

3.2. Elastic properties

The elastic constant of solids provides a link between the
mechanical and dynamical behavior of crystals, and give important
information concerning the nature of the forces operating in solids.
In particular, they provide information on the stability and stiffness
of materials, and their ab initio calculation requires precise
methods. Since the forces and the elastic constants are functions of
the first-order and second-order derivatives of the potentials, their



Table 2
The calculated equilibrium lattice parameters (a, b, and c), bulk modulus (B), and the
pressure derivative of bulk modulus (B

0
) together with the theoretical and experi-

mental values for Sb2S3 and Sb2Se3 in fractional coordinate.

Material Reference a (Å) b (Å) c (Å) B (GPa) B
0
(GPa)

Sb2S3 Present (LDAeSIESTA) 11.29 3.83 11.20 73.64 4.42
Present (LDAeVASP) 11.02 3.81 10.79
Theory (EVeGGA)a 11.30 3.84 11.22
Experimentalb 11.31 3.84 11.22 71.62 5.00
Experimentalc 11.30 3.83 11.22
Experimentald 11.27 3.84 11.29

Sb2Se3 Present (LDAeSIESTA) 11.71 4.14 11.62 64.78 4.75
Present (LDAeVASP) 11.52 3.96 11.22
Theory (GGA)e 11.91 3.98 11.70
Experimentalf 11.79 3.98 11.64
Experimentalg 11.78 3.99 11.63
Experimentalh 11.77 3.96 11.62

a Reference [16].
b Reference [32].
c Reference [33].
d Reference [34].
e Reference [17].
f Reference [2].
g Reference [35].
h Reference [36].
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calculation will provide a further check on the accuracy of the
calculation of forces in solids. They also provide valuable data for
developing inter atomic potentials [37e40].

Here, to compute the elastic constants(Cij), we have used the
“volume-conserving” technique [41] for SIESTA calculations. We
have also derived the elastic constants from the strainestress
relationship [42] for VASP calculations. The elastic constants for
SIESTA and VASP calculations are given in Table 3. The elastic
constant values of SIESTA are, generally, in accord with the elastic
constant values of VASP. But, the calculated value of C44 for VASP is
lower than the result of SIESTA, whereas C22 and C13 values for VASP
are higher than the SIESTA results. So, further study is necessary to
solve the discrepancy. These differences many originate from the
different density-functional based electronic structure methods.
Unfortunately, there are no theoretical results for comparing with
the present work. Then, our results can serve as a prediction for
future investigations.

Nine independent strains are necessary to compute the elastic
constants of orthorhombic Sb2S3 and Sb2Se3 compounds.
Mechanical stability leads to restrictions on the elastic constants,
which for orthorhombic crystals [41,43,44] are

ðC11þC22�2C12Þ>0; ðC11þC33�2C13Þ>0; ðC22þC33
�2C23Þ>0; C11>0;C22>0; C33>0;C44>0;C55>0;C66>0;
ðC11þC22þC33þ2C12þ2C13þ2C23Þ>0:

(1)

The present elastic constants in Table 3 obey these stability
conditions for orthorhombic Sb2S3 and Sb2Se3.

The elastic constants C11, C22, and C33 measure the a-, b-, and c-
direction resistance to linear compression, respectively. The C22 for
SIESTA calculations is lower than the C11 and C33 while the C33 for
Table 3
The calculated elastic constants (in GPa) for Sb2S3 and Sb2Se3.

Material Reference C11 C22 C33

Sb2S3 Present (LDAeSIESTA) 133.56 115.64 121.50
Present (LDAeVASP) 134.41 139.29 118.45

Sb2Se3 Present (LDAeSIESTA) 101.56 89.94 84.60
Present (LDAeVASP) 118.88 118.36 105.62
VASP calculations of Sb2S3 is lower than the C11 and C22. The
calculated C33 of both code for Sb2Se3 are lower than the C11 and
C22. Thus, Sb2S3 compound is more compressible along b axis for
SIESTA calculations and c axis for VASP calculations while Sb2Se3
compound is more compressible along c axis for both codes.

It is known that, the elastic constant C44 is the most important
parameter indirectly governing the indentation hardness of
a material. The large C44 means a strong ability of resisting the
monoclinic shear distortion in (100) plane, and the C66 relates to
the resistance to shear in the <110> direction. In the present case,
C44 and C66 for both codes of Sb2S3 is higher than Sb2Se3 compound.

A problem arises when single crystal samples are not available,
since it is then not possible to measure the individual elastic
constants. Instead, the polycrystalline bulk modulus (B) and shear
modulus (G) may be determined. There are two approximation
methods to calculate the polycrystalline modulus, namely, the
Voigt method [45] and the Reuss method [46]. For specific cases of
orthorhombic lattices, the Reuss shear modulus (GR) and the Voigt
shear modulus (GV) are

GR¼15f½C11ðC22þC33þC23ÞþC22ðC33þC13ÞþC33C12
�C12ðC23þC12Þ�C13ðC12þC13Þ�C23ðC13þC23Þ�=Dþ3½
�ð1=C44Þþð1=C55Þþð1=C66Þ�g�1 (2)

and

GV¼
1
15

�
C11þC22þC33�C12�C13�C23þ

1
5
ðC44þC55þC66Þ

�
;

(3)

and the Reuss bulk modulus (BR) and Voigt bulk modulus (BV) are
defined as

BR¼D½C11ðC22þC33�2C23ÞþC22ðC33�2C13Þ�2C33C12

þC12ð2C23�C12ÞþC13ð2C12�C13ÞþC23ð2C13�C23Þ��1 (4)

and

BV ¼ 1
9
ðC11 þ C22 þ C33Þ þ 2

9
ðC12 þ C13 þ C23Þ (5)

In Eqs. (2) and (4), the D ¼ C13ðC12C23 � C13C22Þ þ C23ðC12C13 �
C23C11Þ þ C33ðC11C22 � C2

12Þ is elastic compliance constant. Using
energy considerations Hill [47] proved that the Voigt and Reuss
equations represent upper and lower limits of the true poly-
crystalline constants, and recommended that a practical estimate of
the bulk and shear moduli were the arithmetic means of the
extremes. Hence, the elastic moduli of the polycrystalline material
can be approximated by Hill’s average and for shear moduli it is

G ¼ 1
2
ðGR þ GVÞ (6)

and for bulk moduli it is

B ¼ 1
2
ðBR þ BVÞ (7)
C12 C13 C23 C44 C55 C66

38.21 45.98 69.14 84.74 58.93 41.01
38.20 57.37 69.99 73.72 59.39 41.72
34.13 43.66 48.58 54.92 40.84 30.37
33.07 53.12 60.16 65.28 54.67 36.19



Table 4
The calculated isotropic bulk modulus (B, in GPa), shear modulus (G, in GPa), Young’s modulus (E, in GPa) and Poisson’s ratio for Sb2S3 and Sb2Se3 compounds.

Material Reference BR BV B GR GV G E y

Sb2S3 Present (LDA-SIESTA) 74.93 75.26 75.10 43.55 51.43 47.49 117.66 0.24
Present (LDA-VASP) 80.14 80.36 80.25 44.14 50.07 47.11 118.20 0.25

Sb2Se3 Present (LDA-SIESTA) 58.72 58.76 58.74 30.89 35.21 33.05 83.49 0.26
Present (LDA-VASP) 70.42 70.62 70.52 38.75 44.32 41.54 104.52 0.25

Table 5
The shear anisotropic factors A1, A2, A3, and Acomp(%), Ashear(%).

Material Reference A1 A2 A3 Acomp(%) Ashear(%)

Sb2S3 Present (LDAeSIESTA) 2.09 2.38 0.95 0.22 8.29
Present (LDAeVASP) 2.14 2.50 1.20 0.14 6.29

Sb2Se3 Present (LDAeSIESTA) 2.22 2.11 0.99 0.03 6.50
Present (LDAeVASP) 2.21 2.11 0.85 0.14 6.71
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The Young’s modulus, E, and Poisson’s ratio, v, for an isotropic
material are given by

E ¼ 9BG
3Bþ G

(8)

v ¼ 3B� 2G
2ð3Bþ GÞ; (9)

Respectively [48,49]. Using the relations given above the
calculated bulk modulus, shear modulus, Young’s modulus, and
Poisson’s ratio of both codes for Sb2S3 and Sb2Se3 are given Table 4.

It is known that isotropic shear modulus and bulk modulus are
a measure of the hardness of a solid. The bulk modulus is a measure
of resistance to volume change by an applied pressure, whereas the
shear modulus is a measure of resistance to reversible deforma-
tions upon shear stress [50]. Therefore, isotropic shear modulus is
better predictor of hardness than the bulk modulus. The isotropic
shear modulus, a measurement of resistance to shape change, is
more pertinent to hardness and the larger shear modulus is mainly
due to its larger C44. The calculated isotropic shear modulus and
bulk modulus of SIESTA (VASP) are 47.49 (47.11), 75.10 (80.25) GPa
and 33.05 (41.51), 58.74 (70.52) GPa for Sb2S3 and Sb2Se3, respec-
tively. The values of the bulk moduli indicate that Sb2S3 is less
compressible material than Sb2Se3 compound. The calculated shear
modulus for Sb2S3 is higher than Sb2Se3 compound.

According to the criterion in Refs. [50,51], a material is brittle
(ductile) if the B/G ratio is less (high) than 1.75. The value of the B/G
of SIESTA calculations is lower and higher than 1.75 for Sb2S3 and
Sb2Se3, respectively. Hence, Sb2S3 behave in a brittle manner while
Sb2Se3 behave in a ductile manner. For VASP calculations, the value
of the B/G of both compounds are lower than 1.75. Hence, both
compounds behave in a brittle. So, further study is necessary to
solve the discrepancy.

Young’s modulus is defined as the ratio of stress and strain, and
used to provide a measure of the stiffness of the solid. The material
is stiffer if the value of Young’s modulus is high. In this context, due
to the higher value of Young’s modulus (117.66 GPa for SIESTA and
118.20 for VASP) Sb2S3 compound is relatively stiffer than Sb2Se3
(83.49 GPa for SIESTA and 104.52 for VASP). If the value of E, which
has an impact on the ductile, increases, the covalent nature of the
material also increases. From Table 4, one can see that E increases as
one moves from Sb2Se3 to Sb2S3.

The value of the Poisson’s ratio is indicative of the degree of
directionality of the covalent bonds. The value of the Poisson’s ratio
is small (y ¼ 0.1) for covalent materials, whereas for ionic materials
a typical value of y is 0.25 [52]. The calculated Poisson’s ratios of
SIESTA and VASP are about 0.24, 0.25 and 0.26, 0.25 for Sb2S3 and
Sb2Se3, respectively. Therefore, the ionic contribution to inter
atomic bonding for these compounds is dominant. The y¼ 0.25 and
0.5 are the lower and upper limits, respectively, for central force
solids [53]. Our y values are close to the value of 0.25 indicating
inter atomic forces are weightlessly central forces in Sb2S3 and
Sb2Se3.

Many low symmetry crystals exhibit a high degree of elastic
anisotropy [54]. The shear anisotropic factors on different
crystallographic planes provide a measure of the degree of
anisotropy in atomic bonding in different planes. The shear aniso-
tropic factors are given by

A1 ¼ 4C44
C11 þ C33 � 2C13

for thef100gplane (10)

A2 ¼ 4C55
C22 þ C33 � 2C23

for thef010gplane (11)

A3 ¼ 4C66
C11 þ C22 � 2C12

for thef001gplane (12)

The calculated A1, A2 and A3 of both code for Sb2S3 and Sb2Se3 are
given in Table 5. A value of unity means that the crystal exhibits
isotropic properties while values other than unity represent
varying degrees of anisotropy. From Table 5, it can be seen that
Sb2S3 and Sb2Se3 exhibit larger anisotropy in the {100} and {010}
planes and these compounds exhibits almost isotropic properties
for the {001} plane according to other planes. Another way of
measuring the elastic anisotropy is given by the percentage of
anisotropy in the compression and shear [52,53,55].

Acomp ¼ BV � BR
BV þ BR

� 100 (13)

Ashear ¼ GV � GR

GV þ GR
� 100 (14)

For crystals, these values can range from zero (isotropic) to 100%
representing the maximum anisotropy. The percentage anisotropy
values have been computed for Sb2S3 and Sb2Se3, and are shown in
Table 5. It can be also seen that the anisotropy in compression is small
and the anisotropy in shear is high. Sb2S3 compound exhibits rela-
tively high shear and bulk anisotropies among these compounds.

The Debye temperature is known as an important fundamental
parameter closely related to many physical properties such as
specific heat and melting temperature. At low temperatures the
vibrational excitations arise solely from acoustic vibrations. Hence,
at low temperatures the Debye temperature calculated from elastic
constants is the same as that determined from specific heat
measurements. We have calculated the Debye temperature, qD,
from the elastic constants data using the average sound velocity,
vm, by the following common relation given in Ref. [56]

qD ¼ Z

k

�
3n
4p

�
NAr

M

��1=3
vm; (15)
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where Z is Planck’s constants, k is Boltzmann’s constant, NA is
Avogadro’s number, n is the number of atoms per formula unit,M is
themolecular mass per formula unit, r(¼M/V) is the density, and vm
is given [57] as

vm ¼
"
1
3

 
2
v3t

þ 1
v3l

!#�1=3

; (16)

where vl and vt, are the longitudinal and transverse elastic wave
velocities, respectively, which are obtained from Navier’s equation
[58]

vl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Bþ 4G

3r

s
; (17)

and

vt ¼
ffiffiffiffi
G
r

s
(18)

The calculated values of the longitudinal, transverse, average
sound velocities and density in the present formalism for SIESTA
and VASP calculations are shown in Table 6 along with the Debye
temperature. For materials, usually, the higher Debye temperature,
the larger microhardness. The calculated Debye temperature for
Sb2S3 is higher than Sb2Se3. Unfortunately, there are no theoretical
and experimental results to compare with the calculated vl, vt, vm,
and qD values.

Recently, Chen et al. [59] proposed new theoretical model to
predict the hardness of polycrystalline materials based on the
squared Pugh’s modulus ratio (k ¼ G/B) and the shear modulus (G)
as below:

Hv ¼ 2
�
k2G

�0:585�3 (19)

We have used to predict the Vicker hardness of the considered
compounds by using Eq. (19) and the results are listed in Table 6.
The results indicate that the hardness of Sb2S3 is higher than Sb2Se3,
and they show soft character.

3.3. Electronic properties

For a better understanding of the electronic and optical prop-
erties of Sb2S3 and Sb2Se3, the investigation of the electronic band
structure would be useful. The electronic band structures of
orthorhombic Sb2S3 and Sb2Se3 single crystals have been calculated
along high symmetry directions in the first Brillouin zone (BZ)
using the results of SIESTA calculations. The band structures were
calculated along the special lines connecting the high-symmetry
points S (1/2,1/2,0), Y (0,1/2,0), G (0,0,0), S (1/2,1/2,0), R (1/2,1/2,1/
2) for Sb2S3 and Sb2Se3 in the k-space. The results of the calculation
are shown in Fig. 2 for these single crystals.

The energy band structures calculated using LDA for Sb2S3 and
Sb2Se3 are shown in Fig. 2. As can be seen in Fig. 2a, the Sb2S3
Table 6
The density, longitudinal, transverse, average elastic wave velocities, and hardness toget

Material Reference r (g/cm3) n (m/s)

Sb2S3 Present (LDAeSIESTA) 4.65 5455.88
Present (LDAeVASP) 4.98 5570.75
Experimentala 4.61

Sb2Se3 Present (LDAeSIESTA) 5.67 4258.13
Present (LDAeVASP) 6.23 4627.39
Experimentala 5.88

a Ref. [34].
compound has a direct band gap semiconductor with the value
1.18 eV. The top of the valence band and the bottom of the
conduction band positioned at the G point of BZ. The estimates of
the band gap of Sb2S3 are contradictory in the literature. The band
gap values estimated for Sb2S3 vary from 1.56 eV to 2.25 eV (see
Table 7). In conclusion, our band gap value obtained is different
from experimental and theoretical values and the band gap has
same character with given in Ref. [16,61e64]. The present band and
the density of states (DOS) profiles for Sb2S3 agree with the earlier
work [16].

The calculated band structure of Sb2Se3 is given in Fig. 2b. As can
be seen from the figure, the band gap has the different character
with that of Sb2S3, that is, it is an indirect band gap semiconductor.
The top of the valence band positioned at the nearly midway
between G and S point of BZ, the bottom of the conduction band is
located at the nearly midway between the G and Y point of BZ. The
indirect and direct band gap values of Sb2Se3 compound are,
0.99 eV and 1.07 eV, respectively. The band gap values estimated for
Sb2Se3 vary from 1.56 eV to 2.25 eV (see Table 7). Our band gap
value obtained is good agreement with experimental and theo-
retical values and the character of the band gap is different from
that given in Ref. [65,66].

The total and partial densities of states of Sb2S3 and Sb2Se3 are
illustrated in Fig. 3. As you can see, from this figure, the lowest
valence bands occur between about�14 and�12 eV are dominated
by S 3s and Se 4s states while valence bands occur between
about �10 and �7 eV are dominated by Sb 5s states. The highest
occupied valence bands are essentially dominated by S 3p and Se
4p states. The 5p states of Sb atoms are also contributing to the
valence bands, but the values of densities of these states are so
small compared to S 3p and Se 4p states. The lowest unoccupied
conduction bands just above Fermi energy level are dominated by
Sb 5p. The 3p (4p) states of S (Se) atoms are also contributing to the
conduction bands, but the values of densities of these states are so
small compared to Sb 5p states.

Band structures of Sb2S3 and Sb2Se3 single crystals are
compared, band structures of these crystals are highly resemble
one another. Thus, on formation of the band structures of Sb2S3 and
Sb2Se3 the 5s 5p orbitals of Sb atoms are more dominant than 3s3p
and 4s4p orbitals of S and Se atoms. Finally, the band gap values
obtained are less than the estimated experimental and theoretical
results. For all crystal structures considered, the band gap values
are underestimated than the experimental values. This state is
caused from the exchange-correlation approximation of DFT.

3.4. Optical properties

It is well known that the effect of the electric field vector, E(u), of
the incoming light is to polarize the material. At the level of linear
response, this polarization can be calculated using the following
relation [68]:

PiðuÞ ¼ cð1Þij ð�u;uÞ,EjðuÞ; (20)
her with the Debye temperature for Sb2S3 and Sb2Se3.

vt (m/s) vm (m/s) qD (K) Hv (GPa)

3195.76 3543.32 364.41 8.14
3196.73 3550.86 364.14 7.27

2414.32 2684.51 262.78 4.85
2657.94 2952.13 292.50 6.54



Fig. 2. Energy band structure for Sb2S3 and Sb2Se3.
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where cð1Þij is the linear optical susceptibility tensor and it is given
by [69]

cð1Þij ð�u;uÞ¼ e2

ZU

X
nm k

!
fnmð k

!Þr
i
nmð k

!Þrimnð k
!Þ

umnð k
!Þ�u

¼ 3ijðuÞ�dij
4p

(21)

where n, m denote energy bands, fmnð k
!Þhfmð k

!Þ�fnð k
!Þ is the

Fermi occupation factor, U is the normalization volume.
umnð k

!Þhumð k
!Þ�uð k!Þ are the frequency differences, Zunð k

!Þ is
the energy of band n at wave vector k. The r!nm are the matrix
elements of the position operator [69].

As can be seen from Eq. (21), the dielectric function 3ijðuÞ ¼ 1þ
4pcð1Þij ð�u;uÞ and the imaginary part of 3ijðuÞ; 3

ij
2ðuÞ, is given by
3
ijðuÞ¼ e2XZ

d k
!
fnmð k

!Þv
i
nmð k

!Þvjnmð k
!Þ

dðu�umnð k
!ÞÞ: (22)
2 Zp nm u2

mn

The real part of 3ijðuÞ; 3
ij
1ðuÞ, can be obtained by using the

KramerseKronig transformation [69]. Because the KohneSham
equations determine the ground state properties, the unoccupied
conduction bands as calculated have no physical significance. If
they are used as single-particle states in a calculation of optical
properties for semiconductors, a band gap problem comes into
included in calculations of response. In order to take into account
self-energy effects, in the present work, we used the ‘scissors
approximation’ [68].

In the present work, D, the scissor shift to make the theoretical
band gap match the experimental one, is 0.38 eV and 0.11 eV for
Sb2S3 and Sb2Se3, respectively.



Table 7
Energy band gap for Sb2S3 and Sb2Se3, obtained from SIESTA.

Material Reference Eg (eV)

Sb2S3 Present 1.18 direct
Experimentala 1.78 indirecte2.25 direct
Experimentalb 1.63 indirecte1.72 direct
Experimentalc 1.56 direct
Experimentald 1.64
Experimentale 1.71
Experimentalf 2.2 (300 K)e1.60 (473 K) direct
Theoryg 1.55
Theoryh 1.76

Sb2Se3 Present 0.99 indirecte1.07 direct
Experimentall 1.0 direct
Experimentali 1.5 direct
Experimentalj 1.1 indirect
Experimentalk 1.0e1.2 indirect
Theoryg 1.14

a Reference [34].
b Reference [60].
c Reference [61].
d Reference [62].
e Reference [63].
f Reference [64].
g Reference [15].
h Reference [16].
i Reference [66].
j Reference [61].
k Reference [67].
l Reference [65].

Fig. 3. The total (DOS) and projected density of states for a) Sb2S3 and b) Sb2Se3.
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The known sum rules [70] can be used to determine some
quantitative parameters, particularly the effective number of the
valence electrons per unit cell Neff, as well as the effective optical
dielectric constant 3eff, which make a contribution to the optical
constants of a crystal at the energy E0. One can obtain an estimate of
the distribution of oscillator strengths for both intraband and
interband transitions bycomputing theNeff (E0) definedaccording to

Neff ðEÞ ¼ 2m 30

pZ2e2Na

ZN
0

32ðEÞEdE; (23)

Where Na is the density of atoms in a crystal, e andm are the charge
and mass of the electron, respectively and Neff (E0) is the effective
number of electrons contributing to optical transitions below an
energy of E0.

Further information on the role of the core and semi-core bands
may be obtained by computing the contribution which the various
bands make to the static dielectric constant, 30. According to the
KramerseKronig relations, one has

30ðEÞ � 1 ¼ 2
p

ZN
0

32ðEÞE�1dE: (24)

One can therefore define an ‘effective’ dielectric constant, which
represents a different mean of the interband transitions from that
represented by the sum rule, Eq. (24), according to the relation

3eff ðEÞ � 1 ¼ 2
p

ZE0
0

32ðEÞE�1dE: (25)

The physical meaning of 3eff is quite clear: 3eff is the effective
optical dielectric constant governed by the interband transitions in
the energy range from zero to E0, i.e. by the polarization of the
electron shells.

In order to calculate the optical response by using the calculated
band structure, we have chosen a photon-energy range of 0e25 eV
and have seen that a 0e17 eV photon-energy range is sufficient for
most optical functions.

The Sb2S3 and Sb2Se3 single crystals have an orthorhombic
structure that is optically a biaxial system. For this reason, the linear
dielectric tensor of the Sb2S3 and Sb2Se3 compounds have three
independent components that are the diagonal elements of the
linear dielectric tensor.

We first calculated the real and imaginary parts of the y- and z-
components of the frequency-dependent linear dielectric function
and these are shown in Figs. 4 and 5. The 3

y
1 behaves mainly as

a classical oscillator. It vanishes (from positive to negative) at about
3.48 eV, 9.36 eV, 12.59 eV, and 20.69 eV, (at theW, X, Y, and Z points
in Fig. 4), whereas the other function 3z1 is equal to zero at about
3.57 eV, 9.46 eV, 13.10 eV and 20.36 eV (at the W, X, Y, Z points in
Fig. 4) for Sb2S3 compound. The 3

y
1 is equal to zero at about 2.76 eV,

8.77 eV, 12.63 eV, and 20.04 eV, (at the W, X, Y, and Z points in
Fig. 5), whereas the other function 3z1 is equal to zero at about
2.95 eV, 8.91 eV, 13.06 eV and 19.89 eV (at the W, X, Y, Z points in
Fig. 5) for Sb2Se3 compound. The peaks of the 3

y
2 and 3z2 correspond

to the optical transitions from the valence band to the conduction
band and are in agreement with the previous results. The
maximum peak values of 3

y
2 and 3z2 for Sb2S3 are around 3.44 eV and

3.48 eV, respectively, whereas the maximum values of 3
y
2 and 3z2 for

Sb2Se3 are around 2.74 eV and 2.78 eV, respectively. Spectral
dependences of dielectric functions show the similar features for



Fig. 4. Energy spectra of dielectric function 3¼ 31 � i 32 and energy-loss function (L) along the y- and z-axes for Sb2S3.
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both materials because the electronic configurations of Se ([Ar],
3d10 4s2 4p2) and S ([Ne], 3s2 3p3) are very close to each other. In
general, there are various contributions to the dielectric function,
but Figs. 4 and 5 show only the contribution of the electronic
polarizability to the dielectric function. The maximum peak values
of 3

y
2 and 3z2 are in agreement with maximum peak values of

theoretical for Sb2S3 [16]. In the range between 2 eV and 5 eV, 3z1
decrease with increasing photon-energy, which is characteristics of
an anomalous dispersion. In this energy range, the transitions
between occupied and unoccupied states mainly occur between S
3p states and Sb 5p and S 3d states (also from Sb 5p to S 3p and S
3d) for Sb2S3 and from Se 4p states to Sb 5p and Se 4d states (also
from Sb 5p to Se 4p and Se 4d) for Sb2Se3, which can be seen in the
DOS displayed in Fig. 3. Furthermore as can be seen from Figs. 4 and
5, the photon-energy range up to 1.5 eV is characterized by high
transparency, no absorption and a small reflectivity. The 1.9e5.0 eV
photon energy range is characterized by strong absorption and
appreciable reflectivity. The absorption band extending beyond
10 eV up to 15 eV is associated with the transitions from the low-
lying valence subband to conduction band. Second, we see that
above 12 eV, corresponding to the S 3s (Se 4s) and Sb 5p. Also, we
remark that the region above 15 eV cannot be interpreted in term of
classical oscillators. Above 15 eV 31 and 32 are dominated by linear
features, increasing for 31 and decreasing for 32.
Fig. 5. Energy spectra of dielectric function 3¼ 31 � i 32 and en
The corresponding energy-loss functions, L(u), are also pre-
sented in Figs. 4 and 5. In this figure, Ly and Lz correspond to the
energy-loss functions along the y- and z-directions. The function
L(u) describes the energy loss of fast electrons traversing the
material. The sharp maxima in the energy-loss function are asso-
ciated with the existence of plasma oscillations [71]. The curves of
Ly and Lz in Figs. 4 and 5 have a maximum near 21.33 and 21.03 eV
for Sb2S3, respectively and 21.90 and 20.16 eV for Sb2Se3, respec-
tively. These values coincide with the Z point in Figs. 4 and 5. The
maximum peaks of energy-loss functions are in agreement with
maximum peaks of theoretical for Sb2S3.

The calculated effective number of valence electrons Neff and the
effective dielectric constant 3eff are given in Fig. 6. The effective
optical dielectric constant, 3eff, shown in Fig. 6, reaches a saturation
value at about 10 eV. The photon-energy dependence of 3eff can be
separated into two regions. The first is characterized by a rapid rise
and it extends up to 7 eV. In the second region the value of 3eff rises
more smoothly and slowly and tends to saturations at the energy
10 eV. This means that the greatest contribution to 3eff arises from
interband transitions between 1 eV and 7 eV. To determine the
contribution made to the static dielectric constant 3(0) by transi-
tions with frequency u > u0, we compare the maximum 3eff with
the square of the refractive index ( 3(0) ¼ n2) measured in trans-
parency region Ref. [72]. The difference d 30 ¼ 3(0) � 3eff (d 30 ¼ 1.16
ergy-loss function (L) along the y- and z-axes for Sb2Se3.



Fig. 6. Energy spectra of Neff and 3eff along the y- and z-axes.
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for Sb2S3 and d 30 ¼ 0.52 for Sb2Se3) indicates a large contribution of
transitions with u > u0 to the static dielectric constant.

As states above, the Neff determined from the sum rule (Eq. (22))
is the effective number of valence electrons per unit cell at the
energy Zu0 (under the condition that all the interband transitions
possible at this frequency u0 were made). In the case of Sb2S3 and
Sb2Se3 the value ofNeff increaseswith increasing photon energy and
has tendency to saturate near 10 eV and 20 eV (see Fig. 6). Therefore,
each of our plots of Neff versus the photon energy for Sb2S3 and
Sb2Se3 can be arbitrarily divided into two parts. The first is charac-
terized bya rapid growthofNeff up tow8 eVandextend to12eV. The
secondpart showsa smoother and slowergrowthofNeff and tends to
saturate at energies above 30 eV. It is therefore so difficult to choose
independent criteria for the estimate of the valence electrons per
unit cell. Recognizing that the two valence subbands are separated
from each other and are also separated from the low-lying states of
the valence band, we can assume a tendency to saturation at ener-
gies such that the transition from the corresponding subbands are
exhausted. In other words, since Neff is determined only by the
behavior of 32 and is the total oscillator strengths, the sections of the
Neff curves with the maximum slope, which correspond to the
maxima dNeff=dZu, can be used to discern the appearance of new
absorption mechanismwith increasing energy (E¼ 5 eV, 11.4 eV for
Sb2S3 andE¼4.6 eV,12eV for Sb2Se3). Thevalues andbehaviorofNeff
and 3eff for both direction very close to each other.
4. Conclusion

In present work, we have made a detailed investigation of the
structural, electronic, mechanical, and frequency-dependent linear
optical properties of the Sb2S3 and Sb2Se3 crystals using the density
functional methods. The results of the structural optimization
implemented using the LDA are in good agreement with the
experimental results. From the present results, we observe that
these compounds in mechanically stable. The mechanical proper-
ties like shear modulus, Young’s modulus, Poisson’s ratio, Debye
temperature, and shear anisotropic factors are also calculated.
Moreover, the ionic contribution to inter atomic bonding for these
compounds is dominant. We have revealed that the orthorhombic
Sb2S3 and Sb2Se3 compounds are in the ground-state configuration
and the band structures of these compounds are semiconductor in
nature. We have examined photon-energy dependent dielectric
functions, some optical properties such as the energy-loss function,
the effective number of valence electrons and the effective optical
dielectric constant along the y- and z-axes, and mechanical prop-
erties. Since there are no experimental elastic data available for
Sb2S3 and Sb2Se3 compound, we think that the ab initio theoretical
estimation is the only reasonable tool for obtaining such important
information.
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