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a b s t r a c t

This paper aims to provide a numerical algorithm able to locate all unstable poles, and therefore the
characterization of the stability as a function of the delay, for a class of linear fractional-order neutral
systems with multiple commensurate delays. We start by giving the asymptotic position of the chains
of poles and the conditions for their stability for a small delay. When these conditions are met, the root
continuity argument and some simple substitutions allow us to determine the locations where some roots
cross the imaginary axis, providing therefore the complete characterization of the stability windows. The
same method can be extended to provide the position of all unstable poles as a function of the delay.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The presence of delays in a system, usually, is a source of
poor performance and instability. Therefore, they have been an
important subject both in the theoretical and practical domains,
as indicated by the large amount of articles dealing with many
different problems for this class of systems. Starting from the
studies of Pontryagin (1955), and Bellman and Cooke (1963), many
results have been achieved, specially over the past decades, as it
is discussed, among many others, in the books (Gu, Kharitonov,
& Chen, 2003; Niculescu, 2001; Niculescu & Gu, 2004) and the
survey paper (Richard, 2003), and references therein. Analogously,
fractional order systems are also obtaining large attention in the
literature of the past years, mainly because they offer an excellent
fit to the data in many practical situations as, for example, in
biophysics, thermodynamics and rheology; see Hilfer (2000) and
references therein.

✩ The material in this paper was presented at the 18th IFAC World Congress,
August 28–September 2, 2011, Milano, Italy. This paper was recommended for
publication in revised form by Associate Editor Andrea Serrani under the direction
of Editor Miroslav Krstic.
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catherine.bonnet@inria.fr (C. Bonnet), hitay@bilkent.edu.tr (H. Özbay),
Silviu.Niculescu@lss.supelec.fr (S.-I. Niculescu).
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When dealing with any dynamical systems, one of the basic
questions we need to answer is its stability. For the systems with
delay, we can go even further, and be interested on how this
property will vary if we increase the value of the delay. When
dealingwith the non-fractional case, it is known that an interesting
phenomenon, namely stability windows, might happen (Walton &
Marshall, 1987). This implies that, even if the delay-free system is
unstable, wemight find some regions in the delay space where the
system is stable. Later,wewill see that the same fact canhappen for
fractional systems. There has been a large effort to deal with this
problem for the standard case; see Walton and Marshall (1987),
and Olgac and Sipahi (2004) and others.

Themost natural way to find the position of the poles of a linear
system is to solve its corresponding characteristic equation. But
in our case this will be a transcendental one, being thus generally
impossible to solve it directly. For this reason, most of the existing
procedures study stability of such systems by finding the crossings
of poles through the imaginary axis. This fact comes from two
important properties of time-delay systems, also valid for the class
of fractional systems. The first one is the root continuity argument,
which means that for any positive value of the delay, the position
of the poles varies continuously with respect to delay. This means
that any root crossing from the left half plane to the right half-plane
will need to pass through the imaginary axis. The second property
is the invariance of the tendency of roots crossing (Olgac & Sipahi,
2002). This implies that a manageable number of root clusters can
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provide sufficient information to characterize the whole stability
of the system.

The fractional case ismuchmore involved, and normally cannot
be solved by the methods involving the Routh–Hurwitz table, as
the one presented in Olgac and Sipahi (2002). To the best of the
authors’ knowledge, only the method of Walton and Marshall
(1987) can be successfully expanded to cope with fractional
systems with multiple delays, see Bonnet and Partington (2002),
but each extra commensurate term of the delay after the first one
needs to be reduced, and this process potentially doubles at each
step the degree of the polynomial we need to solve. This implies
that even if we are dealing with a low degree systemwithmultiple
delays, this method will require the zeros of a polynomial with
high order, which can be a challenging and unreliable numerical
problem.

Recently, there has been developments of newmethods dealing
with the stability of the fractional order system with delays.
In Hwang and Cheng (2006), a numerical procedure based on
Cauchy’s integral theoremwasproposed to test the stability of such
systems, and in Hwang and Cheng (2005), a technique based on
the Lambert W function was used for the same purpose. But the
complete characterization of all stabilitywindows is difficult when
using those methods, and no information about the position of the
unstable poles are given.

When dealing with neutral systems, one needs to take extra
care due to the small-delay effect, as it is presented in Hale
and Verduyn Lunel (2001) for the non-fractional case. This
phenomenon is also present for fractional delay systems (Bonnet,
Fioravanti, & Partington, 2011; Bonnet & Partington, 2002) for the
single and multiple delay cases, respectively. This effect splits the
set of delay systems into two classes. The first one presents the
same number of unstable roots when the delay passes from 0 to
0+, and therefore has a chance of being stable for a non-zero value
of the delay, while, in the second one, infinitely many unstable
roots appear when the delay varies from 0 to 0+. Even if the delay
free system is stable, systems of the second class cannot recover
stability for any finite positive value of the delay.

The rest of the paper is organized as follows. Section 2 contains
the problem statement and assumptions. Section 3 brings some
stability tests for the type of systems we are dealing with, and in
Section 4, based on a pseudo-delay transformation, we develop
a numerical procedure that identifies the stability zones as a
function of the delay. The location of the unstable roots as well
as their variation as a function of the delay is also given. Section 5
brings some examples to illustrate the results presented and finally
Section 6 concludes the work.

The notation used throughout is standard. The set of natural
numbers is denoted by N, whereas NN denotes the set of its first N
elements (i.e., NN = {1, . . . ,N}). C (C+, C−) is the set of complex
numbers (with strictly positive and strictly negative real parts),
and ȷ =

√
−1 is the imaginary unit. For z ∈ C, z denotes its

complex conjugate, and ̸ z, ℜ(z) and ℑ(z) define the argument
(taken here from (−π, π]), the real part and the imaginary part
of z. R (R+, R−) denotes the set of real numbers (larger or equal to
zero, smaller or equal to zero).

2. Problem formulation

Wewill consider a system that has in the frequency-domain the
following characteristic equation:

C(s, τ ) = p(sα) +

N
k=1

qk(sα)e−ksτ , (1)

where the parameter τ is non-negative, p(sα) and qk(sα) for k ∈ NN
are polynomials in sα with α ∈ (0, 1) and deg p ≥ deg qk. Here,
the degree is interpreted as the degree in sα , and therefore it is an
integer. If deg p = deg qk for at least one k ∈ NN , then Eq. (1)
defines a neutral time-delay system, otherwise it will consist of
retarded type. As it will be seen in sequence, the analysis of the
former is more involved and will require one extra step.

Clearly, (1) is the characteristic equation of a feedback system
whose open loop transfer function is

G(s) =
1

p(sα)

N
k=1

qk(sα)e−ksτ . (2)

The poles of the closed loop transfer functions (1 + G)−1 and
G(1 + G)−1 are the roots of (1). So, in what follows, sometimes
refer to the roots of (1) as ‘‘poles’’. Furthermore, we assume the
following.

Assumption 1. The polynomials p(s), q1(s), . . . , qN(s)donot have
any common zero.

It is obvious that if Assumption 1 is violated, then a common
factor c(s) ≠ a constant can be factored out of the characteristic
polynomial (1). These poles will be present for all the values of τ ,
and therefore, if any of the poles of c(s) is unstable, the systemwill
be unstable for all values of the delay, whereas if all the poles are
stable, they do not play a significant role in the stability test. In this
case, simplifying by c(s)we get a systemdescribed by (1) satisfying
Assumption 1.

Assumption 2. The polynomials p(s) and qk(s) satisfy

p(0) +

N
k=1

qk(0) ≠ 0. (3)

This means that s = 0 is not a roof of (1) for all values of τ .
Simultaneously, this assumption also guarantees that poles at s =

0 can only happen for τ → ∞. This propertywill be very important
in the following sections.

3. Stability of fractional-order systems with delay

We work here in an input–output framework and consider
H∞-stability, that is, the system has a finite L2(0, ∞) gain if

∥G∥H∞
= sup

u∈L2,u≠0

∥Gu∥L2

∥u∥L2
< ∞, (4)

and we recall that H∞(C+) is the space of functions which are
analytic and bounded in the open right half-plane C+.

For fractional-order systems without delay, stability was first
demonstrated in Matignon (1998). A practical test for stability can
be achieved if we use the variable substitution ς = sα . Applying
this substitution, the characteristic Eq. (1) becomes

Cς (ς, τ ) = p(ς) +

N
k=1

qk(ς)e−kς1/ατ , (5)

and therefore, when τ = 0, it results in

Cς (ς, 0) = p(ς) +

N
k=1

qk(ς). (6)

This substitution will transform the domain of the system from a
multi-sheeted Riemann surface into the complex plane, where its
poles can be easily calculated. In this new variable, the instability
region of the original system is not given by the right half-plane,
but in fact by the region described as

|̸ ς | ≤ α
π

2
, (7)

with ς ∈ C, as illustrated by Fig. 1.
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Fig. 1. The ς-stability region for fractional systems.

Notice that under this transformation, the imaginary axis in the
s-domain is mapped into the lines

̸ ς = ±α
π

2
, (8)

in the ς-domain, and therefore a solution ς ⋆
= |ς ⋆

|̸ ± απ/2
implies that the original system has a purely imaginary solution
of the type

s⋆ = ±j|ς ⋆
|
α−1

. (9)

Also, we can notice that every solution ς∗ such that |̸ ς∗
| < απ is

mapped into the physical Riemann sheet in the s-domain through
the inverse transform s = ς1/α .

The BIBO-stability (i.e., the system presents a finite L∞-gain) of
fractional systems with delays has been considered in Bonnet and
Partington (2002) where it is shown that BIBO stability conditions
already known for delay systems can be extended to the case of
fractional delay systems. Their results are summarized in the next
two lemmas.

Lemma 3. Let G be a strictly proper system with characteristic
equation given by (1) satisfying deg p > deg qk for k ∈ 1, . . . ,N,
being thus of retarded type. Then G is BIBO-stable if and only if G has
no poles in {ℜ(s) ≥ 0} (in particular, no poles of fractional order at
s = 0).

Lemma 4. Let G be a strictly proper system with characteristic equa-
tion given by (1) satisfying deg p ≥ deg qk k ∈ 1, . . . ,N with the
equality holding for at least one polynomial qk, being thus of neutral
type. If there exists a < 0 such that G has no poles in (C\R)∩{ℜ(s) >
a} ∪ {0} then G is BIBO-stable.

As it is known that BIBO-stability implies H∞-stability (see Mäkilä
and Partington (1993) and Partington and Mäkilä (1994)), similar
results can be derived immediately for H∞-stability. Finally,
H∞-stability conditions for systems with poles asymptotically
approaching the imaginary axis are given in Bonnet et al. (2011),
and Partington and Bonnet (2004), among others.

4. Numerical procedure

Our first objective of this section is to derive a procedure to
calculate, for systems described as in (1), the values of τ where
there exists a crossing of roots through the imaginary axis. We
want to stress that under the variable substitution ς = s1/α , this
problem is equivalent to find all the values of τ where there exists
a crossing of poles through ̸ ς = ±α π

2 in Cς (ς, τ ).
With these values in hand, we will be able to calculate the

direction of crossing from the left half plane to the right one, which
we will denote as a destabilizing crossing, or from the right to the
left, denoted as a stabilizing crossing. Notice that the use of the
expressions destabilizing and stabilizing crossingsmeans only that a
pair of poles is crossing the imaginary axis in the defined direction,
and not that the system is turning unstable or stable, respectively.
For that, it is necessary to know the number of unstable poles
before those crossings occur.

4.1. Stability for τ = 0

The first step for all methods based on the root continuity argu-
ment is to start by the study of the delay free system. Considering
τ = 0 as in (6), we get a polynomial with real coefficients, whose
roots can be easily found. We will denote the number of unstable
poles of Cς (ς, 0) as Nu and their location ςk for k ∈ NNu , since this
information will be crucial in the following developments. As it is
illustrated in Fig. 1, for this case, an unstable pole is any solution of
Cς (ς, 0) = 0with |̸ ς | ≤ α π

2 , wherewe recall that ̸ ς ∈ (−π, π].

4.2. Location of chains of poles

If the system we are dealing with is of the retarded type, all the
infinite newpoles that appearwhenwe pass from τ = 0 to τ = 0+

will be in the extreme left half-plane, that means, ℜ(s) → −∞,
and so this step can be ignored. The case of neutral systems needs
to be dealt with care. We will follow the steps from Bonnet et al.
(2011) for the characterization of the asymptotic behavior of the
chains of poles.

Proposition 5. Let C(s, τ ) be the characteristic equation of a neutral
system defined as in (1). Consider the first order approximation

qk(s)
p(s)

= ak + O(s−α) as |s| → ∞, (10)

where, denoting deg p = d, p(s) =
d

m=0 ρmsm and qk(s) =
d

m=0
σk,msm, Eq. (10) is satisfied with

ak =
σk,d

ρd
. (11)

Now let M ≤ N be the greatest integer such that aM ≠ 0. The neutral
chains of poles asymptotically approach the vertical lines

ℜ(s) = −
ln(|r|)

τ
(12)

for each solution r of the polynomial equation

1 +

M
k=1

akzk = 0. (13)

Proof. See Bonnet et al. (2011) and references therein. �

Eqs. (12) and (13) provide an easy-to-check condition in order for
the neutral chains of poles be in the left half-plane. For this, all roots
r of (13) must have |r| > 1.

In case any |r| < 1, then at least one chain of poles will always
be in the right half-plane. That means that the system cannot be
stable for any positive value of τ . The intermediate case, where we
have all |r| ≥ 1, with the equality holding for at least one root of
(12), needs to be further explored to determine fromwhich side of
the imaginary axis the poles are. But it is important to recall that in
this case, the rule ‘‘no poles in the close right half-plane’’ is no longer
sufficient to guarantee H∞-stability, and other properties must
be checked. Indeed, the characteristic equation does not provide
the full information necessary to state stability in this case, and
we need to work with the complete transfer function. We invite
the reader to see Bonnet et al. (2011) for further insights on this
subject.
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Assumption 6. From now on, we will consider that there are no
chains of poles in the extended right half-plane (i.e., there exists
a finite number of poles in ℜ(s) > −a for some a > 0), which
corresponds to all the solutions of (13) having modulus strictly
greater than one.

4.3. Crossing position

In order to find the location in the imaginary axis where the
crossings occur,wewill rely on a transformation of variableswhich
decouples the polynomials and the exponential part. Since for s =

ȷω the exponential terms in (1) will havemodulus equal to one, the
idea is to replace e−ȷωτk with e−ȷθk and find the roots of the resulting
complex pseudo-polynomial as a function of θ ∈ [0, π]. In other
words, we find all the roots of the complex pseudo-polynomial in s

C(s, θ) = p(sα) +

N
k=1

qk(sα)e−jkθ , (14)

by varying θ in the interval [0, π].

Lemma 7. For any τ and s = ȷω such that C(s, θ) = 0, we haveC(s, 2π − θ) = 0.
Proof. It is amatter of simple substitution to show thatC(ȷω, θ) =C(−ȷω, 2π − θ). �

Lemma 8. There exist s = ȷω and τ > 0 such that C(s, τ ) = 0 if
and only if there exists θ ∈ [0, 2π ] such that C(s, θ) = 0.
Proof. For the sufficiency, recall that by Assumption 2 the case
ω = 0 can be neglected. So letting

τ(ω, θ, ℓ) =
θ

ω
+

2πℓ

ω
(15)

and choosing ℓ = {0, 1, . . .} ifω > 0 or ℓ = {−1, −2, . . .} ifω < 0
will provide τ > 0 such that (1) is satisfied.

For the necessity, choose θ as ̸ eȷωτ , taken from [0, 2π ], and
notice that

e−ȷkωτ
= e−ȷkθ (16)

for all k ∈ N. �

It is important to notice that for a fixed θ ∈ [0, π],C is a pseudo-
polynomial with complex coefficients, but no delays. But as it was
stated before, with the variable transformation ς = sα , there is
a direct relation between the roots on the imaginary axis for the
s-domainwith the ones having argument±απ/2 in the ς-domain.
We must also recall that, due to the variable transformation in the
exponential term, a solution s⋆ ofC does not imply that s⋆ is another
solution. On the other hand, since by Assumption 2 we can neglect
the roots at the origin, all roots in the imaginary axis of (1) occur
in complex conjugate pairs, and so we can finally state our main
result.

Theorem 9. Let Assumptions 1, 2 and 6 hold. Let Ω be the set of all
ordered pairs (ω, θ), with ω ∈ R and θ ∈ [0, π] such that C(ȷω, θ)
= 0. Let

τ(ω, θ, ℓ) =
θ

ω
+

2πℓ

ω
(17)

for all (ω, θ) ∈ Ω . Choose ℓ = {0, 1, . . .} if ω > 0, and ℓ = {−1,
−2, . . .} if ω < 0. Let ∆ be defined as the set of all the ordered pairs
(±ȷω, τ(ω, θ, ℓ)). Then ∆ is the complete set of roots of (1) on the
imaginary axis for τ > 0.
Proof. First we need to show that any element of∆ is a root for (1).
The result for the term ‘‘+ω’’ comes directly from the sufficiency of
Lemma 8, whereas the ‘‘−ω’’ comes from the aforementioned fact
that the poles in the imaginary axis of (1) occur in complex conju-
gate pairs. Finally, it lacks to show that any root of (1) is an element
of ∆. But from Lemma 7, we see that for the complex conjugated
solutions ofC(ȷω, θ) = 0, at least one of the θ will be in the [0, π]

interval. The rest follows from the necessity of Lemma 8. �

With these results in hand, it is easy to check if a system is stable
independent of delay.

Corollary 10. If the system given by (1) is stable for τ = 0 and
Ω = ∅, then the system is stable for all positive values of τ .

Proof. Direct from the fact that there are no roots crossing the
imaginary axis. �

The set Ω together with the root tendency of each ordered pair
is what we call the root cluster. The root tendency will be better
explained in the sequel, but as in the non-fractional case (Olgac &
Sipahi, 2004), it is constantwith respect to any sequential crossings
in (17).

To be able to use the results of Theorem 9, we need to be able
to find all ω ∈ R and θ ∈ [0, π] such that C(ȷω, θ) = 0. To this
matter, we propose two distinct approaches.

The most direct one consists in sampling θ in its interval [0, π],
and for each fixed value θ ⋆, make the variable substitution ς = sα ,
calculate the roots of the resulting complex polynomial in ς

Cς (ς, θ ⋆) = p(ς) +

N
k=1

qk(ς)e−jkθ⋆
. (18)

Although we need to deal with a large number of polynomial
equations to solve this problem, two points are relevant. First, all
polynomials we need to solve will be of degree n = deg p (for
the system description given in (5)). Second, the root continuity
argument still holds for Cς (ς, θ) as a function of θ . As we have
guaranteed that no poles in the origin will happen, this means
that plotting the absolute value of the argument of those roots
as a function of θ brings a useful graphic information. Also, as
by assumption there are no chains of poles asymptotic to the
imaginary axis, these plotswill be continuous. Therefore, searching
the positions where these curves cross the line θ = απ/2 provide
the information to calculate where the actual crossings through
the imaginary axis are in the s-domain. This allows a better use of
Newton’s method in order to improve numerical accuracy without
increasing the possibility of getting false results.

The second method we propose tries to keep the advantages
of the previous one without increasing the computational burden.
If (ς , θ ) is a simple root of (18), then a small perturbation on
θ ⋆

= θ + ϵ will provide a solution ofC(ς ⋆, θ ⋆) = 0 with the form

ς ⋆
= ς +

∞
k=1

λkϵ
k (19)

where

λ1 = ȷ

N
k=1

kqk(ς)e−ȷθk

p′(ς) +

N
k=1

q′

k(ς)e−ȷθk

= T (ς, θ). (20)

Here, p′(ς) and q′

k(ς) denote the derivative of the polynomials
p(ς) and qk(ς) in ς respectively.

So, a method to provide the same curves as the one calculated
with the gridding method is to numerically integrate T (ς, θ) for θ
varying from 0 to π and the starting positions of ς being the roots
ofCς (ς, 0) = 0, which are the same as the roots of Cς (ς, 0) = 0
already calculated for the test of stability in τ = 0. A possible
strategy to integrate this function is to predict the next step by
means of T (ς, θ) to be close enough of the real solution and
therefore being able to correct it with Newton’s method. The size
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of the step can be tuned during execution by regarding the distance
of the prediction part and the real solution of the correction one.

The cases where T (ς, θ) = 0 or where we have multiple poles
can still be dealt with; see Chen, Fu, Niculescu, and Guan (2010a,
2010b). But this will need a higher order analysis or a different
approach for the definition of (19). On the other hand, in both
cases, when this event happens, we can always stop the numerical
integration, deal locallywith the griddingmethod provided before,
and re-start the integration method once we achieve simple roots
and T (ς, θ) ≠ 0.

4.4. Direction of crossing

The objective now is to find for each crossing of roots through
the imaginary axis, if it is a stabilizing or a destabilizing one. As it
was shown in Olgac and Sipahi (2002), this is constantwith respect
to sequential crossings (ℓ in (17)), and therefore it is denoted as root
tendency.

It is more convenient to calculate this point in the s-domain,
but we can still deal with this problem in the same way we dealt
before. Assume that (s, τ ) is a simple root of C(s, τ ) = 0. For a small
variation of τ ⋆

= τ + ϵ, a solution of C(s⋆, τ ⋆) = 0 can be found
with the form

s⋆ = s +

∞
k=1

µkϵ
k (21)

where

µ1 = s

N
k=1

kqk(s)e−τ sk

αsα−1p′(s) +

N
k=1

(αsα−1q′

k(s) − τkqk(s))e−τ sk

= V (s, τ ). (22)
The root tendency is given by sign(ℜ(V (jω, τ))), where (jω, τ) ∈

∆. If it is positive, then it is a destabilizing crossing, whereas if it is
negative, this means a stabilizing crossing. In case the result is 0, a
higher order analysis is needed, since this might be the case where
the root just touches the imaginary axis and returns to its original
half-plane.

To confirm the root tendency, we will show that

sign


ℜ


V


jω,

θ

ω
+

2πℓ

ω


(23)

is independent of ℓ. Notice that for those given values, the
exponential term

e−τ sk
= e−ȷθke−ȷ2πℓk

= e−ȷθk (24)
is independent of ℓ. So, the only part ℓ still appears is in the
denominator of (22). But since sign(ℜ(z)) = sign(ℜ(1/z)) for
z ∈ C−{0}, we can calculate the root tendency over the inverse of
V , and we readily see that ℓ just enters in the imaginary part of it.

From this point, it is easy to determine for each value of the
delay if the system has unstable roots or not. Start counting from
the number of unstable poles of the delay free system. Sort∆ by the
value of the delay of the crossing, and for each value of it such that
the root tendency is positive, add one for the counting of unstable
poles (they will always appear in pairs), or subtract one if the root
tendency is negative. Repeat the procedure until the maximum of
the delay. Finally, identify the values of τ where the number of
unstable poles is zero. Those are the stable regions.

4.5. Location of unstable poles

Suppose now that the problem is not finding the values of τ
such that the system is stable, but in fact finding the actual position
of the unstable poles for a given value of delay τ ⋆. This can be
achieved by an adaptation of the same techniques used before.
From the definition of Ω , we can calculate a subset ∆τ⋆ of ∆
containing only the elements of ∆ with the delay smaller than τ ⋆

and with positive root tendency.
To avoid any issues around the Riemann surfaces, it is more

adequate to deal with this problem in the ς-domain. So assuming
that (ς , τ ) is a simple root of Cς (ς, τ ) = 0, then for a small
variation of τ ⋆

= τ + ϵ a solution of Cς (ς ⋆, τ ⋆) = 0 can be found
with the form ς ⋆

= ς +


∞

k=1 νkϵ
k, where

ν1 =

ς1/α
N

k=1
kqk(ς)e−τς1/αk

p′(ς) +

N
k=1

(q′

k(ς) − τα−1ς (1−α)/αkqk(ς))e−τς1/αk

= Vς (ς, τ ). (25)
Integrating Vς (ς, τ ) with respect to τ for each element of
((s◦)α, τ ◦) ∈ ∆τ⋆ for τ ∈ [τ ◦, τ ⋆

] and (s◦)α as a starting point,
together with the unstable poles (ςk) for the delay free system
for τ ∈ [0, τ ⋆

] will generate the curves of the root loci in the
ς-domain. Applying the inverse transformation s = ς1/α for all
the points in the ς root-loci with argument between (−απ, απ)
generates the root-loci in the physical layer in the s-domain. We
can even back integrate from the elements of ∆τ⋆ for τ ∈ [τ ◦, τ •

]

in order to see their dynamics before the crossing, although back
integrating until τ •

= 0 can be a bad idea since there is a chance
that this might lead to solutions asymptotic to ℜ(s) → −∞. A
good trade-off seems to be choosing τ •

= τ ◦/2.
This procedure will provide the position of all unstable poles of

(1), as well as some information about the stable ones. If one needs
more information about the stable ones, one can always perform
the same integration procedure over the stable poles for τ = 0, the
stabilizing crossings, and even also back integrating from a number
of future crossings. But no guarantee can be given that those will
be the ones closer to the imaginary axis.

4.6. Complete algorithm

To recapitulate, the main points of the proposed procedure are
summarized here.

Step 1. Calculate the position of the poles for the delay free
system.

Step 2. Calculate the roots of (13) in order to get the asymptotic
position of the neutral chains of poles.

Step 3 Solve (14) for θ ∈ [0, π] and find the locationswhere any
of the solutions has angle απ/2.

Step 4. With the result of the previous item, calculate the root
cluster, the root tendency and the location of all crossings
happening before the desired value of delay. This solves
the question about the stability of the system.

Step 5. Integrate Eq. (25) from the related points in theς-domain
just calculated if they have positive tendency as well
as the unstable poles for the delay free system until
the target delay. Re-map the final points back to the s-
domain, which may fall outside the physical Riemann
sheet. This will provide the location of all the unstable
poles.

4.7. And what if α = 1?

All the methodologies presented here can be adapted (in fact,
simplified) to deal with the case of non-fractional systems, i.e. α =

1. Initial results of this case were presented in Fioravanti, Bonnet,
Özbay, and Niculescu (2010), but the one proposed here is much
more involved. Onemajor difference is the fact that roots can cross
from one Riemann sheet to the other, which makes the procedure
of following the roots in the s-domain much more complicated.
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Fig. 2. Root-loci for C1(s) until τ = 3.9.
Fig. 3. Zoom at crossing points for C1(s) until τ = 4.8.
To circumvent this complexity, we first apply the transformation
to work in the ς-domain, and after completing the root-locus we
map just part of the result which will fall back into the physical
Riemann sheet of the s-domain. But this transformation changes
the form of the delay term, and this must be taken into account.

5. Examples

Our first example comes from Hwang and Cheng (2006). Let us
consider the system defined by

C1(s) =
1

(
√
s)3 − 1.5(

√
s)2 + 4

√
s + 8 − 1.5(

√
s)2e−τ s

. (26)

Utilizing a heavy computation scheme based on the Cauchy’s
integral, Hwang and Cheng (2006) showed that this system is
unstable for τ = 0.99 but stable for τ = 1.

Applying the first part of the algorithm, we can see that there
is a destabilizing crossing of roots at τ = 0.7854k occurring at
s = ±ȷ8.0 and a stabilizing crossing at τ = 0.0499 + 0.9485k
for s = ±ȷ6.6246, for all k ∈ {0, 1, . . .}. Therefore, we have the
following 5 stability windows: 0.0499 < τ < 0.7854, 0.9983 <
τ < 1.5708, 1.9486 < τ < 2.3562, 2.8953 < τ < 3.1416
and 3.8437 < τ < 3.9270, which agrees with the result given
by Ozturk and Uraz (1985) and in some sense explains it.

We further continue by considering τ = 3.9. As this value
is inside the last stability window, we know beforehand that the
system is stable. But we search a better understanding of the root-
locus of the system as a function of the delay. Fig. 2 brings this
picture, where the colors represent the chosen τ , with deep-blue
for τ = 0 and strong red for τ = 3.9.

One can see that although the depth inside the right half-
plane for each destabilizing cross becomes less expressive when τ
increases, the stabilizing crossing happens closer to the following
destabilizing one, and after the pair of poles cross at τ = 3.9270 to
the right half-plane, the next pair of unstable poles arrive at τ =

4.7124 before the previous ones exit this half-plane at τ = 4.7922,
and therefore the system cannot recover its stability. This can be
better seen in Fig. 3, where it is shown a zoom around the crossing
points through the imaginary axis.

The second example also comes fromHwang and Cheng (2006).
Considering the fractional-order system with two delays

C2(s) =
1

s5/6 + (s1/2 + s1/3)e−0.5s + e−s
. (27)

It is stated that this system is stable. In order to apply our
procedure, we transformed C2(s) into the following equivalent
system

C2(s, τ ) =
1

s5/6 + (s3/6 + s2/6)e−τ s + e−2τ s
(28)

and we have to study the stability for τ = 0.5.
This system has no unstable pole for τ = 0 (in fact, it has no

pole in the physical Riemann sheet). Applying the methodology
described before, we achieve that crossings through the imaginary
axis happens for τ = 2.3562+6.2832k and τ = 2.6180+6.2832k
for all k ∈ {0, 1, . . .}, and both of them are destabilizing crosses.
This means that the only stability window for this system is 0 ≤

τ < 2.3562. As τ = 0.5 is included in this window, we can ensure
that the original system C2(s) is stable.

Our last example is adapted from Marshall, Górecki, Kory-
towski, and Walton (1992). Let C3(s, τ ) = s1.8 + 4s0.9 + 4 −

(1/4)e−sτ . The delay-free system has no poles in the unstable re-
gion, and since this is a retarded time-delay system,we do not have
issues with the chains of poles.
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Fig. 4. Angle of the location of poles ofC3(s, θ).

Fig. 4 shows the angle of the solution of (18) as we vary θ in
the interval [0, π]. As we can see from the image, the critical lines
±0.45π are never crossed, meaning that no poles of the original
system will ever pass through the imaginary axis. As the original
system was delay-free stable, the time-delay system will be stable
for all values of the delay.

6. Conclusion

A new method for calculating stability windows and location
of the unstable poles is proposed for a large class of fractional
order time-delay systems. As the main advantages, we just deal
with polynomials of the same order as that of the original
system, and we have a graphical representation of the number of
elements in the root cluster, which can provide an important visual
information for some cases. However, if the delays or the fractional
order are not commensurate, the analysis does not apply in its
present form. Current work considers how are the best practices
to implement the methodology developed, and the results seem
promising and consistent with the existing literature.
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