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a b s t r a c t

We consider two problems that arise in designing two-level star networks taking into account service

quality considerations. Given a set of nodes with pairwise traffic demand and a central hub, we select p

hubs and connect them to the central hub with direct links and then we connect each nonhub node to a

hub. This results in a star/star network. In the first problem, called the Star p-hub Center Problem, we

would like to minimize the length of the longest path in the resulting network. In the second problem,

Star p-hub Median Problem with Bounded Path Lengths, the aim is to minimize the total routing cost

subject to upper bound constraints on the path lengths. We propose formulations for these problems

and report the outcomes of a computational study where we compare the performances of our

formulations.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we consider the problem of designing a two level
telecommunications network with service quality considerations.
We are given a set of users or demand nodes and each of these
nodes wants to communicate with all others. A fixed central hub
is given and p additional hubs should be chosen among the user
nodes. Then each hub is connected by direct links to the central
hub and each of the remaining nodes is connected directly to
exactly one hub. The resulting network is a two level star/star
network, where the network connecting the hub nodes to the
central hub, called the backbone network, is a star, and each of
the networks connecting user nodes to a hub node, called an
access network, is a star.

We define two separate but related design problems for star/star
networks. These problems are different from those existing in the
literature as they incorporate a measure of service quality. First
observe that in a star/star network, there exists a single simple path
between any pair of demand nodes. If two demand nodes are
connected to the same hub, then his path starts at the origin, goes
directly to the hub, and then ends at the destination. If these nodes
are connected to two different hubs, then the path starts at the
origin, goes to the hub of the origin, then to the central hub, then to
the hub of the destination, and ends at the destination. The length of
ll rights reserved.

an),
the path connecting these two nodes is taken as a measure of the
quality of service for this pair of nodes.

In our first problem, we are interested in optimizing the
poorest service quality in the network. Hence, our aim is to select
the location of hubs and assign the remaining nodes to hubs in
such a way that the longest path between two distinct nodes in
the resulting network has the smallest possible value. In other
words, we would like to minimize the maximum length of the
path connecting any pair of distinct demand nodes. We call this
problem Star p-hub Center Problem and abbreviate with SpHCP.

In our second problem, we also incorporate the cost of routing
into the design process. Our aim is to find a network such that the
total cost of routing in the network is minimum and the length of
the path connecting any pair of distinct nodes does not exceed a
predetermined value. This yields a solution with a given level of
service quality and minimum cost. We call this problem Star

p-hub Median Problem with Bounded Path Lengths and abbreviate
with SpHMP-BP. If there is no limit on the path lengths and the
cost of routing the traffic between the hubs and the central hub is
null, then our problem is equivalent to the problem of locating p

hubs and allocating the remaining nodes to these hubs
to minimize the total cost of allocation. Hence the p-median
problem is a special case of our problem. As the p-median
problem is NP-hard, SpHMP-BP is also NP-hard (for reviews on
facility location problems, we refer the reader to, e.g., Cornuéjols
et al. [9,10], Krarup and Pruzan [25], Labbé et al. [26] and
Sridharan [37]).

To the best of our knowledge, these problems have not been
studied before. Here we first review the literature on other
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star/star network design problems. The problem of minimizing
the cost of establishing links and installing hubs where the traffic
requirements are only from and to a central hub is studied by
Gavish [17]. Here nodes are connected to the hubs via multidrop
links and hubs are connected to a central unit through a star
network. Different types of links with different costs and capa-
cities are available. The problem of designing a star/star satellite
communication network is studied by Helme and Magnanti [20].
Each hub has a local switch and an earth station. Nodes assigned
to the same hub use the local switch and nodes assigned to
different hubs use the earth station and the central hub to
communicate. The problem is to choose the location of hubs
and assign nodes to hubs to minimize the cost of installing hubs,
connecting nodes to hubs, and using the capacities of the earth
stations and the local switches. A quadratic formulation and a
linearization are proposed by the authors and computational
results with a branch and bound algorithm and greedy heuristics
are reported. Chardaire et al. [6] present two integer program-
ming formulations and a simulated annealing algorithm for the
design of a network with two levels of hubs, i.e., each terminal is
connected to a first level hub which is connected to a second level
hub which is connected to a central unit. Here, traffic flows are
not considered and fixed costs of connections and of installing
facilities are minimized. Labbé and Yaman [28] study the problem
of designing a star/star network with minimum routing cost. They
do not fix the number of hubs in advance, rather they include the
fixed cost of locating hubs in the total cost. The authors present
formulations, polyhedral results, a branch and cut algorithm, and
a Lagrangian relaxation heuristic. Yaman [39] studies a closely
related problem where the aim is to locate p hubs and assign the
remaining nodes to hubs in order to minimize the total cost of
installing capacitated links. A heuristic based on Lagrangian
relaxation is proposed and computational results are given.
Contreras et al. [7,8] study the problem of designing a tree/star
network.

Classical hub location problems assume that hubs are
connected by a complete network and the aim is to minimize
the total cost of routing in the network. Hub locations problems
are classified into two classes with respect to the way demand
nodes are assigned to hub nodes. If a demand node can be served
by several hub nodes, the problem is classified as multi-allocation
and if each demand node can be served by a single hub, the
problem is classified as single allocation. As both problems we
consider in this paper are single allocation problems, we limit our
review to this class of hub location problems. We refer the reader
to Campbell et al. [5] and Alumur and Kara [1] for two recent
surveys. Different formulations for hub location problems with a
fixed number of hubs (p-hub median problems) or with fixed
costs for installing hubs (hub location with fixed costs) have been
proposed in the literature (see, e.g., OKelly [31], Campbell [3],
Skorin-Kapov et al. [35], Ernst and Krishnamoorthy [13], Sohn and
Park [36], Ebery [12], Labbé et al. [29], and Correia et al. [11]).
Ernst and Krishnamoorthy [14] present a branch and bound
algorithm and an exact method based on shortest paths for the
case where the number of hubs is fixed. A Lagrangian relaxation
heuristic is given in Pirkul and Schilling [34]. Labbé and Yaman
[27] and Labbé et al. [29] study the polyhedral properties of hub
location problems.

The closest problem to our first problem SpHCP is the so-called
p-hub center problem, which aims at minimizing the maximum
transportation cost. The p-hub center problem is introduced by
O’Kelly and Miller [32] and Campbell [3]. Campbell [3], Kara and
Tansel [22], and Ernst et al. [15] give integer programming
formulations, Meyer et al. [30] present a 2-phase exact algorithm,
Pamuk and Sepil [33] propose a heuristic, and Juette et al. [21]
give a polyhedral analysis for this problem.
A related problem is the problem of minimizing the number
of hubs under the constraint of serving each pair of demand
nodes within a predetermined value. This problem is called the
hub covering problem. Different formulations for this problem
are proposed by Kara and Tansel [23], Wagner [38], and Ernst
et al. [16]. Hamacher and Meyer [19] propose an algorithm to
solve the p-hub center problem by solving a series of hub covering
problems.

There is also recent work on the problem of minimizing cost
subject to a quality measure. See, for instance, Alumur et al. [2],
Campbell [4], Yaman [40,41], Yaman et al. [42,43]. Our second
problem SpHMP-BP belongs to this class and has features of both
the p-hub median problem and the hub covering problem. The
path length constraints are covering type constraints and are used
in the hub covering problem. But in the hub covering problem, the
objective is to minimize the number of hubs, whereas the
objective of SpHMP-BP is to minimize the total routing cost in
the network, and this is the same as the objective of the p-hub
median problem.

In this paper, we propose formulations for SpHCP and SpHMP-

BP and discuss the outcomes of a computational study where we
compare the performances of these formulations. Our formula-
tions model the routes between origin–destination pairs using the
fact that the hub network has a star structure.

The rest of the paper is organized as follows. In Section 2, we
formally define the problem SpHCP, prove that it is NP-hard, and
present two integer programming formulations. Section 3 is
devoted to the study of formulations for the SpHMP-BP. A
preprocessing algorithm is also given in this section. We test
our formulations from a computational point of view in Section 4
and discuss the results. We conclude the paper in Section 5.
2. Star p-hub center problem

In this section, we formally define our first problem, SpHCP,
prove that it is NP-hard, and propose mixed integer programming
formulations. We first give the notation. Let I be the set of
demand nodes and 0 be the central hub. Let dij denote the
distance from node iA I [ f0g to node jA I [ f0g. We assume that
dij ¼ djiZ0 for all i,jA I [ f0g, dii ¼ 0 for all iA I [ f0g, and that the
triangle inequality is satisfied, i.e., dijþdjkZdik for all i,j,kA I [ f0g.

The problem SpHCP is to locate p hubs and assign each nonhub
node to a hub node such that the maximum path length over all
pairs of nodes is minimized. In the sequel, we assume that pZ2.

We define xij to be 1 if node iA I is assigned to hub node jA I

and to be 0 otherwise. If a hub is located at node i then xii is 1. The
variable bmin is the length of the longest path between origin–
destination pairs in the resulting star/star network. Using these
variables, SpHCP can be formulated as follows:

min bmin ð1Þ

s:t:
X
jA I

xij ¼ 1 8iA I ð2Þ

X
jA I

xjj ¼ p ð3Þ

xijrxjj 8i,jA I : ia j ð4Þ

ðdijþd0jÞxijþðd0lþdlmÞxmlrbmin 8i,m,j,lA I : iom, ja l ð5Þ

dijxijþdmjxmjrbmin 8i,m, jA I : iom ð6Þ

xijAf0;1g 8i,jA I: ð7Þ
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Here, constraints (2) and (7) ensure that each demand node is
assigned to exactly one hub node. The number of hubs is equal to
p due to constraint (3). Constraints (4) ensure that nodes can only
be assigned to hub nodes.

We assume that all pairs of nodes need to communicate. If
node i is assigned to hub j and node m is assigned to hub l

different from hub j, then the length of the path between nodes i

and m is equal to dijþd0jþd0lþdlm. Constraints (5) state that bmin

is at least as large as the length of this path. If nodes i and m are
assigned to the same hub j, then the length of the path between
these nodes is equal to dijþdmj and due to constraints (6), bmin

cannot be smaller than the length of this path. As we minimize
bmin, in an optimal solution, the value of bmin is equal to the length
of the longest simple path in the resulting star/star network.

Note that we have a major assumption here, we assume that
we know the location of the central hub. If, on the contrary, we
are to decide on the location of the central hub, then SpHCP can be
solved for each possible location. It is also possible to incorporate
the decision on the location of the central hub into our model. We
define yk to be 1 if the central hub is located at node kA I and to be
0 otherwise. Then we add constraints

P
kA Iyk ¼ 1, xkkZyk and

ykAf0;1g for all kA I, and change constraints (5) with

ðdijþdjkÞxijþðdklþdlmÞxmlrbminþMð1�ykÞ

8 i,m,j,l,kA I : iom, ja l

where M is a large number.
Before presenting alternative mixed integer programming

formulations for SpHCP, we first prove that the problem is
NP-hard.

Theorem 1. The problem SpHCP is NP-hard.

Proof. We define the decision version of SpHCP as follows. Does
there exist a feasible solution to SpHCP with bmin less than or
equal to a given positive number K? This problem is in NP. Next
we show that the decision version of the unweighted vertex
p-center problem is polynomial time reducible to the decision
version of SpHCP. Here we use the ideas developed in Ernst et al.
[15].

The decision version of the unweighted vertex p-center pro-

blem is defined as follows. Given a network G¼ ðN,EÞ with

nonnegative edge lengths cij for fi,jgAE and a positive number

K 0, does there exist a subset M of N of cardinality p such that

minjAM:fi,jgAEcijrK 0 for all iAN? This problem is NP-complete

(see Kariv and Hakimi [24]).

For a given instance of the unweighted vertex p-center problem,

let I¼N [ N0 where N0 is a copy of N, dij ¼ di0j ¼ dij0 ¼ di0j0 ¼ cij if

fi,jgAE, dii ¼ di0 i ¼ dii0 ¼ di0 i0 ¼ 0 for all iAN, and dij ¼ di0j ¼ dij0 ¼

di0 j0 ¼1 for all i,jAN such that ia j and fi,jg=2E. Also let

d0i ¼ di0 ¼ di00 ¼ d0i0 ¼ 0 for all iAN and K ¼ 2K 0. As a node and

its copy have the same distances to all other nodes and the

distance between them is zero, we know that if there exists a

feasible solution to SpHCP with bmin less than or equal to K, then

there exists such a solution where all p hubs are chosen from the

set N, i0 is assigned to i if i is a hub and it is assigned to the same

hub as i if i is not a hub, for all nodes i in N [15].

In a feasible solution for SpHCP, the length of the path between

two nodes i and m is equal to dihðiÞ þdhðmÞm where h(i) and h(m) are

the hubs of i and m, respectively. Now, if i is the node whose

distance to its hub is the largest, then the longest path in the

network is from node i to its copy i0 and its length is equal to

2dihðiÞ. Hence, there exists a solution to the decision version of

SpHCP if and only if there exists a solution to the decision version

of the unweighted vertex p-center problem. &
Now we proceed with our discussion of formulations. Let
n¼ 9I9. The above formulation uses Oðn2Þ 0-1 variables and has
Oðn4Þ constraints. Below, we first strengthen this formulation and
then use auxiliary variables to decrease the number of constraints
to Oðn2Þ. Let X be the set of feasible solutions to the above
formulation, i.e., X ¼ fxAf0;1gn

2
: x satisfies (2)–(7)g.

Proposition 1. For i,m,j,lA I such that iom and ja l, the inequality

dijxijþd0jxjjþdmlxmlþd0lxllrbmin ð8Þ

is valid for X and implies inequality (5).

Proof. Let xAX. If xij ¼ 1 and xml ¼ 1, then the left hand side of
inequality (8) is the same as the one of (5) since xjj ¼ 1 and xll ¼ 1.
If xij ¼ 1 and xml ¼ 0, then there are two possible cases. If xll ¼ 1,
then the left hand side of inequality (8) is equal to the length of
the path between nodes i and l and is a lower bound for bmin. If
xll ¼ 0, then dijþd0j is a lower bound for the length of a path
between node i and any node that is selected as a hub node. If
xij ¼ 0 and xml ¼ 1, we have similar cases. Finally, if both xij ¼ 0
and xml ¼ 0, then if xjj ¼ 1 and xll ¼ 1, the left hand side of
inequality (8) is equal to the length of the path between hubs j

and l. If xjj ¼ 1 and xll ¼ 0, then d0j is a lower bound for the length
of a path between hub j and any node that is selected as a hub.
The case with xjj ¼ 0 and xll ¼ 1 is similar and the case with xjj ¼ 0
and xll ¼ 0 is easy. Hence, we can conclude that x satisfies
inequality (8). Inequality (8) implies inequality (5) since xjjZxij

and xllZxml due to constraints (4). &

Hence we obtain a stronger formulation by replacing
constraints (5) with (8). The resulting formulation can be further
strengthened by replacing constraints (6) with the following set
of inequalities

X
jA I

ðdijxijþdmjxmjÞrbmin 8i,mA I : iom ð9Þ

These inequalities are valid since if xij ¼ xmj ¼ 1 for some jA I, then
the left hand side of (9) is equal to the left hand side of constraint
(6) and if xij ¼ xml ¼ 1 for two distinct hubs j and l in I, then the left
hand side of (9) is less than or equal to the one of (8) for this
choice of j and l. Using inequalities (9) instead of (6) has also the
advantage of decreasing the number of constraints.

Using the above results, we strengthen the starting formulation
by replacing constraints (5) with (8) and constraints (6) with (9).
Next we give another formulation that has the same strength as this
one but has Oðn2Þ constraints. We define auxiliary variables here. For
jA I, let Tj be the length of the longest path from nodes assigned to j

to node j.
We replace constraints (8) with

TjZdijxij 8i, jA I ð10Þ

Tjþd0jxjjþTlþd0lxllrbmin 8j, lA I : jo l ð11Þ

It is easy to observe that the two formulations yield the same
linear programming bound. Ernst et al. [15] use similar variables
in their radius formulation for the p-hub center problem.

We call the above model SpHCP-1, i.e, minimizing bmin subject
to constraints (2)–(4), (7), and (9)–(11).

An alternative way to model the same problem is to use
nonlinear constraints
X
jA I

ðdijþd0jÞxijþ
X
jA I

ðd0jþdmjÞxmj�2
X
jA I

d0jxijxmjrbmin

8 i, mA I : iom ð12Þ

instead of the system (9)–(11). Here if node i is assigned to hub j

and node m is assigned to hub l different from j, then the length of
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the path between nodes i and m is equal to dijþd0jþd0lþdml. If
nodes i and m are assigned to the same hub j, then the length of
the path between these nodes is equal to dijþdmj as xijxmj ¼ 1.

To linearize these constraints, we define additional variables.
First note that for iA I and jA I, we have xijð1�xjjÞ ¼ 0 since if xij ¼ 1
then xjj ¼ 1. Also for jA I and mA I, we have xjjð1�xmjÞ ¼ xjj�xmj

since xjjxmj ¼ xmj. Now let zimj ¼ xijxmj for all jA I, iA I\fjg, mA I\fjg

with iom. We can replace the nonlinear constraint (12) with its
linear counterpart
X
jA I

ðdijþd0jÞxijþ
X
jA I

ðd0jþdjmÞxmj�
X

jA I\fi,mg

2d0jzimj�2d0ixmi�2d0mximrbmin

8i, mA I : iom ð13Þ

and add constraints

zimjrxij 8j,i,mA I : iom, ia j, ma j ð14Þ

zimjrxmj 8j,i,mA I : iom, ia j, ma j ð15Þ

Note here that we do not need to use constraints
zimjZxijþxmj�1 and zimjZ0. As the aim of the problem is to
minimize bmin, there exists an optimal solution to the problem
where zimj ¼minfxij,xmjg for all j,i,mA I such that iom, ia j, and
ma j.

Let SpHCP-2 be this new model, i.e, minimizing bmin subject to
constraints (2)–(4), (7), and (13)–(15).

To conclude this section, we note that SpHCP-1 has Oðn2Þ

variables and Oðn2Þ constraints and SpHCP-2 has Oðn3Þ variables
and Oðn3Þ constraints. We compare the computational perfor-
mances of these two formulations in Section 4.
3. Star p-hub median problem with bounded path lengths

In this section, we propose models for SpHMP-BP. We first
introduce more notation. Let tim denote the amount of traffic to be
routed from node iA I to node mA I. As the traffic from a node to
itself does not travel on the arcs of the network, we assume that
tii ¼ 0 for all iA I. We denote the cost of routing a unit traffic from
node iA I [ f0g to node jA I [ f0g by fij. We assume that f jj ¼ 0 for
all jA I. Let cij ¼ f ij

P
mA Itimþ f ji

P
mA Itmi for iA I and jA I\fig and

cjj ¼ 0 for jA I.
The problem SpHMP-BP is to locate p hubs and assign each

nonhub node to a hub node such that the length of the simple
path between any pair of nodes does not exceed the bound b. The
aim is to minimize the total cost of routing. We again assume that
pZ2.

We first propose a nonlinear model using the 0-1 variables xij’s
and the auxiliary variables Tj’s.

min
X
iA I

X
jA I\fig

cijxijþ
X
jA I

X
iA I

X
mA I\fig

ðf j0timþ f 0jtmiÞxijð1�xmjÞ ð16Þ

s:t: ð2Þ2ð4Þ,ð7Þ,ð10Þ

Tjþd0jxjjþTlþd0lxllrb 8j, lA I : jo l ð17Þ

X
jA I

ðdijxijþdmjxmjÞrb 8i, mA I : iom ð18Þ

Constraints (17) and (18) are the same as those used for
modeling SpHCP. The only difference here is that b is a parameter
of the problem.

We explain the objective function in more detail. If node i is
assigned to hub j, then the total traffic traveling from i to j is equal
to
P

mA Itim and the total traffic traveling from j to i is equal toP
mA Itmi. The cost of routing this traffic in both ways is denoted

by cij. The traffic traveling from hub j to the central hub is
equal to the total traffic from the nodes that are assigned to
hub j to the nodes that are assigned to other hubs, i.e.,
P
iA I

P
mA I\figtimxijð1�xmjÞ. Similarly, the total traffic traveling from

the central hub to hub j is equal to
P

iA I

P
mA I\figtmixijð1�xmjÞ. The

objective function (16) is the total cost of routing the traffic in the
network.

Next, we provide a linear 0-1 model for our problem using the
variables zimj’s defined in the previous section. First, note that, as
we have xijð1�xjjÞ ¼ 0 for iA I and jA I and we have xjjð1�xmjÞ ¼

xjj�xmj for jA I and mA I, the objective function (16) can be
rewritten as:

min
X
iA I

X
jA I\fig

cij�ðf j0tjiþ f 0jtijÞþ
X

mA I\fi,jg

ðf j0timþ f 0jtmiÞ

0
@

1
Axij

þ
X
jA I

X
iA I

ðf j0tjiþ f 0jtijÞxjj

�
X
jA I

X
iA I\fjg

X
mA I\fi,jg

ðf j0timþ f 0jtmiÞxijxmj:

Now our model can be linearized by replacing the objective
function with

min
X
iA I

X
jA I\fig

cij�ðf j0tjiþ f 0jtijÞþ
X

mA I\fi,jg

ðf j0timþ f 0jtmiÞ

0
@

1
Axij

þ
X
jA I

X
iA I

ðf j0tjiþ f 0jtijÞxjj

�
X
jA I

X
iA I\fjg

X
mA I\fjg:iom

ðf j0timþ f 0jtmiþ f j0tmiþ f 0jtimÞzimj

and adding the constraints (14) and (15).
We call the resulting model SpHMP-BP-1. Our second formula-

tion SpHMP-BP-2 is obtained by dropping the auxiliary variables
Tj’s and replacing constraints (10), (17), and (18) with constraints
X
jA I

ðdijþd0jÞxijþ
X
jA I

ðdmjþd0jÞxmj�
X

jA I\fi,mg

2d0jzimj�2d0ixmi�2d0mximrb

ð19Þ

Finally, we propose a model which imposes conflicts due to
path lengths using clique inequalities. Wagner [38] proposes a
similar formulation for the hub covering problem. For iA I, jA I,
and mA I\fi,jg, let Aijm be the set of nodes to which node m cannot
be assigned when node i is assigned to hub j. Algorithm 1
computes sets Aijm. Suppose that node i is assigned to hub j.
Then, if ia j, m cannot be assigned to node i. If dijþdmj4b, then
node m cannot be assigned to hub j together with node i. If
dijþdmjrb then we may still have a conflict as when i and m are
assigned to hub j, we need p�1 more nodes as hubs. Observe that
if node ka i,j,m is selected as a hub node, the length of the path
between k and i is equal to dijþd0jþd0k and the length of the path
between k and m is equal to dmjþd0jþd0k and both these
quantities should not exceed the bound b. Hence if
9fkA J\fi,j,mg : maxfdij,dmjgþd0jþd0krbg9rp�2, then nodes i

and m cannot be assigned to hub j at the same time.
Now consider a node la i,j. If dijþd0jþd0lþdml4b, then

assigning node m to hub l results in a path of length longer than
b. If dijþd0jþd0lþdmlrb but the cardinality of the set
fkA J\fi,j,m,lg : dijþd0jþd0krb and dmlþd0lþd0krbg is less than
p�2, then if m is assigned to hub l, then it is not possible to find
p�2 nodes to install hubs together with j and l. Hence assigning i

to j and m to l at the same time causes infeasibility if pZ3.

Algorithm 1. Computation of sets Aijm for i,j,mA I such that
ma i,j.

for all iA I do
for all jA I do

for all mA I\fi,jg do
Aijm’|



Table 1
Results for the star p-hub center problem SpHCP for the AP instances.

n p bmin SpHCP-1 SpHCP-2

gap (%) nds cpu gap (%) nds cpu

50 2 680 40.8 584 120 0.3 8 20,023

50 4 680 66.7 10,788 1423 0.3 7 10,878

50 6 680 68.3 20,721 977 0.3 28 20,162

50 8 680 68.3 4964 519 0.3 22 15,384
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if ia j then
Aijm’fig

if dijþdmj4b or 9fkA I\fi,j,mg :

maxfdij,dmjgþd0jþd0krbg9rp�2 then

Aijm’Aijm [ fjg

for all lA I\fi,jg do
if dijþd0jþd0lþdml4b or (pZ3 and

9fkA I\fi,j,m,lg : dijþd0jþd0krb and dmlþd0lþd0krbg9rp�3)

then
Aijm’Aijm [ flg

For iA I, jA I, and mA I\fi,jg such that 9Aijm9Z2 or 9Aijm9Z1 and
i¼ j, the clique inequality

xijþ
X

lAAijm

xmlr1 ð20Þ

should be satisfied by all feasible solutions. Moreover, any 0-1
vector x which satisfies clique inequalities (20) does not violate
the path length restrictions.

Let SpHMP-BP-3 be the formulation obtained from SpHMP-BP-2
by replacing constraints (19) with (20).

Before concluding this section, we give simple ideas of
preprocessing which can be applied to all three formulations for
SpHMP-BP. First we give a proposition, which can help to detect
infeasibility.

Proposition 2. If there exists a node jA I such that 9flA I\fjg :
d0jþd0lrbg9rp�2 then SpHMP-BP is infeasible.

Proof. Suppose that there exists a node jA I such that 9flA I\fjg :
d0jþd0lrbg9rp�2 and that the problem has a feasible solution.
Let node k be the hub to which node j is assigned to and J be the
set of hubs in this solution. Then djkþd0kþd0lrb for all lA J\fkg.
Hence there exist at least p�1 nodes different from j such that
djkþd0kþd0lrb. As the distances satisfy the triangle inequality,
d0jþd0lrdjkþd0kþd0l. This is in conflict with j being a node such
that 9flA I\fjg : d0jþd0lrbg9rp�2. &

If we cannot detect infeasibility, we can use the following
ideas to fix the values of some of the variables.

Proposition 3. Let iA I and jA I\fig. If dijþd0j4b or 9flA I\fi,jg :
dijþd0jþd0lrbg9rp�2, then all feasible solutions satisfy xij ¼ 0.

Proposition 4. Let i,mA I such that iom and jA I\fi,mg.
If dijþdmj4b or 9fkA I\fi,j,mg : maxfdij,dmjgþd0jþd0krbg9rp�2,
then all feasible solutions satisfy zimj ¼ 0.

The proofs are omitted as they are similar to the proof of
Proposition 2.

Algorithm 2 uses the results of the two propositions above to
fix the values of variables.

Algorithm 2. Variable fixing.

for all iA I do
for all jA I\fig do

if dijþd0j4b or 9flA I\fi,jg : dijþd0jþd0lrbg9rp�2 then

Fix xij ¼ 0

for all mA I\fjg : iom do

if dijþdmj4b or 9fkA I\fi,j,mg :

maxfdij,dmjgþd0jþd0krbg9rp�2 then

Fix zimj ¼ 0

In the next section, we provide a computational study where
50 10 680 68.3 12,653 509 0.3 37 11,316

we compare our three formulations and investigate the effect of
preprocessing.
4. Computational results

In this section, we report the outcomes of our computational
study. First, we use instances from the AP data set of Ernst and
Krishnamoorthy [13]. From the coordinates of the nodes provided
in the input data files, we compute distances dij as the Euclidean
distances divided by 100 and round to the closest integer. As the
rounding may introduce violation of the triangle inequalities, we
apply a correcting procedure to the distances. We fix n to 50 and
make p take the values 2, 4, 6, 8, and 10. We choose node 6 as the
central hub as its coordinates are close to the center.

We have five instances of SpHCP with different p values. We
compute bmin by solving our two formulations SpHCP-1 and
SpHCP-2.

For SpHMP-BP, we need additional data. We use the amounts
of traffic tim available in the data files. We take the unit routing
costs fij as equal to the distances dij. For each choice of p, we take
the limit on the path lengths b equal to bmin, d1:1� bmine,
d1:2� bmine, and d1:3� bmine. Clearly, bmin is the smallest value
of b such that problem SpHMP-BP is feasible. We have 20
instances of the SpHMP-BP problem.

We use the mixed integer programming (MIP) solver of CPLEX
11.0 to solve all the formulations. We use the default settings of
CPLEX. Our experiments are carried out on a PC with an Intel core
2 duo processor of 2.8 GHz and 2048 MB of RAM using a Linux
operating system.

In Tables 1 and 2, we report the results that we obtained by
solving the different formulations for the two problems, SpHCP

and SpHMP-BP. In these tables, gap, nds, and cpu contain the
percentage gap between the optimal value and the LP-relaxation
bound, the number of nodes in the branch-and-cut tree, and the
running time in seconds, respectively.

We can observe from Table 1 that the LP-relaxation bound
associated with formulation SpHCP-1 is very poor while
the bound associated with formulation SpHCP-2 is quite tight.
However, formulation SpHCP-1 can solve all the instances within
an average of 709 s but formulation SpHCP-2 needs more than 4 h
in average. This is due to the larger size of formulation SpHCP-2.
For example, with n¼50 and p¼2 and after the MIP presolve
phase, formulation SpHCP-1 has 2551 columns and 7401 rows
while formulation SpHCP-2 has 60,125 columns and 118,974
rows. Hence, the MILP formulation SpHCP-2 that is built as the
linearization of a quadratic formulation is very strong from the
LP-bound point of view but it has the drawback of adding a huge
number of columns and rows when compared to the initially
linear formulation SpHCP-1.

Problem SpHMP-BP is structurally different from SpHCP since
non-linearity appears also in the objective function. In both
formulations we consider, based on the x and T variables or based
on the x variables only, we had to further linearize by use of the z

variables. This leads to formulations with a big size. For SpHMP-BP

instances, we set a time limit of 1 h.
In Table 2, we report the results for SpHMP-BP. Here, for formula-

tion SpHMP-BP-1, column cpu reports the running time if the



Table 2
Results for the star p-hub median problem with bounded path lengths SpHMP-BP for the AP instances.

n p b opt SpHMP-BP-1 SpHMP-BP-2 SpHMP-BP-3 SpHMP-BP-3 and preproc

gap (%) nds cpu cpu- gap (%) nds cpu cpu- gap (%) nds cpu cpu- cliques cpu cpu- %fix x %fix z

50 2 680 1,215,221.8 25.0 110 12.4% 21.9% 15.8 0 1968 13.0% 0.0 0 329 237 120,050 344 339 6 13

50 2 748 997,393.3 8.9 196 2.9% 7.6% 8.4 0 1728 1.1% 0.0 0 609 615 120,035 136 136 3 8

50 2 816 945,884.5 4.0 39 953 1.0% 4.0 3 837 994 0.0 0 1032 1008 119,846 102 700 1 4

50 2 884 915,111.6 0.9 3 413 569 0.9 3 367 300 0.0 0 425 594 118,942 451 650 0 2

50 4 680 1,213,977.4 25.3 191 21.7% 24.8% 16.8 0 2906 16.2% 0.0 0 239 265 120,050 250 195 10 17

50 4 748 994,080.7 8.9 145 6.8% 8.4% 8.3 0 1324 6.4% 0.0 0 132 142 120,050 135 133 6 11

50 4 816 944,640.1 4.2 476 2.3% 3.3% 4.0 0 827 2004 0.0 0 622 736 119,883 108 676 3 6

50 4 884 911,799.0 0.8 13 422 511 0.7 0 409 428 0.0 0 434 429 118,954 444 439 1 3

50 6 680 1,214,804.8 25.4 48 20.8% 24.9% 16.9 0 0.3% 16.6% 0.0 0 139 119 120,050 119 146 11 19

50 6 748 994,080.7 8.9 246 5.9% 8.2% 8.3 0 1364 4.6% 0.0 0 124 125 120,050 121 114 6 12

50 6 816 945,876.2 4.3 476 2.5% 3.4% 4.2 17 1037 2.1% 0.0 0 644 587 119,914 108 728 3 7

50 6 884 911,799.0 0.8 41 505 627 0.7 0 389 386 0.0 0 387 381 118,986 995 407 1 3

50 8 680 1,220,719.8 25.7 98 22.3% 25.2% 17.3 0 1992 16.9% 0.0 0 111 111 120,050 113 103 14 23

50 8 748 994,080.7 8.8 67 7.0% 8.4% 8.3 142 2966 7.8% 0.0 0 120 119 120,050 118 113 8 14

50 8 816 949,764.1 4.7 476 2.8% 3.9% 4.5 11 1089 2.0% 0.1 3 309 247 119,989 301 241 5 9

50 8 884 912,244.9 0.8 63 664 682 0.7 0 361 372 0.0 0 271 322 119,122 506 418 2 4

50 10 680 1,231,092.1 26.1 214 21.2% 25.8% 17.8 14 3100 17.1% 0.0 0 120 156 120,050 151 123 15 24

50 10 748 994,080.7 8.6 195 5.8% 7.8% 8.2 25 1502 5.7% 0.0 0 127 127 120,050 125 133 9 14

50 10 816 957,072.2 5.1 1140 3.5% 4.4% 5.0 118 1676 4.0% 0.5 5 401 329 119,996 472 343 5 9

50 10 884 913,485.7 0.6 28 539 539 0.6 3 383 348 0.0 0 438 322 119,166 418 536 2 4

Table 3
Results for the star p-hub median problem with bounded path lengths SpHMP-BP for the randomly generated instances.

n p b opt SpHMP-BP-1 SpHMP-BP-2 SpHMP-BP-3 SpHMP-BP-3 and

preproc

lb gap (%) nds cpu lb gap (%) nds cpu lb gap (%) nds cpu cliques cpu %fix x %fix z

30 4 129 291,376 291,376.0 0.0 0 12.0 291,376.0 0.0 0 3 291,376.0 0.0 0 1 25,230 1 33 54

30 4 142 291,376 291,376.0 0.0 0 7.1 291,376.0 0.0 0 4 291,376.0 0.0 0 3 25,230 2 23 41

30 4 155 291,376 291,376.0 0.0 476 9.8 291,376.0 0.0 0 4 291,376.0 0.0 0 4 25,230 4 16 29

30 7 159 370,379 326,072.1 12.0 0 45.7 326,072.1 12.0 0 20 370,379.0 0.0 0 1 25,230 0 48 65

30 7 175 340,012 326,072.1 4.1 24 65.6 326,072.1 4.1 4 39 339,740.0 0.1 0 2 25,230 1 37 53

30 7 191 338,348 326,072.1 3.6 75 115.8 326,072.1 3.6 3 23 337,578.3 0.2 7 14 25,230 13 23 37

40 6 133 564,850 557,350.0 1.3 491 1844.3 561,121.6 0.7 5 110 564,850.0 0.0 0 6 60,840 4 31 52

40 6 146 559,897 557,042.7 0.5 20 296.0 557,675.6 0.4 5 113 559,897.0 0.0 0 11 60,840 9 19 37

40 6 160 556,985 556,985.0 0.0 0 163.4 556,985.0 0.0 0 82 556,985.0 0.0 0 16 60,781 14 10 22

40 9 136 538,428 534,891.3 0.7 89 366.3 535,682.2 0.5 0 78 538,269.7 0.0 0 13 60,840 11 29 45

40 9 150 538,428 534,764.5 0.7 375 942.2 534,969.9 0.6 17 157 537,023.6 0.3 7 73 60,840 73 19 32

40 9 163 534,692 534,692.0 0.0 0 143.4 534,692.0 0.0 0 67 534,692.0 0.0 0 20 60,816 20 12 22

50 8 126 775,232 749,829.8 3.3 265 5.75% 764,794.0 1.3 13 972 775,232.0 0.0 0 23 120,050 16 20 35

50 8 138 749,727 749,727.0 0.0 0 712.54 749,727.0 0.0 0 578 749,727.0 0.0 0 38 120,050 32 12 22

50 8 152 749,727 749,727.0 0.0 0 624.89 749,727.0 0.0 0 611 749,727.0 0.0 0 69 119,928 66 7 14

50 20 130 866,108 855,366.5 1.2 0 1399.57 856,154.8 1.1 6 1489 866,108.0 0.0 0 14 120,050 5 48 64

50 20 143 855,023 855,023.0 0.0 0 1070.49 855,023.0 0.0 0 971 855,023.0 0.0 0 20 120,050 12 36 50

50 20 157 855,023 855,023.0 0.0 0 1149.5 855,023.0 0.0 0 976 855,023.0 0.0 0 47 120,050 38 24 36

60 10 141 1,294,424 – – – – – – – – 1,294,424.0 0.0 0 53 208,860 29 38 54

60 10 155 1,289,365 – – – – – – – – 1,288,538.0 0.1 0 263 208,860 242 26 39

60 10 170 1,289,365 – – – – – – – – 1,288,538.0 0.1 0 842 208,860 671 17 27

60 25 130 1,154,062 1,110,903.9 3.7 – – 1,116,385.0 3.3 24 – 1,154,062.0 0.0 0 98 208,860 78 30 43

60 25 143 1,121,533 1,110,824.0 1.0 30 0.89% 1,110,876.8 1.0 85 0.88% 1,121,461.0 0.0 0 218 208,860 203 21 31

60 25 157 1,110,988 1,110,819.4 0.0 2 2894.9 1,110,819.4 0.0 2 3089 1,110,819.4 0.0 0 358 208,836 345 13 20

70 8 135 1,829,673 – – – – – – – – 1,829,673.0 0.0 0 99 333,270 48 41 63

70 8 148 1,800,788 – – – – – – – – 1,800,788.0 0.0 0 131 333,270 99 29 50

70 8 163 1,800,788 – – – – – – – – 1,800,788.0 0.0 0 224 333,263 245 19 34

70 20 136 1,651,304 – – – – – – – – 1,650,919.0 0.0 0 91 333,270 47 36 51

70 20 150 1,646,541 – – – – – – – – 1,645,892.5 0.0 0 706 333,270 673 25 37

70 20 164 1,646,541 – – – – – – – – 1,644,963.7 0.0 7 1529 333,270 1439 16 26
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branch-and-cut algorithm can prove optimality within 1 h. If the
branch-and-cut is stopped by the time limit, a percentage that
represents the relative gap between the best obtained lower bound
and the optimal value opt is reported in this column. To see the effect
of Cplex cuts on the solution times, we also solved the same instances
by disabling these cuts. We report the solution times in columns cpu-.



H. Yaman, S. Elloumi / Computers & Operations Research 39 (2012) 2725–2732 2731
With default Cplex settings, formulation SpHMP-BP-1 fails in
solving 14 instances over 20 within the time limit. However,
formulation SpHMP-BP-2 succeeds in solving 19 instances over
the 20 within the time limit and with an average time of 1311 s.
We can observe that the average gap associated with SpHMP-BP-2
is of about 7.5% and is not much better than the 10% average gap
associated with SpHMP-BP-1. However the number of nodes is
significantly smaller with SpHMP-BP-2. This indicates that con-
straints (19) are not very strong from the LP-relaxation point of
view, but they can drastically help the branch-and-cut process.
In our implementation of SpHMP-BP-3, we put all the cliques
computed by Algorithm 1. The number of cliques is given in
column cliques. We can observe that the obtained LP-relaxation
bound is then very strong since it is equal to the optimal solution
value for 18 instances over 20. The average solution time for
formulation SpHMP-BP-3 is 350 s. Finally, we provide the results
of the variable fixing procedure in Algorithm 2, applied to SpHMP-

BP-3. The LP-relaxation bound is not reported in Table 2 because
we observed that it is always equal to the LP-relaxation bound of
SpHMP-BP-3. However, a significant percentage of x and z vari-
ables are fixed and the average solution time decreases to 275 s.
We see that disabling the Cplex cuts hurts significantly the
performance of the formulations SpHMP-BP-1 and SpHMP-BP-2,
whereas this does not have a big effect on the performance of the
formulation SpHMP-BP-3.

Finally, we use some randomly generated instances to com-
pare the performances of formulations for SpHMP-BP. These
instances are generated as follows. The nodes are generated in
the plane with coordinates uniformly distributed in [1, 10,000].
The amount of traffic tij is generated uniformly in the interval
[0,9]. The distance dij is computed as the euclidean distance
divided by 100 and rounded. Then the distances are corrected
to make sure that they satisfy the triangle inequality. The costs fij

are set equal to the distances dij. In this experiment, we let Cplex
generate its cuts. For the instances other than the one with 70
nodes and 20 hubs, we computed optimally the bmin values. For
the instance, we took bmin equal to the smallest value b for which
we could compute a feasible solution. We set the first b value
equal to bmin and gradually increase.

The results are given in Table 3. The optimal values of the LP
relaxations are reported in column ‘‘lb’’. For some instances, the
solver was not able to optimally solve the LP relaxations, and for
some others, no integer solution was found in 1 h. In these cases,
we cannot report the gap. Also, we do not report the solution time
for the instances for which the solver ran out of memory. We
observe here that even though the duality gaps are smaller
compared to the ones of the AP instances, the first two formula-
tions SpHMP-BP-1 and SpHMP-BP-2 perform poorly with large
instances. On the contrary, the third formulation SpHMP-BP-3 is
able to solve all instances to optimality in less than half an hour.
The largest gap with SpHMP-BP-3 is 0.3%. Even though larger
percentages of variables are fixed with the randomly generated
data, the effect of preprocessing on the solution time is not
different compared to the AP data.
5. Conclusion

In this paper, we introduced two related star p-hub location
problems, namely the Star p-hub Center Problem and the Star
p-hub Median Problem with Bounded Path Lengths. We proposed
two mixed integer programming formulations for the Star p-hub
Center Problem and showed that, even though its LP-relaxation
bound is very poor, the formulation with a smaller size is more
efficient in solving our instances. For the Star p-hub Median
Problem with Bounded Lengths, we proposed three integer
programming formulations and then we strengthened the third
one by the use of preprocessing. The third formulation uses
specific clique inequalities and has much better performance
than the first two ones. When strengthened by preprocessing, it
enabled us to solve the considered instances within at most half
an hour.
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