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Boundary control of a rotating shear
beam with observer feedback

Mustafa Do ~gan1 and Ömer Morgül2

Abstract

We consider a flexible structure modeled as a shear beam which is free to rotate on the horizontal plane. We first model

the system by using partial differential equations and we propose boundary feedback laws to achieve set-point regulation

of the rotation angle as well as to suppress elastic vibrations. The main advantage of the proposed design, which consists

of a decoupling controller together with an observer, is that it is easy to implement. We utilize a coordinate transfor-

mation based on an invertible integral transformation by using Volterra form and backstepping techniques. We show that

with the proposed controller, the control objectives are satisfied.
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1. Introduction

The progress in the construction of various mechanical
structures, e.g. in robotics and space structures on the
macroscopic scale, as well as micro-machines, atomic
force microscopy, etc. on the microscopic scale, necessi-
tates the use of lightweight materials for various practi-
cal reasons (Do~gan and Morgül, 2010). Such materials
usually exhibit flexural vibrations, and to model such
structures one has to use Partial Differential Equations
(PDEs). In practice, when designing controllers for such
systems, usually these PDE models are reduced to
Ordinary Differential Equations (ODEs) using various
methods such as model reduction, finite element analy-
sis, discretization, etc. (Do~gan and Istefanopulos, 2007).
However, such ODE models have some drawbacks and
usually controllers designed using these ODE models
limit the performance of such systems (Do~gan, 2006).

One of the most frequently encountered of these flex-
ible mechanical structures is the flexible beam; these are
typically used to model flexible links of robotic arms,
tips of atomic force microscopes, etc. Among the vari-
ous advantages of using flexible beams, the main ones
are their light weight and low energy consumption.
There are various PDE models for flexible beams
such as Euler–Bernoulli, Rayleigh, Timoshenko beam
equations. A comparison of these beam models can be
found in Baruh (1999, Section 11.2). Among these, the
most advanced and comprehensive one is the
Timoshenko beam model (Morgül, 1992; Baruh,

1999). This model, under the ‘‘slender beam’’ assump-
tion, can alternatively be represented as a shear beam
(Baruh, 1999; Meirovitch, 2001).

Various methods have been proposed for control of
flexible links in the literature (Kim and Renardy, 1987;
Morgül, 1991, 1992; Luo, 1993; Luo et al., 1999; Guo,
2002; Wang and Gao, 2003). Recently, in Smyshlyaev
and Krstic (2004, 2005) and Krstic et al. (2006), a
structural approach to PDEs with backstepping tech-
niques was proposed.

In this paper, we consider a shear beam clamped to a
rigid body at one end and free at the other end. The
whole configuration is free to rotate on the horizontal
plane. We first give the equations of motion for such
system. We will use a PDE model for the flexible beam
without resorting to reducing the resulting equations to
an ODE model. Our control objective is to rotate the
flexible beam to a desired angle and suppress the flexural
vibrations. We use a technique first introduced in
Smyshlyaev and Krstic (2004, 2005) and Krstic et al.
(2006) to transform the system equations to another
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set of equations which has well-known stability proper-
ties. This transformation is done by using an invertible
integral operator (Volterra type) with a smooth kernel.
We give the analytical expression of such a kernel. In the
process of obtaining an appropriate kernel function, we
also obtain an appropriate boundary control law to sta-
bilize the closed-loop system. We also present some sim-
ulation results which confirm the stability of the closed-
loop system. Finally, we give some concluding remarks.

2. Analytical model

We consider a flexible structure consisting of a flexible
(shear) beam which is clamped to a rigid body at one
end, free at the other, as shown in Figure 1. Referring
to Figure 1, the various symbols represent the follow-
ing: Xo, Yo: global inertial system of coordinates; X1,
Y1: body-fixed system of coordinates attached to unde-
formed beam; �1: angular displacement of beam; u: flex-
ural displacement of beam.

In this section, starting with the Timoshenko beam
model, the partial differential equations with boundary
conditions are derived using the Volterra state transfor-
mation (Porter, 1990; Krstic et al., 2006). The link is
modeled in clamped-free configuration, since natural
modes of the separated clamped-free links agree very
well with actual ones compared to pinned-free configu-
ration (Hastings and Book, 1987). Assuming the
manipulator rotates in the horizontal plane, in the
absence of gravity the potential energy depends only
on the flexural deflections.

The equations of motion for a Timoshenko beam
can be given, with the notation in Table 1, as follows:

� €u ¼ b uxx � �x � � x €�1, ð1Þ

�� €� ¼ � �xx � �þ b ux, ð2Þ

where a dot represents time derivative, a subscript as in
ux denotes the spatial derivative with respect to x, for
0� x�L and t� 0. Here, EI denotes bending stiffness,
b is defined as b¼EI/�, EA denotes axial stiffness, � is
defined as �¼ �/EA, and the shear coefficient, �, is a
linear function of EI/GA (Sievers et al., 1988; Reddy,
1993). Since the ratio between the length of the beam
and its thickness is sufficiently large, we can take �¼ 0
approximately. Then the slender beam can easily be
modeled as a shear beam (Reddy, 1993; Meirovitch,
2001). Thus, the governing equations for a rotating
shear beam can be given below:

� €u ¼ b uxx � �x � � x €�1, ð3Þ

0 ¼ � �xx � �þ b ux: ð4Þ

By differentiating (3) with respect to x and adding to
(4), we obtain:

� €ux � b uxxx þ �xx þ � €�1 þ � �xx � �þ b ux ¼ 0: ð5Þ

Now if we differentiate (5) with respect to x and sub-
tract 1/� times (3) then we have

� €uxx � b uxxxx þ ð1þ �Þ�xxx þ b uxx,

� �x � €uþ
b

�
uxx �

1

�
�x � x €�1 ¼ 0: ð6Þ

Finally, by calculation of axxx from (4), we obtain the
following shear beam model as a single second-order-
in-time, fourth-order-in-space PDE:

€u� � €uxx þ b uxxxx ¼ �x €�1: ð7Þ

Figure 1. Beam configuration.

Table 1. Parameters for PDE model

Parameter Description

E Young’s Modulus

G Shear Modulus

A Cross-sectional area

I Cross-sectional area moment

Ih Inertia of the hub

L Length of the beam

x Coordinate along the axial center

u(x, t) Transverse movement

a(x, t) Angle of distortion due to shear

_uðx, tÞ Time rate of transverse movement

ux(x, t) Axial rate of transverse movement

� Linear density

�1 Input torque at base motor

�1 Angular position of the beam due to rotation
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The usual clamped-free boundary conditions for the
shear beam can be given as follows (Meirovitch, 1967):

uð0, tÞ ¼ 0, uxð0, tÞ ¼ �ð0, tÞ, ð8Þ

uxxðL, tÞ ¼ 0, uxxxðL, tÞ ¼ 0: ð9Þ

Note that by using (4) we can obtain a(x, t) in terms of
u(x, t). This could be done in various ways, e.g. by using
standard transformation techniques (Krstic et al.,
2006). After straightforward calculations, we obtain
the following:

�xðxÞ ¼ �a
2 c

Z x

0

sinhðcx� cyÞuð yÞdy� a2 uðxÞ, ð10Þ

where a2¼ b/� and c2¼ 1/�. Note that for notational
simplicity, from now on we will use the notation a(x)
and u(x) instead of a(x, t), u(x, t). By substituting (10)
into (3), the governing equations (3) and (4) can be sim-
plified as a single equation given below. For the rigid
body rotation, by applying conservation of momentum
at the base, we obtain the open-loop system as follows:

� €u ¼ b uxx þ a2 uþ a2 c

Z x

0

sinhðcx� cyÞ uð yÞdy

� �x €�1, ð11Þ

Ih €�1 � EI uxxð0, tÞ ¼ �1: ð12Þ

Note that the last equation is frequently used in the
literature; see Luo (1993), or Equation (4.10) in Luo
et al. (1999, Section 4.1).

Remark 2.1 It is true that flexible beams naturally have
various types of damping, e.g. Kelvin–Voigt, viscous, etc.
However, from a mathematical point of view, establishing
stability of the controlled system without using a damping
term is a more challenging and interesting problem.
Intuitively, if one includes such damping terms, then a
similar analysis could be repeated. The existence of
such an internal damping term will naturally enhance
the stability of the closed-loop system.

3. Controller design

The controller for the rigid part can be designed to
provide exponential decaying of derivatives and to
achieve the desired set point such that

�1 ¼ �EI uxxð0, tÞ � k1 _�1 � k2 ð�1 � �dÞ, ð13Þ

where k1, k2 are positive constants and �d is the con-
stant desired position. To simplify the flexible

equation (11), we first define a new state variable w(�)
by applying an invertible Volterra state transformation
with smooth kernel k(x, y):

wðxÞ ¼ uðxÞ �

Z x

0

kðx, yÞ uð yÞdy: ð14Þ

For the rationale and methodology behind using such a
transformation, see Porter (1990); Krstic et al. (2006).
The kernel k(x, y) should be chosen so that the resulting
equations in terms of the transformed variable w(x)
have nice stability properties. Such a resulting system
can be given as follows:

� €w ¼ b ðwxx � e wÞ, ð15Þ

wxðLÞ ¼ �co _wðLÞ, ð16Þ

wxð0Þ ¼ c1 ð�=bÞ €�1, ð17Þ

where e, co, c1 are positive controller gains. Note that
the boundary condition (17) is of crucial importance to
obtain Equations (10) and (11); see also Remark 3.2.
Hence, the open-loop system given by (11) and (12) can
be transformed into the closed-loop system given by
(15)–(17) with the following boundary control law:

uxðLÞ ¼

Z L

0

kxðL, yÞuð yÞdyþ kðL,LÞuðLÞ

� co _uðLÞ þ co

Z L

0

kðL, yÞ _uð yÞdy: ð18Þ

Obviously we need to describe the kernel k(x, y) or its
properties at this stage. In addition to Equations (11)–
(17), the following equations are also required to
obtain the control law (18) and some conditions for
the kernel:

wxðxÞ ¼ uxðxÞ �

Z x

0

kxðx, yÞuð yÞdy� uðxÞkðx,xÞ ð19Þ

wxxðxÞ ¼ uxxðxÞ � uðxÞ½kxðx, xÞ þ kyðx, xÞ�

� uxðxÞ kðx, xÞ � uðxÞ kxðx, xÞ

�

Z x

0

kxxðx, yÞ uð yÞdy ð20Þ

� €wðxÞ ¼ � €uðxÞ �

Z x

0

kðx, yÞ � €uð yÞdy ð21Þ

By following the methodology introduced in Krstic
et al. (2006), the term � €uð�Þ should be substituted in
(21) by using (11). Then, the � €wðxÞ and wxx(x) obtained
from (20) can be replaced in (15). After some
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calculations, it can be shown that the required kernel
k(x, y) should satisfy the nonhomogeneous PDE:

kyy � kxx þ f k ¼ ��1:5 sinhðcx� cyÞ ð22Þ

kðx, xÞ ¼ �fx=2 ð23Þ

kð0, 0Þ ¼ 0 ð24Þ

kðx, 0Þ ¼ x�

Z x

0

y kðx, yÞ dy ð25Þ

kyðx, 0Þ ¼ 0 ð26Þ

where f¼ a2/bþ e. The analytical solution of (22)–(26)
for the kernel function k(x, y) can be obtained by using
standard methods (Debnath, 1997). After some lengthy
calculations, we obtain the following explicit form of
the kernel k(x, y):

kðx, yÞ ¼ 0:5½hð0Þ þ hðLÞ� þ 0:5

Z L

0

J0ðzÞ gð�Þd�

� 0:5yf

Z L

0

ðJ1ðzÞ=zÞ hð�Þd� �m sinhðcx� cyÞ, ð27Þ

where m¼���1.5/f, z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð y2 � ðx� �Þ2Þ f

q
, J0(�) and

J1(�) are Bessel functions, h(x)¼ (m�0.81) sinh(cx) þ
0.62521x, and g(x)¼�cm cosh(cx). Note that the func-
tions h(�) and g(�) are generated by boundary conditions
of the kernel. For an alternate expression of the kernel,
see Appendix A.

Note that the stability of the closed-loop system can
be analyzed with Lyapunov stability theory by using
the following Lyapunov function candidate (Morgül,
1992):

V¼ d1ðkwxk
2þ ekwk2Þ þ �k _wk2þ d2�5w, _w4 , ð28Þ

where d1, d2 are appropriate positive constants,
kwxk

2 ¼
R L
0 w2

x dx is the 2-norm and< �>denotes the
usual inner product in L2(0, L) space. Since the proof
of the asymptotic stability of the closed-loop system
requires some rigorous definitions and some lengthy
calculations, the main part of the proof is given in
Appendix B to improve the readability of the paper.

Remark 3.1 Note that to implement the control law given
by (18), we need the measurements of u(x, t), u(L, t) and
_uðL, tÞ. The last two can be measured easily. However, it
is not practical to measure u(x, t), but it can be estimated
by using an appropriate observer. Following the ideas
given in Krstic et al. (2006), such an observer can be
designed with the help of the kernel k(x, y) given above
as explained in the next section.

Remark 3.2 The boundary condition (17) can easily be
implemented as the secondary controller due to actuation
and measurement at the clamped end. Furthermore, this
secondary control law is indispensable in simplifying the
open-loop system and in obtaining the analytic kernel
solution. This is achieved by decoupling the rigid and
flexible coordinates, see (8) and (17), which results in
the exponential decay of the solutions of the closed-loop
system. The whole structure of the proposed design and
its implementation is quite simple and straightforward.

4. Observer design

Similar to the controller design, to define the observer
error dynamics we need an auxiliary dynamics with
well-known stability properties. Such a system can be
given as follows:

� €~w ¼ b ð ~wxx � e2 ~wÞ, ð29Þ

~wxðLÞ ¼ �c2 _~wðLÞ, ð30Þ

~wxð0Þ ¼ 0, ð31Þ

where e2, c2 are positive observer gains and observer
error is assumed to be zero at the clamped end. After
applying the Volterra state transformation the observer
error, ũ(x), can be expressed as follows:

~uðxÞ ¼ ~wðxÞ �

Z x

0

pðx, yÞ ~wð yÞdy: ð32Þ

Also, observer error can be defined as ũ(x)¼ u(x)� û(x)
here, and the observer kernel, p(x, y) is the dual version
of the controller kernel k(x, y) with appropriate bound-
ary conditions. Hence we are ready to introduce obser-
ver dynamics driven by ~wðxÞ such that

� €̂u ¼ b ûxx þ a2 ûþ a2 c

Z x

0

sinhðcx� cyÞ ûð yÞdy

� � x €�1 þ pyðx,LÞ½uðLÞ � ûðLÞ�

� c2pðx,LÞ½_uðLÞ � _̂uðLÞ�: ð33Þ

Note that py(x, L), p(x, L) are dual counterparts to the
controller gains kx(L, y), k(L, y). The observer dynam-
ics comply with usual observer setup which can be
explained as copy of the plant plus error feedback.
After some lengthy calculations using the integral
transformation (32) and auxiliary dynamics (29), we
get the following equations:

pxx � pyy þ ~f p ¼ ��1:5 sinhðcx� cyÞ, ð34Þ

a2 c

Z x

0

sinhðcx� cyÞ

Z y

0

pð y, sÞ ~wðsÞ ds dy

¼ c2 pðx,LÞ_~uðLÞ � pyðx,LÞ ~uðLÞ, ð35Þ
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where ~f ¼ a2=bþ e2. The analytical solution of (34) for
the observer kernel function p(x, y) can be obtained
easily by the duality of Equations (22)–(34). Finally,
Equation (35) will help us to construct the observer
dynamics with the auxiliary one, ~wðxÞ, in lieu of ũ(x).
Besides, the new control law based on the observer can
be given below:

uxðLÞ ¼

Z L

0

kxðL, yÞûð yÞdyþ kðL,LÞuðLÞ

� co _uðLÞ þ co

Z L

0

kðL, yÞ _̂uð yÞdy: ð36Þ

5. Simulation results

For the simulations, we will use the set of parameters
shown in Table 2, which are taken from Do~gan (2006).

The proposed control scheme was tested with a sim-
ulation program implemented in MATLAB. The PDEs
were discretized in the space domain by the finite
difference method to obtain ODEs at each of the
nodes. Then, the ODEs were solved numerically.
Instead of dealing with the complexity of the fourth-
order derivative approximation, the second-order
derivative approximation has been used by virtue of a
coordinate transformation. Those states are more
meaningful in a real problem as well since they corre-
spond to physical variables such as deflections, velocity
and bending moments. However, the number of ODEs
to solve and the computation time are increased in
return for the robust stability of the numeric scheme.
The explicit finite difference scheme that requires very

small time steps and is easy to implement efficiently is
adapted from Abhyankar et al. (1993). Chaotic vibra-
tions of a modified Euler–Bernoulli beam, that are dif-
ficult to catch, have been solved successfully by the
same numeric scheme in Abhyankar et al. (1993). On
the other hand, robust numerical stability is achieved
by making the ratio �t / �x2� 0.5 as low as possible.
The parameters for the system (11)–(12) are listed in
Table 2. The simulation results are presented in
Figures 2–7. Note that Figure 4 represents the bending
strain of the beam near the free end point x¼L.
Decoupling between the rigid coordinates and flexible
ones is achieved by control laws, and is observed during
simulations. For �1 and _�1, see Figures 5 and 6; the
converging properties (two exponential decaying
modes for the derivatives) can be adjusted

Table 2. Parameters of the beam

Parameter Value

Length of the beam L¼ 0.6 m

Time step �t¼ 1e�4 s

Spatial step �x¼ L/30 m

Young’s Modulus E¼ 70 GPa

Density 2742 kgm�3

Thickness of the beam t1¼ 0.003175 m

Height of the beam bo¼ 0.0654 m

Shear coefficient �¼ 1.6801

Hub inertia Ih¼ 0.0055 kgm2

�d (desired) p/3 rad

Controller gains co¼ 59

k1¼ Ih � 600

k2¼ Ih � 800

c1¼ 1, e¼ 0.9

Observer gains c2¼ 82 and e2¼ 0.3
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Figure 2. Flexural velocity at the end of the beam.
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Figure 3. Deflection at the end of the beam.
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independently with k1, k2. Therefore, €�1 can be used at
boundary condition (17) by exponential decaying time
history, and also to simplify the closed-loop system.
Observer error converged to a reasonable small value
which is physically acceptable as well in Figure 8. Note
that the observer error is expected to converge to zero,
and the small value that we obtained in our simulation
is in our opinion due to some numerical errors resulting
from our discretization scheme. Fast convergence to
zero for observer error rate is quite satisfactory in
Figure 9. Finally, smooth time histories of all variables
of interest without overshoot show the effectiveness of
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Figure 7. Control torque.

0 1 2 3 4 5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

U
xx

 [1
/m

]

time [sec]

Figure 4. Bending strain of the beam.
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the controller performance with relatively low control
energy.

6. Conclusions

In this work, a complex beam model is simplified,
becoming easy to analyze and to control, and no damp-
ing term is used in the system model. We consider the
set-point control of a rotating shear beam. We assume
that the shear beam is free to rotate on the horizontal
plane. In this research, the system equations are first
transformed into another set of equations which has
well-known stability properties by using an invertible
Volterra state transformation. We also obtain the
kernel function of such a transformation analytically
by virtue of the proposed design. This process is also
very efficient in improving the observer dynamics that
will give the required boundary control laws. Our sim-
ulation results show that the proposed control scheme
is effective in both achieving correct orientation and in
suppression of flexural vibrations.
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Stabilization of Infinite Dimensional Systems with

Applications. London: Springer-Verlag.
Meirovitch L (1967) Analytical Methods in Vibrations.

London: MacMillan.
Meirovitch L (2001) Fundamentals of Vibrations. New York:

McGraw-Hill.
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Appendix A

Analytical solution of kernel

Note that the kernel expression given by (27) is
obtained by changing variables to form a homogeneous
hyperbolic kernel PDE in lieu of (22), with appropriate
boundary conditions, as follows:

rðx, yÞ ¼ kðx, yÞ þm sinhðcx� cyÞ ð37Þ

ryy � rxx þ f r ¼ 0 ð38Þ

rðx, xÞ ¼ �fx=2 ð39Þ

rð0, 0Þ ¼ 0 ð40Þ

rðx, 0Þ ¼ kðx, 0Þ þm sinhðcxÞ ð41Þ

ryðx, 0Þ ¼ �c �m coshðcxÞ ð42Þ

where m¼���1.5/f, and the terms produced by the
second order spatial derivatives canceled each other.
By performing integrals in (27) that contains Bessel
functions J0(�) and J1(�), and after some lengthy calcu-
lations, we obtain the following explicit form for the
kernel k(x, y):

kðx, yÞ ¼ 0:5½hð0Þ þ hðLÞ� þ ðc:m=4ÞðsinhðcxÞ

þ coshðcxÞÞ �
1ffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ f
p expð�y

ffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ f

p
Þ

þ
1

4
ðsinhðcxÞ þ coshðcxÞÞ � ðm� 0:81039Þ

� ½expð�y
ffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ f

p
Þ � expð�cyÞ�

� 0:62521 x
ð1� cosð y

ffiffi
f

p
ÞÞ

2ðm� 0:81039Þ
þ

0:62521 fy

2ðm� 0:81039Þ

� ½1� J0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð y2 � x2Þ f

p
Þ� �m sinhðcx� cyÞ:

ð43Þ

Appendix B

Proof of asymptotic stability

After applying the control laws to the system (11)–(12),
and after some lengthy but straightforward calcula-
tions, the time derivative of the Lyapunov function
(28) is obtained as follows:

_V ¼ �2bco _w2ðLÞ þ d2�k _wk2 þ bd2 �co _wðLÞwðLÞ½

�kwxk
2 � ekwk2

�
: ð44Þ

Note that Friedrichs’ inequality (k _wk2 � c1
R L
0

_w2
x dxþ

c2 _w2ðLÞ) can be used to simplify the above equation
with a suitable choice of c2 and d2. After this, we obtain

_V � �c3 _w2ðLÞ � c4

Z L

0

_w _wxx dx� bd2kwxk
2

� bd2ekwk
2, ð45Þ

where the integral term, c4 5 _w, _wxx 4 is obtained by
applying integration by parts to the term c1

R L
0

_w2
x dx.

This inner product in L2(0, L) space, 5 _w, _wxx 4 , can
be rewritten by using equation (15) such that

5 _w, _wxx 4 ¼
1

b
5 _w, �w€_ 4 þ ek _wk2: ð46Þ

Note that the inner product can be bounded by
Cauchy–Schwarz inequality:

j5 _w, �w€_ 4 j � k _wkk�w€_k,

� k _wkk�w€_k � 5 _w, �w€_ 4 � k _wkk�w€_k,

5 _w, �w€_ 4 � �k _wkk�w€_k:

After applying the time derivative and the triangle
inequality to Equation (21), we get

k�w€_k � k� u€_k þ k

Z x

0

kðx, yÞ � u€_ ð yÞdyk:

Note that the kernel function is bounded in its
domain—see Appendix A. By using the inequality in
Porter (1990, Section 3.4), the following inequalities
can be obtained for some positive constants K3, K4> 0:

k�w€_k � ð1þ K3Þk� u€_k, ð47Þ

5 _w, �w€_ 4 � �K4k _wkk� u€_k: ð48Þ

We can use Equation (3) to get the following result:

5 _w, �w€_ 4 � �K4k _wkkb _uxx � _�x � �x �€_ 1k: ð49Þ

Note that _�x depends on k _uk terms by Equation (10),
and that the last term in the above inequality will decay
exponentially due to decoupling. If � times Equation (7)
is subtracted from Equation (3), then we get

� b uxxxx � �
2 €uxx þ buxx ¼ �x:

This equation can easily be transformed into the well-
known Klein–Gordon equation by replacing uxx with y
(Debnath, 1997). Besides, the right-hand side, namely
ax, will generate k _uk terms as explained beforehand.
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Thus it is proven that the _uxx term also depends on k _uk
terms for inequality (49). Finally, we have

5 _w, �w€_ 4 � �K5k _wkk _uk, ð50Þ

for some positive constant K5> 0. It can be shown with
the same rationale as for inequality (47) that

k _wk � ð1� K3Þk _uk, ð51Þ

where K3< 1 can be set by scaling the kernel function.
After multiplying both sides by k _wk, we get

5 _w, �w€_ 4 � �K6k _wk2, ð52Þ

where K6> 0 is a positive constant. Equation (46) can
be rewritten such that

5 _w, _wxx 4 � �
K6

b
þ e

� �
k _wk2, ð53Þ

where b is a structural parameter and e is a controller
parameter. By choosing the controller parameter e
as e4 K6

b , we obtain 5 _w, _wxx4 �	k _wk2, where 	¼
e�K6

b 40. By using the above inequalities and (45),
we obtain:

_V��c3 _w2ðLÞ�c7k _wk2�bd2kwxk
2�bd2ekwk

2, ð54Þ

_V � �KV, ð55Þ

where K> 0 is a positive constant. The asymptotic sta-
bility now follows from standard Lyapunov arguments.
In fact, the decay is exponential.
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