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Abstract
The aim of this study is to develop an effective growth factor releasing scaffold-microsphere system for
promoting periodontal tissue engineering. Bone morphogenetic protein-6 (BMP-6)-loaded alginate micro-
spheres in narrow size distribution were produced by optimising electrospraying conditions. The addition of
these microspheres to chitosan gels produced a novel scaffold in which not only the pore sizes and inter-
connectivity were preserved, but also a controlled release vehicle was generated. Loading capacity was
adjusted as 50 ng or 100 ng BMP-6 for each scaffold and the controlled release behaviour of BMP-6 from
chitosan scaffolds was observed during seven days. Cell culture studies were carried out with rat mesenchymal
stem cells derived from bone marrow in three groups; chitosan scaffolds, chitosan scaffolds containing BMP-6-
loaded alginate microspheres and chitosan scaffolds with free BMP-6 in culture medium. Results showed that
controlled delivery of BMP-6 from alginate microspheres has a significant effect on osteogenic differentiation.

Keywords: periodontal tissue engineering, BMP-6, chitosan scaffold, alginate microspheres, mesenchymal
stem cells

Introduction

Periodontitis is a chronic inflammatory disease that results

in the destruction of periodontium layer, which is a very

important component of supporting tissues of the teeth

(Renvert and Persson, 2004; Izumi et al., 2011). Moreover,

it is also related with different systemic diseases such as

respiratory system diseases, diabetes, osteoporoses and

heart vessel diseases (Amar and Han, 2003).

Conventional periodontal treatment is generally insuffi-

cient to regenerate the damaged tissues because of the

complex structure of periodontitis layer. To handle this

problem, a new approach, tissue engineering, is come up

with to facilitate predictable periodontal regeneration in

the last decade. However, the success of regenerating

desired tissue requires appropriate selection of biocompat-

ible scaffold as well as biological mediators like growth

factors to coordinate cellular activities.

For periodontal regeneration, various growth factors can

be used, e.g. bone morphogenetic proteins (BMPs),

transforming growth factor beta, fibroblast growth factor,

insulin like growth factor and platelet derived growth factor

(Kaigler et al., 2006; Nakahara, 2006; Akman et al., 2010a).

Among these, due to the periodontal differentiation ability,

BMP group is preferred more than others. In literature,

especially BMP-2, �4, �7 and �12 have been studied for

both bone tissue and periodontal hard tissue regeneration

(Nakashima et al., 2003). However, there are few studies

about BMP-6 and its periodontal differentiation ability.

One of these studies indicates the enhancement capacity

of BMP-6 for the periodontal bone tissue formation (Huang

et al., 2005). The other reports that BMP-6 is an appropriate

biosignal for periodontal applications (Lee et al., 2010).

Friedman and his colleagues reported that BMP-6 has

more potential on the regulation of mesenchymal stem

cells compared with BMP-2, BMP-4 and BMP-7

(Friedman et al., 2006). In another study, Akman et al.

(2010b) reported that sustained release of the BMP-6

increases the osteogenic differentiation. All these results

suggested that the delivery of BMP-6 increases the effect
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Address for correspondence: Dr. M. Gümüşderelioğlu, Department of Bioengineering, Hacettepe University; Department of Chemical Engineering,
Hacettepe University, 06800 Beytepe, Ankara, Turkey. Tel: 90-312-2977447. Fax: 90-312-2992124. E-mail: menemse@hacettepe.edu.tr

(Received 2 Jan 2012; accepted 9 Apr 2012)
http://www.informahealthcare.com/mnc

770

(Received 2 Jan 2012; accepted 9 Apr 2012)
http://www.informahealthcare.com/mnc

770

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
0:

41
 0

4 
O

ct
ob

er
 2

01
7 



of osteogenic regeneration and the controlled delivery of

BMP-6 is required for the success of the desired

applications.

Nowadays, micro- or nano-size particles have become

the centre of interest for the delivery of various proteins or

drugs (Amidi et al., 2010; Moebus et al., 2012). To date, a

variety of techniques, including emulsification, droplet for-

mation under simple gravity by dripping into multivalent

cation solution and electrohydrodynamic atomisation,

have been employed for fabrication of microcarriers (Salib

et al., 1978; Suksamran et al., 2009; Voo et al., 2011).

Although first two methods are most widely used, their

important drawbacks are the difficulties to control the size

and size distribution of the produced microspheres (Li et al.,

2009). Electrospraying, based on electrohydrodynamic ato-

misation, is a new technique involving the ejection of micro/

nano-sized droplets instead of nano-jet from the Taylor

Cone using electrical field (Bock et al., 2011). Although it

has advantages such as small and monosized microsphere

production, the biggest challenge of this technique is opti-

misation problems. It is reported that applied voltage, flow

rate, nozzle-collector distance, polymer concentration, col-

lector solution concentration, geometry of electrode and

conductivity of polymer solution are important parameters

that affect the microbead diameter (Xie and Wang, 2007a,

2007b; Sill and Recum, 2008). An electrospraying set-up,

which is similar to electrospinning system, basically com-

posed of an automatic syringe pump, voltage supply unit

and collector stage. In this system, polymer solution fluxed

at desired flow rates forms small droplets because of the

voltage difference between the syringe nozzle and collector

solution consisting of multivalent cations to crosslink the

polymer (Xie and Wang, 2007a, 2007b; Mejia et al., 2009).

For the production of such microspheres, both natural poly-

mers and synthetic polymers can be used. Alginate is a nat-

ural linear binary co-polymer derived from seaweed. It is

chemically composed of �-D-mannuronic (M) and �-L-

guluronic (G) acids with a variation of sequential arrange-

ment depending on their source. Due to its biocompatibility,

non-toxic features and cheapness, alginate is widely used in

different applications (T|ğl| and Gümüşderelioğlu, 2009). It

is also used for microcarrier production because of its gela-

tion behaviour in the presence of multivalent cations like as

Ca2þ, Ba2þ and Cu2þ. In the presence of multivalent cations,

chelation occurs between the cations and carboxyl groups of

�-L-guluronic (G) acid. In general, CaCl2 solution is pre-

ferred for gelation owing to its non-toxic properties (Jay

and Saltzman, 2009). In crosslinking reaction between

sodium alginate and CaCl2, Ca2þ ions displace with

sodium ions (Naþ) and associate with blocks of G monomers

to form bridges connecting separate polymer chains

(Ciofani et al., 2007).

Although a limited number of studies that are investi-

gated the BMP-6 and its periodontal differentiation poten-

tial (Huang et al., 2005; Akman et al., 2010b; Lee et al., 2010);

the protection and prolongation of its activity in the defect

side is challenging for related periodontal tissue engineering

applications. In order to provide prolonged activity of a

number of growth factors, recent attempts have been

concentrated on the combination of 3-D scaffolds with con-

trolled delivery systems, e.g. micro and nano particles or

spheres (Y|lgör et al., 2009). However, it is still unknown

whether a combination of the use of BMP-6 carrying

micro/nano particles and a porous scaffold might substan-

tially improve bone-forming efficacy. This is why, in this

study, we decided to develop a novel effective BMP-6 releas-

ing system which consists of chitosan scaffold and alginate

microspheres. To achieve this purpose, we first prepared

alginate microspheres by electrospraying technique and

then we optimised synthesising conditions to obtain micro-

particles in the desired size range, narrow size distribution

and mechanical stability. After microsphere characterisa-

tion studies, BMP-6-loaded alginate microcarriers were pre-

pared and a novel porous chitosan scaffold including BMP-

6-loaded alginate microspheres were produced by the

freeze-drying method. By using this system, we investigated

BMP-6 release from scaffolds mimicking natural environ-

ment. Cell culture studies were performed with rat bone

marrow-derived mesenchymal stem cells (rBM-MSCs).

Cell proliferation and differentiation to bone on scaffolds

were investigated by appropriate analyses.

Materials and methods

Materials

Chitosan derived from crab shell with a deacetylation

degree (DD) of minimum 85% was purchased from

Aldrich (Mw: 190 000–375 000, Cat. No: 417963,

Taufkirchen, Germany). Sodium alginate was obtained

from Fluka AG (Mw: 120 000–190 000, Cat. No: 71240,

Buchs, Switzerland). Recombinant human bone morpho-

genetic growth factor was obtained from R&D Systems

(Minneapolis, USA, Cat. No: 507-BP). Fluorescein 5(6)-iso-

thiocyanate (FITC) were obtained from Sigma (Germany).

Acetic acid (HPLC grade), ethanol (96% v/v) and calcium

chloride (CaCl2 � 2H2O) were from Merck (Darmstadt,

Germany). MTT (Thiazolyl Blue Tetrazolium Bromide)

used in proliferation assay, propidium iodide, p-nitro-

phenyl-phosphate (pNPP), ethylene diamine tetra-acetic

acid (EDTA), hexamethyldisilazane (HMDS), Triton X-100

and glutaraldehyde were obtained from Sigma (Germany).

Dulbecco’s Modified Eagles Medium F12 (DMEM F12),

foetal bovine serum (FBS), penicillin/streptomycin solu-

tion, ascorbic acid, dexamethasone and �-glycerol phos-

phate used in cell culture studies were purchased from

Sigma (Germany). Moreover, Dulbecco’s phosphate buff-

ered saline (DPBS) and Alexa Fluor 488 phalloidin were

purchased from Molecular Probes (Invitrogen Co.,

California, USA).

Preparation of empty and BMP-6-loaded alginate

microspheres

The particles were prepared by the electrospraying method

in which sodium alginate was sprayed into CaCl2 solution.

BMP-6 loaded alginate microspheres 771
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For this purpose, sodium alginate solution with a concen-

tration of 2% (w/v) was prepared by dissolving sodium algi-

nate in ultra-pure water and Eltered using 0.45 mm Elter

(Millipore) in order to eliminate the impurities. Alginate

solution was electrosprayed via syringe with 22 G needle

into 3% (w/v) CaCl2 solution where microspheres were col-

lected. At the end of 24 h cross-linking period, micro-

spheres were taken away from the collector solution and

washed with distilled water. For stabilisation, beads were

immersed into 70% (v/v) ethanol for an hour. After discard-

ing the ethanol, microspheres were freeze-dried (Christ,

Osterode am Harz, Germany).

In the electrospraying set-up, flow rates (20, 40 and

60 mL/h) and potential difference (6 kV, 7, 8 and 10 kV)

were varied. Additionally, different nozzle-collecting stage

distances, i.e. 4, 8, 16 and 32 cm, were studied. All param-

eters used in the electrospraying method were optimised

and BMP-6-loaded alginate microspheres were obtained

using the optimised conditions.

BMP-6-loaded alginate microspheres were synthesised

by adding BMP-6 (2 mg/mL in DPBS) solution into 2% (w/v)

alginate solution. By loading 1.5 mg and 3.0 mg micro-

spheres into a scaffold, 50 and 100 ng BMP-6 containing

chitosan scaffolds were obtained, respectively.

Encapsulation efficiency

Labelling of the primary amine groups on BMP-6 was rea-

lised by dialysis tubing cellulose membrane technique

(Feltkamp, 1970; Akman et al., 2010b). BMP-6 content of

the Ca-alginate microspheres was determined by solving

alginate microspheres loaded with FITC-labelled BMP-6

in 5 mM EDTA solution and then exposing them to 37�C

overnight in a shaking incubator. The samples were cen-

trifuged (12 000 rpm for 1.5 min) to ensure that all the

microspheres were degraded. Then, solution was filtered

(0.45 mm) and BMP-6 concentration was determined

using Fuorescence spectrophotometer (Varian, California,

USA) by measuring absorption at 495 nm and emission at

528 nm. By using this measured value, the loaded amount

of BMP-6 in the microspheres was calculated. Then, the

encapsulation efficiency of BMP-6 in microspheres was cal-

culated from the ratio of the loaded amount of BMP-6 in

the microspheres to the initial amount of BMP-6 that was

added to the alginate solution.

Preparation of chitosan scaffolds and incorporation of BMP-

6-loaded microspheres into chitosan scaffolds

In this study, chitosan scaffolds were prepared according to

the procedure previously described by our group (T|ğl|
et al., 2007). In brief, chitosan solution in the concentration

of 2% (w/v) was prepared by dissolving chitosan Fakes in

0.2 M acetic acid during overnight by stirring. Chitosan

solutions were poured into 24-well tissue-culture polysty-

rene (TCPS) dishes and they were frozen at �20�C for 24 h

and then, transferred into freeze-drier to obtain highly

interconnected porous scaffolds. For stabilisation, lyophi-

lised scaffolds were rehydrated in 96% (v/v) ethanol over-

night and then in 70% (v/v) ethanol for 1 h.

Incorporation of BMP-6-loaded alginate microspheres

into the chitosan scaffolds was performed by the mixing

technique. In this method, the prepared chitosan solution

was homogeneously mixed with dried microspheres and

then poured into 24-well TCPS. Chitosan and dried algi-

nate microspheres were mixed with the ratio of 50:25 (w/w)

and 50:50 (w/w) for 50 and 100 ng BMP-6 loading per chit-

osan scaffold, respectively. Then, plates were frozen at

�20�C for 24 h and then freeze-dried at �80�C for 4 days.

Scaffolds were cut into discs in a diameter of 10 mm and

thickness of 1 mm. Average dry weight of each scaffold is

approximately 3 mg.

Characterisation of microspheres

The diameter and size distribution of alginate micro-

spheres prepared at different conditions were determined

by inverted optical microscope (Olympus, Tokyo, Japan).

Images of microspheres were taken under 4� optical mag-

nification and approximately 100 particle diameters were

measured from these photographs using computational

Image J program (NIH, Bethesda, Maryland, USA). To

acquire a clear morphologic image of the empty and

BMP-6-loaded microspheres selected for cell culture stud-

ies were coated with gold palladium layer and observed

under SEM (Zeiss Evo 50, Oberkochen, Germany). In addi-

tion, the presence of microspheres in scaffolds was

observed by SEM photographs.

The swelling and degradation characteristics of

alginate microspheres were investigated by placing dry

microspheres in Petri dishes containing culture medium.

Then, they were allowed to incubate in a humidified incu-

bator (Heraus Instruments, Frankfurt, Germany) at 37�C

and 5% CO2 condition. The morphologies of microspheres

were observed under inverted microscope at desired time

periods.

Release study

BMP-6 release from chitosan scaffolds

In-vitro release studies were carried out with 50 and 100 ng

FITC-labelled BMP-6-loaded chitosan scaffolds in 2 mL

Eppendorf tube with 0.1% (w/v) sodium azide including

PBS, at 37�C with 15 rpm agitation. In the studies, chitosan

scaffolds of 10 mm diameter and 1 mm thickness were

used. At the specific time intervals, complete solution was

removed and filtered with 0.45 mm filter. BMP-6 concentra-

tion was determined using Fuorescence spectrophot-

ometer by measuring absorption at 495 nm and emission

at 528 nm. Buffer solution in the Eppendorf tubes was

replenished after each measurement. All experiments

were performed in triplicates.

772 Z. Soran et al.
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Release kinetics

In-vitro release kinetics of BMP-6 from microsphere

including scaffolds was evaluated by the Korsmeyer–

Peppas model using the following equation (Korsmeyer

et al., 1983):

Mt

M1
¼ k � tn ð1Þ

where Mt is the cumulative amount of protein released at

time t, Mt/M1 is the fraction of protein released, t is the

release time, k is the specific constant of carrier and n is an

exponent which characterises the mechanism of diffusional

release kinetics. The n and k values were determined from

the initial portion of log–log plots of Mt/M1 versus time.

The slope of the linear curve gives the n value and the

release mechanism was determined from n and k values.

In-vitro cell culture studies

Isolated rBM-MSCs were obtained from Kocaeli University,

Stem Cell and Gene Therapy Research and Application

Center (Turkey). Differentiation potential and growth

kinetics of rBM-MSCs were studied (Karaöz et al., 2009).

It was demonstrated that cells expressed osteogenic, myo-

genic and neurogenic genes under basal conditions. Their

findings indicated that BM-MSCs possess superior capacity

towards osteogenic differentiation and therefore might be a

good cell source for bone tissue engineering (Karaöz et al.,

2009). Also, optical microscope and fluorescent micro-

scope images demonstrated that cells get to gain extracel-

lular structure at day 3 and turn spindle-like shape at day 7

(Figure 7(a)). In the experiments, cells were cultured in

DMEM-F12 supplemented with 10% (v/v) FBS and 1% pen-

icillin–streptomycin. The cells were passaged with 0.25%

trypsin–1% EDTA when confluent layer was observed

under optical microscopy. Throughout this study, cells

were maintained at 37�C in a humidiEed CO2 (5%) atmo-

sphere (Heraus Instruments, Germany).

Cell seeding and cultivation in chitosan scaffolds

Sterilisation of tissue scaffolds is the major important issue

for cell culture studies. In our study, two techniques, treat-

ment with ethylene oxide (EtO) gas and 70% ethanol, were

used for chitosan scaffold sterilisation. In the literature,

although some studies report that EtO gas deforms the

chitosan structure and damages its mechanical properties,

most of them have not seen any negative effect on the

structure (Hamilton et al., 2006). In this study, chitosan

scaffolds sterilised with EtO gas gained a fragile structure

and crumbled in few days after the culture medium was

added. This is why, sterilisation was performed by 70%

ethanol.

Prior to cell culture experiments, 24-well TCPS dishes

precoated with ParaElm were soaked in 70% ethanol for

three days and then they were placed under UV light for

30 min for sterilisation. On the other side, chitosan scaf-

folds were soaked in 70% ethanol for 24 h and then, they

were placed into the Parafilm-coated TCPS. After washing

with sterile DPBS, scaffolds were immersed in conditioning

medium for 24 h and exposed to UV light for 15 min

before cell seeding. Cell suspensions in the density of

2.5� 105/mL cells were injected into each chitosan scaffold

groups, i.e. chitosan, chitosan with free BMP-6 in medium

and chitosan with BMP-6-loaded alginate microsphere,

and allowed to incubate in a humidiEed incubator (37�C,

5% CO2) for 2 h. Finally, 1 mL of osteogenic medium was

added on each scaffold and constructs were incubated in

stationary conditions and medium was replenished

every three days. Culture medium was supplemented

with 10 mM �-glycerol phosphate, 50 mg ascorbic acid-2-

phosphate and 10�8 M dexamethasone to obtain osteo-

genic medium.

Cell proliferation and viability (MTT)

Cell viability on the chitosan scaffolds was assessed using

the colorimetric indicator 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl-tetrazoliumbromide (MTT) assay at days 3, 5, 7

and 9. After the medium on the scaffolds was discarded,

60 mL of MTT solution (2.5 mg/mL in PBS) and 600mL of

serum-free medium were added to each well, then incu-

bated for 3 h at 37 �C. At the end of the incubation period,

the medium was aspirated and scaffolds were transferred

to another 24-well plate. Four hundred microlitres of iso-

propanol solution (3% w/v in distilled water) containing

0.04 M HCl was added to the scaffolds to dissolve the for-

mazan crystals which are formed due to the reduction of

MTT by mitochondria. Two hundred microlitres of super-

natant was transferred to 96-well plate and the optical den-

sity was measured spectrophotometrically with a

microplate reader (Asys UVM 340, Australia) at 540 and

690 nm reference wavelength. All experiments were per-

formed in triplicates.

Alkaline phosphatase activity

Osteogenic differentiation was determined by alkaline

phosphatase activity (ALP) measurements at the third

week of incubation period (Suck et al., 2007). This is why,

culture medium was discarded from well, scaffolds were

rinsed twice in PBS and they were freeze-dried for two

days. Then, they were cut down into small pieces with scis-

sors, and were digested by sonication at 4�C in the lysis

buffer (1%Triton X-100, in 0.01% v/v PBS) for 30 min.

At the end of the incubation, cell lysates were centrifuged

at 12 000 rpm for 10 min at 4�C. ALP activity was assayed

using pNPP as substrate. This is why, to each well of 96-well

culture plates, 50 mL of supernatant and 125mL of ALP solu-

tions (56 mM 2-amino 2-methyl-1,3-propanediol, pH 9.8,

and 1 mM MgCl2 containing 10 mL pNPP) were added

and the mixture was incubated at 37�C for 30 min. Then,

50 mL of 2.5 M sodium hydroxide (NaOH) was added to the

BMP-6 loaded alginate microspheres 773
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wells to stop the reaction. Hydrolysis of substrate to p-

nitrophenol was measured spectrophotometrically at

405 nm using microplate reader (Asys UVM 340, Australia).

von Kossa staining

The mineralisation of cells was determined by the von

Kossa analysis, which shows colour change related to

mineralisation degree (Cheng et al., 2001). Scaffolds at

the third week of culture were removed from the culture

medium and washed once with PBS and then soaked in ice

cold absolute ethanol for 20 min to fix the cells. After wash-

ing with deionised water, 5% AgNO3 (0.5 g/mL) was added

onto cells and incubated for 30 min in dark environment.

Afterward, samples were washed with deionised water

again and exposed to UV for 2 min.

Scanning electron microscopy

Attachment and spreading of the mesenchymal stem cells

were observed morphologically by scanning electron

microscopy (SEM) (Zeiss Evo 50, Japan) for the fourth

week of the incubation period. Therefore, scaffolds were

gently washed with PBS (pH 7.4) and 0.5 mL of 3% (v/v)

glutaraldehyde solution in PBS was added for 30 min to fix

the cells. Dehydration was performed by serial incubation

of scaffolds with 30%, 50%, 70%, 90% and 100% (v/v) eth-

anol for 2 min each and then they were rinsed with HMDS

for 5 min at room temperature. SEM images were obtained

after samples were coated with gold palladium.

Statistical analysis

All data are expressed as means� standard deviations of

three similar experiments carried out in triplicate.

Statistical analysis was performed by one-way analysis of

variance in conjunction with Tukey’s post-hoc test for mul-

tiple comparisons using SPSS Version 9.0 Software.

Results and Discussion

Production of alginate microspheres

Although there are several methods, e.g. emulsification,

emulsification/internal gelation, water/oil/water emulsifi-

cation, electropsraying, etc., for the production of micro-

particles, microsphere production methods are still under

investigation since adjustment of one parameter usually

results in complicated, often unpredictable, effects on the

Enal microsphere properties (Hamilton et al., 2006; Voo

et al., 2011). Therefore, optimisation of the microsphere

preparation process is critical and inherently difficult.

Electrospraying method, which basically includes a liquid

delivery system (pump), a needle with high-electric poten-

tial and a grounded electrode which is in a short distance

away from the needle, has the ability to easily produce

monodisperse particles in different sizes. Besides, one of

the attractive features of this method is the possibility of

successful protein encapsulation (Jaworek, 2008; Ye et al.,

2010).

It has been clearly demonstrated previously that applied

voltage, emulsion Fow rate, polymer concentration and the

type of solvent affect the property of microspheres (Xie and

Wang, 2007a, 2007b; Ye et al., 2010). In our study, 2% (w/v)

alginate solution was electrosprayed under different volt-

ages (6, 7, 8, 9 and 10 kV) for various flow rates (20, 40 and

60 mL/h) and for different nozzle–collector distances (4, 8,

16 and 32 cm). At lower than 6 kV, the effect of electrical

potential could not be observed and alginate droplets,

approximately 1 mm in diameter, were formed. In addition,

potential difference that is higher than 10 kV caused short-

circuit due to the presence of a ring electrode. Produced

microspheres were observed under optical microscope and

their diameters were measured using Image J software.

Except 9 kV, other voltage values exhibited non-uniform

size and broad size distribution at 20 mL/h flow rate.

At 40 mL/h flow rate, 6 and 10 kV applied voltages caused

broad size distribution. Although microspheres prepared at

8 and 9 kV had narrow size distribution, their diameters

(4400 mm) were bigger than that of microspheres prepared

at 20 mL/h. Finally, flow rate was changed as 60 mL/h and

the results demonstrated that 6, 7 and 9 kV voltages caused

non-uniform size and at 10 kV spherical form of particles

was destroyed. Consequently, conditions of 20 mL/h flow

rate at 9 kV; 40 mL flow rate at 7 kV and 60 mL/h flow rate at

8 kV were chosen to have uniform size and narrow size

distribution. Average diameters of microspheres which

are prepared in different electrospraying conditions,

shown in Table 1. It was seen that diameters of micro-

spheres varied between 250 and 400mm. However, higher

flow rates resulted in relatively smaller microspheres.

In the literature, it was reported that flow rate increment

causes higher dripping frequency when the nozzle voltage

is larger than 4 kV, and thus smaller microbeads and cone-

like structures were observed. Also, it was reported that

microsphere size decreases with increasing voltage values

in the presence of ring electrode (Xie and Wang, 2007a) and

it increases with the increase of nozzle–collector distance

(Xie and Wang, 2007a), similar with our results. As could be

seen from Table 1 where average diameters of micro-

spheres are shown, microspheres synthesised in conditions

of 40 mL/h, 7 kV, 8 cm (Group II-b) and 60 mL/h, 8 kV, 4 cm

(Group III-a) were identified as the smallest particles; how-

ever, their size distributions were very wide. On the other

hand, both size and size distribution was optimum at

20 mL/h, 9 kV, 32 cm (Group I-d) with a mean diameter

of 391mm and at 60 mL/h, 8 kV, 16 cm (Group III-c) with

a mean diameter of 360mm. Some of the optical images of

alginate microspheres are illustrated in Figure 1. SEM pho-

tographs of alginate microspheres belonging to Group II-b

and Group III-c were also shown in Figure 2(a) and (b),

respectively. Due to the vacuum application during gold

coating, the alginate microspheres were shrunk. However,

spherical morphology and uniform size of Group III-c

microparticles were shown clearly.
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Swelling and biodegradation behaviour of microcarriers

are critical features for cell culture studies. So, these char-

acteristics were identified to decide which group will be

used in cell culture studies. Osmotic swelling of the

microbeads in PBS at room temperature was evaluated

by observing dimensional changes under microscope.

The microparticles reached to equilibrium swelling in

15 min by absorbing water. Biodegradation results indi-

cated that the particles of Group III-c were more stable

than that of other groups listed in Table 1. Although their

spherical forms started to change after 48 h, still there were

non-degraded microspheres at day 6. Eventually, the

results obtained from optimisation studies demonstrated

that microspheres produced in conditions of 60 mL/h

flow rate, 8 kV applied voltage and 16 cm nozzle–collector

distance (Group III-c) were highly monodispersed, stable

and small in diameter. Therefore, the following studies

were realised by using this group (Group III-c) of particles.

Preparation of BMP-6 loaded alginate microspheres

and scaffolds

Selected group of particles (Group III-c) was loaded with

BMP-6 to have 100 ng BMP-6 per 3 mg of alginate micro-

sphere. Encapsulation efficiency, micro/nanoparticle size

Figure 1. Optical images of alginate microspheres prepared at following conditions: (a) 60 mL/h, 8 kV, 4 cm (Group III-a) (4�), (b) 60 mL/h, 8 kV, 16 cm

(Group III-c) (4�), (c) 60 mL/h, 8 kV, 16 cm (Group III-c) (10�) and (d) BMP-6 loaded alginate microspheres (Group III-c) (10�).

Table 1. Average diameters of microspheres produced in different operation conditions.

Group I Average diameter (mm) Group II Average diameter (mm) Group III Average diameter (mm)

a 20 mL/h; 9 kV; 4 cm 390� 48 40 mL/h; 7 kV; 4 cm 301� 113 60 mL/h; 8 kV; 4 cm 256� 120

b 20 mL/h; 9 kV; 8 cm 350� 77 40 mL/h; 7 kV; 8 cm 252� 105 60 mL/h; 8 kV; 8 cm 317� 93

c 20 mL/h; 9 kV; 16 cm 387� 16 40 mL/h; 7 kV; 16 cm 350� 54 60 mL/h; 8 kV; 16 cm 361� 10

d 20 mL/h; 9 kV; 32 cm 387� 13 40 mL/h; 7 kV; 32 cm 391� 17 60 mL/h; 8 kV; 32 cm 370� 14
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and their swelling properties are leading parameters for

release studies (Yao et al., 2008). This is why, encapsulation

efficiency was determined and identified as 85.3%. The

image of BMP-6-loaded microspheres was shown in

Figure 1(d). As seen from this image, there is no structural

deformity due to the protein loading into alginate micro-

spheres. Although measurements have shown a little incre-

ment in the diameter of loaded particles, it was not

statistically significant.

It is known that scaffolds having the pore diameter

greater than 100mm can enhance osteoblast’s proliferation

(Berkland et al., 2004). By taking into account the results of

our previous study (T|ğl| et al., 2007), porous chitosan scaf-

folds were prepared by applying freeze-drying method to

the 2% (w/v; weight of chitosan in volume of diluted acetic

acid) chitosan (DD4 85%) solution. In order to obtain

BMP-6 including chitosan scaffolds, the scaffold prepara-

tion method was performed in the presence of BMP-6-

loaded alginate microspheres. The ratio of alginate

microspheres to chitosan was adjusted to be 50 : 50 (w/w)

and 50 : 25 (w/w) for 100 and 50 ng BMP-6 loading per dry

chitosan scaffold (3 mg), respectively. SEM images of empty

scaffolds indicated highly interconnected structure with

the pore size of �100mm (Figure 2(c)). The porosity of

the scaffolds was calculated as 82.0%. Figure 2(d) showed

that alginate microspheres were successfully and

homogenously distributed through the chitosan scaffold

by maintaining the interconnected porous structure.

In vitro release studies

Release studies were carried out with FITC-labelled BMP-

6-loaded alginate microsphere including chitosan scaffolds

and the cumulative release proEle of BMP-6 from scaffolds

were shown in Figure 3. In-vitro studies demonstrated that

BMP-6 release showed an initial burst in 50-ng-loaded

groups. On the other hand, 100-ng-loaded BMP-6 groups

exhibited better release profile. Diffusional release mecha-

nism was determined from n and k values using

Equation (1). In this situation, n values between 0.45 and

0.89 show non-Fickian diffusion (anomolous), while

n¼ 0.45 for Fickian diffusion. Furthermore when n¼ 0.89,

the release rate is zero order, which means it is indepen-

dent of time (case II transport) and super case II transport

is apparent when n4 0.89 (Peppas and Brannon-Peppas

1994). The calculated n values for 50 and 100 ng

BMP-6-loaded scaffolds were 1.79 and 0.68, respectively.

These results demonstrated that low BMP-6-loaded group

showed burst effect and super case II transport mecha-

nism. On the other hand, 100-ng-loaded group indicated

anomalous release mechanism, which shows balance

between swelling and the release kinetics of the system.

Figure 2. SEM images of (a) dried alginate microspheres of Group II-b, (b) dried alginate microspheres of Group III-c, (c) chitosan scaffold and (d) alginate

microspheres incorporated chitosan scaffold (arrows indicate alginate microspheres).
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These results indicated that 100 ng is the optimum quantity

of BMP-6 to enhance osteogenesis, as reported in another

study (Grasser et al., 2007).

The release from the microspheres probably takes place

first into the pores present in scaffold and this prolongs the

release of the molecules from the fibrous scaffold. Also,

although alginate is a natural protein, it is also known as

rapid biodegradable material. This study demonstrated

that biodegradation rate of alginate microspheres

decreased when they incorporated into the scaffolds.

Eventually, it was decided to the 100 ng/scaffold loading

amount and cell culture studies were carried out with

this system.

Cell culture studies

Proliferation of rBM-MSCs on chitosan scaffolds

Previously, the success of BMP-6 with preosteoblastic

MC3T3 cells for bone tissue engineering applications has

been proved. Akman et al. (2010b) demonstrated that load-

ing of BMP-6 into chitosan scaffolds increased the osteo-

blastic activity compared to results achieved from the

direct addition of free BMP-6 to cultures containing cells

and unloaded chitosan scaffolds. By taking into account

these results, in this study, we basically evaluated the

effects of released BMP-6 from a novel system, BMP-6-

loaded microspheres incorporated chitosan scaffolds, on

mesenchymal stem cells for periodontal tissue regenera-

tion. To evaluate the proliferation of mesenchymal stem

cells within the scaffolds, four groups were fabricated as

only chitosan scaffold (Scaffold), chitosan scaffold with

free BMP-6 in culture (Free BMP-6), chitosan scaffold

including BMP-6-loaded alginate microspheres (scaf-

foldþmicrosphere) and control group (TCPS). MTT

assays were performed at days 3, 5, 7 and 9 (Figure 4)

using the method of Gerlier and Thomasset (1986).

Although all groups demonstrated increasing cell prolifer-

ation at day 3, results suggest that cell attachment and pro-

liferation were greater in scaffolds than that of TCPS.

Compared to TCPS, cell proliferation was significantly

higher in other groups at day 5. On day 7, all groups, com-

pared with TCPS, demonstrated increasing proliferation.

As seen from Figure 4, the mitochondrial activity of cells

on scaffoldþmicrosphere group was significantly higher

compared with both chitosan and free BMP-6 groups.

After seventh day of incubation, optical densities were

decreased in all groups but microsphere including group

was still significantly higher than TCPS and only chitosan

scaffold at day 9 (p5 0.001). Optical density is also signif-

icantly higher than free BMP-6 including group (p5 0.01).

In Figure 4 it is seen that, cell proliferation in free BMP-6

group was highest at day 3 but decreased at day 7. On the

other hand, in scaffoldþmicrosphere group, cell prolifer-

ation was increased slowly and maximum level was

observed at day 7. This result suggests that the controlled

release of the protein has a significant effect on proliferat-

ing cells.

In the light of these data, scaffold including groups sup-

ported cell proliferation more than TCPS group as well as

shown in our previous study (Akman et al., 2010b).

Moreover, with this study not only the effect of BMP-6 on

Figure 3. Cumulative release of BMP-6 from 50 and 100 ng BMP-6-loaded alginate microspheres (Group III-c) incorporated within chitosan scaffolds.
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osteogenic differentiation, but also the proliferation effect

on rBM-MSCs was shown. Friedman et al. (2006) investi-

gated BMP-6 and mesenchymal stem–cell relationship and

reported that regulator features of BMP-6 are better than

BMP-2, �4 and �7 on MSCs. Also, MTT assay indicated

that the dramatic increment of the cell proliferation was

observed in the groups including BMP-6.

ALP activities

Differentiation of MSCs was assessed by ALP activity.

Figure 5 demonstrated the ALP activity of mesenchymal

stem cells on scaffolds at week 3. ALP activity results

showed that there were no statistically signiEcant differ-

ences between the ALP activities of the cells in the chitosan

and free BMP-6 group during the experimental period

(p4 0.05). On the other hand, osteogenic differentiation

was significantly greater in alginate microsphere including

scaffolds. Differences were statistically signiEcant at the

third week (p5 0.001). Comparison between free BMP-6

and BMP-6 encapsulated microsphere including groups

indicated that microcarriers take a major role on differen-

tiation of the cells due to controlled delivery of biosignal

molecule. ALP result is found corresponded with MTT

assay results.

Figure 4. MTT assay of MSCs seeded on BMP-6-loaded alginate incorporated chitosan scaffold (scaffoldþmicrosphere), chitosan scaffolds with free BMP-

6 in medium (Free BMP-6), chitosan scaffold (scaffold) and TCPS. (Statistical significance, n¼ 4, TCPS is control group *p5 0.05; **p5 0.01; ***p5 0.001;

Chitosan is control group xx p5 0.01; xxx p5 0.001; Free BMP-6-loaded chitosan is conrol group. p5 0.01; . . . p5 0.001).

Figure 5. ALP activities of MSCs. (Statistical significance, n¼ 4, ***p5 0.001; chitosan scaffold is control group.)
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Mineralisation assay

The von Kossa analysis was used for the identification of

matrix calcification within the cell-seeded scaffolds. Results

taken at the third week of incubation are demonstrated in

Figure 6. Calcification, which is an indicator of osteogenic

differentiation, was determined from colour change to

brown-black. Different degrees of staining were observed

between protein including groups. Although both of BMP-

6-treated scaffolds showed positive staining, colour change

of BMP-6 including alginate microsphere-loaded chitosan

scaffold was more evident compared to free BMP-6-loaded

scaffolds (Figure 6(b) and (c)). These results supported the

results of ALP activity at the third week.

Microscopic imaging of cells within the scaffolds

Primary mesenchymal stem cells obtained from rat bone

marrow were characterised for cell culture studies and

fluorescence staining of cells at day 16 was shown in

Figure 7(a). As seen from the image, cell morphology was

in spindle-like shape as expected. The SEM images of cells

in scaffolds (Figure 7(b)) illustrated the cellular attach-

ments in sponge-like chitosan scaffolds and cell extending

towards the pores on walls. Moreover, as seen from

Figure 7(c) and (d), fibroblastic cell morphology clearly

changed as a result of differentiation potential of cells in

the presence of BMP-6. More importantly, SEM images of

BMP-6 including alginate microsphere-loaded chitosan

scaffolds revealed that cells have already synthesised extra-

cellular matrix (ECM) and attached cells have covered a

part of pores by spreading (Figure 7(d)).

Figure 7. (a) Fluorescence microscope image of primary rat mesenchymal stem cells cultured on TCPS (second week, 20x) and SEM images of MSCs

cultured on (b) chitosan scaffold, (c) chitosan scaffold with free BMP-6 in medium and (d) BMP-6-loaded alginate incorporated chitosan scaffold (1.00 KX)

at the end of fourth week of incubation period.

Figure 6. von Kossa staining of chitosan scaffolds at the third week. (a)

Chitosan scaffold, (b) chitosan scaffold with free BMP-6 in medium and

(c) BMP-6-loaded alginate microsphere incorporated within chitosan

scaffold.
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Conclusion

In this study, BMP-6 containing alginate microparticles in

narrow size distribution and excellent spherical shape are

formed by the electrospraying method in optimised condi-

tions. The microparticles in a diameter of 360 mm were

combined with the chitosan scaffolds that were prepared

by freeze-drying. Thus, a novel 3D construct carrying BMP-

6 delivery system was developed. The results of cell culture

studies indicated that the combined system enhances the

osteoblastic differentiation of bone marrow-derived rat

mesenchymal stem cells by providing the controlled

release of BMP-6. In conclusion, this system can be con-

sidered as an appropriate vehicle for possible periodontal

tissue engineering applications.
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