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Fault-Tolerant Topology Generation Method for
Application-Specific Network-on-Chips

Suleyman Tosun, Vahid B. Ajabshir, Ozge Mercanoglu, and Ozcan Ozturk

Abstract—As the technology sizes of integrated circuits (ICs)
scale down rapidly, current transistor densities on chips dramat-
ically increase. While nanometer feature sizes allow denser chip
designs in each technology generation, fabricated ICs become
more susceptible to wear-outs, causing operation failure. Even a
single link failure within an on-chip fabric can halt communi-
cation between application blocks, which makes the entire chip
useless. In this paper, we aim to make faulty chips designed with
network-on-chip (NoC) communication usable. Specifically, we
present fault-tolerant irregular topology-generation method for
application-specific NoC designs. Designed NoC topology allows
different routing path if there is a link failure on the default rout-
ing path. Additionally, we present a simulated annealing-based
application mapping algorithm aiming to minimize total energy
consumption of the NoC design. We compare fault-tolerant
topologies with nonfault-tolerant application-specific irregular
topologies on energy consumption, performance, and area
using multimedia benchmarks and custom-generated graphs.
Our results demonstrate that our method is able to determine
fault-tolerant topologies with negligible area increase and better
energy values.

Index Terms—Energy minimization, fault tolerance, mapping,
network-on-chip (NoC), topology design.

I. INTRODUCTION

TECHNOLOGY improvements have made it possible to
place millions of transistors on a single chip, resulting

in more complex and denser designs than ever. Now, design-
ers can embed all system components on one chip, which
is called system-on-chip (SoC). Traditional SoC design space
exploration has focused on computational aspects of the appli-
cations whereas today’s design efforts have shifted toward
communication-based design space exploration as a result of
increase in the number of SoC components. Thus, the commu-
nication architecture plays a major role in performance, area,
and energy consumption of the SoC designs. Previous stud-
ies show that traditional shared-bus and point-to-point-based
architectures do not scale well for current communication
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intense applications [1]. As a solution to this scalability prob-
lem, researchers introduced a new on-chip communication
architecture, called network-on-chip (NoC) [2], [3].

NoC architectures can be constructed using regular or
irregular topologies. Although regular topologies are easy
to construct and reusable, applications cannot be well
optimized on them. Irregular topologies are beneficial for
designing application-specific NoCs since the design param-
eters such as energy consumption, performance, and area
can be optimized better than their regular counterparts [4].
Several studies have been published regarding energy-efficient
and/or fault-tolerant regular topology-based NoC designs,
especially for mesh topologies [5]–[7]. However, studies
of irregular application-specific topologies are restricted to
explore energy efficiency [8]; fault tolerance has not been
considered.

Application-specific topologies generated by current meth-
ods have only one communication path between any com-
municating nodes [4], [8], [9]. If there is a permanent fault
in any of the links or ports as a result of the fabrication
process, the system cannot recover its functionality and the
chip becomes useless. Motivated by this fact, in this paper,
we propose a fault-tolerant application-specific topology gen-
eration method for NoC-based designs. In our method, we
first generate random nonfault-tolerant irregular isomorphic
topologies. We then add extra links to the generated topologies
to make them fault-tolerant. Our method generates a topology
library (TL) consisting several fault-tolerant topology alter-
natives and a ring topology, which is also a fault-tolerant
topology with minimum number of network resources. The
designer can select a topology from the generated TL that
meets the design goals.

Our fault-tolerant NoC designs can be used for various fault
scenarios.

1) Designs with at least one link failure due to the CMOS
fabrication process can still be used, albeit with a
gracefully degraded performance.

2) Designs with at least one link failure during the lifetime
of the chip due to electromigration can still operate at a
gracefully degraded performance level.

3) Dynamically adaptive routing mechanisms can easily
be added to the generated fault-tolerant topologies,
which enables the application to use several routing
alternatives.

In this paper, we also propose an application mapping
algorithm that can be applied to fault-tolerant and nonfault-
tolerant NoC designs. The objective of the proposed mapping
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algorithm is to minimize energy consumption while meeting
bandwidth constraints. Our mapping algorithm is based on the
commonly used simulated annealing (SA)-based method [10].
Since the mapping problem is NP-complete, SA is a good
choice for this kind of problem. SA is a probabilistic method
for finding the global optimum of a cost function. It is mod-
eled on the behavior of condensed matter at low temperatures.
The annealing process starts with an initial configuration and
continuously reduces the temperature of the system in search
of a better configuration. If the process obtains a better energy
values in a configuration, it directly accepts this configuration.
Otherwise, it accepts the new solution based on an acceptance
probability function. In this way, it makes uphill moves from
a local minimum in an attempt to jump to a valley where a
global minimum might reside.

We compare our fault-tolerant topologies with nonfault-
tolerant counterparts based on energy consumption, area, and
performance. Our results show that with a small area increase,
our method generates fault-tolerant topologies with better
energy values.

This paper is organized as follows. In Section II, we briefly
review the related work on fault-tolerant and nonfault-tolerant
topology designs for NoCs. We explain the motivation of this
paper in Section III, and we introduce the problems we deal
with in Section IV. In Sections V and VI, we present our
fault-tolerant topology generation (FTTG) algorithm and our
SA-based mapping algorithm, respectively. In Section VII, we
show the experimental results. Finally, in Section VIII, we
conclude this paper.

II. RELATED WORK

In this section, we examine the related work in two parts.
In the first part, we list the previous work on irregular topol-
ogy generation methods that do not consider fault tolerance.
In the second part, we present the related work that consider
reliability and fault tolerance for irregular topologies, which
is the main focus of this paper.

A. Irregular Topologies

One of the pioneering work aiming to generate irregular
topologies for NoC architecture designs is presented in [9],
and applies a two-step approach for designing the topology.
In the first step, it uses integer linear programming (ILP)-based
method for floor planning the application nodes and the NoC
components on the given chip area. In the second part, it gen-
erates the topology by determining the connections between
the NoC parts and the application nodes. Even though this
paper shows promising results, it also shows that ILP-based
methods take too much CPU time to find an optimal solu-
tion. The same research group thus developed a faster method
for the same problem using genetic algorithms [11]. In both
methods, the authors aimed to reduce the energy consumption
of the final application-specific irregular-topology-based NoC
architecture.

There are also heuristic-based irregular topology generation
algorithms in [4] and [8]. These methods first determine the
topology connection and then later decide the floorplanning,

as opposed to the methods in [9] and [11]. To obtain the
topology, they also use a two-step approach. In the first step,
they cluster the application nodes by placing heavily commu-
nicating nodes together. In the second step, they determine
how to connect these clusters on the routers of the topology.

Although all these methods obtain very promising results
when considering energy minimization of the generated irregu-
lar topology, they do not consider fault tolerance in the design.
If any link has a permanent fault, the produced chip becomes
useless.

B. Fault-Tolerant NoC Design

There have been some efforts at NoC designs that do
consider fault tolerance. For example, Dally et al. [12] intro-
duced the reliable interconnection design concept. In this
paper, the authors propose a reliable router architecture that
transmits data over the network even if there is a transient
fault in the links. Similar work focuses on the router archi-
tecture for reliable network transmission [13], introducing an
architecture called BulletProof, which uses N-modular redun-
dancy. The basic idea of this paper is to implement multiple
(generally three) copies of the same router and check the
packet sent by each router. It then decides on the correct
version of the result based on majority voting. A similar
redundancy-based technique uses duplication [14], doubling
the network components and determining fault in the sys-
tem by checking both copies of the sent packets. Although
above mentioned redundancy-based methods can be used for
generating fault-tolerant irregular topologies, they increase the
number of network components tremendously, resulting in
high chip area and energy consumption overheads.

The methods mentioned above consider transient fault
tolerance. Early work on permanent fault tolerance generally
study regular (especially mesh-based) topologies. If a router
or a link on a mesh-based NoC has a permanent fault, such
studies focus on routing methods that avoid sending packets
over the faulty part [15]–[22].

To increase NoC designs’ robustness, some prior efforts
focus on reconfigurability of NoCs [23], [24]. For example,
the MADNESS project [23] aims to design NoC architecture
with adaptive fault-tolerant capabilities. Cannella et al. [24]
presented a method that moves the job of the faulty core to
the neighboring core during run time.

This paper focuses on tolerating permanent link and
router port failures. Prior work also aims to tolerate
link failures [25]–[31], proposing rerouting mechanisms after
locating faulty links.

All the aforementioned studies focus only mesh-based or
regular topology-based NoCs and there are more routing path
options for these topology types. However, the current irregu-
lar topologies uses only one path between any communicating
nodes; thus, the methods for regular topologies cannot be
applied for tolerating permanent link failures on irregular
topologies.

In this paper, we propose a new idea to generate fault-
tolerant application-specific irregular topology design. We aim
to add a minimum number of extra routers and links to the
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Fig. 1. Different topology examples for an application with 12 nodes. (a) Router with four ports. (b) Irregular topology with no fault-tolerance capability.
(c) Ring, (d) mesh, and (e) fault-tolerant irregular topologies.

topology to achieve fault-tolerance capability. If the produced
chip is not faulty, it works with the default routing. If there
is an error in any link, we can use an alternative routing with
only a small degradation in application performance. The new
routing requires at least two alternative paths between any
router pair. In this paper, our goal is to design such a topol-
ogy with the least area increase and at least two paths between
routers exist. We present the preliminary version of this paper
in [32]. This paper extends our preliminary version by several
aspects. We examine the previous work in detail and moti-
vate the importance of the studied problem. We present the
energy model and mapping problem. We give in depth analy-
sis of the proposed FTTG algorithm and present our SA-based
mapping method. Contrary to previous version, we conduct our
experiments with newer technology parameters and give more
experimental evaluations. Finally, we give a routing scenario
in this version of this paper.

III. MOTIVATION

When we design an NoC architecture for a given
application, we must first select the system topology. For this
step, we have the option to select either a regular or irregular
topology. The selection criteria can be based on energy con-
sumption, performance, throughput, fault tolerance capability,
and/or chip area.

In Fig. 1(a), we show an abstract view of a four-port router
used in our topologies. Each link connected to a router port
is assumed to be bi-directional (i.e., each port can be used
as input or output). In our topology design, we use homoge-
neous routers (i.e., all routers have the same number of ports)
to better deal with design complexity and to maintain regular-
ity. Fig. 1(b)–(e) shows, respectively, examples of an irregular
topology with no fault-tolerance capability, a ring topology,
a mesh topology, and a fault-tolerant irregular topology. These
topologies can be used for an application with up to 12 nodes
because at most 12 empty ports are available for each topology.
Ring and mesh are two examples of regular topologies.

As seen in Fig. 1, each topology has a different number
of routers. Nonfault-tolerant irregular topology has the small-
est number of routers because it is configured to minimize
NoC energy consumption and has no fault-tolerance capability.
The remaining three topologies have fault-tolerance capability
because an alternative communication path between any router
pair exists even if there is a permanent link failure.

Mesh and ring topologies are two basic regular topology
examples that can tolerate at least one link failure. However,
a link failure’s effects on each topology type can be different.
While a link failure on a ring topology may result in very
high energy consumption and performance degradation in new
routing because there is only one alternative rerouting path, a
mesh topology has more than one rerouting option and thus
can offer better energy and performance values.

In this paper, we investigate an irregular topology option
for fault-tolerant NoC design. To achieve this goal, we gener-
ate an application-specific topology with two alternative paths
between any routers in the topology. If a permanent link failure
is detected on the design, we select an alternative routing for
the application with only a small degradation in both energy
consumption and performance. Our goal is to achieve a better
energy consumption and area overhead than the mesh topol-
ogy counterpart. To do so, we add extra routers and links to
nonfault-tolerant irregular topologies.

Even though we design the topology to tolerate single link
failure the designed topology can tolerate multiple link errors
only if removing the faulty links from the topology does
not disconnect network components. If removing the faulty
links from our topology disconnects the network, the designed
topology cannot be used. One way to overcome this problem
and cover multiple link failures can be doubling the links.
However, when we double all the links, each router will need
extra ports, which increase the network area and energy con-
sumption. Thus, we aim to tolerate the single link failure that
may occur with higher probability than multiple link failures.

IV. PROBLEM DEFINITION

In this section, we first present the energy model used
in this paper and then define the fault-tolerant application-
specific topology generation and mapping problems for NoC
architecture.

A. Energy Model

The energy consumption of the functional blocks (i.e., the
cores) and the network resources (i.e., the routers and links)
constitute the total energy consumption of NoC architecture.
In this paper, our goal is not to minimize the energy consumed
by the cores, but to try minimizing the energy consumed by the
network components. The network’s energy consumption is
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Fig. 2. CFG of MP3 encoder.

directly proportional to the amount of bit transmissions on the
network. To estimate the energy consumption of NoC archi-
tecture, we should use an energy model based on the total
bit transmissions. We give the total energy consumption of
one bit (ETbit )

ETbit = ERbit + ELbit (1)

where ERbit and ELbit represent the energy consumption of the
routers and the links, respectively. The average energy con-
sumption of sending one bit data from core vi to vj can be
calculated as

E
vi,vj
Tbit

= ηvi,vj × ERbit + δvi,vj × ELbit (2)

where ηvi,vj is the number of routers the bit passes through and
δvi,vj is the link length in millimeter between the source and
destination routers. Since the link lengths between routers are
not known before floor planning, we assume fixed link lengths
for the topology generation step based on the chip dimensions.

B. Problem Definition

Our goals for the topology generation problem are: 1) to
determine a topology such that all communicating cores of the
application can transmit data to each other over the network
with at least two alternative paths and 2) to minimize energy
consumption. To achieve these goals, the number of routers
for the system must first be determined. Then, the resultant
topology must ensure that each router can be reached from all
other network routers via two paths and that all the cores are
connected to at most one router port. Additionally, the routing
must be deadlock and network-congestion free (i.e., the router
port and link bandwidth requirements must be satisfied.) To
explain this problem more formally, we give the following
definitions.

Definition 1: A core flow graph (CFG) is a graph G(V, E)

where each vertex vi ∈ V represents a core (i.e., a node) in
the application, and each edge ei,j ∈ E represents a depen-
dency between two tasks vi and vj. The amount of data transfer
between vi and vj is represented by the weight wi,j for all ei,j

and is given in bits per second.
In Fig. 2, we give the CFG of the MP3 encoder, taken

from [9].
Definition 2: A topology graph (TG) is a connected graph

T(R, L) where R represents the set of routers and L represents
the set of links connecting the routers.

In Fig. 3(a) and (b), we give two examples of a TG. In both
topologies, two alternative paths between any router pair exist.

TABLE I
SHORTEST PATH VALUES OF THE GRAPH

GIVEN IN FIG. 3(a)

In the first topology, we use 8 routers and 9 links, whereas in
the second we use 9 routers and 11 links.

Graph diameter and average path length (APL) of the
network are the two factors affecting the system’s total com-
munication. Thus, we try to minimize these two parameters in
the generated topology.

Definition 3: Graph diameter dT of a TG T(R, L) is the
maximum of the shortest distances between all pairs of the
vertices (i.e., routers), and can be calculated as

dT = max
{
d
(
ri, rj

)}
,∀(

ri, rj
) ∈ R (3)

where d(ri, rj) represents the shortest distance between ver-
tices ri and rj.

To calculate the diameter of the TG, we first find all short-
est paths between each pair of vertices. Then, we select
the maximum distance. In Table I, we give the shortest
paths of the graph in Fig. 3(a). The graph diameter of this
topology is 3.

Definition 4: APLT of a topology T is the average of the
shortest paths between any pairs of the vertices of the TG.
Let r denote the number of vertices of the given topology.
Then, the APLT is calculated by the following formula:

APLT = 2

r(r − 1)

∑

ri≤rj

d
(
ri, rj

)
. (4)

For example, the APL of the graph in Fig. 3(a) is 1.92,
while the APL of the graph in Fig. 3(b) is 1.86.

Problem 1 (FTTG): Given a set of nodes n and the set
of routers, each having p ports, determine the number of
routers (r) and the number of links (l) to generate the topology.
Then generate the topology that meets the following criteria.

1) Constraints:
a) The topology must be fully connected with the

set of routing paths P, where each path pi,j is the
routing path between each pair of routers (ri, rj).

b) For each path pi,j, each link lk,l on this path should
satisfy the bandwidth constraint bw(ll,k).

c) Additionally, to satisfy the fault-tolerance criteria,
there must be at least two alternative routing paths
between any router pairs. That is

∀(
ri, rj

) ∈ R,
(

pi,j
) ≥ 2. (5)

2) Objective Function:
a) The objective function of the FTTG problem is to

minimize the APL of the generated topology T .
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Fig. 3. Two examples of a fault-tolerant TG. (a) TG with 8 routers and 9 links and (b) 9 routers and 11 links.

In other words, our objective function is

min : APLT . (6)

Problem 2 (Application Mapping): Given a CFG G(V, E)

and a TG T(R, L), determine a mapping such that each node
of the CFG is mapped to a router on the TG and the total
energy consumption of the designed NoC is minimized. We
mathematically formulate the application mapping problem as
follows.

Given a CFG and a TG that satisfy

|V| ≤ |R( pe)| (7)

where |V| is the number of vertices of the given CFG and
|R( pe)| is the number of empty ports of the topology routers,
find a many-to-one mapping function M : V → R from the
CFG to the TG with

min : ENoC =
∑

∀ei,j∈E

wi,j × E
vi,vj
Tbit

(8)

such that

∀vi ∈ V, ∃rk( pe) ∈ T, M(vi) = rk( pe) (9)

∀vi 	= vj ∈ V, M(vi) 	= M
(
vj

)
(10)

where ENoC is the total energy consumption of the network
and rk( pe) represents the empty port pe of router rk. Since
some routers may have more than one empty port, the mapping
function has a many-to-one relation.

V. FTTG ALGORITHM

Before explaining the details of our FTTG algorithm, we
give an overview of our approach in the following section.

A. Overview of FTTG Algorithm

We give the flowchart of the FTTG algorithm in Fig. 4.
Our algorithm has two main phases: 1) generating nonfault-
tolerant irregular topology using a minimum number of routers
and links and 2) adding extra routers and links to obtain a
fault-tolerant version of the topology.

As shown in the flowchart, our method accepts the number
of nodes (n) of the given application (CFG), the number of
ports (p) for routers, and the iteration count (t) as inputs. Based
on these input values, it generates a ring topology, which is

a fault-tolerant topology with minimum numbers of routers
and links. It then adds the ring topology to the TL as our
first topology. After that, it calculates the minimum number of
routers (rmin) and links (lmin) for non-FTTG (N-FTTG) and the
maximum number of routers (rmax) and links (lmax) that will
be used for fault-tolerant topologies. Since the fault-tolerant
irregular topology must utilize at least rmin routers, we start
FTTG with rmin routers. At each outer loop of the FTTG algo-
rithm, we add one more router to the routers at hand until we
reach rmax.

After selecting the number of routers (r) for the topology,
we determine how many extra links can be added to the net-
work using the formula l = lmax − lmin. When the routers
connected with links to generate a topology, enough empty
ports must be left for the application nodes, which is n here.
We then generate a random, fully connected, nonfault-tolerant
topology with r routers and r − 1 links. Certainly, some of
the routers must be connected to other routers with at most
one port. Thus, we connect these routers to each other by
adding l links, aiming to minimize the APL of the topology.
Each router and link must be on a cycle to have at least two
alternative routing paths, thus our next step is to check that
this is so. If there is a fault-tolerant topology with r ports in
the TL, we check whether the newly generated topology is
isomorphic with the existing topologies. If it is, we simply
discard the new topology; otherwise, we add it to the library.
This topology generation process iterates t times, which is a
predefined iteration count.

In our output TL, we may have several topology alter-
natives with different numbers of routers, varying between
rmin and rmax. The designer can select any of these topologies
that suits the design objectives, or the one with the minimum
APL. In the following sections, we give the details of each
step in the FTTG algorithm.

B. Calculating the Required Number of Network Components

For irregular N-FTTG and for regular and irregular FTTG,
we first need to determine the minimum number of routers and
links. We give the necessary calculations for nonfault-tolerant
irregular topology, ring topology, and FTTG in the following
paragraphs.

1) Nonfault-Tolerant Irregular Topology: Given an appli-
cation with n nodes and a router set having p ports each,
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Fig. 4. Flowchart of FTTG algorithm.

where p > 2, we can determine the minimum number of
routers rmin for nonfault-tolerant irregular topology generation
using the following formula:

rmin =
⌈

n − 2

p − 2

⌉
. (11)

For rmin routers, each of which has p ports, we can have
at most prmin ports. Each link consumes two ports to connect

Fig. 5. Example of nonfault-tolerant irregular topology for an application
with 14 nodes. The topology uses a minimum number of four port routers
and links.

two routers. For rmin routers, we can have at least rmin−1 links,
which means all the links consume at least 2(rmin − 1) ports.
Then, the remaining ports can be used for connecting at most
prmin − 2(rmin − 1) nodes. This inequality can be written as

n ≤ prmin − 2(rmin − 1). (12)

Solving this inequality for rmin gives us (11). Clearly, the
generated nonfault-tolerant irregular topology will need at least
lmin links to connect rmin routers, where lmin = rmin − 1, as
proven in [4].

As an example, we calculate the minimum number of
routers and links for an application with 14 nodes, assum-
ing each router has four ports. When we use (11), we find
rmin = 6 and lmin = 5. In Fig. 5, we show an example of a
randomly generated nonfault-tolerant irregular topology using
six routers with four ports and five links. In this topology,
there exist 14 empty ports for 14 application nodes.

2) Ring Topology: Given a set of routers rmin with p ports,
where p > 2, and a set of nodes n of the given application,
the minimum number of routers rmin to generate a valid ring
topology can be found by the following formula:

rmin =
⌈

n

p − 2

⌉
. (13)

For rmin routers, each of which has p ports, we can have
at most prmin ports. Each link consumes two ports to connect
two routers. For rmin routers, a ring topology needs rmin links.
Thus, all links consume 2rmin ports. Then, the remaining ports
can be used, connecting prmin − 2rmin nodes. This inequality
can be written as follows:

n ≤ prmin − 2rmin. (14)

Solving this inequality gives us (13).
3) Fault-Tolerant Irregular Topology: As stated above, the

ring topology is a fault-tolerant regular topology because it
has exactly two routing paths from any router pair. However,
it has a high APL value when the number of routers in
the topology is high. To reduce the APL of a fault-tolerant
topology, we need to add extra links to minimize the graph
diameter, resulting in a minimized APL. When we add extra
links to the nonfault-tolerant irregular topology or to the ring
topology, the required empty ports for application nodes will
be reduced. Thus, we cannot map the given application’s nodes
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Algorithm 1: N-FTTG
Data: n: Number of nodes, p: Number of ports for routers.
Result: T ′(R′, L′): Generated topology, APLT ′ , R1: Routers with

one link connection.

1 begin
2 Determine rmin using Equation (11);
3 Add rmin routers to R = {r1, r2, . . . , rmin};
4 R′ = ∅; L′ = ∅;
5 Select a router r1 ∈ R;
6 R = R − r1; R′ = r1;
7 P′ = p(r1); /* Add empty ports p(r1) to empty

port list P′
*/

8 for i = 2 to i = rmin do
9 Select router ri ∈ R;

10 R = R − ri; R′ = R′ + ri;
11 Randomly select an empty port p(rj) ∈ P′;
12 Randomly select a port p(ri) from ri;
13 Connect ri and rj with the link lp(ri),p(rj);
14 L′ = L′ + lp(ri),p(rj);
15 P′ = P′ − p(rj) + (P(ri) − p(ri)); /* Remove

connected ports from and add empty
ports of ri to P′. */

16 Determine R1 : routers with p − 1 empty ports;
17 Calculate APLT ′ ;
18 return T ′(R′, L′), R1, and APLT ′ ;

on the topology. Therefore, we must add extra routers to the
nonfault topology to be able to add more links.

One option to resolve this issue is to double the routers
in the design. However, doing this will also double the area
of the network. Therefore, we limit the number of additional
routers to log2 (rmin) to have scalable increase for FTTG. We
determine the maximum number of routers using the following
formula:

rmax = �rmin + log2 (rmin). (15)

When we utilize rmax routers, each having p ports, we need
at least n empty ports to generate a topology. The remaining
ports can be used for links to connect routers. Since we can
have prmax ports and each link consumes two ports, we can
determine the maximum number of links lmax as follows:

n ≤ prmax − 2lmax (16)

lmax =
⌊

prmax − n

2

⌋
. (17)

To generate a fault-tolerant irregular topology, we first start
with rmin routers. We then increase the number of routers
by one until we reach rmax. Thus, the number of routers
for the generated fault-tolerant topologies varies between
rmin and rmax. In the following paragraphs, we explain how
we generate the topologies.

C. N-FTTG Algorithm

As we show in Fig. 4, after determining the required number
of routers for both N-FTTG and FTTG, we randomly gener-
ate a nonfault-tolerant irregular topology using our N-FTTG
algorithm. We give the sketch of N-FTTG in Algorithm 1.

In this algorithm, using (11), we first determine how many
routers will be needed to generate a valid irregular topology.
We then select the first router r1 ∈ R and move it to R′.

After moving r1 to R′, we keep track of empty ports in the
list P′. In the for loop of the N-FTTG algorithm, we select
a router ri from R and connect it to the router in R′. To do
this, we randomly select a port from P′ and a port from ri and
connect them. We accordingly update the router list R′, link
list L′, and the empty port list P′. When we connect a router
in R′, we use one port from P′ and one port from ri. When we
remove these ports from the empty port list, we add the empty
ports of ri to P′. We continue these random connections until
R = ∅, which is rmin − 1 times.

After the for loop terminates, we have a nonfault-tolerant,
fully connected irregular topology, which has at least n empty
ports to be mapped on. In this algorithm, we calculate the APL
of the generated topology and the routers that are connected
to the network with only one link, R1, (i.e., the routers that
have p − 1 empty ports). We use the list R1 in our FTTG
algorithm.

D. Adding Extra Links

The N-FTTG algorithm generates irregular topologies, in
that there is only one routing path from one router to another.
If there is a permanent fault on any of the links or ports on
the specified path, the application may not operate properly.
Therefore, the fabricated chip cannot be used. For example,
if there is a failure in the topology given in Fig. 5, there will
not be alternative path to send packets. For an alternative path
between any communicating router pair, we must add extra
links to the topology generated by the N-FTTG algorithm.

As shown in Fig. 4, after generating nonfault-tolerant
topologies, we add extra links to the generated topology by
leaving enough empty ports to map n nodes of the given appli-
cation. We give the sketch of this process in Algorithm 2,
where we first determine how many extra links can be added
to the topology. As stated above, nonfault-tolerant topology
uses lmin = r − 1 links. Then, using (17), we then determine
the maximum number of links lmax that can be used in the
fault-tolerant topology. Clearly, we can add l = lmax − lmin
links to the topology at hand. To do this, we add l links one
by one by connecting selected router pairs.

When we select the pairs to be connected, we use the router
set R1, which contains routers that have only one link connec-
tion to the network, so that we can have one more alternative
port connection to the remainder of the network. Additionally,
all the network components (i.e., routers and links) must be on
a cycle in the generated topology to be fault-tolerant. If there
are at least two routers in R1, we select the router pairs from
this set. However, we can have more than one option for this
selection. In this case, we select two routers ri and rj from R1

with a maximum distance dri,rj to minimize the APLT of the
topology T . If we have one router in R1, we select this router
and another router in the topology with the maximum distance.
If R1 = ∅ and we still have additional links that can be added
to the topology, we select two routers from the topology to
minimize APLT . After each selection, we connect the selected
routers ri and rj with a new link lri,rj .

For example, the topology in Fig. 5 has four routers, R1 =
{r3, r4, r5, r6}, with only one link connection. Suppose we can
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Algorithm 2: AddLinks
Data: n: Number of nodes, p: Number of ports for routers,

T ′(R′, L′): Non-fault-tolerant topology, R1: Routers with
one link connection, TL: Topology library.

Result: TL: Updated topology library.

1 begin
2 Determine lmax using Equation (17);
3 l = lmax − lmin;
4 for i = 1 to l do
5 if |R1| ≥ 2 then
6 Select ri, rj ∈ R1 s.t. dri,rj is maximum;
7 R1 = R1 − ri − rj;
8 else if |R1| = 1 then
9 Select ri ∈ R1 and rj ∈ R′ s.t. dri,rj is maximum

and rj has at least one empty port;
10 R1 = R1 − ri;
11 else
12 Select ri, rj ∈ R′ s.t. dri,rj is maximum and

ri and rj have at least one empty port;

13 Connect ri and rj with lri,rj ;
14 L′ = L′ + lri,rj ;

15 isomorph = 0; cycle = 0;
16 if R1 = ∅ ∧ min − cut(T ′) ≥ 2 then
17 cycle = 1;

18 for All topologies in TL do
19 Select a topology T(R, L) ∈ TL;
20 if T ′(R′, L′) = T(R, L) then
21 isomorph = 1;

22 if isomorph = 0 ∧ cycle = 1 then
23 TL = TL + T ′(R′, L′);
24 return TL;

add two extra links to this topology. In this topology, the max-
imum distance is dmax = dr3,r4 = dr3,r5 = dr3,r6 = 3. We
then randomly select r3 and r4 to connect. Then, R1 becomes
R1 = {r5, r6}. For the second link, we select r5 and r6.

After connecting all extra links to the topology, we check
that all the network components (i.e., routers and links) are on
a cycle. We know that if R1 = ∅ after the link connections,
all routers are on a cycle. However, this may not be true for
the links. Fig. 6 shows an example topology of all routers on
a cycle but link lr3,r4 not on a cycle. If there is an error in this
link, the system may not operate properly. If all the links in
the topology are on a cycle, the minimum cut degree of the
topology T , min − cut(T), must be at least 2. If R1 = ∅ and
min − cut(T) ≥ 2, we determine that all the components of the
topology T are on a cycle. If there is even a single component
not on a cycle, we simply discard the topology. We should
note here that FTTG algorithm generates a valid topology if
R1 = ∅ and all network components are on a cycle; otherwise,
it only returns the ring topology as our fault-tolerant topology.

After generating the fault-tolerant topology, we compare it
with previously generated fault-tolerant topologies. We check
whether the topology at hand is isomorphic with any topology
in the TL. If it is, we discard the topology at hand; if it is not,
we add it to the TL. We use a polynomial-time algorithm to
check the isomorphism between two graphs [33]. In Fig. 7, we
give two isomorphic graphs. In these graphs, router numbers
are in different places but network connections are the same.

Fig. 6. Topology with a link not on a cycle.

Fig. 7. Isomorphic graphs.

E. Complexity of FTTG

Given r routers, lmin links for N-FTTG, lmax links for FTTG,
an application with n nodes, and an iteration count t, we
calculate the complexity of the FTTG algorithm as follows.

If we exclude the time complexity of the APL calculation
for the generated topology, the complexity of N-FTTG can be
written as O(r).

After generating the nonfault-tolerant topology T(R, L), we
add l = lmax − lmin links to it. When we add each link, we cal-
culate the path length for each router pair; its time complexity
is r2(|L| + |R| lg |R|), where (|L| + |R| log2 |R|) is the com-
plexity of Dijkstra’s shortest path algorithm. Then, the time
complexity of this process can be written as O(lr3) because
|R| = r and r > |L|.

We check the min − cut(T) in the polynomial time com-
plexity of O(r3) using the Edmonds–Karp algorithm [34]. We
then check if the generated topology is isomorphic with the
ones in the TL. Assuming we have at most t−1 topologies with
r nodes in the library, we use the algorithm presented in [33],
which has a time complexity of O(r5). The outer loop of the
FTTG algorithm runs log2 r times. As a result, the time com-
plexity of FTTG can be approximated as O(tr5 log2 r), which
is dominated by the graph isomorphism part.

VI. APPLICATION MAPPING ALGORITHM

After generating a set of fault-tolerant topologies and cre-
ating a TL, we select a topology with a minimum APL value
for NoC design. The second phase of NoC design is mapping
the application with the objective of energy minimization, as
stated in Section IV.

We give the pseudo code of an SA-based application map-
ping algorithm in Algorithm 3, where we randomly map tasks
onto the topology (line 2) to obtain an initial mapping. We
then calculate the total energy consumption cost of the initial
mapping using (8) and the shortest path routing.
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Algorithm 3: SA-Based Mapping
Data: G(V, E), T(R, L), bwmin
Result: M: Mapping, ENoC

1 begin
2 M = Random_Initial_Mapping(G, T)

3 C = Calculate_ENoC(T)

4 Mbest = M
5 Cbest = C
6 Temperature = �10 ln |R|
7 for i → 0 to |R|2 do
8 Reject = 0
9 while Reject < 10 do

10 M′ = neighbor(M)

11 C′ = Calculate_ENoC(T ′)
12 bwreq = Calculate_max_bandwith_requirement(T ′)

�C = C − C′
13 Generate a random variable α, 0 ≤ α ≤ 1
14 if bwreq ≤ bwmin∧ (�C ≤ 0 or

α ≤ e(−�C)/Temperature) then
15 M = M′
16 Reject = 0
17 else
18 Reject + +
19 if Reject = 0 ∧ C < Cbest then
20 Mbest = M
21 Cbest = C

22 Decrement Temperature

23 M = Mbest
24 Comm = Cbest
25 return M, ENoC

After the initial mapping is determined, we set tempera-
ture to its highest value. The temperature parameter in our
mapping problem is analogous to the distance between two
nodes mapped on the topology. If the distance between two
exchange nodes is high, the temperature is high and vice
versa. Marcon et al. [36] stated that the algorithm obtains
good results when the initial temperature is selected to be
�10 ln |R|, where |R| is the number of routers in the topology.

After the temperature of the system is initialized, the algo-
rithm executes two nested loops. While the external loop
searches for global minima, the internal loop tries to refine
the local solution. We limit the number of external loop itera-
tions to |R|2, as suggested in [36]. The internal loop randomly
selects two nodes and swaps them to determine a new solu-
tion. It then evaluates whether the new solution is better than
the solution at hand. It also checks whether the bandwidth
requirement bwreq of the generated topology is less than or
equal to the allowed bandwidth limit bwmin. If it is, the solu-
tion is accepted as the current solution. Otherwise, it generates
a random variable α, where 0 ≤ α ≤ 1, and compares
it with the acceptance probability function e(−�C)/temperature.
If the result of the function is higher than α, the new move
is accepted. At high temperatures, the acceptance probability
is also high. When we lower the temperature of the system,
acceptance probability decreases. We limit the iteration of the
internal loop to ten consecutive rejects. After each iteration,
we decrement the temperature of the system and start a new
iteration, accepting the solution at hand as our initial solution.
Our SA-based algorithm returns the mapping with minimum
energy consumption value.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the FTTG algorithm by compar-
ing the topologies generated by FTTG with the ones generated
by N-FTTG. We implemented both algorithms in C++ and
evaluated them using our implementations. In the first set of
experiments, we compare the FTTG algorithm with N-FTTG
based on APL and area under varying numbers of nodes. In the
second set of experiments, we use real multimedia benchmarks
and custom graphs to compare area, energy, and performance
[i.e., average hop count (AHC)]. Finally, we give a case study
that shows several alternative topologies and mappings for a
benchmark example.

A. Evaluating FTTG

In this set of experiments, we generate topologies using
FTTG and N-FTTG for applications with different numbers
of nodes (n). We select the iteration count t = 500 and the
number of router ports as 4, 5, and 8. We conduct experiments
with node numbers between 8 and 100. We give the APL
and area comparisons in Table II. In the table, we give the
results for n varying only between 8 and 20 due to space
concerns.

In Table II, we show the APL and area overhead brought
by the FTTG algorithm against topologies generated by the
N-FTTG algorithm. The first column gives the number of ports
for the routers used in each topology generation. In the second
column, we give the number of nodes that can be mapped on
the generated topologies. The third and fourth columns show
the APL and minimum number of routers used for nonfault-
tolerant topologies. Note that we can generate more than one
topology with N-FTTG algorithm, and thus we select the one
with best APL value. Columns 5–7 show the APL, the number
of routers, and links used for FTTG, respectively. As N-FTTG,
FTTG generates several topology alternatives and we select
the one with best APL value. While column eight shows the
APL increase brought by the FTTG algorithm, the last col-
umn shows the area overhead of FTTG against N-FTTG. The
negative values in column eight mean that FTTG generated
topologies have better APL values. When we calculate the
area overhead, we assume that the area of the network com-
ponents for N-FTTG consume 6% of the total chip area, as
suggested by Dally and Towles [2]. For example, when n = 8
and p = 4 in Table II, N-FTTG uses three routers. That means
each router consumes 2% chip area. On the other hand, FTTG
uses four routers, increasing the chip area by 2%, which is
shown in the last column of Table II. In this calculation, we
omit the area increase of the extra links as in [35] because the
area consumed by the links is negligible when compared to
the area consumed by the routers. The network area increase
can be calculated separately using the number of routers for
each topology.

As column 8 in Table II shows, FTTG generates topologies
with close or better APL values than N-FTTG counterpart.
When the number of nodes or the number ports of the
router increases, the APL gain of FTTG against N-FTTG also
increases. The importance of APL values is evident in the
mapping phase. When the APL value is smaller, the AHC
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TABLE II
APL AND AREA COMPARISON OF FTTG AGAINST N-FTTG WITH VARYING NUMBERS OF NODES AND PORTS

Fig. 8. Comparison of FTTG with N-FTTG. (a) APL value comparison with varying numbers of nodes. (b) Area-increase percentages
of FTTG against N-FTTG.

(and latency values) of the application will be smaller, which
results in a better performance.

As the last column in Table II shows, the area increase
brought by the FTTG algorithm is tolerable. For example,
using four port routers, the area increase compared to the
N-FTTG topologies is 2.41% on average. One important obser-
vation is that when the number of application nodes increases,
the area overhead decreases. This result shows that the area
increase for applications with large numbers of nodes and for
topologies with large numbers of routers will be very small.

As stated above, the range of nodes in our experiments
changes from 8 to 100. In Fig. 8, we illustrate how the APL
values and area-increase percentages scale with varying num-
bers of nodes for topologies that use four port routers. In
Fig. 8(a), we give the APL comparison for N-FTTG and
FTTG. For this comparison, we select the topologies with the
best APL values for N-FTTG and FTTG. As the APL values
for the two types of topologies show, for a small number of
nodes, our FTTG algorithm determines topologies with sim-
ilar APL values to the N-FTTG. After the number of nodes
exceeds 16, the FTTG determines better APL values than its
counterpart.

We give the maximum area overhead in percentages in
Fig. 8(b), comparing the area increase against N-FTTG. As
the graph shows, the area overhead is within tolerable limits.
In the area comparison, the fluctuation in part of the func-
tion is because the selected number of routers increases for

varying n values. We select the maximum number of routers
using (15), and because the log2(rmin) increases when the
number of nodes increases, fluctuations occur. As the graph
in Fig. 8(b) shows, when the number of nodes increases, the
area overhead decreases. For large numbers of nodes, the APL
value increase of FTTG compared to N-FTTG is within toler-
able limits. However, FTTG brings a fault-tolerance capability
with a small area increase. With diminishing technology size,
we can expect that the number of nodes for future applications
will be much higher than now; therefore, our FTTG method
will be much more effective in future while it still meets the
current fault-tolerant topology needs.

B. Evaluating the Mapping Algorithm

In this set of experiments, we evaluate the FTTG and
SA-based mapping algorithms on a set of multimedia bench-
marks and custom graphs. We select six video applications
from the literature as benchmarks, namely the video object
plane decoder and the MPEG-4 decoder from [37], the multi-
window display from [8], and the 263 decoder, 263 encoder,
and MP3 encoder from [9]. Since the number of nodes for
the selected benchmarks range between 12 and 16, we ran-
domly generate three application graphs with higher numbers
of nodes. We name these three graphs as G30, G40, and G50
and they have 30, 40, and 50 nodes, respectively.

For this set of experiments, we use four port routers. After
determining the number of routers and links, we generate two
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TABLE III
ENERGY, AREA, AND LATENCY COMPARISONS FOR N-FTTG AND FTTG METHODS AND MAPPINGS

topology alternatives. For the N-FTTG and FTTG topologies,
we select the one with a minimum APL value. We then map
the applications onto the generated topologies using our SA
method. In the mapping process, we aim to minimize only
the dynamic energy consumption of the network components
(i.e., the total energy consumption of sending data over routers
and links). For our energy calculations, we use the energy
model given in Section IV-A. For energy consumption param-
eters, we adopt the energy consumption values for routers and
links for 45-nm technology given in [35] and we derive the
energy values for 22-nm technology using the scaling factors
from ITRS [38]. In 22-nm technology, we estimate the energy
consumption of the routers at 3.20 pJ/Kb and the link energy
consumption at 4.78 pJ/Kb/mm. We assume the length of the
links as 1 mm.

We present the results of these experiments in Table III.
In the first two columns, we give the name of the graph
and the number of nodes for the given graph, respectively.
Columns 3 and 4 give the energy consumptions of the map-
pings for the N-FTTG and FTTG, respectively. Column 5
shows the energy comparison of FTTG against N-FTTG. The
negative values in this column means that mappings on FTTG
topologies has better energy values than N-FTTG. Column 6
gives the area overhead of the FTTG topologies against
N-FTTG topologies. Finally, the last two columns show the
AHC value to compare the latency for the two mappings.

As the energy values for six benchmarks in Table III show,
our FTTG and the mappings obtain very close energy values
to the N-FTTG most of the time. In most of the cases, it
obtains better results than its counterpart. The energy gain
of FTTG against N-FTTG is 0.47% on average for this nine
application graphs. We should note here that when the number
of application nodes is small (i.e., less than 16) our FTTG
algorithm returns a ring topology as the topology with best
APL value. When the application nodes is high, it generates a
fault-tolerant irregular topology that is different than ring. We
show an example FTTG topology examples for MP3 encoder
benchmark in the next section.

The area increase of FTTG topologies against N-FTTG is
around 0.97% on average, which is in tolerable limits. The
AHC values of FTTG topologies are better than N-FTTG
most of the time. This means that the latency of the applica-
tion running on FTTG topologies will be better than N-FFTG
topologies.

The last three rows of Table III give the results of three
mappings for custom generated graphs G30, G40, and G50,
respectively. For all custom graphs, energy and AHC values
of FTTG are better than N-FTTG and the area increases are
less than 0.5%. This shows that FTTG performs better than
N-FTTG when the number of application nodes increases.

As the set of experiments on real benchmarks demonstrates,
our FTTG algorithms brings fault tolerance to NoC design,
with only a small area overhead. When the number of appli-
cation nodes increases, FTTG performs better than N-FTTG
and it determines topologies with lower energy consumption
than its counterpart. As we stated above, with diminishing
technology size, we can expect that the number of nodes for
future applications will be much higher than now; therefore,
our FTTG method will be much more effective in future while
it still meets the current fault-tolerant topology needs.

C. Case Study: MP3 Encoder

In this section, we illustrate the generated topologies and the
mapping results for the benchmark MP3 encoder using four
port routers. We give the generated topologies and the mapping
results in Fig. 9. Encircled numbers in this figure represent
the nodes of the MP3 encoder application. Note that the map-
pings may not be optimal because each mapping is obtained
using our SA-based mapping algorithm, and SA-based meth-
ods do not guarantee determining optimal solution. In this
figure, we illustrate the mapping on ring, N-FTTG, and two
FTTG topologies, respectively. We compare these mappings
based on area, energy consumption, and on AHC as the latency
parameter.

The area increases of the first FTTG (eight routers) against
the ring (seven routers) and N-FTTG (six routers) are 0.85%
and 2%, respectively, while they are 1.71% and 3% for the
second FTTG (nine routers). The AHC values for the four
topologies in Fig. 9 are 0.76, 1.07, 0.84, and 1.08, respec-
tively. The energy consumption of the ring and N-FTTG are
calculated as 0.254 and 0.241 mJ, while they are 0.257 and
0.269 mJ for the FTTGs. As the energy values illustrate,
the FTTG in Fig. 9(c) brings only 6.7442% energy overhead
against the N-FTTG. Our FTTG given in Fig. 9(d) brings a
11.27% energy increase against the N-FTTG. Therefore, the
designer’s preferred topology would be the one in Fig. 9(a)
because it achieves better energy values than the others and
results in less area increase and better AHC values.
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(a) (b)

(c) (d)

Fig. 9. Mappings of MP3 encoder application onto (a) ring, (b) N-FTTG, and (c) and (d) two FTTGs.

D. Routing

Routing is an important mechanism in NoC designs. For
healthy communication in the network, packets must be sent
and received on time. To achieve this goal, deadlocks must
be avoided and bandwidth requirements fulfilled. In our eval-
uations above, we used the shortest path routing as the
default routing. This routing is static and saved in the rout-
ing tables (RTs) of each router. However, when there is a link
failure on the default routing path, we cannot use the chip.
Therefore, there must be an alternative RT to cover a link
failure. As a consequence, we should have more than one RT
to cover all single link failures. The default routing ensures
the latency and bandwidth constraints and is optimized for
energy consumption, but alternative routings may not guar-
antee these constraints and the energy consumption may not
be optimal. Alternative RTs can be powered up by the chip’s
external pins. For example, with two external pins, we can
have four different static RTs for the application.

If we create an RT for each link failure, we end up with |L|
RTs, which needs �log2 |L| external pins for the chip to select
the required RT. However, each RT may cover more than one
link failure since the topology may have more than one extra
links. A topology with r routers needs as least r − 1 links
to be fully connected. For example, the topology in Fig. 9(c)
has eight routers and nine links, which means that two extra

links (el) can be removed from the topology and the topology
can still be fully connected. In short, we can remove el =
l − r − 1 extra links from an FTTG topology without discon-
necting it. When we select the links to be deleted, we should
make sure that the remaining is a fully connected network and
energy increase of the alternative RT is minimum. After deter-
mining which links will be covered by the alternative RT, we
can use the shortest path routing algorithm to generate the RTs.

VIII. CONCLUSION

In this paper, we present a fault-tolerant application-specific
topology-generation algorithm and an SA-based mapping
algorithm. Our FTTG algorithm generates topologies such that
each router of the topology can be reached from any router
with at least two alternative paths. The generated topology
can be used to tolerate at least one link failure by applying
the packets’ alternative routings. We compare our method with
nonfault-tolerant topologies and show that with only a small
increase in area, our method brings fault tolerance capability
to NoC designs.
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