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The goal of Ambient Assisted Living (AAL) research is to improve the quality of life of the elderly and
handicapped people and help them maintain an independent lifestyle with the use of sensors, signal pro-
cessing and telecommunications infrastructure. Unusual human activity detection such as fall detection
has important applications. In this paper, a fall detection algorithm for a low cost AAL system using vibra-
tion and passive infrared (PIR) sensors is proposed. The single-tree complex wavelet transform (ST-CWT)
is used for feature extraction from vibration sensor signal. The proposed feature extraction scheme is
compared to discrete Fourier transform and mel-frequency cepstrum coefficients based feature extrac-
tion methods. Vibration signal features are classified into ‘‘fall’’ and ‘‘ordinary activity’’ classes using
Euclidean distance, Mahalanobis distance, and support vector machine (SVM) classifiers, and they are
compared to each other. The PIR sensor is used for the detection of a moving person in a region of interest.
The proposed system works in real-time on a standard personal computer.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Most European countries will face a large increase in the num-
ber of elderly people in the near future. The development of intel-
ligent homes will improve the quality of life of seniors and the
handicapped people. It is reported that unexpected falling is a ma-
jor problem and about one-third of people over 65 falls unexpect-
edly each year (Hausdorff et al., 2001). Fall related health and
injury costs are on the order of billions of dollars worldwide.

Fall detection systems will not only help save billions of dollars,
but also provide elderly people an independent way of life (Mar-
quis-Faulkes et al., 2004; Nait-Charif and McKenna, 2004). Cur-
rently, the commercially available fall detection systems feature
body worn sensors which are connected to a wireless sensor net-
work (Brownsell et al., 2011; Nyan et al., 2008). There are other re-
cent studies which turn a mobile phone into a fall detector (Dai
et al., 2010). The main disadvantage of these systems is that wear-
ing and/or carrying them is not convenient all the time and elderly
people may simply forget to put on these sensors.

Computer vision and sound sensor based systems can be also
used for fall detection (Toreyin et al., 2005, 2008). However, most
people find having a camera in their houses invasion of their pri-
vacy, even if the video and sound recordings are not transmitted
elsewhere. Vibration sensor based fall detection systems are pro-
posed by Toreyin et al. (2008) and Alwan et al. (2006). However,
pattern recognition algorithms for fall detection are not described
in both articles. Without a pattern recognition algorithm the
resulting system will not be a robust and practical system.

Our system is different from the currently available AAL sys-
tems. We propose to install both vibration and PIR sensors to intel-
ligent homes to realize a robust system. Vibration and PIR sensors
can be placed on the floor and the ceiling of each room of the
house. These two different types of sensors complement each other
and daily activities of seniors can be monitored without producing
false alarms and unusual events like falling can be detected. The
resulting AAL system will be a low-cost and privacy-friendly sys-
tem thanks to the types of sensors used.

In this study, individual decisions of signal classifiers from
vibration and PIR sensors are fused to detect a falling person. The
Euclidean distance classifier, the Mahalanobis distance classifier,
and the SVM classifier are trained for the vibration signals and a
threshold-based classifier is used for the PIR sensor signals. A sin-
gle-tree complex wavelet transform (ST-CWT) is used for feature
extraction from vibration sensor signal. The feature extraction
scheme is compared to discrete Fourier transform and mel-fre-
quency cepstrum coefficients based feature extraction methods.
The most important characteristic of the complex wavelet trans-
form is that it possesses shift invariance and directional selectivity
properties. Dual-tree CWT has been shown to be a promising alter-
native to classical DWT for a variety of signal and image processing
tasks. However, DT-CWT suffers from computational burden and
redundancy caused by the exploitation of two wavelet trees. In this
article, we employ single-tree CWT for fall detection, which is
designed using computationally efficient lifting structures in a
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Table 1
Impulse response of Kingsbury’s 8th order q-shift analysis filters for the dual-tree
CWT. They are normalized so that

P
nh0 ½n� ¼ 1.

Analysis filters h0 h1 g0 g1

Q-shift filter coefficients 0.0248 �0.0808 �0.0808 �0.0248
0 0 0 0
�0.0624 0.4155 0.4155 0.0624

0.1653 �0.5376 0.5376 0.1653
0.5376 0.1653 0.1653 �0.5376
0.4155 0.0624 �0.0624 0.4155
0 0 0 0
�0.0808 �0.0248 0.0248 �0.0808
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single-tree. The single-tree filter-bank producing CWT coefficients
has time-varying update and prediction filters for lifting structures.
Time-varying nature of the proposed filters enables the implemen-
tation of half-sample delayed filters of dual-tree CWT in a single-
tree in an interchangeable manner. This leads to a time-invariant
feature extraction method. Single-tree CWT is superior to both or-
dinary DWT because the CWT is time-invariant and dual-tree CWT
which doubles the amount of data after the analysis stage.
Vibration signal energies in different frequency sub-bands pro-
duced by ST-CWT are taken as feature parameters. These feature
parameters are used for classifying vibration signals as ‘‘fall’’ or
‘‘ordinary activity’’ once a moving person is detected by the PIR
sensor.

In Section 2, the ST-CWT method is introduced. Analysis of PIR
sensor signal is presented in Section 3. In addition to ST-CWT, two
different frequency based feature extraction schemes from vibra-
tion signals are studied and the three feature extraction schemes
are compared to each other. The classification methods and exper-
imental setup are described in Section 4. Finally, conclusions are
drawn in the last section.
Fig. 1. Time-varying lifting scheme for single-tree CWT.
2. Single-tree CWT

In this article, single-tree CWT is used for feature extraction
from sensor signals. The classical discrete wavelet transform
(DWT) has several limitations hampering its effectiveness in signal
and image analysis, such as time-variance and lack of directionality
(Selesnick et al., 2005). It is well-known that the discrete wavelet
coefficients may change significantly when the input is shifted
slightly. To overcome such limitations of DWT, the dual-tree com-
plex wavelet transform (DT-CWT) is proposed whereby two filter
pairs are used in parallel to decompose a given signal (Kingsbury,
1998). In contrast to the real DWT, two sets of filters are employed
in the two wavelet trees, which are called real and imaginary trees,
respectively. Two different DWTs are executed in parallel in dual-
tree structure where the real part of DT-CWT is provided by the
first one and the imaginary part by the second one. The reasoning
behind the use of dual-tree is to obtain an analytic complex wave-
let wcðtÞ:

wcðtÞ ¼ whðtÞ þ jwgðtÞ ð1Þ

where whðtÞ and wgðtÞ denote wavelet functions of real and imagi-
nary trees, respectively. If the wcðtÞ is approximately analytic (has
support on only one-side of the frequency axis), the resulting trans-
form can possess the properties such as lack of aliasing, directional-
ity and shift invariance just like the Fourier transform whose
complex basis functions are analytic (Selesnick et al., 2005). For
wcðtÞ to be approximately analytic, it is required that one wavelet
basis is the approximate Hilbert transform of the other wavelet
basis:

wgðtÞ �HfwhðtÞg ð2Þ

In order to satisfy the condition in Eq. (2), low-pass analysis filters
in real and imaginary trees must be offset approximately by half-
sample (Selesnick, 2001):

g0½n� � h0½n� 0:5� ð3Þ

In the literature, two low-pass filters are jointly designed such
that half-sample delay, perfect reconstruction and finite support
conditions are simultaneously satisfied, using several filter design
methods (Selesnick et al., 2005). We focus on the q-shift filter de-
sign in this paper and employ them to obtain time-varying lifting
filters. Analysis q-shift filters for real and imaginary trees are
shown in Table 1 (Kingsbury, 2000).
2.1. Time-varying lifting structures for single-tree CWT

We design real-valued lifting filters to be used in the single-tree
context to obtain a transform that is approximately complex in the
sense of DT-CWT without causing redundancy and computational
burden. The implementation scheme of our real-valued ST-CWT
design is shown in Fig. 1.

In Fig. 1, U1;2 and P1;2 denote two different sets of update and
prediction filters, respectively. Since the aim is to construct an
approximately complex wavelet transform using only one tree,
the first update filter U1 must correspond to the low-pass analysis
filter of the real tree h0½n� and the second update filter U2 must cor-
respond to the low-pass analysis filter of the imaginary tree g0½n�,
of DT-CWT, respectively.

2.2. Lifting filter design

Even and odd samples of the subsignal xL½n� are obtained using
U1½n� and U2½n�, respectively. Similarly, even and odd samples of
xH½n� are obtained using P1½n� and P2½n�, respectively. Using U1

and U2 in a sequentially switched manner for low-pass filtering
of the input signal, we construct a time-varying single-tree lifting
structure that keeps the benefits of DT-CWT. More formally, the in-
put signal is first divided into even-indexed samples x̂L½n� and odd-
indexed samples x̂H½n� through a lazy filter-bank. Even-indexed
samples of x̂L½n� is updated by U1 and odd-indexed samples of
x̂L½n� is updated by U2. Let ~h1½n� and ~h2½n� denote the effective
half-band lowpass filters processing the input signal x½n� before
downsampling. Their z-transforms are given by

~H1ðzÞ ¼ 1=2þ z�1U1ðz2Þ ð4Þ

~H2ðzÞ ¼ 1=2þ z�1U2ðz2Þ ð5Þ

We design filters U1ðzÞ and U2ðzÞ, or equivalently ~H1ðzÞ and
~H2ðzÞ using the following constraints so that the resulting trans-
form is approximately complex:

(i) Since ~hi½n� is a half-band filter, ~hi½2n� ¼ 0 for n – 0; i ¼ 1;2,
for perfect reconstruction in a lifting structure.

(ii) Filters ~h1½n� and ~h2½n� must have approximate group delays
of 1=4 and 3=4, respectively so that there exist 0.5 delay
difference between the two filters (Abbas and Tran, 2008).
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Fig. 2. Seven-level wavelet tree.
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(iii) Filters ~H1ðzÞ and ~H2ðzÞ must have a zero at z ¼ �1, that is,P
n
~hi½n�ð�1Þn ¼ 0 for i ¼ 1;2 so that ~HiðejwÞ ¼ 0 at w ¼ p.

Based on the constraint (i) the 7th order FIR filter should be in
the following form:

~h1½n� ¼ fa1;0;a2;a3;a4;0;a5g ð6Þ

where a3 denotes the coefficient at n ¼ 0. We can use the three
dominant center coefficients of h0 from Table 1 to obtain a2; a3

and a4 as follows

a2 ¼ 0:1538; a3 ¼ 0:5; a4 ¼ 0:3864 ð7Þ

which are scaled versions of h0½4�; h0½5�, and h0½6�, respectively.
Since the filter coefficients in Eq. (6) must sum to one, we have

a1 þ a5 ¼ �0:0402 ð8Þ

To satisfy the constraint (iii), we need

a3 �
X
i–0

ai ¼ 0 ð9Þ

which is already satisfied by setting a3 ¼ 0:5. The final constraint to
satisfy is the half-sample delay the constraint (ii). The group delay
of the filter ~h1½n� is given by

sgðwÞ ¼ �
@/ðwÞ
@w

ð10Þ

where /ðwÞ ¼ argf~H1ðejwÞg is the phase of the DTFT of ~h1½n�. The fre-
quency response of ~h1½n� is given by:

~H1ðejw; a1Þ ¼ a1e3jw þ
X4

i¼2

aieð3�iÞjw þ ð�0:0402� a1Þe�3jw ð11Þ

where a1 is the only unknown. The filter coefficient a1 can be easily
determined by one-dimensional exhaustive search in the interval
½�1;1�. First, for each a 2 ½�1;1� we fit a linear model to the phase
/ðw;aÞ ¼ argf~H1ðejw;aÞg. The reason is that the q-shift filters are
approximately linear phase (Kingsbury, 2000) and have almost con-
stant group delay. Fitting process is performed for low frequencies
(w 2 p

2 ;
p
2

� �
) because approximately linear behavior of the phase

function disappears as the w approaches �p. After fitting the linear
model, the negative slope of the resultant line yields the group de-
lay of the filter from Eq. (10). To have a group delay of 1=4, it turns
out that

a1 ¼ �0:05; a5 ¼ 0:0098 ð12Þ

The second filter ~h2½n� is simply the time reversed version of the
filter ~h1½n�. This is similar to the time reversed design of {h0; g0}
filter pair in (Kingsbury, 2000). Hence, ~h2½n� is given by

~h2½n� ¼ fa5;0;a4;a3;a2;0;a1g ð13Þ

Since ~h2½n� is the time-reversed version of ~h1½n� they approxi-
mately satisfy the half-sample delay condition given in Eq. (3). It
is possible to implement these two filters after decimation because
they can be expressed in half-band form given in Eqs. (4) and (5)
where

U1ðz2Þ ¼ a5z�2 þ a4 þ a2z2 þ a1z4 ð14Þ

U2ðz2Þ ¼ a1z�2 þ a2 þ a4z2 þ a5z4 ð15Þ

Prediction filters P1 and P2 are designed by applying the same
design strategy as in update filters. In prediction, P1 uses only those
samples of the signal xL½n� which are updated by U1 and P2 uses
only those samples of the signal xL½n� which are updated by U2.
From Table 1, h1½n� ¼ ð�1Þnh0½N � n� where N is the length of
the filter. Thus, effective prediction filter corresponding to P1 is
given by
~g1½n� ¼ f�a5;0;�a4;a3;�a2;0;�a1g ð16Þ

Since g1½n� ¼ h1½N � n� from Table 1, effective prediction filter corre-
sponding to P2 is given by

~g2½n� ¼ f�a1;0;�a2;a3;�a4;0;�a5g ð17Þ

Update and prediction filters designed above are employed at the
second decomposition level or higher. For the first level, half-
sample delay condition in Eq. (3) becomes one-sample delay
condition for DT-CWT to be approximately analytic at each level
(Selesnick et al., 2005). Hence, simple f1=2;1=2g filter is used as
the effective update filter at the first level, and the coefficient at
n ¼ 0 is changed between U1 and U2. For prediction at the first level,
f�1=4;1;3=4g effective prediction filter is employed, which assigns
weights to the samples based on their proximity to the predicted
sample.

Vibration sensor signals are fed to a seven-stage wavelet-tree as
shown in Fig. 2 and wavelet energy values are used in the feature
vector for feature extraction.

2.3. Feature extraction using ST-CWT

Seven-level single-tree complex wavelet transform is applied to
2048-sample-long signal windows using the lifting filters in Sec-
tion 2.2. The seven-level ST-CWT divides the input signals into
angular frequency sub-bands [0,p/128], [p/128,p/64], [p/64,p/
32], [p/32,p/16], [p/16,p/8], [p/8,p/4], [p/4,p/2], and [p/2,p]
which correspond to [0, fs/256], [fs/256, fs/128], [fs/128, fs/64], [fs/
64, fs/32], [fs/32, fs/16], [fs/16, fs/8], [fs/8, fs/4], and [fs/4, fs/2] Hz
bands, respectively. In this study, the sampling frequency fs is se-
lected as 900 Hz. In a seven-level wavelet tree the sub-signal
x0½n� comes from [0,p/128], x1½n� comes from [p/128,p/64], x2½n�
comes from [p/64,p/32], . . . , and x7½n� comes from [p/2,p] fre-
quency sub-bands of the sensor signal x½n�, respectively. Feature
parameters are extracted by finding the energies of resulting fre-
quency sub-bands. The feature vector for a frame of 2048 sample
sensor signal is given by

v ¼ kx0k2kx1k2 . . . kx7k2
h iT

: ð18Þ

The ST-CWT is compared to the DFT and the mel-cepstrum
based feature extraction schemes in Section 4.

3. Analysis of PIR sensor signal

PIR sensor is used to prevent possible false alarms which may
occur due to slamming a door, falling objects, or other non-human
vibration signal sources (Toreyin et al., 2008).

The strength of the received signal from the PIR sensor changes
with motion of a hot object within the viewing range of the sensor.
Distance between the PIR sensor and hot object affects the



Fig. 3. Time-domain PIR sensor signal records for (a) falling and (b) no-activity cases. The y-axis is proportional to the voltage value of the analog sensors.
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amplitude of the sensor signal. Typical sensor signals correspond-
ing to falling and no-activity cases are shown in Fig. 3. The sam-
pling rate is 100 Hz with 8-bit resolution for these records. The
primary task of the PIR sensor is to detect human motion in a
specific region of interest. Alarms produced by other sensors are
ignored when there is no motion in a room.

The PIR sensor signal by itself is not reliable for fall detection. A
walking person may also produce a signal as shown in Fig. 3(a).
Therefore, we can only use PIR sensor signal as a first discrimina-
tory step in our multi-sensor fall detection system. It is trivial to
distinguish ‘‘activity’’ and ‘‘no-activity’’ cases using the PIR sensor
signal. As a result, a simple thresholding method is used to detect
‘‘no-activity’’ cases.

If there is a pet at home then simple thresholding is not suffi-
cient. It is possible to distinguish walking pets from human beings
using the PIR sensor signal, because leg movements of pets are
much frequent than human beings (Toreyin et al., 2008). In this
case, a two-level wavelet tree is used for feature extraction from
the PIR sensor signal and the wavelet energy vector fed to a Mar-
kov-model based classification engine. When the vibration system
detects a ‘‘fall’’ and only pet activity exists after that an alarm is
still issued in spite of the motion. Because this motion is probably
due to the pet not the owner of the house.
4. Experimental setup and studies

In this article, GS-20DX vibration sensor manufactured by OYO
Technologies is used. This sensor can detect vibration signals from
distances up to 25 m. Therefore, it may be enough to install a single
vibration sensor into each room of an intelligent house. The vibra-
tion signal dataset is composed of records containing activities
such as falling, walking and running at different speeds, slamming
a door, sitting on the floor, and falling objects obtained from 10
people. Analog vibration signals are sampled at a rate of 900 Hz
and digitized with 8-bit resolution.

Three-seconds-long signal records from vibration sensor corre-
sponding to falling, walking and slamming a door are shown in
Fig. 4. Note that, these are raw signals without pre-processing.
Note also that, amplitudes of vibration signals differ, because they
depend on the distance of the person to the sensor and on the
pushing off strength of the foot. Walking very close to the sensor
and/or stomping may result in high-amplitude vibration signals
which may resemble falling. For this reason, fall detection systems
based only on the signal strength may produce false alarms. To
prevent false alarms, duration of the activity should be taken into
account, as well . A typical fall lasts about two seconds. Therefore, a
2048-sample-long analysis window is selected in the proposed
system.
Signals acquired by vibration sensors may contain various fre-
quency components depending on the architecture of the building
in which intelligent room is located. Moreover, running machines
in the building may cause additional signal activity at different fre-
quencies. Our system checks the strength of the vibration signal
before analyzing the frequency content of the signal. Signal win-
dows with high deviations from the average value are chosen as
candidate fall regions. An experimentally determined value is used
as the threshold. Let M ¼max xðnÞj j and m ¼min xðnÞj j within an
analysis window of length 2048 samples. When M-m is larger than
the threshold, this window of data is further processed by various
feature extraction schemes for fall detection. Flowchart of the real-
time algorithm is shown in Fig. 5.

In this article, three different frequency extraction schemes
from vibration signals are studied and compared to each other.
Feature extraction using ST-CWT is described in Section 2.3 and
in the following two subsections, the DFT and the mel-cepstrum
based feature extraction schemes are described.

4.1. Feature extraction using discrete Fourier transform (DFT)

Frequency content of the vibration signal is analyzed in sub-
bands. It is observed that most of the vibration signal energy is
concentrated in low-bands. Hence, more emphasis is given to low-
er frequencies by assigning more sub-bands to them as shown in
Fig. 6. Boundary frequencies of sub-bands are fs/32, fs/16,
3f s=32; f s=8; 3f s=16; f s=4; 3f s=8, and fs=2 which correspond to
28.13 Hz, 56.25 Hz, 84.38 Hz, 112.5 Hz, 168.75 Hz, 225 Hz,
337.5 Hz, and 450 Hz if the sampling frequency, fs, is set as
900 Hz. Energies of these frequency sub-bands are computed with
Eq. (19) and used as eight feature parameters.

GðmÞ ¼
X

k2BðmÞ
XðkÞj j2 ð19Þ

where XðkÞ is the DFT of the vibration signal and represents the mth
frequency band, for m ¼ 1; . . . ;8. For the 2048-point DFT, BðmÞ rep-
resents the indices of sub-bands [1,64], [65,128], [129,192],
[193,256], [257,384], [385,512], [513,768], and [769,1024].

4.2. Feature extraction using mel-frequency cepstrum coefficients
(MFCC)

The other feature extraction method is based on mel-cepstrum
which is widely used in speech and image processing (Jabloun
et al., 1999; Cakir and Cetin, 2010; Yorulmaz et al., 2012). The fre-
quency decomposition of the MFCC is logarithmic allocating more
bands to low-frequency sub-bands compared to high-frequency
sub-bands. As discussed in Section 4.1, this approach is suitable



Fig. 4. Time-domain vibration sensor signals corresponding to (a) falling, (b) walking and (c) slamming a door. These are raw signals without pre-processing. The y-axis is
proportional to the voltage value of the analog sensors.
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to vibration signals. Most of signal energy is concentrated in low-
frequency sub-bands therefore MFCC can be a good candidate for
feature extraction from vibration signals.

As pointed out in Section 4.1 after computation of the DFT of the
vibration signal window, energies of the frequency sub-bands are
calculated with Eq. (19). Eight feature parameters are extracted
by finding eight mel-frequency cepstrum coefficients, CðuÞ, with
the following formula using discrete cosine transform (DCT):
CðuÞ ¼ DCT�1 log GðmÞð Þf g; u ¼ 1; . . . ;8 ð20Þ
4.3. Computational complexity of the feature extraction algorithms

The DFT, the MFCC, and the ST-CWT are compared to each other
in terms of computational complexity.



Fig. 5. Flowchart of the real-time algorithm.
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Fast Fourier transform (FFT) is utilized instead of the DFT in the
tests. The N-point FFT requires Nlog2N complex multiplications
and additions. Besides, N real multiplications are needed to calcu-
late the energies of the frequency sub-bands. Therefore, computa-
tional complexity of the DFT based feature extraction method is on
the order of OðN log2NÞ.
The mel-cepstrum based feature extraction scheme needs an
extra K log2K real multiplications and additions to carry out the in-
verse discrete cosine transform, where K ¼ 8 which is the number
of mel-frequency cepstrum coefficients. Therefore, the computa-
tional complexity of the MFCC method is OðN log2NÞ þ OðK log2KÞ.
In addition, eight look-up operations are needed because the log
operation is performed by a look-up table.

The computational cost of the dual-tree CWT is twice that of or-
dinary DWT which can be implemented in OðNÞ, where N is the
number of samples in the signal (Romberg et al., 2001). The com-
putational complexity of the ST-CWT is equivalent to the ordinary
DWT. In each branch of Fig. 2, the computational cost is equivalent
to a discrete convolution operation. We have a seven-level tree
therefore 14 convolutional operations are performed. The number
of nonzero filter coefficients is five in Eq. (6). To get a convolutional
output, five real multiplications are performed and the energy val-
ues of eight sub-signals are computed as the features. The exact
number of real multiplications is given in Table 2.

Feature extraction using the ST-CWT is a computationally effi-
cient method in comparison to the DFT and the MFCC based feature
extraction schemes due to the fact that the ST-CWT is designed
using lifting structures in a single-tree.
4.4. Classification methods

After the feature extraction, classification for the vibration sig-
nals is done between ‘‘fall’’ and ‘‘ordinary activity’’. For this pur-
pose, the Euclidean distance classifier, the Mahalanobis distance
classifier, and the SVM classifier are used and compared to each
other.

The LIBSVM libraries are used for training and testing linear ker-
nel based SVM classifier (Chang and Lin, 2011). It is experimentally
observed that the linear kernel based SVM classifier is sufficient to
classify the vibration signals as ‘‘fall’’ or ‘‘ordinary activity’’ instead
of the more complex kernels like the polynomial and radial basis.

It is experimentally observed that the SVM classifier provides
the best results however Mahalanobis distance classifier provides
very close results as explained in the following sub-section in
details.
4.5. Experimental results

The dataset contains 2048-sample-long signals corresponding
to the following number of incident records: 100 falling, 1419
walking/running, 30 sitting on the floor, 30 slammed door, and
65 fallen book. Among falling and walking/running records, 40%
of them are used for training classifiers. Similarly, one third of sit-
ting on the floor, slammed door, and fallen book records are used
for training. Remaining records are used as the test dataset.

Three different classifier models are formed for each of the clas-
sifiers using the single-tree complex wavelet transform, discrete
Fourier transform, and mel-frequency cepstrum coefficients and
the dataset is tested for each model. PIR sensor signals are analyzed
with 200-sample-long windows. Variances of these signal win-
dows are compared with a threshold which is established by test
results. If the threshold value is exceeded then it is assumed that
there is a human motion in a region of interest. Motion detection
part works with 100% accuracy. Comparative results on the detec-
tion performance for different methods are presented in Tables 3
and 4. The results presented in the tables are obtained using the
records in the test dataset.

Experimental results indicate that falling, walking, running, and
sitting cases are classified into ‘‘fall’’ and ‘‘ordinary activity’’ classes
with almost 100% accuracy using the ST-CWT feature extraction
method with the Mahalanobis distance classifier or the SVM



Fig. 6. Discrete Fourier transform of a vibration signal record of a falling person and separation boundary values of frequency sub-bands.

Table 2
The exact number of real multiplications in feature extraction methods. N is the number of signal samples in each
window; K is the number of mel-frequency cepstrum coefficients; p is the number of nonzero filter coefficients, and r is
the number of levels in a tree.

DFT MFCC ST-CWT

2N log2N þ N 2N log2N þ N þ 2K log2K 2pNð1� 1=2rÞ þ ðr þ 1Þ
N ¼ 2048 N ¼ 2048; K ¼ 8 N ¼ 2048; p ¼ 5; r ¼ 7
47,104 multiplications 47,152 multiplications 20,328 multiplications

Table 3
Numbers of ‘‘true detection’’ versus ‘‘false alarm’’ for 2048-sample-long windows, using vibration sensor only.

Falling Ordinary activities Non-human signal sources

Walking or running Sitting Slammed door Fallen book

DFT Euclidean 44/16 705/146 11/9 6/14 0/43
Mahalanobis 60/0 782/69 19/1 18/2 14/29
SVM 59/1 821/30 20/0 20/0 40/3

MFCC Euclidean 60/0 778/73 14/6 15/5 15/28
Mahalanobis 60/0 845/6 20/0 20/0 38/5
SVM 60/0 842/9 20/0 20/0 40/3

ST-CWT Euclidean 58/2 851/0 20/0 20/0 42/1
Mahalanobis 60/0 851/0 20/0 20/0 42/1
SVM 60/0 851/0 20/0 20/0 43/0

Table 4
Numbers of ‘‘true detection’’ versus ‘‘false alarm’’ for 2048-sample-long windows, using both PIR and vibration sensors.

Falling Ordinary activities Non-human signal sources

Walking or running Sitting Slammed door Fallen book

DFT Euclidean 44/16 705/146 11/9 20/0 43/0
Mahalanobis 60/0 782/69 19/1 20/0 43/0
SVM 59/1 821/30 20/0 20/0 43/0

MFCC Euclidean 60/0 778/73 14/6 20/0 43/0
Mahalanobis 60/0 845/6 20/0 20/0 43/0
SVM 60/0 842/9 20/0 20/0 43/0

ST-CWT Euclidean 58/2 851/0 20/0 20/0 43/0
Mahalanobis 60/0 851/0 20/0 20/0 43/0
SVM 60/0 851/0 20/0 20/0 43/0
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classifier. Euclidean distance classifier’s performance is not satis-
factory in our dataset. Slamming a door and falling a book activities
do not yield any false alarms when PIR sensor information is used.
As it can be observed from Tables 3 and 4 the ST-CWT is superior
to discrete Fourier transform and mel-frequency cepstrum coeffi-
cients based features.
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5. Conclusion

In this paper, vibration and PIR sensors are used for fall detec-
tion within a specific region of interest. A single-tree CWT based
feature extraction method is introduced for vibration sensor signal
analysis. Discrete Fourier transform and mel-frequency cepstrum
coefficients are compared with ST-CWT based features. ST-CWT
is superior to discrete Fourier transform and mel-cepstrum feature
extraction methods in our dataset.

Human activity classification is carried out by the Euclidean dis-
tance, the Mahalanobis distance, and the SVM classifiers. PIR sen-
sor output signal is also employed to reduce possible false
alarms. The proposed system works in real-time on a standard per-
sonal computer and can be used as a part of an AAL monitoring sys-
tem. Since the proposed system uses both PIR and vibration
sensors it is more robust than single sensor based systems. This
is important because high number of false alarms cause problems
in AAL call centers and inconvenience to elderly people.
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