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Computation of H1 controllers for infinite dimensional plants
using numerical linear algebra‡
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SUMMARY

The mixed sensitivity minimization problem is revisited for a class of single-input-single-output unstable
infinite dimensional plants with low order weights. It is shown that H1 controllers can be computed from
the singularity conditions of a parameterized matrix whose dimension is the same as the order of the sensi-
tivity weight. The result is applied to the design of H1 controllers with integral action. Connections with
the so-called Hamiltonian approach are also established. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Weighted sensitivity minimization for time delay systems was the first H1 control problem solved
for infinite dimensional systems, [1–3]. The methods used in [2, 3] were extended to cover a larger
class of distributed parameter systems in [4–9]. Another type of H1 control problem studied for
delay systems was robust stabilization in the gap metric, [10, 11]. These are examples of the so-
called one-block problems. Typically, the problem is turned into a Nehari problem, and its solution
is obtained by the computation of the singular values of the associated Hankel operator. For the
solution of the mixed sensitivity minimization (two-block) problem for single-input-single-output
unstable infinite dimensional systems, first computational procedures were given in [12–14]. In these
papers, the optimal performance level and the corresponding controller are obtained by studying a
“Hankel+Toeplitz”, or a “skew-Toeplitz” operator, [15–17]. However, with the exception of [7, 10]
(both of them deal with one-block problems) explicit formula for the controller could not be given in
the previous cited papers. One needed to follow a complicated substitutions and transformations to
arrive at the controller from the singular vectors of the related operators. In [18], an explicit formula
is obtained, for the first time, for the optimal controller in the mixed sensitivity minimization prob-
lem involving infinite dimensional plants and finite dimensional weights. The derivation of this con-
troller was carried out by using the AAK theory, [19], and by observations leading to simplifications,
see also [20,21]. Computations involve a spectral factorization (depending only on the weights) and
solution of a set of 2.n1 C `/ linear equations with the same number of unknowns, where n1 is the
order of the sensitivity weight and ` is the number of unstable poles of the plants. Later, it was shown
that the mixed sensitivity minimization can be solved using a dual approach of [18] for a class of
plants with infinitely many unstable poles, [22, 23]. The largest class of infinite dimensional plants
covered by the method of [18] and controller implementation issues have been discussed in [24].
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Besides these direct frequency domain methods mentioned earlier, there are also approxima-
tion based H1 controller design for infinite dimensional systems, see, for example, [25–28]. They
are mainly relying on state-space methods, see [29] and references therein. For systems with time
delays, there are alternative methods of H1 controller design exploiting the special nature of the
time delay operator; see the list of references in [30].

In this paper, the formula given in [18] is revisited. It is shown that under certain mild assump-
tions, the number of equations to be solved can be reduced to n1. In this sense, the new set of
equations can be seen as the extension of the Zhou–Khargonekar formula, [3], to the two-block prob-
lems involving possibly unstable plants. For stable plants, connections between the skew-Toeplitz
method, [20], and the Zhou–Khargonekar formula, [3], were demonstrated in [31, 32].

The paper is organized as follows. The controller formula of [18] is given in the next section.
Conditions under which the reductions in the number of equations can be performed are discussed
in Section 3. Application of this main result to the design ofH1 controllers with integral action can
be found in Section 4. The paper ends with some concluding remarks.

2. TOKER–ÖZBAY FORMULA

In this paper, an infinite dimensional plant is considered, it is represented by the transfer function
P.s/, where s is the Laplace transform variable, that is P is an irrational function of the complex
variable s. Given two weighting functions W1.s/ and W2.s/, the mixed sensitivity minimization
problem is to find

�opt WD inf
C2C .P /

����� W1.1CPC/
�1

W2PC.1CPC/
�1

�����
1

, (1)

where C .P / is the set of all controllers C.s/ for which the feedback system formed by C and P is
stable. Feedback system stability is equivalent to having the closed loop system transfer functions
S WD .1CPC/�1, CS , and PC in H1. The optimal controller solving Equation (1) is denoted by
Copt. Typically W1.s/ is a low order low-pass filter representing the class of reference signals to be
tracked and W2.s/ is an improper low order high-pass filter representing a bound on the multiplica-
tive plant uncertainty; for detailed discussions on weight selections and connections with robust
control problems, see [33–36].

The plant is assumed to have finitely many poles in CC and no poles on the Im-axis. In this case,
P.s/ can be factored as

P.s/D
Mn.s/No.s/

Md .s/
, (2)

where Mn is an inner (all-pass) function, No.s/ is an outer (minimum phase) function, and Md .s/

is a rational inner function. Let ˛1, : : : ,˛` 2 CC be the zeros of Md .s/, that is, unstable poles of
the plant. For simplicity of the notation, it is assumed that ˛1, : : : ,˛` are distinct.

Because W1 is rational, it can be written as W1.s/ D nW1.s/=dW1.s/, for two coprime
polynomials nW1 and dW1; it is assumed that deg.nW1/6 deg.dW1/DW n1 > 1. Define

E� .s/ WD

�
W1.�s/W1.s/

�2
� 1

�
(3)

and let ˇ1, : : : ,ˇ2n1 be the zeros of E� .s/, enumerated in such a way that �ˇn1Ck D ˇk 2CC, for
k D 1, : : : ,n1. Note that each ˇk is dependent on � > 0, which is a candidate for �opt. We assume
that for � D �opt, the zeros of E� are distinct. Note that this condition is satisfied generically (if not,
a small perturbation in the problem data changes �opt that moves the locations of ˇ1, : : : ,ˇn1).

Now, define a rational function that depends on � > 0 and the weights W1 and W2,

F� .s/ WD �
dW1.�s/

nW1.s/
G� .s/, (4)
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where G� 2H1 is an outer function determined from the spectral factorization

G� .�s/G� .s/D

�
1C

W2.�s/W2.s/

W1.�s/W1.s/
�
W2.�s/W2.s/

�2

��1
. (5)

With the above definitions, the optimal controller can be expressed as

Copt.s/DE� .s/Md .s/
F� .s/L.s/

1CMn.s/F� .s/L.s/
N�1o .s/, (6)

where � D �opt and L.s/ is a transfer function of the form

L.s/D
Œ1 s : : : sn�1�‰2

Œ1 s : : : sn�1�‰1
, n WD n1C `, (7)

where the coefficient vectors

‰1 D Œ 10 : : :  1.n�1/�
T and ‰2 D Œ 20 : : :  2.n�1/�

T (8)

are to be determined from the interpolation conditions given in [18]. These interpolation condi-
tions can be expressed in the matrix form. In order to do this, we need to first define some specific
matrices.

Let Jk be the k � k diagonal matrix, k > 1, whose i th diagonal entry is .�1/iC1. For a given
vector xD Œx1, : : : , xk�T 2 Ck with xi ¤ xj for i ¤ j , and a positive integer m > 1, we define the
associated Vandermonde matrix of size k �m as

V m
x WD

264 1 x1 : : : xm�11
...

...
...

1 xk : : : xm�1
k

375 . (9)

Similarly, define V n
˛ and V n

ˇ
for the vectors ˛ D Œ˛1, : : : ,˛`�T and ˇ D Œˇ1, : : : ,ˇn1 �

T, respectively,
and form the square matrix

Vn WD

�
V n
˛

V n
ˇ

�
.

Define the diagonal matrices

D` D diagfMn.˛1/F� .˛1/, : : : ,Mn.˛`/F� .˛`/g

Dn1 D diagfMn.ˇ1/F� .ˇ1/, : : : ,Mn.ˇn1/F� .ˇn1/g

Dn D block diagfD`, Dn1g.

In [18], it has been shown that �opt is the largest � for which the set of linear equations

0 D Vn‰1CDnVn‰2 (10)

0 D DnVnJn‰1C VnJn‰2 (11)

has a non-trivial solution ‰1,‰2. First set of conditions, (10), lead to

‰1 D�.Vn/
�1DnVn‰2. (12)

Also note that if we set

‰1 D˙Jn‰2 (13)

in Equation (10), we obtain Equation (11). Therefore, Equations (12) and (13) can replace
Equations (10) and (11) provided that the sign in Equation (13) is determined. With Equations (12)
and (13), we have

L.s/D�
Œ1 s : : : sn�1�‰2

Œ1 s : : : sn�1�.Vn/�1DnVn‰2
D˙

Œ1 s : : : sn�1��2

Œ1 s : : : sn�1�Jn‰2
, (14)
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which leads to

L.0/D�
Œ1 0 : : : 0�‰2

Œ1 0 : : : 0�.Vn/�1DnVn‰2
D˙1. (15)

Also note that jL.j!/j D 1 for all ! 2R.
Now, for the computation of ‰2, let us first define

Jn‰2 DWˆD Œˆ
T
1 ˆ

T
2�
T with ˆ1 D Œ�0, : : : ,�`�1�

T, ˆ2 D Œ�`, : : : ,�n�1�
T (16)

and transform the Equation (10) into the form

R�ˆD 0, (17)

where

R� WD

�
V `
˛ D˛V

n1
˛

V `
ˇ

DˇV n1
ˇ

�
˙

�
D` 0
0 Dn1

� �
V `
˛ D˛V

n1
˛

V `
ˇ

DˇV n1
ˇ

�
Jn, (18)

with

D˛ D diagf˛`1, : : : ,˛``g

Dˇ D diagfˇ`1, : : : ,ˇ`n1g.

Thus, �opt is the largest � that makes the matrix R� singular with theC or � sign in Equation (18).
The correspondingˆ determines the sign via Equation (15) and henceCopt, Equation (6), is obtained
via Equations (14) and (16).

3. REMARKS ON THE SET OF LINEAR EQUATIONS DEFINING COPT

In Equation (17), there are nD `Cn1 equations. For the first set of ` equations, note that interpola-
tion points ˛1, : : : ˛` are fixed and, hence, the only dependence on � is in F� . Typically, the weights
W1 and W2 are low order, hence, F� is low order and be computed easily (explicit computation of
its coefficients in terms of � is possible). Motivated by this observation, we separate the equations
in Equation (17) into two pieces:

.I ˙F`J`/ˆ1C .V
`
˛ /
�1D˛.V

n1
˛ ˙D`V

n1
˛ .�1/`Jn1/ˆ2 D 0 (19)

.V n1
ˇ
/�1D�1ˇ .V `

ˇ ˙Dn1V
`
ˇ J`/ˆ1C .I ˙Fn1.�1/

`Jn1/ˆ2 D 0, (20)

where

F` D .V
`
˛ /
�1D`V

`
˛ (21)

Fn1 D .V
n1
ˇ
/�1Dn1V

n1
ˇ

. (22)

Define the canonical matrix

Ad D

26664
0 � � � 0 �a0
1 �a1

. . .
...

1 �a`�1

37775 , (23)

where a0, : : : , a`�1 are determined from the identity

Ỳ
jD1

.s � ˛j /DW s
`C a`�1s

`�1C � � � C a0.
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Note that Ad is the “A-matrix” of the observable canonical realization of 1=Md .s/. Its eigenvalues
are ˛1, : : : ,˛` with the corresponding left eigenvectors being the rows of V `

˛ . So,

F` D .V
`
˛ /
�1D`V

`
˛ DMn.Ad /F� .Ad /. (24)

Now, assume that .I ˙F`J`/ is non-singular for � D �opt. Then, from Equation (19), we have

ˆ1 D�.I ˙F`J`/
�1.V `

˛ /
�1D˛.V

n1
˛ ˙D`V

n1
˛ .�1/`Jn1/ˆ2. (25)

Substituting Equation (25) into Equation (20), we obtain n1 set of equations from which the sign of
L.s/, �opt, and ˆ2 are obtained:

P�ˆ2 D 0, (26)

where

P� WD �.V n1
ˇ
/�1D�1ˇ .V `

ˇ ˙Dn1V
`
ˇ J`/.I ˙F`J`/

�1.V `
˛ /
�1D˛.V

n1
˛ ˙D`V

n1
˛ .�1/`Jn1/

C.I ˙Fn1.�1/
`Jn1/. (27)

The optimal mixed sensitivity level �opt is the largest � for which there exists a non-zero ˆ2 satis-
fying Equation (26). In other words, �opt is the largest � that makes the smallest singular value of
P� equal to zero. Thus, the size of the matrix, P� , for which the SVD is to be taken, is reduced to
n1, provided that the inverse .I ˙Mn.Ad /F� .Ad //

�1 can be computed easily as a function of � ,
see Section 4 for an example, where first order weights are considered.

3.1. The case where W1.s/ is of first order

We have seen that if the matrix .I ˙F`J`/ is invertible, where F` is given by Equation (24), then
the optimal controller can be obtained by studying singularities of the matrix P� , whose size is
n1�n1, where n1 is the degree of the sensitivity weight,W1. Typically, n1 is a small integer. In fact,
as in the example of Section 4, in many interesting problems n1 D 1, so Equation (27) is a scalar
function of � .

Let us examine the components of Equation (27) for n1 D 1. First, note that in this case, we have

.V n1
ˇ
/�1 D 1, D�1ˇ D ˇ

�`
1 , V `

ˇ D Œ1,ˇ1, : : : ,ˇ`�11 �, Jn1 D 1,

and

Fn1 DDn1 DMn.ˇ1/F� .ˇ1/, D˛V
n1
˛ D Œ˛

`
1, : : : ,˛`` �

T.

Moreover, for n1 D 1, the vector .V `
˛ /
�1D˛V

n1
˛ can be computed as

.V `
˛ /
�1D˛V

n1
˛ D a,

where a is the last column of Ad , Equation (23), that is,

a WD �Œa0, : : : , a`�1�
T. (28)

Let us define the vector

b WD �ˇ�`1 Œ1,ˇ1, : : : ,ˇ`�11 �. (29)

Then, for the case n1 D 1, the matrix Equation (27) becomes a scalar:

P� D b.I ˙Mn.ˇ1/F� .ˇ1/J`/.I ˙Mn.Ad /F� .Ad /J`/
�1.I ˙Mn.Ad /F� .Ad /.�1/

`/a

C.1˙Mn.ˇ1/F� .ˇ1/.�1/
`/. (30)

Note that in Equation (30), the terms Mn.Ad /, J`, and a are independent of � . The coeffi-
cients of F� .Ad / depend on � . When n1 D 1, the roots of E� , that is, ˇ1 and ˇ2 D �ˇ1 can
be computed explicitly in terms of � . So, the vector b and scalars Mn.ˇ1/ and F� .ˇ1/ can be
evaluated numerically.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:327–335
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3.2. Remarks on the interpolation conditions

Another point to be noted is that by definition, Equation (14), we have L.�s/ D 1=L.s/. Because
Mn is an inner function, we also haveMn.�s/D 1=Mn.s/. Recall that F� is defined as Equation (4)
whereG� is determined from the spectral factorization Equation (5). These two equations imply that

F� .�s/F� .s/D

��
W1.�s/W1.s/

�2
� 1

��
1�

W2.�s/W2.s/

�2

�
C 1

��1
.

Hence, for each ˇk , a zero of E� .s/D
�
W1.�s/W1.s/

�2
� 1

�
, we have

F� .�ˇk/D 1=F� .ˇk/.

Thus, in addition to the interpolation conditions Equation (17), L.s/ satisfies

1CMn.�ˇk/F� .�ˇk/L.�ˇk/D 0 8k D 1, : : : ,n1. (31)

This means that the function

1CMn.s/F� .s/L.s/

Md .s/E� .s/

has no poles at the zeros of Md and E� .
Let W1.s/ D C1.sI � A1/

�1B1 be a minimal realization (we consider a strictly proper weight
for simplicity of the notation, for general case see [21]). Then E�1� has a minimal realization in
the form

E�1� .s/D C� .sI �A� /
�1B� � 1,

where

A� D

�
A1 B1B

T
1=�

�C T
1C1=� �AT

1

�
B� D

�
�B1=

p
�

0

�
C� D

�
0

B1=
p
�

�T
.

The zeros of E� .s/, namely, ˇ1, : : : ,ˇ2n1 are the eigenvalues of the Hamiltonian matrix A� .
Because we assumed that these eigenvalues are distinct and enumerated in such a way that
ˇk D�ˇn1Ck 2CC for k D 1, : : : ,n1, we can find a 2n1 � 2n1 invertible matrix T2 such that

A� D T2

�
ƒC� 0

0 �ƒC�

�
T �12

where ƒC� is the diagonal matrix whose diagonal entries are ˇ1, : : : ,ˇn1 .
Appending (31) to (17), after some matrix manipulations, we obtain (recall the notation

n WD n1C `)�
In˙

	
In 0n1


 � Mn.Ad /F� .Ad / 0

0 Mn.A� /F� .A� /

� �
Q1

Q2

�
JnQ

�1
1

� b̂D 0, (32)

where In is the n� n identity matrix, 0n1 is the n1 � n1 matrix whose entries are 0 and�
Q1

Q2

�
WD

�
T1 0

0 T2

�24 V n
˛

V n
ˇ

V n
ˇ

Jn

35 , b̂ WDQ1ˆ, (33)

with T1 being the invertible matrix that satisfies Ad D T1ƒ˛T �11 , where ƒ˛ is the diagonal matrix
whose entries are ˛1, : : : ,˛`; the partitioning in Equation (33) is such that Q1 is an n � n square
matrix, and Q2 is an n1 � n matrix.

Equation (32) shows the extension of [32] where mixed sensitivity minimization was considered
for stable plants. In the stable case `D 0, andQ1 andQ2 are square matrices of dimensions n1�n1.
In that case, Mn.A� /F� .A� /, together with Q1 and Q2 determine �opt and the corresponding ˆ.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:327–335
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4. EXAMPLE: DESIGN OF H1 CONTROLLERS WITH INTEGRAL ACTION

In this section, we examine the controller structure for a specific choice of weights:

W1.s/D
1

s
, W2.s/D ks, (34)

where k > 0 represents the relative importance of the multiplicative uncertainty with respect to the
tracking performance under step-like reference inputs [33, 35]. With Equation (34), the functions
E� .s/ and F� .s/ are computed as

E� .s/D
1C �2s2

��2s2
, F� .s/D

��s

ks2C k�sC 1
, where k� D

s
2k �

k2

�2
. (35)

It can be shown that, [20], for the weights in Equation (34), we have �opt >
p
k=2, independent

of the plant. Therefore, the search for �opt is conducted for the values of � that makes k� real
and positive.

The discussion of Section 3.1, in particular Equation (30), requires computation of Mn.Ad / and
F� .Ad / for the given plant parameters Ad (the “A-matrix” of the observable canonical realization
of Md ) and Mn. Once Ad is given, we compute

F� .Ad /D��
�
kAd CA

�1
d C k�I

��1
.

With the above E� and F� , the optimal controller is in the form

Copt.s/D

�
1

�s

��
Md .s/.1C �

2s2/L.s/

.ks2C k�sC 1/� �sMn.s/L.s/

�
N�1o .s/. (36)

Because jL.j!/j D 1 and jMd .j!/j D 1 for all ! 2 R, we have that Md .0/ ¤ 0 and L.0/ ¤ 0.
Furthermore, when the plant P.s/ does not have a pole at the origin, we have N�1o .0/¤ 0. Hence,
the controller Equation (36) contains an integral action due to the term 1=.�s/.

Note that with Equation (34), we have n1 D 1 and from Equation (35), ˇ1 D j=� . In particular,
when the plant to be controlled is stable, we have ` D 0. In this case, L.s/D˙1, and �opt must be
such that for � D �opt, we have

X.�/ WD

 
1�

k

�2

 
1� j

r
2
�2

k
� 1

!!
� jMn.j=�/D 0. (37)

The equality Equation (37) is equivalent to P� D 0, where P� is defined in Equation (30); because
`D 0, in this case, the first term in Equation (30) multiplying b is absent.

For the numerical example with k D 1 and

Mn.s/D e
�0.25s

�
1� 2e�s

2� e�s

�
,

the function X.�/ versus � is shown in Figure 1 for L.s/DC1 and L.s/D �1. The largest � that
satisfies X.�/D 0 is �opt D 2.82 for L.s/D�1; and this gives the optimal controller

Copt.s/D

�
1

2.82s

�
�.1C 7.95s2/

.s2C 3.51sC 1/C 2.82sMn.s/
N�1o .s/,

where No is the outer part of the stable plant P DMnNo.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:327–335
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X( ) versus 

L=+1

L= −1

Figure 1. X.�/ versus h.

5. CONCLUSIONS

In this paper, we have revisited the H1 optimal controller formula derived in [18] for the mixed
sensitivity minimization problem involving infinite dimensional plants with finitely many poles in
CC. We have seen that the 2.n1 C `/ equations, (10) and (11), of [18] can be reduced to a set of
n1 equations, (26). Solution of these equations involve a search of finding the largest value of � for
which the matrix P� , defined in Equation (27), becomes singular.

In the particular case whereW1 is first order (i.e., n1 D 1), we have a scalar equation, (30), whose
largest zero as a function of � gives the optimal performance level �opt and defines the optimal
controller Copt. Moreover, with specific first order weights W1.s/ D 1=s and W2.s/ D ks, we have
illustrated the structure of an integral action H1 controller, Equation (36).

Finally, Equations (32) and (33) can be considered as an extension of the Zhou–Khargonekar for-
mula (computation of �opt in the sensitivity minimization problem from a Hamiltonian matrix for
stable plants), [3], to the mixed sensitivity problem for unstable plants, such an extension for stable
plants was carried out earlier in [32].
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