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Growth of spinodal instabilities in nuclear matter. II. Asymmetric matter
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As an extension of our previous work, the growth of density fluctuations in the spinodal region of charge
asymmetric nuclear matter is investigated in the basis of the stochastic mean-field approach in the nonrelativistic
framework. A complete treatment of density correlation functions is presented by including collective modes and
noncollective modes.
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I. INTRODUCTION

Nuclear matter in the spinodal region exhibits a universal
behavior. When the uniform matter enters into the spinodal
region, small fluctuations grow rapidly and the matter un-
dergoes a dynamical liquid-gas phase transformation. Nuclear
multifragmentation processes are considered as a signature for
such a dynamical phase transformation in nuclear matter [1–3].
Theoretical description of the spinodal dynamics requires
an approach beyond the mean-field theory by incorporat-
ing fluctuation mechanisms [4–7]. The recently proposed
stochastic mean-field approach (SMF) provides a useful
framework for describing large amplitude nuclear collective
motion by including one-body dissipation and fluctuation
mechanisms [8]. We carried out a number of investigations
of the spinodal instabilities by employing the nonrelativistic
and relativistic framework of the SMF approach [9–13]. For a
full description of the spinodal dynamics, we need to determine
an ensemble of events by simulating the SMF equation with
proper fluctuations in the initial state. In our investigation,
instead of such simulations, we calculate the early growth
of density fluctuations in the linear response regime of the
SMF approach. For this purpose, the equal time correlation
function of the density fluctuations provides a very useful
quantity. For nuclear matter, in the linear response regime, it is
possible to provide a nearly analytical treatment for the density
correlation function. Indeed, the density correlation function
exhibits the early stages of the dynamics of the liquid-gas
phase transformation. In our earlier studies, we calculated the
correlation function in the pole approximation. As pointed out
by Bozek, the effect of noncollective poles play an important
role in the full description of the correlation function [14]. In a
recent work, we calculated the density correlation function
exactly by including the effects of noncollective poles in
addition to the collective poles for charge symmetric nuclear
matter [15]. In this work, we present calculations of the density
correlation function for charge asymmetric nuclear matter in
the semiclassical framework, i.e., in the long wavelength limit,
of the SMF approach. In Sec. II, we briefly present description
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of the density correlation functions including collective and
noncollective modes in the linear response framework in the
long wavelength limit. In Sec. III, we present calculations for
the most unstable initial density ρ = 0.3ρ0 at two different
temperatures and two charge asymmetries of the matter.
Conclusions are given in Sec. IV.

II. DENSITY CORRELATION FUNCTIONS IN
ASYMMETRIC NUCLEAR MATTER

A detailed description of the correlation function of
the density fluctuations for symmetric matter including the
noncollective poles is presented in our recent publication
[15]. A description of the correlation function for the charge
asymmetric system is given in a similar manner. Here, we give
a brief description and refer to Refs. [9,15] for details. For the
charge asymmetric case, we need to consider the coupled SMF
equations for neutrons and protons. The linearized equations
for fluctuations of neutron and proton density matrices,
δρ̂λ

a (t) = ρ̂λ
a (t) − ρ̂a , are given by

i�
∂

∂t
δρ̂λ

a (t) = [
ha,δρ̂

λ
a (t)

] + [
δUλ

a (t),ρ̂a

]
, (1)

where ρ̂a is the density matrix of the initial state, ha denotes
the mean-field Hamiltonian in the initial state, and δUλ

a is the
fluctuating part of the mean field for protons and neutrons
a = p and n in the event labeled by λ. Because for infinite
matter the equilibrium state and the mean-field Hamiltonian
are homogeneous, it is suitable to analyze these equations in
plane wave representations. Then, the linear response equation
becomes

i�
∂

∂t
〈 �p1|δρ̂λ

a (t)| �p2〉 = [εa( �p1) − εa( �p2)]〈 �p1|δρ̂λ
a (t)| �p2〉

−[ρa( �p1) − ρa( �p2)]〈 �p1|δUλ
a (t)| �p2〉.

(2)

The space Fourier transform of nucleon density fluctuations
δρλ(�k,t) is related to the fluctuations of the density matrix
according to

δρa(�k,t) =
∑

s

∫
d3p

(2π�)3
〈 �p + ��k/2|δρ̂a,s(t)| �p − ��k/2〉, (3)
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where the summation indicates the sum over spin quantum
number s = ↑,↓. We solve the linear response Eq. (2) by
employing the method of one-sided Fourier transformation in

time [16,17] and obtain coupled algebraic equations for the
Fourier transform of the local proton and neutron densities
δρλ

a (�k,ω):

([
1 + Fnn

0 χn(�k,ω)
]
δρλ

n (�k,ω) + F
np
0 χn(�k,ω)δρλ

p(�k,ω)[
1 + F

pp
0 χp(�k,ω)

]
δρλ

p(�k,ω) + F
pn
0 χp(�k,ω)δρλ

n (�k,ω)

)
= i

(
Sλ

n (�k,ω)

Sλ
p(�k,ω)

)
. (4)

In deriving these coupled equations, we consider that the mean-field potential depends only on the local nucleon densities,
Uλ

a = U (ρλ
p,ρλ

n ). The source term Sλ
a (�k,ω) is determined by the matrix elements of fluctuations of the initial density matrix

δρ̂λ
a,s(0) in the spin-isospin channel as

Sλ
a (�k,ω) =

∑
s

∫
d3p

(2π�)3

〈 �p + ��k/2|δρ̂λ
a,s(0)| �p − ��k/2〉

�v · �k − ω
. (5)

According to the basic postulate of the SMF approach, elements of the initial density matrix are uncorrelated Gaussian random
numbers with zero mean values and with well-defined variances. In the semiclassical limit their variances are given by

〈 �p + ��k/2|δρ̂λ
a,s(0)| �p − ��k/2〉〈 �p′ − ��k′/2|δρ̂λ

b,s ′ (0)| �p′ + ��k′/2〉 = δabδss ′ (2π�)6δ( �p − �p′)δ(��k − ��k′)fa( �p)[1 − fa( �p)]. (6)

The factor δabδss ′ reflects the assumption that local density fluctuations in spin-isospin channels are uncorrelated in the initial
state. In Eq. (4), Fab

0 and χa(�k,ω) denote the zeroth-order Landau parameters and the Lindhard functions for protons and neutrons,
respectively. Landau parameters are defined by the derivative of the mean-field potential energy with respect to the proton and
neutron densities evaluated in the initial state, Fab

0 = (∂Ub/∂ρa)0. The semiclassical expression of the Lindhard functions for
neutrons and protons is given by

χa(�k,ω) = 2
∫

d3p

(2π �)3

�p · ��k/m

�ω − �p · ��k/m

∂fa(p)

∂ε
. (7)

Here the factor 2 comes from spin summation, and fa(p) is the Fermi-Dirac factor for protons or neutrons in the initial state.
According to the method of one-sided Fourier transform [16,17], we can calculate the time evolution of the local density

fluctuations by inverting Eq. (4) and taking the inverse Fourier transform to give

δρλ
a (�k,t) = −i

∫ +∞+iσ

−∞+iσ

dω

2π

Gλ
a(�k,ω)

ε(�k,ω)
e−iωt , (8)

where the integral in the complex ω is carried out along a contour that passes above all singularities of the integrand. The quantity
Gλ

a(�k,ω) in the integrand is given for neutrons and protons as(
Gλ

n(�k,ω)

Gλ
p(�k,ω)

)
=

([
1 + F

pp
0 χp(�k,ω)

]
Sλ

n (�k,ω) − F
np
0 χn(�k,ω)Sλ

p(�k,ω)[
1 + Fnn

0 χn(�k,ω)
]
Sλ

p(�k,ω) − F
pn
0 χp(�k,ω)Sλ

n (�k,ω)

)
, (9)

and ε(�k,ω) denotes the susceptibility

ε(�k,ω) = 1 + Fnn
0 χn(�k,ω) + F

pp
0 χp(�k,ω) + [

Fnn
0 F

pp
0 − F

np
0 F

pn
0

]
χn(�k,ω)χp(�k,ω). (10)

As discussed in Ref. [15], it is possible to calculate the ω
integral in Eq. (8) by choosing a contour as shown in Fig. 1
of Ref. [15]. There are collective poles determined by the
roots of the dispersion relation, ε(�k,ω) = 0 → ω = ±i�k . The
collective poles play an important role in the early growth
of density fluctuations in the spinodal region. However, the
collective poles alone do not provide a complete description
of the growth of density fluctuations. The collective poles
alone do not even satisfy the initial conditions as pointed out
in Ref. [14]. For a complete description, in addition to the
collective poles, the effect of noncollective poles should be
included into integral in Eq. (8). By calculating the angular
integration in the Lindhard functions, it is easy to see that the
integrand has a logarithmic singularity. The integrand in the
complex ω plane is multivalued, therefore entire real ω axis is
a branch cut. To calculate the integral in Eq. (8), we choose

the contour C, as shown in Fig. 1 of Ref. [15]. We exclude the
real ω axis by drawing the contour from +∞ to the origin just
above the real ω axis, and after jumping from the first Riemann
sheet to the second Riemann sheet at the origin, by drawing the
contour just below the real ω axis from the origin to +∞. The
contour is completed with a large semicircle and by jumping
from the second Riemann sheet to the first one at origin. As a
result, we find that the integral in Eq. (8) can be expressed as

δρλ
a (�k,t) = δρλ

a (P ; �k,t) + δρλ
a (C; �k,t), (11)

where the pole (P ) contribution and cut (C) contribution are
given by

δρλ
a (P ; �k,t) = −

∑
±

Gλ
a(�k, ± i�k)

∂ε(�k,ω)/∂ω|ω=±i�k

e±�kt , (12)
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and

δρλ
a (C; �k,t)

= −i

∫ +∞

−∞

dω

2π

[
Gλ

a(�k,ω + iη)

ε(�k,ω + iη)
− Gλ

a(�k,ω − iη)

ε(�k,ω − iη)

]
e−iωt .

(13)

To investigate the development of spinodal instabilities a
very useful quantity is the equal time correlation functions of
local density fluctuations:

σab(|�r − �r ′|,t) = δρλ
a (�r,t)δρλ

b (�r ′,t)

=
∫

d3k

(2π )3
ei�k·(�r−�r ′)σab(�k,t). (14)

Here the local nucleon density fluctuations δρλ
a (�r ′,t) are

determined by the Fourier transform of δρλ
a (�k,t), and the

spectral intensity σab(�k,t) of the correlation function is defined
in terms of the variance of the Fourier transform of density
fluctuations according to

σab(�k,t)(2π )3δ(�k − �k′) = δρλ
a (�k,t)δρλ

b (−�k′,t). (15)

In these expression, the bar indicates the average taken over
the ensemble generated from the distribution of the initial
fluctuations.

We can calculate the spectral intensity σab(�k,t) by evalu-
ating the ensemble averages using Eqs. (12) and (13) for the
pole, δρλ

a (P ; �k,t), and the cut, δρλ
a (C; �k,t), parts of the Fourier

transform density fluctuations and using Eq. (6) for the initial
fluctuations. As a result, the spectral intensity is expressed as

σab(�k,t) = σab(PP ; �k,t) + 2σab(PC; �k,t) + σab(CC; �k,t),
(16)

where the first and last terms are due to pole and cut parts
of the spectral intensity and the middle term denotes the
mixed contribution. We briefly describe the derivation of the
analytical expressions of the various terms in the spectral
intensity in the long wavelength limit in the Appendix. The
total spectral intensity is obtained by summing over the isospin
components:

σ (�k,t) = σpp(�k,t) + 2σpn(�k,t) + σnn(�k,t). (17)

The expression for the total correlation function of density
fluctuations, σ (|�r − �r ′|,t), which is summed over isospin
components, is determined by using the total spectral density
σ (�k,t) in Eq. (14). Using Eq. (6), we can determine the initial
condition of the spectral density σ (�k,0), which must be equal
to the right-hand side of Eq. (18) at time t = 0. This leads to
a nontrivial sum rule:

∑
p,n

∫
2

d3p

(2π�)3
fa( �p)[1 − fa( �p)]

= σpp(�k,0) + 2σpn(�k,0) + σnn(�k,0). (18)

III. RESULTS OF CALCULATIONS

In numerical calculations, we employ the effective Skyrme
potential of Ref. [4]:

Ua(ρn,ρp) = A

(
ρ

ρ0

)
+ B

(
ρ

ρ0

)α+1

+ C

(
ρ ′

ρ0

)
τa

+1

2

dC

dρ

ρ ′2

ρ0
− D�ρ + D′�ρ ′τa, (19)

where ρ = ρn + ρp and ρ ′ = ρn − ρp are the total and relative
densities, and τa = +1 for neutrons and τa = −1 for protons.
The parameters A = −356.8 MeV, B = +303.9 MeV, α =
1/6, and D = +130.0 MeV fm5 are adjusted to reproduce
the saturation properties of nuclear matter: the binding
energy ε0 = 15.7 MeV per nucleon, zero pressure at the
saturation density ρ0 = 0.16 fm−3, compressibility coefficient
K = 201 MeV, and the surface energy coefficient in the
Weizsacker mass formula asurf = 18.6 MeV. The magnitude of
the parameter D′ = +34 MeV fm5 is close to the magnitude
given by the SkM∗ [18]. The symmetry energy coefficient is
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FIG. 1. (Color online) Phase diagram in the density-temperature
plane for different wavelengths corresponding to the potential given
by Eq. (19).
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C(ρ) = C1 − C2(ρ/ρ0)α with C1 = +124.9 MeV and C2 =
+93.5 MeV. These values for the symmetry energy coefficient
in the Weizsacker mass formula give asym = εF (ρ0)/3 +
C(ρ0)/2 = 36.9/3 + 31.4/2 = 28.0 MeV. We define the ini-
tial charge asymmetry as I = (ρn − ρn)/ρ.

Figure 1 shows phase diagrams for different charge
asymmetries corresponding to different wavelengths in the
temperature-density plane. These diagrams indicate the bound-
aries of spinodal unstable regions for different wavelengths,
starting from the uppermost boundary for λ = ∞. The critical
temperatures corresponding to this effective Skyrme potential,
which depend on the initial charge asymmetries I = 0.0,
I = 0.4, and I = 0.8, are given by Tc = 15 MeV, Tc = 14
MeV and Tc = 10 MeV, respectively. The critical temperatures
occur approximately around the same initial density, ρ =
0.3ρ0. We notice that, consistent with earlier calculations [1],
the spinodal instability region shrinks for increasing values
of charge asymmetry. Neutron-rich matter with I = 0.8 and
T = 1.0 MeV approximately corresponds to the structure
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FIG. 2. (Color online) Spectral intensity of the correlation func-
tion as a function of wave number at initial density ρ = 0.3ρ0 fm−3

at time t = 40 fm/c at temperature T = 1 MeV for three different
charge asymmetries. Dotted, dashed-dotted, and solid lines are the
results of pole, cut, and total contributions, respectively.

of the crust of neutron stars. Under these conditions, the
limiting spinodal boundary occurs at nucleon density around
ρ = 0.55ρ0, which is consistent with the result found in
Ref. [19]. We pick a reference state located at the center
of the spinodal region with an initial density of ρ = 0.3ρ0

and calculate the equal time correlation function of density
fluctuations at two different temperatures: T = 1.0 MeV and
T = 5.0 MeV. In Figs. 2 and 3, we plot the total spectral
intensity σ (�k,t) of correlation functions as a function of wave
number k at time t = 40 fm/c for two different temperatures
and three different initial charge asymmetries. At each initial
charge asymmetry and temperature, the upper limit of the
wave number range kmax is determined by the condition that
the inverse growth rate of the mode vanishes, �k = 0. Dashed,
dash-dotted, and solid lines indicate the results of calculations
in Eq. (17) with pole contributions σab(PP ; �k,t) only, with cut
contributions only, and the total of all terms, respectively. The
cut contributions include the cut-cut contribution σab(CC; �k,t)
and the cross terms due to pole-cut parts 2σab(PC; �k,t). From
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FIG. 3. (Color online) Spectral intensity of the correlation func-
tion as a function of wave number at initial density ρ = 0.3ρ0 fm−3

at time t = 40 fm/c at temperature T = 5 MeV for three different
charge asymmetries. Dotted, dashed-dotted, and solid lines are the
results of pole, cut, and total contributions, respectively.
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FIG. 4. (Color online) Spectral intensity of the correlation func-
tion as a function of wave number at initial density ρ = 0.3ρ0 fm−3

and charge asymmetry I = 0.4 for different times at temperature
T = 1 MeV (a) and T = 5 MeV (b). Dots on the solid lines at times
t = 0 represent the initial conditions.

these figures, similar to the charge symmetric matter, we
make two important observations for each value of the charge
asymmetry. Cut terms make an important negative contribution
during the early phase of growth, hence slowing down the
growth of instabilities. During later times, collective poles
dominate the growth of density fluctuations, and the cut terms
representing the effects of noncollective poles do not grow in
time, as discussed in earlier studies [1]. The second point that
we note is that both pole and cut contributions have divergent
behavior with opposite signs, as the wave number approaches
its upper limit, k → kmax. These divergent behaviors cancel out
each other to produce a nice regular behavior of the spectral
intensity as a function of wave number. Figure 4 shows the total
spectral intensity of the correlation function σ (�k,t) for a typical
charge asymmetry, I = 0.4, as a function of wave number k
at different times for initial temperatures T = 1.0 MeV and
T = 5.0 MeV. We observe that the spectral intensity, which
includes pole and cut contributions, clearly exhibits the growth
of the initial density fluctuations. The initial value of the
spectral intensity at time t = 0 indicated by the solid line
is obtained by numerical calculations of the pole-pole terms
σab(PP ; �k,t = 0), the cut-cut terms σab(CC; �k,t = 0), and
the pole-cut terms 2σab(PC; �k,t = 0). On the other hand, the
solid circles on this line are calculated by the initial conditions
located on the left -hand side of Eq. (18). Nice agreement of
both sides reflects the validity of the highly nontrivial sum rule
presented by Eq. (18).

Figure 5 shows the equal time correlation functions σ (|�r −
�r ′|,t) of the total density fluctuations as a function distance
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FIG. 5. (Color online) Density correlation function as a function
of distance between two space locations x = |�r − �r ′| for initial den-
sity ρ = 0.3ρ0 fm−3 and different charge asymmetries at temperature
T = 1 MeV at times t = 20, 30, and 40 fm/c.

of two space locations x = |�r − �r ′| at the initial density
ρ = 0.3ρ0 and temperature T = 1.0 MeV for three different
charge asymmetries. The density correlation functions are
calculated with complete spectral intensities shown by solid
lines in Fig. 5, and the results are plotted at three different
times, t = 20, 30, and 40 fm/c. In Fig. 6, these correlation
functions are plotted at temperature T = 5.0 MeV. The growth
and organization of the correlation function describes the
initial phase of the condensation mechanism. To recognize
the condensation mechanism, it is useful to introduce the
correlation length xC as the width of the correlation function
at half maximum. The correlation length provides a measure
for the size of condensing droplets during the growth of
fluctuations. In the correlation volume �VC = 4πx3

C/3, the
variance of local density fluctuations at time t is approximately
given by σ (xC,t). The number of nucleons in each correlation
volume fluctuates with a dispersion, �AC = �VC

√
σ (xC,t).

As a result, the total nucleon number in each correlation
volume fluctuates approximately within the range �A0 −
�AC � �A � �A0 + �AC , where �A0 = �VCρ0 denotes
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FIG. 6. (Color online) Density correlation function as a function
of distance between two space locations x = |�r − �r ′| for initial den-
sity ρ = 0.3ρ0 fm−3 and different charge asymmetries at temperature
T = 5 MeV at times t = 20, 30, and 40 fm/c.

the number of nucleons in the initial uniform state. As seen
from Figs. 5 and 6, the correlation length is not very sensitive to
the temperature and time evolution, but depends on the initial
charge asymmetry. For example, at temperature T = 5.0 MeV
and the initial charge asymmetry I = 0.4, the correlation
length is about xC = 3.0 fm. In this case, the magnitude of
the dispersion of density fluctuations at time t = 30 fm/c is
about

√
σ (xC,t) = 0.04 fm−3. Consequently, the number of

nucleons in the correlation volume approximately fluctuates
in the range of 1 � �A � 9. From this analysis, we observe

that the spinodal decomposition indeed provides a dynamical
mechanism for the liquid-gas phase transition. In the linear
response approach, we can only recognize the early phase of
the transition. To describe the full phase transition, we need to
carry out long time simulations, which has not been done in
this study.

IV. CONCLUSIONS

As a continuation of a previous work, we investigate the
early growth of density fluctuations in charge asymmetric
nuclear matter in the basis of the SMF approach. In the
linear response framework, employing the method of one-
sided Fourier transform, it is possible to carry out nearly
analytical treatment of the correlation function of density
fluctuations. The density correlation function provides very
useful information about the initial phase of the liquid-gas
phase transformation of the system. The method of one-sided
Fourier transform involves a contour integration in the complex
frequency plane. In earlier investigations, this contour integral
is evaluated by keeping only effects of the collective poles
associated with unstable collective modes. This approxima-
tion, although it describes the growth of density fluctuations
in a satisfactory manner, has important drawbacks. It does
not satisfy the initial conditions and furthermore leads to a
divergent behavior as the wave numbers approach their upper
limits. In this work, we consider charge asymmetric nuclear
matter in a nonrelativistic framework of the SMF approach.
We calculate the correlation function of density fluctuations
including the effects of collective poles and noncollective poles
in terms of the cut contribution in the complex frequency plane.
The cut contribution slows down the exponential growth of
the pole contributions. It also has divergent behaviors with
opposite signs, as wave numbers approach their upper limits.
As a result divergent behaviors of pole and contributions
cancel out each other to produce a nice regular behavior of
the spectral intensity as a function of wave number. This
allows us to have a complete description of the correlation
function of density fluctuations in the linear response regime.
Furthermore, exact calculations of the correlation functions
satisfy the initial conditions expressed by a highly nontrivial
sum rule.
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APPENDIX

As seen in Eq. (17), there are three parts in the spectral intensity σab(�k,t): the pole-pole part, the cut-cut part, and the mixed
cut-pole part. The pole-pole part is

σ̃ab(PP ; �k,t) = E+
ab

|[∂ε(�k,ω)/∂ω]ω=i�k
|2 (e+2�kt + e−2�kt ) + 2E−

ab

|[∂ε(�k,ω)/∂ω]ω=i�k
|2 , (A1)
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where the quantities E∓
ab for neutrons and protons are given by

E∓
nn = [

1 + F
pp
0 χp

]2
I∓
n + [

F
np
0 χn

]2
I∓
p , (A2)

E∓
pp = [

1 + Fnn
0 χn

]2
I∓
p + [

F
pn
0 χp

]2
I∓
n , (A3)

and

E∓
np = −(

1 + F
pp
0 χp

)
F

pn
0 χpI∓

n − (
1 + Fnn

0 χn

)
F

np
0 χnI

∓
p , (A4)

with

I∓
a = 2

∫
d3p

(2π �)3

[(�k)2 ∓ ( �p · �k/m)2]

[(�k)2 + ( �p · �k/m)2]2
fa( �p)[1 − fa( �p)]. (A5)

The pole-pole contributions have the same expressions as we had in our previous investigation in the semiclassical framework
[16]. The cut-cut part has four terms:

σ̃ab(CC; �k,t) = A+
ab(�k,t) + Ã+

ab(�k,t) + Ã−
ab(�k,t) + A−

ab(�k,t). (A6)

The first and last terms come from the square of the first and second terms in Eq. (13) and involve double integrations over ω
and ω′. The diagonal and off-diagonal parts in the isospin space are(

A∓
nn(�k,t)

A∓
pp(�k,t)

)
=

∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′ ∓ 2iη

(
W∓

nn V ∓
np

V ∓
pn W∓

pp

)
⊗

⎛
⎝ φnω∓iη)+φn(ω′∓iη)

ε(ω∓iη)ε(ω′∓iη)

φp(ω∓iη)+φp(ω′∓iη)
ε(ω∓iη)ε(ω′∓iη)

⎞
⎠ (A7)

and

A∓
pn(�k,t) = −

∫ +∞

−∞

dw

2π

∫ +∞

−∞

dw′

2π

e−i(ω+ω′)t

ω + ω′ ∓ 2iη
(W∓

pn V ∓
nn) ⊗

⎛
⎝ φn(ω∓iη)+φn(ω′∓iη)

ε(ω∓iη)ε(ω′∓iη)

φp(ω∓iη)+φp(ω′∓iη)
ε(ω∓iη)ε(ω′∓iη)

⎞
⎠. (A8)

In these expressions and below, the symbol ⊗ denotes the matrix multiplication. The double integrals in A∓
ab(�k,t) contain the

principle value and the delta function contributions, which are identified using the identity 1/(ω + ω′ ∓ 2iη) = P (1/ω + ω′) ±
iπδ(ω + ω′). The elements of W and V matrices are given by(

W∓
nn V ∓

np

V ∓
pn W∓

pp

)
=

((
1 + F

pp
0 χ∓

p

)(
1 + F

pp
0 χ ′∓

p

) (
F

np
0

)2
χ∓

n χ ′∓
n(

F
pn
0

)2
χ∓

p χ ′∓
p

(
1 + Fnn

0 χ∓
n

)(
1 + Fnn

0 χ ′∓
n

)
)

(A9)

and (
W∓

pn

V ∓
nn

)
=

(
F

pn
0 χ∓

p

(
1 + F

pp
0 χ ′∓

p

)
(
1 + Fnn

0 χ∓
n

)
F

np
0 χ ′∓

n

)
. (A10)

In these expressions and also below, we use the shorthand notation χ∓
a = χa(�k,ω ∓ iη) and χ ′∓

a = χa(�k,ω′ ∓ iη), and the quantity
φa(ω ∓ iη) is defined as

φa(ω ∓ iη) = 2
∫ +∞

−∞

d3p

(2π �)3
fa( �p)[1 − fa( �p)]

1

�p · �k/m − (ω ∓ iη)
. (A11)

There are contributions coming from the cross terms in the square of Eq. (13), which are indicated by the second and third
terms in Eq. (A6). These terms also involves double integrations over ω and ω′ and have structures similar to that of A∓

ab(�k,t):(
Ã∓

nn(�k,t)

Ã∓
pp(�k,t)

)
= −

∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′

(
W̃∓

nn Ṽ ∓
np

Ṽ ∓
pn W̃∓

pp

)
⊗

⎛
⎝ φn(ω∓iη)+φn(ω′±iη)

ε(ω∓iη)ε(ω′±iη)

φp(ω∓iη)+φp(ω′±iη)
ε(ω∓iη)ε(ω′±iη)

⎞
⎠ (A12)

and

Ã±
pn(�k,t) =

∫ +∞

−∞

dw

2π

∫ +∞

−∞

dw′

2π

e−i(ω+ω′)t

ω + ω′ (W̃∓
pn Ṽ ∓

nn) ⊗
⎛
⎝ φn(ω±iη)+φn(ω′∓iη)

ε(ω±iη)ε(ω′∓iη)

φp(ω±iη)+φp(ω′∓iη)
ε(ω±iη)ε(ω′∓iη)

⎞
⎠. (A13)

The integrand in Ã∓
ab(�k,t), in contrast to its appearance, is a well-behaved function, because when ω′ = −ω, the nominator is

also zero and therefore the ratio [φ(ω ∓ iη) + φ(ω′ ± iη)]/(ω + ω′) becomes finite. Here, the elements of W̃ and Ṽ matrices are
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given by (
W̃∓

nn Ṽ ∓
np

Ṽ ∓
pn W̃∓

pp

)
=

((
1 + F

pp
0 χ∓

p

)(
1 + F

pp
0 χ ′±

p

) (
F

np
0

)2
χ∓

n χ ′±
n(

F
pn
0

)2
χ∓

p χ ′±
p

(
1 + Fnn

0 χ∓
n

)(
1 + Fnn

0 χ ′±
n

)
)

(A14)

and (
W∓

pn

V ∓
nn

)
=

(
F

pn
0 χ±

p

(
1 + F

pp
0 χ ′∓

p

)
(
1 + Fnn

0 χ±
p

)
F

np
0 χ ′∓

n

)
. (A15)

In spectral density, the pole-cut contribution also has four terms:

σ̃ab(PC; �k,t) = B+
ab(�k,t) + B̃+

ab(�k,t) + B̃−
ab(�k,t) + B−

ab(�k,t). (A16)

The isospin matrix elements of the first and the last term are given by(
B∓

nn(�k,t)

B∓
pp(�k,t)

)
= ±ie∓�t

∂ε/∂ω|ω=∓i�

∫ +∞

−∞

dω

2π

e−iωt

ω ∓ i�

(
X∓

nn Y∓
np

Y∓
pn X∓

pp

)
⊗

( φn(∓i�)+φn(ω∓iη)
ε(ω∓iη)

φp(∓i�)+φp(ω∓iη)
ε(ω∓iη)

)
(A17)

and

B∓
pn(�k,t) = ∓ie∓�t

∂ε/∂ω|ω=∓i�

∫ +∞

−∞

dω

2π

e−iωt

ω ∓ i�
(X∓

pn Y∓
nn) ⊗

( φn(∓i�k )+φn(ω∓iη)
ε(ω∓iη)

φp(∓i�k )+φp(ω∓iη)
ε(ω∓iη)

)
. (A18)

Here, we use the shorthand notation φa(∓i�) = φa(�k,ω = ∓i�), we ignore the label k in �k for simplicity, and the elements of
X and Y matrices are given by(

X∓
nn Y∓

np

Y∓
pn X∓

pp

)
=

((
1 + F

pp
0 χ∓i�

p

)(
1 + F

pp
0 χ∓

p

) (
F

np
0

)2
χ∓i�

n χ∓
n(

F
pn
0

)2
χ∓i�

p χ∓
p

(
1 + Fnn

0 χ∓i�
n

)(
1 + Fnn

0 χ∓
n

)
)

(A19)

and (
X∓

pn

Y∓
nn

)
=

(
F

pn
0 χ∓i�

p

(
1 + F

pp
0 χ∓

p

)(
1 + Fnn

0 χ∓i�
n

)
F

np
0 χ∓

n

)
, (A20)

where χ∓i�
a = χa(�k,ω = ∓i�). The second and third terms involve an integral over ω and have structures similar to that of

B∓
ab(�k,t): (

B̃∓
nn(�k,t)

B̃∓
pp(�k,t)

)
= ∓ie∓�t

∂ε/∂ω|ω=∓i�

∫ +∞

−∞

dω

2π

e−iωt

ω ∓ i�

(
X̃∓

nn Ỹ∓
np

Ỹ∓
pn X̃∓

pp

)
⊗

( φn(∓i�)+φn(ω±iη)
ε(ω±iη)

φp(∓i�)+φp(ω±iη)
ε(ω±iη)

)
(A21)

and

B̃∓
pn(�k,t) = ±ie∓�t

∂ε/∂ω|ω=∓i�

∫ +∞

−∞

dω

2π

e−iωt

ω ∓ i�
(X̃∓

pn Ỹ∓
nn) ⊗

( φn(∓i�)+φn(ω±iη)
ε(ω±iη)

φp(∓i�)+φp(ω±iη)
ε(ω±iη)

)
. (A22)

The elements of X̃ and Ỹ matrices are given by(
X̃∓

nn Ỹ∓
np

Ỹ∓
pn X̃∓

pp

)
=

((
1 + F

pp
0 χ∓i�

p

)(
1 + F

pp
0 χ±

p

) (
F

np
0

)2
χ∓i�

n χ±
n(

F
pn
0

)2
χ∓i�

p χ±
p

(
1 + Fnn

0 χ∓i�
n

)(
1 + Fnn

0 χ±
n

)
)

(A23)

and (
X̃∓

pn

Ỹ∓
nn

)
=

(
F

pn
0 χ∓i�

p

(
1 + F

pp
0 χ±

p

)(
1 + Fnn

0 χ∓i�
n

)
F

np
0 χ±

n

)
. (A24)
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