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1. Introduction

The derivation of Painlevé hierarchies is an area of research that has recently proved to be of great interest. One natural
question that arises is that of how to undertake similarity reductions of hierarchies of completely integrable partial differ-
ential equations (PDEs) in such a way as to include lower-weight terms in the resulting ordinary differential equations
(ODEs). In a recent paper [1] we considered accelerating-wave type reductions of integrable hierarchies. In the present paper
we turn our attention to generalized scaling reductions.

It is well-known that the Korteweg–de Vries (KdV) equation,
Ut3 ¼ Uxxx þ 6UUx; ð1:1Þ
admits the generalized scaling reduction
U ¼ f ðzÞ
½6g0t3�2=3 þ d; z ¼ x

½6g0t3�1=3 þ
d
g0
½6g0t3�2=3

; ð1:2Þ
where g0 – 0 and d are arbitrary constants, to the ordinary differential equation (ODE)
fzzz þ 6ffz þ g0ð4f þ 2zfzÞ ¼ 0; ð1:3Þ
and that this last integrates to give the so-called thirty-fourth Painlevé equation (equation XXXIV in [2]). It is also well-
known that the KdV equation is the first non-trivial member of a hierarchy of completely integrable PDEs,
Ut2nþ1 ¼ R
n½U�Ux; R½U� ¼ @2

x þ 4U þ 2Ux@
�1
x ; ð1:4Þ
where we have labeled the flow times in the usual way. However, as far as we know, it is not yet been shown how a hierarchy
of ordinary differential equations (ODEs) based on the thirty-fourth Painlevé equation (a thirty-fourth Painlevé hierarchy)
can be derived from a corresponding KdV hierarchy using an appropriate extension of the above generalized scaling reduc-
tion. Here we show how this can be done. We also show how, similarly, a fourth Painlevé hierarchy can be obtained from a
generalized scaling reduction of the dispersive water wave (DWW) hierarchy. Finally, we consider a generalized scaling
reduction of Burgers hierarchy.
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2. The Korteweg–de Vries case

First of all, let us recall that the recursion operator R½U� of the KdV hierarchy (1.4) is the quotient R½U� ¼ B1½U�B�1
0 ½U� of

the two Hamiltonian operators
B1½U� ¼ @3
x þ 4U@x þ 2Ux; B0½U� ¼ @x; ð2:1Þ
the KdV hierarchy being bi-Hamiltonian, that is, can be written in Hamiltonian form in two different ways:
Ut2nþ1 ¼ R
n½U�Ux ¼ B0½U�Mnþ1½U� ¼ B1½U�Mn½U�; ð2:2Þ
where the quantities Mn½U�, defined by M0½U� ¼ 1=2 and by the recursion relation given by the last equality in Eq. (2.2),
M0½U� ¼
1
2
; M1½U� ¼ U; M2½U� ¼ Uxx þ 3U2; . . . ; ð2:3Þ
are the variational derivatives of a corresponding sequence of Hamiltonian densities. We will use the Hamiltonian operator
B1½U� and the quantities Mn½U� later in this section, but not the Hamiltonian densities themselves.

We now turn to our result that a thirty-fourth Painlevé hierarchy can be derived from a generalized scaling reduction of
an extension of the above KdV hierarchy, in which we include lower order flows with coefficients functions of t2nþ1 to be
determined. We present our results in the form of a Proposition. Let us begin by recalling the following Lemma [1].

Lemma 1. The change of variables ~U ¼ U þ C, where C is an arbitrary constant, in Rn½~U�~Ux, yields
Rn½~U�~Ux ¼
Xn

j¼0

an;jC
n�jRj½U�Ux; ð2:4Þ
where the coefficients an;j are determined recursively by
an;n ¼ 1; ð2:5Þ
an;j ¼ 4an�1;j þ an�1;j�1; j ¼ 1; . . . ;n� 1; ð2:6Þ

an;0 ¼
4nþ 2

n
an�1;0; ð2:7Þ
and where a0;0 ¼ 1.
Proposition 1. There exists a choice of coefficient functions biðt2nþ1Þ and of the function cðt2nþ1Þ such that the substitution
U ¼ f ðzÞ
½2ð2nþ 1Þgn�1t2nþ1�2=ð2nþ1Þ þ d; z ¼ x

½2ð2nþ 1Þgn�1t2nþ1�1=ð2nþ1Þ þ cðt2nþ1Þ; ð2:8Þ
where gn�1 – 0 and d are arbitrary constants, into the hierarchy
Ut2nþ1 ¼ R
n½U�Ux þ

Xn�1

i¼1

biðt2nþ1ÞRi½U�Ux; ð2:9Þ
yields the generalized thirty-fourth Painlevé hierarchy
K½f �ðK½f �Þzz �
1
2
ððK½f �ÞzÞ

2 þ 2f ðK½f �Þ2 þ 1
2
ðgn�1 þ anÞ2 ¼ 0; ð2:10Þ
where an is an arbitrary constant and
K½f � ¼ Mn½f � þ
Xn�1

i¼0

BiMi½f � þ gn�1z; ð2:11Þ
the coefficients Bi being arbitrary constants and where by Mj½f � we denote the variational derivatives of the Hamiltonian densities
of the KdV hierarchy with dependent variable f and independent variable z.
Proof. Using Lemma 1 we see that substituting (2.8) in (2.9) gives
Xn

k¼0
ckRk½f �fz þ

gn�1

T2nþ3 ð4f þ 2zfzÞ �
Xn

j¼0

an;jd
n�j

T2jþ3 R
j½f �fz þ

Xn�1

i¼1
bi

Xi

j¼0

ai;jd
i�j

T2jþ3 R
j½f �fz

 !
� 1

T2 fzct2nþ1 � 2

� gn�1

T2nþ3 fzc þ gn�1

T2nþ3 ð4f þ 2zfzÞ ¼ 0; ð2:12Þ
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where T ¼ ½2ð2nþ 1Þgn�1t2nþ1�1=ð2nþ1Þ and R½f � ¼ @2
z þ 4f þ 2f z@

�1
z . We recall that each ai;i ¼ 1, and so in particular

cn ¼ 1=T2nþ3.
We solve the equations
ck ¼ Bk=T2nþ3; k ¼ n� 1; . . . ;1; ð2:13Þ
recursively for the coefficients bk and the equation
c0 ¼ B0=T2nþ3; ð2:14Þ
for c, where all Bk are constants. The resulting equation can be written
B1½f �K½f � ¼ 0; ð2:15Þ
where B1½f � ¼ @3
z þ 4f@z þ 2f z and K½f � is as given in (2.11). This last equation admits (2.10) as a first integral, where an is an

arbitrary constant of integration. h
Remark 1. Without loss of generality, we may set, using a shift on z;B0 ¼ 0 in (2.10) and (2.11). This then gives the general-
ized thirty-fourth Painlevé hierarchy as defined in [3]. The case where all Bk ¼ 0 gives the thirty-fourth Painlevé hierarchy as
originally defined in [4,5], obtained from the non-generalized scaling reduction (d ¼ 0 and c ¼ 0) of the standard KdV hier-
archy (1.4).
Example 1. The fifth order KdV equation
Ut5 ¼ Uxxxx þ 10UUxx þ 5U2
x þ 10U3

� �
x
þ b1ðt5ÞðUxx þ 3U2Þx; ð2:16Þ
admits the generalized scaling reduction
U ¼ f ðzÞ
T2 þ d; z ¼ x

T
þ cðt5Þ; T ¼ ½10g1t5�1=5

; ð2:17Þ
where g1 – 0 and d are arbitrary constants, to the case n ¼ 2 of (2.10) and (2.11), that is,
K½f �ðK½f �Þzz �
1
2
ððK½f �ÞzÞ

2 þ 2f ðK½f �Þ2 þ 1
2
ðg1 þ a2Þ2 ¼ 0 ð2:18Þ
with
K½f � ¼ fzz þ 3f 2 þ B1f þ B0
1
2
þ g1z; ð2:19Þ
where
b1 ¼
B1

T2 � 10d; and c ¼ �3d2

g1
T4 þ dB1

g1
T2 � B0

2g1
þ

~c
T
; ð2:20Þ
~c being an arbitrary constant.
3. The dispersive water wave case

The DWW hierarchy is a two-component hierarchy in u ¼ ðu;vÞT given by Kupershmidt [6]
utn ¼ Rn½u�ux; R½u� ¼ 1
2

@xu@�1
x � @x 2

2v þ vx@
�1
x uþ @x

 !
; ð3:1Þ
where the recursion operator R is the quotient R½u� ¼ B2½u�B�1
1 ½u� of the two Hamiltonian operators
B2½u� ¼
1
2

2@x @xu� @2
x

u@x þ @2
x v@x þ @xv

 !
; ð3:2Þ
and
B1½u� ¼
0 @x

@x 0

� �
: ð3:3Þ
The DWW hierarchy can be written
utn ¼ B1½u�Lnþ1½u� ¼ B2½u�Ln½u�; ð3:4Þ
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where the quantities Ln½u�, defined by L0½u� ¼ ð0;2ÞT and by the recursion relation given by the last equality in Eq. (3.4),
L0½u� ¼
0
2

� �
; L1½u� ¼

v
u

� �
; L2½u� ¼

1
2

2uv þ vx

2v þ u2 � ux

� �
; . . . ; ð3:5Þ
are the variational derivatives of a corresponding sequence of Hamiltonian densities. We do not need the expressions for
these Hamiltonian densities here. Neither do we need the third Hamiltonian operator of the (tri-Hamiltonian) DWW
hierarchy.

Here we show that a suitable generalization of this hierarchy can be used to derive a fourth Painlevé hierarchy via a gen-
eralized scaling reduction. We begin by recalling the following Lemma [1].

Lemma 2. The change of variables ~u ¼ ðuþ C; vÞT , where C is an arbitrary constant, in Rn½~u�~ux, yields
Rn½~u�~ux ¼
Xn

j¼0

an;jC
n�jRj½u�ux; ð3:6Þ
where the coefficients an;j are determined recursively by
an;n ¼ 1; ð3:7Þ

an;j ¼
1
2
an�1;j þ an�1;j�1; j ¼ 1; . . . ;n� 1; ð3:8Þ

an;0 ¼
1
2

nþ 1
n

� �
an�1;0; ð3:9Þ
and where a0;0 ¼ 1.
Proposition 2. There exists a choice of coefficient functions ciðtnÞ and of the function cðtnÞ such that the substitution
u ¼ f ðzÞ
1
2 ðnþ 1Þgntn
� �1=ðnþ1Þ þ d; v ¼ gðzÞ

1
2 ðnþ 1Þgntn
� �2=ðnþ1Þ ; z ¼ x

1
2 ðnþ 1Þgntn
� �1=ðnþ1Þ þ cðtnÞ; ð3:10Þ
where gn – 0 and d are arbitrary constants, into the hierarchy
utn ¼ Rn½u�ux þ
Xn�1

i¼1

ciðtnÞRi½u�ux; ð3:11Þ
yields the fourth Painlevé hierarchy in f ¼ ðf ; gÞT ,
0 ¼ 2K þ fLþ gn � 2an � Lz; ð3:12Þ

0 ¼ K þ 1
2

gn � an

� �2

� 1
4

b2
n � gL2 � KzL; ð3:13Þ
where an and bn are arbitrary constants and K and L are the components of K½f�;K ¼ ðK; LÞT , this last being given by
K½f� ¼ Ln½f� þ
Xn�1

i¼0

BiLi½f� þ gn

0
z

� �
; ð3:14Þ
wherein the coefficients Bi are arbitrary constants and Lj½f� denotes the variational derivatives of the Hamiltonian densities of the
DWW hierarchy with dependent variables f and g and independent variable z.
Proof. Using Lemma 2 we see that substituting (3.10) in (3.11) gives
Xn

k¼0

CkRk½f�fz þ
1
2

gnTnþ2
ðzf Þz

2g þ zgz

� �
�
Xn

j¼0

an;jd
n�jTjþ2Rj½f�fz þ

Xn�1

i¼1

ci

Xi

j¼0

ai;jd
i�jTjþ2Rj½f�fz

 !
� T1fzctn �

1
2

gnTnþ2fzc

þ 1
2

gnTnþ2
ðzf Þz

2g þ zgz

� �
¼

0
0

� �
; ð3:15Þ
where
Tj ¼
1=Tj 0

0 1=Tjþ1

 !
; T ¼ ½ðnþ 1Þgntn=2�1=ðnþ1Þ

; ð3:16Þ
and R½f� is obtained from R½u� by replacing u by f and @x by @z. We recall that each ai;i ¼ 1, and so in particular Cn ¼ Tnþ2.
We solve the equations



8108 P.R. Gordoa et al. / Applied Mathematics and Computation 219 (2013) 8104–8111
Ck ¼ BkTnþ2; k ¼ n� 1; . . . ;1; ð3:17Þ
recursively for the coefficients ck and the equation
C0 ¼ B0Tnþ2; ð3:18Þ
for c, where all Bk are constants. The resulting ODE can be written
B2½f�K½f� ¼ 0; ð3:19Þ
where B2½f� is obtained from B2½u� by replacing u by f and @x by @z, and K½f� is as given in (3.14). This last system integrates to
(3.12) and (3.13), where an and bn are arbitrary constants of integration. h
Remark 2. Without loss of generality, we may set, using a shift on z; B0 ¼ 0 in (3.12), (3.13), and (3.14). This then gives the
version of the fourth Painlevé hierarchy defined in [7,8]. We remark that the fourth Painlevé hierarchy was originally given in
[9]; the case with all Bk ¼ 0 can be obtained from the non-generalized scaling reduction (d ¼ 0 and c ¼ 0) of the standard
DWW hierarchy (3.1).
Example 2. The second nontrivial dispersive water wave flow
u

v

� �
t2

¼ 1
4

uxx � 3uux þ u3 þ 6uv
vxx þ 3v2 þ 3uvx þ 3u2v

 !
x

þ 1
2
c1ðt2Þ

2v þ u2 � ux

2uv þ vx

 !
x

; ð3:20Þ
admits the generalized scaling reduction
u ¼ f ðzÞ
T
þ d; v ¼ gðzÞ

T2 ; z ¼ x
T
þ cðt2Þ; T ¼ 3

2
g2t2

� 	1=3

; ð3:21Þ
where g2 – 0 and d are arbitrary constants, to the case n ¼ 2 of (3.12), (3.13), and (3.14), that is,
0 ¼ 2K þ fLþ g2 � 2a2 � Lz; ð3:22Þ

0 ¼ K þ 1
2

g2 � a2

� �2

� 1
4

b2
2 � gL2 � KzL; ð3:23Þ
with
K

L

� �
¼ 1

2
2fg þ gz

2g þ f 2 � fz

� �
þ B1

g

f

� �
þ B0

0
2

� �
þ g2

0
z

� �
; ð3:24Þ
where
c1 ¼
B1

T
� 3

2
d; and c ¼ � d2

2g2
T2 þ dB1

g2
T � 2B0

g2
þ

~c
T
; ð3:25Þ
~c being an arbitrary constant.
4. The Burgers case

The Burgers hierarchy is given by [10–13]
Utnþ1 ¼ R
n½U�Ux; R½U� ¼ @x @x þ

1
2

U
� �

@�1
x ; ð4:1Þ
or alternatively
Utnþ1 ¼ @xLn½U� ¼ @xT n½U�U; T ½U� ¼ @x þ
1
2

U: ð4:2Þ
We find that our construction of generalized scaling reductions can also be realized for an extended version of this hierarchy,
resulting in a hierarchy of linearizable ODEs. We begin by recalling the following Lemma [1].

Lemma 3. The change of variables ~U ¼ U þ C, where C is an arbitrary constant, in Ln½~U�, yields
Ln½~U� ¼
Xn

j¼�1

nþ 1
jþ 1

� �
1
2

C
� �n�j

Lj½U�; ð4:3Þ
where we define L�1½U� ¼ 2.
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Proposition 3. There exists a choice of coefficient functions biðtnþ1Þ and of the function cðtnþ1Þ such that the substitution
U ¼ f ðzÞ
½ðnþ 1Þgn�1tnþ1�1=ðnþ1Þ þ d; z ¼ x

½ðnþ 1Þgn�1tnþ1�1=ðnþ1Þ þ cðtnþ1Þ; ð4:4Þ
where gn�1 – 0 and d are arbitrary constants, into the hierarchy
Utnþ1 ¼ R
n½U�Ux þ

Xn�1

i¼1

biðtnþ1ÞRi½U�Ux; ð4:5Þ
yields the hierarchy of ODEs
Ln½f � þ
Xn�1

i¼�1

BiLi½f � þ gn�1zf ¼ 0; ð4:6Þ
where Ln½f � is defined as above but with dependent variable f and independent variable z, and where the coefficients Bi are arbi-
trary constants.
Proof. Using Lemma 3 we see that substituting (4.4) in (4.5) gives
Xn

k¼0

ckRk½f �fz þ
gn�1

Tnþ2 ðzf Þz �
Xn

j¼0

nþ 1
jþ 1

� �
1
2

d
� �n�j 1

Tjþ2R
j½f �fz

þ
Xn�1

i¼1

bi

Xi

j¼0

iþ 1
jþ 1

� �
1
2

d
� �i�j 1

Tjþ2R
j½f �fz

 !
� 1

T
fzctnþ1 �

gn�1

Tnþ2 fzc þ gn�1

Tnþ2 ðzf Þz ¼ 0; ð4:7Þ
where T ¼ ½ðnþ 1Þgn�1tnþ1�1=ðnþ1Þ, where we have used the fact that L�1 is constant, and where clearly cn ¼ 1=Tnþ2. We solve
the equations
ck ¼ Bk=Tnþ2; k ¼ n� 1; . . . ;1; ð4:8Þ
recursively for the coefficients bk and the equation
c0 ¼ B0=Tnþ2; ð4:9Þ
for c, where all Bk are constants. Integrating the resulting ODE then yields (4.6), where we include a constant of integration as
the term B�1L�1½f � ¼ 2B�1. h
Remark 3. Without loss of generality, we may set, using a shift on z;B0 ¼ 0 in (4.6).
Proposition 4. The hierarchy (4.6) is linearizable using the Cole–Hopf transformation f ¼ 2uz=u [14–16] onto the hierarchy of
ODEs
@nþ1
z uþ

Xn�1

i¼�1

Bi@
iþ1
z uþ gn�1zuz ¼ 0: ð4:10Þ
Proof. This follows immediately from the analogous result in [11] for the Burgers hierarchy. h
Remark 4. The general solution of (4.10) can be obtained in terms of an everywhere-convergent power series.
Remark 5. In the special case of the standard Burgers flows (all bi ¼ 0), the non-generalized scaling reduction (d ¼ 0 and
c ¼ 0) to a linearizable ODE (all Bi ¼ 0 for i P 0 in (4.6)) has been considered in [17].
Example 3. The second nontrivial member of the Burgers hierarchy,
Ut3 ¼ Uxx þ
3
2

UUx þ
1
4

U3
� �

x
þ b1ðt3Þ Ux þ

1
2

U2
� �

x
; ð4:11Þ
admits the generalized scaling reduction
U ¼ f ðzÞ
T
þ d; z ¼ x

T
þ cðt3Þ; T ¼ ½3g1t3�1=3

; ð4:12Þ
where g1 – 0 and d are arbitrary constants, to the case n ¼ 2 of (4.6), that is,
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fzz þ
3
2

ffz þ
1
4

f 3 þ B1 fz þ
1
2

f 2
� �

þ B0f þ 2B�1 þ g1zf ¼ 0; ð4:13Þ
where
b1 ¼
B1

T
� 3

2
d; and c ¼ � d2

4g1
T2 þ B1d

2g1
T � B0

g1
þ

~c
T
; ð4:14Þ
~c being an arbitrary constant.
We note that Eq. (4.13) is linearizable via the Cole–Hopf transformation f ¼ 2uz=u onto the ODE
uzzz þ B1uzz þ B0uz þ B�1uþ g1zuz ¼ 0: ð4:15Þ
5. Conclusions

We have given new derivations of two Painlevé hierarchies, as well as a derivation of a hierarchy of linearizable ODEs, by
considering generalized scaling reductions of the Korteweg–de Vries, dispersive water wave and Burgers hierarchies aug-
mented by lower order flows with coefficients functions of the flow time. The ODE hierarchies obtained include lower-
weight terms. To the best of our knowledge, generalized scaling reductions of integrable hierarchies have not previously
been considered in the literature. Our results complement our earlier work on accelerating-wave type reductions of integra-
ble hierarchies. In future papers we will consider the application of our approach to other integrable hierarchies, for example
to the Boussinesq hierarchy.

Finding the associated linear problems, or Lax pairs, for the hierarchies of the Painlevé equations is an interesting and
challenging problem. In 2001, linear problems for PII and PIV hierarchies were obtained from the generalized non-isospectral
dispersive water wave hierarchy in 2þ 1 dimensions [9]. In [8], the relation between the linear problems for the PII and PIV

hierarchies obtained in [9] and other linear problems was given, and it was shown that there exists gauge transformations
which map the linear problems for the PII and PIV hierarchies onto new linear problems such that their first members are the
linear problems of PII and PIV given by Jimbo and Miwa [18]. In [19], Kudryashov found a new hierarchy of ODEs (which is a
generalization of the PII hierarchy) and associated linear problems by using the generalization of the isomonodromic linear
problems for PII. In [20], new hierarchies of nonlinear ODEs which contain the Painlevé equations as special cases were given.
In [21], by expanding the Jimbo–Miwa isomonodromy problems of PI;PII;PIII and PIV in powers of the spectral variable k, iso-
monodromic linear problems for the hierarchies of PI; PII;PIII and PIV were obtained. Moreover, some special solutions of the
hierarchies of PII;PIII and PIV were given.

Once the members of the hierarchy are presented as the compatibility conditions of the isomonodromic linear problems,
these problems can be used to solve the Cauchy problems of the members of the hierarchy by the Inverse Monodromy Trans-
form (IMT). The Cauchy problem for the second member of a PIV hierarchy was studied in [22] by using the Lax pair intro-
duced in [8]. One can also obtain Schlesinger transformations and special solutions of Painlevé hierarchies by using the
isomonodromy problem. Schlesinger transformations for the second and fourth Painlevé hierarchies were studied in [23].
Lax pairs, Cauchy problems, special solutions and Schlesinger transformations for Painlevé hierarchies will be the subject
of forthcoming articles.
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