

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2013 Society for Industrial and Applied Mathematics
Vol. 35, No. 1, pp. C99–C121

A RECURSIVE BIPARTITIONING ALGORITHM FOR PERMUTING
SPARSE SQUARE MATRICES INTO BLOCK DIAGONAL FORM

WITH OVERLAP∗

SEHER ACER† , ENVER KAYAASLAN† , AND CEVDET AYKANAT†

Abstract. We investigate the problem of symmetrically permuting a square sparse matrix
into a block diagonal form with overlap. This permutation problem arises in the parallelization of an
explicit formulation of the multiplicative Schwarz preconditioner and a more recent block overlapping
banded linear solver as well as its application to general sparse linear systems. In order to formulate
this permutation problem as a graph theoretical problem, we define a constrained version of the
multiway graph partitioning by vertex separator (GPVS) problem, which is referred to as the ordered
GPVS (oGPVS) problem. However, existing graph partitioning tools are unable to solve the oGPVS
problem. So, we also show how the recursive bipartitioning framework can be utilized for solving the
oGPVS problem. For this purpose, we propose a left-to-right bipartitioning approach together with
a novel vertex fixation scheme so that existing 2-way GPVS tools that support fixed vertices can be
effectively and efficiently utilized in the recursive bipartitioning framework. Experimental results on
a wide range of matrices confirm the validity of the proposed approach.

Key words. sparse square matrices, block diagonal form with overlap, graph partitioning by
vertex separator, recursive bipartitioning, partitioning with fixed vertices, combinatorial scientific
computing

AMS subject classifications. 05C50, 05C85, 65F50, 68R10

DOI. 10.1137/120861242

1. Introduction. Our target problem is to symmetrically permute rows and
columns of an N × N structurally symmetric sparse matrix A into a K -way block
diagonal (BDO) form Aπ with overlap:

(1.1)

Aπ = PAPT = ABDO =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 A1,2

AT
1,2 C1,1 A2,1 C1,2

AT
2,1 A2,2 A2,3

CT
1,2 AT

2,3 C2,2 · · ·
...

. . .

CK−1,K−1 AK,K−1

AT
K,K−1 AK,K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here, P denotes an N×N permutation matrix. The BDO form contains K diagonal
blocks D1, D2, . . . , DK , where

(1.2) Dk =

⎡
⎣ Ck−1,k−1 Ak,k−1 Ck−1,k

AT
k,k−1 Ak,k Ak,k+1

CT
k−1,k AT

k,k+1 Ck,k

⎤
⎦ for k = 2, 3, . . . ,K − 1,

∗Submitted to the journal’s Software and High-Performance Computing section January 3, 2012;
accepted for publication (in revised form) October 26, 2012; published electronically February 12,
2013. This work was financially supported by the PRACE project funded in part by the EU’s 7th
Framework Programme (FP7/2007-2013) under grant agreements RI-211528 and FP7-261557.

http://www.siam.org/journals/sisc/35-1/86124.html
†Computer Engineering Department, Bilkent University, Ankara, Turkey (acer@cs.bilkent.edu.tr,

enver@cs.bilkent.edu.tr, aykanat@cs.bilkent.edu.tr).

C99

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C100 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

Dk-1

D1 C1,1

Dk

Dk+1

DK

Ck-1,k-1

Ck,k

Ck-2,k-2

Ck+1,k+1

CK-1,K-1

Fig. 1.1. Block diagonal form with overlap.

(1.3) D1 =

[
A1,1 A1,2

AT
1,2 C1,1

]
, DK =

[
CK−1,K−1 AK,K−1

AT
K,K−1 AK,K

]
.

In (1.2), Ck,k denotes the coupling diagonal block between the successive k th and
(k + 1)th diagonal blocks Dk and Dk+1 , respectively. Note that ABDO is also struc-
turally symmetric since symmetric permutation is applied on the symmetric matrix
A . Figure 1.1 displays a better visualization of the BDO form of the matrix A .

In the A-to-ABDO permutation problem, the permutation objective is to mini-
mize the total overlap size, which is defined as

(1.4) Nc =

K−1∑
k=1

nk
c .

Here, nk
c denotes the number of the rows/columns of the coupling diagonal block

Ck,k . The permutation constraint is to maintain balance on the nonzero counts of
the diagonal blocks Dk ’s.

The A-to-ABDO permutation problem arises in the parallelization of an explicit
formulation of the multiplicative Schwarz preconditioner [13] and a more recent do-
main decomposition method proposed by Naumov, Manguoglu, and Sameh [18] and
Naumov and Sameh [19]. These overlapping domain decomposition methods have the
limitation that each subdomain has only two neighbors, whereas most domain decom-
position methods do not have such a limitation. In these parallelizations, each diag-
onal block Dk of the permuted matrix together with the associated computations is
assigned to a distinct processor k . The permutation objective corresponds to minimiz-
ing the total communication volume [13, 18, 19] and minimizing the size of the balance
system [18, 19], as well as the upper bound on the number of iterations required for
convergence of the iterative method [14]. The permutation constraint relates to main-
taining balance on the computational loads of processors during the iterations [13].

The problem of permuting sparse rectangular matrices into bordered block diag-
onal (BBD) forms, which we refer to as the A-to-ABBD permutation problem, was

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES IN BLOCK DIAGONAL FORM WITH OVERLAP C101

investigated in the literature (singly BBD form [2, 10] and doubly BBD form [2]). In
the A-to-ABBD problem, the permutation objective is to minimize the border size,
whereas the permutation constraint is to maintain balance on the dimensions and/or
the nonzero counts of diagonal blocks. The A-to-ABDO and A-to-ABBD problems
are quite different in terms of both parallel application and combinatorial aspects.
In terms of parallelization objective, the A-to-ABBD problem is used in the paral-
lelization of applications where diagonal blocks give rise to subproblems that can be
solved independently and the border corresponds to a possibly serial coordination
task to combine the subproblem solutions into a solution of the original problem. In
terms of combinatorial aspects, the BDO form is a rather constrained version of the
BBD forms, because in the BDO form, rows and columns of coupling diagonal blocks
link only the successive diagonal blocks, whereas in the BBD forms, the rows and/or
columns of the border(s) may link nonconsecutive diagonal blocks and possibly all
diagonal blocks.

To our knowledge, the A-to-ABDO permutation problem has only been addressed
in a recent work by Kahou, Grigori, and Sosonkina [12]. In that work, they propose
a bottom-up graph partitioning algorithm on the standard graph representation of
matrix A . Their algorithm first finds a level structure in which the number of lev-
els is maximized. This level structure is considered as a chain, and an initial K -way
partition is obtained by running a chain-on-chain partitioning algorithm [20] that min-
imizes the load of the maximally loaded part. In the resulting K -way partition, each
part contains one or more consecutive levels so that all inter-part edges are confined to
be between consecutive parts. If the balance of the resulting partition is found to be
unsatisfactory, they improve the balance through exchanging vertices between consec-
utive parts. Then, for each two consecutive parts, a narrow separator is obtained from
the wide separator by utilizing the minimum vertex cover algorithm. Finally, using
the node separator refinement algorithm of [17], sizes of the separators are decreased
by utilizing the first two steps of the Dulmage Mendelsohn decomposition for finding
vertex subsets to be moved between separators and parts [21]. Given a level structure
with maximum length, the running time of this partitioning algorithm is O(KlgK +
e
√
Kn), where n and e , respectively, denote the number of vertices and edges.
The contributions of this paper are as follows. We first define a constrained

version of the K -way graph partitioning by vertex separator (GPVS) problem, which
is referred to as the ordered GPVS (oGPVS) problem. Then we formulate the A-to-
ABDO permutation problem as a K -way oGPVS problem. However, existing graph
partitioning tools are unable to solve the oGPVS problem. So, we also show how the
recursive bipartitioning (RB) framework, which is successfully and commonly used
for K -way graph/hypergraph partitioning, can be utilized for solving the oGPVS
problem. For this purpose, we propose a left-to-right bipartitioning approach together
with a novel vertex fixation scheme so that existing 2-way GPVS tools that support
fixed vertices can be effectively and efficiently utilized in the RB framework.

The rest of the paper is organized as follows. Section 2 provides background in-
formation. oGPVS problem formulation is presented in section 3. Section 4 presents
and discusses the RB-based algorithm proposed for solving the oGPVS problem. Ex-
perimental results are given in section 5. Finally, section 6 concludes the paper.

2. Preliminaries.

2.1. Standard graph model for representing sparse matrices. In the stan-
dard graph model, an N ×N square and symmetric matrix A = (aij) is represented
as an undirected graph G(A) = (V , E) with N vertices. Vertex set V and edge set

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C102 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

E , respectively, represent the rows/columns and off-diagonal nonzeros of matrix A .
For each row/column ri /ci , V contains one vertex vi . For each symmetric nonzero
pair aij and aji , E contains one edge eij that connects the vertices vi and vj .

2.2. Graph partitioning by vertex separator (GPVS). For a given undi-
rected graph G = (V , E), we use the notation Adj(vi) to denote the set of vertices
that are adjacent to vertex vi in G . We extend this operator to include the adjacency
set of a vertex subset V ′ ⊆ V , i.e., Adj(V ′) =

⋃
vi∈V′ Adj(vi)−V ′ . Two vertex subsets

V ′ ⊆ V and V ′′ ⊆ V are said to be adjacent if Adj(V ′) ∩ V ′′ �= ∅ (or equivalently
Adj(V ′′) ∩ V ′ �= ∅) and nonadjacent otherwise.

A vertex subset S is a K -way vertex separator if the subgraph induced by the
vertices in V−S has at least K connected components. ΠV S = {V1,V2, . . . ,VK ;S} is
a K -way vertex partition of G by vertex separator S ⊆ V if all parts are nonempty
(i.e., Vk �= ∅ for k = 1, . . . ,K), all parts and the separator are pairwise disjoint,
the union of the parts and the separator gives V , and the vertex parts are pairwise
nonadjacent (i.e., Adj(Vk) ⊆ S for k = 1, . . . ,K). Vk ∩ Adj(S) is said to be the
boundary vertex set of part Vk .

In the GPVS problem, the partitioning objective is to minimize the separator
size, which is usually defined as the number of vertices in the separator, i.e.,

(2.1) Separatorsize(ΠVS) = |S|.

The partitioning constraint is to maintain a balance criterion on the part weights,
which is usually defined as

max
1≤k≤K

{W (Vk)} ≤ (1 + ε)Wavg.(2.2)

Here, ε is the maximum imbalance ratio allowed and Wavg =
∑K

k=1 W (Vk)/K is the
average part weight, where

(2.3) W (Vk) =
∑

vi∈Vk

w(vi)

is the weight of part Vk and w(vi) is the weight associated with vertex vi .

2.3. Recursive bipartitioning paradigm. The RB paradigm has been widely
and successfully utilized in K -way graph/hypergraph partitioning. In the RB scheme
for K -way GPVS, first a 2-way vertex separator ΠV S = {V1,V2;S} of the original
graph G = G[V] is obtained and then this 2-way ΠV S is decoded to construct two
subgraphs using the separator-vertex removal scheme to capture the K -way separator
size. The separator-vertex removal scheme discards all separator vertices of the 2-way
ΠV S , since they contribute to the K -way separator size only once, thus inducing
vertex-induced subgraphs G[V1] and G[V2] . Then 2-way GPVS is recursively applied
on both G[V1] and G[V2] . This procedure continues until the desired number of parts
is reached in lg2K recursion levels, assuming K is a power of 2.

In forthcoming discussions, we utilize the concept of an RB tree which is a full
and complete (for K is a power of 2) binary rooted tree. Each node of an RB tree
represents a vertex subset of V as well as the respective induced subgraph on which
a 2-way GPVS to be applied. Note that the root node represents both the original
vertex set V and the original graph G .

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES IN BLOCK DIAGONAL FORM WITH OVERLAP C103

2.4. Graph/hypergraph partitioning with fixed vertices. Graph/hyper-
graph partitioning with fixed vertices has been used for solving the repartitioning/re-
mapping problem encountered in the parallelization of irregular applications [1, 7, 8].

In graph/hypergraph partitioning with fixed vertices, there exists an additional
constraint on the part assignment of some vertices. That is, some vertices, which
are referred to as fixed vertices, are preassigned to parts prior to the partitioning
operation, with the constraint that, at the end of the partitioning, fixed vertices will
remain in the part to which they are preassigned. We use the notation Fk to denote
the subset of vertices that are fixed to part Vk for k = 1, 2, . . . ,K . The remaining
vertices (i.e., vertices in V −⋃K

k=1 Fk) are referred to as the free vertices since they
can be assigned to any part. In GPVS with fixed vertices, free vertices can be assigned
to the separator as well as to the parts.

3. Ordered GPVS formulation. In order to formulate the A-to-ABDO per-
mutation problem as a graph theoretical problem, we define a constrained version
of the K -way GPVS problem which is referred to as the ordered GPVS (oGPVS)
problem.

3.1. Ordered GPVS problem definition. In the oGPVS problem, we use a
special form of vertex separator which is referred to as the ordered vertex separator
(oVS). In oVS of a given graph G , there exists an order on the vertex parts, and
the overall separator is partitioned into an ordered set S =

〈S1,S2, . . . ,SK−1〉 of
mutually disjoint K − 1 subseparators in such a way that

(i) each vertex in subseparator Sk connects vertices only in successive parts Vk
and Vk+1 for k = 1, 2, . . . ,K − 1;

(ii) edges between subseparators are restricted to be between only successive
supseparators, i.e., Sk and Sk+1 for k = 1, 2, . . . ,K − 2.

Here, we denote Sk to be the right subseparator of Vk and the left subseparator of
Vk+1 . We introduce the following formal definitions for oVS and the oGPVS problem.

Definition 3.1 (ordered vertex separator ΠoV S). ΠoV S = {〈V1,V2, . . . ,VK〉;S}
is a K -way ordered vertex partition of G = (V , E) by an oVS S = 〈S1,S2, . . . ,SK−1〉
if each subseparator Sk is nonempty; all parts and subseparators are pairwise disjoint;
the union of parts and subseparators gives V ; parts are pairwise nonadjacent; only
successive subseparators can be pairwise adjacent; and successive parts Vk and Vk+1

are connected by the vertices of the subseparator Sk between these two parts.
Definition 3.2 (oGPVS problem). Given a graph G = (V , E) , an integer

K , and a maximum allowable imbalance ratio ε , the oGPVS problem is finding
a K -way oVS ΠoV S(G) = {〈V1,V2, . . . ,VK〉;S} of G by a vertex separator S =

〈S1,S2, . . . ,SK−1〉 that minimizes the overall separator size |S| = ∑K−1
k=1 |Sk| while

satisfying the balance criterion on the weights of K parts given in (2.2) .

3.2. Formulation. The following theorem shows how the A-to-ABDO permu-
tation problem can be formulated as an oGPVS problem.

Theorem 3.3. Let G(A) = (V , E) be the standard graph representation of a given
structurally symmetric sparse matrix A where the weight of each vertex vi is set to be
equal to the number of nonzeros in row/column i . A K -way oVS ΠoV S = {〈V1,V2,
. . . ,VK〉;S} of G(A) can be decoded as a partial permutation of A to a K-way
BDO form ABDO , where the vertices of part Vk and subseparator Sk constitute the
rows/columns of the subblock Ak,k and Ck,k , respectively. Thus,

• |Sk| = nk
c , and hence minimizing the separator size |S| = ∑K−1

k=1 |Sk| corre-
sponds to minimizing total overlap size Nc =

∑K−1
k=1 nk

c ;

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C104 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

• maintaining balance on the part weights relates to maintaining balance on the
nonzero counts of the diagonal blocks.

Proof. Consider a K -way oVS ΠoV S = {〈V1,V2, . . . ,VK〉;S} of G(A). ΠoV S

can be decoded as a partial permutation on the rows and columns of A to induce
a permuted matrix Aπ as follows: The rows/columns corresponding to the vertices
in Vk are ordered after the rows/columns corresponding to the vertices in Sk−1 and
before the rows/columns corresponding to the vertices in Sk . In a dual manner, the
rows/columns corresponding to the vertices in Sk are ordered after the rows/columns
corresponding to the vertices in Vk and before the rows/columns corresponding to
the vertices in Vk+1 . Note that ΠoV S induces a partial permutation, since the
rows/columns corresponding to the vertices in the same part or in the same subsepara-
tor can be ordered arbitrarily. Also note that ΠoV S induces a symmetric permutation
on the rows and columns of matrix A since each vertex vi of G(A) represents both
row i and column i of A .

In the permuted matrix Aπ , the vertices of part Vk constitute the rows/columns
of the diagonal subblock Ak,k of Dk and the vertices of subseparator Sk constitute
the rows/columns of the coupling diagonal block Ck,k between Dk and Dk+1 . Since
we have Adj(Vk) = Sk−1 ∪ Sk and Adj(Vk) ∩ Adj(Vk+1) = Sk by the definition of
oVS, the overlaps between the diagonal blocks Dk ’s are restricted to be only between
the successive Dk ’s, and Ck,k constitute the overlap between Dk and Dk+1 . Thus
permuted matrix Aπ is a BDO form of matrix A .

Since the vertices in Sk constitute the rows/columns of the coupling diagonal
block Ck,k , minimizing the overall separator size |S| corresponds to minimizing the
total overlap size Nc .

Vk Vk+1Vk-1

Sk-2 Sk-1 Sk+1Sk

Ak-1,k-2 Ak-1,k Ak,k-1 Ak,k+1 Ak+1,k Ak+1,k+2

Ck-2,k-1 Ck-1,k Ck,k+1

Ak-1,k-1 Ak,k Ak+1,k+1

Ck-2,k-2 Ck-1,k-1 Ck+1,k+1Ck,k

Fig. 3.1. Correspondence between the nonzeros of block Dk and the edges of Sk−1 ∪ Vk ∪ Sk .

Here, we show that balancing on the part weights relates to the balancing of the
nonzero counts in the diagonal blocks. For this purpose, we mention the association
between the edges of G(A) in oVS form and the nonzeros of Aπ = ABDO induced by
ΠoV S . We introduce Figure 3.1 in order to clarify the forthcoming discussion. The
nonzeros in the diagonal subblocks Ck−1,k−1 , Ak,k , and Ck,k of Dk , respectively,
correspond to the internal edges of subseparator Sk−1 , part Vk , and subseparator Sk .
The nonzeros in the off-diagonal subblocks Ck−1,k−1 , and AT

k,k−1 of Dk correspond
to the edges connecting the vertices in subseparator Sk−1 , whereas the nonzeros
in the off-diagonal subblocks Ak,k+1 and AT

k,k+1 of Dk correspond to the edges
connecting the vertices in Vk and Sk . The nonzeros in the off-diagonal subblocks
Ck−1,k and CT

k−1,k of Dk correspond to the edges connecting the vertices in successive
subseparators St1 and Sk . Thus, the weight of a part Vk computed according to (2.3)
gives W (Vk) = nnz(Ak,k−1) + nnz(Ak,k) + nnz(Ak,k+1), where nnz(·) denotes the

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES IN BLOCK DIAGONAL FORM WITH OVERLAP C105

v12

v23

v14

v17

v15

v2

v9

v6

v10

v20

v7

v13 v11

v21

v19

v8

v22

v5

v1

v18

v24

v4
v3

v16

Fig. 3.2. Sample matrix A and its standard graph representation G(A) .

number of nonzeros in the respective matrix. Since nnz(AT
k,k−1) = nnz(Ak,k−1) and

nnz(AT
k,k+1) = nnz(Ak,k+1), W (Vk) represents the sum of the nonzero counts of

diagonal block Ak,k plus one of the two off-diagonal blocks Ak,k−1 and AT
k,k−1 plus

one of the two off-diagonal blocks Ak,k+1 and AT
k,k+1 . One possible nonzero-count

coverage of W (Vk) is shown in (3.1) as highlighted submatrices:

(3.1) Dk =

⎡
⎣Ck−1,k−1 Ak,k−1 Ck−1,k

AT
k,k−1 Ak,k Ak,k+1

CT
k−1,k AT

k,k+1 Ck,k

⎤
⎦ .

Note that W (Sk−1) + W (Vk) + W (Sk) computed in the vertex-induced subgraph
G[Sk−1 ∪ Vk ∪ Sk] of G(A) gives nnz(Dk). Thus, W (Vk) can be considered to
approximate nnz(Dk) when the number of vertices and edges of vertex-induced sub-
graph G[Sk−1 ∪Sk] of G(A) are small, which is partially implied by the partitioning
objective of minimizing the separator size.

Figure 3.2 shows a sample 24×24 matrix A which contains 116 nonzeros and
the standard graph representation G of A which contains 24 vertices and 46 edges.
Figure 3.3 shows a 4-way oVS ΠoV S(G) = {〈V1,V2,V3,V4〉; 〈S1,S2,S3〉} of G , where
V1 ,V2 ,V3 , and V4 , respectively, contain 4, 5, 4, and 4 vertices, and S1 ,S2 , and S3 ,
respectively, contain 2, 3, and 2 vertices. Figure 3.4 shows a BDO form of the sample
matrix A given in Figure 3.2, which is induced by ΠoV S(G) given in Figure 3.3. As
seen in Figure 3.4, the BDO form, respectively, contains diagonal blocks D1 , D2 , D3 ,
and D4 of dimensions 6×6, 10×10, 9×9, and 6×6, and coupling diagonal blocks
C1,1 , C2,2 , and C3,3 of dimensions 2×2, 3×3, and 2×2 between diagonal blocks D1

and D2 , D2 and D3 , and D3 and D4 .

3.3. Parallel requirements for a sample application. Here, we will briefly
examine the communication and computation requirements of the parallel implemen-
tation of an explicit formulation of the multiplicative Schwarz preconditioner given in
[13] in order to show the correspondence between its efficient parallelization and the
constraint and objective of the proposed oGPVS formulation. In this parallel imple-
mentation, each processor k stores diagonal block Dk and its LU factors as well as

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C106 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

v12

v23

v14

v17

v15

v2

v9

v6

v10

v20

v7v13

v11

v21

v19

v8

v22

v5

v1

v18

v24

v4

v3

v16

V2S1 S2 S33 V4V1 V

Fig. 3.3. A 4 -way oVS form of G(A) given in Figure 3.2 .

Fig. 3.4. A 4 -way BDO form of the sample matrix A induced by the 4 -way oVS given in
Figure 3.3 .

the k th overlapping subvectors of all column vectors involved in the iterative solution
of Aπxπ = bπ , where xπ = PTx and bπ = Pb . To simplify the notation of the
forthcoming discussion, we will omit the “π ” superscripts which denote the permuted
matrix and vectors. For example, xk denotes the subvector of x that corresponds to
the columns of Dk , where xk is partitioned into three subsubvectors x1

k , x
2
k , and x3

k

that, respectively, correspond to the columns of Ck−1,k−1 , Ak,k , and Ck,k . So xk

overlaps with xk−1 through x3
k−1 and x1

k , and overlaps with xk+1 through x3
k and

x1
k+1 . Each iteration involves a residual computation step and a preconditioning step

[13].
The residual computation step involves a local sparse matrix-vector multiply (Sp-

MxV) operation of the form zk = D̂kxk for updating the local residual vector through
the local linear vector operation rk = bk − zk in each processor k . Here D̂k is the
diagonal block Dk from which the coupling diagonal subblock Ck,k is zeroed as shown
below:

(3.2) D̂k =

⎡
⎣ Ck−1,k−1 Ak,k−1 Ck−1,k

AT
k,k−1 Ak,k Ak,k+1

CT
k−1,k AT

k,k+1 0

⎤
⎦ .

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES IN BLOCK DIAGONAL FORM WITH OVERLAP C107

The preconditioning step involves the solution of a local linear system of the form
Dkyk = rk for the update of the local solution vector through the linear vector
operation xk = xk + yk in each processor k . yk is obtained through performing local
forward and backward substitution operations on the LU factors of Dk . The local
LU factorizations of Dk matrices are performed in a parallel preprocessing step [13].
The preconditioning step also involves a SpMxV operation of the form y3k = Ck,ky

3
k ,

where y3k is the subvector of yk that corresponds to the rows of Ck,k .
The nonzero count nnz(Dk) of a diagonal block Dk precisely defines the amount

of work associated with these two SpMxV operations zk = D̂kxk and y3k = Ck,ky
3
k .

However, nnz(Dk) can only be used as an estimate for the work associated with the
LU factorization of Dk , as well as the nonzero counts of the LU factors of Dk (due
to fill-ins). So nnz(Dk) only relates to the local forward and backward substitutions
performed on the LU factors of Dk throughout the iterations. Hence maintaining
balance on the part weights relates to maintaining balance on the computational
loads of processors during the iterations.

In each residual computation step, processor k sends z1k to processor k − 1,
and sends z3k to processor k + 1. In each preconditioning step, processor k sends
y1k to processor k − 1, and sends y3k to processor k + 1. Hence, the partitioning
objective of minimizing the overall separator size corresponds to minimizing the total
communication volume. Furthermore, as mentioned in [14], minimizing the overall
separator size corresponds to minimizing the upper bound on the number of iterations
for convergence of the iterative method. Thus minimizing the overall separator size
relates to minimizing the number of iterations for convergence.

4. Recursive graph bipartitioning model with fixed vertices. In this sec-
tion, we show how we solve the oGPVS problem by utilizing the 2-way GPVS problem
with fixed vertices within the RB paradigm.

4.1. Theoretical foundations. The following theorem and corollary lay down
the basis for our formulation to obtain a K -way oVS of a given graph G = (V , E).

Theorem 4.1. For any disjoint vertex subset pair BL,BR ⊆ V , G has a K -way
oVS ΠoV S = {〈V1,V2, . . . ,VK〉;S} such that BL ⊆ V1 ∪ S1 and BR ⊆ SK−1 ∪ VK
if and only if the distance between any two vertices vi ∈ BL and vj ∈ BR is at least
K − 2 .

Proof. (If) Consider the level structure {L0 = BL,L1,L2, . . . ,Li, . . .} rooted
at the vertex subset BL , where Li contains the vertices that have a shortest path
distance of i to the vertices of BL . Since the shortest path distance between any
vertex of BL and any vertex of BR is at least K−2, the vertices of BR will be placed
in levels LK−2,LK−1,LK ,LK+1, So we can construct a K -way oVS ΠoVS =
{〈∅, . . . , ∅〉; 〈L0, . . . ,LK−3,

⋃
k≥K−2 Lk〉} , where Vk = ∅ (i.e., empty part) for 1 ≤

k < K , Sk = Lk−1 for 1 ≤ k < K − 1, and SK−1 =
⋃

k≥K−1 Lk−1 . Since BL = S1 ,
BL ⊆ V1 ∪ S1 . Due to the construction, BR ⊆ VK ∪ SK−1 since vj ∈ SK−1 for any
vj ∈ BR .

(Only If) Consider a K -way oVS such that BL ⊆ V1 ∪S1 and BR ⊆ VK ∪SK−1 .
Consider any vertex pair vi ∈ BL and vj ∈ BR . It is clear that the minimum distance
between vi and vj occurs when vi ∈ S1 and vj ∈ SK−1 . Due to the oVS structure,
any path between a vertex of S1 and a vertex of SK−1 contains at least K − 3
intermediate vertices one from each subseparator Sk (for k = 2, 3, . . . ,K − 2). So,
the minimum distance between vi and vj is at least K − 2.

Corollary 4.2. A graph G has a K -way oVS if and only if the diameter of G
is at least K − 2 .

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C108 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

Algorithm 1 Initialization.

Require: Graph G = (V , E), integer K
1: Find a pseudoperipheral vertex vL and a furthest vertex vR from vL
2: if distance between vL and vR is less than K − 2 then
3: return “G is not partitionable into K -way oVS”
4: else
5: BL ← {vL}
6: BR ← {vR}
7: ΠoV S ←oGPVS(G,BL,BR,K)
8: return ΠoV S

Proof. G has a diameter of at least K−2 if and only if there exist two vertices vi
and vj such that δ(vi, vj) ≥ K − 2. Having two such vertices implies the existence of
a K -way oVS of G such that vi ∈ V1 ∪S1 and vj ∈ SK−1 ∪VK due to Theorem 4.1.
On the other hand, by definition, if G has a K -way oVS, then there exist two vertices
vi ∈ S1 and vj ∈ SK−1 . Then Theorem 4.1 implies that δ(vi, vj) ≥ K − 2.

4.2. Recursive oGPVS algorithm. Theorem 4.1 and Corollary 4.2 give the
necessary and sufficient conditions for finding a K -way oVS of a given graph G =
(V , E). However, a new scheme needs to be applied during each RB step to satisfy
the feasibility condition for the resulting K -way GPVS to be a K -way oVS. For
this purpose, we propose a left-to-right bipartitioning approach together with a novel
vertex fixation scheme so that a GPVS tool that supports partitioning with fixed
vertices can be effectively and efficiently utilized. Algorithm 1 shows the initial invo-
cation of the recursive oGPVS algorithm, where Algorithm 2 displays the basic steps
of the proposed RB-based oGPVS algorithm that utilizes the proposed vertex fixation
scheme.

The proposed oGPVS algorithm runs in O((n+e)lgK)-time, where each RB level
runs in O(n+ e)-time, under the assumption of using the successful multilevel graph
partitioning tool MeTiS [15]. This running time is favorable compared to the running
time O(KlgK + e

√
Kn) of the baseline algorithm proposed by Kahou, Grigori, and

Sosonkina [12]. However, as mentioned in section 5.1, due to the lack of fixed vertexes
support in graph partitioning tools, we implemented the hypergraph partitioning-
based GPVS algorithm [6] in this work. In this implementation, the running time of
each RB step can be as expensive as O(

∑
vi∈V deg(vi)

2), where deg(vi) denotes the
degree of vertex vi in G(A). The high complexity of the operations in hypergraph
partitioning mainly stems from the matching algorithm used in the coarsening phase
of the hypergraph partitioning tool [4].

As seen in Algorithm 1, for the first RB step of the recursive oGPVS algorithm, BL
consists of a single pseudoperipheral vertex vL which is found by using the pseudope-
ripheral node finder algorithm given in [11]. One of the vertices that has a maximum
distance to the selected pseudoperipheral vertex is taken as the single vertex vR con-
stituting BR . According to Theorem 4.1, the oGPVS algorithm can be terminated at
this initial stage if the shortest path distance between vL and vR is less than K − 2.
As seen in line 1 of Algorithm 2, the oGPVS function first checks whether the current
bipartitioning is an intermediate or final level bipartitioning in the RB tree. Note
that K > 2 for intermediate level bipartitionings, whereas K = 2 for final level bi-
partitionings, where K denotes the number of parts to be obtained from the current
graph through further RB steps. As seen in line 3 of Algorithm 2, at the beginning of

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES IN BLOCK DIAGONAL FORM WITH OVERLAP C109

Algorithm 2 oGPVS (G,BL,BR,K).

Require: Graph G = (V , E), boundary vertex sets BL,BR ⊆ V , integer K
1: if K > 2 then
2: K ′ ← K/2
3: (FL,FR)←FIX-INT-LEVEL(G,BL,BR,K ′)
4: ΠV S ←GPVS(G, {FL,FR}, 2) � ΠV S = {VL,VR;S}
5: GL ← G[VL]
6: GR ← G[VR]
7: BLL ← BL
8: BLR ← Adj(S) ∩ VL
9: BRL ← Adj(S) ∩ VR

10: BRR ← BR
11: ΠL

oV S ←oGPVS (GL,BLL,BLR,K
′) � ΠL

oV S = {〈VL〉 : 〈SL〉}
12: ΠR

oV S ←oGPVS (GR,BRL,BRR,K
′) � ΠR

oV S = {〈VR〉 : 〈SR〉}
13: ΠoV S ← {〈VL,VR〉 : 〈SL,S,SR〉}
14: else
15: (G′, {v�}, {vr})←FIX-FINAL-LEVEL(G,BL,BR)
16: ΠV S ←GPVS(G′, {{v�}, {vr}}, 2) � ΠV S = {V ′

L,V ′
R;S}

17: VL ← V ′
L − {v�}

18: VR ← V ′
R − {vr}

19: ΠoV S ← {VL,VR;S}
20: return ΠoV S

each intermediate RB step, the oGPVS function applies the proposed vertex fixation
scheme by invoking the FIX-INT-LEVEL function on the current graph G with BL
and BR to obtain the left and right fixed-vertex sets FL and FR . Then in line 4, a
2-way GPVS is invoked on (G, {FL,FR}) to obtain ΠV S(G) = {VL,VR;S} , where
VL and VR are used to denote the left and right parts. In lines 5 and 6, we construct
left and right vertex-induced subgraphs GL = G[VL] and GR = G[VR] on which fur-
ther RB steps will be applied, since this partitioning belongs to an intermediate level
of the RB tree. Note that in order to construct GL and GR , we effectively apply the
vertex removal scheme on the vertices of subseparator S . That is, each subseparator
vertex vs ∈ S is removed during forming GL and GR .

In lines 7–10 of Algorithm 2, we determine left and right boundary vertices of
both left and right subgraphs GL and GR . GL and GR , respectively, inherit their
left and right boundary vertex sets from the left and right boundary vertex sets of
the parent graph G . That is, the left boundary vertex set BL of the current graph G
becomes the left boundary vertex set BLL of GL , whereas the right boundary vertex
set BR of G becomes the right boundary vertex set BRR of GR . The boundary vertex
sets BLR and BRL , which are formed by the subseparator S of ΠV S(G), respectively,
constitute the right and left boundary vertex sets of GL and GR . That is, Adj(S)∩VL
constitutes the right boundary vertex set BLR of GL , whereas Adj(S)∩VR constitutes
the left boundary vertex set BRL of GR . We should note here that S will be the
right subseparator of the rightmost vertex part and left subseparator of the leftmost
vertex part obtained from RB trees rooted at GL and GR , respectively.

In lines 11 and 12 of Algorithm 2, we recursively invoke the oGPVS function on
the left and right subgraphs GL and GR to, respectively, obtain ΠL

oV S and ΠR
oV S .

Here, ΠL
oV S = {〈VL〉 : 〈SL〉} denotes the resulting K/2-way oVS of the left subgraph

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C110 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

Fig. 4.1. A three-level RB tree for producing an 8 -way oVS of an initial graph G .

GL , where 〈VL〉 and 〈SL〉 denote the ordered K/2 vertex parts and K/2 − 1 sub-
separators. Similarly, ΠR

oV S = {〈VR〉 : 〈SR〉} denotes the resulting K/2-way oVS
of the right subgraph GR , where 〈VR〉 and 〈SR〉 , respectively, denote the ordered
K/2 vertex parts and K/2 − 1 subseparators. Line 13 forms a K -way oVS of G
by combining ΠL

oV S and ΠR
oV S together with the current level subseparator S as

ΠoV S = {〈VL,VR〉 : 〈SL,S,SR〉} .
For the final level bipartitionings (lines 15–19 in Algorithm 2), the oGPVS func-

tion applies the proposed vertex fixation scheme by invoking the FIX-FINAL-LEVEL
function (in line 15) on the current graph G with BL and BR to obtain augmented
graph G′ . As will become clear later in Algorithm 4, G′ is produced by adding two
vertices vL and vR , which are, respectively, fixed to the left and right parts, and a
number of associated edges to the current graph G . Then in line 16, a 2-way GPVS
is invoked on (G′, {{vL}, {vR}}) to obtain ΠV S(G

′) = {V ′
L,V ′

R;S} . Lines 17–18 ex-
clude vL and vR from the left and right vertex parts, respectively, to obtain the 2-way
oVS in line 19.

Figure 4.1 displays a diagram of three levels of the RB process applied on a
graph G with left and right boundary vertex sets BL and BR . Solid directed edges
connecting graphs to their subgraphs correspond to the edges of the RB tree. Note
that BL and BR , respectively, determine the left and right boundary vertex sets of
the leftmost and rightmost graphs at each level of the RB tree rooted at G . That is,
BL = BLL = BLLL is the left boundary vertex set of graphs G , GL , and GLL , whereas
BR = BRR = BRRR is the right boundary vertex set of graphs G , GR , and GRR .
The internal boundary vertex sets of the RB tree rooted at G are determined by the
subseparators obtained, for example, BLRR = BLR = Adj(S)∩VL and BRLL = BRL =

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES IN BLOCK DIAGONAL FORM WITH OVERLAP C111

Adj(S) ∩ VR . The last level of Figure 4.1 shows the final 2-way GPVS operations
performed on the subgraphs of the last level of the RB tree to obtain an 8-way oVS
of the initial graph G .

As seen in Algorithm 2, we apply two different types of fixation schemes, FIX-
INT-LEVEL and FIX-FINAL-LEVEL, for the intermediate level and final level bipar-
titionings, respectively. Here, an intermediate level bipartitioning refers to a 2-way
GPVS to be applied on a graph at an internal node of the RB tree, whereas a final
level bipartitioning refers to a 2-way GPVS to be applied on a graph at a leaf node.

The FIX-INT-LEVEL function invokes the FIX-VERTICES function twice with
K ′ being equal to K/2 − 1, where K is the input of the current oGPVS function.
Here, K ′ denotes the number of vertex levels to be fixed from the left and right
boundary vertex sets—including the boundary vertex sets—of the current graph G .
The FIX-VERTICES function utilizes a breadth-first search like algorithm to identify
the vertices whose shortest path distances to a given vertex subset B are strictly
less than a given K ′ value. The shortest path distance of a vertex v to a vertex
subset U is defined as δ(v,U) = minu∈U{δ(u, v)} , where δ(u, v) denotes the shortest
path distance between two vertices u and v . In the first invocation of the FIX-
VERTICES function, vertices whose shortest path distances to BL are strictly less
than K ′ are fixed to the left part, whereas in the second invocation vertices whose
shortest distances to BR are strictly less than K ′ are fixed to the right part. That
is, FL = {u : δ(u,BL) < K ′} and FR = {u : δ(u,BR) < K ′} .

For the final level bipartitionings, the FIX-FINAL-LEVEL function augments
graph G with two zero-weight vertices v� having Adj(v�) = BL and vr having
Adj(vr) = BR and fixes them to the left and right parts, respectively. This ver-
tex fixation scheme introduces the flexibility of assigning the vertices of BL and BR
to the subseparator.

Although the discussion given so far considers only exact power-of-two K values,
the proposed oGPVS algorithm can be extended to non-power-of-two K values as
follows: The bipartition at each recursion level is performed with left and right target
part weights, respectively, proportional to �K/2� and �K/2� , where K denotes the
number of the parts to be obtained from the current graph through further RB steps.
Then the vertices whose shortest path distances to BL are strictly less than �K/2�−1
are fixed to the left part and the vertices whose shortest path distances to BR are
strictly less than �K/2� − 1 are fixed to the right part.

4.3. A discussion on the correctness of oGPVS algorithm. We provide
the following discussion on the correctness of the proposed RB-based oGPVS algo-
rithm for exact power-of-two K values. The correctness discussion easily follows for
non-power-of-two K values.

The left-to-right bipartitioning approach together with the proposed vertex fixa-
tion scheme adopted in the recursive oGPVS algorithm given in Algorithm 2 induces
a natural ordering on both vertex parts and subseparators of a graph G in such a
way that the final partition is a K -way oVS of G . We should also note that this
scheme also induces a restricted 2� -way oVS at the �th level of the RB tree for
� = 0, 1, . . . , lg2K − 1. Here the restriction refers to the nonadjacency of the consecu-
tive subseparators. As will become clear later, 2-way GPVS operations to be invoked
on the leaf level graphs of the RB tree make the consecutive subseparators adjacent
in the final K -way oVS.

We include Figure 4.2 for a better understanding of the forthcoming discussion.
Without loss of generality, let G be a graph in an intermediate level of the RB tree.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C112 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

Fig. 4.2. Restrictions for boundary vertices.

Consider a 2-way vertex separator ΠV S(G) = {VL,VR;S} of G and let GL and GR

be the vertex-induced subgraphs by VL and VR , respectively. Let BL = Adj(S)∩VR
be the left boundary vertex set of GR and BR = Adj(S) ∩ VL the right boundary
vertex set of GL .

For the sake of correctness of the oGPVS algorithm, the following restrictions
should be maintained in any 2-way vertex separator ΠV S(GL) of GL and ΠV S(GR)
of GR :

(a) If GL and GR are intermediate level graphs of the RB tree, the vertices in
the left boundary vertex set BL of GR can only be assigned to the left part
of ΠV S(GR), whereas the vertices in the right boundary vertex set BR of GL

can only be assigned to the right part of ΠV S(GL).
(b) If GL and GR are final level graphs of the RB tree, the vertices in the left

boundary vertex set BL of GR can be assigned to the subseparator as well as
the left part of ΠV S(GR), whereas the vertices in the right boundary vertex
set BR of GL can be assigned to the subseparator as well as the right part
of ΠV S(GL).

We provide the following discussion for the need of restriction (a) on the assign-
ment of the vertices in the left boundary vertex set BL of GR . Consider an edge
(u, v) ∈ E(G), where u ∈ S and v ∈ BL in ΠV S(G). There are three cases accord-
ing to the assignment of vertex v in ΠV S(GR) = {VRL,VRR;S} , namely, v ∈ VRL ,
v ∈ VRR , and v ∈ SR . Case v ∈ VRL does not violate the oVS structure at the cur-
rent level. Case v ∈ SR makes two consecutive subseparators adjacent in the current
level. Although this situation does not violate the oVS structure in the current level,
it is guaranteed to violate the oVS structure in the subsequent bipartitions of the left
and right subgraphs of GR in the next level since these adjacent subseparators S
and SR will no longer be consecutive in the following levels. Case v ∈ VRR immedi-
ately violates the oVS structure since edge (u, v) makes subseparator S connect two
nonconsecutive vertex parts, namely, a vertex part in the current level oVS rooted

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES IN BLOCK DIAGONAL FORM WITH OVERLAP C113

Algorithm 3 FIX-INT-LEVEL (G,BL,BR,K ′).
Require: Graph G = (V , E),BL,BR ⊆ V , integer K ′

1: K ′ ← K ′ − 1
2: FL ←FIX-VERTICES(G,BL,K ′) � fixing vertices to the left part
3: FR ←FIX-VERTICES(G,BR,K ′) � fixing vertices to the right

part
4: return (FL,FR)

Algorithm 4 FIX-FINAL-LEVEL,(G,BL,BR).

Require: Graph G = (V , E),BL,BR ⊆ V
1: V ′ ← V ∪ {v�} ∪ {vr}
2: E ′ ← E ∪ {(v�, v) : v ∈ BL} ∪ {(v, vr) : v ∈ BR}
3: w(v�)← w(vr)← 0
4: G′ = (V ′, E ′)
5: return (G′, {v�}, {vr})

at GL and the right vertex part of ΠV S(GR). A dual discussion holds for the need
of restriction (a) on the assignment of the vertices in the right boundary vertex set
BR of GL . In Figure 4.2, allowable and disallowable assignments of vertex v are
identified by labeling the (u, v) edges with “�” and “×”.

The restriction (b) is a relaxed version of the restriction (a), where the vertices
in BL and BR can also be assigned to the subseparator of ΠV S(GR) and ΠV S(GL),
respectively. This relaxation is valid, because it has the potential of disturbing the
oVS structure only if the left and right subgraphs of ΠV S(GL) and ΠV S(GR) are
to be further bipartitioned, which is not the case since ΠV S(GL) and ΠV S(GR) are
final level bipartitionings of the RB tree.

It is clear that the fixation scheme given in Algorithms 3 and 4 already achieves
fixing the left and right boundary vertex sets in such a way to satisfy restrictions (a)
and (b), respectively. Furthermore, at an intermediate level of the RB tree, Al-
gorithm 3 fixes the vertices whose shortest path distances from the left and right
boundary vertex sets are strictly less than K ′ = K/2− 1 to the left and right parts,
respectively, where K is the input of the current oGPVS function. Note that the
shortest path distance between any two vertices in BL and BR is at least K − 2
due to this additional vertex fixing. So, this additional vertex fixing ensures that the
vertex sets that are fixed to the left and right parts are disjoint and there always
exists a free vertex on any path from a vertex fixed to the left part to a vertex fixed
to the right part. This in turn ensures the existence of a valid vertex separator for
partitioning the current graph.

This additional vertex fixing is also needed to guarantee that a K -way oVS will
be obtained from RB-based partitioning of the left and right subgraphs according to
Theorem 4.1 because of the following reasons. The above-mentioned fixing to the
left part ensures that the shortest path distance between any two vertices vh ∈ BL
and vi ∈ S is at least K ′ = K/2 − 1 in the following ΠV S = {VL,VR;S} . In other
words, the shortest path distance between any two vertices vh ∈ BLL = BL and
vj ∈ BLR = Adj(S) ∩ VL will be at least K/2− 2, where BLL and BLR are the left
and right boundary vertex sets of left subgraph GL , respectively. Then GL has a
(K/2)-way oVS such that BLL ⊆ V1∪S1 and BLR ⊆ VK/2∪SK/2−1 by Theorem 4.1.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C114 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

A similar discussion also holds for fixing to the right part, and consequently for the
right subgraph GR . Combining these two (K/2)-way oVS partitions of the left and
right subgraphs GL and GR gives a K -way oVS for the original graph G by placing
the subseparator S (as SK/2) in between the rightmost vertex part of the left oVS
and the leftmost vertex part of the right oVS. Note that having BLR ⊆ VK/2∪SK/2−1

for the left (K/2)-way oVS does not violate the final K -way oVS of G , but makes
consecutive subseparators adjacent via the vertices in BLR∩SK/2−1 . A dual discussion
holds for having BRL ⊆ V1 ∪ S1 for the right K/2-way oVS.

4.4. A better load balancing scheme. The vertex weighting scheme adopted
in the above-mentioned RB-based oGPVS algorithm does not totally encapsulate the
nonzero counts of the diagonal blocks in balancing the part weights as discussed in
section 3.2. For the sake of a better load balancing in the A-to-ABDO permutation,
we enhance our RB-based oGPVS algorithm as follows. Consider a 2-way vertex
separator ΠV S(G) = {VL,VR;S} of the current graph G . After forming the left and
right vertex-induced subgraphs GL and GR , we add two isolated vertices sL and sR
to GL and GR , with weights

w(sL) =
∑
s∈S
|Adj(s) ∩ (S ∪ VL)| and(4.1)

w(sR) =
∑
s∈S
|Adj(s) ∩ (S ∪ VR)|,(4.2)

respectively. Then we fix sL to the right part of GL and sR to the left part GR .
We provide the following discussion to show how the proposed enhancement leads

to better load balancing. It is clear that S will be the right subseparator of the
rightmost part of the oVS to be obtained from the RB-tree rooted at GL . Without
loss of generality, let this rightmost part be Vk , which means that S will be Sk . Note
that vertex sL fixed to GL will remain as fixed to all rightmost graphs of the RB-tree
rooted at GL , and hence it will contribute its weight w(sL) to W (Vk). Because
of (4.1), contribution of w(sL) to the weight of part Vk makes W (Vk) encapsulate
the nonzero counts of submatrices CT

k−1,k ,A
T
k,k+1 , and Ck,k in modeling the nonzero

count of diagonal block Dk given in (3.1). In a dual manner, w(sR) contributes
to the weight of part Vk+1 , and this contribution makes W (Vk+1) encapsulate the
nonzero counts of submatrices Ck,k ,Ak+1,k , and Ck,k+1 in modeling the nonzero
count of diagonal block Dk+1 . Hence, this discussion can be generalized to show that
W (Vk) = nnz(Dk) for each part Vk .

5. Experiments.

5.1. A GPVS implementation that supports fixed vertices. Currently,
existing GPVS tools such as onmetis [15] do not support fixed vertices. So we utilized
the hypergraph partitioning (HP) based GPVS formulation proposed in [6] based on
the existence of a number of HP tools such as PaToH [5], Zoltan [3], and hMeTiS
[16] that support fixed vertices. Here, we briefly summarize the HP-based GPVS
formulation [6] utilized in our experimentation and describe how the vertex fixing
scheme is implemented in the HP model.

First, we briefly review hypergraph and hypergraph partitioning for the sake of
completeness. A hypergraph H = (U ,N) is defined as a set U of nodes and a set N
of nets (hyperedges) among those nodes. We use nodes for referring to the vertices of
a hypergraph in order to avoid the confusion between the vertices of a graph and a
hypergraph. Every net ni ∈ N connects a subset of nodes, i.e., ni ⊆ U . The graph

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES IN BLOCK DIAGONAL FORM WITH OVERLAP C115

is a special instance of hypergraph such that each net connects exactly two nodes.
ΠU = {U1,U2, . . . ,UK} is a K -way node partition of H if parts are pairwise disjoint
and exhaustive. In a node partition ΠU of H , ni is said to be an internal net of node
part Uk if all nodes that are connected by ni belong to Uk . ni is called a cut-net
(external) if the nodes that are connected by ni belong to at least two different parts.
In the HP problem, the objective is to minimize the number of cut-nets, whereas the
partitioning constraint is to maintain a balance on the part weights. Node-part weight
is usually defined as the sum of the weights of the nodes in a part as in the definition
given in (2.3) for vertex-part weight used in graph partitioning.

The HP-based GPVS formulation of [6] relies on finding an edge clique cover on
a given graph G , then using this clique cover to construct a clique-node hypergraph
H , and finally partitioning H . Among the three edge clique covers investigated in
[6], we implemented the basic one, which is referred to as the 2-clique cover. In this
basic scheme, each edge ei,j , which is a 2-clique of G , induces a node ui,j ∈ U of
degree 2 in H , whereas each vertex vh of G induces a net nh in H . Net nh connects
all nodes corresponding to the edges that are incident to vh in G .

A K -way node partition ΠU (H) of H is decoded as inducing a K -way vertex
separator ΠV S(G) of G as follows: The internal nets of a node part Uk of ΠU
constitute the vertices of a vertex part Vk of ΠV S , whereas the external nets of ΠU
constitute the vertices of the separator of ΠV S .

It is shown in [6] that the partitioning objective of minimizing the number of cut-
nets corresponds to minimizing the number of separator vertices. It is also shown that
the partitioning constraint of balancing on the number of internal nets of node parts
infers balance on the vertex counts of vertex parts. So, in HP-based GPVS formu-
lation, although the partitioning objective exactly matches the partitioning objective
of oGPVS formulation, the partitioning constraint does not match the partitioning
constraint of oGPVS formulation. Since nodes of H correspond to the edges of G ,
balance on the vertices of G cannot be directly enforced during the partitioning of
H . We propose the following node weighting scheme for the clique-node hypergraph
H so that the weight of a node part in ΠU is as close as possible to the weight of
the respective vertex part in ΠV S . The weight w(vh) of a vertex in G is evenly dis-
tributed among the nodes that are connected by net nh in H . That is, each vertex
vh of G contributes w(vh)/|nh| to all nodes that are connected by nh , where |nh|
denotes the degree of net nh . Hence, the weight of a hypergraph node ui,j is defined
as follows in terms of weights of graph vertices vi and vj :

(5.1) w(ui,j) =
w(vi)

|ni| +
w(vj)

|nj| .

It can be shown that node-part weight W(Uk) of Uk in ΠU will be equal to vertex-
part weight W(Vk) of Vk in ΠV S if node part Uk has no external nets. However,
external nets of a node part Uk of ΠU will make W(Uk) smaller than W(Vk). Since
the node-part weights of different parts of ΠU will involve similar errors, the proposed
method can be expected to infer a sufficiently good balance on the vertex-part weights
of ΠV S .

Since the above-mentioned HP-based GPVS implementation is used within the
RB framework, we will now discuss how the graph-vertex fixation scheme is handled
during bipartitioning a clique-node hypergraph H into left and right parts. Fixing a
vertex vi to the left part of ΠV S(G) corresponds to enforcing the corresponding net
ni to be an internal net of the left part UL of ΠU (H) = {UL,UR} . Enforcing ni to

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C116 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

be an internal net of UL can only be achieved by fixing all nodes that are connected
by ni to UL . A similar discussion holds for fixing a vertex to the right part of ΠV S .

5.2. Experimental results. We have tested the performance of the proposed
oGPVS algorithm on a wide range of square sparse matrices of the University of
Florida (UFL) Sparse Matrix Collection [9]. We excluded the small matrices that
have fewer than 1,000 rows/columns for the sake of sufficiently coarse-grained parallel
processing. We also excluded matrices that have more than 10,000,000 rows/columns
since we used a sequential partitioning environment. For the sake of simplicity, we
considered only the matrices whose corresponding graphs are connected. There were
237 matrices in the UFL collection satisfying these properties at the time of exper-
imentation. We tested with K ∈ {8, 16, 32, 64, 128, 256} . For a given K value, a
K -way A-to-ABDO permutation of a test matrix constitutes a permutation instance.
The permutation instances in which N < 100 × K were discarded, as the diagonal
blocks Dk ’s would become too small to be meaningful for parallel processing (e.g.,
fewer than 100 rows/columns per processor).

To our knowledge, the algorithm proposed by Kahou, Grigori, and Sosonkina
[12], which is described in section 1, is the only work introduced in the literature
for solving the A-to-ABDO permutation problem. So we compared the performance
of our oGPVS algorithm against this baseline algorithm. For unsymmetric matrices,
matrix A is symmetrized with A+AT in both the baseline and oGPVS algorithms.
Since the first step of both algorithms is to find a pseudoperipheral vertex, we ran the
pseudoperipheral node finder algorithm [11] once on the standard graph representa-
tion of each matrix and used the root vertex of the resulting level structure in both
algorithms. For a given K value, the RB process is terminated if the length of the
level structure is less than K , since the graph cannot be partitioned into K parts
by the baseline algorithm, whereas it cannot be partitioned by the oGPVS algorithm
if the length of the level structure rooted at the pseudoperipheral vertex is less than
K − 1. So, such partitioning instances are discarded from the results of both of these
algorithms to make the comparison meaningful.

As a result of the former selection criteria and the latter feasibility criteria, the
experiments are conducted for a total of 880 permutation instances (237, 220, 173,
125, 80, and 45 instances for 8-, 16-, 32-, 64-, 128-, and 256-way permutations, respec-
tively). In addition, neither algorithm guarantees the nonemptiness of the parts in
the resulting oVS, although the length of the level structure is larger than K . Hence,
any partitioning instance, for which at least one algorithm yields a partition with an
empty part, is discarded from the results of both of these algorithms for the sake of a
fair comparison. Note that an empty part Vk in an oVS corresponds to the fact that
there exists no row/column in Ak,k of the diagonal block Dk in the permuted matrix
induced by oVS. The baseline algorithm fails on 7, 13, 17, 22, 35, and 38 percent of
the remaining test matrices due to empty parts for 8-, 16-, 32-, 64-, 128-, and 256-way
permutations, respectively. The oGPVS algorithm fails on 21, 34, 41, 50, 46, and
46 percent of the remaining test matrices due to empty parts for 8-, 16-, 32-, 64-,
128-, and 256-way permutations, respectively. So, experimental results are reported
for a total of 569 permutation instances (183, 155, 106, 63, 38, and 24 instances for
8-, 16-, 32-, 64-, 128-, and 256-way permutations, respectively).

For the bipartitioning of clique-node hypergraphs, we used the HP tool PaToH
with default parameters of PATOH SUGPARAM SPEED (see PaToH manual [5])
recommended for faster partitionings except for the coarsening algorithm. As the
coarsening algorithm, we used scaled heavy connectivity matching (SHCM) instead

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES IN BLOCK DIAGONAL FORM WITH OVERLAP C117

of absorption clustering using nets (ABSHCC). Our experimental results showed that
SHCM leads to considerably smaller overlap sizes than ABSHCC.

As PaToH involves randomized algorithms, we obtained 10 different partitions
for each partitioning instance of the oGPVS algorithm, and the geometric averages of
the load imbalance and separator size values over 10 resulting partitions are reported
as the representative result for the oGPVS method on that particular partitioning
instance. In all oGPVS partitioning instances, the maximum allowable imbalance
ratio ε in (2.2) is set to 0.10.

Table 5.1 displays the performance comparison of the proposed oGPVS algorithm
against the baseline algorithm in terms of percent load imbalance and percent overlap
size ratio for 8-, 16-, 32-, 64-, 128-, and 256-way A-to-ABDO permutation problems.
As seen in the second column of Table 5.1, matrices are categorized according to their
type, where each type represents a different problem domain, and the average results
of each type of problem are given for each K value. In the third column we display
the number of matrices that belong to the corresponding problem type, where we
included the results only for the types of problem that contain three or more resulting
partitions for the respective K value.

In Table 5.1, the percent load imbalance value of a permutation is computed as
100× (Zmax − Zavg)/Zavg , where Zmax denotes the nonzero count of the diagonal
block with maximum nonzero count and Zavg denotes the average nonzero count
of diagonal blocks. The percent overlap size ratio of a permutation is computed
as 100 × Nc/N . For a better relative performance comparison of these two algo-
rithms in terms of overlap size, Table 5.1 also displays the No

c /N
b
c values which

denote ratios of the overlap sizes of the permutations found by the oGPVS algorithm
to those of the baseline algorithm. Note that No

c /N
b
c < 1 indicates that the oG-

PVS algorithm performs better than the baseline algorithm in terms of overlap size.
Table 5.2 summarizes the overall permutation results as averages over different K
values.

As seen in Table 5.2, on average the baseline algorithm achieves better load bal-
ance than the oGPVS algorithm for K ∈ {8, 16, 128, 256} , whereas the oGPVS algo-
rithm achieves better load balance than the baseline algorithm for K ∈ {32, 64} . This
finding can be attributed to the fact that the baseline algorithm pays more attention
to load balancing by identifying the separators after the partition is balanced enough
and refining the separators only if the refinement does not produce a more imbalanced
partition.

We will now discuss the relative performance of the baseline algorithm and the
proposed oGPVS algorithm in terms of total overlap size. In 8-way and 16-way permu-
tations, the oGPVS algorithm performs better than the baseline algorithm in almost
all problem types (in 13 out of 13 and in 11 out of 12 types, respectively). In 32-way
permutations, the oGPVS algorithm performs better than the baseline algorithm in
4 out of 10 problem types; both algorithms perform nearly the same in 2 problem
types, whereas the baseline algorithm performs better in the remaining 4 problem
types. In 64-way permutations, the oGPVS algorithm performs better than the base-
line algorithm in 3 out of 7 problem types, whereas the baseline algorithm performs
better in the remaining 4 problem types. In 128-way and 256-way permutations, the
oGPVS algorithm performs better than the baseline algorithm in 1 out of 3 and 2 out
of 2 problem types, respectively. In general, the oGPVS algorithm performs drasti-
cally better than the baseline algorithm in such problem types as circuit simulation,
power network, and undirected graphs. As seen in Table 5.2, on average, the oGPVS
algorithm produces matrices in BDO form with 30%, 30%, 23%, 23%, 26%, and

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C118 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

Table 5.1

Performance comparison in terms of load imbalance and total overlap size ratio as averages
over problem kinds.

of Baseline algorithm oGPVS algorithm oGPVS vs. base

K Problem type matrices Imbal. Nc/N Imbal. Nc/N No
c /N

b
c

2D/3D 18 3.23% 4.47% 3.90% 4.02% 0.90

circuit simulation 6 4.01% 4.36% 4.51% 1.57% 0.36

computational fluid dynamics 21 7.05% 10.33% 6.13% 7.37% 0.71

directed graph 12 61.34% 31.03% 43.03% 26.96% 0.87

economic 6 24.73% 24.33% 42.30% 18.46% 0.76

electromagnetics 10 3.44% 5.52% 7.52% 4.65% 0.84

8 model reduction 12 3.77% 6.20% 4.83% 5.79% 0.93

optimization 11 0.95% 1.16% 0.45% 1.02% 0.88

power network 3 12.99% 20.89% 5.09% 1.87% 0.09

semiconductor device 10 13.11% 23.87% 20.49% 22.52% 0.94

structural 30 5.66% 9.08% 9.71% 8.69% 0.96

thermal 4 2.67% 2.98% 3.76% 2.81% 0.94

undirected graph 29 2.14% 2.31% 10.42% 0.77% 0.33

2D/3D 16 5.96% 7.83% 5.06% 7.03% 0.90

circuit simulation 5 3.52% 5.20% 4.03% 1.81% 0.35

computational fluid dynamics 18 14.11% 17.77% 9.90% 14.14% 0.80

directed graph 9 147.09% 38.16% 94.77% 31.73% 0.83

electromagnetics 9 6.74% 12.31% 12.27% 11.75% 0.95

16 model reduction 11 8.73% 11.91% 6.45% 11.09% 0.93

optimization 11 2.17% 2.43% 0.86% 2.14% 0.88

power network 3 40.23% 41.49% 14.87% 8.05% 0.19

semiconductor device 7 31.43% 37.32% 21.28% 39.14% 1.05

structural 22 10.12% 14.17% 11.90% 12.37% 0.87

thermal 4 5.81% 6.31% 7.28% 6.02% 0.95

undirected graph 28 5.48% 3.87% 13.77% 1.37% 0.36

2D/3D 15 9.68% 14.01% 8.80% 15.33% 1.09

circuit simulation 5 8.07% 10.59% 11.57% 4.88% 0.46

computational fluid dynamics 10 15.22% 20.10% 9.51% 22.45% 1.12

directed graph 3 98.18% 36.87% 61.59% 23.43% 0.64

32 electromagnetics 3 6.99% 7.71% 2.93% 8.25% 1.07

model reduction 8 13.72% 14.50% 10.47% 14.60% 1.01

optimization 11 5.35% 4.95% 2.51% 4.96% 1.00

structural 15 18.08% 22.25% 16.15% 19.29% 0.87

thermal 4 11.51% 12.86% 13.39% 13.49% 1.05

undirected graph 21 4.31% 3.32% 9.28% 1.22% 0.37

2D/3D 8 11.71% 14.23% 8.35% 14.84% 1.04

circuit simulation 3 9.44% 11.84% 7.74% 6.32% 0.53

computational fluid dynamics 5 14.68% 19.62% 7.15% 23.60% 1.20

64 model reduction 5 15.80% 18.67% 13.88% 19.42% 1.04

optimization 9 6.35% 6.34% 3.42% 7.05% 1.11

structural 6 29.80% 34.46% 24.59% 34.02% 0.99

undirected graph 20 8.59% 5.72% 13.03% 2.42% 0.42

2D/3D 6 25.51% 21.76% 77.84% 29.10% 1.34

128 optimization 5 4.57% 3.34% 6.03% 3.56% 1.06

undirected graph 15 9.30% 6.54% 21.02% 2.70% 0.41

256 optimization 3 2.36% 1.41% 2.83% 1.34% 0.95

undirected graph 12 14.61% 10.45% 24.50% 4.06% 0.39D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES IN BLOCK DIAGONAL FORM WITH OVERLAP C119

Table 5.2

Performance comparison in terms of load imbalance and total overlap size as averages over K
values.

of Baseline algorithm oGPVS algorithm oGPVS vs. base

K matrices Imbal. Nc/N Imbal. Nc/N No
c /N

b
c

8 183 5.13% 6.55% 7.42% 4.60% 0.70

16 155 9.07% 9.42% 9.57% 6.62% 0.70

32 106 9.45% 9.91% 9.38% 7.63% 0.77

64 63 10.26% 9.63% 9.34% 7.39% 0.77

128 38 10.89% 8.27% 22.22% 6.11% 0.74

256 24 12.64% 9.13% 17.86% 5.46% 0.60

Table 5.3

The effect of the better load balancing (bb) scheme in the performance of the oGPVS algorithm.

of oGPVS-w/o-bb oGPVS

K matrices Imbal. Nc/N Imbal. Nc/N

8 183 9.56% 4.27% 7.42% 4.60%

16 155 11.49% 6.20% 9.43% 6.50%

32 106 10.55% 7.22% 9.13% 7.61%

64 63 10.66% 7.31% 9.34% 7.39%

128 43 25.54% 8.00% 24.18% 7.73%

256 26 20.82% 6.64% 19.85% 6.56%

40% smaller overlap size than the baseline algorithm for 8-, 16-, 32-, 64-, 128-, and
256-way A-to-ABDO permutations, respectively.

We provide Table 5.3 to show the average success of the better load balancing
(bb) scheme (described in section 4.4) in improving the load balancing performance
of the oGPVS algorithm. In this table, oGPVS-w/o-bb refers to the oGPVS algo-
rithm that does not utilize the bb scheme, whereas oGPVS refers to the oGPVS
algorithm that utilizes the bb scheme. We should note here that the performance
results given in Tables 5.1 and 5.2 are obtained by running the latter one. As seen in
Table 5.3, the bb scheme considerably improves the load balancing performance of the
oGPVS algorithm at the expense of slightly degrading the overlap-size performance
of oGPVS. Because of this trade-off between the two schemes, oGPVS-w/o-bb can be
recommended instead of oGPVS only when the workload associated with the diagonal
blocks cannot be precisely defined.

6. Conclusion. We examined symmetrically permuting a sparse square matrix
A into a K -way block diagonal form ABDO with overlap. The permutation objective
is to minimize the total overlap size, whereas the permutation constraint is to maintain
balance on the nonzero counts of diagonal blocks. We defined the ordered graph
partitioning by vertex separator (oGPVS) problem, which is a constrained version
of the GPVS problem, and showed that the A-to-ABDO permutation problem can
be modeled as an oGPVS problem on the standard graph representation of matrix
A . The existing graph partitioning tools do not solve the oGPVS problem. We
proposed a left-to-right bipartitioning method that utilizes a novel vertex fixation
scheme for the recursive bipartitioning (RB) framework. The proposed RB-based
method enables the use of existing 2-way GPVS tools that support fixed vertices for
solving the oGPVS problem and hence the A-to-ABDO permutation problem. We
have tested the performance of the proposed A-to-ABDO permutation problem on 237

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C120 SEHER ACER, ENVER KAYAASLAN, AND CEVDET AYKANAT

square sparse matrices selected from the UFL matrix collection. Experimental results
reported on 569 permutation instances for K ∈ {8, 16, 32, 64, 128, 256} confirmed the
validity of the proposed model and method.

As a future work, one-way dissection ordering, which is widely used for sparse
direct solvers, can be considered as a potential application of the proposed oGPVS
approach. The consecutive subseparators are not adjacent in the one-way dissection
ordering, whereas they are adjacent in the oGPVS ordering. Due to this difference,
the proposed oGPVS algorithm should be enhanced with a more restricted vertex
fixation scheme in order to produce one-way dissection orderings.

REFERENCES

[1] C. Aykanat, B. B. Cambazoglu, F. Findik, and T. Kurc, Adaptive decomposition and
remapping algorithms for object-space-parallel direct volume rendering of unstructured
grids, J. Parallel Distrib. Comput., 67 (2007), pp. 77–99.

[2] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek, Permuting sparse rectangular matrices into
block-diagonal form, SIAM J. Sci. Comput., 25 (2004), pp. 1860–1879.

[3] E. Boman, K. Devine, L. A. Fisk, R. Heaphy, B. Hendrickson, C. Vaughan, Ü. V.

Çatalyürek, D. Bozdag, W. Mitchell, and J. Teresco, Zoltan 3.0: Parallel Parti-
tioning, Load-balancing, and Data Management Services: User’s Guide, Sandia National
Laboratories, Albuquerque, NM, 2007.

[4] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning based decomposition for parallel
sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib. Comput., 10 (1999),
pp. 673–693.

[5] Ü. V. Çatalyürek and C. Aykanat, PaToH: A Multilevel Hypergraph Partitioning Tool,
Version 3.0, Bilkent University, Department of Computer Engineering, Ankara, Turkey,
1999; PaToH is available online from http://bmi.osu.edu/∼umit/software.htm.

[6] Ü. V. Çatalyürek, C. Aykanat, and E. Kayaaslan, Hypergraph partitioning-based fill-
reducing ordering for symmetric matrices, SIAM J. Sci. Comput., 33 (2011), pp. 1996–
2023.

[7] Ü. V. Çatalyürek, E. G. Boman, K. D. Devine, D. Bozdağ, R. T. Heaphy, and L. A.

Riesen, A repartitioning hypergraph model for dynamic load balancing, J. Parallel Distrib.
Comput., 69 (2009), pp. 711–724.

[8] A. Cevahir, C. Aykanat, A. Turk, and B. B. Cambazoglu, Site-based partitioning and
repartitioning techniques for parallel PageRank computation, IEEE Trans. Parallel Distrib.
Systems, 22 (2011), pp. 786–802.

[9] T. Davis, The University of Florida Sparse Matrix Collection, Tech. Report REP-2007-298,
CISE Department, University of Florida, Gainesville, FL, 2007.

[10] M. C. Ferris and J. D. Horn, Partitioning mathematical programs for parallel solution, Math.
Programming, 80 (1998), pp. 35–61.

[11] A. George and J. W. H. Liu, An implementation of a pseudoperipheral node finder, ACM
Trans. Math. Softw., 5 (1979), pp. 284–295.

[12] G. A. A. Kahou, L. Grigori, and M. Sosonkina, A partitioning algorithm for block-diagonal
matrices with overlap, Parallel Comput., 34 (2008), pp. 332–344.

[13] G. A. A. Kahou, E. Kamgnia, and B. Philippe, Parallel implementation of an explicit for-
mulation of the multiplicative Schwarz preconditioner, in Proceedings of the 17th IMACS
World Congress: Scientific Computation, Applied Mathematics and Simulation, Paris, CD-
ROM, 2005.

[14] G. A. A. Kahou, E. Kamgnia, and B. Philippe, An explicit formulation of the multiplicative
Schwarz preconditioner, Appl. Numer. Math., 57 (2007), pp. 1197–1213.

[15] G. Karypis and V. Kumar, MeTiS: A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices,
Version 4.0, Department of Comp. Sci. and Eng., Army HPC Research Center, University
of Minnesota, Minneapolis, MN, 1998.

[16] G. Karypis, V. Kumar, R. Aggarwal, and S. Shekhar, hMeTiS: A Hypergraph Partitioning
Package, Version 1.0.1, Department of Comp. Sci. and Eng., Army HPC Research Center,
University of Minnesota, Minneapolis, MN, 1998.

[17] J. W. H. Liu, A graph partitioning algorithm by node separators, ACM Trans. Math. Softw.,
15 (1989), pp. 198–219.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRICES IN BLOCK DIAGONAL FORM WITH OVERLAP C121

[18] M. Naumov, M. Manguoglu, and A. H. Sameh, A tearing-based hybrid parallel sparse linear
system solver, J. Comput. Appl. Math., 234 (2010), pp. 3025–3038.

[19] M. Naumov and A. H. Sameh, A tearing-based hybrid parallel banded linear system solver, J.
Comput. Appl. Math., 226 (2009), pp. 306–318.

[20] A. Pinar and C. Aykanat, Fast optimal load balancing algorithms for 1D partitioning, J.
Parallel Distrib. Comput., 64 (2004), pp. 974–996.

[21] A. Pothen and C.-J. Fan, Computing the block triangular form of a sparse matrix, ACM
Trans. Math. Softw., 16 (1990), pp. 303–324.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

