Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2012.

Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.201202291

Mussel Inspired Dynamic Cross-Linking of Self-Healing Peptide Nanofi ber Network

Hakan Ceylan, Mustafa Urel, Turan S. Erkal, Ayse B. Tekinay, Aykutlu Dana, * and Mustafa O. Guler*

Submitted to **WATE** Supporting Information for DOI: 10.1002/adfm.201202291

Figure S1. Characterization of the purity and functionality of the mussel-inspired peptide amphiphiles. a-b. Liquid chromatograms and mass spectra of DopaK-PA and K-PA, c. UV-Vis spectrum of DopaK-PA after synthesis, to show catechol groups are functional.

Figure S2. Titration of mussel inspired peptide amphiphiles with NaOH.

Figure S3. pH dependent reactions of mussel inspired peptide nanofibers. Reaction schemes a. in the presence, b. in the absence of ferric iron ion.

Figure S4. Circular dichroism spectra of DopaK-PA/Fe(III) and DopaK-PA at pH 3.

Figure S5. pH and Fe(III) dependent UV-Vis spectra of DopaK-PA. Oxidation of catechol to quinone through pH shift causes a new peak to appear around 386 nm.^[1] This peak was not observed in the presence of iron, indicating that iron did not cause oxidation of Dopa. In the presence of iron at pH 3 a peak appears at around 520 nm, indicating monocatecholate Fe(Dopa) formation.^[1,2] Upon increasing pH to ~10, this peak shifts to 520 nm corresponding to triscatecholate Fe(Dopa) formation.^[1,2]

References

[1] H. Xu, J. Nishida, W. Ma, H. Wu, M. Kobayashi, H. Otsuka, A. Takahara, ACS Macro Letters 2012, 1, 457.

[2] A. Avdeef, S. R. Sofen, T. L. Bregante, K. N. Raymond, J. Am. Chem. Soc. 1978, 100, 5362.

5555555554555

Figure S6. Loss modulus (G") and Loss (Damping) factor (G"/G') of DopaK-PA/Fe(III), DopaK-PA, and K-PA during gelation.

Figure S7. Relationship between equilibrium storage modulus and initial peptide amphiphile concentration.

Figure S8. Impact of temperature on the mechanical properties of peptide networks. a-c. Bulk rheological analyses of the iron cross-linked DopaK-PA/Fe(III), covalently cross-linked DopaK-PA, and noncovalent network of K-PA as a function of temperature, d-e. Elastic moduli histograms as the AFM tip approaches and retracts, f-g. Adhesion force histograms as the AFM tip approaches and retracts.