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1. Introduction

In this paper, we study robust stabilization by a stable controller
for a single-input single-output infinite dimensional system. The
advantage of stable controllers is well appreciated in that such con-
trollers are robust against a sensor or actuator failure [1] and the
saturation of the control input [2]. Typical examples are flexible
structures [3] and traffic networks [2]. Additionally, stable con-
trollers are preferred for control of electromechanical positioning
devices [4]. We also recall that two plants are simultaneously sta-
bilizable if and only if an associated plant derived from these two
plants is stabilizable by a stable controller [5].

For finite dimensional systems, several design methods of
stable #°° controllers have been developed: linear matrix in-
equalities or algebraic Riccati equations [6,7] and non-smooth,
non-convex optimization [8]. On the other hand, for infinite di-
mensional systems, while sensitivity reduction by a stable con-
troller has been studied in [9-11], robust stabilization by a stable
controller still remains to be an open problem.

Let us briefly summarize the difference between these two
problems. Sensitivity reduction by a stable controller can be trans-
formed to the modified Nevanlinna-Pick interpolation [9,12-14],
and the associated #°°-norm condition is ||F|l. < p, where F is
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a solution of the unit interpolation problem. On the other hand,
in robust stabilization by a stable controller, the counterpart is
|[W — mF|looc < p, where W, 1/W € #* and m € F#*° is inner.
Since F needs to be a unit element, we cannot change this norm
condition to a simpler one, although we can in the usual robust sta-
bilization problem. We overcome this difficulty by extending the
technique of [ 14]. We will discuss this technique in Section 3.

This paper studies a class of plants having finitely many simple
unstable zeros but possibly infinitely many unstable poles. An exam-
ple of such plants is a system with delayed feedback such as repet-
itive control systems [15,16]. The objective of the present paper is
to obtain lower and upper bounds on the multiplicative perturba-
tion under which the plant can be stabilized by a stable controller.
We also develop a design method of stable controllers achieving
robust stability by the method of [9,10].

The paper is organized as follows: Section 2 gives the statement
of the robust stabilization problem with stable controllers. In
Section 3, we obtain a sufficient condition for the problem and find
stable controllers for robust stabilization. A necessary condition
follows along similar lines. We present a numerical example and
apply the proposed method to a repetitive control system in
Section 4.

Notation and definitions
Let C; denote the open right half-plane {s € C | Res > 0}.

Fors € C \ {0}, the principal value Log s is the complex logarithm
whose imaginary part lies in the interval (—x, 7].
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Fig. 1. Closed-loop system.
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The space #°° denotes the Hardy space of functions that are
bounded and analytic in C, and R F#>° denotes the subset of #*°
consisting of real-rational functions. U € # is called a unit el-
ement in #* if U, 1/U € #H*®.For G € #*°, the #° norm is
defined as ||Gl|oo = SuPsec, |G(s)|. The field of fractions of H® is
denoted by F*°.

Two functions N, D € J® are strongly coprime in the sense
of [17] if NX + DY = 1 for some X, Y € #°. By the corona
theorem [5], N and D are strongly coprime if and only if there exists
8 > Osuch that [N(s)| + |D(s)| > é foralls € C,.

To denote the interpolation data G(s;) = «; (i = 1,...,n) for
G € #°°, we use the notation (s;; o;)L;.

2. Problem statement

Consider the linear, continuous-time, time-invariant, single-
input single-output closed-loop system given in Fig. 1. Let the plant
P and the controller C belong to #°°. P is said to be stabilizable if
there exists C such that S := 1/(1 4+ PC), CS, and PS belong to
J¢°°. For a given P, the set of all C leading to S, CS, PS € #H™ is
denoted by %'(P). P is strongly stabilizable if #*° N ¢(P) # . We
say that C stabilizes P if C € € (P), and that C strongly stabilizes P if
Ce H®NEP).

Let P be a real-rational proper function. Then P is stabilizable by
C € R if and only if P has the parity interlacing property [18].
On the other hand, if we do not require C € RH* but C € #H*° al-
lowing complex coefficients, every stabilizable P € # is strongly
stabilizable [19], via a complex-valued controller in general.

We make the following assumption on the plant throughout
this paper:

Assumption 2.1. P € F* can be factorized into the following
form:
M,
"My
where My € #*°, M, € RHH*° are inner functions and N,, 1/N, €

F°°. We assume that M, possesses simple zeros zi, ..., z, only
and that My, M, are strongly coprime.

P N,, (1

Under Assumption 2.1, P has only finitely many unstable zeros
arising from M,, but P is allowed to possess infinitely many
unstable poles arising from M. In [20], it is shown how to factorize
retarded or neutral time delay systems into the form (1) under
some mild conditions.

Let P be the nominal model of the plant. In this paper, we
assume that the transfer function of the actual plant belongs to the
following model set with multiplicative perturbations:

Py ={Py=(1+WAP : AeH®, Al < 1/p}
for some p > 0.

Recall that the controller C stabilizes all P, € £, if and only if C
stabilizes the nominal model P and satisfies

PC

WT s < p, .
WTloeo < 0 T

where T :=

(2)

See, e.g., [1,5,21] for details.
We impose the following assumption on the weighting func-
tion:

Assumption 2.2. Both W and 1/W belong to #°.

Then robust stabilization by a stable controller can be formu-
lated as follows:

Problem 2.3. Let Assumptions 2.1 and 2.2 hold. Suppose p > 0.
Determine whether there exists a controller C € #°° N %' (P) sat-
isfying (2). Also, if one exists, find such a controller C.

We call Problem 2.3 strong and robust stabilization. Our aim is to
provide both a sufficient and a necessary condition for strong and
robust stabilization. These conditions give lower and upper bounds
on the multiplicative perturbation.

3. Strong and robust stabilization

In this section, we first transform Problem 2.3 to the problem
of an interpolation-minimization by a unit element in #°°. Next
we obtain a sufficient condition as well as a necessary condition
for the interpolation-minimization problem using the modified
Nevanlinna-Pick interpolation [22].

Lemma 3.1 below is a scalar version of Lemma III.1 of [ 11]. This
result provides a necessary and sufficient condition that a con-
troller strongly stabilizes the plant. The next statement is different
from that of Lemma III.1 in [ 11], but the modification is easy. So we
omit the proof.

Lemma 3.1 ([11]). Suppose P = N/D, where N, D € J# are
strongly coprime. Then C strongly stabilizes P if and only if C, 1/(D +
NC) € .

The following result shows that Problem 2.3 can be reduced to
an interpolation-minimization by a unit element.

Theorem 3.2. Consider Problem 2.3 under Assumptions 2.1 and
2.2. Problem 2.3 is solvable if and only if there exists a function F such
that

F,1/F € %%, 3)

W — MdFllo < p, (4)
W@y

F(Zi)—Md(zi), i=1,...,n (5)

Furthermore, once such a function F is constructed, the solution
of Problem 2.3 is given by
W — MgF
=— (6)
M,N,F

Proof (Necessity). Let C be a solution of Problem 2.3. Define F :=
W /(Mg + M,N,C). Then F satisfies (3) by Lemma 3.1. Since

MgF
W =W (1-=">) =W —MdF, (7)

F also achieves the norm constraint (4). In addition,
W (z) _ W@
Mq(z)) + Mn(z)No(z)C(zi)  Ma(z))’
Thus F satisfies (3)-(5).
(Sufficiency). Suppose F satisfies (3)-(5), and define C by (6).

We show C € # as follows. Since 1/N,, 1/F € #, it follows
from (6) that

F(z) =

e H™. (8)

Suppose C ¢ #°°. Then the unstable poles of C must be the zeros
of M, by (8). Let z; be such a pole. Since the zeros of M,, are simple,
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it follows that (M,,C)(z;) # 0. In addition, since the units N, and F
do not have unstable zeros, N,(z;) 7% 0 and F(z;) # 0. Hence

W (zi) — Ma(z)F (zi) = (MaC)(z;) - No(2)F (z;) # O,

which contradicts (5). Thus C belongs to #¢°°.
Moreover since
1 w
—— = — e H™,
My + M,N,C ~ F
C strongly stabilizes P by Lemma 3.1. C also achieves the norm
constraint (2) by (4) and (7). Thus C is a solution of Problem 2.3. O

We obtain a sufficient condition as well as a necessary condition
for robust stabilizability by a stable controller using the following
problem:

Problem 3.3 ([22,23]). Suppose s1, ...,S, € C; are distinct, and
let B1, ..., Bn € C \ {0}. Determine whether there exists a func-
tion G such that G, 1/G € #*, |G|l < 1, and G(s;) = pg; for

i=1,...,n.Also, if one exists, find such a function G.

Problem 3.3 is called the modified Nevanlinna-Pick interpolation
problem [22].

The difference between Problem 3.3 and the Nevanlinna-Pick
interpolation problem [1,21] is that Problem 3.3 has the condition
1/G € ™. Despite this difference, the solvability of Problem 3.3
is also equivalent to the positive semi-definiteness of an associated
Pick matrix.

Theorem 3.4 ([22,23]). Consider Problem 3.3. Define «; := ¢(s;) for
alli =1, ..., n, where the conformal map ¢ is

s—1

+1
Problem 3.3 is solvable if and only if there exists an integer set
{k1, ..., kn} such that the Pick matrix P({kq, . .., kp}),

¢:CL > D:s—

(9)

1 — apay

P((ki, .. k) = [‘L"g P — Log Py +Jom (kg = P)}

p,g=1
is positive semi-definite.

The next result gives a solution of Problem 3.3 by the Nevan-
linna-Pick interpolation.

Theorem 3.5 ([9,10]). Consider Problem 3.3. Fix ¢ > 0. Define «; in
the same way as in Theorem 3.4 and ¢; .= ¥, (—Log B; — j2mk;) for
i=1,...,n where{kq,...,k,} is an integer set and the conformal
map ¥, is
je—jns/a ~1
U, : {s€eCy:0<Res<o}—>D:s>———.
]e—jns/a +1

If there exists an analytic function g : D — D such that g(«;) = ¢
fori=1,...,n,then

(o o (1+86)
c(s).—exp< D) nL°g<1—g(¢(S))>) Y

is a solution to Problem 3.3.

Remark 3.6. 1. In Theorem 3.4, we have an infinite number of
P({kq, ..., kn}). Note, however, that in order that P({kq, ...,
kn}) be positive semi-definite it is necessary that K,q := k, —
ks be bounded. It turns out that only finitely many distinct
P({kq, ..., kn}) could possibly be positive semi-definite. In fact,

for the positive semi-definiteness of P({kq, ..
satisfy the following quadratic inequality:

—Log B, — Log B, —Log B, — Log By — j27Kpq

., kn}), Kpq must

det 1—opap . 1—opag
—Log By — Log By + j27 Ky —Log B, — Log By
1 — o 1= o0

= aK? + bKyg + ¢ > 0,
where a := —47%, b := 47Re [j(—Log B, — Log By)], and

Log B, + Log B, Log Bq + Log By

T —apap T —aqaq
Log , + Log By |
0g pp + Log __
- % '|1_05p05q|2~
— p0Yg

Hence D := b?>—4ac > Oand (b++/D)/(2a) < Kpy < (b—~/D)/
(2a). Thus we can check the solvability of Problem 3.3 in a finite
number of steps. See [23,24] for the details.

2. A function f is said to be real if f (s) = f(5). Simple calculations
show that G(s) in (10) is real if g(z) = j - go(2), where go(2) is
real.

For finite dimensional systems [12-14] and systems with in-
finitely many unstable modes [9,10], the problem of sensitivity re-
duction by a stable controller is equivalent to Problem 3.3. On the
other hand, the difficulty of strong and robust stabilization is the
F¢°°-norm condition (4) in Theorem 3.2.

We now develop both a sufficient and a necessary condition
for (4). It follows from these conditions that we obtain lower and
upper bounds on the perturbation by Problem 3.3. Theorem 3.4
and Remark 3.6.1 show that we can compute these bounds by
calculations of the finitely many Pick matrices. Additionally, we
find stable controllers for robust stabilization by Theorem 3.5.

Define piyf == infee goonw ) IWT |- Then Kgyp == 1/ pjns canbe
regarded as the largest allowable multiplicative uncertainty bound
for robust stability with a stable controller. Theorem 3.7 below
gives a lower bound of K, and stable robust controllers.

Theorem 3.7. Consider Problem 2.3 under Assumptions 2.1 and 2.2.
Suppose ||W || < p. Choose W satisfying W, 1/W; € RH™ and
|Ws(jw)| < p — |W(jw)| for almost all ® € R. Define B; := W(z;)/
(Mg(z))Ws(zy)) fori =1, ..., n.If Gisasolution of Problem 3.3 with
the interpolation data (z;; i), then Ksyp > 1/p and

W — MWG
T MuN,W,G
is a solution to Problem 2.3.

(11)

Proof. Note that B; # 0 for each i because the unit W does not
have unstable zeros. By Theorem 3.2, it suffices to show that there
exists F satisfying (3)-(5).

Let us first obtain a sufficient condition for (4). Since My is inner,

IW(jw) — Mg(jo)F (jo)| < [Ma(jo)| - [F(jo)| + W ()]
< [F(jo)| + p — [Ws(jw)|

for almost all w € R. Moreover |F(jw)| + p — [W;s(jw)| < p if and
only if [(F/Ws)(jw)| < 1.1t follows that if ||F /Ws||s < 1, then we
have (4).

Suppose G is a solution of Problem 3.3 with (z;; 8;)I,. Define
F := W;G. By the argument given above, F achieves (4) because
IF/Wslloo = lIGlloo < 1. Since G and W; are unit elements, F satis-
fies (3). Moreover the interpolation conditions (5) can be obtained
directly by those of G. Thus F satisfies (3)-(5). By substituting
F = WG into (6), we can also derive (11). O



514 M. Wakaiki et al. / Systems & Control Letters 62 (2013) 511-516

In the same way, an upper bound of Ky, can be obtained by the
next result:

Theorem 3.8. Consider Problem 2.3 under Assumptions 2.1 and 2.2.
Choose W, satisfying W,, 1/W, € RH* and |W,(jw)| > p +
|W (jw)| for almost all o € R. Define y; := W (z;) / (My(z)) Wy, (2;)) for
i=1,...,nIf Problem 3.3 with the interpolation data (z;; y;)}_, is
not solvable, then Ky, < 1/p.

Proof. As in the proof of Theorem 3.7, we can derive a necessary
condition for (4) by |W(jw) — My(jw)F (jw)| > |F(jw)| + p —
|Wyh(jw)| for almost all @ € R. The rest of the proof follows the
same lines as that of Theorem 3.7, so it is omitted. O

Remark 3.9. 1. In Assumption 2.1, we have taken a biproper plant
having infinitely many unstable poles as the nominal model.
Therefore the condition |W| < p in Theorem 3.7 implies
that the controllers obtained by our proposed method may
not robustly stabilize strictly proper plants. In the first place,
however, we should pose the question: Are strictly proper plants
with infinitely many unstable poles stabilizable? The answer is
negative; see Appendix.

2. By the MATLAB command f itmagfrd, we can compute Wy, W,
in Theorems 3.7 and 3.8.

Theorem 3.7 generally gives an infinite dimensional controller.
A natural question at this stage is the following: Does a finite
dimensional controller that approximates the derived controller
stabilize the plant and satisfy the #¢°°-norm condition (2)? Rational
approximations can be obtained from the frequency response
data with approximation methods for stable infinite dimensional
systems; see, e.g., [25] and its references.

To ensure that the approximation C, € RH™ still stabilizes
the plant, we can obtain an error bound on the difference ||C —
Calloo [12, Lemma 4].

Define

PC,
Ty := .
1+ PC,

The following result illustrates that we can also obtain an upper
bound of [WTq|loo by IC — Callco-

(12)

Proposition 3.10. Let P € F*° and W € F°. Suppose there exists
C e #*N¥(P)and C, € RH>®NE(P). Define§ := ||P/(14+PC)| 0o
and € .= ||C — Glleo. If 6€ < 1, then

de - | W lloo + | WT|
IWTlloo < S (13)

where T and T, are defined by (2) and (12) respectively.

Proof. Routine calculations show that

T—-T,= 1—Ty)(C —Cp).
a 1+PC( a)( )
Hence
IWT — Wl < 8¢ - [W( = To)lloo
< de - (W]l + IWTgl0o)- (14)

Since |[WT;|loo — IWT ||oo < [|WT — WT,|| o, it follows from (14)
that
(1=3¢€) - [WTalloo < &€ - [Wlloo + [WT [loo-

Thus we obtain (13)if de < 1. O

4. Numerical examples

In this section, we present a numerical example to show the
effectiveness of the results. We also apply the proposed method to
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Fig. 2. The unstable zero « versus the supremum gain Kgyp.

a repetitive control system [15,16]. Repetitive control attempts to
track or reject arbitrary periodic signals of a fixed period. Tracking
or disturbance rejection of periodic signals appears in many
applications, e.g., disk drives [26] and industrial manipulators [27].

Example 1. Consider Problem 2.3 with the following infinite di-
mensional system P, weighting function W, and positive con-
stant p:

s—a)(s—4e+1)

P(s) = )
(s — 10)(s — 15)(2e= + 1)
W(s) =K s+1 -1
V=0T P

where 2 < o < 10and K > 0. Let p be the only root of s —
4e—° 4+ 1 = 0in C, (note that p ~ 0.7990). Using the factorization
method of [20], P can be factorized as P = M,N, /Mg, where

M, (s) = S—DE=P)
S+ a)(s+p)
My(s) == (s —10)(s — 15)(26:5 + 1)’
(s+10)(s + 15)(e~* + 2)
s+ )5 +p)(s—4e=s+1)
No(s) ==

(s—p)(s+10)(s+ 15)(e> +2)

Let K, be the supremum of K such that there exists C € #*°N
¢ (P) satisfying (2). Fig. 2 shows the relationship between « and
Ksyp. In Fig. 2, the solid line shows the lower bound of K, obtained
by Theorem 3.7, and the dashed line indicates the upper bound
of Ky derived by Theorem 3.8. We compute both W, and W, in
Theorems 3.7 and 3.8 by the MATLAB function fitmagfrd. Both
lines in Fig. 2 decrease to 0 as o becomes closer to 10. The reason
for this drop is that an unstable pole-zero cancellation occurs in P
when @ = 10.

Let o = 2.Then we obtain the lower bound 0.471 and the upper
bound 0.771. We also find a stable controller to achieve robust
stability for K = 0.468 by Theorem 3.5 with ¢ = 100. See Fig. 3
of [9] for a discussion on the selection of o based on a specific
numerical example.

When K = 0.468, W in Theorem 3.7 and g in Theorem 3.5 are
given by

0.53(s + 10.20)

WO~ — 588

1.049z 4+ 1

z+1.050
The above W is obtained by £ itmagfrd. The stable controller that
provides robust stability is obtained by (11), where G(s) is defined
in (10) with g(2).

Note that G(s) in (10) is real by Remark 3.6.2. A further investi-
gation of G is conducted through an example in [9].

g(z) =j-g(z), wheregy(z)~
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Fig. 3. Repetitive control system.

Example 2 (Application to Repetitive Control Systems). Consider the
repetitive control system given in Fig. 3, where L = 1 and P, be-
longs to the following model set:

(s—6)(s—9)

P = {Pa(s) ==
(as+8)(s —5)

:0.8§a§1.2}.

Note that the plant must be biproper for the exponential stabil-
ity of the closed-loop system [16, Theorem 5.12]. When the plant
is strictly proper, we need a modified repetitive controller [15,16].
See [28] for the details of robust stabilization of modified repetitive
control systems.

The repetitive controller C consists of two parts: C, and C,.
C, = 1/(1 — e75) is the internal model of any periodic signals
with period L. The existence of such an internal model is equivalent
to the exponential decay of the error e(t) under the hypothesis of
the exponential stability of the closed-loop system [16]. On the
other hand, G, is designed for the desired performance. Our goal
in this example is to determine whether there exists C, € #*
such that C = C,C, stabilizes all P, € £ and the error e(t) tends
exponentially to zero for any P, € £.

Fore > 0,letC_, denote {s € C | Res > —¢}and let #*°(C_,)
denote the set of functions that are bounded and analytic in C_,.
For exponential stability, it is necessary and sufficient that S, CS,
and PS belong to #*°(C_,) for some ¢ > 0 [29, Theorem 3.1]. In
addition, if ¢ is sufficiently small, then

2 C {PA =(1+WAP; : Ae H®(C_,), sup |A()| < 1} , (15)

seC_¢
where
s—6)(s—9 0.25038(s + 0.02384
Pi(s) == M, W(s) = ( )
(s—5)(s+8) s+ 10

Now let us consider the closed-loop system in Fig. 4. By the
preceding discussion, to determine whether there exists C, € >
yielding the exponential stability of the closed-loop system for
every P, € &, we study Problem 2.3 with

P(s) := P(s — &) = Cy(s — &)P1(s — €),

. (16)
W(s) .= W(s —eg),

p =1
Once we find a solution C of this problem, C,(s) := C(s + &) €
F°(C_,) makes the closed-loop system exponential stable for
every A € #*°(C_,) satisfying supscc_, |A(s)| < 1inFig. 4.
Lete = 0.001, which satisfies (15). P in (16) can be factorized
as P = M;N, /M, where
(s—e—6)(s—e—9)

MTI(S) = )
(ste+6)s+e+9)

My(s) = (1 j efe)(s—¢e — 5),
(e*—e)(s+e+5)

Ny(s) = (s+e+6)(s+e+9)

(eS—e)s+e+5)(5—e+8)

Define T := 136/(1 + 155). It follows from Theorems 3.7 and 3.8
that 0.71 < infgemoﬂ%(,;) IWT|s < 0.97. The MATLAB function
fitmagfrd is used for W5 and W, in Theorems 3.7 and 3.8.

P(s)] T ——

!
00 et [P (] A
- !

Fig. 4. Robust stabilization for the repetitive control system.

Thus there exists C, € #* such that the repetitive controller
C = C,(, stabilizes all P, € £ and achieves the exponential decay
of e(t) for any P, € 2.

5. Concluding remarks

We have studied the strong and robust stabilization problem
for single-input single-output infinite dimensional systems. The
plants we consider can have only finitely many simple unstable
zeros but may possess infinitely many unstable poles. It still
remains an open problem to obtain a necessary and sufficient
condition for this robust stabilization problem. However, using the
modified Nevanlinna-Pick interpolation, we have obtained both
lower and upper bounds on the multiplicative perturbation under
which a stable controller can stabilize the plant. Moreover we
have found stable controllers to achieve robust stability. We have
also presented a numerical example to illustrate the results. A
repetitive control system has been discussed as an application of
the proposed method.

Appendix. Stabilizability of strictly proper plants having in-
finitely many unstable poles

We answer the question: Can a linear time-invariant controller
stabilize a strictly proper plant with an infinite number of unstable
poles?

The previous works [30,31] on #°° control of plants with in-
finitely many unstable modes assume that the plants are biproper.
In addition, a strictly proper neutral delay system is not stabilizable
by a finite dimensional controller [32]. However the above ques-
tion is not fully answered. Based on the Bezout identity, the next re-
sult shows that more general strictly proper plants with infinitely
many unstable poles are not stabilizable in the sense of [17].

Proposition A.1. Let nonzero N, D € #* be weakly coprime in the
sense of [17], i.e., every greatest common divisor of N and D is a unit
element. Suppose D has infinitely many zeros in C, and that the set
of these unstable zeros has no limit points on the imaginary axis. If N
satisfies

lim sup [N(s)| =0,

R—o0 |s|>R

(A1)

then P := N/D is not stabilizable.

Proof. Suppose P is stabilizable. Then by Theorem 1 of [17], there
exist X, Y € #* such that

N($)X(s) +D(s)Y(s) =1 foralls e Cy,. (A.2)

By (A.1), for every ¢ > O, there exists R > 0 such that [N(s)| -
[IX]loo < €foralls € Cy satisfying |s| > R.In addition, there exists
zo € C4 such that D(zp) = 0and |zg| > R. Otherwise the set of the
unstable zeros of D has at least one limit pointin {s € C, : |s| <R},
which implies that D(s) = O foralls € C,.Let & < 1.Then

IN(20)X(20) + D(20)Y (20)| < IN(z0)| - [IX[|oc < € < 1.

This contradicts (A.2). Thus P is not stabilizable. O
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