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ABSTRACT

In this paper, we report the theoretical and experimental possibility of achieving a quarter-wave plate regime
by using high-contrast gratings, which are binary, vertical, periodic, near-wavelength, and two-dimensional high
refractive index gratings. Here, we investigate the characteristics of two distinct designs, the first one being com-
posed of silicon-dioxide and silicon, and the second one being composed of silicon and sapphire. The suggested
quarter-wave plate regime is achieved by the simultaneous optimization of the transverse electric and transverse
magnetic transmission coefficients, Trg and Ty, respectively, and the phase difference between these transmis-
sion coeflicients, such that |Try| ~ |Trg| and LTy — LT ~ w/2. As a result, a unity circular polarization
conversion efficiency is achieved at A\g = 1.55 um for both designs. For the first design, we show the obtaining of
unity conversion efficiency by using a theoretical approach, which is inspired by the periodic waveguide interpre-
tation, and rigorous coupled-wave analysis (RCWA). For the second design, we demonstrate the unity conversion
efficiency by using the results of finite-difference time-domain (FDTD) simulations. Furthermore, the FDTD
simulations, where material dispersion is taken into account, suggest that an operation percent bandwidth of
51% can be achieved for the first design, where the experimental results for the second design yield a bandwidth
of 33%. In this context, we define the operation regime as the wavelength band for which the circular conversion
efficiency is larger than 0.9.

Keywords: Polarization, periodic slab waveguide, high-contrast grating, quarter-wave plate

1. INTRODUCTION

High-contrast gratings (HCGs), which are composed of high refractive index gratings with subwavelength pe-
riodicities enclosed by low refractive index materials,! have been notably studied since the numerical? and
experimental® revelation of their diffraction-free and broadband high-reflectivity regimes. The most notable and
intriguing properties of HCGs include large fabrication tolerance, geometrical simplicity and design flexibility.*
In addition, their well-established theoretical descriptions also contribute to the enabling of benefiting from
HCGs for the purpose of designing various optical devices, i.e., polarization-independent broadband reflectors,’
polarizing beam splitters,® saturable and cavity-enhanced absorbers,”® monolithic high-reflectivity cavity mir-
rors,? planar lenses and reflectors with high focusing abilities,'® ! high quality-factor Fabry—Perot resonators,'?
vertical-cavity surface emitting and nanoelectromechanical lasers,'3 4 slow light waveguides,'® and one-, two-
and three- dimensional hollow-core low-loss optical waveguides.'6-18

In this study, we benefit from the unique properties of HCGs for the purpose of achieving the desired
transmission characteristics of a broadband and highly efficient quarter-wave plate, which operates in the near-
infrared regime. It has recently been shown that transmission characteristics of binary and vertical HCGs
can be obtained by the implementation of the periodic dielectric slab waveguide interpretation.!® In one of
our recent studies, we propose a two-dimensional HCG structure with optimized geometrical parameters?® by
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Figure 1: Geometrical description of the proposed HCG based quarter-
wave plate. The incident wave is impinged on the structure from region
I, where the transmitted converted wave propagates in region III.

benefiting from this theoretical consideration, rigorous coupled-wave analysis?! and finite-difference time domain
simulations (FDTD Solutions, Lumerical Inc.). After presenting the detailed theoretical investigation of the
HCG based quarter-wave plate, we have recently demonstrated the experimental realization of another HCG
based quarter-wave plate by proposing a structure with a more feasible choice of materials.??

For the theoretical study (first design), the transmission results obtained from the RCWA and FDTD based
simulations reveal that an operation bandwidth of 54% and 51% can be achieved, respectively, under the as-
sumption that the structure is in the operation regime if the conversion efficiency is equal to or larger than
0.9. Likewise, an operation bandwidth of 42% and 33% is achieved from the FDTD simulations and measure-
ments, respectively, in the experimental study (second design). Further, it should be noted that such designs are
promising for the implementation of compact and electrically thin circular polarizers by combining the proposed
quarter-wave structures with HCG based,® wire grid,?® thin-film grating,?* or plasmonic?® linear polarizers.

2. ANALYSIS OF THE FIRST DESIGN

Firstly, we propose a HCG based structure, for which the aim is to maximize the operation bandwidth and
total transmission with a reasonable design concerning the practical realization stage. The proposed design is
depicted in Fig. 1. For the achievement of a realistic design, the material constituting region III is selected
as silicon-dioxide (SiO3). Furthermore, as a result of aiming the maximization of the operation band and the
transmission through the structure, the material constituting region I and the grooves in region II is selected as
also SiOs. Finally, we select the material for the ridges as silicon (Si) due to its high refractive index and low
absorption coefficient at A\g = 1.55 pm.

Concerning the theoretical consideration and numerical simulations, regions I and III are assumed to be
extending to infinity in —z and +z directions, respectively. In order to approximate this assumption in the
experimental realization stage, one can use a substrate (in region III) and deposit a dielectric layer (in region I)
that is much thicker than the coherence length of the incident light.

In the subsequent subsections, we will first consider the proposed HCG theoretically, and then present circular
conversion coeflicients and the circular conversion efficiency spectrum.

2.1 Theoretical Analysis

For the purpose of analyzing the proposed HCG structure theoretically, we adopt the analysis that is inspired
by the periodic waveguide interpretation and performed by Karagodsky et al.! Accordingly, we obtain the
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following condition for the unity transmission of a TM wave that is normally incident onto the structure:

A

|Z —af ™) A /h;"n;FM (x)dz| =1, (1)

0

where aT™ and a?,™ represent the coefficients of the magnetic field components of the m** TM waveguide mode
propagating in the +z and —z directions inside region II, respectively. A is the period of the HCG structure,
and hm 'TM is the lateral magnetic field distribution of the corresponding TM mode. By invoking the duality
pr1nc1ple the unity transmission condition for TE waves can be simply written as follows:

A

1> (an? —af ™) AT / himTE (z) dz| = 1. (2)

0

For the achievement of the quarter-wave plate operation, i.e., transmission of a circularly polarized wave when
the structure is illuminated by a linearly polarized wave with a polarization plane angle of 7/4 with respect to
the z-axis on the zy-plane, it is necessary to also satisfy the following condition:

ZTTM — ZTTE ~ 7T/2. (3)

In Eq. 3, TM and TE can be interchanged and the choice is arbitrary. In this case, our choice leads to
the transmission of a right hand circularly polarized wave when the polarization plane angle of the incident
wave is /4. The operation condition given in Eq. 3 corresponds to the following equation in the theoretical
consideration:

m

A A
/ Z(aﬁM—afﬁTM YA~ 1/hmTM de | — 2 Z(aTE aPTE A~ 1/hmTE dz | =+7/2. (4)
0 0

Afterwards, the longitudinal wavenumber of the waveguide modes inside region II, f3,,, can be written as a
function of the incident wavelength and the lateral wavenumbers as follows:

67271 = (27Tng/)‘0)2 - k;m = (27Tnbar/)‘0)2 - kf,ma (5)

where Ao is the free-space wavelength, and k4., and k., are the lateral wavenumbers inside SiO; and Si,
respectively. Subsequently, for TM modes, the dispersion equation, the relation between the lateral wavenumbers,
is given as follows:

Nyt bop tan (pm/2) = =1 kg m tan (kg,mg/2). (6)
By invoking the duality principle, the dispersion relation for TE modes can be written as:
Erm tan (ky mr/2) = —kgm tan (kg.mg/2). (7)

The qualitative interpretation of Eqs. 6 and 7 is that the TM and TE waveguide modes can have different lateral
wavenumbers, which, according to Eq. 5, results in different longitudinal wavenumbers. As a consequence, one
can expect the TE and TM modes to accumulate different phases upon transmission through the HCG.

For the purpose of calculating the transmission coefficients of TE and TM waves, we invoke a two mode
approximation at this point, i.e., introducing the restriction that m can be 0 and 1. Under this approximation,
the longitudinal and lateral wavenumbers for TM and TE modes can be calculated using Egs. 5 and 6, and Egs.
5 and 7, respectively. In the calculations, nyq, = 3.48 and ngy = 1.47, which correspond to the refractive indices
of Si and SiO,, respectively, at the frequency of interest, A\g = 1.55 um. Afterwards, with the help of a custom
parametric optimization code, we obtain the geometrical parameters, for which Eqs. 1, 2, and 4 are satisfied
simultaneously, by using the following definitions for A} ™ and hi,T5:19

BRI _ jin T _ cos (kr,m1/2) cos [kgm (x — g/2)], inside the grooves ' (8)
o cos (kg,mg/2) cos {krm [z — (¢ +A)/2]}, inside the ridges
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Accordingly, the optimal geometric parameters for quarter-wave plate operation at Ag = 1.55 um are obtained
as r = 160 nm, g = 220 nm, and h, = 550 nm. The lateral wavenumbers of TM modes for these geometric
parameters are calculated as k2 ; = . 2/A?, k2 =19.43/A% and k} | = 31.3/A% k2| = 54.9/A%. Similarly, for
TE modes, we obtain k2 o = —13.1/A?, k2 = 10.48/A% and k’ 17 ~"30. 2/A? k2, = 53.8/A2. Recalling that, in

such a waveguide, the cutoff condition is given by k2 = (npqr/ nq) k2 and thus, it is seen that only the first modes
in the TM and TE cases are propagating modes with 32, > 0. The second modes in both cases correspond to
exponentially decaying modes with 52, < 0. In addition, the longitudinal wavenumbers of the diffraction orders
is given by 72 = (27mg)2 ()\0_2 — nQA’Q), where n denotes the diffraction order. Since A\g/A = 4.1 in the proposed
design, it follows that 72 > 0, where 72 < 0 for Vn, n # 0. In other words, only 0" reflection and transmission
orders are propagating, which results in the fact that, if a planewave propagating in the 4z direction is impinged
on the structure, the reflected and transmitted waves are planewaves propagating in the —z and +z directions,
respectively.

Finally, we calculate the complex transmission coefficients, Ty and Trg, theoretically. We obtain [Ty | =
0.988 and |Trg| = 0.936, where £/Try — ZTrg = 92°. The resulting transmission coefficients for the aforemen-
tioned geometrical parameters suggest that the desired quarter-wave operation regime is achieved theoretically.
For detailed information regarding the calculation of the transmission coeflicients, we suggest the readers to refer
to Ref. 19.

2.2 Numerical Validation

For the purpose of validating our theoretical predictions, we employ numerical simulations based on RCWA and
FDTD method. Using these methods, Ty and Trrg are calculated. In RCWA | we neglect the material dispersion,
whereas we take the material dispersion into account properly in the FDTD method. Subsequenty, the circular
conversion coefficients, C. (for right-hand circularly polarized waves) and C_ (for left hand circularly polarized
waves), which indicate the amplitudes and phases of the circularly polarized waves at the output interface for an
incident plane wave with a polarization plane angle of 7/4, can be directly calculated by a simple transformation

of the basis vectors as Cx = 0.5 (T'ry F iTrg).28

For being able to measure the degree of conversion from the linear polarization to the circular one, we define
the conversion efficiency parameter, Ceg, as follows:

CL 2 —]C-P?

Coff = o ——— .
SNTeRENNTGHE

(9)

It is noteworthy that the ellipticity parameter, 7, can be directly calculated from the Cog spectrum as follows:

= arctan V(I +Cerr) /(1= Cer) — 1
e <¢<1+Ceﬂ>/<1—ceﬂ>+1>' (10)

Using the relation given in Eq. 10, it can be shown that Ceg = 0.9 corresponds to 7 = 32°. Due to the one-to-one
correspondence between Cog and 7, we only provide Ceg in this paper.

The circular conversion coefficients obtained from RCWA and the conversion efficiency spectrum obtained
from RCWA and FDTD simulations are shown in Fig. 2. The presented results obtained from RCWA suggest
that a conversion efficiency that is larger than 0.9 is achieved between 1.36 um and 2.36 um. The FDTD results
suggest a narrower wavelength band, 1.4 um — 2.36 um, as a consequence of the dependence of the refractive
index of Si on the wavelength. For the calculation of the percent bandwidth of operation, we use the following
classical definition:2”

A/ —1

a1 (11)

where Ay and Ap are the higher and lower corner wavelengths of the operation band, respectively. Using the
definition given in Eq. 11, we obtain BW% = 54% and BW% = 51% from the RCWA and FDTD results,
respectively.

BW% = 200%
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Figure 2: (a) Circular conversion coefficients obtained using the RCWA and (b) the
conversion efficiencies obtained from the RCWA and FDTD. The wavelength range
for the FDTD result satisfying the 0.9 efficiency threshold is denoted by AA.

3. ANALYSIS OF THE SECOND DESIGN

After demonstrating the possibility of a HCG based quarter-wave plate in Section 2, we modify the design
depicted in Fig. 1 such that the choice of materials is more feasible for fabrication. In this design, the material
filling region III is sapphire, whereas region I and the grooves in region II are filled with free-space.

For the present design, a theoretical interpretation is not provided since it is largely similar to the one shown
in Section 2.1. However, one major difference arises from the choice of different materials for region I and III.
In the present case, the longitudinal wavenumber of the zeroth reflection order is given by o1 = 27 Ay ! where,
for the zeroth transmission order, we have o 111 = 27nsAg L. This characteristic conduces to discrepant lateral
magnetic field distributions in regions I and III. Thus, one should pay attention to the utilization of correct
distributions while matching the tangential electric and tangential magnetic fields at 2 = 0 and z = —h,.

3.1 Numerical Results

The geometrical parameters of the HCG structure for optimal operation, i.e., unity conversion efficiency at
Ao = 1.55 um, are obtained by utilizing the theoretical model and RCWA simulations as r = 220 nm, g = 350 nm,
and hy = 320 nm. Subsequently, FDTD simulations are run in order to characterize the transmission of the
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Figure 3: (a) Circular conversion coefficients obtained using the RCWA and (b) the
conversion efficiencies obtained from the RCWA and FDTD. The wavelength range
for the FDTD result satisfying the 0.9 efficiency threshold is denoted by AA.
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Figure 4: (a) Zoomed out and (b) zoomed in top view SEM micrographs of the fabricated HCG structure.
In (b), the legends V1, V2, and V3 denote the geometrical parameters g, r, and , respectively.

proposed structure. The numerically obtained normalized transmitted intensities (|Try|? and |Trr|?) are shown
in Fig. 3(a).

In the close neighborhood of Ag = 1.55 pum, the conditions given in Egs. 1, 2, and 4 are satisfied simultaneously,
which result in the transmission of a right hand circularly polarized wave assuming that a planewave with a
polarization plane angle of w/4 is impinged on the structure. The conversion coefficients are calculated using
the same formulation given in Sec. 2.2 and the results are shown in Fig. 3(b). Finally, the conversion efficiency
spectrum is calculated using Eq. 9 and shown in Fig. 3. The numerical results suggest that the condition
Cest > 0.9 is satisfied in the wavelength interval 1.24 pm — 1.40 pm. By using Eq. 11, it is calculated that this
wavelength interval corresponds to a percent bandwidth of 42%.

3.2 Fabrication

The proposed HCG based quarter-wave plate is fabricated using a silicon-on-sapphire wafer (Valley Design
Corporation). The thickness of the sapphire (R-plane) substrate is specified as 0.52 £+ 0.05 mm. The < 100 >
Si layer is grown epitaxially on the substrate and its thickness is 600 = 60 nm. The fabrication of the structure
starts with the reduction of the thickness of the Si layer to 320 nm by using sulfur hexafluoride chemistry based
reactive ion etching (RIE). Afterwards, an electron beam sensitive photoresist, poly(methyl methacrylate), is
deposited on the wafer by means of spinning. After photoresist deposition, the desired regions are exposed by the
e-beam lithography technique. The e-beam step is followed by the development of the photoresist. Finally, the
unexposed Si regions are etched with the aid of the RIE system. The scanning electron microscope micrographs
of the fabricated HCG structure are shown in Fig. 4.

3.3 Experimental Setup

The detailed outlines of the two experimental setups are depicted in Fig. 5. The first setup, see Fig. 5(a),
is utilized for measuring the intensity transmission coefficients, |Trm|? and |Trg|?. In this measurement, the
sample is illuminated by a broadband near-infrared light source (Spectral Products, ASBN-W100-F-L) and the
polarization of the incident wave is set to either TM or TE polarization by the usage of an adjustable linear
polarizer (Thorlabs, DGL10). The spot size of the incident light on the sample is set to 50 um with the aid of
standard commercial objectives. The transmitted light is collimated by the objectives at the output interface
and coupled into the fiber. Finally, the spectrum of the transmitted wave is analyzed by the spectrometer (Ocean
Optics, NIR256-2.5).

The second setup, see Fig. 5(b), is utilized for the measurement of the circular conversion coefficients, C}
and C_. Counsidering that the linear polarizer at the input interface makes an angle of 45° with the z-axis on
the zy-plane and the quarter-wave plate (Thorlabs, WPQO05M-1550) is oriented such that its fast axis is along
the z direction, the HCG is illuminated by a right hand circularly polarized wave. Using Jones calculus, the
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Figure 5: Visual illustrations of the experimental setups that are utilized for the measurement of
(a) linear transmission and (b) circular conversion coefficients.

transmission characteristics of the HCG can be described as follows:

EY\  (Trmq O E:

(5) - (5" ) (5) ®
where E* and E! denote the incident and transmitted fields, respectively. Therefore, by aligning the linear
polarizer transmission axis at —45° and 45°, we measure |C|?> and |C_|?, respectively. For instance, it is
seen that, if the structure is illuminated by a right hand circularly polarized wave with unity amplitude at
Ao = 1.55 pum, the transmitted wave will be represented as (1/\/5; —1/\/5) and passed by a polarizer with its
transmission axis aligned at —45°. Similarly, at A\g = 1.55 um, a linear polarizer oriented at 45° passes the

transmitted wave, (1/v/2;1/4/2), when the structure is illuminated by a left hand circularly polarized wave with
unity amplitude.
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Figure 6: Experimentally obtained (a) TM and TE transmitted intensities, (b) cir-
cular conversion coefficients, and (c) conversion efficiency spectrum. The wavelength
interval of operation is denoted by A\ . The experimental conversion efficiency spec-
trum yields a percent bandwidth of 33%.
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3.4 Experimental Results

The linear intensity transmission coefficients, |Try|? and |Trg|?, measured using the setup shown in Fig. 5(a)
are shown in Fig. 6(a). The circular conversion coefficients measured using the setup shown in Fig. 5(b) are
shown in Fig. 6(b). Finally, the conversion efficiency spectrum, Ceg, is calculated from the circular conversion
coefficients by using Eq. 9 and plotted in Fig. 6(c). The experimental Ceog spectrum suggests that the lower
and higher corner wavelengths are Ay, = 1.25 pym and Ay = 1.75 pum, respectively, which result in a percent
bandwidth of 33%. Although the experimental bandwidth is smaller compared to the numerical one, 42%, the
experimental results are in good agreement with the numerical ones.

4. CONCLUSIONS

In conclusion, we have shown the theoretical realization and the experimental characterization of broad-band
quarter-wave plates that are composed of two-dimensional HCGs. While the material chosen for the ridges
remain same both in theoretical and experimental studies, the material used for the substrate is changed to
Sapphire from SiO; for the purpose of achieving a more fabricable design. For the first design, it is shown that
a conversion efficiency that is higher than 0.9 can be achieved in theoretical and numerical percent bandwidth
of 54% and 51%, respectively. Similarly, a percent bandwidth of 42% and 33% is achieved numerically and
experimentally for the second design. The possible application areas of the proposed quarter-wave plates can
include liquid crystal displays, laser applications and remote sensors.
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