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Abstract. We demonstrate the existence of supersonic bell soliton in the Bardeen-

Cooper-Schrieffer-Bose-Einstein condensate (BCS-BEC) crossover regime. Starting

from the extended Thomas-Fermi density functional theory of superfluid order

parameter, a density transformation is used to map the hydrodynamic mean field

equation to a Lienard type equation. As a result, bell solitons are obtained as exact

solutions, which is further verified by the numerical solution of the dynamical equation.

The stability of the soliton is established and its behavior in the entire crossover domain

is obtained. It is found that, akin to the case of vortices, the bell solitons yield highest

contrast in the BEC regime.
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1. Introduction

The experimental observation [1] of superfluidity in the Bardeen-Cooper-Schrieffer-

Bose-Einstein condensate (BCS-BEC) crossover regime has given impetus to the study

of ultra-cold trapped Fermi gases at unitarity [2, 3]. Though the beginning of the

experimental study of superfluidity in cold atomic gases dates back to the observation of

BEC, a decade and half ago [4, 5], the interaction controlled superfluidity, where atomic

Fermi gas changes constituents from Cooper pairs to composite bosons, is fairly new [6].

As the atoms pass through a situation, where the inter-atomic s-wave scattering length

diverges (the unitarity), several novel phenomena have been observed, some having

strong resemblance with characteristics of high-Tc superconductivity [7]. The theory of

crossover (the interaction driven study from BCS to BEC passing the unitarity) was first

suggested long time back [8] and has been studied systematically in the early eighties

[9, 10]. The recent advancement in experiments [11, 12, 13, 14, 15] has opened up avenues

for deeper understanding of nonperturbative aspects of this strongly interacting system,

in a controlled manner.

Lower dimensional nonlinear systems are known to exhibit counter intuitive

features, which are not possible in the three dimensional world. A classic example

being existence of bright and dark solitons in quasi one dimensional BEC [16, 17, 18,

19, 20, 21, 22, 23, 24, 25], which derive their stability from the balancing of nonlinear

effect with dispersion. The spreading effect of dispersion is exactly compensated by

non-linearity, resulting in these stable structures [26]. Here, we show the existence of

bell shaped solitons (bell-antibell pair) in the ultra-cold atomic gases which are non-

topological in nature. We note that a soliton solution can be classified in many ways,

depending upon its shape (bell, kink, breather); nature of the non-linear systems (thus

governing non-linear equations) which lead KdV (pulse) soliton, sine-Gordon soliton,

non-linear Schrödinger (NLS) soliton (envelop soliton); depending on its topology such

as topological and non topological solitons etc. Contrary to the envelop (bright) solitons,

a Bell soliton is generally obtained from a KdV type of equation and the amplitude of

the soliton is directly proportional to its velocity [27]. Similar hyperbolic secant pulse

profiles have been observed in a number of natural systems, the most notable being

the phenomenon of self-induced transparency in atomic media [28]. We establish the

conditions under which such localized structures can manifest in the fermionic cold

gases. This is explicated through exact solution in a controlled mean field approach,

which enables us to observe the pulse dynamics, starting from the fermionic side and

ending up in the Bose-Einstein condensate.

In the context of the BCS-BEC crossover, mean-field microscopic description is

well captured by the Bogoliubov-de Gennes (BdG) equation [29]. The analysis of

BdG equation is considerably more involved as compared to the Gross-Pitaevskii (GP)

equation, describing the mean field dynamics of BEC. Antezza et al., have numerically

solved the BdG equation in a box and discussed the behavior of dark soliton, in a

superfluid Fermi gas along the entire crossover domain, in a quasi-one dimensional (Q1D)
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geometry [30]. Similar approach was also adopted in the later studies as well [31, 32].

Manini et al., have developed a simpler approach, using extended Thomas-Fermi density

functional theory (ETFDFT), which incorporates the interaction through polytropic

density of state [33], where it was shown that for 6Li, it is possible to accurately find the

collective properties in the crossover regime. More recently, Wen et al., have presented

the dark and bright soliton solutions through the route of perturbative analysis of the

above mean field equation [34, 35]. This leads to Korteweg-de Vries (KdV) equation

whose soliton solutions are well known.

Before going into the details of our analysis, here we like spend some time on the

pros and cons of the ETFDFT model. As mentioned before, a BdG analysis is one of

the most robust way of treating the unitary Fermi gas as it takes into account the main

contribution to the kinetic energy, and treat it exactly in noninteracting systems even

with a nonuniform density spatial variation. Where as this approach gives the exact

kinetic energy only for a uniform system and even when extended with the addition of

gradient and higher order derivatives of the density, the ETF functional is not able to

reproduce shell effects in the density profile. But in this model one need not to worry

about the number of particles which is a big concern in BdG approach. More over

through ETFDFT one can obtain the qualitative physical picture at zero temperature

with relative numerical ease. Thus it is worth looking at the unitary Fermi system using

this model.

Here, we present (i) an exact bell soliton solution from the ETFDFT by showing

a direct connection of ETFDFT with Lienard type of equations. Thereby we obtain

the soliton solution which does not necessitate any perturbative approach [34, 35].

These solitons have highest contrast in the BEC regime, similar to the earlier result

for vortices and dark solitons [30, 36]. (ii) We explore the collective excitations and

obtain the sound velocity which shows an explicit dependence on the phenomenological

λ parameter (unless we absorb the quantum pressure term inside the chemical potential).

(iii) The stability of these solitons are discussed in terms of Noether charge. In the last

few passages we present (iv) a scheme to treat ETFDFT analytically when the ultracold

atomic Fermi gas is subjected to a harmonic trap and we observe the resulting oscillating

dynamics of the soliton due to the parabolic confinement.

The article is organized as follows: In Sec. 2, we discuss the polytropic

approximation for obtaining the relevant equation of state in the crossover regime. A

brief account is also presented on dimensional reduction of mean-field dynamics, to deal

with quasi 1D scenario. In Sec. 3, we have presented the exact connection between the

ETFDFT and Lienard type equation, from which we obtain bell soliton solutions. We

then explore its evolution from weak to strong coupling regimes. Further, we present

the oscillating dynamics of the soliton and establish its supersonic nature by analyzing

the sound velocity in this medium. The stability is analyzed in the light of Noether

charge and associated energy. Sec. 4 is devoted for the concluding remarks and future

directions of study.
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2. Polytropic Approximation and Quasi-One-Dimensional Dynamics

A. Interaction in Unitary Fermi Gas

In recent years, Manini et al., have shown a simple way to investigate the unitary Fermi

gas without losing its essential essence [33]. In particular, for 6Li they have built an

efficient parametrization of the energy per particle, based on Monte Carlo data and

asymptotic behavior of the interaction. Prior to that, it was shown that a power law

dependence of equation of state can be effective to find reliable expressions for the

collective frequencies which is analytically treatable but preserves the vital physical

picture [37]. Later it was demonstrated that, at zero temperature under local density

approximation the homogeneous chemical potential can be written in a series expansion

of gas parameters with good effect [38].

Here, we make use of this ETFDFT approach to investigate the existence of solitonic

modes in superfluid Fermi gas. We start from the ETFDFT equation, which controls

the dynamics of the trapped superfluid Fermi gas [39]:

ih̄
∂

∂t
Ψ = [− h̄2

4m

−→∇
2

+ 2U(r) + 2g(|Ψ|2) + (1− 4λ)
h̄2

4m

−→∇
2
|Ψ|
|Ψ|

]Ψ, (1)

where Ψ is the Ginzburg-Landau order parameter at zero temperature and the

normalization condition
∫
dr|Ψ|2 = N (N being the total atomic pair number of

the superfluid Fermi gas) and U(r) is the trapping potential. The bulk chemical

potential or equation of state is characterized by g(n). We can introduce the polytropic

approximation for equation of state as g(n) = µ0n
γ. As discussed earlier, the polytropic

approximation holds good at zero temperature under local density approximation which

is essentially a perturbative approach capable of providing deep insight into the physical

nature of the quantum system [38]. Under the polytropic approximation, µ0 is the

reference chemical potential, which we will explain after a short while, and n is the

atomic density. It is worth noting that, the interaction term is always positive in the

whole BCS-BEC crossover. We consider λ as a phenomenological parameter, accounting

for the increase of kinetic energy due to the spatial variation of the density.

The motivation to introduce the λ comes from the density functional theory where

a gradient correction was introduced to account for the non uniformity of the system

[40]. An energy functional for fermions in terms of the density and its derivatives is

usually called extended Thomas-Fermi (ETF) functional. Now if we define n(r) as the

local number density then a quantity like −λh̄2∇2
√
n/(2m

√
n) can be interpreted as

a next to leading term correction factor, where m being the atomic mass. There exits

some ambiguity regarding the value of λ as well. Initially the value was considered

as 1 in context of BCS-BEC crossover [33] but later it was suggested that λ = 1/4 is

better choice based on its good agreement with the theoretical epsilon analysis around

d = 4−ε spatial dimensions in unitary regime [40]. For λ = 1/4, Eq.(1) reduces to a form

similar to the GP equation. Since the formation of soliton is due to the delicate balance

between dispersion and nonlinearity, and in quasi one dimensional (Q1D) systems, the
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quantum pressure has significant contribution to dispersion, therefore one must pay

careful attention to λ. Further, in Q1D the particle number of the condensate is small,

which makes the contribution of quantum pressure more significant. For large number

of atoms, the radial contribution becomes significant. The ground state wave function

in the radial direction is Thomas-Fermi (TF) type, which results in discrete eigenmodes

of linear excitations in the radial direction, and hence induces a dispersion effect on the

wave propagation in axial direction. The resulting dispersion can balance the nonlinear

interaction and make the system more favorable to form solitons.

The essence of the interaction driven crossover is embedded in the polytropic

coefficient γ. Therefore, before going into the details of calculation, we briefly summarize

the behavior of γ and associated reference chemical potential µ0. Here, the weak coupling

to strong coupling evolution is captured through the following relation [33],

γ =
2
3
ε(y)− 2y

5
∂ε(y)
∂y

+ y2

15
∂2ε(y)
∂y2

ε(y)− y
5
∂ε(y)
∂y

, (2)

where ε(y) is an analytical function, whose parameters are fixed using the Monte Carlo

data [41], and y = (kFa)−1. If one plots Eq. (2) one will find that γ ∈ [2/3, 1]

(roughly), while y ∈ [−1, 1], thus at y = 1 Eq. (1) effectively reduces to the Gross-

Pitaevskii equation. Where as, in the Fermi system the ground state energy is

proportional to (density)2/3 therefore, one can obtain the BCS like picture while γ ' 2/3

and thereby it becomes possible to retain the essence of both the limits. In a similar

fashion, the reference chemical potential can be defined as,

µ0 = εF

[
ε(y)− y

5

∂ε(y)

∂y

]
. (3)

The study of the superfluids at zero temperature can take various routes. One

simple yet effective way is to study the hydrodynamics of the system. The ground state

solution of superfluid hydrodynamic equations corresponds to ∂ns/∂t = 0 and vs = 0

(ns, vs being the superfluid density and velocity components)[35]. As a result, it is

possible to determine the ground state chemical potential (µg) of the superfluid system:

µ0(nq(r)) + U(r) = µg. Here nq denotes equilibrium density, which can be related

to the reference density through the polytropic approximation as nq = n0[µg−U(r)
2µ0

]1/γ,

n0 is particle number density. One can obtain µ0 from Eq.(3) and n0 is taken as the

density of the ideal Fermi gas at the trapping center of the system. The external

potential is the usual harmonic trap, which in cylindrical coordinate takes the form,

Ux,y,z = 1
2
m(ω⊥r

2 + ω2
zz

2), with r =
√
x2 + y2. The TF radius in radial and axial

directions can be written as, Rxy = 2µg/mω
2
⊥ and Rz = 2µg/mω

2
z respectively. Applying

the normalization condition for equilibrium density (
∫
nqdr = N) the ground state

chemical potential can be written as [35],

µg = 2εF

{ε(y)− y

5

∂ε(y)

∂y

}1/γ

×
√
π(1 + γ)Γ( 1

γ
+ 5

2
)

8γΓ( 1
γ

+ 2)

2γ/(2+3γ)

,
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where n0 = (2mεF )3/2/6π2h̄3 and εF = h̄(6Nω2
⊥ωz). In the preceding sections, it will

be established that µg plays a crucial role in shaping the dynamics of soliton and also

sound propagation in this medium.

B. Dynamics in Quasi One Dimension

To model a cigar shaped trap, it is essential to consider that the interaction energy in the

transverse direction is much less than the kinetic energy [42]. The fermions are assumed

to be confined in a cylindrical harmonic trap, with radial frequency much larger than

the axial one, i.e., ω⊥ >> ωz. The important assumption we need to make for employing

the Gaussian variational ansatz in BEC in such situations is that, the interaction energy

per particle must be weaker than the zero point energies associated with the harmonic

confinement [43]. Though this method has its own limitation, it is widely used in dilute

Bose gas. Since the current ETFDFT model also lies on dilute limit where the inter-

particle separation is much smaller than the s-wave scattering length therefore we are

safe to use the similar Gaussian ansatz here as well.

To reduce Eq.(1) into Q1D form by using Gaussian ansatz, we consider

Ψ(r, t) =

√
N√

πa2
⊥
√
λ

Φ
(
z

a⊥
, ω⊥t

)
× exp

(
−i
√
λω⊥t−

x2 + y2

2a2
⊥
√
λ

)
, (4)

where a⊥ =
√
h̄/mω⊥. The reduced nonlinear Schrödinger equation (NLSE) then

becomes,

i
∂Φ

∂t
= − 1

4

∂2Φ

∂z2
+ ω0z

2Φ + 2µ0(|Φ|2)Φ + (1− 4λ)
1

4

∂2|Φ|
∂z2

|Φ|
Φ, (5)

where ω0 = ωz/ω⊥, and µ0 is appropriately normalized by h̄ω⊥.

We first analyze the results without the trap, and later we will incorporate the trap

to obtain analytic solutions. The solution of the above NLSE, without the pressure and

trap have been studied in different perspective [44, 45]. Using a traveling wave ansatz

of the type Φ(z, t) = ρ(z, t) exp i(χ(z, t) + µgt), we study the system in the comoving

frame, ζ = z − V t, where V is the soliton velocity. After applying these transformation

in Eq.(5), the imaginary equation (imaginary part of Eq.(5)) arising from the current

conservation gives,

χζ =
4C0

ρ2
+ 2V, (6)

where C0 is an integration constant. We consider the phase and amplitude as

uncorrelated and hence assume C0 = 0. The real equation (real part of Eq.(5)) then

reads,

λρζζ + (V 2 − µg)ρ− 2µ0ρ
2γ+1 = 0, (7)

where we have used the results from Eq.(6). The subscript ζ means derivative with

respect to ζ. It is worth noting that for γ = 1, one can have full set of Jacobi elliptic

function as solutions. For Fermi gas, we do not have such freedom and we need to
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solve the equation, considering γ as unknown. Later on we will use selected values of γ

obtained from Eq. (2).

3. Localized Structure in the Crossover Regime

A. Bell Soliton

Till date only a few studies have addressed the complexity involving the polytropic

assumption. Very recently, Wen et al. [34, 35], made such efforts and studied both dark

and bright solitons using a perturbative expansion scheme on the mean field equation.

Interestingly, there exists a transformation which will enable us to reduce this equation

to a well known form, which has exact solutions. Without loss of generality one can

take ρ = σ1/γ, which connects Eq. (7) to a Lienard type equation:

1

γ
σσζζ −

γ − 1

γ2
σ2
ζ + P1σ

2 − P2σ
4 = 0, (8)

where P1 = (V 2−µg)/λ and P2 = 2µ0/λ. We like to mention here that one can obtain a

real constant solution from Eq.(8) iff V 2−µg > 0, as σ =
√
P1/P2. But soon we will see

that the prevailing condition is inconsistent while we try to obtain a localized solution.

Thus we refrain ourselves from the constant solution. To obtain a localized solution we

apply fractional transformation [45] of the following form,

σ =
A sech2[Bζ/2]

1 + C sech2[Bζ/2]
. (9)

As short recap, we like to remind the readers that fractional transformation is an useful

tool to obtain solutions from a non-linear equation. In this approach, one can consider

an ansatz solution in the following way,

σ(ζ) =
A+Bf δ(ζ)

C +Df δ(ζ)
,

where AD − BC 6= 0, δ can be any power of the function f . A, B, C, D are constant

which can be evaluated through consistency conditions after applying this ansatz in

the main equation and collecting the coefficients according to the power of f . A

comprehensive description of this process can be found in Ref. [46].

We follow the same prescription, thereby application of Eq.(9) in Eq.(8) leads to

the following set of consistency conditions:

− 16γP1 + 16B2γ − 32B2 = 0,

−2CγP1 − 16B2γ +B2C + 40B2 = 0,

and A2γP2 − C2γP1 − 8B2C = 0.

The obtained solutions are,

A = ±1

2

√
γP1 − 3P1

γP2 − 2P2

, B = ±
√

γP1

γ − 2
and C = −1/2.
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Figure 1. (Color online)The bell soliton profiles across the BCS-BEC crossover regime

is depicted. The interaction is tuned from weak to strong (1/kFa = −1, 0, 1) from top

to bottom. The red line is our analytic result and the blue squares denote corresponding

numerical solutions after evolution of the Q1D ETFDFT equation.

Since our motivation is to find localized solutions, it is important to impose

µg − V 2 > 0 (contrary to the constant solution), otherwise the solution will be of

trigonometric form (since γ − 2 < 0 always for this kind of system) having singularities

in time evolution. One should note that, the above assumption actually imposes a ceiling

on the soliton velocity contrary to the usual bright soliton solution whose velocity is not

bounded. Incorporating this assumption, the solution can be simplified to the compact

form (after normalization),

ρ(ζ) =

 ηeiπ/2

2
√
B(−1, 1

γ
, γ−2

γ
)

4

√√√√γ(V 2 − µg)
λ(γ − 2)


1/γ

×

sech


√√√√γ(V 2 − µg)

λ(γ − 2)
ζ


1/γ

,(10)

where η = ±1 is the polarity of the soliton (bell/anti-bell) and B(−1, 1
γ
, γ−2

γ
) is

the incomplete beta function. It is worth pointing out that, this is a distinct and

new solution (bell type), as compared to the solution presented in Ref. [35]. Fig.(1)

demonstrates the bell soliton at time t = 0, for different couplings, with V 2 = 0.9µg.

The solid red line is our analytic result (Eq. (10)), the corresponding numerical solution

is depicted through blue squares. The numerical result presented here are obtained via

solving ETFDFT equation using the split-step Crank-Nicolson method by discretizing in

space and time [47]. The discretized equation is then solved by propagation in imaginary

time over small time steps (0.00002, total time step is taken as 8000). Both the results

agree appreciably well with each other.

One must notice that in Eq.(10), if γ = 2, the solution will be unstable as referred in

Ref. [44] but in our case on physical grounds γ < 2 (though mathematically γ can have

any value but in this model γ values are fixed by Eq.(2), thus its value can never exceed

1). It is important to observe the change in visibility of the bell solitons across the

crossover. The visibility/amplitude of the bell soliton is different in different superfluid

regimes. For dark soliton, it has already been shown that visibility is maximum in

the BEC side [30]. In Fig.(1), we notice that the visibility does increase as we move

from weak coupling to strong coupling regime. Further, one can note that the change

in visibility is more rapid in BEC side and this increase is monotonic. A qualitative
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comparison with the visibility of vortex core density in the BCS-BEC crossover [36]

reveals striking resemblance with our study.

B. Sound Velocity and Stability Criterion

Before presenting the sound velocity result in our system, we intend to address one

intriguing issue regarding the sound velocity. It is well know that one can calculate

the sound velocity through the hydrodynamics as well as from the ETFDFT equation

(Eq.1)[39, 43]. It is worth noting that the effect of quantum pressure does not enter

in the sound velocity expression if we use the hydrodynamic approach (cs =
√
γµg).

This is even true for ETFDFT approach if we absorb the quantum pressure term in the

chemical potential. But otherwise the quantum pressure term will leave an effect on the

sound velocity.

We now analyze the soliton propagation velocity, for the bell solitons and relate

it to the sound velocity. A general way to obtain the sound velocity is by applying a

small perturbation about a constant background. A systematic calculation reveals, cs =√
2λµ0γρ

γ
0 =

√
2λγµg (since ρ2γ

0 = µg/µ0) considering the homogeneous unperturbed

condensate density varies slowly in space. One should note here that the contribution

arising from the quantum pressure (λ) also makes a presence in determining the sound

velocity. Qualitatively our results are in good agreement with Ref. [35] but small

quantitative difference might be due the fact that, our analysis is very different in nature

from the previous analysis where collective excitations were calculated from the density

fluctuation in three dimension. As an example, in the deep BEC limit with γ = 1 and

λ = 1/4, cBECs =
√
µg/2 as obtained in Ref. [35]. We have seen that condition for

existence of bell soliton is V 2 < µg. From the above discussions on sound, one can

write V 2 < c2
s/(2λγ), which allows a wide range of soliton velocity. However, this model

accepts a certain range of values for γ. More precisely, γ ∈ [2/3, 1]. Hence it turns out

that V ∈ [1.73cs, 1.41cs], which points to the supersonic nature of the soliton velocity.

Table 1. Comparison of different parameters from weak to strong coupling limit for

V 2 = 0.9µg.
1

kF as
γ µ0 µg cs|λ=0.25 cs|λ=0.13

-1 0.624 0.758 1.92 0.773 0.558

0 0.666 0.420 1.65 0.741 0.534

1 1.053 0.083 0.59 0.557 0.401

To understand the origin of bell soliton generation, we must look back at the role

of the ground state chemical potential. Generaly dispersion relation can be written as,

ω ∝ k where ω and k is the frequency and wave number (momentum) of the system

respectively. This is usually referred as material dispersion. But there exists another

dispersion mechanism which is known as waveguide dispersion. This dispersion actually

contains the dimensional effect i.e
√
ω2 − ω2

d ∝ k where ωd depends on the dimension of
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Table 2. Comparison of conserved charge and associated energy of the bell solitons

in the BCS-BEC crossover regime for different soliton velocity (λ = 1/4).
1

kF as
V 2 = 0.75µg V 2 = 0.8µg V 2 = 0.85µg V 2 = 0.9µg V 2 = 0.95µg
Q√µg E(Q) Q√µg E(Q) Q√µg E(Q) Q√µg E(Q) Q√µg E(Q)

-1 23.893 29.8898 18.682 20.561 13.604 12.762 8.7001 6.577 4.051 2.164

0 40.154 43.6536 32.112 30.137 24.074 18.765 16.039 9.691 8.011 3.186

1 25.002 35.8255 22.615 25.688 19.870 16.730 16.559 9.142 12.124 3.254

the system. In our system, though the trap is effectively cigar shaped, we have taken

into account the radial contribution in the density through µg. Thus the TF distribution

in the ground state, incorporated through µg, supports the “waveguide dispersion”, as

opposed to the normal “material dispersion”, and we consider this different dispersion

mechanism supports the generation of bell solitons [35].

For completeness, we list the values of several relevant parameters explicitly for

different couplings in Table 1. All the parameters are already normalized by the Fermi

energy or Fermi velocity according to the relevance. The gradual decrease of reference

chemical potential, as well as ground state chemical potential from BCS to BEC regime

is understandable as it is known that the BCS state is highly dense/closely packed,

whereas the composite bosons are sparsely distributed. The gradual decrease of sound

velocity, as one moves towards strong coupling regime also agrees with the experimental

data [48]. The quantitative analysis of our result reveals that, the most suitable value

for the phenomenological parameter turns out to be λ = 0.13 (which has been proposed

in Ref. [39]). We also note that the calculated sound velocity using λ = 0.13, augurs

well with the sound velocity obtained through mean-field BCS-BEC crossover formalism

[49].

To investigate the stability of these bell solitons, which are non-topological in

nature, one should calculate the Noether charge defined as Q =
∫
|ρ|2dz, and the

corresponding energy,

E(Q) =
∫ [

λ
∣∣∣∂ρ
∂z

∣∣∣2 + µ0(|ρ|2)2γ

]
dz.

The stability of these solitons demands that E(Q) <
√
µgQ [50, 51]. After evaluating

the charge and energy integrals numerically, we list our result in Table 2. Using these

results and the criterion for stability we find that solitons are more stable in the high

velocity regime (in the vicinity of V ' √µg). At relatively lower velocity (V '
√

0.75µg)

the whole crossover is unstable but gradual increase in the velocity stabilizes the system

for different interaction regime. At V =
√

0.8µg interestingly one can see that, the

crossover regime is stable where as, the two extreme regimes are unstable. Afterwards,

(V '
√

0.85µg), the entire crossover satisfy the stability criterion. Hence, the onset of

stability happens faster in the unitary regime, which is sensible as different experiments

already pointed out that crossover is more stable compared to BCS and BEC sides [1].
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Figure 2. (Color online) Time evolution of of the bell soliton shows oscillation inside

the trap. The interaction is tuned from weak to strong (1/kFa = −1, 0, 1) depicted

from left to right in the figure.

C. Coherent Controll of Bell Solitons

We will now extend our analysis in presence of harmonic confinement. For that purpose

we start from Eq. (5) with interaction coefficient being time dependent i.e µ0 ≡ µ(t) as

suggested in Ref.[52]. Since we are interested in finding soliton solutions, a self similar

ansatz of the following form can be employed [52, 53],

Φ(z, t) =
√
α(t)ρ[α(t)(z − l(t))]× exp [i(θ(z, t) + χ{α(t)(z − l(t))})], (11)

where the phase has the exact form, θ(z, t) = µg
∫ t

0 α(t′)2dt′ − c(t)z2, and χ being the

density dependent complex phase of the solution profile. Application of the ansatz in

the NLSE and separation of real and imaginary parts result in two equations, related

to the continuity (imaginary part) and pressure (real part) equations.

The following consistency conditions emerge from Eq. (5),

dα(t)

dt
= α(t)c(t), c(t)l(t) +

dl(t)

dt
= V, (12)

The second equation in Eq. (12) represents conservation of the velocity components,

where V being a conserved quantity having the dimension of velocity.

The equation of continuity leads to the following phase relation,

χT =
4C0

ρ2
+ 2V, (13)

where T = α(t)(z − l(t)). As before, to avoid the amplitude dependence on the phase,

we consider the integration constant C0 = 0.

It is interesting to see that c(t) satisfies a Riccati type equation, dc
dt
−c2 = ω2

0, which

can be mapped to Schrödinger equation, through a transformation: c(t) = −d lnβ(t)
dt

.

This relation enables us to find the soliton profile for different type temporal variations

of the trap frequency ω0 [54]. At present, we will only demonstrate the effect for usual

harmonic potential for which ω0 is constant. This leads to the solution c(t) = ω0 tan [ω0t]

and α(t) = α0 sec[ω0t]. At this point, we can shed further light on the role of V . The
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presence of the trap necessitates chirping of the phase, which enforces another velocity

component. In the absence of the trap, it is appropriate to consider c(t) = 0, and then

we can easily get back the well known velocity expression as, l(t) = V t.

The amplitude equation in the comoving frame leads to,

λρTT + (V 2 − µg)ρ− 2µ̃(ρ2)ρ = 0. (14)

The third term, involving the nonlinear interaction can now be written more precisely

using polytropic approximation: 2µ̃(ρ2)ρ = µ0αρ
2γ+1, where µ̃ = µ(t)

α2 and µ(t) = µ0α
3−γ.

Thus the temporal variation of the interaction is coupled with width of the solution, as

was observed in in Ref. [52]. It must be noted that Eq.(14) is same as Eq.(7). Hence

one can find the same solution with distributed coefficients (in the homogeneous case,

α(0) = 1).

Fig.(2) depicts the soliton oscillation at the entire crossover regime. One can find

similar type of solution in Ref. [53, 55, 56] only for the BEC regime. Oscillation of

soliton inside a trap in BEC is already a well documented fact [52, 53, 57, 58, 59, 60].

It has been concluded that the oscillation frequency of the soliton is ωz√
2
. Recent study

of dark soliton in the Fermi gas has predicted that the oscillation in the unitary regime

will be ωz√
3

[61, 62]. In our analysis we consider ω0 = ωz/ω⊥ = 0.1, which is reasonable

if we keep in mind the actual experimental situations. It should be mentioned that

the oscillation frequency does not show any dependence on the inter atomic interaction,

which might be due to the limitation of the hydrodynamic approach.

4. Conclusion

In precise, here we have demonstrated localized solitons in the Fermi gas of 6Li by

exploiting an analytical connection between ETFDFT and Lienard equation. These

solutions in quasi 1-D system have also been checked numerically, using split-step

Crank-Nicolson method. The solitary waves draw support from the radial contribution

incorporated through µg. The analysis of elementary excitations reveals the explicit

dependence of sound velocity on the phenomenological parameter λ, unless we absorb

the quantum pressure inside the chemical potential. The propagation velocity of the bell

soliton is supersonic and there exists a fixed upper bound of the velocity beyond which

the system will be unstable. The upper bound is controlled by the ground state chemical

potential in the equilibrium condition. We realize that the stability of solitons across the

crossover is bounded in a narrow region of velocity, approximately, 0.8
√
µg < V <

√
µg.

The lower bound is interaction dependent. It reveals that the stability is attained at

unitarity at lower velocity than the other two regions. This matches well with the recent

finding that, the superfluid Fermi gas is more stable at unitarity [1]. In the last part, we

have shown the mathematical technique to tackle inhomogeneous ETFDFT analytically.

In this article we have described how to obtain certain kind of localized solution

in ultra cold Fermi gas using ETFDFT technique. Though this model has its own

limitations (as mentioned before) but it allows you to make good qualitative idea about
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the strongly correlated Fermi system. As a matter of fact, always one trades between

simplicity and accuracy. Thus we consider evolution of bell soliton through real space

BdG analysis using the polytropic density of state as an exciting next step in the near

future.

As a concluding remark, we hope that these solitons can be experimentally verified

in near future. In experiments, solitons can be created in a similar way as vortices are

sometimes made [1]. A bell soliton can be created on the BEC side of the crossover and

then the Feshbach resonance can be tuned towards unitarity or the BCS side. Although

vortices are made by imposing rotation on a BEC, bell solitons are made via density

engineering i.e a sudden switch on of a focused and blue-shifted laser beam should

initiate a density flush thus producing bell soliton. Current rapid growth as well as

interest in ultracold atom research (specially in Fermi systems) encourage us to believe

that these solitons will be visible in the experiments soon.
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