

On fibred biset functors with fibres of order prime and four

Nadia Romero¹

Mathematics Department, Bilkent University, Ankara, Turkey

ARTICLE INFO

Article history: Received 15 August 2012 Available online 10 May 2013 Communicated by Michel Broué

Keywords: Green biset functors Fibred biset functors

ABSTRACT

This note has two purposes: First, to present a counterexample to a conjecture parametrizing the simple modules over Green biset functors, appearing in an author's previous article. This parametrization fails for the monomial Burnside ring over a cyclic group of order four. Second, to classify the simple modules for the monomial Burnside ring over a group of prime order, for which the above-mentioned parametrization holds.

© 2013 Elsevier Inc. All rights reserved.

Introduction

This note presents a counterexample to a conjecture appearing in [5], parametrizing the simple modules over a Green biset functor. The conjecture generalized the classification of simple biset functors, as well as the classification of simple modules over Green functors appearing in Bouc [2]. It relied on the assumption that for a simple module over a Green biset functor its minimal groups should be isomorphic, which we will see is not generally true.

For a better understanding of this note, the reader is invited to take a look at [5], where he can acquaint himself with the context of modules over Green biset functors.

Given a Green biset functor A, defined in a class of groups \mathcal{Z} closed under subquotients and direct products, and over a commutative ring with identity R, one can define the category \mathcal{P}_A . The objects of \mathcal{P}_A are the groups in \mathcal{Z} , and given two groups G and H in \mathcal{Z} , the set $Hom_{\mathcal{P}_A}(G, H)$ is $A(H \times G)$. Composition in \mathcal{P}_A is given through the product \times of the definition of a Green biset functor, that is, given α in $A(G \times H)$ and β in $A(H \times K)$, the product $\alpha \circ \beta$ is defined as

 $A\big(\mathrm{Def}_{G\times K}^{G\times \Delta(H)\times K}\circ \mathrm{Res}_{G\times \Delta(H)\times K}^{G\times H\times H\times K}\big)(\alpha\times\beta).$

E-mail address: nadiaro@ciencias.unam.mx.

¹ Supported by CONACYT.

^{0021-8693/\$ –} see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2013.03.036

The identity element in $A(G \times G)$ is $A(\operatorname{Ind}_{\Delta(G)}^{G \times G} \circ \operatorname{Inf}_{1}^{\Delta(G)})(\varepsilon_{A})$, where $\varepsilon_{A} \in A(1)$ is the identity element of the definition of a Green biset functor. Even if this product may seem a bit strange, in many cases the category \mathcal{P}_{A} is already known and has been studied. For example, if A is the Burnside ring functor, \mathcal{P}_{A} is the biset category defined in \mathcal{Z} . It is proved in [5] that for any Green biset functor A, the category of A-modules is equivalent to the category of R-linear functors from \mathcal{P}_{A} to R-Mod, and it is through this equivalence that they are studied.

In Section 2 of [5], we defined $I_A(G)$ for a group *G* in \mathcal{Z} as the submodule of $A(G \times G)$ generated by elements which can be factored through \circ by groups in \mathcal{Z} of order smaller than |G|. We denote by $\hat{A}(G)$ the quotient $A(G \times G)/I_A(G)$. Conjecture 2.16 in [5] stated that the isomorphism classes of simple *A*-modules were in one-to-one correspondence with the equivalence classes of couples (H, V)where *H* is a group in \mathcal{Z} such that $\hat{A}(H) \neq 0$ and *V* is a simple $\hat{A}(H)$ -module. Two couples (H, V)and (G, W) are related if *H* and *G* are isomorphic and *V* and *W* are isomorphic as $\hat{A}(H)$ -modules (the $\hat{A}(H)$ -action on *W* is defined in Section 4 of [5]). The correspondence assigned to the class of a simple *A*-module *S*, the class of the couple (H, V) where *H* is a minimal group for *S* and V = S(H). We will see in Section 2 that for the monomial Burnside ring over a cyclic group of order four and with coefficients in a field, we can find a simple module which has two non-isomorphic minimal groups.

For a finite abelian group *C* and a finite group *G*, the monomial Burnside ring of *G* with coefficients in *C* is a particular case of the ring of monomial representations introduced by Dress [4]. Fibred biset functors were defined by Boltje and Coşkun as functors from the category in which the morphisms from a group *G* to a group *H* is the monomial Burnside ring of $H \times G$, they called these morphisms fibred bisets. This category is precisely \mathcal{P}_A when *A* is the monomial Burnside ring functor, and so fibred biset functors coincide with *A*-modules for this functor. Boltje and Coşkun also considered the case in which *C* may be an infinite abelian group, but we shall not consider this case. Unfortunately, there is no published material on the subject, I thank Laurence Barker and Olcay Coşkun for sharing this with me.

Another important element in this note will be the Yoneda–Dress construction of the Burnside ring functor *B* at *C*, denoted by B_C . It assigns to a finite group *G* the Burnside ring $B(G \times C)$, and it is a Green biset functor. Since the monomial Burnside ring of *G* with coefficients in *C* is a subgroup of $B_C(G)$, we will denote it by $B_C^1(G)$. We will see that there are various similarities between B_C and B_C^1 .

1. Definitions

All groups in this note will be finite.

R will denote a commutative ring with identity.

Given a group G, we will denote its center by Z(G). The Burnside ring of G will be denoted by B(G), and RB(G) if it has coefficients in R.

Definition 1. Let C be an abelian group and G be any group. A finite C-free $(G \times C)$ -set is called a C-fibred G-set.

A C-orbit of a C-fibred G-set is called a fibre.

The monomial Burnside ring for *G* with coefficients in *C*, denoted by $B_C^1(G)$, is the abelian subgroup of $B(G \times C)$ generated by the *C*-fibred *G*-sets. We write $RB_C^1(G)$ if we are taking coefficients in *R*.

If *X* is a *C*-fibred *G*-set, denote by [*X*] its set of fibres. Then *G* acts on [*X*] and *X* is $(G \times C)$ -transitive if and only if [*X*] is *G*-transitive. In this case, [*X*] is isomorphic as *G*-set to *G*/*D* for some $D \leq G$ and we can define a group homomorphism $\delta : D \to C$ such that if *D* is the stabilizer of the orbit *Cx*, then $ax = \delta(a)x$ for all $a \in D$. The subgroup *D* and the morphism δ determine *X*, since $Stab_{G \times C}(x)$ is equal to $\{(a, \delta(a)^{-1}) \mid a \in D\}$.

Notation 2. Given $D \leq G$ and $\delta: D \to C$ a group homomorphism, we will write D_{δ} for $\{(a, \delta(a)^{-1}) \mid a \in D\}$ and $C_{\delta}G/D$ for the *C*-fibred *G*-set $(G \times C)/D_{\delta}$. We will write CG/D if δ is the trivial morphism. The morphism δ is called a *C*-subcharacter of *G*.

The *C*-subcharacters of *G* admit an action of *G* by conjugation ${}^{g}(D, \delta) = ({}^{g}D, {}^{g}\delta)$ and with this action we have:

Remark 3. (See 2.2 in Barker [1].) As an abelian group

$$B_C^1(G) = \bigoplus_{(D,\delta)} \mathbb{Z}[C_{\delta}G/D]$$

where (D, δ) runs over a set of representatives of the *G*-classes of *C*-subcharacters of *G*.

The following notations are explained in more detail in Bouc [3]. Given U an (H, G)-biset and V a (K, H)-biset, the composition of V and U is denoted by $V \times_H U$. With this composition we know that if H and G are groups and $L \leq H \times G$, then the corresponding element in $RB(H \times G)$ satisfies the Bouc decomposition (2.3.26 in [3]):

$$\operatorname{Ind}_{D}^{H} \times_{D} \operatorname{Inf}_{D/C}^{D} \times_{D/C} \operatorname{Iso}(f) \times_{B/A} \operatorname{Def}_{B/A}^{B} \times_{B} \operatorname{Res}_{B}^{G}$$

with $C \leq D \leq H$, $A \leq B \leq G$ and $f : B/A \rightarrow D/C$ an isomorphism.

Notation 4. As it is done in [5], we will write B_C for the Yoneda–Dress construction of the Burnside ring functor *B* at *C*.

The functor B_C is defined as follows. In objects, it sends a group G to $B(G \times C)$. In arrows, for a (G, H)-biset X, the map $B_C(X) : B_C(H) \to B_C(G)$ is the linear extension of the correspondence $T \mapsto X \times_H T$, where T is an $(H \times C)$ -set and $X \times_H T$ has the natural action of $(G \times C)$ -set coming from the action of C on T.

We will denote by T_{C-f} the subset of elements of T in which C acts freely. Clearly, it is an H-set.

Lemma 5. Assigning to each group G the \mathbb{Z} -module $B^1_C(G)$ defines a Green biset functor.

Proof. We first prove it is a biset functor.

Let *G* and *H* be groups and *X* be a finite (G, H)-biset. Let *T* be a *C*-fibred *H*-set. We define $B_{L}^{1}(X)(T) = (B_{C}(X)(T))_{C-f}$.

To prove that composition is associative, let Z be a (K, G)-biset. We must show

$$((Z \times_G X) \times_H T)_{C-f} \cong (Z \times_G (X \times_H T)_{C-f})_{C-f}.$$

We claim that the right-hand side of this isomorphism is equal to $(Z \times_G (X \times_H T))_{C-f}$. To prove it, we prove that in general, if W is a $(G \times C)$ -set, then $(Z \times_G W_{C-f})_{C-f}$ is equal to $(Z \times_G W)_{C-f}$. Let [z, w] be an element in $(Z \times_G W)_{C-f}$. The element [z, w] is an orbit for which any representative has the form (zg^{-1}, gw) with $g \in G$. To prove that gw is in W_{C-f} , suppose cgw = gw. Then, [z, w] = [z, cw] and this is equal to c[z, w], so c = 1. The other inclusion is obvious.

It remains then to prove

$$((Z \times_G X) \times_H T)_{C-f} \cong (Z \times_G (X \times_H T))_{C-f},$$

as $(K \times C)$ -sets, which holds because B_C is a biset functor.

Next we prove it is a Green biset functor. Following Dress [4], we define the product

$$B^1_C(G) \times B^1_C(H) \to B^1_C(G \times H)$$

on the *C*-fibred *G*-set *T* and the *C*-fibred *H*-set *Y* as the set of *C*-orbits of $T \times Y$ with respect to the action $c(t, y) = (ct, c^{-1}y)$. The orbit of (t, y) is denoted by $t \otimes y$. We extend this product by linearity and denote it by $T \otimes Y$. The action of *C* in $t \otimes y$ is given by $ct \otimes y$ and so it is easy to see that *C* acts freely on $T \otimes Y$. The identity element in $B_C^1(1)$ is the class of *C*. It is not hard to see that this product is associative and respects the identity element. To prove it is functorial, take *X* a (K, H)-biset and *Z* an (L, G)-biset. We must show that

$$(Z \times_G T)_{C-f} \otimes (X \times_H Y)_{C-f} \cong ((Z \times X) \times_{G \times H} (T \otimes Y))_{C-f}$$

as $(K \times L \times C)$ -sets. We can prove this in two steps: First, it is easy to observe that for any *C*-sets *N* and *M*, the product $M_{C-f} \otimes N_{C-f}$ is isomorphic as *C*-set to $(M \otimes N)_{C-f}$. Then it remains to prove

$$(Z \times_G T) \otimes (X \times_H Y) \cong (Z \times X) \times_{H \times G} (T \otimes Y)$$

as $(K \times L \times C)$ -sets. If $[z, t] \otimes [x, y]$ is an element on the left-hand side, then sending it to $[(z, x), t \otimes y]$ defines the desired isomorphism of $(K \times L \times C)$ -sets. \Box

2. Fibred biset functors

The category $\mathcal{P}_{RB_{C}^{1}}$, mentioned in the introduction and defined in Section 4 of [5], has for objects the class of all finite groups; the set of morphisms from *G* to *H* is the abelian group $RB_{C}^{1}(H \times G)$ and composition is given in the following way: If $T \in RB_{C}^{1}(G \times H)$ and $Y \in RB_{C}^{1}(H \times K)$, then $T \circ Y$ is given by restricting $T \otimes Y$ to $G \times \Delta(H) \times K$ and then deflating the result to $G \times K$. The identity element in $RB_{C}^{1}(G \times G)$ is the class of $C(G \times G)/\Delta(G)$. As it is done in Section 4.2 of [5], composition \circ can be obtained by first taking the orbits of $T \times Y$ under the $(H \times C)$ -action given by

$$(h, c)(t, y) = ((h, c)t, (h, c^{-1})y),$$

and then choosing the orbits in which C acts freely.

Definition 6. From Proposition 2.11 in [5], the category of RB_C^1 -modules is equivalent to the category of *R*-linear functors from $\mathcal{P}_{RB_C^1}$ to *R*-Mod. These functors are called fibred biset functors.

Notation 7. Let *E* be a subgroup of $H \times K \times C$. We will write $p_1(E)$, $p_2(E)$ and $p_3(E)$ for the projections of *E* in *H*, *K* and *C* respectively; $p_{1,2}(E)$ will denote the projection over $H \times K$, and in the same way we define the other possible combinations of indices. We write $k_1(E)$ for $\{h \in p_1(E) \mid (h, 1, 1) \in E\}$. Similarly, we define $k_2(E)$, $k_3(E)$ and $k_{i,j}(E)$ for all possible combinations of *i* and *j*.

The following formula was already known to Boltje and Coşkun. Here we prove it as an explicit expression of composition \circ in the category $\mathcal{P}_{RB_r^1}$. The proof follows the lines of Lemma 4.5 in [5].

The definition of the product * can be found in Notation 2.3.19 of [3].

Lemma 8. Let $X = [C_{\nu}(G \times H)/V] \in RB^{1}_{C}(G \times H)$ and $Y = [C_{\mu}(H \times K)/U] \in RB^{1}_{C}(H \times K)$ be two transitive elements. Then the composition $X \circ Y \in RB^{1}_{C}(G \times K)$ in the category $\mathcal{P}_{RB^{1}_{C}}$ is isomorphic to

$$\bigsqcup_{h\in S} C_{\nu\mu^h}(G\times K)/(V*^{(h,1)}U).$$

The notation is as follows: Let $[p_2(V) \setminus H/p_1(U)]$ be a set of representatives of the double cosets of $p_2(V)$ and $p_1(U)$ in H, then S is the subset of elements h in $[p_2(V) \setminus H/p_1(U)]$ such that $\nu(1, h')\mu(h'^h, 1) = 1$ for all h' in $k_2(V) \cap {}^hk_1(U)$; by $\nu\mu^h$ we mean the morphism from $V * {}^{(h,1)}U$ to C defined by $\nu\mu^h(g,k) = \nu(g,h_1)\mu(h_1^h,k)$ when h_1 is an element in H such that (g,h_1) in V and (h_1,k) in ${}^{(h,1)}U$.

Proof. Notice that $\nu \mu^h$ is a function if and only if $\nu(1, h')\mu(h'^h, 1) = 1$ for all $h' \in k_2(V) \cap {}^hk_1(U)$. Let *W* be the $(G \times K \times C)$ -set obtained by taking the orbits of $X \times Y$ under the action of $H \times C$

$$(h, c)(x, y) = ((h, c)x, (h, c^{-1})y),$$

for all $c \in C$, $h \in H$, $x \in X$, $y \in Y$.

Now let $[(g, h, c)V_{\nu}, (h', k, c')U_{\mu}]$ be an element in W. Then its orbit under the action of $G \times K \times C$ is equal to the orbit of $[(1, 1, 1)V_{\nu}, (h^{-1}h', 1, 1)U_{\nu}]$. From this it is not hard to see that the orbits of W are indexed by $[p_2(V) \setminus H/p_1(U)]$. To find the orbits in which C acts freely, suppose $c \in C$ fixes $[(1, 1, 1)V_{\nu}, (h, 1, 1)U_{\mu}]$. This means there exists $(h', c') \in H \times C$ such that

$$(1, 1, c)V_{\nu} = (h', 1, c')V_{\nu}$$
 and $(h, 1, 1)U_{\mu} = (h'h, 1, c'^{-1})U_{\mu}$

Hence $\nu(h', 1) = c'^{-1}c$ and $\mu(h^{-1}h'h, 1) = c'$. So that, *c* is equal to $\mu(h^{-1}h'h, 1)\nu(h', 1)$, which gives us the condition on the set *S*.

The fact that the stabilizer on $G \times K \times C$ of $[(1, 1, 1)V_{\nu}, (h, 1, 1)U_{\mu}]$ is the subgroup $(V * {}^{(h,1)}U)_{\nu\mu^h}$ follows as in the previous paragraph. \Box

The following lemma and corollary state for RB_C^1 analogous results proved for RB_C in [5].

Lemma 9. Let $X = C_{\delta}(G \times H)/D$ be a transitive element in $RB_{C}^{1}(G \times H)$. Denote by e the natural transformation from RB to RB_{C}^{1} defined in a G-set X by $e_{G}(X) = X \times C$. Consider $E = p_{1}(D)$, $E' = E/k_{1}(D_{\delta})$, $F = p_{2}(D)$, $F' = F/k_{2}(D_{\delta})$. Then X can be decomposed in $\mathcal{P}_{RB_{C}^{1}}$ as

 $e_{G \times E'}(\operatorname{Ind}_{F}^{G} \times_{E} \operatorname{Inf}_{F'}^{E}) \circ \beta_{1}$ and as $\beta_{2} \circ e_{F' \times H}(\operatorname{Def}_{F'}^{F} \times_{F} \operatorname{Res}_{F}^{H})$

for some $\beta_1 \in RB^1_C(E' \times H)$, $\beta_2 \in RB^1_C(G \times F')$.

Proof. We will only prove the existence of the first decomposition, since the proof of the second one follows by analogy.

Observe that $e_{G \times E'}(\operatorname{Ind}_{E}^{G} \times_{E} \operatorname{Inf}_{E'}^{E})$ is the *C*-fibred $(G \times E')$ -set $C(G \times E')/U$ where $U = \{(g, gk_1(V_{\delta})) \mid g \in E\}$.

Consider the isomorphism σ from $p_1(D)/k_1(D)$ to $p_2(D)/k_2(D)$, existing by Goursat's Lemma 2.3.25 in [3]. Define β_1 as $C_{\omega}(E' \times H)/W$ where

$$W = \left\{ \left(gk_1(D_{\delta}), h \right) \mid \text{if } \sigma \left(gk_1(D) \right) = hk_2(D) \right\}$$

and $\omega: W \to C$ by $\omega(gk_1(D_{\delta}), h) = \delta(g, h)$. That W is a group follows from $k_1(D_{\delta}) \leq k_1(D)$. The extension of δ to W is well defined, since it is not hard to see that $k_1(D_{\delta})$ is equal to $k_1(Ker(\delta))$. Also, since $p_2(U) = p_1(W) = E'$ and $k_2(U) = 1$, by the previous lemma, $e_{G \times E'}(\operatorname{Ind}_E^G \times E \operatorname{Inf}_{E'}^E) \circ \beta_1$ is isomorphic to $C_{\delta}(G \times H)/(U * W)$. Finally, $U * W = \{(g, h) \mid \sigma(gk_1(D)) = hk_2(D)\}$, and by Goursat's Lemma, this is equal to D. \Box

This decomposition leads us to the same conclusions we obtained from Lemma 4.8 of [5] for RB_C . That is, if *G* and *H* have the same order *n* and $C_{\delta}(G \times H)/D$ does not factor through \circ by a group of order smaller than *n*, then we must have $p_1(D) = G$, $p_2(D) = H$, $k_1(D_{\delta}) = 1$ and $k_2(D_{\delta}) = 1$. In particular, Corollary 4.9 of the same reference is also valid, so we have:

Corollary 10. Let C be a group of prime order and S be a simple RB_C^1 -module. If H and K are two minimal groups for S, then they are isomorphic.

We will be back to the classification of simple RB_C^1 -modules for *C* of prime order in the last section of the article. Now, we will find the counterexample mentioned in the introduction.

2.1. The counterexample

In Section 2 of [5], given a Green biset functor *A* defined in a class of groups \mathcal{Z} , we defined $I_A(G)$ as the submodule of $A(G \times G)$ generated by elements of the form $a \circ b$, where *a* is in $A(G \times K)$, *b* is in $A(K \times G)$ and *K* is a group in \mathcal{Z} of order smaller than |G|. We denote by $\hat{A}(G)$ the quotient $A(G \times G)/I_A(G)$. From Section 4 of [5], we also know that if *V* is a simple $\hat{A}(G)$ -module, we can construct a simple *A*-module that has *G* as a minimal group. This *A*-module is defined as the quotient $L_{G,V}/J_{G,V}$, where $L_{G,V}$ is defined as $A(D \times G) \otimes_{A(G \times G)} V$ for $D \in \mathcal{Z}$ and $L_{G,V}(a)(x \otimes v) = (a \circ x) \otimes v$ for $a \in A(D' \times D)$. The subfunctor $J_{G,V}$ is defined as

$$J_{G,V}(G) = \left\{ \sum_{i=1}^n x_i \otimes n_i \ \Big| \ \sum_{i=1}^n (y \circ x_i) \cdot n_i = 0 \ \forall y \in A(G \times D) \right\}.$$

To construct the counterexample we will take coefficients in a field k. We will find a group C and a simple kB_{C}^{1} -module S which has two non-isomorphic minimal groups.

Lemma 11. Let *C* be a cyclic group and *G* and *H* be groups. Suppose that $D \leq G \times H$ is such that $p_1(D) = G$ and $p_2(D) = H$. Let $\delta : D \to C$ be a morphism of groups. We will write $D^0 = \{(h, g) \mid (g, h) \in D\}$ and define $\delta^0 : D^0 \to C$ as $\delta^0(h, g) = \delta(g, h)^{-1}$. If $X = C_{\delta}(G \times H)/D$ and $X^0 = C_{\delta^0}(H \times G)/D^0$, then $X \circ X^0$ is an idempotent in $B_L^1(G \times G)$.

Proof. Since $\delta(1, h)\delta^0(h, 1) = 1$ for all $h \in k_2(D)$, by Lemma 8 the composition $X \circ X^0$ is equal to $W = C_{\delta'}(G \times G)/D'$. Here, $D' = D * D^0$ and if $(g_1, g_2) \in D'$ with $h \in H$ being such that $(g_1, h) \in D$ and $(h, g_2) \in D^0$, then $\delta'(g_1, g_2) = \delta(g_1, h)\delta^0(h, g_2)$. From this it is not hard to see that $D' = \{(g_1, g_2) \mid g_1g_2^{-1} \in k_1(D)\}$ and $\delta'(g_1, g_2) = \delta(g_1g_2^{-1}, 1)$.

Observe that $k_1(D') = k_2(D') = k_1(D)$ and clearly, $\delta'(1, g)\delta'(g, 1) = 1$ for all $g \in k_1(D)$. In the same way, if $g_1, g_2 \in G$ are such that there exists $g \in G$ with $(g_1, g) \in D'$ and $(g, g_2) \in D'$ then $\delta'(g_1, g)\delta'(g, g_2) = \delta(g_1g_2^{-1}, 1)$. Finally, $p_1(D') = G$ since $gg^{-1} \in k_1(D)$ for all $g \in G$, and it is easy to see that D' * D' = D'. So, Lemma 8 gives us $W \circ W = W$. \Box

If now we find two non-isomorphic groups *G* and *H* having the same order, and a transitive element $X = C_{\delta}(G \times H)/D$ in $kB_C^1(G \times H)$ with $p_1(D) = G$, $p_2(D) = H$ and such that the class of $W = X \circ X^0$ is different from zero in $kB_C^1(G)$, then we can construct a simple kB_C^1 -module *S* which has *G* and *H* as minimal groups. By the previous lemma, *W* will be an idempotent in $kB_C^1(G)$, so we can find *V* a simple $kB_C^1(G)$ -module such that there exists $v \in V$ with $(X \circ X^0)v \neq 0$. From the definition of $S = S_{G,V}$, this implies $S_{G,V}(H) \neq 0$.

Example 12. Let $C = \langle c \rangle$ be a group of order 4, *G* the quaternion group

$$\langle x, y | x^4 = 1, yxy^{-1} = x^{-1}, x^2 = y^2 \rangle$$

and H the dihedral group of order 8

$$\langle a, b \mid a^4 = b^2 = 1, \ bab^{-1} = a^{-1} \rangle.$$

Consider the subgroup of $G \times H$ generated by (x, a) and (y, b), call it D. The subgroup of D generated by (x^{-1}, a) is a normal subgroup of order 4, and the quotient D/D_1 is isomorphic to C in such a way that we can define a morphism $\delta : D \to C$ sending (x, a) to c^2 and (y, b) to c^{-1} . It is easy to observe that $p_1(D) = G$, $p_2(D) = H$, $k_1(D) = \langle x^2 \rangle$ and $k_2(D) = \langle a^2 \rangle$. By the previous lemma, we have that if $X = C_{\delta}(G \times H)/D$, then $W = X \circ X^o$ is an idempotent in $kB_C^1(G \times G)$. We will see now that the class of W in $kB_C^1(G)$ is different from 0.

Let $D' = D * D^o$ and $\delta' : D' \to C$ be the morphism obtained from δ as in the previous lemma. Suppose that W is in $I_{kB_C^1}(G)$. Since W is a transitive $(G \times G \times C)$ -set, this implies that there exists K a group of order smaller than 8, $U \leq G \times K$ and $V \leq K \times G$ such that D' = U * V (the conjugate of a group of the form U * V has again this form, so we can suppose D' = U * V), and group homomorphisms $\mu : U \to C$ and $\nu : V \to C$ such that $\delta' = \mu \nu$ in the sense of Lemma 8.

Now, using point 2 of Lemma 2.3.22 in [3] and the fact that $p_1(D') = p_1(D)$ and $k_1(D') = k_1(D)$, we have that $p_1(U) = G$ and that $k_1(U)$ can only have order one or two. Since $p_1(U)/k_1(U)$ is isomorphic to $p_2(U)/k_2(U)$ and the latter must have order smaller than 8, we obtain that $k_1(U)$ has order two. This in turn implies that $p_2(U)/k_2(U)$ has order 4, and since $|p_2(U)| < 8$, we have $k_2(U) = 1$. Hence, U is isomorphic to G. Also, since $k_1(U) = k_1(D')$, we have $\mu(x^2, 1) = \delta(x^2, 1)$. Now, $\delta(x^2, 1) \neq 1$, but all morphisms from G to C send x^2 to 1, a contradiction.

2.2. Simple fibred biset functors with fibre of prime order

From now on *C* will be a group of prime order *p*.

From Corollary 10, we have that Conjecture 2.16 of [5] holds for the functor RB_C^1 , the proof is a particular case of Proposition 4.2 in [5]. We will state this result after describing the structure of the algebra $RB_C^1(G)$ for a group *G*.

We will see that if $C_{\delta}(\bar{G} \times G)/D$ is a transitive *C*-fibred $(G \times G)$ -set the class of which is different from 0 in $RB_{C}^{1}(G)$, then *D* can only be of the form $\{(\sigma(g), g) \mid g \in G\}$ for σ an automorphism of *G*, or of the form $\{(\omega(g)\zeta(c), g) \mid (g, c) \in G \times C\}$ for ω an automorphism of *G* and $\zeta : C \to Z(G) \cap \Phi(G)$ an injective morphism of groups where $\Phi(G)$ is the Frattini subgroup of *G*. In the first case δ will be any morphism from *G* to *C*. In the second case δ will assign c^{-1} to the couple $(\omega(g)\zeta(c), g)$, this is well defined since ζ is injective. Of course, the second case can only occur if *p* divides |Z(G)|.

If *p* does not divide |Z(G)|, we will prove that $RB_C^1(G)$ is isomorphic to the group algebra $R\hat{G}$ where $\hat{G} = Hom(G, C) \rtimes Out(G)$. If *p* divides |Z(G)|, we will consider Y_G the set of injective morphisms $\zeta : C \to Z(G) \cap \Phi(G)$ and then define $\mathcal{Y}_G = Out(G) \times Y_G$. The *R*-module $R\mathcal{Y}_G$ forms an *R*-algebra with the product

$$(\omega, \zeta) \circ (\alpha, \chi) = \begin{cases} (\omega \alpha, \omega \chi) & \text{if } \zeta = \omega \chi, \\ 0 & \text{otherwise} \end{cases}$$

for elements (ω, ζ) and (α, χ) in \mathcal{Y}_G . The algebra $R\mathcal{Y}_G$ can also be made into an $(R\hat{G}, R\hat{G})$ -bimodule. We could give the definitions of the actions now, and prove directly that $R\mathcal{Y}_G$ is indeed an $(R\hat{G}, R\hat{G})$ -bimodule. Nonetheless, the nature of these actions is given by the structure of $R\hat{B}^1_C(G)$, so they are best understood in the proof of the following lemma. The *R*-module $R\mathcal{Y}_G \oplus R\hat{G}$ forms then an *R*-algebra.

Now suppose that *G* and *H* are two groups such that there exists an isomorphism $\varphi : G \to H$. If (t, σ) is a generator of $R\hat{G}$, then identifying $\varphi \sigma \varphi^{-1}$ with its class in Out(H) we have that $(t\varphi^{-1}, \varphi \sigma \varphi^{-1})$ is in $R\hat{H}$. On the other hand, if (ω, ζ) is a generator in $R\mathcal{Y}_G$, then $(\varphi \omega \varphi^{-1}, \varphi|_{Z(G)}\zeta)$ is also in $R\mathcal{Y}_H$. **Notation 13.** Let $\mathcal{H}(G)$ be the group algebra $R\hat{G}$ if p does not divide |Z(G)| and $R\mathcal{Y}_G \oplus R\hat{G}$ in the other case.

We will write Seed for the set of equivalence classes of couples (G, V) where G is a group and V is a simple $\mathcal{H}(G)$ -module. Two couples (G, V) and (H, W) are related if G and H are isomorphic, through an isomorphism $\varphi: G \to H$, and V is isomorphic to φW as $\mathcal{H}(G)$ -modules. Here φW denotes the $\mathcal{H}(G)$ -module with action given through the elements defined in the previous paragraph.

With these observations, Proposition 4.2 in [5] can be written as follows.

Proposition 14. Let S be the set of isomorphism classes of simple RB_{C}^{1} -modules. Then the elements of S are in one-to-one correspondence with the elements of Seed in the following way: Given S a simple RB_{1}^{2} -module we associate to its isomorphism class the equivalence class of (G, V) where G is a minimal group of S and V = S(G). Given the class of a couple (G, V), we associate the isomorphism class of the functor $S_{G,V}$ defined in the previous section.

It only remains to see that the algebra $\hat{RB}^1_C(G)$ is isomorphic to $\mathcal{H}(G)$.

Lemma 15.

- i) If p does not divide |Z(G)|, then $R\hat{B}_{C}^{1}(G)$ is isomorphic to the group algebra $R\hat{G}$. ii) If p divides |Z(G)|, then $R\hat{B}_{C}^{1}(G)$ is isomorphic to $R\mathcal{Y}_{G} \oplus R\hat{G}$ as R-algebras.

Proof. Let $C_{\delta}(G \times G)/D$ be a transitive C-fibred ($G \times G$)-set the class of which is different from 0 in $RB_{C}^{1}(G)$. From Lemma 9 we have that D_{δ} must satisfy $p_{1}(D_{\delta}) = p_{2}(D_{\delta}) = G$ and $k_{1}(D_{\delta}) = k_{2}(D_{\delta}) = 1$. Also, since δ is a function, we have that $k_3(D_{\delta}) = 1$. Goursat's Lemma then implies that D_{δ} is isomorphic to $p_{2,3}(D_{\delta})$, also isomorphic to $p_{1,3}(D_{\delta})$. Since C has prime order, we have two choices for $p_{2,3}(D_{\delta})$, either it is of the form $G \times C$ or of the form $\{(g, t(g)) \mid g \in G, t: G \to C\}$, for some group homomorphism t.

By Goursat's Lemma, if $p_{2,3}(D_{\delta})$ is equal to $G \times C$, then

$$D_{\delta} = \left\{ \left(\alpha(g,c), g, c \right) \mid (g,c) \in G \times C, \ \alpha : G \times C \twoheadrightarrow G \right\}$$

with α an epimorphism of groups. Since $k_2(D_{\delta}) = k_3(D_{\delta}) = 1$, we have that $\alpha(g, c) = \omega(g)\zeta(c)$ with ω an automorphism of G and ζ and injective morphism from C to Z(G). In particular, if p does not divide the order of Z(G), then this case cannot occur.

Suppose that $p_{2,3}(D_{\delta}) = \{(g, t(g)) \mid g \in G, t : G \to C\}$, for a group homomorphism *t*. Goursat's Lemma implies that there exists σ an automorphism of G such that $D_{\delta} = \{(\sigma(g), g, t(g)) \mid g \in G\}$. Hence $D = \Delta_{\sigma}(G)$ and $\delta(g_1, g_2) = t(g_2^{-1})$. We will then replace δ by t and write $X_{t,\sigma}$ for $C_{\delta}(G \times G)/D$ in this case. The isomorphism classes of these elements in $RB^1_C(G)$ form an *R*-basis for it, since Lemma 2.3.22 in [3] and Goursat's Lemma imply that $\Delta_{\sigma}(G)$ cannot be written as M * N for any $M \leq G \times K$ and $N \leq K \times G$ with K of order smaller than |G|. Let us see that we have a bijective correspondence between the basic elements $[X_{t,\sigma}]$ of $RB^1_C(G)$ and $Hom(G, C) \rtimes Out(G)$. Any representative of the isomorphism class of $X_{t,\sigma}$ is of the form $X_{tc_2^{-1},c_1\sigma c_2^{-1}}$ where c_1 denotes the conjugation by some $g_1 \in G$ and c_2^{-1} denotes the conjugation by some $g_2^{-1} \in G$. Since C is abelian, tc_2^{-1} is equal to t, and the class of σ in Out(G) is the same as the class of $c_1 \sigma c_2^{-1}$. On the other hand, if we take σc_g any representative of the class of an automorphism σ in Out(G), then $X_{t,\sigma} \cong X_{t,\sigma c_g}$. It remains to see that this bijection is a morphism of rings. Using Lemma 8 it is easy to see that

$$X_{t_1,\sigma_1} \circ X_{t_2,\sigma_2} = X_{(t_1 \circ \sigma_2)t_2,\sigma_1\sigma_2}$$

and the product in \hat{G} is precisely $(t_1, \sigma_1)(t_2, \sigma_2) = ((t_1 \circ \sigma_2)t_2, \sigma_1\sigma_2)$.

This proves point i). From now on, we suppose that p divides |Z(G)|.

As we said before, if *p* divides |Z(G)|, then we can consider the case of *C*-fibred $(G \times G)$ -sets $C_{\delta}(G \times G)/D$ such that $p_{2,3}(D_{\delta}) = G \times C$. In this case, D_{δ} equals

$$\left\{ \left(\omega(g)\zeta(c), g, c \right) \mid (g, c) \in G \times C \right\}$$

where ω is an automorphism of G and ζ is an injective morphism from C to Z(G). We will prove that the class of $C_{\delta}(G \times G)/D$ in $R\hat{B}_{C}^{1}(G)$ is different from 0 if and only if $Im\zeta \subseteq Z(G) \cap \Phi(G)$, and we will write $Y_{\omega,\zeta}$ for $C_{\delta}(G \times G)/D$ in this case. The claim will be proved in two steps, first let us prove that the class of $Y_{\omega,\zeta}$ in $R\hat{B}_{C}^{1}(G)$ is different from 0 if and only if $\mu|_{Z(G)} \circ \zeta = 1$ for every group homomorphism $\mu : G \to C$. Using Lemma 2.3.22 of [3] it is easy to see that $D = \{(\omega(g)\zeta(c), g) \mid (g, c) \in G \times C\}$ is equal to M * N for some $M \leq G \times K$ and $N \leq K \times G$ with K a group of order smaller than |G| if and only if K has order |G|/p and M and N are isomorphic to G. Suppose now that there exist $\mu : G \to C$ and $\nu : G \to C$ such that $\delta(g_1, g_2) = \mu(g_1)\nu(g_2)$, then in particular for every $c \in C$, $\delta(\zeta(c), 1) = c^{-1} = \mu\zeta(c)$. Conversely, if there exists $\mu : G \to C$ such that $\mu|_{Z(G)} \circ \zeta \neq 1$, then we can find $\mu' : G \to C$ such that $\mu'\zeta(c) = c^{-1}$ for all $c \neq 1$, and define $\nu : G \to C$ as $\nu(g) = \mu'\omega(g^{-1})$. So we have $\mu'(\omega(g)\zeta(c))\nu(g) = c^{-1}$ which is equal to $\delta(\omega(g)\zeta(c), g)$.

Now we prove that for $\zeta : C \hookrightarrow Z(G)$, we have $Im \zeta \subseteq \Phi(G)$ if and only if $\mu|_{Z(G)} \circ \zeta = 1$ for every group homomorphism $\mu : G \to C$ (thanks to the referee for this observation). Suppose $Im \zeta \subseteq \Phi(G)$ and let $\mu : G \to C$ be a morphism of groups. If there exists $c \in C$ such that $\mu\zeta(c) \neq 1$ then $Ker \mu$ is a normal subgroup of G of index p and so it is maximal. But clearly $\zeta(c) \notin Ker \mu$, which is a contradiction. Now suppose that for all $\mu : G \to C$ we have $\mu \circ \zeta|_{Z(G)} \neq 1$. Let M be a maximal subgroup of G and c be a non-trivial element of $Im\zeta = C'$. If $c \notin M$, then $C' \cap M = 1$, and since $C' \leq Z(G)$, we have that C'M is a subgroup of G. Since M is maximal, G = C'M. But this means that there exists $\mu : G \to C$ such that $\mu(c) \neq 1$, a contradiction.

In a similar way as it is done in point i), we have a bijective correspondence between the isomorphism classes of elements $Y_{\omega,\zeta}$ in $RB_C^1(G)$ and $R\mathcal{Y}_G$. This establishes an isomorphism of *R*-modules between $RB_C^1(G)$ and $R\mathcal{Y}_G \oplus R\hat{G}$. Now we describe the algebra structure. The following calculations are made using Lemma 8, Lemma 9 and Lemma 2.3.22 in [3].

The composition of elements $Y_{\omega,\zeta}$ is given by

$$Y_{\omega,\zeta} \circ Y_{\alpha,\chi} = \begin{cases} Y_{\omega\alpha,\omega\chi} & \text{if } \zeta = \omega\chi, \\ 0 & \text{otherwise.} \end{cases}$$

The product $X_{t,\sigma} \circ Y_{\omega,\zeta}$ is different from 0 if and only if $t\zeta(c)c \neq 1$ for all $c \neq 1$. Then, if we let Id_C be the identity morphism of *C*, we have that $(t\zeta)Id_C$ defines an automorphism on *C*, which we will call *r*. Given $g \in G$ there exists only one $c_g \in C$ such that $t\omega(g) = r(c_g)$ and sending *g* to $\omega(g)\zeta(c_g)$ defines an automorphism on *G*, which we will call *s*. We have

$$X_{t,\sigma} \circ Y_{\omega,\zeta} = \begin{cases} Y_{\sigma s,\sigma \zeta r^{-1}} & \text{if } r = (t\zeta) Id_{\mathcal{C}} \text{ is an automorphism,} \\ 0 & \text{otherwise.} \end{cases}$$

Using this formula on the indices defines a left action of $R\hat{G}$ on $R\mathcal{Y}_G$. On the other hand, $Y_{\omega,\zeta} \circ X_{t,\sigma}$ is different from 0 if and only if $\omega\sigma(g) \neq \zeta t(g)$ for all $g \in G$, $g \neq 1$. Then sending $g \in G$ to $\omega\sigma(g)\zeta t(g)$ defines an automorphism in G and we have

$$Y_{\omega,\zeta} \circ X_{t,\sigma} = \begin{cases} Y_{(\omega\sigma)\zeta t,\zeta} & \text{if } (\omega\sigma)\zeta t \text{ is an automorphism,} \\ 0 & \text{otherwise.} \end{cases}$$

With this we have the right action of $R\hat{G}$ on $R\mathcal{Y}_G$. It can be proved directly that with these actions $R\mathcal{Y}_G \oplus R\hat{G}$ is an *R*-algebra, and it is clearly isomorphic to $R\hat{B}^1_C(G)$. \Box

References

- [1] Laurence Barker, Fibred permutation sets and the idempotents and units of monomial Burnside rings, J. Algebra 281 (2004) 535–566.
- [2] Serge Bouc, Green Functors and G-sets, Springer, Berlin, 1997.
- [3] Serge Bouc, Biset Functors for Finite Groups, Springer, Berlin, 2010.
- [4] Andreas Dress, The ring of monomial representations I. Structure theory, J. Algebra 18 (1971) 137–157.
- [5] Nadia Romero, Simple modules over Green biset functors, J. Algebra 367 (2012) 203-221.