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Introduction

This note presents a counterexample to a conjecture appearing in [5], parametrizing the simple
modules over a Green biset functor. The conjecture generalized the classification of simple biset func-
tors, as well as the classification of simple modules over Green functors appearing in Bouc [2]. It
relied on the assumption that for a simple module over a Green biset functor its minimal groups
should be isomorphic, which we will see is not generally true.

For a better understanding of this note, the reader is invited to take a look at [5], where he can
acquaint himself with the context of modules over Green biset functors.

Given a Green biset functor A, defined in a class of groups Z closed under subquotients and direct
products, and over a commutative ring with identity R, one can define the category P,4. The objects
of P, are the groups in Z, and given two groups G and H in Z, the set Homp, (G, H) is A(H x G).
Composition in Py is given through the product x of the definition of a Green biset functor, that is,
given ¢ in A(G x H) and B8 in A(H x K), the product « o 8 is defined as

X A(H)xK GxHxHxK
A(DEfng OReSGiAE(H)iK)(a X B).
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The identity element in A(G x G) is A(Indi(xcc) olnflA(G))(sA), where €4 € A(1) is the identity element
of the definition of a Green biset functor. Even if this product may seem a bit strange, in many
cases the category P, is already known and has been studied. For example, if A is the Burnside ring
functor, P, is the biset category defined in Z. It is proved in [5] that for any Green biset functor A,
the category of A-modules is equivalent to the category of R-linear functors from P4 to R-Mod, and
it is through this equivalence that they are studied.

In Section 2 of [5], we defined I4(G) for a group G in Z as the submodule of A(G x G) generated
by elements which can be factored through o by groups in Z of order smaller than |G|. We denote
by A(G) the quotient A(G x G)/I4(G). Conjecture 2.16 in [5] stated that the isomorphism classes of
simple A-modules were in one-to-one correspondence with the equivalence classes of couples (H, V)
where H is a group in Z such that A(H) #0 and V is a simple A(H)-module. Two couples (H, V)
and (G, W) are related if H and G are isomorphic and V and W are isomorphic as A(H)—modules
(the A(H)-action on W is defined in Section 4 of [5]). The correspondence assigned to the class of a
simple A-module S, the class of the couple (H, V) where H is a minimal group for S and V = S(H).
We will see in Section 2 that for the monomial Burnside ring over a cyclic group of order four and
with coefficients in a field, we can find a simple module which has two non-isomorphic minimal
groups.

For a finite abelian group C and a finite group G, the monomial Burnside ring of G with coefficients
in C is a particular case of the ring of monomial representations introduced by Dress [4]. Fibred biset
functors were defined by Boltje and Coskun as functors from the category in which the morphisms
from a group G to a group H is the monomial Burnside ring of H x G, they called these morphisms
fibred bisets. This category is precisely P4 when A is the monomial Burnside ring functor, and so
fibred biset functors coincide with A-modules for this functor. Boltje and Coskun also considered the
case in which C may be an infinite abelian group, but we shall not consider this case. Unfortunately,
there is no published material on the subject, I thank Laurence Barker and Olcay Coskun for sharing
this with me.

Another important element in this note will be the Yoneda-Dress construction of the Burnside
ring functor B at C, denoted by Bc. It assigns to a finite group G the Burnside ring B(G x C), and it
is a Green biset functor. Since the monomial Burnside ring of G with coefficients in C is a subgroup
of Bc(G), we will denote it by B}(G). We will see that there are various similarities between B¢
and B(.

1. Definitions

All groups in this note will be finite.

R will denote a commutative ring with identity.

Given a group G, we will denote its center by Z(G). The Burnside ring of G will be denoted
by B(G), and RB(G) if it has coefficients in R.

Definition 1. Let C be an abelian group and G be any group. A finite C-free (G x C)-set is called a
C-fibred G-set.

A C-orbit of a C-fibred G-set is called a fibre.

The monomial Burnside ring for G with coefficients in C, denoted by Blc(G), is the abelian sub-
group of B(G x C) generated by the C-fibred G-sets. We write RB}(G) if we are taking coefficients
in R.

If X is a C-fibred G-set, denote by [X] its set of fibres. Then G acts on [X] and X is
(G x C)-transitive if and only if [X] is G-transitive. In this case, [X] is isomorphic as G-set to G/D for
some D < G and we can define a group homomorphism § : D — C such that if D is the stabilizer of
the orbit Cx, then ax = §(a)x for all a € D. The subgroup D and the morphism § determine X, since
Stabgxc (x) is equal to {(a,8(a)~') | a € D}.
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Notation 2. Given D < G and § : D — C a group homomorphism, we will write Ds for {(a,8(a)~") |
a € D} and CsG/D for the C-fibred G-set (G x C)/Ds. We will write CG/D if § is the trivial morphism.
The morphism § is called a C-subcharacter of G.

The C-subcharacters of G admit an action of G by conjugation (D, §) = (4D, 88) and with this
action we have:

Remark 3. (See 2.2 in Barker [1].) As an abelian group

BL(G) = @D ZICsG/D]

(D,s)
where (D, §) runs over a set of representatives of the G-classes of C-subcharacters of G.

The following notations are explained in more detail in Bouc [3]. Given U an (H, G)-biset and V
a (K, H)-biset, the composition of V and U is denoted by V xy U. With this composition we know
that if H and G are groups and L < H x G, then the corresponding element in RB(H x G) satisfies
the Bouc decomposition (2.3.26 in [3]):

Indg XD Il’lfg/c XDp/C ]SO(f) XB/A Defg/A XB Resg
with C<ID<H,AdB<Gand f:B/A— D/C an isomorphism.

Notation 4. As it is done in [5], we will write B¢ for the Yoneda-Dress construction of the Burnside
ring functor B at C.

The functor B¢ is defined as follows. In objects, it sends a group G to B(G x C). In arrows, for
a (G, H)-biset X, the map B¢(X) : Bc(H) — B¢(G) is the linear extension of the correspondence
T+ X xy T, where T is an (H x C)-set and X xy T has the natural action of (G x C)-set coming
from the action of C on T.

We will denote by T¢_f the subset of elements of T in which C acts freely. Clearly, it is an H-set.

Lemma 5. Assigning to each group G the Z-module B}(G) defines a Green biset functor.

Proof. We first prove it is a biset functor.

Let G and H be groups and X be a finite (G, H)-biset. Let T be a C-fibred H-set. We define
BLX)(T) = (Bc(X)(T))c—y-

To prove that composition is associative, let Z be a (K, G)-biset. We must show

(ZxcX)xuT)e_; =(Zxc (X xn The—f)c_;-

We claim that the right-hand side of this isomorphism is equal to (Z x¢ (X xy T))c—y. To prove it, we
prove that in general, if W is a (G x C)-set, then (Z x¢ Wc_f)c—y is equal to (Z xg W)c_y. Let [z, w]
be an element in (Z xg W)c_y. The element [z, w] is an orbit for which any representative has the
form (zg~!, gw) with g € G. To prove that gw is in Wc_y, suppose cgw = gw. Then, [z, w] = [z, cw]
and this is equal to c[z, w], so ¢ = 1. The other inclusion is obvious.

It remains then to prove

(ZxcX)xnT)e_;Z(Zxc X xuT)c_

as (K x C)-sets, which holds because B¢ is a biset functor.
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Next we prove it is a Green biset functor.
Following Dress [4], we define the product

BL(G) x BL(H) — BL(G x H)

on the C-fibred G-set T and the C-fibred H-set Y as the set of C-orbits of T x Y with respect to the
action c(t, y) = (ct,c~'y). The orbit of (¢, y) is denoted by t ® y. We extend this product by linearity
and denote it by T ® Y. The action of C in t ® y is given by ct ® y and so it is easy to see that C acts
freely on T ® Y. The identity element in Blc(l) is the class of C. It is not hard to see that this product
is associative and respects the identity element. To prove it is functorial, take X a (K, H)-biset and Z
an (L, G)-biset. We must show that

(Z %6 Te— ® (X i Ve = ((Z % X) xoxn (T®Y))

as (K x L x C)-sets. We can prove this in two steps: First, it is easy to observe that for any C-sets N
and M, the product Mc_f ® Nc_y is isomorphic as C-set to (M ® N)c_y. Then it remains to prove

ZxcT)@XxgY)=E(ZxX) xuxc (T®Y)

as (K x L x C)-sets. If [z, t]®[x, y] is an element on the left-hand side, then sending it to [(z, X), t® y]
defines the desired isomorphism of (K x L x C)-sets. O

2. Fibred biset functors

The category PRB}' mentioned in the introduction and defined in Section 4 of [5], has for objects

the class of all finite groups; the set of morphisms from G to H is the abelian group RB}(H x G) and
composition is given in the following way: If T RB}(G xH)and Y e RB}(H x K), then ToY is given
by restricting T ® Y to G x A(H) x K and then deflating the result to G x K. The identity element in
RBlc(G x G) is the class of C(G x G)/A(G). As it is done in Section 4.2 of [5], composition o can be
obtained by first taking the orbits of T x Y under the (H x C)-action given by

(h,o)(t,y) = ((h, o), (h,c7)y),
and then choosing the orbits in which C acts freely.

Definition 6. From Proposition 2.11 in [5], the category of RB}—modules is equivalent to the category
of R-linear functors from P, BL to R-Mod. These functors are called fibred biset functors.

Notation 7. Let E be a subgroup of H x K x C. We will write p;(E), p2(E) and p3(E) for the pro-
jections of E in H, K and C respectively; p12(E) will denote the projection over H x K, and in
the same way we define the other possible combinations of indices. We write kq(E) for {h € p1(E) |
(h,1,1) € E}. Similarly, we define ky(E), k3(E) and k; ;(E) for all possible combinations of i and j.

The following formula was already known to Boltje and Coskun. Here we prove it as an explicit
expression of composition o in the category PRBlc. The proof follows the lines of Lemma 4.5 in [5].

The definition of the product * can be found in Notation 2.3.19 of [3].
Lemma8. Let X =[C,(G x H)/V] e RB}(G xH)andY =[C,(HxK)/U] € RB}(H x K) be two transitive

elements. Then the composition X o Y € RB]C(G x K) in the category PRB% is isomorphic to

|_| Cpun(G x I<)/(V % (h,l)U).
heS
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The notation is as follows: Let [p2(V) \ H/p1(U)] be a set of representatives of the double cosets of p2(V)
and p1(U) in H, then S is the subset of elements h in [po(V) \ H/p1(U)] such that v(1, K )™, 1) =1
for all ' in ky(V) N "k (U); by viu* we mean the morphism from V « VU to C defined by viu (g, k) =
v(g, h1)(h, k) when hy is an element in H such that (g, h1) in V and (hq, k) in ®-DU.

Proof. Notice that vul is a function if and only if v(1, R)(h'", 1) =1 for all ' € ko (V) N"kq (U).
Let W be the (G x K x C)-set obtained by taking the orbits of X x Y under the action of H x C

(h,0)(x. y) = ((h,Ox, (h.c"")y).

forallceC,heH,xeX, yeY.

Now let [(g, h,c)V,, (W, k, c/)U,L] be an element in W. Then its orbit under the action of G x K x C
is equal to the orbit of [(1,1,1)V,, (h~'W,1,1)U,]. From this it is not hard to see that the orbits
of W are indexed by [p2(V)\ H/p1(U)]. To find the orbits in which C acts freely, suppose c € C fixes
[(1,1,1)V,, (h,1,1)U,]. This means there exists (h’,c¢’) € H x C such that

(1,1,00Vy =(W,1,d)Vy, and (h,1,1)U, = (W'h,1,d 7 ")U,.

Hence v(h',1) =c' ~Ic and p(h~'W'h,1) =c’. So that, ¢ is equal to w(h~'h’h, 1)v(k’, 1), which gives
us the condition on the set S.

The fact that the stabilizer on G x K x C of [(1,1, 1)V, (h, 1,1)U,] is the subgroup (V x (h’l)U)Wh
follows as in the previous paragraph. O

The following lemma and corollary state for RBlc analogous results proved for RB¢ in [5].

Lemma 9. Let X = C5(G x H)/D be a transitive element in RB}(G x H). Denote by e the natural trans-
formation from RB to RB} defined in a G-set X by ec(X) = X x C. Consider E = p1(D), E' = E/k1(Ds),
F = p2(D), F' = F/ka(Ds). Then X can be decomposed in PRB% as

ecxp (Indf xpInfE) o B1 andas By o epy(Defh, x ¢ Resf)
for some By € RBL(E' x H), B2 € RBL(G x F').

Proof. We will only prove the existence of the first decomposition, since the proof of the second one
follows by analogy.

Observe that ecxg/(lndg xInfE) is the C-fibred (G x E’)-set C(G x E’)/U where U={(g, gki(Vs)) |
geE}.

Consider the isomorphism o from pq(D)/ki1(D) to p2(D)/ky(D), existing by Goursat’s Lem-
ma 2.3.25 in [3]. Define B as C,(E’ x H)/W where

W = {(gk1(Ds), h) | if o (gk1(D)) = hka(D)}

and w: W — C by w(gki(Ds),h) =6&(g,h). That W is a group follows from kq(Ds) < k1(D). The
extension of § to W is well defined, since it is not hard to see that ki(Ds) is equal to kq(Ker(§)).
Also, since py(U) = p1(W) =E’ and ky(U) =1, by the previous lemma, ecyg’ (lndg XE InfE,) o B is
isomorphic to Cs(G x H)/(U * W). Finally, U * W = {(g, h) | 6 (gk1(D)) = hky(D)}, and by Goursat’s
Lemma, this is equal to D. O

This decomposition leads us to the same conclusions we obtained from Lemma 4.8 of [5] for RBc.
That is, if G and H have the same order n and Cs(G x H)/D does not factor through o by a group
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of order smaller than n, then we must have pi(D) =G, p2(D) = H, k1(Ds) =1 and ky(Ds) =1. In
particular, Corollary 4.9 of the same reference is also valid, so we have:

Corollary 10. Let C be a group of prime order and S be a simple RB}-module. If H and K are two minimal
groups for S, then they are isomorphic.

We will be back to the classification of simple RBlc—modules for C of prime order in the last
section of the article. Now, we will find the counterexample mentioned in the introduction.

2.1. The counterexample

In Section 2 of [5], given a Green biset functor A defined in a class of groups Z, we defined 14(G)
as the submodule of A(G x G) generated by elements of the form a o b, where a is in A(G x K),
b is in A(K x G) and K is a group in Z of order smaller than |G|. We denote by A(G) the quotient
A(G x G)/14(G). From Section 4 of [5], we also know that if V is a simple A(G)—module, we can
construct a simple A-module that has G as a minimal group. This A-module is defined as the quotient
Lg,v/Jg,v, where Lg y is defined as A(D x G) ®axc) V for De Z and Lgy(@)(x®@ V) =(aoX) @V
for a € A(D’ x D). The subfunctor J; vy is defined as

Jev(G)= {in@)ni ’ Z(yoxi) -nj=0Vy e A(G x D)}.

i=1 i=1

To construct the counterexample we will take coefficients in a field k. We will find a group C and
a simple kB}-module S which has two non-isomorphic minimal groups.

Lemma 11. Let C be a cyclic group and G and H be groups. Suppose that D < G x H is such that p1(D) =G
and p2(D) = H. Let § : D — C be a morphism of groups. We will write D° = {(h, g) | (g, h) € D} and define
8°:D° — Cas 8°Ch, g) =8(g, )~ If X = Cs(G x H)/D and X° = Cso(H x G)/D°, then X o X° is an
idempotent in BL.(G x G).

Proof. Since §(1,h)8°(h,1) =1 for all h € ky(D), by Lemma 8 the composition X o X° is equal to
W =Cs(G x G)/D’. Here, D’ = D % D° and if (g1, g2) € D’ with h € H being such that (g1, h) € D and
(h, g2) € D, then &'(g1, g&2) = 8(g1,h)8°(h, g2). From this it is not hard to see that D' = {(g1, g2) |
£1g, ' eki(D)} and &' (g1, 82) =8(g1g; ', 1.

Observe that ki(D’) = k(D) = k1(D) and clearly, §'(1, g)8’(g,1) =1 for all g € ky(D). In the
same way, if g1,g2 € G are such that there exists g € G with (g1,g) € D’ and (g, g2) € D’ then
8'(g1,8)8 (g, g2) = 8(g1g2’1, 1). Finally, p1(D’) = G since gg~! e ky(D) for all g € G, and it is easy to
see that D'« D’ = D’. So, Lemma 8 gives us W oW =W. 0O

If now we find two non-isomorphic groups G and H having the same order, and a transitive
element X = C5(G x H)/D in kB]C(G x H) with py(D) =G, p2(D) = H and such that the class of

W = X o X° is different from zero in kB}(G), then we can construct a simple kBé-module S which
has G and H as minimal groups. By the previous lemma, W will be an idempotent in kB}(G), S0

we can find V a simple ké}(G)-module such that there exists v € V with (X o X°)v # 0. From the
definition of S =S¢ v, this implies S v (H) # 0.

Example 12. Let C = (c) be a group of order 4, G the quaternion group

ky|x*=1, yxy T =x1, ¥ =y?
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and H the dihedral group of order 8
(a,b|a*=b*>=1, bab™' =a7").

Consider the subgroup of G x H generated by (x,a) and (y, b), call it D. The subgroup of D generated
by (x~1,a) is a normal subgroup of order 4, and the quotient D/D; is isomorphic to C in such a way
that we can define a morphism 8 : D — C sending (x,a) to c? and (y, b) to ¢~1. It is easy to observe
that p;(D) =G, pa(D) = H, k1(D) = (x*) and ko(D) = (a%). By the previous lemma, we have that if
X =Cs(G x H)/D, then W = X o0 X° is an idempotent in kB]C(G x G). We will see now that the class

of W in ké}(G) is different from 0.
Let D'=D % D° and & : D’ — C be the morphism obtained from § as in the previous lemma.
Suppose that W is in IkBlc(G). Since W is a transitive (G x G x C)-set, this implies that there exists

K a group of order smaller than 8, U < G x K and V < K x G such that D’ =U % V (the conju-
gate of a group of the form U % V has again this form, so we can suppose D’ = U % V), and group
homomorphisms w: U — C and v:V — C such that ' = uv in the sense of Lemma 8.

Now, using point 2 of Lemma 2.3.22 in [3] and the fact that p;(D’) = p1(D) and k{(D’) =k1(D),
we have that p;(U) = G and that ki(U) can only have order one or two. Since pi(U)/ki(U) is
isomorphic to p2(U)/ky(U) and the latter must have order smaller than 8, we obtain that ki (U)
has order two. This in turn implies that p,(U)/k(U) has order 4, and since |py(U)| < 8, we have
k2(U) = 1. Hence, U is isomorphic to G. Also, since ki (U) = k1(D’), we have p(x2,1) =8(x2, 1). Now,
5(x?,1) # 1, but all morphisms from G to C send x? to 1, a contradiction.

2.2. Simple fibred biset functors with fibre of prime order

From now on C will be a group of prime order p.
From Corollary 10, we have that Conjecture 2.16 of [5] holds for the functor RBL, the proof is a
particular case of Proposition 4.2 in [5]. We will state this result after describing the structure of the

algebra RBL(G) for a group G.

We will see that if Cs(G x G)/D is a transitive C-fibred (G x G)-set the class of which is different
from 0 in RBlc(G), then D can only be of the form {(0(g), g) | g € G} for o an automorphism of G,
or of the form {(w(g)¢(c), g)|(g,c) € G x C} for w an automorphism of G and ¢ : C — Z(G) N ®(G)
an injective morphism of groups where @ (G) is the Frattini subgroup of G. In the first case § will be
any morphism from G to C. In the second case § will assign c~! to the couple (w(g)z(c), g), this is
well defined since ¢ is injective. Of course, the secondAcase can only occur if p divides |Z(G)|.

If p does not divide |Z(G)|, we will prove that RB}(G) is isomorphic to the group algebra RG
where G = Hom(G, C) x Out(G). If p divides |Z(G)|, we will consider Y; the set of injective mor-
phisms ¢ : C — Z(G) N &(G) and then define V¢ = Out(G) x Y¢. The R-module R); forms an
R-algebra with the product

(w,é)o(a,x)z{(wavwx) i = wy,

0 otherwise

for elements (w, ¢) and («, x) in Vg. The algebra R); can also be made into an (R@, R@)—bimodule.
We could give the definitions of the actions now, and prove directly that R); is indeed an

(R@, R@)—bimodule. Nonetheless, the nature of these actions is given by the structure of RB}(G),

so they are best understood in the proof of the following lemma. The R-module RY; & RG forms
then an R-algebra.

Now suppose that G and H are two groups such that there exists an isomorphism ¢ : G — H.
If (t,0) is a generator of RG, then identifying @o@~! with its class in Out(H) we have that
(tp~',po@~') is in RH. On the other hand, if (w, ¢) is a generator in R);, then (pwg ', ¢|z(c)¢)
is also in R)Yy.
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Notation 13. Let #(G) be the group algebra RG if p does not divide |Z(G)| and RY; & RG in the
other case.

We will write Seed for the set of equivalence classes of couples (G, V) where G is a group and
V is a simple H(G)-module. Two couples (G, V) and (H, W) are related if G and H are isomorphic,
through an isomorphism ¢ : G — H, and V is isomorphic to YW as H(G)-modules. Here YW denotes
the H(G)-module with action given through the elements defined in the previous paragraph.

With these observations, Proposition 4.2 in [5] can be written as follows.

Proposition 14. Let S be the set of isomorphism classes of simple RB}-modules. Then the elements of S are
in one-to-one correspondence with the elements of Seed in the following way: Given S a simple RBlc—module
we associate to its isomorphism class the equivalence class of (G, V) where G is a minimal group of S and
V = S(G). Given the class of a couple (G, V), we associate the isomorphism class of the functor S¢ v defined
in the previous section.

It only remains to see that the algebra R&}(G) is isomorphic to H(G).
Lemma 15.

i) If p does not divide | Z(G)|, then RE}(G) is isomorphic to the group algebra RG.
ii) If p divides |Z(G)|, then RB}(G) is isomorphic to RY; ® RG as R-algebras.

Proof. Let C5(G x G)/D be a transitive C-fibred (G x G)-set the class of which is different from 0 in

RBlc(G). From Lemma 9 we have that Ds must satisfy p1(Ds) = p2(Ds) =G and k1(Ds) =k(Ds) =1.
Also, since § is a function, we have that k3(Ds) = 1. Goursat’s Lemma then implies that Ds is iso-
morphic to p»3(Ds), also isomorphic to pj,3(Ds). Since C has prime order, we have two choices for
p2.3(Ds), either it is of the form G x C or of the form {(g,t(g)) | g€ G, t: G — C}, for some group
homomorphism ¢.

By Goursat’s Lemma, if p23(Ds) is equal to G x C, then

Ds = {(x(g.0).8.¢) | (8.0)eGxC, a:GxC—G}

with o an epimorphism of groups. Since ky(Ds) = k3(Ds) = 1, we have that «(g, ¢) = w(g)¢(c) with @
an automorphism of G and ¢ and injective morphism from C to Z(G). In particular, if p does not
divide the order of Z(G), then this case cannot occur.

Suppose that py3(Ds) = {(g.t(g)) | g€ G, t: G — C}, for a group homomorphism t. Goursat’s
Lemma implies that there exists ¢ an automorphism of G such that Ds = {(o(g), g,t(g)) | g € G}.
Hence D = A, (G) and 8(g1, 82) = t(gz’l). We will then replace § by t and write X; s for C5(G x G)/D

in this case. The isomorphism classes of these elements in Ri?}(G) form an R-basis for it, since
Lemma 2.3.22 in [3] and Goursat’s Lemma imply that A, (G) cannot be written as M « N for any
M <G x K and N < K x G with K of order smaller than |G|. Let us see that we have a bijective

correspondence between the basic elements [X; ] of RB}(G) and Hom(G, C) x Out(G). Any represen-

tative of the isomorphism class of X, is of the form X, 1 o where c1 denotes the conjugation
2 2

by some g € G and 62_1 denotes the conjugation by some gz_1 € G. Since C is abelian, tcz_] is equal

to t, and the class of o in Out(G) is the same as the class of C]O‘C£1. On the other hand, if we take
ocg any representative of the class of an automorphism o in Out(G), then X; s = Xt,ocg-
It remains to see that this bijection is a morphism of rings. Using Lemma 8 it is easy to see that

Xt1,01 © Xty,00 = X(t1002)t2,010,

and the product in G is precisely (t1,01)(t2, 02) = ((t1 0 02)t2, 0107).
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This proves point i). From now on, we suppose that p divides |Z(G)]|.
As we said before, if p divides |Z(G)|, then we can consider the case of C-fibred (G x G)-sets
Cs(G x G)/D such that p23(Ds) =G x C. In this case, Ds equals

{(w(2)2(0). g.¢) | (g8.0) € G xC}

where  is an automorphism of G and ¢ is an injective morphism from C to Z(G). We will prove

that the class of Cs(G x G)/D in RE}(G) is different from 0 if and only if Im¢ € Z(G) N &(G), and
we will write Y, . for C5(G x G)/D in this case. The claim will be proved in two steps, first let

us prove that the class of Y, in RB]C(G) is different from O if and only if |z o ¢ =1 for every
group homomorphism x4 : G — C. Using Lemma 2.3.22 of [3] it is easy to see that D = {(w(g)¢(c), g) |
(g,c)eGxC}isequal to M*N for some M <G x K and N < K x G with K a group of order smaller
than |G| if and only if K has order |G|/p and M and N are isomorphic to G. Suppose now that there
exist 4 : G — C and v : G — C such that §(g1, g2) = 1(g1)v(g2), then in particular for every c € C,
5(¢(c), 1) =c~1 = uz(c). Conversely, if there exists w : G — C such that MlzG) o ¢ # 1, then we can
find ' : G — C such that u/z(c) =c~! for all c# 1, and define v: G — C as v(g) = w'w(g™"). So we
have 1/ (w(g)¢(c))v(g) =c~! which is equal to §(w(g)¢(c), g).

Now we prove that for ¢ : C < Z(G), we have Im¢ € @(G) if and only if w|z) o ¢ =1 for every
group homomorphism w : G — C (thanks to the referee for this observation). Suppose Im¢ € @ (G)
and let ©: G — C be a morphism of groups. If there exists ¢ € C such that p¢(c) #1 then Kerpu
is a normal subgroup of G of index p and so it is maximal. But clearly ¢(c) ¢ Ker i, which is a
contradiction. Now suppose that for all @ : G — C we have w o ¢|z) # 1. Let M be a maximal
subgroup of G and c¢ be a non-trivial element of Im¢ = C'. If c ¢ M, then C' "M =1, and since
C’ < Z(G), we have that C'M is a subgroup of G. Since M is maximal, G = C’M. But this means that
there exists u : G — C such that p(c) # 1, a contradiction.

In a similar way as it is done in point i), we have a bijective correspondence between the isomor-

phism classes of elements Y, ; in RB}(G) and R). This establishes an isomorphism of R-modules
between RB}(G) and RY; ® RG. Now we describe the algebra structure. The following calculations

are made using Lemma 8, Lemma 9 and Lemma 2.3.22 in [3].
The composition of elements Y, ; is given by

% oY ={Ywa,wx if{Zva
@ T 0 otherwise.

The product X; s o Yy ¢ is different from 0 if and only if tZ(c)c # 1 for all ¢ # 1. Then, if we let Idc
be the identity morphism of C, we have that (t¢)Id¢ defines an automorphism on C, which we will
call r. Given g € G there exists only one cg € C such that tw(g) =r(cg) and sending g to w(g)¢(cg)
defines an automorphism on G, which we will call s. We have
Xeo 0 Ve = { Yosorrt  if T = (¢0)Idc is an automorphism,
0 otherwise.

Using this formula on the indices defines a left action of RG on RYc¢. On the other hand, Yo,r 0Xt6 is
different from 0 if and only if wo (g) # ¢t(g) for all g € G, g # 1. Then sending g € G to wo (g)¢t(g)
defines an automorphism in G and we have

Ywoyet,e if (wo)¢t is an automorphism,
Yo, 0Xeo = .
0 otherwise.

With this we have the right action of RG on R)%. It can be proved directly that with these actions
RYc @ RG is an R-algebra, and it is clearly isomorphic to RB}(G). a
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