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This note has two purposes: First, to present a counterexample
to a conjecture parametrizing the simple modules over Green
biset functors, appearing in an author’s previous article. This
parametrization fails for the monomial Burnside ring over a cyclic
group of order four. Second, to classify the simple modules for the
monomial Burnside ring over a group of prime order, for which the
above-mentioned parametrization holds.
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Introduction

This note presents a counterexample to a conjecture appearing in [5], parametrizing the simple
modules over a Green biset functor. The conjecture generalized the classification of simple biset func-
tors, as well as the classification of simple modules over Green functors appearing in Bouc [2]. It
relied on the assumption that for a simple module over a Green biset functor its minimal groups
should be isomorphic, which we will see is not generally true.

For a better understanding of this note, the reader is invited to take a look at [5], where he can
acquaint himself with the context of modules over Green biset functors.

Given a Green biset functor A, defined in a class of groups Z closed under subquotients and direct
products, and over a commutative ring with identity R , one can define the category PA . The objects
of PA are the groups in Z , and given two groups G and H in Z , the set HomPA (G, H) is A(H × G).
Composition in PA is given through the product × of the definition of a Green biset functor, that is,
given α in A(G × H) and β in A(H × K ), the product α ◦ β is defined as

A
(
DefG×�(H)×K

G×K ◦ ResG×H×H×K
G×�(H)×K

)
(α × β).
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The identity element in A(G × G) is A(IndG×G
�(G) ◦ Inf�(G)

1 )(εA), where εA ∈ A(1) is the identity element
of the definition of a Green biset functor. Even if this product may seem a bit strange, in many
cases the category PA is already known and has been studied. For example, if A is the Burnside ring
functor, PA is the biset category defined in Z . It is proved in [5] that for any Green biset functor A,
the category of A-modules is equivalent to the category of R-linear functors from PA to R-Mod, and
it is through this equivalence that they are studied.

In Section 2 of [5], we defined I A(G) for a group G in Z as the submodule of A(G × G) generated
by elements which can be factored through ◦ by groups in Z of order smaller than |G|. We denote
by Â(G) the quotient A(G × G)/I A(G). Conjecture 2.16 in [5] stated that the isomorphism classes of
simple A-modules were in one-to-one correspondence with the equivalence classes of couples (H, V )

where H is a group in Z such that Â(H) �= 0 and V is a simple Â(H)-module. Two couples (H, V )

and (G, W ) are related if H and G are isomorphic and V and W are isomorphic as Â(H)-modules
(the Â(H)-action on W is defined in Section 4 of [5]). The correspondence assigned to the class of a
simple A-module S , the class of the couple (H, V ) where H is a minimal group for S and V = S(H).
We will see in Section 2 that for the monomial Burnside ring over a cyclic group of order four and
with coefficients in a field, we can find a simple module which has two non-isomorphic minimal
groups.

For a finite abelian group C and a finite group G , the monomial Burnside ring of G with coefficients
in C is a particular case of the ring of monomial representations introduced by Dress [4]. Fibred biset
functors were defined by Boltje and Coşkun as functors from the category in which the morphisms
from a group G to a group H is the monomial Burnside ring of H × G , they called these morphisms
fibred bisets. This category is precisely PA when A is the monomial Burnside ring functor, and so
fibred biset functors coincide with A-modules for this functor. Boltje and Coşkun also considered the
case in which C may be an infinite abelian group, but we shall not consider this case. Unfortunately,
there is no published material on the subject, I thank Laurence Barker and Olcay Coşkun for sharing
this with me.

Another important element in this note will be the Yoneda–Dress construction of the Burnside
ring functor B at C , denoted by BC . It assigns to a finite group G the Burnside ring B(G × C), and it
is a Green biset functor. Since the monomial Burnside ring of G with coefficients in C is a subgroup
of BC (G), we will denote it by B1

C (G). We will see that there are various similarities between BC

and B1
C .

1. Definitions

All groups in this note will be finite.
R will denote a commutative ring with identity.
Given a group G , we will denote its center by Z(G). The Burnside ring of G will be denoted

by B(G), and R B(G) if it has coefficients in R .

Definition 1. Let C be an abelian group and G be any group. A finite C-free (G × C)-set is called a
C-fibred G-set.

A C-orbit of a C-fibred G-set is called a fibre.
The monomial Burnside ring for G with coefficients in C , denoted by B1

C (G), is the abelian sub-
group of B(G × C) generated by the C-fibred G-sets. We write R B1

C (G) if we are taking coefficients
in R .

If X is a C-fibred G-set, denote by [X] its set of fibres. Then G acts on [X] and X is
(G × C)-transitive if and only if [X] is G-transitive. In this case, [X] is isomorphic as G-set to G/D for
some D � G and we can define a group homomorphism δ : D → C such that if D is the stabilizer of
the orbit Cx, then ax = δ(a)x for all a ∈ D . The subgroup D and the morphism δ determine X , since
StabG×C (x) is equal to {(a, δ(a)−1) | a ∈ D}.
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Notation 2. Given D � G and δ : D → C a group homomorphism, we will write Dδ for {(a, δ(a)−1) |
a ∈ D} and CδG/D for the C-fibred G-set (G ×C)/Dδ . We will write C G/D if δ is the trivial morphism.
The morphism δ is called a C-subcharacter of G .

The C-subcharacters of G admit an action of G by conjugation g(D, δ) = (g D, gδ) and with this
action we have:

Remark 3. (See 2.2 in Barker [1].) As an abelian group

B1
C (G) =

⊕
(D,δ)

Z[CδG/D]

where (D, δ) runs over a set of representatives of the G-classes of C-subcharacters of G .

The following notations are explained in more detail in Bouc [3]. Given U an (H, G)-biset and V
a (K , H)-biset, the composition of V and U is denoted by V ×H U . With this composition we know
that if H and G are groups and L � H × G , then the corresponding element in R B(H × G) satisfies
the Bouc decomposition (2.3.26 in [3]):

IndH
D ×D InfD

D/C ×D/C Iso( f ) ×B/A DefB
B/A ×B ResG

B

with C � D � H , A � B � G and f : B/A → D/C an isomorphism.

Notation 4. As it is done in [5], we will write BC for the Yoneda–Dress construction of the Burnside
ring functor B at C .

The functor BC is defined as follows. In objects, it sends a group G to B(G × C). In arrows, for
a (G, H)-biset X , the map BC (X) : BC (H) → BC (G) is the linear extension of the correspondence
T �→ X ×H T , where T is an (H × C)-set and X ×H T has the natural action of (G × C)-set coming
from the action of C on T .

We will denote by TC− f the subset of elements of T in which C acts freely. Clearly, it is an H-set.

Lemma 5. Assigning to each group G the Z-module B1
C (G) defines a Green biset functor.

Proof. We first prove it is a biset functor.
Let G and H be groups and X be a finite (G, H)-biset. Let T be a C-fibred H-set. We define

B1
C (X)(T ) = (BC (X)(T ))C− f .

To prove that composition is associative, let Z be a (K , G)-biset. We must show

(
(Z ×G X) ×H T

)
C− f

∼= (
Z ×G (X ×H T )C− f

)
C− f .

We claim that the right-hand side of this isomorphism is equal to (Z ×G (X ×H T ))C− f . To prove it, we
prove that in general, if W is a (G ×C)-set, then (Z ×G W C− f )C− f is equal to (Z ×G W )C− f . Let [z, w]
be an element in (Z ×G W )C− f . The element [z, w] is an orbit for which any representative has the
form (zg−1, g w) with g ∈ G . To prove that g w is in W C− f , suppose cg w = g w . Then, [z, w] = [z, cw]
and this is equal to c[z, w], so c = 1. The other inclusion is obvious.

It remains then to prove

(
(Z ×G X) ×H T

)
C− f

∼= (
Z ×G (X ×H T )

)
C− f ,

as (K × C)-sets, which holds because BC is a biset functor.
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Next we prove it is a Green biset functor.
Following Dress [4], we define the product

B1
C (G) × B1

C (H) → B1
C (G × H)

on the C-fibred G-set T and the C-fibred H-set Y as the set of C-orbits of T × Y with respect to the
action c(t, y) = (ct, c−1 y). The orbit of (t, y) is denoted by t ⊗ y. We extend this product by linearity
and denote it by T ⊗ Y . The action of C in t ⊗ y is given by ct ⊗ y and so it is easy to see that C acts
freely on T ⊗ Y . The identity element in B1

C (1) is the class of C . It is not hard to see that this product
is associative and respects the identity element. To prove it is functorial, take X a (K , H)-biset and Z
an (L, G)-biset. We must show that

(Z ×G T )C− f ⊗ (X ×H Y )C− f
∼= (

(Z × X) ×G×H (T ⊗ Y )
)

C− f

as (K × L × C)-sets. We can prove this in two steps: First, it is easy to observe that for any C-sets N
and M , the product MC− f ⊗ NC− f is isomorphic as C-set to (M ⊗ N)C− f . Then it remains to prove

(Z ×G T ) ⊗ (X ×H Y ) ∼= (Z × X) ×H×G (T ⊗ Y )

as (K × L ×C)-sets. If [z, t]⊗[x, y] is an element on the left-hand side, then sending it to [(z, x), t ⊗ y]
defines the desired isomorphism of (K × L × C)-sets. �
2. Fibred biset functors

The category PR B1
C

, mentioned in the introduction and defined in Section 4 of [5], has for objects

the class of all finite groups; the set of morphisms from G to H is the abelian group R B1
C (H × G) and

composition is given in the following way: If T ∈ R B1
C (G × H) and Y ∈ R B1

C (H × K ), then T ◦Y is given
by restricting T ⊗ Y to G × �(H) × K and then deflating the result to G × K . The identity element in
R B1

C (G × G) is the class of C(G × G)/�(G). As it is done in Section 4.2 of [5], composition ◦ can be
obtained by first taking the orbits of T × Y under the (H × C)-action given by

(h, c)(t, y) = (
(h, c)t,

(
h, c−1)y

)
,

and then choosing the orbits in which C acts freely.

Definition 6. From Proposition 2.11 in [5], the category of R B1
C -modules is equivalent to the category

of R-linear functors from PR B1
C

to R-Mod. These functors are called fibred biset functors.

Notation 7. Let E be a subgroup of H × K × C . We will write p1(E), p2(E) and p3(E) for the pro-
jections of E in H , K and C respectively; p1,2(E) will denote the projection over H × K , and in
the same way we define the other possible combinations of indices. We write k1(E) for {h ∈ p1(E) |
(h,1,1) ∈ E}. Similarly, we define k2(E), k3(E) and ki, j(E) for all possible combinations of i and j.

The following formula was already known to Boltje and Coşkun. Here we prove it as an explicit
expression of composition ◦ in the category PR B1

C
. The proof follows the lines of Lemma 4.5 in [5].

The definition of the product ∗ can be found in Notation 2.3.19 of [3].

Lemma 8. Let X = [Cν(G × H)/V ] ∈ R B1
C (G × H) and Y = [Cμ(H × K )/U ] ∈ R B1

C (H × K ) be two transitive
elements. Then the composition X ◦ Y ∈ R B1

C (G × K ) in the category PR B1
C

is isomorphic to

⊔
Cνμh (G × K )/

(
V ∗ (h,1)U

)
.

h∈S
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The notation is as follows: Let [p2(V ) \ H/p1(U )] be a set of representatives of the double cosets of p2(V )

and p1(U ) in H, then S is the subset of elements h in [p2(V ) \ H/p1(U )] such that ν(1,h′)μ(h′ h,1) = 1
for all h′ in k2(V ) ∩ hk1(U ); by νμh we mean the morphism from V ∗ (h,1)U to C defined by νμh(g,k) =
ν(g,h1)μ(hh

1,k) when h1 is an element in H such that (g,h1) in V and (h1,k) in (h,1)U .

Proof. Notice that νμh is a function if and only if ν(1,h′)μ(h′ h,1) = 1 for all h′ ∈ k2(V ) ∩ hk1(U ).
Let W be the (G × K × C)-set obtained by taking the orbits of X × Y under the action of H × C

(h, c)(x, y) = (
(h, c)x,

(
h, c−1)y

)
,

for all c ∈ C , h ∈ H , x ∈ X , y ∈ Y .
Now let [(g,h, c)Vν, (h′,k, c′)Uμ] be an element in W . Then its orbit under the action of G × K ×C

is equal to the orbit of [(1,1,1)Vν, (h−1h′,1,1)Uν ]. From this it is not hard to see that the orbits
of W are indexed by [p2(V ) \ H/p1(U )]. To find the orbits in which C acts freely, suppose c ∈ C fixes
[(1,1,1)Vν, (h,1,1)Uμ]. This means there exists (h′, c′) ∈ H × C such that

(1,1, c)Vν = (
h′,1, c′)Vν and (h,1,1)Uμ = (

h′h,1, c′ −1)Uμ.

Hence ν(h′,1) = c′ −1c and μ(h−1h′h,1) = c′ . So that, c is equal to μ(h−1h′h,1)ν(h′,1), which gives
us the condition on the set S .

The fact that the stabilizer on G × K × C of [(1,1,1)Vν, (h,1,1)Uμ] is the subgroup (V ∗ (h,1)U )νμh

follows as in the previous paragraph. �
The following lemma and corollary state for R B1

C analogous results proved for R BC in [5].

Lemma 9. Let X = Cδ(G × H)/D be a transitive element in R B1
C (G × H). Denote by e the natural trans-

formation from R B to R B1
C defined in a G-set X by eG(X) = X × C. Consider E = p1(D), E ′ = E/k1(Dδ),

F = p2(D), F ′ = F/k2(Dδ). Then X can be decomposed in PR B1
C

as

eG×E ′
(
IndG

E ×E InfE
E ′

) ◦ β1 and as β2 ◦ eF ′×H
(
DefF

F ′ ×F ResH
F

)
for some β1 ∈ R B1

C (E ′ × H), β2 ∈ R B1
C (G × F ′).

Proof. We will only prove the existence of the first decomposition, since the proof of the second one
follows by analogy.

Observe that eG×E ′ (IndG
E ×E InfE

E ′ ) is the C-fibred (G × E ′)-set C(G × E ′)/U where U ={(g, gk1(V δ)) |
g ∈ E}.

Consider the isomorphism σ from p1(D)/k1(D) to p2(D)/k2(D), existing by Goursat’s Lem-
ma 2.3.25 in [3]. Define β1 as Cω(E ′ × H)/W where

W = {(
gk1(Dδ),h

) ∣∣ if σ
(

gk1(D)
) = hk2(D)

}
and ω : W → C by ω(gk1(Dδ),h) = δ(g,h). That W is a group follows from k1(Dδ) � k1(D). The
extension of δ to W is well defined, since it is not hard to see that k1(Dδ) is equal to k1(Ker(δ)).
Also, since p2(U ) = p1(W ) = E ′ and k2(U ) = 1, by the previous lemma, eG×E ′ (IndG

E ×E InfE
E ′ ) ◦ β1 is

isomorphic to Cδ(G × H)/(U ∗ W ). Finally, U ∗ W = {(g,h) | σ(gk1(D)) = hk2(D)}, and by Goursat’s
Lemma, this is equal to D . �

This decomposition leads us to the same conclusions we obtained from Lemma 4.8 of [5] for R BC .
That is, if G and H have the same order n and Cδ(G × H)/D does not factor through ◦ by a group
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of order smaller than n, then we must have p1(D) = G , p2(D) = H , k1(Dδ) = 1 and k2(Dδ) = 1. In
particular, Corollary 4.9 of the same reference is also valid, so we have:

Corollary 10. Let C be a group of prime order and S be a simple R B1
C -module. If H and K are two minimal

groups for S, then they are isomorphic.

We will be back to the classification of simple R B1
C -modules for C of prime order in the last

section of the article. Now, we will find the counterexample mentioned in the introduction.

2.1. The counterexample

In Section 2 of [5], given a Green biset functor A defined in a class of groups Z , we defined I A(G)

as the submodule of A(G × G) generated by elements of the form a ◦ b, where a is in A(G × K ),
b is in A(K × G) and K is a group in Z of order smaller than |G|. We denote by Â(G) the quotient
A(G × G)/I A(G). From Section 4 of [5], we also know that if V is a simple Â(G)-module, we can
construct a simple A-module that has G as a minimal group. This A-module is defined as the quotient
LG,V / J G,V , where LG,V is defined as A(D × G) ⊗A(G×G) V for D ∈ Z and LG,V (a)(x ⊗ v) = (a ◦ x) ⊗ v
for a ∈ A(D ′ × D). The subfunctor J G,V is defined as

J G,V (G) =
{

n∑
i=1

xi ⊗ ni

∣∣∣ n∑
i=1

(y ◦ xi) · ni = 0 ∀y ∈ A(G × D)

}
.

To construct the counterexample we will take coefficients in a field k. We will find a group C and
a simple kB1

C -module S which has two non-isomorphic minimal groups.

Lemma 11. Let C be a cyclic group and G and H be groups. Suppose that D � G × H is such that p1(D) = G
and p2(D) = H. Let δ : D → C be a morphism of groups. We will write Do = {(h, g) | (g,h) ∈ D} and define
δo : Do → C as δo(h, g) = δ(g,h)−1 . If X = Cδ(G × H)/D and Xo = Cδo (H × G)/Do, then X ◦ Xo is an
idempotent in B1

C (G × G).

Proof. Since δ(1,h)δo(h,1) = 1 for all h ∈ k2(D), by Lemma 8 the composition X ◦ Xo is equal to
W = Cδ′(G × G)/D ′ . Here, D ′ = D ∗ Do and if (g1, g2) ∈ D ′ with h ∈ H being such that (g1,h) ∈ D and
(h, g2) ∈ Do , then δ′(g1, g2) = δ(g1,h)δo(h, g2). From this it is not hard to see that D ′ = {(g1, g2) |
g1 g−1

2 ∈ k1(D)} and δ′(g1, g2) = δ(g1 g−1
2 ,1).

Observe that k1(D ′) = k2(D ′) = k1(D) and clearly, δ′(1, g)δ′(g,1) = 1 for all g ∈ k1(D). In the
same way, if g1, g2 ∈ G are such that there exists g ∈ G with (g1, g) ∈ D ′ and (g, g2) ∈ D ′ then
δ′(g1, g)δ′(g, g2) = δ(g1 g−1

2 ,1). Finally, p1(D ′) = G since gg−1 ∈ k1(D) for all g ∈ G , and it is easy to
see that D ′ ∗ D ′ = D ′ . So, Lemma 8 gives us W ◦ W = W . �

If now we find two non-isomorphic groups G and H having the same order, and a transitive
element X = Cδ(G × H)/D in kB1

C (G × H) with p1(D) = G , p2(D) = H and such that the class of

W = X ◦ Xo is different from zero in ˆkB1
C (G), then we can construct a simple kB1

C -module S which

has G and H as minimal groups. By the previous lemma, W will be an idempotent in ˆkB1
C (G), so

we can find V a simple ˆkB1
C (G)-module such that there exists v ∈ V with (X ◦ Xo)v �= 0. From the

definition of S = SG,V , this implies SG,V (H) �= 0.

Example 12. Let C = 〈c〉 be a group of order 4, G the quaternion group

〈
x, y

∣∣ x4 = 1, yxy−1 = x−1, x2 = y2〉
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and H the dihedral group of order 8

〈
a,b

∣∣ a4 = b2 = 1, bab−1 = a−1〉.
Consider the subgroup of G × H generated by (x,a) and (y,b), call it D . The subgroup of D generated
by (x−1,a) is a normal subgroup of order 4, and the quotient D/D1 is isomorphic to C in such a way
that we can define a morphism δ : D → C sending (x,a) to c2 and (y,b) to c−1. It is easy to observe
that p1(D) = G , p2(D) = H , k1(D) = 〈x2〉 and k2(D) = 〈a2〉. By the previous lemma, we have that if
X = Cδ(G × H)/D , then W = X ◦ Xo is an idempotent in kB1

C (G × G). We will see now that the class

of W in ˆkB1
C (G) is different from 0.

Let D ′ = D ∗ Do and δ′ : D ′ → C be the morphism obtained from δ as in the previous lemma.
Suppose that W is in IkB1

C
(G). Since W is a transitive (G × G × C)-set, this implies that there exists

K a group of order smaller than 8, U � G × K and V � K × G such that D ′ = U ∗ V (the conju-
gate of a group of the form U ∗ V has again this form, so we can suppose D ′ = U ∗ V ), and group
homomorphisms μ : U → C and ν : V → C such that δ′ = μν in the sense of Lemma 8.

Now, using point 2 of Lemma 2.3.22 in [3] and the fact that p1(D ′) = p1(D) and k1(D ′) = k1(D),
we have that p1(U ) = G and that k1(U ) can only have order one or two. Since p1(U )/k1(U ) is
isomorphic to p2(U )/k2(U ) and the latter must have order smaller than 8, we obtain that k1(U )

has order two. This in turn implies that p2(U )/k2(U ) has order 4, and since |p2(U )| < 8, we have
k2(U ) = 1. Hence, U is isomorphic to G . Also, since k1(U ) = k1(D ′), we have μ(x2,1) = δ(x2,1). Now,
δ(x2,1) �= 1, but all morphisms from G to C send x2 to 1, a contradiction.

2.2. Simple fibred biset functors with fibre of prime order

From now on C will be a group of prime order p.
From Corollary 10, we have that Conjecture 2.16 of [5] holds for the functor R B1

C , the proof is a
particular case of Proposition 4.2 in [5]. We will state this result after describing the structure of the

algebra ˆR B1
C (G) for a group G .

We will see that if Cδ(G × G)/D is a transitive C-fibred (G × G)-set the class of which is different

from 0 in ˆR B1
C (G), then D can only be of the form {(σ (g), g) | g ∈ G} for σ an automorphism of G ,

or of the form {(ω(g)ζ(c), g) | (g, c) ∈ G × C} for ω an automorphism of G and ζ : C → Z(G) ∩ Φ(G)

an injective morphism of groups where Φ(G) is the Frattini subgroup of G . In the first case δ will be
any morphism from G to C . In the second case δ will assign c−1 to the couple (ω(g)ζ(c), g), this is
well defined since ζ is injective. Of course, the second case can only occur if p divides |Z(G)|.

If p does not divide |Z(G)|, we will prove that ˆR B1
C (G) is isomorphic to the group algebra RĜ

where Ĝ = Hom(G, C) � Out(G). If p divides |Z(G)|, we will consider YG the set of injective mor-
phisms ζ : C → Z(G) ∩ Φ(G) and then define YG = Out(G) × YG . The R-module RYG forms an
R-algebra with the product

(ω, ζ ) ◦ (α,χ) =
{

(ωα,ωχ) if ζ = ωχ,

0 otherwise

for elements (ω, ζ ) and (α,χ) in YG . The algebra RYG can also be made into an (RĜ, RĜ)-bimodule.
We could give the definitions of the actions now, and prove directly that RYG is indeed an

(RĜ, RĜ)-bimodule. Nonetheless, the nature of these actions is given by the structure of ˆR B1
C (G),

so they are best understood in the proof of the following lemma. The R-module RYG ⊕ RĜ forms
then an R-algebra.

Now suppose that G and H are two groups such that there exists an isomorphism ϕ : G → H .
If (t, σ ) is a generator of RĜ , then identifying ϕσϕ−1 with its class in Out(H) we have that
(tϕ−1,ϕσϕ−1) is in R Ĥ . On the other hand, if (ω, ζ ) is a generator in RYG , then (ϕωϕ−1,ϕ|Z(G)ζ )

is also in RYH .
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Notation 13. Let H(G) be the group algebra RĜ if p does not divide |Z(G)| and RYG ⊕ RĜ in the
other case.

We will write Seed for the set of equivalence classes of couples (G, V ) where G is a group and
V is a simple H(G)-module. Two couples (G, V ) and (H, W ) are related if G and H are isomorphic,
through an isomorphism ϕ : G → H , and V is isomorphic to ϕ W as H(G)-modules. Here ϕ W denotes
the H(G)-module with action given through the elements defined in the previous paragraph.

With these observations, Proposition 4.2 in [5] can be written as follows.

Proposition 14. Let S be the set of isomorphism classes of simple R B1
C -modules. Then the elements of S are

in one-to-one correspondence with the elements of Seed in the following way: Given S a simple R B1
C -module

we associate to its isomorphism class the equivalence class of (G, V ) where G is a minimal group of S and
V = S(G). Given the class of a couple (G, V ), we associate the isomorphism class of the functor SG,V defined
in the previous section.

It only remains to see that the algebra ˆR B1
C (G) is isomorphic to H(G).

Lemma 15.

i) If p does not divide |Z(G)|, then ˆR B1
C (G) is isomorphic to the group algebra RĜ.

ii) If p divides |Z(G)|, then ˆR B1
C (G) is isomorphic to RYG ⊕ RĜ as R-algebras.

Proof. Let Cδ(G × G)/D be a transitive C-fibred (G × G)-set the class of which is different from 0 in
ˆR B1

C (G). From Lemma 9 we have that Dδ must satisfy p1(Dδ) = p2(Dδ) = G and k1(Dδ) = k2(Dδ) = 1.
Also, since δ is a function, we have that k3(Dδ) = 1. Goursat’s Lemma then implies that Dδ is iso-
morphic to p2,3(Dδ), also isomorphic to p1,3(Dδ). Since C has prime order, we have two choices for
p2,3(Dδ), either it is of the form G × C or of the form {(g, t(g)) | g ∈ G, t : G → C}, for some group
homomorphism t .

By Goursat’s Lemma, if p2,3(Dδ) is equal to G × C , then

Dδ = {(
α(g, c), g, c

) ∣∣ (g, c) ∈ G × C, α : G × C � G
}

with α an epimorphism of groups. Since k2(Dδ) = k3(Dδ) = 1, we have that α(g, c) = ω(g)ζ(c) with ω
an automorphism of G and ζ and injective morphism from C to Z(G). In particular, if p does not
divide the order of Z(G), then this case cannot occur.

Suppose that p2,3(Dδ) = {(g, t(g)) | g ∈ G, t : G → C}, for a group homomorphism t . Goursat’s
Lemma implies that there exists σ an automorphism of G such that Dδ = {(σ (g), g, t(g)) | g ∈ G}.
Hence D = �σ (G) and δ(g1, g2) = t(g−1

2 ). We will then replace δ by t and write Xt,σ for Cδ(G × G)/D

in this case. The isomorphism classes of these elements in ˆR B1
C (G) form an R-basis for it, since

Lemma 2.3.22 in [3] and Goursat’s Lemma imply that �σ (G) cannot be written as M ∗ N for any
M � G × K and N � K × G with K of order smaller than |G|. Let us see that we have a bijective

correspondence between the basic elements [Xt,σ ] of ˆR B1
C (G) and Hom(G, C)�Out(G). Any represen-

tative of the isomorphism class of Xt,σ is of the form Xtc−1
2 ,c1σ c−1

2
where c1 denotes the conjugation

by some g1 ∈ G and c−1
2 denotes the conjugation by some g−1

2 ∈ G . Since C is abelian, tc−1
2 is equal

to t , and the class of σ in Out(G) is the same as the class of c1σ c−1
2 . On the other hand, if we take

σ cg any representative of the class of an automorphism σ in Out(G), then Xt,σ ∼= Xt,σ cg .
It remains to see that this bijection is a morphism of rings. Using Lemma 8 it is easy to see that

Xt1,σ1 ◦ Xt2,σ2 = X(t1◦σ2)t2,σ1σ2

and the product in Ĝ is precisely (t1, σ1)(t2, σ2) = ((t1 ◦ σ2)t2, σ1σ2).
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This proves point i). From now on, we suppose that p divides |Z(G)|.
As we said before, if p divides |Z(G)|, then we can consider the case of C-fibred (G × G)-sets

Cδ(G × G)/D such that p2,3(Dδ) = G × C . In this case, Dδ equals

{(
ω(g)ζ(c), g, c

) ∣∣ (g, c) ∈ G × C
}

where ω is an automorphism of G and ζ is an injective morphism from C to Z(G). We will prove

that the class of Cδ(G × G)/D in ˆR B1
C (G) is different from 0 if and only if Im ζ ⊆ Z(G) ∩ Φ(G), and

we will write Yω,ζ for Cδ(G × G)/D in this case. The claim will be proved in two steps, first let

us prove that the class of Yω,ζ in ˆR B1
C (G) is different from 0 if and only if μ|Z(G) ◦ ζ = 1 for every

group homomorphism μ : G → C . Using Lemma 2.3.22 of [3] it is easy to see that D = {(ω(g)ζ(c), g) |
(g, c) ∈ G × C} is equal to M ∗ N for some M � G × K and N � K × G with K a group of order smaller
than |G| if and only if K has order |G|/p and M and N are isomorphic to G . Suppose now that there
exist μ : G → C and ν : G → C such that δ(g1, g2) = μ(g1)ν(g2), then in particular for every c ∈ C ,
δ(ζ(c),1) = c−1 = μζ(c). Conversely, if there exists μ : G → C such that μ|Z(G) ◦ ζ �= 1, then we can
find μ′ : G → C such that μ′ζ(c) = c−1 for all c �= 1, and define ν : G → C as ν(g) = μ′ω(g−1). So we
have μ′(ω(g)ζ(c))ν(g) = c−1 which is equal to δ(ω(g)ζ(c), g).

Now we prove that for ζ : C ↪→ Z(G), we have Im ζ ⊆ Φ(G) if and only if μ|Z(G) ◦ ζ = 1 for every
group homomorphism μ : G → C (thanks to the referee for this observation). Suppose Im ζ ⊆ Φ(G)

and let μ : G → C be a morphism of groups. If there exists c ∈ C such that μζ(c) �= 1 then Ker μ
is a normal subgroup of G of index p and so it is maximal. But clearly ζ(c) /∈ Ker μ, which is a
contradiction. Now suppose that for all μ : G → C we have μ ◦ ζ |Z(G) �= 1. Let M be a maximal
subgroup of G and c be a non-trivial element of Im ζ = C ′ . If c /∈ M , then C ′ ∩ M = 1, and since
C ′ � Z(G), we have that C ′M is a subgroup of G . Since M is maximal, G = C ′M . But this means that
there exists μ : G → C such that μ(c) �= 1, a contradiction.

In a similar way as it is done in point i), we have a bijective correspondence between the isomor-

phism classes of elements Yω,ζ in ˆR B1
C (G) and RYG . This establishes an isomorphism of R-modules

between ˆR B1
C (G) and RYG ⊕ RĜ . Now we describe the algebra structure. The following calculations

are made using Lemma 8, Lemma 9 and Lemma 2.3.22 in [3].
The composition of elements Yω,ζ is given by

Yω,ζ ◦ Yα,χ =
{

Yωα,ωχ if ζ = ωχ,

0 otherwise.

The product Xt,σ ◦ Yω,ζ is different from 0 if and only if tζ(c)c �= 1 for all c �= 1. Then, if we let IdC
be the identity morphism of C , we have that (tζ )IdC defines an automorphism on C , which we will
call r. Given g ∈ G there exists only one cg ∈ C such that tω(g) = r(cg) and sending g to ω(g)ζ(cg)

defines an automorphism on G , which we will call s. We have

Xt,σ ◦ Yω,ζ =
{

Yσ s,σ ζ r−1 if r = (tζ )IdC is an automorphism,

0 otherwise.

Using this formula on the indices defines a left action of RĜ on RYG . On the other hand, Yω,ζ ◦ Xt,σ is
different from 0 if and only if ωσ(g) �= ζ t(g) for all g ∈ G , g �= 1. Then sending g ∈ G to ωσ(g)ζ t(g)

defines an automorphism in G and we have

Yω,ζ ◦ Xt,σ =
{

Y(ωσ )ζ t,ζ if (ωσ )ζ t is an automorphism,

0 otherwise.

With this we have the right action of RĜ on RYG . It can be proved directly that with these actions

RYG ⊕ RĜ is an R-algebra, and it is clearly isomorphic to ˆR B1
C (G). �
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