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We analyzed 83 fully sequenced great ape genomes for mobile
element insertions, predicting a total of 49,452 fixed and polymor-
phic Alu and long interspersed element 1 (L1) insertions not present
in the human reference assembly and assigning each retrotranspo-
sition event to a different time point during great ape evolution.
We used these homoplasy-free markers to construct a mobile ele-
ment insertions-based phylogeny of humans and great apes and
demonstrate their differential power to discern ape subspecies
and populations. Within this context, we find a good correlation
between L1 diversity and single-nucleotide polymorphism het-
erozygosity (r2 = 0.65) in contrast to Alu repeats, which show little
correlation (r2 = 0.07). We estimate that the “rate” of Alu retro-
transposition has differed by a factor of 15-fold in these lineages.
Humans, chimpanzees, and bonobos show the highest rates of Alu
accumulation—the latter two since divergence 1.5 Mya. The L1 in-
sertion rate, in contrast, has remained relatively constant, with rates
differing by less than a factor of three. We conclude that Alu retro-
transposition has been the most variable form of genetic variation
during recent human–great ape evolution, with increases and
decreases occurring over very short periods of evolutionary time.
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Mobile elements comprise ∼50% of our genetic code. Among
these, Alu (a primate-specific short interspersed element,

SINE) and L1 repeats (a long interspersed element, LINE) are the
most abundant (1, 2). Both elements propagated in the germ line as
a result of target primed reverse transcription (TPRT) using an
AP-endonuclease and reverse transcriptase activities encoded by
L1 elements (3–5). These integrations—termed “mobile element
insertions” (MEIs)—have the potential to disrupt genes, alter
transcript expression and splicing, as well as promote genomic in-
stability as a result of nonallelic homologous recombination (6–9).
In addition, these MEIs are powerful phylogenetic (10–12) and
population genetic markers (13–16) because they are generally
regarded as homoplasy-free character states—i.e., precise excision
is an exceedingly rare event and, as such, the ancestral and derived
state can be unambiguously determined (17–20).
Critical to our understanding of MEI impact with respect to

disease and evolution is a detailed assessment of changes in ret-
rotransposition activity within different lineages (21). Genome se-
quencing comparisons have been used as one method to infer
differences in activity between humans and great apes (22–26).
There are several important limitations of previous studies. First,
genome-wide assessments are generally incomplete because of their
dependence on a single representative genome from each species,
where consequently the fixed versus polymorphic status of most
MEIs is not known. Second, published great ape genome assem-
blies vary considerably in quality and completeness. The gorilla
genome, for example, was assembled primarily from Illumina se-
quencing data and consists of over 433,000 gaps. Many of the gaps
over 100 bp in length (n = 192,481) map to MEIs and segmental
duplications (25, 27). Finally, for those lineages for which there are
rate estimates, these rates differ between some studies by more
than a factor of two (24, 28, 29). Some of these discrepancies arise

from methodological differences in discovery and limited genomic
sampling (e.g., some experimental studies have focused on a rela-
tively small number of MEIs) (22, 23). To date, there is no genome-
wide synthesis of changes in rates, particularly as they relate to
single-nucleotide substitution.
Here we present a genome-wide discovery and synthesis of dif-

ferences in the accumulation of L1 and Alu elements during the
course of human–great ape evolution. We leverage deep sequence
data generated from 83 hominid genomes along with 10 additional
human genomes in an attempt to maximize our understanding
about the diversity of the different species and populations. Our
results more than triple the number of known polymorphic MEIs in
great apes, including the discovery of ancestry-informative markers
and MEIs corresponding to regions of incomplete lineage sorting
(ILS). Such ILS segments define regions where the gene genealogy
differs from that of the species phylogeny due to rapid speciation
or hybridization and are relatively rare, especially as defined by
the MEI (19, 30, 31). The availability of single-nucleotide poly-
morphism (SNP) data (32) from the same individual genomes
allows us to more accurately estimate rate changes in Alu and L1
retrotransposition in contrast to single-nucleotide accumulation and
to compare the utility of these markers in reconstructing the evo-
lutionary relationships of our species.

Results
To discover MEIs, we applied a read-pair mapping approach to
83 genomes sequenced for the Great Ape Diversity Project (32)
as well as 10 diverse human genomes for a total of 93 genomes.
Genomes were sequenced to an average depth of 23-fold se-
quence coverage from samples that included all ape species and
representatives from 10 recognized subspecies (Table 1). We
mapped the paired-end reads of these genomes to the human
reference genome (GRCh36) using mrsFAST (33) and predicted
Alu and L1 insertions using an extension of our previously de-
scribed algorithm (34, 35). We discovered a total of 24,210 Alu
and 25,242 L1 great ape insertions compared with the human
reference genome. We estimate that these correspond to 13,600
new Alu and 17,000 new L1 insertions compared with previously
published ape reference genomes (24–26, 28).
We also performed a reciprocal analysis identifying insertions

in the human genome that corresponded to precise “deletions”
among the great apes. We identified 11,770 Alu and 8,428 L1
elements, assigning these to different branch points during
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human evolution based on their presence or absence within
different great ape lineages. Note that some of the samples used
to predict MEIs have lower coverage sequencing and, thus, for
most of the analysis where accurate genotyping is critical, we lim-
ited the analysis to 72 genomes with the highest coverage and best
insert-size distributions (SI Appendix, Table S2). Our analysis of
these 72 samples identified 187 MEI events (43 Alu and 144 L1
events) that were inconsistent with the great ape phylogeny (e.g.,
shared between human and gorilla but not chimpanzee). A
total of 84% (157/187) of these loci were also flanked by SNPs
of a similar phylogeny, confirming that most arose as a result of
ILS (Dataset S1). Comparing our results with regions identified by
ILS in these same genomes (32), we determined the average length
of an ILS segment harboring an MEI marker to be ∼7 kbp in
length. Because we sequenced multiple genomes from each species
and subspecies (with the exception of the Cross River gorilla), we
also classified MEIs as fixed (i.e., not polymorphic) if they were
predicted to be seen in all of the samples of a species or subspecies
with more than 90% probability, assuming a false genotyping rate
of 10% (Table 1). We note that false genotyping rates of less
than 10% for MEIs and structural variation discovery is relatively
standard using high-throughput technologies (34, 36, 37). In-
creased genotyping error arises from the mapping of discordant
short sequence reads to common repeats that exist at multiple
locations in the genome and is exacerbated by cross-species
mappings, which are required due to the lower quality of non-
human reference genomes. To minimize potential genotyping
biases, we, once again, restricted the assignment of fixed versus
polymorphic status to those samples (n = 72) with the highest
sequence coverage and the best insert-size distributions.
We validated the quality of our MEI predictions and genotypes

by three independent analyses. First, we compared our predicted
MEIs for the Western chimpanzee Clint to the chimpanzee refer-
ence genome (PanTro3), which was previously assembled from
Sanger sequence data generated from the same donor (28). We
predicted a total of 3,230 Alu and 2,317 L1 insertions based on
paired-end read mapping of Clint Illumina data to the human
reference (GRCh36). Among those that we could successfully cross
reference using LiftOver (38), we found that 85.5% (2,396/2,802)
and 84.5% (1,651/1,953) of our Alu and L1 read-pair predicted
insertions, respectively, matched PanTro3 assembly insertions.

Concordance rises to 90% and 91% for Alu and L1 insertions,
respectively, if we exclude insertions that map to repetitive DNA,
such as segmental duplications (SI Appendix, Fig. S3). Next, we
randomly selected 13 Alu insertions and 9 L1 insertions and
performed PCR on DNA from eight sequenced samples (three
chimpanzees, one bonobo, three gorillas, and one orangutan).
We observed a genotyping concordance of >95% (86/90) and
98% (>54/55) for Alu and L1 insertions, respectively (SI Ap-
pendix, Figs. S6–S8). Finally, we specifically selected MEIs that
appeared ancestry informative (i.e., detected in one ape sub-
species to the exclusion of others) and MEIs that showed ILS
among chimpanzee, bonobo, gorilla, and human. We designed
a total of 118 successful PCR assays with an overall validation
rate of 96.6% (SI Appendix, Table S5). Of the validated ILS
events, 47 were used to determine the precise breakpoint of the
insertion. Using multiple alignments suggests that breakpoints
are accurately predicted with an average interval of 32 bp (see SI
Appendix for details). Sequencing revealed that 93.6% (44/47) of
the sequenced insertions corresponded to younger subfamilies
and carried target-site duplications diagnostic of recent retro-
transposition events (SI Appendix, Figs. S19 and S20).
The map location of all MEIs was annotated on the human

reference genome, including elements that mapped near or within
exons of genes. A total of 17,468 MEIs mapped within the introns
of genes (Fig. 1A). As expected, L1 insertions were significantly
depleted in genic regions, whereas the Alu density was as expected
by chance (39). We observed a strong bias against L1 and Alu
insertions within protein-coding sequence (P < 1e-40; Fig. 1B). The
reduction was also true for MEIs in untranslated regions (UTRs)
but was less significant. In total, we identified only 10 MEIs that are
predicted potentially to disrupt the protein-coding regions of genes,
although a total of 160 MEIs intersect with genic UTRs (SI Ap-
pendix, Tables S3 and S4). Similarly, we observed a bias for both
Alus and L1s to be inserted in an antisense orientation when
mapping within genes (40) (Fig. 1C). We also specifically analyzed
the GC composition of Alu insertions due to the reported shift in
GC bias (28). All lineage-specific Alu insertions show a stronger
bias against GC-rich DNA compared with ancestral events (Fig. 1D
and SI Appendix, Fig. S23). This transition to more GC-rich DNA
occurs relatively gradually, with significant increases observed in the

Table 1. Summary of mobile element insertions in great ape genomes

Species/subspecies N
Fold

coverage

Nonreference Alu insertion statistics
(vs. GRCh36)

Nonreference L1 insertion statistics
(vs. GRCh36)

Discovery
Genotyping

Discovery
Genotyping

Total no. Ins Fix Polymorphic Total no. Ins Fix Polymorphic

Pan 35 1,028 11,157 — — 7,215 — —

Pan paniscus 12 444 4,229 2,607 1,540 3,067 1,877 1,082
Pan troglodytes 23 584 8,715 1,971 6,403 6,066 1,292 4,578

Pan troglodytes troglodytes 4 130 5,570 2,807 2,763 3,326 1,900 1,426
Pan troglodytes ellioti 8 98 5,341 3,242 1,779 3,951 2,169 1,638
Pan troglodytes verus 5 131 4,129 2,864 1,150 2,958 1,842 1,041
Pan troglodytes schweinfurthii 6 225 5,607 3,002 1,875 3,697 2,146 1,116

Homo sapiens* 10 158 2,932 127 2,805 448 35 413
Gorilla 35 830 8,809 3,309 5,127 5,059 1,711 2,937

Gorilla gorilla gorilla 32 753 8,445 3,228 4,791 4,686 1,708 2,563
Gorilla beringei graueri 2 53 5,382 — — 2,748 — —

Gorilla gorilla diehli 1 24 4,491 — — 2,295 — —

Pongo 13 446 1,739 974 765 13,410 5,800 7,610
Pongo abelii 6 217 1,666 1,267 399 11,378 7,235 4,143
Pongo pygmaeus 7 229 1,571 1,066 505 10,797 6,935 3,862

Total 93 2462 24,210 10,399 13,175 25,242 13,368 11,417

Discovery was based on the analysis of 93 genomes; genotyping status of fixed versus polymorphic was restricted to 72 genomes with the highest coverage
and best insertion size distributions. Cov, coverage; Ins, insertions.
*A total of 7,041 Alu insertions and 1,488 L1 insertions in human lineage that also exist in GRCh36.
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chimpanzee–human ancestral and chimpanzee–human–gorilla an-
cestral lineages (6–8 Mya).
We investigated the correlation between SNP heterozygosity

with Alu and L1 diversity for each subspecies. Since the same
genomes have been completely sequenced and SNPs identified, this
represents one of the first times that MEI and SNP diversity can be
comprehensively compared in the same samples. We computed
SNP heterozygosity (32) as the ratio of heterozygous SNPs over the
length of the genome and compared it to the average Alu and L1
differences between samples within a given population or sub-
species (allele sharing method) (22). Interestingly, we find almost
no correlation between Alu insertion diversity in great apes with
SNP heterozygosity (r2 = 0.07, P = 0.44), whereas L1 insertion di-
versity has moderate correlation with SNP heterozygosity (r2 = 0.65,
P = 0.0025) (SI Appendix, Figs. S15 and S16).
Using the MEIs as genetic markers, we constructed both

neighbor-joining (41) and Unweighted Pair Group Method with
Arithmetic Mean phylogenetic trees for humans and great apes and
compared them to a phylogeny constructed from single-nucleotide
variants generated from the same great ape genomes (Fig. 2 and
SI Appendix, Fig. S10) (32). One of the advantages of a phylo-
genetic tree constructed using MEIs is that there are, in princi-
ple, no backward mutations or revertants; as such, the absence of
an MEI insertion is ancestral and the presence of an insertion
indicates identity by descent. For the purpose of this study, we
limited this analysis to 72 genomes with the highest coverage and
largest insert-size distributions to avoid potential ascertainment
biases in discovery and ensure the most accurate genotype for
each genome (SI Appendix, Table S2). The general topology of the
human–great ape phylogeny is remarkably consistent; both Alu
(Fig. 2B) and L1 (Fig. 2C) trees show 100% bootstrap support for
the separation of all known great ape species, and there is strong
bootstrap support for the separation of the four chimpanzee sub-
species. However, the phylogenetic analysis also suggests that dif-
ferent MEIs confer different resolution, especially among terminal
branches depending on the great ape population. Whereas Alu
insertions robustly distinguish populations of human, chimpanzee,
and gorilla, we were unable to discriminate the different species
of orangutan based on an Alu insertion phylogeny. This is in
sharp contrast to L1s, which not only clearly distinguish Bornean
and Sumatran species but also suggest distinct subpopulations
with 100% bootstrap support within this primate lineage.
A principal component analysis (PCA) provides insight into ad-

ditional substructure within different ape populations (Fig. 3 and SI
Appendix, Figs. S11–S14). The PCA analysis combining both Alu

and L1 insertions clearly separates the four chimpanzee subspecies
and identifies one Nigerian chimpanzee (Julie) as an outlier. No-
tably, the same individual was identified as an outlier in the PCA
analysis using SNPs (SI Appendix, Fig. S13) (32). It is interesting
that the first principal component (PC1) based on Alu insertions
distinguishes two groups of chimpanzee: western-Nigerian from
central-eastern. A similar result is seen for PCA from SNPs but not
L1 insertions. Although there is no information available on the
geographic origin of the bonobos, there is evidence of a re-
producible clustering of individuals based on Alu, L1, and SNP
PCA (32). For the gorilla, PC1 from both L1s and Alus separates
Eastern lowland gorillas from western lowland gorillas. Notably and
also supported by the SNP data, a PCA analysis of western lowland
gorilla samples using the combination of Alu and L1 insertions
shows a gradient along PC2 consistent with their country of origin
(i.e., Congo or Cameroon). All PCA analyses separate Sumatran
and Bornean orangutans (with the exception of Kiki) along PC1.
Additional substructure is observed for the Borneans along PC2 for
both Alu and L1 insertions, which are not observed with SNP data.
The availability of multiple deeply sequenced ape genomes

allowed us to unambiguously assign Alu and L1 insertions to
terminal and ancestral branches along the human–great ape
phylogeny. We used this information to estimate the rate of Alu
and L1 insertion accumulation at different times during evolu-
tion. For the purpose of rate calculations, we limited our analysis
to 10 genomes per species (human, chimpanzee, bonobo, gorilla,
and orangutan) with the highest sequence quality to avoid po-
tential artifacts that might arise from lower coverage. We com-
puted the rate of insertion per lineage per million years (based
on estimated species divergences) and normalized the number of
average insertions per million SNPs for each branch of great ape
evolution (Fig. 4 A and B). The latter has the advantage of
eliminating the inherent uncertainty associated with species di-
vergence and replacing it with a neutral genetic distance esti-
mator. In addition, normalization of the MEI rates against SNP
rates for each lineage gives us the ability to control for de-
mographic effects (such as population size) in each lineage. Such
demographic changes should affect MEI and single-nucleotide
substitutions equally helping to eliminate skews that could be
introduced by a simple ultrametric-based approach.
Our results quantify Alu and L1 accumulation across the great

ape phylogeny, revealing radical differences in Alu and L1 in-
sertion activity along each branch (Fig. 4). Changes in Alu ac-
tivity appear to be most dramatic, differing by a factor of 15-fold
over a few million years. The orangutan lineage and ancestral
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Fig. 1. Insertion bias. (A) Fraction of Alu (blue) and L1 (red)
insertions that map within genic regions compared with a
random distribution (green). Insertions are classified as species
specific (S) or shared between chimpanzee (C), bonobo (B),
human (H), gorilla (G), and orangutan (O). (B) Fraction of Alu
and L1 insertions that map within protein-coding sequence
(CDS) and untranslated regions (UTRs) of genes based on
RefSeq. A significant bias is observed against each based on
a random insertion model. (C) Significant bias is also observed
against insertions in the sense orientation of gene transcrip-
tion. (D) GC content of Alu insertion events classified by phy-
logenetic category and sorted by increasing GC content.
Human-specific events are distinguished based on allele fre-
quency (±50% frequency), whereas orangutan-specific inser-
tions are grouped as shared or specific to one of the species
(Su, Sumatran or Bo, Bornean).
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human–chimpanzee branch show the lowest rate (27–45 Alus per
million SNPs), whereas the terminal African ape branches all show
an increase (317–421 Alus per million SNPs). Interestingly, the
number of fixed Alu insertions in the chimpanzee lineage is reduced
by 4-fold compared with those fixed on the human lineage (5,567 vs.
1,350). Most of these differences appear to be the result of far fewer
insertion events before divergence of chimpanzee and bonobo.
In contrast to the Alu insertions, the accumulation of L1 ele-

ments has been more constant and clocklike with an average rate
of 141 L1 insertions per million SNPs. Our analysis suggests a
maximum rate difference of 2.7-fold. We observe the highest rate of
accumulation in the common ancestor of human and African apes
(241 L1 insertions per million SNPs) followed by the orangutan
lineage, which approximates the ancestral rate (180 L1s per million
SNPs). African great ape lineages, in general, show a continual
decline with human terminal branch representing the nadir (90 L1s
per million SNPs). In general, there is a weak negative correlation
with Alu and L1 activity (r = −0.409, P = 0.31), which is slightly
more prominent for terminal branches of the great ape phylogeny
(r = −0.5578, P = 0.32) (SI Appendix, Figs. S21 and S22).

Discussion
Our analyses of deep genome sequence data from 83 great apes has
provided one of the most comprehensive surveys of Alu and L1

genetic variation among any group of closely related mammalian
species to date. Although our results more than triple the number
of lineage-specific Alu and L1 insertions known for humans and
great apes, the census is not yet complete even for the genomes we
have sequenced. The short-read nature of next-generation se-
quencing limits our ability to map insertions near or within re-
petitive sequences (34, 37). Our comparison with the chimpanzee
reference genome suggests a false negative of ∼30%, which reduces
to 9% when excluding MEIs that map within segmental duplica-
tions and other common repeats. In contrast to other forms of
structural variation and SNPs, Alus and L1s do not appear to have
been a potent force disrupting the protein-coding regions of genes.
We have identified only 10 possible events in contrast to the more
than 1,886 predicted loss-of-function mutations that arose and fixed
as a result of insertion/deletion and single-nucleotide substitution
during great ape evolution (32). We note that further examination
reveals that three of our predicted protein disruptions actually map
adjacent to an exon (based on chimpanzee and gorilla genome
data), four are restricted to a single sample and are not fixed, and
the final three are seen in genes in the orangutan which have un-
dergone segmental duplication but are a single copy in humans. We
conclude that L1 and Alu repeats have contributed minimally
to gene loss by way of disrupting protein-encoding ORFs during
evolution, likely because such events are deleterious and eliminated
by purifying selection (42). Note, the relative number of MEI to
SNP/indel gene-disruptive mutations observed between ape ge-
nomes is concordant with the ratio of disease-causing mutations
reported for humans in the literature (i.e., a factor of ∼350- to
1,000-fold more SNP and indel mutations versus MEIs) (43, 44).
Both L1 and Alu markers recapitulate the generally accepted

phylogeny of humans and great apes well, including strong evidence
for separation of chimpanzee into four distinct subspecies. Because
these markers are not subject to homoplasy (18), the root can be
unequivocally identified in each tree unlike other forms of genetic
variation. Our results, similar to data from SNP analysis (32),
suggest a bipartite division of Pan troglodytes where western and
Nigerian chimpanzees form one group and central and eastern
chimpanzees represent another group. Interestingly, western chim-
panzees show the greatest difference (both PC1 and PC2 distin-
guish this group based on PCA) from other chimpanzees, harbor
the greatest number of ancestry-informative MEIs, and show the
lowest genetic diversity—all consistent with a population that has
experienced a strong bottleneck. Compared with single-nucleotide
markers, we also observe significant distortions in branch length
along the primate tree consistent with differences in MEI activity
at different time points during evolution as well as the fact MEI
polymorphisms sample deeper aspects of the species genealogy
(16). Among pongids, for example, L1 insertions appear to provide
additional resolving power to distinguish subpopulations of orang-
utan (but not chimpanzee or gorilla). Based on our limited sam-
pling of several genomes, we have now defined 9,000 markers that
are unique to a specific subspecies of chimpanzee or gorilla and
over 40,000 markers specific to each species or lineage. These re-
present an important resource for testing of a much larger cohort
of samples from different subspecies to define ancestry-informative
markers for population genetics and conservation purposes.
Our analysis suggests that the accumulation of MEIs has varied

substantially on different branches of the human–great ape phylo-
genetic tree. Our estimated rates differ from some previous studies
(24, 26, 29) (as we report significantly more Alu and L1 insertions
for chimpanzee, bonobo, and orangutan) but are consistent with
others, such as those reporting a 2.2-fold excess of Alu insertions
along the human branch compared with chimpanzee (22, 23) or
a 1.22-fold excess of Alu insertions comparing bonobo to chim-
panzee (24). Overall, Alu repeats show the most dramatic changes
over the shortest time intervals with rates of accumulation differing
by 15-fold and varying significantly among all branches (P = 1.03 ×
10−16). By comparison, differences in L1 accumulation are much
more modest and gradual (two- to threefold). Not surprisingly,
there is a good correlation between L1 diversity and SNP hetero-
zygosity for each branch, whereas no such correlation exists for
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Fig. 2. Ape phylogeny. Neighbor-joining trees constructed from (A) SNP, (B)
Alu, and (C) L1 insertions define the genetic relationship among species and
subspecies of great apes. Only the bootstrap scores above 80% are shown. MEI
neighbor-joining trees were constructed based on the presence of Alu or L1
elements and represent a subset (n = 72) of samples analyzed for SNPs (32).
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Alus. Our results suggest that humans, chimpanzees, and bonobos
all experienced an increase of Alu accumulation (independently on
both branches) compared with the African ancestral branch or the
orangutan lineages. The human lineage shows the most notable
decline in L1 accumulation in contrast to chimpanzees where L1
activity apparently doubled after divergence from bonobos and
chimpanzees but before the divergence of chimpanzee subspecies.
L1 activity is also significantly higher in the orangutan, African
great ape, and human–chimpanzee ancestral lineages (P = 1.67 ×
10−6). Rates of Alu accumulation generally reciprocate those of
L1s —i.e., when L1 rates are high, Alu accumulation is low (com-
pare, for example, the orangutan and human lineage). This inverse
relationship is thought to arise, in part, from the competition of
SINEs and LINEs for the same reverse transcription machinery,
although the effect of this interaction on the rate of insertion is both
controversial and not well understood (43, 44).
Our analysis suggests a more complicated model—one in which

Alu activity shows much more volatility in contrast to either L1
retrotransposition or single base pair substitution over the course of
great ape evolution. One possibility may be that Alu activity is more

susceptible to mutations that significantly dampen or improve their
ability to retrotranspose or overcome cellular control mechanisms.
This has been postulated to explain the sudden rise of Alu Ya5 and
Yb8 events on the human lineage since separation from chimpan-
zee (28) as well as other bursts of activity along the primate lineage
(45). We investigated this possibility by attempting to classify the
various lineage-specific and ancestral MEIs into subfamilies based
on a reanalysis of the short-read sequence data. Our results re-
vealed that the resurgence of Alu Y mobile elements was driven by
distinct subfamilies in human and chimpanzee. As expected, Alu
Ya5 and Yb8 predominate in the human lineage, whereas Alu Yc1
and Yc2 predominate in both the bonobo and chimpanzee lineages.
In contrast, when we perform this analysis for L1 retroposons, we
find that both the human and chimpanzee lineages show fewer
distinctive subfamilies with L1PA2 being most abundant followed
by L1-Hs and L1-Ptr in the human and chimpanzee lineages, re-
spectively. Whereas additional high-quality sequence for these
nonreference insertions is required for a more detailed analysis,
these data are consistent with L1 subtype and activity being more
constant during (at least) recent primate evolution, whereas Alu
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Fig. 3. PCA. Principal component analysis
using merged Alu and L1 insertions events
on GRCh36 is depicted for chimpanzee,
gorilla, orangutan, and human. Names
indicate individual genomes sequenced.
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activity is more dependent upon changes in the competitive po-
tential of the source elements that arise within specific lineages.

Materials and Methods
Data and Samples. All of the raw sequencing data were generated by the
Great Ape Genome Project (32) and have been deposited into the Sequence
Read Archive (SRA accession no. PRJNA189439/SRP018689). Mobile element
insertions (MEIs) predicted for human and other great apes can be accessed
online at http://eichlerlab.gs.washington.edu/greatape-MEI/.

MEI Discovery. MEI discovery is based on a VariationHunter paired-end
mapping (PEM) strategy, as described previously (34, 35, 46). We used two
different approaches to classify recent MEIs within the human reference
as well as MEIs that do not exist within the human reference genome
(GRCh36). For nonreference MEIs, we considered all PEM where one end
maps to the reference genome and the other maps to a consensus set of
Alu and L1 elements (RepeatMasker). For characterization of Alu and L1
insertions that do exist in the reference genome, we used the discordant
read mappings from great ape genomes to identify a deletion that precisely
specified an Alu or L1 in a specific genome or lineage. See SI Appendix for
additional details.

Polymorphism Analysis. For each lineage we can calculate the likelihood of
an event being fixed given the number of samples we have seen in the in-
sertion. We define an insertion to be fixed if its likelihood of it being fix
is >90% (with assumption of genotyping error of 10%). More formally for a

lineage with n samples we first find the largest k such that for an event
which is seen in k or more samples, the following equation holds

Pðseen in≥ kjfixedÞ ≈
Xn
i= k

�
n
i

�
0:9i0:1n−i > 0:9:

Then we assume any insertion which is seen in more than k samples of this
lineage to be fixed insertion in that lineage.

PCR Validation. For genotyping accuracy calculation we designed PCR primers
∼220 bp proximal and distal to the predicted Alu and L1 insertion break-
points. We expected to see an amplification product of ∼440 bp. In cases
where we observed ∼740-bp fragments (440 + 300 bp for Alu), we consid-
ered the prediction as validated. For L1s the increased fragment size can vary
and the value used is the length of insertion predicted. The details of PCR
validation for the ILS set are explained in the SI Appendix.
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