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Landau levels in lattices with long-range hopping
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Landau levels (LLs) are broadened in the presence of a periodic potential, forming a barrier for accurate
simulation of the fractional quantum Hall effect using cold atoms in optical lattices. Recently, it has been shown
that the degeneracy of the lowest Landau level (LLL) can be restored in a tight-binding lattice if a particular form
of long-range hopping is introduced [Kapit and Mueller, Phys. Rev. Lett. 105, 215303 (2010)]. In this paper, we
investigate three problems related to such quantum Hall parent Hamiltonians in lattices. First, we show that there
are infinitely many long-range hopping models in which a massively degenerate manifold is formed by lattice
discretizations of wave functions in the continuum LLL. We then give a general method to construct such models,
which is applicable to not only the LLL but also higher LLs. We use this method to give an analytic expression
for the hoppings that restores the LLL, and an integral expression for the next LL. We also consider whether the
space spanned by discretized LL wave functions is as large as the space spanned by continuum wave functions,
and we find the constraints on the magnetic field for this condition to be satisfied. Finally, using these constraints
and the first Chern numbers, we identify the bands of the Hofstadter butterfly that correspond to continuum LLs.
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I. INTRODUCTION

Cold-atom experiments are ideal for controlled exploration
of some of the fundamental problems in many-particle physics.
To date, there has been great progress for models such as
resonant interactions [1] and the Mott transition [2], however
one of the most important areas, namely the fractional quantum
Hall effect, has remained elusive. Simulating quantum Hall
effects by rotation [3] and artificial magnetic fields [4] in
harmonic traps has not been possible, as these systems require
extremely fine control over the uniformity of the artificial field
or the rotation rate [5]. Recently, it has been demonstrated that
optical lattices offer a variety of options for the creation of
high artificial magnetic fields [6]. Optical lattice systems are
generally easier to control, and the filling factor, which is the
ratio of the number of particles to the number of flux quanta,
can be lowered by standard methods in these systems [7]. It is
reasonable to expect that quantum Hall physics will be probed
by optical lattice experiments in the near future.

However, the presence of the optical lattice potential
changes the physics of the quantum Hall problem significantly.
A periodic potential lifts the degeneracy of the Landau levels
(LLs) and broadens them into bands. The number of magnetic
bands and their widths depend critically on the lattice constant
[8]. The resulting energy spectrum is generally a self-similar
fractal. For example, a nearest-neighbor tight-binding model
in a square lattice gives the Hofstadter Butterfly [9] spectrum.
(See Fig. 1.) The broadening of the LLs is especially important
for the many-particle problem. Unless the LLs are flat enough,
kinetic energy will dominate over interactions, and highly
correlated states will not be observed. Even when the LL
broadening is made much smaller than the interaction energy
scale, the physics of the lattice system may differ from that of
the continuum. There is compelling evidence for the existence
of fractional quantum Hall states on the lattice which lack a
continuum limit [10]. Thus, it would seem that an optical lattice
experiment which has energy bands and wave functions with
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discrete symmetries will not directly probe the usual quantum
Hall physics.

Cold-atom systems are extremely versatile, and in a
surprising development Kapit and Mueller have shown that
by introducing a particular form of long-range hopping to the
square lattice, it is possible to create a system that exactly
mimics the lowest Landau level (LLL) on the lattice [11]. In
a lattice with Kapit-Mueller hoppings, there is an infinitely
degenerate manifold, and the states forming this manifold are
exactly LLL wave functions sampled on the square lattice.
Thus, such a lattice Hamiltonian forms a parent Hamiltonian
for certain fractional quantum Hall states. For example, the
Laughlin wave function for ν = 1/3 is an exact eigenstate on
this lattice, and it is the ground state in the presence of on-site
repulsive interactions.

The importance of this long-range hopping model is
twofold. First, hopping strengths in an optical lattice can be
modified by tailoring the lattice potential or by dynamical
hopping methods [7], and an optical lattice with long-range
hopping can experimentally realize fractional quantum Hall
states. Second, as a theoretical development, this model
bridges the gap between continuum and lattice models for
quantum Hall physics, and it makes it possible to simulate
quantum Hall effects with a new method [12]. Hence, it is im-
portant to investigate and generalize this long-range-hopping
model, both to understand the underlying physics in greater
detail and to search for models that can be experimentally
implemented.

Beyond cold-atom systems, there are recent proposals
for probing lattice quantum Hall physics using circuit QED
[13,14], coupled dissipative optical resonators [15], or in a
general quantum circuit architecture [16]. While these systems
take a more indirect route toward realization of bosonic
quantum Hall states, they present great potential for realization
of lattice Hamiltonians with longer-range hopping. Models
considered here can aid in the design of such artificial bosonic
lattices to probe correlated states.

In this paper, we consider the general properties of long-
range-hopping Hamiltonians which can mimic LL structure
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FIG. 1. (Color online) Energy bands for the nearest-neighbor
tight-binding model on a square lattice [9]. Energy is measured in
units of nearest-neighbor hopping, and φ is the ratio of magnetic flux
per plaquette to flux quantum. Energy bands are displayed for all
fractions φ = p/q with q � 80.

accurately. First, we investigate whether the Kapit-Mueller
Hamiltonian is unique in creating a LLL on the lattice.
A simple argument shows that there are infinitely many
models which recreate the LLL in the desired form. For this
argument we define the projection operators, which separates
the subspace of the Hilbert space that is spanned by lattice-
sampled LLL wave functions. While two different states in
the continuum LLL are orthogonal, lattice wave functions
that are formed by sampling them are not. Thus, an explicit
expression for the projection operators is obtained by utilizing
the symmetries of the problem.

Reference [11] relied on a lattice sum identity to find the
long-range-hopping model. This identity is remarkable in its
efficiency, however it is opaque in the underlying physics
and not suitable for generalization. Here, using the projection
operators, we formally describe a method to construct the most
general long-range-hopping model that has a LLL. The method
can be used in an arbitrary lattice, and to reconstruct any
desired LL. For the LLL, we start from the formal expression in
terms of the projection operators and find analytic expressions
for a sample long-range-hopping model which has two
infinitely degenerate bands, one being the desired LLL on
the lattice. For the first excited LL, we calculate the required
hopping strength between any two lattice sites in terms of
an integral, which can be evaluated numerically. For both
cases, we numerically diagonalize the resulting Hamiltonian
and verify that the desired LL is flat to our numerical precision.
In the models we give, the hopping strength between two sites
decays exponentially with distance, and is negligible after the
third nearest neighbors. Thus, although infinitely long-range
hopping is required for exactly flat bands, an experimental
realization can obtain high degeneracy by facilitating hopping
to the first few nearest neighbors.

Our analysis also enables us to answer a related question:
“What is the largest lattice constant one can use to discretize
space for a particle under a magnetic field and still describe its
dynamics correctly?” We find that for a particle in the LLL,
any lattice size is adequate as long as the flux per plaquette of
the lattice, φ, is below 1. For a particle in the first excited LL,

the lattice has to be finer so that φ < 1
2 . Our numerical results

suggest that for the nth LL, the constraint is φ < 1
n+1 .

When long-range hopping as described in this paper is not
present, it is not clear how one can define Landau levels on a
lattice. Nonetheless, by investigating the Hofstadter butterfly
for low magnetic fields, one can observe that the Landau level
structure is present and identify certain bands with Landau
levels [17]. The continuity of the butterfly spectrum notwith-
standing, it is hard to extend this identification to beyond
φ ≈ 1/3 [18]. We find that an unambiguous identification can
be made by considering the discretized wave functions of a
LL and asking which bands of the Hofstadter spectrum are
formed by states lying entirely in the manifold spanned by
these discretized states. A continuous connection between the
LL set and the Hofstadter spectrum is obtained by turning
off the hopping strengths except for nearest neighbors. We
empirically find that the first Chern numbers of the largest
gaps facilitate quick identification of the corresponding LL for
any band.

The paper is arranged as follows. In the next section, we
introduce the problem in detail, set the notation, and review
the result of Ref. [11]. Section III contains the details of the
projection operators and the general expression for long-range-
hopping models with the desired property. In Sec. IV, the
method in the previous section is used to calculate explicit
expressions for hopping strengths that reconstruct the LLL. In
Sec. V, we first generalize the calculation to the first excited
Landau level (1LL) and then present the results related to
identification of LLs in the lattice problem. We conclude in
Sec. VI with a summary and a discussion of the implications
of our results. The Appendix contains a detailed evaluation of
the integral used to calculate the LLL Hamiltonian.

II. PROBLEM DEFINITION

The Hamiltonian for a particle of mass m and charge e on
a plane subject to a perpendicular magnetic field B is

Hcont = 1

2m
( �P − e �A)2, (1)

where P is the momentum operator and �A is the vector
potential. We choose the Landau gauge,

�A = BX ŷ, (2)

with X ,Y the continuous coordinates of the plane. The
eigenfunctions are labeled by the LL index, an integer n, and
a real number ky . The wave functions in the LLL with n = 0,

�ky
(X ,Y) = 1

(π�2)
1
4

e
− (X−X0)2

2�2 eikyY , (3)

are degenerate with energy ε0 = h̄ωc. Magnetic length � =√
h̄

mωc
and cyclotron frequency ωc = eB

m
follow the standard

definitions and X0 = h̄ky

eB
.

Now we introduce a lattice model, with one state localized
at each site of the square lattice,

�r = xx̂ + yŷ, (4)

where the coordinates x and y take on integer values so that the
lattice constant is unity. The localized state at x,y is created
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over the vacuum with

|x,y〉 = a†
x,y |vac〉, (5)

and any one-particle wave function can be written as

|ψ〉 =
∑
x,y

ψ(x,y)|x,y〉. (6)

The objective is to find a one-particle Hamiltonian, defined
through the hopping strengths J as

H =
∑
x,y

∑
x ′,y ′

J (�r,�r ′)a†
�r a �r ′ , (7)

so that a massively degenerate manifold is formed by lattice
states ψky

, which are obtained by sampling the continuum LLL
wave functions at lattice points,

ψky
(x,y) = �ky

(X = x,Y = y). (8)

The long-range-hopping Hamiltonian can only depend on the
magnetic flux per plaquette of the lattice φ. We will assume
that φ = p/q is a rational number with co-prime integers p

and q.
If the sampled wave functions are in one-to-one corre-

spondence with the continuum LLL wave functions, and are
degenerate, this lattice Hamiltonian will accurately mimic the
continuum model. On-site interactions do not significantly
modify the correspondence between the lattice and the contin-
uum problems, especially for fractional quantum Hall states
which minimize the local interaction between particles subject
to the constraint of Landau levels.

It is of course not immediately clear that such a lattice
model can be found. The simplest hopping models, such as
the Hofstadter Hamiltonian with

J (�r,�r ′) =
{−eiπφ(y−y ′)(x+x ′), |�r − �r| = 1,

0, otherwise,
(9)

hopping only to the nearest neighbors, give a spectrum of
bands which are critically dependent on the flux per plaquette
(see Fig. 1). The first example of a long-range-hopping model
with a LLL was given by Kapit and Mueller [11], which in the
Landau gauge is

JKM(�r,�r ′) = (−1)X+Y+XY e− π
2 (1−φ)[X2+Y 2]eπiφY (x+x ′), (10)

with X = x − x ′ and Y = y − y ′, creating the spectrum seen
in Fig. 2. This model has a number of remarkable properties.
While the hoppings are formally of infinite range, the absolute
value of the hopping strength decays as a Gaussian, so unless
the flux φ is close to 1, only a few nearest neighbors are
important. The phase of the hopping strength follows a simple
plus-minus pattern apart from the complex coefficients created
by the magnetic field. Both of these qualities make the model
more conducive to experimental realization [11].

However, the derivation in Ref. [11] relies on a sum rule,
obtained through exploration of the completeness of coherent
states for a harmonic oscillator [19]. Consequently, it is not
clear if this Hamiltonian is unique in providing a LLL or
whether similar lattice Hamiltonians can be engineered for
higher Landau levels or other flatband models. In the next
section, we consider the most general model with the same
properties and argue that projection operators clarify the
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FIG. 2. Energy bands for a square lattice with long-range hopping
defined in Ref. [11], given in Eq. (10). Energy is measured in units
of nearest-neighbor hopping strength as in Fig. 1, while φ is flux
quantum per plaquette of the lattice. For all values of φ there is a
massively degenerate band with energy −1, while higher bands are
broad with φ-dependent energy. The bands are displayed for φ < 0.75
to visualize the structure of the higher bands.

physics of the correspondence between the continuum and
the lattice models.

III. PROJECTION OPERATORS

We start by considering the Hilbert space 
 formed by all
one-particle wave functions on the lattice, which is spanned
by the set |x,y〉. This Hilbert space can be separated into two
disjoint sets; the subspace of wave functions 
0 that can be
written as a linear combination of the discretized LLL wave
functions ψky

, and its complement 
′
0. Then formally we can

define the projection operator P0 with

P0ψ =
{

ψ, ψ ∈ 
0,

0, ψ ∈ 
′
0.

(11)

In terms of this projection operator, the following Hamilto-
nian can be defined:

H = ε0P0 + (1 − P0)H′(1 − P0). (12)

In this definition, ε0 is an arbitrary real number and H′ is an
arbitrary one-body Hamiltonian. We see that H satisfies the
two conditions we set for the long-range-hopping model with
a LLL. All the states in the space 
0 have energy ε0, thus they
form a massively degenerate manifold. All the wave functions
obtained by discretization of the LLL wave functions lie in 
0,
thus they are part of this degenerate manifold. The required
long-range-hopping strengths are obtained by

J (�r,�r ′) = 〈x,y|H|x ′,y ′〉. (13)

The choice of H′ affects the real-space hoppings without
altering the properties of the degenerate manifold. Hence all
possible H′ yield long-range-hopping models with the same
properties of the Kapit-Mueller Hamiltonian, showing that
there are infinitely many such models.

While the existence of the projector P0 is easily assured,
its explicit construction is not straightforward. While two LLL
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wave functions with ky 	= k′
y are orthogonal,

〈�ky
|�k′

y
〉 =

∫
dX dY �∗

ky
(X ,Y)�k′

y
(X ,Y) = 0, (14)

the functions formed by sampling them on the lattice are in
general not so,

〈ψky
|ψk′

y
〉 =

∑
x,y

ψ∗
ky

(x,y)ψk′
y
(x,y) 	= 0. (15)

Thus the projector P0 cannot simply be expressed as

P0 	=
∑
ky

∣∣ψky

〉〈
ψky

∣∣. (16)

Furthermore, as we discuss in Sec. V, the dimension of the
subspace 
0 is not necessarily equal to the dimension of the
Hilbert space spanned by continuum LLL wave functions.

Projection operators defined in this manner are not specific
to the LLL, and this method can be easily extended to a
higher LL, or to mimic continuum Hamiltonians with lattice
models in general. However, explicit calculation of the long-
range-hopping strengths depends on the details of the wave
functions in the degenerate manifold. In the next section, we
construct the projection operator P0 by forming a complete
orthonormal set out of the projected LLL wave functions,
and we give explicit expressions for hopping strengths. The
following section contains the application of the method to the
first excited LL, and restrictions involved in discretization.

IV. LOWEST LANDAU LEVEL

The wave functions in the LLL are labeled by the wave
vector ky ∈ R in the Landau gauge,

�ky
(X ,Y) =

(
1

π�2

) 1
4

e
− (X−X0)2

2�2 eikyY , (17)

with X0 = h̄ky

eB
. We sample these wave functions on the

(integer) lattice points x,y to form the discretized wave
functions

ψky
(x,y) =

(
2p

q

) 1
4

e
− πp

q
(x− q

2πp
ky )2

eikyy . (18)

Here, the only parameter is the flux quantum per plaquette
of the lattice φ = p

q
, with p and q co-prime integers. After

discretization, the sampled wave functions are no longer
normalized, as the inner product changes from an integration
to a sum on the lattice. The normalized wave functions can be
written as

ψky
(x,y) = 1√

2πθ3
(
iky

∣∣i 2p

q

)e
− πp

q
x2+kyxeikyy, (19)

where θ3(z|τ ) is the third Jacobi theta function of z, with
quasiperiod τ [20]. The discretization process also changes
the orthogonality properties of the lattice wave functions.
Continuum wave functions within the Landau gauge are
orthogonal as Y translation is a continuous symmetry. Upon
introduction of the lattice, this continuous symmetry is broken
into a discrete translational symmetry, and as a result two
lattice wave functions ψky

and ψk′
y

are no longer orthogonal if

their wave vectors differ by an integer multiple of 2π . Defining
a restricted wave vector ky = k̄y + 2πl1 and k′

y = k̄y + 2πl2,
with l1,l2 integers and −π < k̄y � π , we calculate the overlap〈

ψk̄y+2πl1

∣∣ψk̄y+2πl2

〉
= e

− q

2p
π(l1−l2)2 θ3

( qk̄y

2p
+ πq

2p
(l1 + l2)

∣∣i q

2p

)
√

θ3
( qk̄y

2p
+ πq

p
l1

∣∣i q

2p

)
θ3

( qk̄y

2p
+ πq

p
l2

∣∣i q

2p

) .

(20)

As discussed in the previous section, our aim is to form
a projection operator P0 into the subspace spanned by all
these wave functions. The simplest way to achieve this is
to orthogonalize the set ψ , using the magnetic translation
symmetry in the x direction. To illustrate the method with
the least possible algebra, we now restrict p = 1 and assume
that q is an even integer. At the end of the section, we discuss
the extension to the general case.

For p = 1, the overlap between two states,〈
ψk̄y+2πl1

∣∣ψk̄y+2πl2

〉 = e− q

2 π(l1−l2)2
, (21)

is independent of k̄y . Thus discrete translation symmetry by q

steps in the x direction leads to the definition of

|k̄y,kx〉 = 1√
2πθ3

(
kx

2

∣∣i q

2

)
∞∑

m=−∞
eikxm

∣∣ψk̄y+2πm

〉
, (22)

where kx is by definition bounded −π < kx � π . These states
are orthonormal, satisfying

〈k̄y,kx |k̄′
y,k

′
x〉 = δ(k̄y − k̄′

y)δ(kx − k′
x). (23)

The projector is then written simply in terms of these states
as

P0 =
∫ π

−π

dkx

∫ π

−π

dk̄y |k̄y,kx〉〈k̄y,kx |. (24)

Now we can construct the long-range model with the desired
properties using P0. The simplest choice is to use the projector
P0 as the Hamiltonian

H = P0 =
∑
�r,�r ′

J (�r,�r ′)a†
x,yax ′,y ′ ,

with the hopping strengths given by

J (�r,�r ′) = −
∫ 2π

0

dky

2π

∫ π

−π

dkx

2π

× θ3
( kx+iqky

2 − iπx
∣∣iq)

θ3
(−kx+iqky

2 − iπx ′∣∣iq)
θ3

(
kx

2

∣∣i q

2

)
θ3

(
iky

∣∣i 2
q

)
× e

− π
q

(x2+x ′2)
eky [(x+x ′)+i(y−y ′)]. (25)

This integral is evaluated in the Appendix, yielding

J (�r,�r ′) = −q

4

e
i π

q
(x+x ′)Y[

θ ′
1

(
0
∣∣ 2i

q

)]2 MX(Y )MY (X), (26)
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FIG. 3. (Color online) Energy bands as a function of kx,ky for
φ = 1/3, on the square lattice with long-range hopping given in
Eq. (26). Energy is measured in units of nearest neighbor hopping
and kx and ky are dimensionless due to integer lattice constant. The
lower band is the LLL manifold on the lattice, while the upper band
which contains twice as many states is formed by all the remaining
states. Both bands are flat in k space to our numerical precision,
verifying that the constructed Hamiltonian is the desired projection
operator P0. The flatness of the bands should be compared with Fig. 4.

with X = x − x ′, Y = y − y ′, and

Ma(b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ1

(
πb
q

∣∣ 2i
q

)
sinh

(
πb
2

) , a even,

θ4

(
πb
q

∣∣ 2i
q

)
cosh

(
πb
2

) , a odd.

(27)

We calculated the energy spectrum for a lattice with these
hopping strengths, for different values of φ = 1/q. We see
that the lowest band, with energy −1, is flat to our numerical
precision. The bands for our hopping strengths (Fig. 3)
should be contrasted with the usual nearest-neighbor hopping
bands for φ = 1/3 (Fig. 4). We performed another numerical
check to make sure that the lattice LLL wave functions
are eigenfunctions of this potential by directly applying the
Hamiltonian to a few LLL wave functions, and we found that
the deviation of their energy from −1 is less than our numerical
precision (10−7 in our dimensionless units).
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FIG. 4. (Color online) Energy as a function of kx,ky for a square
lattice with nearest hopping at φ = 1/3. Notice that the width of each
band is comparable to the separation between the bands unlike Fig. 3.
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FIG. 5. (Color online) Energy bands of the square lattice at
φ = 1/3, as a function of dimensionless α defined in Eq. (28). The
lowest band of the Hofstadter model (at α = 0) narrows as long-range
hopping is turned on and collapses to the LLL at α = 1. As the lowest
band does not touch the other bands during evolution, the first Chern
number of the band is preserved. This Chern number is equal to 1,
the Hall conductivity for the LLL. Notice that the two higher bands
also shrink down to a point as the Hamiltonian defined by Eq. (26)
projects out the states in these bands. The energies at α = 0 are shifted
from the Hofstadter model by adding a constant on-site energy term
J (0,0) = 1/3 so that the LLL has energy equal to −1.

We also explored how the Hofstadter butterfly spectrum
evolves to the flatband spectrum using the following method.
We defined a set of hoppings that interpolates from the nearest-
neighbor hopping to our long-range-hopping model,

J̃α(�r,�r ′) =
{

αJ (�r,�r ′), |�r − �r ′| > 1
J (�r,�r ′), |�r − �r ′| � 1

(28)

for 0 � α � 1. The result is displayed in Fig. 5 for φ = 1/3,
clearly showing the collapse of the lowest Hofstadter band to
the LLL. The two higher bands coalesce into another flat band,
as expected from the projector nature of our Hamiltonian.

An important property of the long-range-hopping model
presented above is the fast decay of the hopping parameters.
The hopping strengths decay exponentially with distance, and
for all φ = 1/q, even the third-nearest-neighbor hopping is
almost negligible. In Fig. 6, we plot the absolute value of the
hopping strengths. The finite range of the hopping increases
the possibility of experimental realization of lattices with a
LLL, and thus cold-atom fractional quantum Hall systems.
One can also further optimize the most general Hamiltonian
Eq. (12) so that the LLL is achieved with the introduction of
hopping to the minimum number of sites.

It is also worth noting that all the orthogonal states found in
Eq. (22) are normalizable. Because such an orthogonal basis
can be labeled by ky , it is proved that all the discretized LLL
wave functions are linearly independent. So for the LLL, for all
values of φ = 1/q the dimension of the Hilbert space spanned
by the projected wave functions is equal to the dimension of
the Hilbert space spanned by continuum LLL wave functions.

Lifting the restriction p = 1, the same orthogonalization
method can be applied. However, now the discrete translational
symmetry for sampled LLL states is reduced p-fold. Hence,
one must modify the definition of the states in the orthonormal
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FIG. 6. (Color online) Absolute value of hopping strengths from
the origin to the nearest sites, |J (x,y)|, defined in Eq. (26). The
hopping strengths decay exponentially for all φ, while for the case
of φ = 1/3 shown above they are negligible beyond the third nearest
neighbor.

basis spanning the lattice LLL by introducing a band index,

|k̄y,kx,γ 〉 =
∞∑

r=−∞

p−1∑
s=0

eikxruγ (s)
∣∣ψk̄y+2π(mp+s)

〉
, (29)

with γ defining the corresponding magnetic band. The
eigenvector uγ (s) can be obtained by diagonalizing the p-by-p
matrix,

As1,s2

= e
− qπ

2p
(s1−s2)2

×
θ3

( qk̄y

2p
+ qπ

2p
(s1 + s2)

∣∣ iq

2p

)
θ3

(
kx

2 − i
qπ

2 (s1 − s2)
∣∣ iqp

2

)
θ3

( qk̄y

2p
+ qπ

p
s1

∣∣ iq

2p

)
θ3

( qk̄y

2p
+ qπ

p
s2

∣∣ iq

2p

) .

(30)

While it is possible to express the long-range-hopping
strengths in terms of the inverse of the matrix A, we have
not been able to analytically evaluate this inverse for a general
value of p. Even for p = 2, the resulting expressions are very
long and provide little insight. It should be noted that it is
numerically very easy to calculate the hopping strength for
any lattice separation. Again numerical diagonalization of the
matrix A for arbitrary values of kx,ky lead us to conclude that as
long as φ < 1, the lattice LLL Hilbert space dimension is equal
to the continuum LLL Hilbert space dimension. At exactly
φ = 1, the number of LLL states is equal to the number of
lattice sites, and the space spanned by them is the total Hilbert
space of the lattice.

We also calculated the energy spectrum of a lattice with the
hoppings given in Eq. (26) for general values of φ by replacing
q → 1/φ. In the resulting energy spectrum, we obtain two
distinct bands, and while the LLL band is not degenerate,
kinetic energy is quenched to such a degree that the width of
the band is always smaller than 3% of the separation between
the bands. See Fig. 7.

V. HIGHER LANDAU LEVELS

The method presented in the preceding section does not
depend on the properties of the LLL, and can easily be
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FIG. 7. (Color online) Collapse of the bands into narrow mani-
folds for φ = 2/5 as a function of α [see Eq. (28)]. Here we used the
analytic expressions obtained for φ = 1/q by replacing q → 1/q,
thus the collapse of the bands into the LL structure is not exact,
nonetheless the final width of the manifolds is below 10−3 in our
dimensionless units. Exactly degenerate LLL can be obtained by
inverting the matrix in Eq. (30) and numerically calculating the
resulting integral.

extended to a higher LL. As an example, we consider the first
excited LL (1LL). In the Landau gauge, the wave functions of
the 1LL are

�1,ky
(X ,Y) = 1

(4π�2)
1
4

2

(
X − h̄ky

eB

�

)
e− 1

2 (
X− h̄ky

eB
�

)2
eikyY . (31)

Upon sampling on the square lattice, we obtain

ψ1,ky
(x,y) = [A0(ky)]−

1
2√

2π

(
x − qky

2π

)
e
− π

q
(x− qky

2π
)2

eikyy, (32)

where the normalization factor is defined as

Ar (ky) =
∞∑

x=−∞

(
x − qky

2π

)(
x − qky

2π
+ qr

)

× e
− π

q
[(x− qky

2π
)2+(x− qky

2π
+qr)2]

. (33)

The normalization factors can be expressed in terms of the
Jacobi θ functions and their derivatives as

A0(ky) = e− qk2
y

2π

[
− 1

4
θ ′′

3

(
iky

∣∣∣∣2i

q

)
+ iqky

2π
θ ′

3

(
iky

∣∣∣∣2i

q

)

+ q2k2
y

4π2
θ3

(
iky

∣∣∣∣2i

q

)]
. (34)

To find the long-range-hopping model that has a massively
degenerate first LL, we construct the operator P1, which
projects into the Hilbert space spanned by all the |ψ1,ky

〉. This
can again be achieved by forming an orthogonal set from linear
combinations of these sampled states based on the discrete
translational invariance. For mathematical simplicity, we again
take p = 1, in which case the overlap between two ky states
differing by an integer multiple of 2π is

〈
ψk̄y+2πl1

∣∣ψk̄y+2πl2

〉 = 1

2π

Al1−l2 (k̄y)

A0(k̄y)
. (35)

033612-6



LANDAU LEVELS IN LATTICES WITH LONG-RANGE HOPPING PHYSICAL REVIEW A 88, 033612 (2013)

The orthogonal set can be formed by straightforward Fourier
transformation,

|k̄y,kx〉 =
∑
lx

eikx lx
∣∣ψk̄y+2πlx

〉
, (36)

yielding

〈k̄′
y,k

′
x |k̄y,kx〉 = δ(k̄′

y − k̄y)δ(k′
x − kx)

∑
r

eikxr
Ar (k̄y)

A0(k̄y)
. (37)

The projector P1, and hence the long-range-hopping
Hamiltonian, can be constructed out of these wave functions,

P1 =
∫ π

−π

∫ π

−π

dk̄ydkx |k̄y,kx〉〈k̄y,kx |, (38)

which in the lattice basis translates into the hopping strengths

J1(�r,�r ′) =
∫ 2π

0
dky

∫ π

−π

dkx

∞∑
�1,�2=−∞

eikx (�1−�2)

2πS(kx ,ky )

×
(

x − qky

2π
− q�1

)(
x ′ − qky

2π
− q�2

)

× e
iky (y−y ′)− π

q
[(x− qky

2π
−q�1)2+(x ′− qky

2π
−q�2)2]

, (39)

where S = ∑∞
r=−∞ e−ikx rAr (ky). We numerically verified

that discretized 1LL wave functions are eigenfunctions of
the Hamiltonian with these hopping strengths, forming a
degenerate band as intended. Furthermore, as displayed in
Fig. 8, these hopping strengths also fall off quickly beyond the
first few neighbors, similar to the LLL. We remark that the
most general form Eq. (12) can serve as a starting point to find
hopping strengths with even shorter ranges.

There is one important distinction between the lattice
versions of the LLL and 1LL created by the long-range-
hopping models we give. For the LLL, the discretized set
|ψky

〉 forms a linearly independent set as long as the flux per
plaquette is below 1, φ < 1. In this sense, the dynamics of the
continuum LLL is mimicked exactly by these states, even in
the presence of local interactions. This is not the case for 1LL.

FIG. 8. (Color online) Absolute value of the hopping strengths
that reconstruct the 1LL at φ = 1/3. Notice that the hopping strengths
decay slower than the hoppings needed for the LLL construction. It
is also remarkable that the overlaps for the next nearest neighbors are
larger in magnitude compared to the nearest neighbors. The hopping
strengths are calculated by numerical evaluation of Eq. (39).
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FIG. 9. (Color online) Eigenvalues of the overlap matrix for 1LL
at φ = 1/2. Notice that the eigenvalues become zero at two points
in the Brillouin zone, kx = 0,ky = 0 and kx = 0,ky = π . Beyond
φ > 1/2 there are always eigenvalues equal to zero, showing that the
set of discretized 1LL is not linearly independent.

The set |ψ1,ky
〉 is linearly independent only if φ < 1

2 , while for
larger flux the number of independent states in the lattice 1LL
is smaller than the dimension of the continuum 1LL. This can
be deduced by investigating the orthogonal set of states we
constructed [see Eq. (36)]. These states diagonalize the matrix
formed by the overlaps 〈ψ1,k′

y
|ψ1,ky

〉. Thus the eigenvalues of
this matrix are

O(k̄y,kx) =
∑

r

Ar (k̄y)

A0(k̄y)
eikxr , (40)

which is plotted in Fig. 9 for φ = 1/2. At this flux, some of
the eigenvalues of the overlap matrix becomes zero, showing
that the set of states is no longer linearly independent.

It is easy to see why the lattice-sampled wave functions do
not have the full dimension of the continuum LLs. The flux
quantum per plaquette of the lattice, φ, is also a measure of the
number of states in a given LL per lattice site. For example,
at exactly φ = 1, the number of states in the LLL is equal to
the number of lattice sites. Thus, for any φ > 1

2 there are not
enough states in the lattice to fully represent both the LLL and
the 1LL. At φ = 1/2, all the states in the lattice are either in the
space spanned by the discretized LLL or the discretized 1LL,
correspondingly at this flux P0 + P1 = 1. It is worth noticing
the parallel between our method of lattice discretization and
the Nyquist theorem, which states that any function of time
can be reconstructed if it is sampled with a frequency above
twice the cutoff frequency of the Fourier transformation of that
function [21].

By this reasoning, we can argue that lattice discretized wave
functions of the nth LL can form a linearly independent set
only up to φ = 1

n+1 . We numerically checked this for the
first two LLs and observed that this upper limit is reached.
While we have not proved that the states in the higher LL stay
linearly independent up to the limiting φ value, investigation of
the Hofstadter butterfly spectrum and the first Chern numbers
related with the gaps strongly suggests this is the case.

The first Chern number for any given band can be defined
as the number of times the phase of the wave function at
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an arbitrary point in real space winds around 2π as the first
Brillouin zone is encircled in reciprocal space [22]. As this
arbitrary point in real space may be chosen to lie on the
lattice points, our discretization method conserves the Chern
number of the bands. All the LLs in the continuum have their
dimensionless Hall conductivity equal to 1, thus we expect the
discretized bands to have the same value for their first Chern
number. For the LLL, the continuous transformation between
the nearest-neighbor (Hofstadter) model and our long-range-
hopping model, as displayed in Fig. 5, shows that the first
Chern number is conserved as the lowest Hofstadter band for
φ = 1/q collapses into the discrete LLL. More generally, for
φ = p

q
, it is the lowest p bands that merge into the LLL.

The Hofstadter butterfly spectrum has clearly identifiable
LLs only for very low φ  1, but at a general value of the flux
the correspondence between the LLs and the magnetic bands of
the spectrum is not clear. A mathematical correspondence can
be made by asking the following question: “Which bands of
the Hofstadter butterfly consist entirely of states that lie in the
Hilbert space spanned by discretized LL wave functions at the
same flux?” While this correspondence is not a guarantee that
the physical properties of such bands will be directly inherited
from the corresponding LL, it provides an unambiguous way
to define the LL in the Hofstadter butterfly.

The Chern numbers, and correspondingly the Hall conduc-
tivities of the gaps in the Hofstadter butterfly, are easily deter-
mined through a Diophantine equation [22]. We numerically
find that these Chern numbers make it possible to identify the
correspondence between the bands and the LLs. While we only
could check this extensively for the first two Landau levels,
numerical evidence suggests that for φ < 1

n+1 , the bands lying
between the largest gaps with Hall conductivity n and n + 1
are entirely within the Hilbert space spanned by discretized nth
LL wave functions. In Fig. 10, we mark the regions that are
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FIG. 10. (Color online) Highlighted regions contain the bands
that are completely within the manifold spanned by wave functions
in a particular LL. The first four LLs are shown: LLL (blue), first
excited LL (yellow), second excited LL (green), third excited LL
(purple). For the nth LL, the region for which discretized LL states
are linearly independent is φ < 1

n+1 .

associated with the first four LL on the Hofstadter butterfly. For
φ > 1

n+1 , the Hilbert space spanned by the discretized wave
functions is smaller than the corresponding LL, which makes
it impossible to use the Chern numbers and our long-range
model construction to determine if the remaining bands in the
Hofstadter butterfly can be classified as belonging to a LL.

VI. CONCLUSION

Simulation of the fractional quantum Hall effect and other
correlated states using cold atoms remains an important goal.
In this paper, we investigated how lattices with long-range
hopping can be designed to aid that goal by quenching lattice
kinetic energy of atoms. Our main results can be summarized
as follows.

We find that there are infinitely many choices for hopping
strengths that give a massively degenerate manifold formed
out of the lattice-sampled LLL wave functions. All of these
can be constructed starting from the projection operator for
this manifold. The hopping strengths for the projector given in
Eq. (26) decay very quickly with distance, similar to the model
of Ref. [11]. This fast decay, and recent ideas on modification
of tunneling parameters in optical lattices, leads us to believe
that experimental realization of an optical lattice with a LLL is
within reach. An important problem would be to find hopping
parameters so that the LLL can be constructed by methods that
are currently used in optical lattices by coupling the minimum
number of neighbors.

We also show that the projection operator approach can be
applied to higher Landau levels, and we find that the hoppings
that create a degenerate 1LL manifold also decay exponentially
in space. We find that the one-to-one correspondence between
the continuum LL and discretized wave functions of the nth
LL lasts only up to a flux of φ = 1

n+1 . We suggest a method
to unambiguously identify the LL in the nearest-neighbor
Hofstadter model, based on a continuous mapping between this
model and the calculated long-range hoppings. Furthermore,
we found numerical evidence that this identification is easily
accomplished by investigating the first Chern numbers of the
gaps in the Hofstadter butterfly.

Our main point in this paper is that introduction of long-
range hopping to optical lattices will increase the possibility
of observing fractional quantum Hall effects in cold-atom
systems. It is, however, important to notice that the method
introduced in this paper, as well as the constructed projection
operators, has the potential to be used as a tool for numerical
simulation of correlated states. In a recent paper, the braiding
statistics of lattice bosons were numerically demonstrated
using the long-range-hopping model. Instead of the usual
exact diagonalization calculations, which rely on conserved
quantities to limit the size of the Hilbert space, projection
to the relevant lattice states can be achieved using the long-
range-hopping model [12]. It would be interesting to extend
this method to lattices with non-Abelian gauge fields [23].
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APPENDIX: EVALUATION OF THE INTEGRAL

Jacobi θ functions of argument z and quasiperiod τ are
defined following [20] as

θ1(z|τ ) =
∞∑

n=−∞
(−1)(n−1/2)eiπτ (n+1/2)2

e(2n+1)iz,

θ2(z|τ ) =
∞∑

n=−∞
eiπτ (n+1/2)2

e(2n+1)iz,

(A1)

θ3(z|τ ) =
∞∑

n=−∞
eiπτn2

e2niz,

θ4(z|τ ) =
∞∑

n=−∞
(−1)neiπτn2

e2niz.

The integral for the hopping strengths Eq. (25) can be
transformed using the identity

θ3(u|τ )θ3(v|τ ) = θ3(u + v|2τ )θ3(u − v|2τ )

+ θ2(u + v|2τ )θ2(u − v|2τ ) (A2)

to obtain

J (�r,�r ′) = e
− π

q
(x2+x ′2)[I5I1 + I6I2], (A3)

where I5, I1, I6, and I2 are the integrals with only one variable
(either kx or ky) given by

I5 =
∫ 2π

0

dky

2π

eky [(x+x ′)+i(y−y ′)]θ3[iqky − iπ (x + x ′)|2iq]

θ3
(
iky

∣∣ 2i
q

) ,

I1 =
∫ π

−π

dkx

2π

θ3[kx − iπ (x − x ′)|2iq]

θ3
(

kx

2

∣∣i q

2

) ,

I6 =
∫ 2π

0

dky

2π

eky [(x+x ′)+i(y−y ′)]θ2[iqky − iπ (x + x ′)|2iq]

θ3
(
iky

∣∣ 2i
q

) ,

I2 =
∫ π

−π

dkx

2π

θ2[kx − iπ (x − x ′)|2iq]

θ3
(

kx

2

∣∣i q

2

) . (A4)

We use the identity

θ2(2z|4τ ) = 1
2 [θ3(z|τ ) − θ4(z|τ )] (A5)

to write

I1 = I3 + I4, I2 = I3 − I4, (A6)

where I3 and I4 are given by

I3 =
∫ π

−π

dkx

4π

θ3
(

kx

2 − i π(x−x ′)
2

∣∣i q

2

)
θ3

(
kx

2

∣∣i q

2

) , (A7)

I4 =
∫ π

−π

dkx

4π

θ4
(

kx

2 − i π(x−x ′)
2

∣∣i q

2

)
θ3

(
kx

2

∣∣i q

2

) . (A8)

I3 and I4 are evaluated by considering the contour shown
in Fig. 11. The integrand has poles at k0 = π

2 + πτ
2 + nπ +

mπτ , where n,m ∈ Z. The contour integral shown in the figure

π/2-π/2

iqπ/4

iqπ/2

FIG. 11. (Color online) Contour for the integral I3 is shown in the
complex kx plane. The integrand has poles at kx0 = π

2 + πτ

2 + nπ +
mπτ , where n,m ∈ Z. The contributions from the two sides of the
contour cancel while the contribution from the top is related to I3 by
a quasiperiodic shift of θ functions.

is calculated by evaluating a residue at a single pole as

IC = i
θ3

(
π
2 + i

qπ

4 − i π(x−x ′)
2

∣∣i q

2

)
θ ′

3

(
π
2 + i

qπ

4

∣∣i q

2

) . (A9)

Due to the quasiperiodicity of the θ functions, the contour
integral is related to I3 as Ic = I3[1 − eπ(x−x ′)]. Using the
Jacobi imaginary transform [20], I3 is written as

I3 = 1√
2q

e
π(x−x′ )2

2q

sinh
[

π(x−x ′)
2

] θ1
(

π(x−x ′)
q

∣∣i 2
q

)
θ ′

1

(
0
∣∣i q

2

) . (A10)

By following the same procedure, one can obtain I4 as

I4 = 1√
2q

e
π(x−x′ )2

2q

cosh
[

π(x−x ′)
2

] θ4
(

π(x−x ′)
q

∣∣i 2
q

)
θ ′

1

(
0
∣∣i q

2

) . (A11)

I5 is evaluated by a similar method, considering the contour
in complex ky plane shown in Fig. 12. The integrand has poles
at the values ky(0) = −i π

2 + inπ + π
q

+ m 2π
q

, where n,m ∈ Z.
Once again, quasiperiodicity of θ functions relates the contour
integral to I5,

IC = I5[1 − e−iπ(x−x ′)e−π(y−y ′)]. (A12)

2ππ/q

iπ/2 ...
iπ

FIG. 12. (Color online) Contour for the integral I5 in the complex
ky plane. The unit cell shown has q poles in it and the coordinates
of the poles are given by ky(m) = i π

2 + π

q
(1 + 2m), where m =

0,1,2, . . . ,q − 1. Only the relevant row of poles is shown in the figure.
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There are q poles inside the integration contour, thus IC =
2πi

∑q−1
m=0 res(m), where res(m) is the residue at the mth pole.

Using a series of transformation identities, the contour integral
becomes

IC = − i√
2q

e
iπ(x+x′ )

2 e
π(x+x′ )2

2q e
i(y−y ′)( iπ

2 + π
q

)

θ ′
1

(
0
∣∣ 2i

q

) S, (A13)

where S is a sum over the labels of the poles given by

S =
q−1∑
m=0

(−1)me
2πim(y−y′ )

q θ3

(
mπ

q
+ π (1 − x − x ′)

2q

∣∣∣∣ i

2q

)
.

(A14)
This sum is evaluated easily for each term of the series
expansion of the θ function, and a resummation yields

S = qe
− πY2

2q e
−i πY

q e
i

πY (x+x′ )
q θ1

(
iπY

2
+ π (x + x ′)

2

∣∣∣∣ iq2
)

,

(A15)

with Y = y − y ′. By using the final expression of the sum S

in the contour integral expression in Eq. (23), one can obtain
the contour integral IC , so the integral I5 is

I5 = e
π(x+x′ )2

2q e
iπ(x+x′ )(y−y′ )

q

2θ ′
1

(
0
∣∣ 2i

q

) M(x−x ′)(y − y ′), (A16)

where M(x−x ′)(y − y ′) is a function of two integers with the
definition

Ma(b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ1

(
πb
q

∣∣ 2i
q

)
sinh

(
πb
2

) , a even,

θ4

(
πb
q

∣∣ 2i
q

)
cosh

(
πb
2

) , a odd.

(A17)

Finally, I6 is related to I5 as

I6 = I5(−1)(y−y ′), (A18)

which leads to Eq. (26).
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