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ABSTRACT

BACKGROUND AND PURPOSE: Extension and characteristics of WM involvement other than the brain stem remain inadequately
investigated in ARSACS. The aim of this study was to investigate whole-brain WM alterations in patients with ARSACS.

MATERIALS AND METHODS: Nine Turkish unrelated patients with ARSACS and 9 sex- and age-matched healthy control participants
underwent neurologic examination, molecular studies, electrophysiologic studies, and DTI of the brain. TBSS was used for whole-brain
voxelwise analysis of FA, AD, RD, mean diffusivity of WM. Tractographies for the CST and TPF were also computed.

RESULTS: Molecular studies revealed 8 novel mutations (3 nonsense, 4 missense, and 1 frameshift insertion) and amissense variation in the
SACS gene. Thick TPF displaced and compressed the CST in the pons. The TPF had increased FA, decreased RD, and increased AD, which
may be attributed to hypertrophy and/or hypermyelination. Widespread decreased FA and increased RD, suggesting demyelination, was
found in the limbic, commissural, and projection fibers. In addition to demyelination, CST coursing cranial and caudal to the pons also
showed a marked decrease in AD, suggesting axonal degeneration. Electrophysiologic studies revealed findings that concur with demy-
elination and axonal involvement.

CONCLUSIONS: In addition to developmental changes of the TPF and their effects on the CST in the brain stem, axonal degeneration
mainly along the pyramidal tracts and widespread demyelination in WM also occur in patients with ARSACS. Widespread tissue damage
may be associated with extensive loss of sacsin protein in the brain and may explain a wide range of progressive neurologic abnormalities
in patients with ARSACS.

ABBREVIATIONS: AD � axial diffusivity; ARSACS � autosomal recessive spastic ataxia of Charlevoix-Saguenay; CST � corticospinal tracts; FA � fractional
anisotropy; RD� radial diffusivity; TBSS� tract-based spatial statistics; TPF� transverse pontine fibers

ARSACS (MIM 270550) is a distinctive form of hereditary,

early-onset spastic ataxia, which manifests mainly by early-

onset pyramidal tract and cerebellar involvement, peripheral neu-

ropathy, and hypermyelination of the retinal nerve fibers. Clinical

variations including later-onset mental retardation, ophthalmo-

plegia, skeletal deformities, and biochemical abnormalities have

been reported.1,2

Since the first description of patients in the Charlevoix-

Saguenay region of Quebec in 1978, the disease has been increas-

ingly defined worldwide, with numerous mutations and diverse

phenotypes.2 The responsible gene (SACS, MIM 604490) was lo-

cated on chromosome 13q and encodes the sacsin protein, which

is widely expressed throughout the brain with a predilection for

pyramidal neurons, Purkinje cells, thalamic and pontine nuclei,

and reticular formation.3 Confusion with cerebral palsy and sec-

ondary spastic diplegia, and variations in the phenotype lead to

underdiagnosis of ARSACS.4,5

Neuroimaging findings include slowly progressive atrophy of

the superior vermis, and atrophy of the cerebellar hemispheres,

cervical spinal cord, and cerebral cortex.5,6 The description of

characteristic bilateral, parallel, paramedian, T2 hypointense

stripes on MR imaging contributed to an increased diagnosis of

ARSACS.7

By measuring anisotropic diffusion of water in the WM, DTI

detects abnormalities in the myelin, axon, or orientation of fibers

within the bundle.8,9 Gazulla et al10,11 described nonquantitative

abnormalities of the TPF and CST by DTI in 2 studies with 5

patients. These authors suggested a developmental basis for
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ARSACS by showing interruption of the CST in the pons by large

TPF. More recently, Prodi et al12 showed involvement of several

additional structures such as the forceps minor and major, supe-

rior longitudinal fasciculus, and cingulum by using an ROI ap-

proach for these predetermined areas. None of these studies in-

vestigated whole-brain WM changes in ARSACS by multiple

diffusion indices.

TBSS enables an unbiased whole-brain voxelwise analysis of

multi-subject FA data by using a nonlinear registration algorithm,

projection of the individual data onto a mean alignment-invari-

ant tract representation, and stringent statistical analysis. It has

been increasingly used for the depiction of WM abnormalities,

especially in patient groups with diseases in which alterations in

WM fibers cannot be precisely predicted.13

Given the high expression of the sacsin protein in the brain, we

hypothesized that WM alterations are not limited to the brain

stem and the cerebellum, and TBSS would show more widespread

abnormality in patients with ARSACS. We also aimed to seek

electrophysiologic correlates of DTI findings.

MATERIALS AND METHODS
Participants
The local institutional review board approved the study, and all

participants gave written informed consent. Patients were asked

to participate in this prospective study on observation of MR im-

aging findings and confirmation of ARSACS by genetic studies.

Nine Turkish patients with ARSACS (male/female, 6/3; age

range, 5– 42 years; mean age, 23.67 � 13.28 years) and 9 sex- and

age-matched control participants (male/female, 6/3; age range,

5– 41 years; mean age, 23.78 � 12.43 years) were included in the

study.

All patients underwent neurologic and ophthalmologic exam-

inations, molecular studies, electrophysiologic studies, structural

MR imaging, and DTI of the brain.

Healthy volunteers without previous neuropsychological or

systemic disease served as control participants. They had normal

findings on structural MR imaging.

Molecular Studies
The method for molecular studies is given in the On-line Appen-

dix, Part 1.

Electrophysiologic Studies
Nerve conduction studies and motor-evoked potential studies

from the tibialis anterior muscle and somatosensory-evoked po-

tential by stimulation of the posterior tibial nerve were per-

formed. Technical details are given in the On-line Appendix,

Part 2.

Image Acquisition
Imaging studies were performed on a 1.5T MR imaging scanner

(Symphony TIM; Siemens, Erlangen, Germany) equipped with

an 8-channel head coil. Brain MR imaging included sagittal and

axial T1-weighted imaging, axial T2-weighted imaging, and T2*

gradient recalled-echo. DTI applied axial single-shot echo-planar

imaging (TR, 5814 ms; TE, 98 ms; maximal b factor, 1000 s/mm2;

30 independent directions; field of view, 230 � 230 mm; matrix,

128 � 128; number of sections, 50, with 3-mm thickness without

gap).

Image Processing and Analysis
Two experienced neuroradiologists (K.K.O., R.G.) evaluated

brain MR imaging for the presence of atrophy of the infratentorial

structures and the cerebrum, T2 hypointense stripes in the pons,

T2 hyperintense stripes in the lateral thalami, and susceptibility

on T2* GRE images in consensus.

DTI data were analyzed by use of TBSS. All scans were cor-

rected for head motion and eddy currents by use of the affine

registration. B0 volumes of each participant were extracted and

averaged. The main diffusion tensor was fitted in each voxel with

the FSL DTIFit tool (http://fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/fdt/

fdt_dtifit.html), and the FA, RD, AD, and mean diffusivity maps

were calculated. After registration and alignment of individual

maps to the average space as input for TBSS, the mean FA map

and then the thinned mean FA skeleton (which represents the

centers of all tracts common to the group) were computed. Then

voxelwise statistics on FA, RD, AD, and mean diffusivity were

performed by use of 500 permutations. The results were corrected

for multiple comparisons, and family-wise error– corrected maps

at P values � .05 were considered significant.

Because the TPF and CST in the brain stem were reported to be

morphologically altered, we first recognized and evaluated these

structures on a directionally encoded color FA map of each par-

ticipant, and we then outlined and calculated corresponding

ROIs. Supratentorial WM clusters with significant change on the

resulting TBSS maps were extracted as ROIs and registered and

overlaid onto an anatomic Montreal Neurological Institute tem-

plate. These ROIs were labeled according to Johns Hopkins Uni-

versity WM tractography and the International Consortium for

Brain Mapping DTI-81 WM atlases in FSL, and the mean diffu-

sion indices of the ROIs were calculated.

3D fiber tractographies of the CST and TPF were obtained

by MedINRIA (http://www-sop.inria.fr/asclepios/software/

MedINRIA). The threshold for stopping fiber propagation was

FA � 0.2 and angle � 70°. Seed points were located at the level of

the corona radiata and medulla oblongata for the CST and central

pons for the TPF.

Statistical Analysis
Statistical analyses were done with a specific software package

(SPSS for Windows, version 15.0; SSPS, Chicago, Illinois). Age

and sex differences between patients and control participants

were tested by use of the independent-sample Student t test

and the Fisher exact test, respectively. The independent Stu-

dent t test was used for testing diffusion measures between

patients and control participants. P values � .05 were consid-

ered significant.

RESULTS
Patient Demographics and Clinical Assessment
Demographic and clinical data for patients are summarized in

On-line Table 1. Delays in motor skills (n � 7), ataxic gait

(n � 4), dystonia (n � 1), and frequent falls (n � 1) were pre-

senting symptoms. Initial diagnoses of the patients were cerebral
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palsy (n � 4), hereditary spastic paraparesis (n � 4), and static

cerebellar ataxia (n � 1). The parents were first cousins in 4 fam-

ilies. None of the patients had a family history of similar clinical

features. Neurologic and ophthalmologic examination revealed

spasticity (n � 7), extremity deformity (n � 2), cerebellar ataxia

(n � 4), dysarthria (n � 4), nystagmus (n � 1), peripheral neu-

ropathy (n � 7), and myelinated retinal fibers (n � 2) or thick-

ening of the peripapillary retinal fibers (n � 1).

Molecular Findings
Molecular results are summarized in On-line Table 1 (detailed

results in On-line Appendix, Part 3, and On-line Table 2). Eight

never-reported different mutations (3 nonsense, 4 missense, and

1 frameshift insertion) and a missense variation were identified in

9 patients from unrelated families.

Electrophysiologic Studies
Results of electrophysiologic studies are given in On-line Table 3.

Nerve conduction studies were obtained in patients; somatosen-

sory-evoked potential and motor-evoked potential studies were

obtained in 5 patients. Decreased nerve conduction velocities of

the motor nerves and prolonged motor distal latencies were found

in patients with ARSACS. F waves were either prolonged or ab-

sent. Sensory nerve action potentials were absent bilaterally in the

sural nerves. When sensory conduction velocities could be ob-

tained, they were reduced in the sensory nerve action potentials.

Although central motor conduction times were significantly pro-

longed, cortical motor-evoked potential responses were remark-

ably low in patients without spinal and cortical somatosensory–

evoked potential responses. Compound muscle action potential

of the motor nerves was also low, especially in the lower

extremities.

Structural MR Imaging
All patients showed superior vermian atrophy (Fig 1A) and bilateral

parallel and paramedian T2-hypointense stripes in the pons (Fig 1B).
Atrophy of the brain stem (n � 4), the cerebellar and cerebral hemi-

spheres (n � 3), and bilateral T2 hyperintensities in the lateral thal-

ami (n � 4) were observed (Fig 1C). On T2*gradient recalled-echo

imaging, no patient had susceptibility signal change.

DTI
Visual evaluation of color FA maps revealed bilaterally smaller

and displaced CSTs in the pons (Fig 2A, -B) in patients with AR-

SACS compared with control participants. The pyramids and

CSTs in the midbrain were normal in location. The pons was

mostly occupied by “left-to-right” direction-coded fibers of the

TPF (Fig 2A). Tractography showed thickening of the TPF and

interruption of the CST in the pons with relative thinning in the

midbrain and medulla oblongata in the patients (Fig 2C, -D).

The WM structures with significant change and their mean

quantitative values are summarized in On-line Table 4. The TPF

in patients with ARSACS had higher FA, lower RD, higher AD

(P � .05), and a comparable mean diffusivity (P � .05) compared

with control participants. In the patients, CST in the brain stem

revealed significantly lower FA, increased RD, increased mean

diffusivity (P � .05), and no remarkable change in AD (P � .05).

TBSS maps showed consistent results with these measurements of

ROIs outlined from color FA maps (Fig 3).

TBSS revealed extensive reductions in FA, accompanied by

increased RD in the supratentorial WM, including the entire cor-

pus callosum, both cingula, fornices, superior and inferior longi-

tudinal fasciculi, the inferior fronto-occipital fasciculi, corona ra-

diata, internal capsules, and thalami. Bilateral superior cerebellar

WM and vermis and CST in the medulla oblongata and midbrain

showed a similar pattern of FA and RD changes. The extent of

increased mean diffusivity and AD followed that of FA and RD

changes in decreasing order. However, reduced AD was present

along the internal capsules and midbrain, medulla oblongata, the

splenium of the corpus callosum, and bilateral frontoparietal

WM. No remarkable decrease in mean diffusivity was present

except for a few small clusters in the subcortical temporal WM

(Fig 3).

DISCUSSION
Three major results, which confirm and add to previous find-

ings10-12, can be derived from our data: 1) Large TPF with in-

creased FA and AD and decreased RD squeezed and displaced the

pontine CST with decreased FA, increased RD, and increased

mean diffusivity, as was also observed on tractography. 2) The

FIG 1. Sagittal T1-weighted spin-echo (A), axial T2-weighted fast spin-echo (B,C) images of a 14-year-old patient show atrophy of the superior
vermis (A) and bilateral, paramedian, T2-hypointensite stripes (B) and bilateral, linear T2 hyperintensities in the lateral thalamus (C).
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CST cranial and caudal to the pons showed an apparent reduction

in AD, suggestive of axonal degeneration. 3) The supratentorial

WM, including the limbic, commissural, and projection fibers,

was markedly involved, as demonstrated by reduced FA, in-

creased RD, and increased mean diffusivity, suggestive of

demyelination.

In agreement with Gazulla et al,10,11 the pontine CST was not

only engulfed by the TPF (TPF was thick because of hypermyeli-

nation and/or axonal hypertrophy), but was also dislocated on

directionally encoded FA images. The presence of hypermyeli-

nated or thickened peripapillar retinal fibers has been considered

a pathognomonic feature of ARSACS for quite some time.14 We

cannot confidently consider the thickening of the TPF and hyper-

myelination/peripapillary nerve thickening a result of identical

pathogenesis, given the rarity of patients with abnormal fundo-

scopic findings in our study, similar to other non-Quebec patient

populations. Furthermore, to our knowledge, no evidence has

been available regarding a relationship between retinal nerve fiber

layer thickening and SACS mutation and the duration and sever-

ity of ARSACS.15

AD (diffusion parallel to WM fibers) and RD (diffusion per-

pendicular to WM fibers) have been demonstrated to be sensitive

measures in the characterization of tissue abnormalities. Experi-

mental studies with immunohistostaining of phosphorylated

neurofilament and myelin basic protein have proven that reduced

AD and increased RD correlated with

axonal and myelin damage, respec-

tively.16,17 Our finding of decreased AD

in the pyramidal pathways suggests an-

terograde and retrograde Wallerian de-

generation secondary to damage to the

CST by the TPF at the pons, very similar

to that observed after a pontine infarct

or a spinal cord injury.18,19 However,

because there was accompanying re-

duced FA and increased RD in the CST,

one can suggest that both axonal degen-

eration and demyelination occur along

the pyramidal tracts.

We also observed symmetric, linear,

and mild T2 hyperintensities in the lat-

eral thalami of 4 patients, which was re-

cently suggested as reflecting degenera-

tion of fibers of the external lamina

consisting of afferent and efferent fibers

between the cortex and reticular tha-

lamic nuclei.12,20 TBSS analysis was able

to detect supratentorial abnormalities

beyond the thalami and motor pathways

and showed widespread demyelination.

Supporting our nerve conduction stud-

ies and DTI findings, previous nerve

conduction studies and sural nerve bi-

opsy examinations also revealed demy-

elinating neuropathy with superim-

posed axonal involvement in patients

with ARSACS.11,21-23 Severe CST in-

volvement, as assessed by motor-evoked

potential abnormalities, was attributed to the demyelination of

the CST in an autopsy study.24 Our current TBSS study, on the

contrary, points out both axonal and myelin damage in the CST.

These features can also contribute to differentiation of ARSACS

from other degenerative diseases of mainly axonal neuropathy,

such as Friedreich ataxia.25 In our study, a widespread WM ab-

normality is being documented first in ARSACS, in contrast to

more localized involvement of WM in the superior cerebellar pe-

duncles and peridentate area in Friedreich ataxia.26,27

Iron deposition in the basal ganglia and thalami and lipofus-

cin-like dens material within the lysosomes of swollen thalamic

and cerebellar cortical neurons were suggested to cause T2 hy-

pointensity in the pons and middle cerebellar peduncles.5,28,29

Our data do not support these suggestions because of lack of para-

magnetic susceptibility; T2 signal loss in the thalami or middle

cerebellar peduncles; and DTI findings of material storage in

swollen neurons, such as reduced mean diffusivity.

Clinical variations such as mental retardation, ophthalmoplegia,

and lack of retinal nerve hypermyelination have been reported more

frequently in non-Quebec patients.2 In addition to developmental

abnormalities in the TPF and their mechanical effects on the CST,

axonal degeneration and, more extensively, demyelination in cere-

bral WM may explain a wide range of neurologic abnormalities other

FIG 2. Directionally encoded color FA image of the same patient as in Fig 1 (A) shows that the CST
(blue, long arrow) is smaller and displaced in the pons by “left-to-right” direction-encoded TPF
(red, short arrow). Tractographies of CST (blue) and TPF (red) depict interruption of CST by thick
TPF (C). Corresponding FA image (B) and tractography (D) of a sex- and age-matched control
participant are also given.
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than spasticity and the progressive nature of the disease. Recently,

Girard et al30 showed localization of sacsin to mitochondria and a

cascade of detrimental effects resulting in neuronal cell death by loss

of sacsin function in knockout mice. These authors further suggested

the presence of some common pathophysiologic features between

ARSACS and some other neurodegenerative diseases with mito-

chondrial impairment such as Alzheimer, Parkinson, and Hunting-

ton disease.30,31 Herein, by using TBSS, we present another common

feature of ARSACS with these diseases: extensive WM alterations in

the brain.32,33

Our current study was distinguished in several ways: First, to

the best of our knowledge, our study was the first that investigated

whole-brain WM in patients with ARSACS. Second, it quantified

the abnormal pattern of diffusion indices, including RD and AD,

indicating widespread WM disintegration. Last, although the

number of patients was limited, our patient cohort constituted

the largest population of patients with ARSACS in Turkey.34,35 In

our study, 8 different SACS mutations have been identified in 9

unrelated families referred to a single tertiary-care center. We

believe that recognition of imaging features, as well as the identi-

fication of new mutations, will increase the rate of diagnosis of

ARSACS in Turkey and other countries.

We did not measure the number of TPF and the CST because

changing DTI parameters can significantly alter the results, and

DTI has not been considered a precise way of measuring the

length and number of fibers.36 The small CST was not found to

have a significant change in the pons on TBSS maps. Because only

the major WM tracts are included in the skeleton, assessment of

small fiber tracts is difficult by TBSS. We overcame this problem

by outlining ROIs from directionally encoded FA images after

recognition of the morphologically altered structures.

CONCLUSIONS
In 9 Turkish patients with 8 new mutations, diffusion alterations

suggestive of widespread demyelination and axonal involvement,

mainly of the pyramidal tracts, have been demonstrated in addi-

tion to thickening of TPF and interruption of the CST in the pons.

These abnormalities may reflect tissue damage related to exten-

sive alterations in mitochondrial dynamics because of loss of sac-

sin function and may explain a wide range of neurologic abnor-

malities in patients with ARSACS.
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