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Electrostatic interactions in charged nanoslits within an explicit solvent theory

Sahin Buyukdagli1∗
1Department of Physics, Bilkent University, Ankara 06800, Turkey

(Dated: August 31, 2018)

Within a dipolar Poisson-Boltzmann theory including electrostatic correlations, we consider the
effect of explicit solvent structure on solvent and ion partition confined to charged nanopores. We
develop a relaxation scheme for the solution of this highly non-linear integro-differential equation
for the electrostatic potential. The scheme is an extension of the approach previously introduced
for simple planes (S. Buyukdagli and Ralf Blossey, J. Chem. Phys. 140, 234903 (2014)) to nanoslit
geometry. We show that the reduced dielectric response of solvent molecules at the membrane walls
gives rise to an electric field significantly stronger than the field of the classical Poisson-Boltzmann
equation. This peculiarity associated with non-local electrostatic interactions results in turn in
an interfacial counterion adsorption layer absent in continuum theories. The observation of this
enhanced counterion affinity in the very close vicinity of the interface may have important impacts
on nanofludic transport through charged nanopores. Our results indicate the quantitative inaccuracy
of solvent implicit nanofiltration theories in predicting the ionic selectivity of membrane nanopores.

PACS numbers: 05.20.Jj,77.22.-d,78.30.cd

I. INTRODUCTION

Electrostatic interactions in confined liquids are rele-
vant to various nanoscale processes ranging from macro-
molecular interactions [1, 2] to nanofiltration [3, 4] and
nanofluidic transport [5, 6]. An accurate theoretical for-
mulation of these interactions has been a major chal-
lenge in the field of theoretical soft matter physics. The
description of electrostatics in nanoscale systems has
been mainly limited to Poisson-Boltzmann(PB) formal-
ism [7, 8] known to suffer from two major limitations.
First, the PB equation provides a mean-field (MF) de-
scription neglecting electrostatic correlations resulting
from many-body interactions between charges. The sec-
ond weak point of the PB approach is the dielectric
continuum approximation bypassing the extended charge
structure of solvent molecules hydrating the ions of the
solution.

In confined systems where the distance between
charged macromolecules approach the Bjerrum length
`w ≈ 7 Å, the above-mentioned limitations become dras-
tic. First of all, the dielectric contrast between the
macromolecule of low dielectric permittivity and the elec-
trolyte of large permittivity is known to induce surface
polarization effects. These non-MF effects that can-
not be captured by the PB formalism are at the origin
of i) attractive van-der-Waals forces stabilizing macro-
molecules [1] and ii) dielectric exclusion phenomenon set-
tling the salt selectivity of membrane nanopores in cells
as well as in artificial nanofiltration devices [3]. Then,
by ignoring the interaction between solvent molecules
and the membrane, the PB formalism assumes the same
solvent density and permittivity in the pore and the
bulk reservoir. This dielectric continuum approximation

∗email: Buyukdagli@fen.bilkent.edu.tr

is expected to result in two artefacts. First, solvent-
membrane interactions are known to induce repulsive
image-solvent effects leading to a reduced pore dielec-
tric permittivity [9]. This implies that solvent implicit
electrostatic theories [10, 11] overestimate the pore per-
mittivity and the strength of image-charge forces exclud-
ing ions from the nanopore. However, the same dielectric
contrast between the pore and the reservoir should lead
to an ionic Born energy barrier, i.e. an additional force
favouring ionic rejection from the pore medium. Hence,
the dielectric continuum limit giving rise to opposing
artefacts is an uncontrolled approximation that has to
be relaxed by the explicit consideration of the solvent
charge structure.

Improvements over the mean-field and dielectric con-
tinuum approximations have been mainly considered sep-
arately. Within the dielectric continuum limit, elec-
trostatic many-body effects have been included at one-
loop [12–16] and variational levels [10, 11, 17–21]. In
the MF approximation, explicit solvent theories have
been developed by modeling water molecules as point
dipoles [22, 23]. The point dipole approximation be-
ing unable to account for non-local electrostatic inter-
actions, we introduced in Ref. [24] the first solvent ex-
plicit formulation of non-local electrostatics with finite
size dipoles. We explored next the MF non-linear re-
sponse regime of this model in Ref. [25]. At this point,
one should also mention the phenomenological non-local
electrostatic theories developed in Refs. [26–30]. Within
the point dipole approximation, electrostatic correlations
were considered in bulk liquids in Ref. [31] and at single
charged planes in Ref. [32] in order to scrutinize the ef-
fect of interfacial solvent configuration on the differential
capacitance of low dielectric materials.

The unification of non-locality and electrostatic corre-
lations was introduced first in Ref. [9]. In this previous
work, we derived the solvent-explicit variational equa-
tions with finite size dipoles. We solved these equations
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2

for an ion free solvent confined to neutral slits and also
for an electrolyte in contact with a single charged inter-
face. In the present article, we take a step further and
develop a numerical scheme for the solution of the non-
local PB equation (Eq. (1) in the main text) in charged
membranes of slit geometry. In other words, the consid-
eration of the liquid confinement and membrane charge
is the novelty that had not been treated together in our
previous article [9]. Within the framework of this for-
malism, we investigate the effect of surface charge and
pore size on the configuration of solvent molecules, the
liquid charge, and ion densities in the nanoslit. In par-
ticular, we show that due to an amplified surface field
induced by the reduced solvent dielectric response at the
interface, an ionic structure formation characterized by a
double counterion concentration peak takes place. This
structure formation corresponding to an enhanced coun-
terion affinity is the most relevant result of the present
work. We emphasize that the formalism developed herein
provides the first explicit solvent theory of membrane se-
lectivity. The limitation of our theory and possible im-
provements are discussed in the Conclusion.

II. NON-MF NLPB FORMALISM

In this part, we review briefly the explicit solvent the-
ory of electrolytes previously developed in Ref. [9]. The
charged liquid is composed of solvent molecules and point
ions confined to a slit pore. The composition of solvent
molecules and the pore is depicted in Fig. 1. The pore is
composed of two infinitely large and negatively charged
planes located at z = 0 and z = d. The charged particles
in the pore are in chemical equilibrium with an external
charge reservoir. Each solvent molecule is modeled as
a finite-size dipole composed of two oppositely charged
point particles ±Q separated by the fixed distance a. The
reservoir concentration of solvent molecules is ρsb. There
are p ionic species in the solution and each species i has
bulk concentration ρib with i = 1, ..., p.

The beyond-MF NLPB equation for the electrostatic
potential φ(z) in the solvent-explicit liquid was derived
in Ref. [9]. This equation of state reads

kBT

e2
∂zε0(z)∂zφ(z) +

∑
i

qiρi(z) +Q [ρs+(z)− ρs−(z)]

= −σ(z), (1)

where kB is the Boltzmann factor, T = 300 K the am-
bient temperature, and e the electron charge. The per-
mittivity function is given by the piecewise form ε0(z) =
ε0θ(z)θ(d − z) + εm [θ(−z) + θ(z − d)], with ε0 the vac-
uum permittivity and εm the membrane permittivity.
In the present work, dielectric permittivities will be ex-
pressed in units of the vacuum permittivity. Moreover, qi
stands for the valency of the ionic species i, and the sur-
face charge density reads σ(z) = −σs [δ(z) + δ(d− z)].
Finally, the ion number density and the density of the
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FIG. 1: (Color online) Schematic representation of the
nanoslit with thickness d and negative surface charge −σs.
Dipoles of size a (red) hydrate cations (yellow) and anions
(blue). The dipolar orientation with respect to the z−axis is
characterized by the projection az.

positive and negative charges on the solvent molecules
are respectively given by

ρi(z) = ρib e
−qiφ(z)−

q2i
2 δvi(z) (2)

ρs±(z) = ρsb

∫ a2(z)

a1(z)

daz
2a

e−
Q2

2 δvd(z,az)e±Q[φ(z+az)−φ(z)].

(3)

In Eq. (3), the integration variable az corresponds to the
projection of the dipolar alignment vector a onto the z
axis (see Fig. 1) and the integration boundaries taking
into account the rigidity of the interfaces are given by

a1(z) = −min(a, z) (4)

a2(z) = min(a, d− z). (5)

We introduced in Eqs. (2) and (3) the renormalized
ionic and dipolar self-energies δvi(z) and δvd(z, az) whose
explicit form is reported in Appendix A. The relaxation
algorithm that solves the integro-differential equation (1)
is explained in detail in Appendix B [33]. We note that
this algorithm generalizes to confined slits the scheme in-
troduced in Ref. [9] for the single interface geometry. Fur-
thermore, we note that in the present work, the charges
composing the dipolar solvent molecules will be monova-
lent, that is Q = 1. The solvent molecular size will be set
to a = 1 Å, and the bulk solvent density will be taken as
the liquid water density ρsb = 55 M. Finally, we will con-
sider exclusively the case of symmetric electrolytes com-
posed of two monovalent ion species, i.e. q+ = q− = 1,
each species with equal bulk densities ρ+b = ρ−b = ρib.
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III. RESULTS

A. Solvent configuration

We investigate herein the partition of solvent molecules
in the slit pore. To this aim, we will derive the number
density and the average polarization of solvent molecules
confined to the pore. We note that the dipolar part of
the liquid grand-potential was derived in Ref. [9] in the
form

Ωd = −ρsb
∫

dr
dΩ

4π
e−ws(r,a)e−Q[φ(r)−φ(r+a)] (6)

×e−
Q2

2 δvd(r,a),

where the multiple integral is taken over the spatial and
orientational dipole configurations. Namely, the vec-
tor r indicates the position of the positive charge on
the dipolar molecule. Then, the infinitesimal vector
dΩ = sin θ dθ dϕ denotes the solid angle characteriz-
ing the dipolar orientation in the spherical coordinate
system. The projection of the dipolar orientation vec-
tor onto the z−axis is related to the azimuthal angle as
az = a cos θ (see Fig. 1). Moreover, the dipolar potential
in Eq. (6) is ws(r,a) = w+(r) +w−(r + a) +wc(r + a/2),
where the functions w±(r) are wall potentials acting on
the positive and negative charges of solvent molecules,
and wc(r + a/2) is coupled to their centre of mass. Re-
defining now the position vector by shifting the latter
to the centre of the solvent molecule as r′ = r + a/2,
evaluating the density from the functional derivative
ρd(r

′) = δΩd/δwc(r
′), taking into account the planar

symmetry of the system, and performing a second trans-
formation az → t = z − az/2 on the variable of the in-
tegral over dipole rotations, one gets the dipole number
density in the form

ρs(z) = ρsb

∫ t2(z)

t1(z)

dt

a
e−

Q2

2 δvd(t,2z−2t) (7)

×eQ[φ(2z−t)−φ(t)],

with the integration boundaries

t1(z) = max(0, z − a/2, 2z − d) (8)

t2(z) = min(2z, z + a/2, d). (9)

The discrete form of Eq. (7) is reported in Appendix B.
We also note that in the present work, the ionic and dipo-
lar potentials δvi(z) and δvd(z) in the above equations
will be calculated within the Debye-Hückel (DH) approx-
imation. This point is also explained in Appendix B.

We will show that solvent partition in the slit is driven
by a competition between interfacial polarization and
surface charge effects. The importance of each effect can
be accurately described by the average dipole fluctua-
tions [9, 32]. The latter can be expressed in terms of the
number density (7) as

µm(z) =

〈
a2z
〉

a2ρd(z)
, (10)
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FIG. 2: (Color online) (a) Solvent number density (7) and (b)
average polarization (10) for the charged solution confined in
a slit of size d = 1 nm and various surface charges displayed
in the legend of the bottom plot. The membrane permittivity
and salt concentration are respectively εm = 1 and ρib = 0.01
M in both figures. The insets zoom on the interfacial region
between z = 0 Å and 2 Å. The horizontal curves in (a) and (b)
mark respectively the reservoir concentration and the limit of
freely rotating dipoles µm(z) = 1/3.

with the statistical average

〈
a2z
〉

=

∫ t2(z)

t1(z)

dt

a
a2z e

−Q2

2 δvd(t,2z−2t) (11)

×eQ[φ(2z−t)−φ(t)]

where az = 2(z − t). We note that the limit µ(z) = 1/3
corresponds to the case of freely rotating dipoles exclu-
sively subject to entropy [9, 32]. This situation occurs in
the bulk reservoir or far from the interfaces where image-
dipole and surface charge-dipole interactions are absent.
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Then, in the regime µm(z) < 1/3 where repulsive image
charge forces dominate surface charge effects, the former
aligns dipoles parallel with the dielectric plane. This re-
gion is expected to be characterized by solvent depletion.
Finally, for µm(z) > 1/3 where surface charge-dipole cou-
pling overcomes image-dipole interactions, the charged
interface attracts the positive charge and repels the neg-
ative charge of each dipole, resulting in the dipolar align-
ment perpendicular to the interface. In this region, the
surface charge should induce a local enhancement of the
solvent density.

We illustrate in Figs. 2(a) and (b) the number density
and average polarization of dipoles in a slit of size d = 1
nm. The model parameters are reported in the caption.
The membrane permittivity set to εm = 1 is character-
istic of membrane nanopores. First, one notices that for
intermediate to high surface charges, solvent density ex-
hibits structure formation similar to the one observed in
MD simulations [34, 35]. Furthermore, the comparison
of the top and bottom plots shows that the dipole den-
sity and the average polarization are strongly correlated,
with the position of the minima and maxima coinciding
almost exactly. First of all, in the top plot, one notes
that for weakly charged membranes σs = 0.1 e nm−2,
solvent molecules are depleted from membrane walls over
the 3 Å thick layer. Then, in the bottom plot and over
the same region, the low values of the order parameter
µm(z) < 1/3 indicates dipolar alignment parallel to the
plane. Both the exclusion and parallel alignment effects
are driven by the rotational penalty for dipoles as well as
image-dipole interactions induced by the dielectric dis-
continuity at the interface.

In fig. 2(b), at the surface charge σs = 0.5 e nm−2, one
sees that the average polarization exhibits a first peak
above the free dipole limit. Thus, over this narrow re-
gion where surface-dipole interactions dominate image-
dipole forces, solvent molecules show a tendency to align
perpendicular to the charged wall. In the top plot and
for the same surface charge, the amplified dipole-surface
coupling is seen to yield as well a small peak in the den-
sity curve. Then, a further increase of the surface charge
to the value σs = 1.0 e nm−2 amplifies the first peak of
the average polarization and dipole density curves, and it
also gives rise to a second peak in the polarization. This
corresponds to the surface charge regime where structure
formation takes place. However, due to the presence of
strong image forces in the confined pore, the solvent par-
tition is still characterized by an overall exclusion from
the pore, that is ρd(z) < ρsb. By setting the surface
charge to the higher value σs = 2.0 e nm−2, the pro-
nounced surface charge attraction leads to three peaks in
the density curve where solvent density exceeds the bulk
value. The first two peaks are separated by a second sol-
vent exclusion layer. Most importantly, at the position
of the first peak, the solvent density reaches twice the
reservoir concentration. We emphasize that such a strong
interfacial enhancement of solvent number densities has
been observed in MD simulations for both hydrophobic

and hydrophilic surfaces (see e.g. Fig.1 of Ref. [34]).

In order to investigate the effect of confinement on sol-
vent partition, we plotted in Fig. 3 the solvent number
density for various pore sizes ranging between d = 3 Å
and 20 Å. One notes that the decrease of the pore size
that amplifies image-dipole interactions intensifies sol-
vent exclusion from the pore. This effect is particularly
noticeable below the nanometer pore size (i.e. for d . `w)
where the midpore density is significantly lowered. We
emphasize that the strength of the dielectric exclusion ef-
fect determining the ionic selectivity of the membrane de-
pends on the pore solvent density since the latter sets the
intensity of the dielectric discontinuity between the mem-
brane and the nanopore. Thus, the significant solvent
rejection in narrow pores indicates that solvent-implicit
nanofiltration models (see e.g. Refs. [3, 4]) assuming the
same solvent density in the pore and the reservoir are
quantitatively inaccurate in predicting the ion rejection
efficiency of subnanometer pores. In Fig. 3, one also notes
that the position of the first peak resulting from the com-
petition between image-dipole forces, steric effects, and
surface charge attraction stays weakly sensitive to the
pore size. Indeed, multiplying the adimensional position
of each peak with the corresponding pore size, one finds
that the former is always located at 0.6 Å-0.7 Å.

Finally, in order to evaluate the importance of the di-
electric discontinuity, we calculated the solvent density
for a dielectrically continuous membrane (i.e. εm = εw
at the pore size d = 10 Å). One observes that in the ab-
sence of image-dipole interactions, the solvent decrement
layer is replaced by an increment layer with ρ(z) ≥ ρsb for
z ≥ 0.5 Å = a/2. At z = 0.5 Å, we notice a sharp peak
where steric effects resulting from finite solvent size a = 1
Å take over surface charge attraction and decrease the
density of solvent molecules subject to rotational penalty
below this point. The closeness of the peak positions for
εm = 1 and εm = εw suggests that in explicit solvent
MD simulations, the position of the first density peak is
mainly determined by the finite solvent size rather than
surface polarization effects. This point is supported by
previous MD simulations (see e.g. Figs.1(c) and (d) of
Ref. [34]) where the peak positions located at 2.5 Å -
4.0 Å for both hydrophobic and hydrophilic interfaces
roughly correspond to the molecular size of the water
TIP models. In the light of these results on solvent par-
tition, we will scrutinize next the partition of the liquid
charge in the nanoslit.

B. Partition of the liquid charge

In order to investigate the charge partition in the
nanoslit, we plotted in Fig. 4(a) the cumulative ion den-
sity

ρcum,i(z) =

∫ z

0

dz′ [ρ+(z′)− ρ−(z′)] (12)
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FIG. 3: (Color online) (a) Solvent dipole density rescaled with
the bulk density for various pore sizes reported in the leg-
end. The horizontal axis displays the position of the molecule
rescaled by the pore size. The model parameters are the same
as in Fig. 2, with the surface charge σs = 1.0 e nm−2. Solid
curves : εm = 1. Dotted red curve : εm = εw.

obtained from the solution of the explicit solvent PB
equation (1) (solid navy curve) and the continuum re-
sult (dashed red curve) from the numerical solution of
the modified PB equation [10]

kT

e2
∂zε(z)∂zφc(z) +

∑
i

qiρi(z) = −σ(z), (13)

with the sharp dielectric jump function ε(z) =
εwθ(z)θ(d − z) + εm [θ(−z) + θ(z − d)]. The modified
PB formalism ignores the non-uniform solvent parti-
tion in the pore. Fig. (4)(a) shows that moving from
the interface at z = 0 towards the second interface at
z = d, the cumulative ion density increases monotoni-
cally and reaches the surface charge value in the mid-
pore ρcum,i(d/2) = σs and twice the surface charge at
the second interface, i.e. ρcum,i(d) = 2σs. This is a con-
sequence of the electroneutrality condition according to
which there must be as many monopole charges in the
nanoslit as the fixed surface charge on the membrane
walls. One also notes that the cumulative ion density
from the NLPB formalism (navy curve) and continuum
theory (red curve) are very close to each other. Thus,
solvent structure plays a minor role in the cumulative
ion charge configuration.

We now note that integrating Eq. (13) from the inter-
face at z = 0 to any point z located in the pore, one can
express the continuum electric field Ec(z) = ∂zφc(z) as

Ec(z) = 4π`w [σs − ρcum,i(z)] . (14)

We reported the electric field profile Ec(z) in Fig. 4(b).
As suggested by Eq. (14) and in agreement with the ion
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FIG. 4: (Color online) (a) Cumulative charge density of sol-
vent molecules ρcum,s(z) (solid blue curve), ions ρcum,i(z)
(solid navy curve), and total cumulative charge density
ρcum,s(z) + ρcum,i(z) (dashed-dotted black curve). The
dashed red curve displays the cumulative ion density of the
continuum theory. (b) Electric field from the explicit sol-
vent (solid navy curve) and continuum theory (dashed red
curve). The inset displays the local solvent charge density
ρs+(z) − ρs−(z). In (a) and (b), membrane permittivity is
εm = 1, bulk ion density ρib = 10−2 M, membrane surface
charge σs = 1.0 e nm−2, and pore size d = 2 nm.

density curve in Fig. 4(a), the electric field evolves from
Ec(0) = 4π`wσs at the interface to zero in the midpore
where ρcum,i(d/2) = σs and the field reaches the value
Ec(d) = −4π`wσs at the second interface where the cu-
mulative ion density is twice as large as the wall charge.
In other words, within the continuum formalism, the spa-
tial variation of the field is solely determined by the ion
screening effect.
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We consider next the cumulative solvent density

ρcum,s(z) =

∫ z

0

dz′ [ρs+(z′)− ρs−(z′)] (15)

displayed in Fig. 4(a) by the solid blue curve together
with the local solvent density shown in the inset of
Fig. 4(b). In the latter figure, one notes that the interfa-
cial regions are each characterized by a positively charged
solvent layer separated by a negative solvent layer. In
Fig. 4(a), this local charge distribution is shown to result
in an initial increase of the cumulative solvent density up
to the maximum value ρcum,s(z) ' σs where it starts to
decrease and vanishes in the mid-pore. For z > d/2, the
cumulative density becomes negative and drops mono-
tonically up to the vicinity of the second interface located
at z = d where it reaches its minimum value. Moving
closer to the second interface, due to the interfacial posi-
tive solvent charge layer, the cumulative density rises and
becomes zero on the pore wall. The latter point shows
that solvent molecules bring no contribution to the total
charge in the slit.

Before considering the total cumulative charge density,
one notes that by integrating Eq. (1), one gets the equiva-
lent of Eq. (14) for the electric field in the solvent-explicit
liquid,

E(z) = 4π`B [σs − ρcum,i(z)− ρcum,s(z)] . (16)

Eq. (16) indicates that the electric field profile is deter-
mined by the combined effects of salt screening (the sec-
ond term on the right-hand-side) and dielectric screening
associated with polarization charges (the third term). We
plotted in Fig. 4(a) the total charge density ρcumi

(z) +
ρcum,s(z) (dotted-dashed curve) and reported the elec-
tric field (16) in Fig. 4(b) (solid navy curve). Observ-
ing both figures, one first notes that the interfacial sol-
vent depletion responsible for a dielectric screening defi-
ciency results in a surface field significantly larger than
the field of the continuum theory. Then, due to the rise
of the cumulative solvent density, the total cumulative
charge density increases at the interface. As a result of
the amplified dielectric screening effect, the electric field
decreases rapidly from the surface value E(0) = 4π`Bσs
to the magnitude of the continuum field Ec(z). More-
over, we see that far away from the interfaces, the total
cumulative charge density stays very close to the wall
charge. Finally, we note that the field E(z) exhibits fluc-
tuations around the continuum field. This arises from
the solvent charge density fluctuations displayed in the
inset of Fig. 4(b). In the next part, we will investigate
the effect of non-uniform solvent charge distribution on
the partition of ions in the nanoslit.

C. Solvent effects on counterion partition

In this part, we probe solvent structure effects on the
partition of counterions in the slit pore. We illustrate
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FIG. 5: (Color online) (a) Rescaled counterion densities in
the slit of size d = 2 nm and different charges increasing
from bottom to top : σs = 0.7 e nm−2 (black curve), 1.0 e
nm−2 (navy curve), and 1.3 e nm−2 (red curve). The inset
zooms on the interfacial region. We also display the coun-
terion density from the solvent-implicit theory (dashed navy
curve). (b) Image charge potential δvi(z) (blue curve), elec-
trostatic potentials φc(z) from the implicit solvent formalism
(black curve) and φ(z) of the explicit solvent approach (red
curve) at the pore charge σs = 1.0 e nm−2. Reservoir ion den-
sity and membrane permittivity are ρib = 0.01 M and εm = 1
in both figures.

in Fig. 5(a) cation densities from the solvent-explicit for-
mulation (solid curves) for increasing pore charge from
bottom to top. We also reported the cation density pro-
file from the continuum formulation of Eq. (13) (dashed
curve at the surface charge σs = 1.0 e nm−2). Fig. 5(b)
displays in turn the electrostatic potentials φ(z) and
φc(z) as well as the ionic self-energy δvi(z)/2 and the to-
tal ionic potential of mean force (PMF) φ(z) + δvi(z)/2.
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We also note that in this figure, the strong amplitude of
the repulsive ionic self-energy is known to result from im-
age charge interactions between ions and the membrane
of low dielectric permittivity.

In Fig. 5(a), the result from the continuum theory at
the surface charge σs = 1.0 e nm−2 (dashed navy curve)
shows that due to the competition between the repul-
sive image-charge potential and the attractive electro-
static potential, the density curve exhibits at both in-
terfaces a counterion depletion over 1 Å followed by a
maximum. The maxima are separated in turn by a well
in the mid-pore area. At the same surface charge, the
result of the solvent-explicit theory exhibits the same
counterion peak, with the corresponding curve exhibit-
ing fluctuations around the continuum result (see the in-
set). Most importantly, at the surface charge σs = 0.7
e nm−2, another counterion peak located at a closer dis-
tance from the interfaces appears. Increasing the surface
charge from this value to σs = 1.3 e nm−2, the height of
this peak rises and exceeds that of the second peak. The
additional interfacial counterion adsorption layer absent
in the continuum theory is a consequence of the non-
uniform solvent configuration. Indeed, Fig. 5(b) shows
that due to the interfacial dielectric screening deficiency
discussed in Section III B, the potential of the solvent-
explicit formalism φ(z) is much larger than the contin-
uum potential φc(z) in the interfacial regions. More pre-
cisely, at the surface charge σs = 1.0 e nm−2, the surface
potential values are φc(0) ≈ −8 kBT and φ(0) ≈ −27
kBT . In other words, close to the pore walls, the am-
plitude of the surface charge induced electrostatic force
becomes comparable with image-charge forces. The lo-
cation of the adsorption peaks absent in the continuum
approach corresponds precisely to the region where the
repulsive image-charge force is locally dominated by the
strongly attractive electric field. We emphasize that the
presence of this interfacial counterion adsorption layer
may have important consequences in the functioning of
nanofluidic devices [34, 35]. We plan to explore this issue
in an upcoming article.

We scrutinize now the effect of the membrane polarity
on the ionic structure formation illustrated in Fig. 5(a).
To this aim, we plotted in Fig. 6 counterion densities at
three different membrane permittivities. The main plot
shows that increasing the membrane permittivity from
εm = 1 to 30, the reduction of image charge forces am-
plifies the height of the first counterion peak. Because the
electroneutrality condition fixes the total number of ions
in the pore, this amplified counterion adsorption is com-
pensated by a density decrease in the mid-pore. More-
over, with a further increase of the membrane polarity
to the value εm = εw where image-charge forces vanish,
the two counterion peaks merge and leave a shouldering
located at a distance ∼ 1 Å from each interface. In this
limit where the ionic structure disappears, the counterion
density drops monotonically from the interface towards
the mid-pore. We note that this behaviour is characteris-
tic of the MF counterion densities previously investigated
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FIG. 6: (Color online) Counterion densities in the slit of size
d = 2 nm and surface charge σs = 0.7 e nm−2 for various
membrane permittivities : εm = 1 (black curve), εm = 30
(red curve), and εm = εw (blue curve). The inset shows the
net electrostatic force Ftot(z) = −∂z [φ(z) + δvi(z)/2] acting
on each counterion.

in Ref. [24] for single charged planes.
Finally, in terms of the change in the membrane per-

mittivity, we will show that the ionic structure for-
mation results from the competition between surface
charge attraction and image-charge repulsion. To this
aim, we plotted in the inset of Fig. 6 the electrostatic
force Ftot(z) = −∂z [φ(z) + δvi(z)/2] experienced by each
counterion located in the nanoslit. One sees that at the
membrane permittivity εm = 30 (red curve), the net force
switches several times from repulsive (Ftot(z) > 0) to at-
tractive (Ftot(z) < 0). At the points where the net force
vanishes (Ftot(z) = 0), surface charge attraction com-
pensates exactly image charge repulsion. This gives rise
to the counterion peaks displayed in the main plot. In
the limit εm = εw where structure formation disappears
(blue curve), the net force is seen to be purely attractive
in the nanoslit (Ftot(z) < 0). This leads in turn to a
monotonical counterion increase towards the wall.

IV. CONCLUSIONS

In this work, we investigated the coupled effects
of membrane charge, polarization forces, and non-
uniform dielectric permittivity on the partition of solvent
molecules and ions under nanoconfinement. We showed
that the solvent configuration is characterized by a strong
correlation between dipolar orientation and solvent num-
ber density. Namely, local solvent excess is usually ac-
companied with the alignment of solvent molecules per-
pendicular with the pore walls, whereas solvent exclu-
sion layers are associated with dipolar alignment parallel
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with the membrane. We also found that even in strongly
charged membranes, subnanometer pores are character-
ized by a reduced solvent density and dielectric permit-
tivity. This indicates that solvent-implicit ion rejection
models assuming the same pore and reservoir permittiv-
ities are not reliable in predicting the ionic selectivity of
subnanometer pores [3, 4]. Moreover, the non-uniform
polarization field of solvent molecules resulting in an in-
terfacial dielectric screening deficiency leads to a strong
surface electric field. This results in a counterion adsorp-
tion peak absent in continuum theories [10]. The obser-
vation of this additional counterion layer associated with
solvent structure is the main result of our work. This pe-
culiarity may have important effects on nanofluidic ion
transport [34, 35].

The present work aimed at probing the equilibrium
properties of confined electrolytes associated with sol-
vent charge structure. In an upcoming work, we plan
to explore the impact of the points investigated herein
on nanofluidic transport. It is also important to point
out the limitations of the present approach. First, we
emphasize that our non-MF NLPB formalism is hybrid
since we approximated the electrostatic propagator ac-
counting for charge correlation effects with the solution
of the continuum DH equation. The reason for this ap-
proximation is the absence of any recipies for the solution
of the solvent-explicit non-local kernel equation derived
in Ref. [9]. Moreover, although our formalism accounts
for the extended solvent charge structure, the associated
scalar field theory is a continuum formulation since it
does not include excluded volume effects and dielectric
cavities associated with solvent molecules. Despite these
limitations, our approach goes beyond the classical con-
tinuum theories of electrolytes since it is the only formal-
ism that can qualitatively reproduce interfacial ion and
solvent structure formation observed in MD simulations.
The comparison of the emerging ion transport properties
with experimental data is of course needed in order to
check the accuracy of the present theory and the conse-
quences of the above-mentioned limitations.

Appendix A: Derivation of the ionic and dipolar
self-energies

We report in this appendix the ionic and dipolar self-
energies in Eqs. (2) and (3),

δvi(z) = v(z, z)− vb(0) (A1)

δvd(z, az) = vd(z, az)− 2vb(0) + 2vb(a), (A2)

with the electrostatic Green’s function and dipolar po-
tential

v(r, r′) =

∫ ∞
0

dkk

2π
J0

[
k|r‖ − r′‖|

]
ṽ(z, z′), (A3)

vd(z, az) =

∫ ∞
0

dkk

2π
{ṽ(z, z) + ṽ(z + az, z + az)(A4)

−2ṽ(z, z + az) J0
[
k|a‖|

]}
,

and the Bessel function of the first kind J0(x) [36]. In
Ref [9], we had derived a variational kernel equation for
the electrostatic Green’s function v(r, r′). At present,
an analytical or numerical approach to solve this highly
non-local and non-linear kernel equation is not available.
Thus, we will approximate the electrostatic Green’s func-
tion in Eqs. (A1)-(A2) by the solution of the local DH
equation in slit pores [2],

ṽ(z, z′, k) =
2π`w
p

{
e−p|z−z

′| (A5)

+
∆

1−∆2e−2pd

[
e−p(z+z

′) + ep(z+z
′−2d)

+2∆e−2pd cosh (p|z − z′|)
]}
,

where we have introduced the Bjerrum length in water
solvent `w = e2/(4πεwkT ) and the functions

p =
√
κ2 + k2 (A6)

∆ =
εwp− εmk
εwp+ εmk

, (A7)

with the DH screening parameter κ2 = 4π`w
∑
i q

2
i ρib.

By substituting into Eqs. (A1)-(A2) the Fourier trans-
formed propagator (A5), the explicit form of the ionic
and dipolar self-energies read

δvi(z) = `w

∫ ∞
0

dkk

p

∆

1−∆2e−2pd
(A8)

×
{
e−2pz + e−2p(d−z) + 2∆e−2pd

}
δvd(z, az) = `w

∫ ∞
0

dkk

p

∆

1−∆2e−2pd
F (z, az), (A9)

where we introduced the auxiliary function

F (z, az) = e−2pz + e−2p(d−z) + e−2p(d−z−az) (A10)

+e−2p(z+az) + 4∆e−2pd

−2J0
[
k|a‖|

] {
e−p(2z+az) + e−p(2d−2z−az)

+2∆e−2pd cosh(paz)
}
.

Appendix B: Relaxation algorithm for the solution
of the non-MF NLPB equation (1) in slit pores

We present herein a numerical relaxation scheme for
the solution of Eq. (1) in slit pores. The scheme will be
an extension of the algorithm presented in Ref. [9] for
simple interfaces to the case of slit pores. In order to
simplify the form of Eq. (1), we note that we considered
in the present work the case of solvent molecules with
monovalent elementary charges Q = 1 and symmetric
electrolytes composed of two monovalent ion species, i.e.
q+ = q− = 1, with the bulk ion densities ρ+b = ρ−b = ρib.
With these simplifications, the NLPB Eq. (1) takes the
form

∂2zφ(z)− εwκ2 e−δvi(z)/2 sinh [φ(z)] (B1)
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−κ2s
∫ a2(z)

a1(z)

daz
2a

e−δvd(z,az)/2 sinh [φ(z)− φ(z + az)]

= 4π`Bσs [δ(z) + δ(d− z)] ,

where we introduced the solvent screening parameter
κ2s = 8π`Bρsb. By integrating Eq. (B1) in the vicinity
of the interfaces at z = 0 and z = d, one obtains the
two boundary conditions required for the solution of this
equation,

φ′(0) = 4π`Bσs (B2)

φ′(d) = −4π`Bσs. (B3)

The relaxation algorithm is based on the discretization
of Eq. (B2) on the z axis. This is done on a discrete lattice
located between z = 0 and z = d. The lattice is composed
of 2N + 1 mesh points with separation distance ε. In
order to express Eq. (B1) on the lattice, we introduce
the discretized coordinate zn = ε(n − 1) and potential
ψn = φ(zn) with 2N + 1 ≤ n ≤ 1. By introducing as well
the discrete form of the Laplacian operator ε2φ′′(z) =
ψn+1 + ψn−1 − 2ψn, Eq. (B1) can be expressed on the
lattice as

ψn =
1

2

{
ψn+1 + ψn−1 − r e−δvi(zn)/2 sinh (ψn) (B4)

−s
j2(n)∑
j=j1(n)

e−δvd(zn,az→zj−n+1)/2 sinh (ψn − ψj)

 ,

with the parameters r = εwε
2κ2, s = εwε

3κ2, and the
functions

j1(n) = max(1, n− na + 1) (B5)

j2(n) = min(2N + 1, n+ na − 1), (B6)

where the index na is defined as z(na) = a. Eq. (B4) will
be solved with the boundary conditions (B2)-(B3) that
can be expressed on the lattice as ψ0 = ψ1 − 4π`Bσsε
and ψ2N+2 = ψ2N+1 − 4π`Bσsε. We finally note that on
the same discrete lattice, the solvent number density (7)
takes the form

ρd(zn) =
ρsbε

a

l2(n)∑
j=l1(n)

e−
1
2 δvd(zj ,az→2zn−2zj) eψ2n−j−ψj ,

(B7)

with the boundaries

l1(n) = max(1, n− n′a + 1, 2n− 2N − 1) (B8)

l2(n) = min(2n− 1, n+ n′a − 1, 2N + 1), (B9)

and the index n′a defined as z(n′a) = a/2.
The relaxation algorithm consists in solving Eq. (B4)

by iterating an initial reference potential φr(z). As al-
ready explained in Ref. [9], the complication stems from
the fact that for the convergence to be achieved, the in-
put function has to verify the same boundary conditions

as the NLPB Eq. (B1), i.e. the guess potential should
obey Eqs. (B2)-(B3). These conditions are not verified
by the local MF PB equation since the PB potential sat-
isfies a different boundary condition φ′(0) = 4π`wσs at
z = 0. In other words, the latter does not take into
account the dielectric void in the neighbourhood of the
charged interfaces.

In order to account for the interfacial dielectric screen-
ing deficiency absent in the PB formalism, we will reit-
erate the trick explained in Ref. [9] and extend the guess
potential derived in this earlier work for simple interfaces
to slit nanopores. Namely, neglecting the dipolar self-
energy δv(z, az) in Eq. (B1) and linearizing this equation
in terms of the potential φ(z), one finds that the result-
ing equation is reduced for z � a and εwκ

2 � κ2s to
φ′′(z)−c2κ2sφ(z) = −4π`Bσ(z), where we introduced the
geometric factor c2 = 1/2 associated with the rotational
penalty for dipoles in the vicinity of the rigid interfaces.
The solution of this equation yields the electrostatic field
in the form φ′(z) = 4π`Bσse

−cκsz. We now note that
this field is also the solution of the non-uniform Pois-
son equation ∂zε(z)∂zφ(z) = −4π`Bσ(z), with the di-
electric permittivity function given by ε(z) = ecκsz. In
Ref. [9], this exponential law was shown to reproduce ac-
curately the behaviour of the dielectric permittivity up
to the characteristic distance d1 = ln(εw)/(cκs) ≈ 0.3 Å
where the non-local permittivity reaches the bulk value
(see Fig.6(a) of Ref. [9]). Inspired by this observation, we
approximate for pores with thickness d > 2d1 Eq. (B1)
by the following equation,

∂zε(z)∂zφ(z)− εwκ2c(z) [φr(z)− φ0] = −4π`Bσ(z),
(B10)

where φ0 is a uniform Donnan potential that will be
determined from a variational minimization procedure.
Furthermore, the piecewise ionic screening parameter
reads κc(z) = κθ(z − d1)θ(d − d1 − z), and the inho-
mogeneous dielectric permittivity function is given by

ε(z) = ecκszθ(d1 − z)θ(z) + εwθ(z − d1)θ(d− d1 − z)
ecκs(d−z)θ(z − d+ d1)θ(d− z). (B11)

The solution of Eq. (B10) satisfying the continuity of
the potential φ(z) and the displacement field ε(z)φ′(z)
at z = d1 and z = d− d1 reads

φr(z) = φ0 −
[
A+

4π`Bσs
cκs

e−cκsz

]
θ(d1 − z)θ(z) (B12)

−4π`wσs
κ

cosh [κ(d/2− z)]
sinh [κ(d/2− d1)]

θ(z − d1)θ(d− d1 − z)

−
[
A+

4π`Bσs
cκs

e−cκs(d−z)
]
θ(z − d+ d1)θ(d− z),

where we introduced the constant

A = 4π`wσs

{
1

κ
coth

[
κ

(
d

2
− d1

)]
− 1

cκs

}
. (B13)

The solution scheme consists in injecting into Eq. (B4)
the guess potential (B12) at the first iterative step, using
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the output function as the new input potential at the next
iterative step, and continuing the cycle until numerical
convergence is obtained.

Finally, we explain the variational determination of
the Donnan potential φ0 that takes into account non-
linearities neglected by the linear trial form (B12). The
approach consists in injecting the guess potential (B12)
into the part of the variational Grand potential that gen-
erates Eq. (1). Up to constant factors that do not depend
on the variational parameter φ0, the variational func-
tional to be optimized with respect to φ0 reads [9]

h[φ0] = −2ρib

∫ d

0

dz e−δvi(z)/2 cosh[φr(z)]− 2σsφ0.

(B14)

By taking the derivative of Eq. (B14) with respect to the
Donnan potential φ0, one obtains

− 2ρib

∫ d

0

dz e−δvi(z)/2 sinh[φr(z)]− 2σs = 0. (B15)

The integral equation (B15) can be easily solved with
a standard dichotomy algorithm in order to obtain the
numerical value of the Donnan potential.
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