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a b s t r a c t

We introduce a minimal notion of altruism and use it to refine Nash equilibria in normal form games.
We provide three independent existence proofs, relate minimally altruistic Nash equilibrium to other
equilibrium concepts, conduct an in-depth sensitivity analysis, and provide examples where minimally
altruistic Nash equilibrium leads to improved predictions.
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1. Introduction

In the last thirty years, we witnessed a surge in experimental
studies in economics reporting altruistic or other-regarding be-
havior (see Güth et al. (1982), Roth et al. (1991), Forsythe et al.
(1994), Güth and Van Damme (1998), Fehr and Gächter (2002)
and Charness and Rabin (2002) among others). This observation
is in stark contrast with the selfish man, an assumption to which
most theoretical models in economics, if not all, were implic-
itly or explicitly subscribed. Nevertheless, the experimental ev-
idence in favor of other-regarding behavior is so overwhelming
that we also see an increasing number of theoretical models ex-
plaining/incorporating altruism (see Rabin (1993), Levine (1998),
Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Gintis et al.
(2003), Fehr and Fischbacher (2003), Falk and Fischbacher (2006)
and Cox et al. (2007, 2008) among others).

With a few exceptions (see Cox et al. (2008)), in most theo-
retical papers modeling other-regarding behavior, altruism is in-
corporated into their models with an additively separable utility
function: an agent directly cares about others through altruism or
indirectly cares about others through his inequality aversion. In
this paper, we introduce a different notion of altruism and use it
to refine Nash equilibria in normal form games. Inmodeling other-
regarding behavior, we use agents’ preferences as a work-horse
rather than their utility functions. In particular, we assume that
each agent may care about the well-being of a set of other agents
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in addition to his own well-being, in a lexicographic fashion: a set
of agents (including the agent himself) each agent cares about and
an order on these agents are defined, where an agent’s own well-
being is at the top of this priority order. Agents may best respond
to others’ strategies with lexicographic preferences on outcomes.
Therefore, an agent in a strategic game first maximizes his own
well-being and then among the set of outcomes that maximize his
ownwell-being (i.e., his best-response set), he prefers the ones that
maximize the well-being of the agent ranked second in his prior-
ity order and so on.1 Clearly, this notion of altruism is much less
demanding than the standard notion of altruism where all agents’
utilities/payoffs enter into a utility function at the same level but
possibly with varying weights. This is why we label it as minimal
altruism.2 If an agent’s priority set is a singleton, then this means

1 A step in a similar direction is taken by Dutta and Sen (2012) in the social
choice context. These authors introduce partially honest individuals, who strictly
prefer telling the truth if doing so does not lead to an outcome worse than lying
does. The presence of such individuals turns out to be crucial for obtaining Nash
implementability. Similar minimal or costless honesty notions are also used by
Laslier andWeibull (2013) and Dutta and Laslier (2010) in jury and voting contexts,
respectively. Finally, Doğan (2013) introduce responsible agentswho first care about
their own utility and then social efficiency (in a lexicographic manner) in an
allocation problem.
2 Our minimal altruism notion is different and even less demanding than the

notion Fishkin (1982) introduced: Fishkin’s principle of minimal altruism, as a moral
principle, stipulates that if an agent, by incurring minor personal costs, can bring
about great benefits (or prevent great harm), then he/she is morally obligated to
do so. It is also compatible with the limits of altruism Hardin (1977) put forward:
‘‘Never ask a person to act against his own self-interest’’. Finally and more closely,
it is identical to the interdependence condition, minimal altruism, formulated by
Knoblauch (2001).

http://dx.doi.org/10.1016/j.mathsocsci.2013.10.003
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he only cares about himself and thus he is a selfish agent. If his set
is not a singleton, then he is aminimally altruistic agent.3 Note that
an agent’s priority set does not have to include all other agents in
this case: he may only care about the well-being of a subset of oth-
ers in which case he is still considered to be a minimally altruistic
agent. This case would also resemble nepotism.

The minimal altruismwe introduce is more relevant (or useful)
in situations where (i) agents cannot influence their own payoffs
to a great extent but can still influence others’ payoffs, (ii) agents
are indifferent betweenmultiple actions (i.e., there aremultiple ac-
tions/strategies that maximize their own well-being), or (iii) some
agents in a strategic situation have just a single action. In many
such circumstances, it is plausible to assume that most people
would also care about others’ well-being as well. In fact, experi-
mental findings in Engelmann and Strobel (2004), Güth et al. (2010,
2012) and Cappelen et al. (2013) and in many other experiments
using impartial spectators, provide – at least a partial – support for
our notion: in these experiments, subjects whose earnings are (at
least locally) fixed and not affected by their decisions make dis-
tributive decisions that are in line with efficiency, equality and
equity concerns.

We provide three independent existence proofs for our equilib-
rium concept: using Kakutani’s fixed point theorem as in the exis-
tence proof of Nash equilibrium, using Zhou’s fixed point theorem
as in the existence proof of Nash equilibrium in games with strate-
gic complementarities, and using the existence of Berge–Nash
equilibrium. The first existence result is themost natural and stan-
dard one since Nash equilibrium is a special case in our setup.With
adaptations of some of the sufficient conditions for the existence
of Nash equilibrium and an additional condition (level-k empa-
thy), we guarantee the existence of minimally altruistic Nash equi-
librium. On the other hand, the reason why we resort to games
with strategic complementarities is that our refinement has much
to offer when the game has more coordination aspect than pure
competition aspect and when players’ potential to influence oth-
ers’ payoffs is substantial. Games with strategic complementari-
ties satisfy these requirements to a great extent. Finally, we use
Berge–Nash equilibrium for yet another existence result. The Berge
equilibrium concept assumes a different – and a rather extreme –
sort of altruistic behavior. Thus, it is reasonable to investigate the
relationship between minimally altruistic Nash equilibrium and
Berge–Nash equilibrium.

Our results show that minimally altruistic Nash equilibrium
leads to better and sharper predictions than Nash equilibrium
in many instances, if one believes that our notion of altruism is
realistic. As a result of the richer structure of game definition that
incorporates priority sets and priority orders, even players who
have single strategies or players who are indifferent between all
of their strategies can influence the set of minimally altruistic
Nash equilibria, which is a feature of many real-life circumstances.
Note that such players cannot influence the set of Nash equilibria.
On the other hand, it is also important to emphasize that the
minimally altruistic refinement operates on the set of individual
best responses and not on the set of Nash equilibria.4 This has

3 Mathematically speaking, modeling altruism in this fashion (i.e., with lexi-
cographic preferences) is equivalent to taking the limit of CES family of utility
functions (over agents’ utilities), where the weight an agent attaches to an agent
ranked at kth place in his priority order becomes infinitely greater than the weight
he attaches to an agent ranked at (k+1)th place. Since all agents rank themselves at
the top of their priority order, they care about themselves infinitely more than any
other agent. Hence, the adjective, minimal, also makes sense from a mathematical
point of view.
4 First of all, refining the set of Nash equilibria by directly eliminating some

of them would not be a significant innovation from an intellectual perspective.
Moreover, what is modeled in that case would not be pure altruism since other-
regarding behavior would not influence players’ behavior in the game.
important and interesting implications: even though players care
about others’ well-being only after maximizing their own well-
being, this does not necessarily imply that theywill be equally well
off in cases where they are selfish and altruistic. For instance, a
player who starts to care about others (or becomes selfish) may
face a less or more favorable set of payoffs by doing that. Similarly,
a player who nobody cared about before may face a less favorable
set of payoffs after some (or even all) players start caring about him.
Concerning the comparison between minimally altruistic Nash
equilibrium and Berge–Nash equilibrium, we show that in many
instanceswhere Berge–Nash equilibriumdoes not exist,minimally
altruistic Nash equilibrium exists. Finally, by conducting an in-
depth sensitivity analysis we show that the set of equilibria is
highly sensitive to the set of players each player cares about and
the priority order each player has.

It is worth mentioning that minimally altruistic refinement is a
complement rather than a substitute for other refinement concepts
(e.g., essential equilibrium etc.). Our refinement is different than
these in that it is not based on players making mistakes and hence
does not use any perturbations. Moreover, minimally altruistic
refinement is also different from coalition-proof and strong Nash
refinements in that it is not based on a coalitional structure.
Nevertheless, we do not see any element in theminimally altruistic
refinement, which would pose a problem for applying it together
with one of these other refinements.

The paper is structured as follows: in Section 2, we present
some preliminaries, i.e., definitions and results we employ
throughout the paper. In Section 3, we introduceminimal altruism,
provide the formal definition for minimally altruistic Nash equi-
librium and existence results. Section 4 provides further results.
In Section 5, we present some examples where we refine the set
of Nash equilibria using minimal altruism. Finally, Section 6 con-
cludes.

2. Preliminaries

Inwhat follows,we provide some definitions and theorems that
we utilize throughout the paper. First, a set of definitions:

Definition 1 (Quasiconcavity). A function f : X → R on a convex
set X is quasiconcave if for every a ∈ R, {x ∈ X |f (x) ≥ a} is convex.

Definition 2 (Closed Graph). Let X and Y be any topological spaces.
A correspondence F : X → Y has a closed graph if x ∈ F(y) for any
two sequences (xn) → x and (yn) → ywith for every n: xn ∈ F(yn).

Definition 3 (Upper Semi-Continuity). A function f : X → R is
upper semi-continuous if for every x ∈ X and every sequence (xn)
with (xn) → x, lim sup f (xn) ≤ f (x).

Definition 4 (Lattice and Complete Lattice). A partially ordered set
is a lattice if it contains the supremum and the infimum of all pairs
of its elements. A lattice is complete if each nonempty subset has a
supremum and an infimum.

Definition 5 (Subcomplete Sublattice). Let X be a lattice and Y ⊂

X be a sublattice. Y is a subcomplete sublattice of X if, for each
nonempty subset Y ′ of Y ,


X Y ′ and


X Y ′ exist and are contained

in Y .

Definition 6 (Supermodularity). Let X be a lattice. A function f :

X → R is supermodular if for all x, x′
∈ X , f (x)+f (x′) ≤ f (x∧x′)+

f (x ∨ x′).
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Definition 7 (Increasing Differences Property). Let X be a lattice and
T be a partially ordered set. A function f : X×T → R has increasing
differences in (x, t) if f (x, t ′) − f (x, t) is increasing in x for every
t < t ′.

Definition 8 (Veinott Increasingness). Let X be a lattice. A corre-
spondence F : X → X is Veinott-increasing if for each x, y ∈ X
with x < y, a ∈ F(x) and b ∈ F(y) implies a ∧ b ∈ F(x) and
a ∨ b ∈ F(y).

Definition 9 (Fixed Point). A fixed point of a function f : X → X is
x ∈ X such that f (x) = x. The set of fixed points of a correspondence
F : X → X is defined as {x ∈ X |x ∈ F(x)}.

Finally, we refer to the following theorems throughout the
paper:

Theorem 1 (Kakutani (1941)). Let X be a nonempty, compact, and
convex subset of Euclidean space. If F : X → X is a nonempty-valued
and convex-valued correspondence with a closed graph, then F has a
fixed point.

Theorem 2 (Zhou (1994)). Let X be a nonempty, complete lattice and
F : X → X be a nonempty-valued correspondence. If F is Veinott-
increasing and F(x) is a subcomplete sublattice of X for every x ∈ X,
then the fixed point set of F is a nonempty complete lattice.

Theorem 3 (Topkis (1998)). Let X be a nonempty, complete lattice, T
be a partially ordered set, and Y : X×T → X×T be a correspondence.
If Y is increasing, and Y (x, t) is a nonempty subcomplete sublattice of
X × T for each (x, t) ∈ X × T , then

(i) for all t ∈ T , there exists a greatest (least) fixed point of Y (x, t),
(i) the greatest (least) fixed point of Y (x, t) is increasing in t on T .

3. Minimally altruistic Nash equilibrium

In this section, we first define minimal altruism and minimally
altruistic Nash equilibrium concepts. Then, we show that mini-
mally altruistic Nash equilibrium is indeed a refinement of Nash
equilibrium. Finally, we provide existence results for this refine-
ment concept.

3.1. Minimal altruism and refinement

Let Γ = (N, (Xi)i∈N , (ui)i∈N) be a normal form game where N
is the finite set of players, Xi is the set of strategies for player i,
and ui is player i’s payoff function. Let Si be a subset of N that in-
cludes i and (Si)i∈N be a collection of such subsets for all i ∈ N .
Then, let ≻i be a strict order defined on Si such that i≻i j, for all
j ∈ Si \ {i}. Finally, for any i ∈ N and j ∈ Si, let ϕ(i, j) denote
agent j’s rank in agent i’s priority order, ≻i.5 We define ΓMA =

(N, (Xi)i∈N , (Si)i∈N , (≻i)i∈N , (ui)i∈N) as a minimally altruistic ver-
sion of a normal form game where each player is associated with
one priority set and a priority order on it. To define the minimally
altruistic Nash equilibrium, we first define minimal altruism.

Definition 10. Let Ri be a preference relation on R|N|. Let Pi denote
the strict preference and Ii denote the indifference induced by Ri.
For a given (Si, ≻i), an agent i is a minimally altruistic agent if his

5 For the sake of completeness, for every i, j ∈ N with j ∉ Si , we setϕ(i, j) = n+1.
preference among any twopayoff vectors e = (e1, . . . , ei, . . . , e|N|)
and e′

= (e′

1, . . . , e
′

i, . . . , e
′

|N|
) is written as

ePie′ if ei > e′

i

ePie′ if ei = e′

i and ej > e′

j where ϕ(i, j) = 2
· · · · · ·

· · · · · ·

ePie′ if ∀k ∈ Si \ {m}, ek = e′

k and em > e′

m

where ϕ(i,m) = |Si|
eIie′ if ∀k ∈ Si, ek = e′

k.

Now, we can define minimally altruistic refinement of Nash
equilibrium. For an agent i ∈ N and for every y ∈ X , let

Xi,1(y) = argmax
x∈X

ui(xi, y−i).

Then, for every y ∈ X and for every k = 1, . . . , |Si| − 1, let

Xi,k+1(y) = arg max
x∈Xi,k(y)

ujk+1(xi, y−i)

such that j1 = i and ϕ(i, jk+1) = k + 1.

Definition 11 (MANE). A strategy profile x∗
∈ X is a minimally

altruistic Nash equilibrium (MANE) if for all i ∈ N: x∗
∈ Xi,|Si|(x

∗).

Notice that Si and ≻i are included in the definition of the
game (ΓMA) whereas Ri is included in the definition of the
equilibrium concept. Thus, how the information provided by Si
and ≻i is processed is given in the equilibrium concept. It can be
argued that we follow a normative approach here, by including
altruism in the equilibrium concept, MANE. Alternatively, one can
follow a positive approach by investigating the Nash equilibrium
outcomes in games where players have altruistic preferences.6
Finally, it is worthwhile emphasizing that minimally altruistic
Nash equilibrium uses, whereas the Nash equilibrium concept
ignores, the information provided by Si and ≻i.

Notice that for any player i, Xi,k(·) in this definition is a subset
of the best response correspondence of i according to Nash, BRi(·),
which is equal to Xi,1(·). This directly implies the following result.

Proposition 1. Minimally altruistic Nash equilibrium is a refinement
of Nash equilibrium.

Proof. Take any MANE, x∗
∈ X . Then for all i ∈ N , x∗

∈ Xi,|Si|(x
∗).

By definition, for all i ∈ N , x∗
∈ Xi,1(x∗) = BRi(x∗). Thus, x∗ is a NE.

The following example demonstrates that a NE is not necessar-
ily aMANE.

x2
x1 2, 1
y1 2, 0

Here, both strategy profiles areNE, but (y1, x2) is not aMANE given
that S1 = {1, 2}. �

3.2. Existence

In the following parts, we provide three independent existence
results: utilizing (i) Kakutani’s fixed point theorem, (ii) Zhou’s fixed
point theorem, and (iii) the Berge–Nash equilibrium existence
result.7

6 We thank Tarık Kara for bringing up this issue during our discussions.
7 Amixed strategy version of a normal form game is, by definition, a normal form

game. Hence, these existence results are valid for equilibrium in mixed strategies
as well.
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3.2.1. Existence through Kakutani fixed point theorem
The following existence result builds on the fact that Nash equi-

librium is a special case of minimally altruistic Nash equilibrium
(i.e., selfish best-responses). Then, one intuitively expects that the
existence of minimally altruistic Nash equilibrium can be guaran-
teed by taking sufficient conditions for Nash equilibrium (see Nash
(1950)) as baseline and adding more conditions or modifying the
existing ones. In fact, this is what we do in the following proposi-
tion.

We first define Bi
j : X → X such that for every y ∈ X:

Bi
j(y) = {x ∈ X | ∀x′

i ∈ Xi : uj(xi, y−i) ≥ uj(x′

i, y−i)}.

That is, given a strategy profile of −i, agent j chooses a strategy for
agent i from Xi in order to maximize his own payoff. This corre-
spondence is used in the definition of level-k empathy, which re-
lates the best responses of agents.

Axiom 1 (Level-k Empathy). For k ≥ 2, agent j is level-k empathetic
towards agent i if for every x ∈ X: Xi,k−1(x) ∩ Bi

j(x) is nonempty.

If agent j is empathetic towards agent i, then agent i would not
complain if agent j selfishly selects a strategy for agent i.

Proposition 2. In game ΓMA, if (i) each Xi is a nonempty, compact,
and convex subset of a Euclidean space, (ii) each ui is quasiconcave in
xj for every j ∈ N with i ∈ Sj and is continuous in x, and (iii) for every
i ∈ N, each j ∈ Si is level-ϕ(i, j) empathetic towards i, then MANE
exists.

Proof. Take any i ∈ N . It follows from the existence result of Nash
equilibrium that BRi = Xi,1 is nonempty-valued, convex-valued,
and has a closed graph. This implies for all x ∈ X that Xi,1(x) is
nonempty, compact, and convex.

Now, take any x ∈ X and i ∈ N . Then, take some j ∈ Si such that
ϕ(i, j) = 2. Since agent i maximizes uj on a nonempty, compact,
and convex set, Xi,1(x), and uj is quasiconcave in xi and continuous
in x by assumption, it follows that Xi,2(x) is nonempty, compact,
and convex. Recursively, for every x ∈ X , Xi,|Si|(x) is nonempty,
compact, and convex as well.

We have that Xi,|Si| is nonempty-valued, convex-valued, and
compact-valued. To utilize Kakutani’s fixed point theoremweneed
to show that Xi,|Si| has a closed graph. For that, take any two
sequences (xm) → x and (ym) → y such that for every m,
xm ∈ Xi,|Si|(y

m). Then, for every m, we have xm ∈ Xi,k(ym) for
every k ∈ {1, . . . , |Si| − 1}. Since for all m and for all x′

i ∈ Xi:
ui(xmi , ym

−i) ≥ ui(x′

i, y
m
−i) (by optimality) and ui is continuous, we

have ui(xi, y−i) ≥ ui(x′

i, y−i) for every x′

i ∈ Xi. Then, x ∈ Xi,1(y).
Now, consider agent jwith ϕ(i, j) = 2. Since j is level-2 empathetic
towards i by assumption, we have for all m and for all x′

∈ Xi,1(y):
uj(xmi , ym

−i) ≥ uj(x′

i, y
m
−i) by optimality. Then, by continuity of uj

in x, we also have uj(xi, y−i) ≥ ui(x′

i, y−i) for every x′
∈ Xi,1(y),

which implies x ∈ Xi,2(y). Since level-k empathy is assumed for
every j ∈ Si, it recursively follows that x ∈ Xi,k(y) for every
k ∈ {1, . . . , |Si|}. Hence, x ∈ Xi,|Si|(y), that is Xi,|Si| has a closed
graph.

All of these four properties are preserved under finite intersec-
tions. Then the joint best response correspondence according to
MANE, defined by


i∈N Xi,|Si|, satisfies the conditions of Kakutani’s

fixed point theorem. Therefore, the set of fixed points is nonempty,
i.e. MANE exists. �

Note that we just strengthen the quasiconcavity requirement
compared to the sufficient conditions for the (standard) existence
theorem forNash equilibrium, and additionally assume level-k em-
pathy. The former is a relatively minor and intuitive modification,
whereas the latter is a very restrictive assumption.
3.2.2. Existence through games with strategic complementarities
Characterized by increasing joint best reply, games with strate-

gic complementarities (GSC) rely on the extension of Tarski’s fixed
point theorem for correspondences (see Veinott (1992) and Zhou
(1994)) and a lattice-based approach to monotone comparative
statics (see Topkis (1978), Vives (1990) and Milgrom and Roberts
(1990)). For our minimally altruistic refinement, GSC can be for-
malized in the following way:

Definition 12. A game ΓMA has strategic complementarities à la
minimally altruistic Nash (hence, is a GSC à la minimally altruistic
Nash) if (i) each Xi is a complete lattice, (ii) each best response cor-
respondence according to minimally altruistic Nash equilibrium,
Xi,|Si|, is nonempty-valued and Veinott-increasing, and (iii) for all
x ∈ X , Xi,|Si|(x) is a subcomplete sublattice of X .

The lattice-based approach to monotone comparative statics
under the notion of Nash equilibrium establishes that each player’s
payoff function needs to be supermodular in his own strategies and
satisfy increasing differences in order to have Veinott-increasing
joint best reply. Stemming from these sufficient conditions on
payoffs, such classes of games with monotone best responses are
referred to as supermodular games (see Topkis (1998)). However,
under the notion of minimally altruistic Nash equilibrium, one
needs further requirements to have Veinott-increasing joint best
reply: the payoff to each player i needs to be supermodular and
satisfy increasing differenceswith respect to the strategies of every
player who cares about i.8 In this respect, a minimally altruistic
supermodular game can be defined as follows.

Definition 13. A game ΓMA is minimally altruistic supermodular if
(i) each Xi is a nonempty, compact, and complete lattice, (ii) each
ui is supermodular in xj for every j ∈ N with i ∈ Sj, (iii) each ui
has increasing differences in (xj, x−j) for every j ∈ N with i ∈ Sj,
and (iv) each ui is upper semi-continuous in xj for every j ∈ N with
i ∈ Sj.

Note that a minimally altruistic supermodular game is, by
definition, a supermodular game. However, a GSC à la minimally
altruistic Nash need not be a GSC.

Proposition 3. The following statements on minimally altruistic re-
finement of Nash equilibrium are valid.

(i) Aminimally altruistic supermodular game is a GSC à la minimally
altruistic Nash.

(ii) In a GSC à la minimally altruistic Nash (hence, in a minimally
altruistic supermodular game), the set of MANE is a nonempty
complete lattice.

Proof. For (i), take any i ∈ N and j ∈ Si such that ϕ(i, j) = 2.
First, since ui is upper semi-continuous in xi, Xi,1(x) = BRi(x) is

nonempty for all x ∈ X . Then, since uj is upper semi-continuous
in xi, Xi,2(x) is also nonempty for all x ∈ X . Similarly, we conclude
that for every k = 1, . . . , |Si|, Xi,k is nonempty-valued.

Now, take any x, y ∈ X with x < y. Take a ∈ Xi,|Si|(x) and
b ∈ Xi,|Si|(y) as well. This implies that a ∈ Xi,k(x) and b ∈ Xi,k(y)
for every k = 1, . . . , |Si|. For Veinott-increasingness, we need to
show that a∧ b ∈ Xi,|Si|(x) and a∨ b ∈ Xi,|Si|(y). If a < b, the result
is trivial. If not,

0 ≤ ui(ai, x−i) − ui(ai ∧ bi, x−i)

≤ ui(ai ∨ bi, x−i) − ui(bi, x−i)

≤ ui(ai ∨ bi, y−i) − ui(bi, y−i) ≤ 0.

8 In its essence, this modification is similar to the one we make in Proposition 2.
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Here, the first and the last inequalities follow fromoptimality since
a ∈ Xi,1(x) and b ∈ Xi,1(y). Supermodularity implies the second
inequality and increasing differences property implies the third
inequality. Then, a ∧ b ∈ Xi,1(x) and a ∨ b ∈ Xi,1(y). Recalling
that a ∈ Xi,2(x) and b ∈ Xi,2(y), we have

0 ≤ uj(ai, x−i) − uj(ai ∧ bi, x−i)

≤ uj(ai ∨ bi, x−i) − uj(bi, x−i)

≤ uj(ai ∨ bi, y−i) − uj(bi, y−i) ≤ 0.

Here, the first and the last inequalities are valid for every element
of Xi,1(x) and Xi,1(y), including a ∧ b ∈ Xi,1(x) and a ∨ b ∈ Xi,1(y).
The second and the third inequalities follow fromassumptions that
uj is supermodular in xi and uj has increasing differences. Then,
a ∧ b ∈ Xi,2(x) and a ∨ b ∈ Xi,2(y). Similar arguments will follow
for every j′ ∈ Si. Then a ∧ b ∈ Xi,|Si|(x) and a ∨ b ∈ Xi,|Si|(y), so that
Xi,|Si| is Veinott-increasing.

Finally, consider any x ∈ X and take any a, b ∈ Xi,|Si|(x). Note
that a, b ∈ Xi,k(x) for every k = 1, . . . , |Si|. First we have,

ui(ai, x−i) = ui(bi, x−i) ≥ ui(ci, x−i), ∀ci ∈ Xi

since a, b ∈ Xi,1(x) and

ui(ai, x−i) + ui(bi, x−i) ≤ ui(ai ∧ bi, x−i) + ui(ai ∨ bi, x−i)

by supermodularity of ui in xi. Then, it directly follows that
ui(ai, x−i) = ui(ai ∧ bi, x−i) = ui(ai ∨ bi, x−i), i.e. a ∧ b,
a ∨ b ∈ Xi,1(x). With this result and similar arguments, we have
the following:

uj(ai, x−i) = uj(bi, x−i) ≥ uj(ci, x−i), ∀ci ∈ Xi,1(x)

since a, b ∈ Xi,2(x) and

uj(ai, x−i) + uj(bi, x−i) ≤ uj(ai ∧ bi, x−i) + uj(ai ∨ bi, x−i)

by supermodularity of uj in xi. Similar arguments will follow for
every j′ ∈ Si. Then a ∧ b ∈ Xi,|Si|(x) and a ∨ b ∈ Xi,|Si|(x), so that
Xi,|Si|(x) is a subcomplete sublattice of X for all x ∈ X .9 Then, the
game is a GSC à laminimally altruistic Nash.

For (ii), since the properties satisfied by Xi,|Si| are preserved
under finite intersections,


i∈N Xi,|Si| satisfies the conditions of

Zhou’s fixed point theorem. Therefore, the set of MANE is a
nonempty complete lattice. �

The utilization of strategic complementarities not only allows
us to establish the existence of MANE but also provides a sharp
characterization of the set of MANE. Moreover, referring to the
constructive proof of Zhou’s extension of Tarski’s fixed-point
theorem to set valued maps (see Echenique (2005)), it provides
a simple iterative procedure to compute the extremal equilibria.
Note also that we can provide a monotone comparative statics
result on the set ofMANE, utilizing Topkis’ theorem (Topkis, 1998).
In particular, letting T be a partially ordered set and (Γ t

MA)t∈T be a
collection of GSC à laminimally altruistic Nash, the leastMANE and
the greatestMANE are increasing in t on T .

3.2.3. Existence through Berge–Nash equilibrium
We first provide a definition of Berge equilibrium (BE). The

definition we provide below is commonly referred to as Berge
equilibrium in the sense of Zhukovskii (1994) in the literature.10
As it can be seen in the definition below, Berge equilibrium has
a rather extreme version of altruism embedded in: for any i and

9 The best response correspondences are closed-valued in the interval topology
(see Zhou (1994)). And a closed interval in a complete lattice X is a subcomplete
sublattice of X .
10 We refer to Zhukovskii’s (1994) definition for Berge equilibrium since Berge
(1957) himself offered only an intuitive/informal definition.
given player i’s strategy, all other players choose their strategies so
as to maximize agent i’s well-being.

Definition 14 (Berge Equilibrium). In game Γ , x∗ is a Berge equi-
librium if for every i ∈ N , we have ui(x∗) ≥ ui(x∗

i , x−i) for every
x−i ∈ X−i.

Berge–Nash equilibrium (BNE) directly follows as the intersec-
tion of Berge equilibrium with Nash equilibrium.

Definition 15 (Berge–Nash Equilibrium). In game Γ , x∗ is a Berge–
Nash equilibrium if it is both a Berge equilibrium and a Nash
equilibrium.

The following definition introduces the reduced game notionwe
utilize in the existence result that follows.

Definition 16. For given ΓMA, x ∈ X and i, j ∈ N with i ≠ j, we
define the reduced game Γ{i,j}(x) = ({i, j}, Xi × Xj, (vi, vj)) such
that vk : Xi × Xj → R is given by vk(ai, aj) = uk(ai, aj, x−{i,j}) for
every k ∈ {i, j} and for every (ai, aj) ∈ Xi × Xj.

Lemma 1. The strategy profile x∗
∈ MANE(ΓMA) if for every i, j ∈ N

with j ∈ Si \ {i}: (x∗

i , x
∗

j ) ∈ Bi(x∗

i , x
∗

j ), where Bi(·) is a best response of
i according to Berge–Nash equilibrium for the reduced game Γ{i,j}(x∗).

Proof. Take any x∗ such that for every i, j ∈ N with j ∈ Si \ {i}:
(x∗

i , x
∗

j ) ∈ Bi(x∗

i , x
∗

j ). Take any i ∈ N . We have ui(x∗) ≥ ui(xi, x∗

−i),
∀xi ∈ Xi. Also, for every j ∈ Si \ {i}: uj(x∗) ≥ uj(xi, x∗

−i), ∀xi ∈ Xi.
We know that x∗

∈ Xi,1(x∗). Then, recursively, we can say that for
every k ∈ 2, . . . , |Si|, x∗

∈ Xi,k(x∗). Since i is arbitrarily chosen, the
result follows. �

The following proposition uncovers an interesting relationship
between Berge–Nash equilibrium and minimally altruistic Nash
equilibrium.

Proposition 4. If a normal form game Γ has a Berge–Nash equilib-
rium, then ΓMA has a minimally altruistic Nash equilibrium. In fact,
BNE(Γ ) = BNE(ΓMA) ⊂ MANE(ΓMA).

Proof. First of all, BNE of a game equals BNE of the minimally
altruistic version of the game, since BNE does not depend on any
Si or ≻i. For the latter, take x∗

∈ BNE(ΓMA). Consider any relevant
reduced game of Γ defined as above. Then, obviously, x∗ satisfies
the condition in Lemma 1 for every i ∈ N and j ∈ Si \ {i}. Thus,
x∗

∈ MANE(ΓMA). �

Larbani and Nessah (2008) provide sufficient conditions for the
existence of BNE. Under the same set of conditions, the proposition
above shows thatMANE exists.

4. Further results

In this section, we provide further results on minimally altruis-
tic Nash equilibrium.

The following remark relatesMANE toNE and BNE. It focuses on
the trivial case where players care only about themselves. In that
case, MANE and NE are, not surprisingly, equivalent. On the other
hand, the same remark also states that even if each player cares
about all the other players,MANE may not be reduced to BNE.

Remark 1. In a game ΓMA, if for every i ∈ N , Si = {i}, then
MANE(ΓMA) = NE(ΓMA). On the other hand, even if for all i ∈ N ,
Si = N , it may be the case thatMANE(ΓMA) ≠ BNE(ΓMA).
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Proof. In the former case, for all i ∈ N , Xi,|Si| = Xi,1 = BRi. The
result follows. For the latter case, we again provide an example.
Consider the following normal form game with three players in
which Player 1 has two strategies whereas Player 2 and Player 3
have only one strategy.

x3
x2

x1 2, 1, 0
y1 2, 0, 1

Here, the set of BNE is empty but for every (Si)i∈N and (≻i)i∈N ,
MANE exists. �

The following remark states that the set ofMANE will be smaller
as for a given player i, |Si| gets larger with a specific modification
on the strict order, ≻i. In particular, the remark indicates that if a
player i, in addition to the current set of players he cares about,
starts to care about some other players who he did not care about
initially, the set of MANE of this new game will not be larger than
theMANE of the initial game.

Remark 2. Let Γ be a normal form game. Take an arbitrary i ∈ N ,
and define≻

′

i onN . LetΓ k
MA with (Si,k, ≻i,k) be such that Si,k consists

of the top k elements in ≻
′

i and ≻i,k = ≻
′

i |Si,k for given (Sj)j∈N\{i}

and (≻j)j∈N\{i}. Then,MANE(Γ
β

MA) ⊂ MANE(Γ α
MA) if α < β .

Proof. Take x∗
∈ MANE(Γ

β

MA) for some β ∈ {2, . . . , |N|}. Consider
an arbitrary α with α < β . By definition, for every i ∈ N and
k ∈ {1, . . . , β}, x∗

∈ Xi,k(x∗). Since α < β , it trivially follows that
x∗

∈ MANE(Γ α
MA). �

The next remark is, in fact, a corollary to the remark above. It
implies that startingwith completely selfish players and increasing
the cardinality of their priority sets in the way described in
Remark 2,MANE refines the set of NE in a monotonic fashion.

Remark 3. Let (Γ k
MA) = ((N, (Xi)i∈N , (Ski )i∈N , (≻k

i )i∈N , (ui)i∈N)) be
a collection of minimally altruistic versions of the same normal
form game Γ . Let S0i = {i} for every i ∈ N and define Γ k+1

MA by
a modification on Γ k

MA for some i ∈ N such that


i∈N |Sk+1
i \ {i}| =

i∈N |Ski \{i}|+1 = k+1. Then, the cardinality of the set of MANE
is nonincreasing in k.

Proof. The result follows from a recursive application of the
exercise described in Remark 2. �

The common message of the following remarks (Remarks 4–
9) is that the set of MANE is, as expected, very sensitive to each
player’s priority set and the priority orders on these sets. Remarks
here show that even veryminor changes on priority sets and orders
may lead to changes in the set of equilibria in ways that cannot be
systematically predicted.11

Remark 4. LetΓMA andΓMA′ beminimally altruistic versions of the
same normal form game Γ such that the only difference is that for
some i ∈ N , S ′

i ⊂ Si and ≻
′

i = ≻i |S′
i
. Then, it may be the case that

MANE(ΓMA) ⊄ MANE(ΓMA′) and MANE(ΓMA′) ⊄ MANE(ΓMA).

11 The sensitivity of the predictions of our refinement concept to priority sets and
orders should not be seen as a weakness. This sensitivity is of the same sort Nash
equilibrium has with respect to payoffs. It is a known fact that improving the ex-
ante position of a player in a game by, for instance, increasing his payoffs in some
strategy combinations does not necessarily imply a higher equilibrium payoff for
the player.
Proof. Consider the following normal form game:

x3
x2

x1 2, 1, 0
y1 2, 0, 1

Let S1 = {1, 2, 3}, S ′

1 = {1, 3}, and 1≻1 2≻1 3. Define
ΓMA and ΓMA′ accordingly. Now, MANE(ΓMA) = {(x1, x2, x3)} and
MANE(ΓMA′) = {(y1, x2, x3)}. �

Remark 5. Let ΓMA and ΓMA′ be minimally altruistic versions of
the same normal form game Γ such that the only difference is
that for some i ∈ N , ≻i ≠ ≻

′

i . Then, it may be the case that
MANE(ΓMA) ⊄ MANE(ΓMA′) and MANE(ΓMA′) ⊄ MANE(ΓMA).

Proof. Consider the following normal form game:

x3
x2

x1 2, 1, 0
y1 2, 0, 1

Let S1 = {1, 2, 3}, 1≻1 2≻1 3 and 1≻
′

1 3≻
′

1 2. Define ΓMA
and ΓMA′ accordingly. Now, MANE(ΓMA) = {(x1, x2, x3)} and
MANE(ΓMA′) = {(y1, x2, x3)}. �

Remark 6. LetΓMA andΓMA′ beminimally altruistic versions of the
same normal form game Γ such that the only difference is that for
some i ∈ N , S ′

i \ Si = {j′} and Si \ S ′

i = {j} with ϕ(i, j) = ϕ′(i, j′).
Then, it may be the case that MANE(ΓMA) ⊄ MANE(ΓMA′) and
MANE(ΓMA′) ⊄ MANE(ΓMA).

Proof. Consider the following normal form game:

x3
x2

x1 2, 1, 0
y1 2, 0, 1

Let S1 = {1, 2} and S ′

1 = {1, 3}. Define ΓMA and ΓMA′ ac-
cordingly. Now, MANE(ΓMA) = {(x1, x2, x3)} and MANE(ΓMA′) =

{(y1, x2, x3)}. �

Remark 7. LetΓMA andΓMA′ beminimally altruistic versions of the
same normal form game Γ such that the only difference is that for
some i, j ∈ N with i ∉ Sj ∪ S ′

j and j ∉ Si ∪ S ′

i : ϕ(i, k) = ϕ′(j, k) and
ϕ(j, k) = ϕ′(i, k) for every k ∈ N \ {i, j}. Then, it may be the case
thatMANE(ΓMA) ⊄ MANE(ΓMA′) and MANE(ΓMA′) ⊄ MANE(ΓMA).

Proof. Consider the following normal form game:

x3
x2

x1 2, 1, 0
y1 2, 0, 1

Let S1 = {1, 2}, S3 = {3}, S ′

1 = {1} and S ′

3 = {3, 2}. Define
ΓMA and ΓMA′ accordingly. Now, MANE(ΓMA) = {(x1, x2, x3)} and
MANE(ΓMA′) = {(x1, x2, x3), (y1, x2, x3)}. Hence, MANE(ΓMA) ⊄

MANE(ΓMA′). Note that the converse is symmetric. �

Remark 8. LetΓMA andΓMA′ beminimally altruistic versions of the
same normal form game Γ such that the only difference is that for
some j ∈ N and for every i ∈ N \ {j}: ϕ(i, j) > ϕ′(i, j). Then,
it may be the case that maximum equilibrium payoff for player
j in MANE(ΓMA′) is smaller than minimum equilibrium payoff for
player j in MANE(ΓMA).
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Proof. Consider the following normal form game:

x3
x2 y2

x1 1, 3, 0 1, 4, 0
y1 1, 2, 1 2, 0, 1
z1 0, 0, 0 2, 1, 0

Let S1 = {1, 2, 3}, 1 ≻1 3 ≻1 2 and 1 ≻
′

1 2 ≻
′

1 3. Let
S3 = {1, 2, 3}, 3≻3 1≻3 2 and 3≻

′

3 2≻
′

3 1. Define ΓMA and ΓMA′

accordingly. Now, for ΓMA′ , there is a unique MANE, (z1, y2, x3),
which yields 1 to Player 2. For ΓMA, there is also a unique MANE,
(y1, x2, x3), which yields 2 to Player 2. �

Remark 9. LetΓMA andΓMA′ beminimally altruistic versions of the
same normal form game Γ such that the only difference is that for
some i ∈ N , S ′

i \ Si = {j} and ≻i = ≻
′

i |Si . Then, it may be the
case that an equilibrium that yields player i the highest (the lowest)
payoff is eliminated.

Proof. Consider the following normal form game:

x2 y2
x1 a, 2 1, 3
y1 a, 1 2, 0
z1 0, 0 2, 1

Let S1 = {1}, S ′

1 = {1, 2} and S2 = S ′

2 = {2}. Define ΓMA
and ΓMA′ accordingly. Now, for ΓMA, the set of MANE is {(y1, x2),
(z1, y2)}. For ΓMA′ , (z1, y2) is the unique MANE if a > 0. Therefore,
if a > 2 (a < 2), then the equilibrium that yields Player 1 the
highest (the lowest) payoff is eliminated. �

The remark below states that if each and every player in a game
has a unique best response to someNE, then thatNE is also aMANE.

Remark 10. If x∗ is a NE in which BRi(x∗) = {(x∗

i , ·)} for every
i ∈ N , then x∗ is also a MANE.

Proof. Take some NE, x∗, in which BRi(x∗) = {(x∗

i , ·)} for every i ∈

N . Take any i ∈ N . Regardless of Si and ≻i, Xi,k(x∗) = {(x∗

i , ·)} for
every k ∈ {1, . . . , |Si|}. Since i is arbitrary, the result follows. �

Finally, the following remark shows that in some games MANE
andNE are not different. In particular, if for each player in the game,
any two different strategies always give different payoffs, then the
MANE of this game will be equivalent to the NE of the game.

Remark 11. In a game ΓMA, if ∀i ∈ N , ∀x−i ∈ X−i, and ∀xi, yi ∈ Xi:
ui(xi, x−i) ≠ ui(yi, x−i), then MANE(ΓMA) = NE(ΓMA).

Proof. Any NE of ΓMA satisfies the condition in Remark 10, hence
NE(ΓMA) ⊂ MANE(ΓMA). The converse is true since MANE is a re-
finement of NE. �

5. Examples

In this section, we provide examples whereminimally altruistic
refinement leads to significantly different predictions than Nash
equilibrium.

The following example shows an instance where a player with
a unique strategy can influence the set of minimally altruistic
Nash equilibria. We know that this cannot happen when Nash
equilibrium is employed. Moreover, in this example, NE gives
practically uninformative predictions whereas MANE makes a
sharp prediction about the outcome of the game.
Example 1. Consider the normal form game where N = {1, 2, 3},
first and second players have two strategies and the third player
has only one strategy. Obviously, the third player has no influence
on the determination of NE. In contrast, we show that he
(indirectly) influences the set ofMANE.

x3
x2 y2

x1 3, 0, 5 4, 0, 4
y1 3, 4, 0 4, 4, 4

Here, any strategy profile is a pure strategy NE. Note that this
game is a minimally altruistic supermodular game given that xi >
yi for every i ∈ {1, 2}, S1 = {1, 2}, and S2 = {2, 3}. We have the set
of pure strategyMANE as {(y1, y2, x3)}. Thus, the equilibrium set is
refined to a singleton. ♦

The following example shows an instance where, again, any
strategy profile is a NE. On the other extreme, neither BE nor BNE
exists in this game. Nevertheless, MANE exists and moreover it is
unique.

Example 2. Consider the normal form game where N = {1, 2, 3}
and set Xi = {xi, yi, zi} for every i ∈ N . Let S1 = {1, 2}, S2 = {2, 3},
and S3 = {3, 1}. Let u1(θ) = 2 if θ−1 = (x2, x3), u1(θ) = 1 if
θ−1 = (x2, ·) or θ−1 = (·, x3) but not θ−1 = (x2, x3), and u1(θ) = 0
otherwise. Define u2 and u3 similarly using yj and zj, respectively.
Note that player i cannot affect his own payoff in this game. Also
note that this game is a GSC à la minimally altruistic Nash for any
orders definedonXi’s. It is easy to see that in this game, any strategy
profile is a pure strategy NE. Moreover, there exists no BE. Hence,
there exists no BNE either. However, there is a unique pure strategy
MANE, which is (y1, z2, x3). ♦

In the divide-the-dollar game (a special case of the Nash demand
game where the bargaining frontier is linear), using NE does not
give sharp predictions. In fact, there are infinitely many Nash
equilibria of this game: any point on the bargaining frontier is aNE.
In the literature on such problems, researchers usually modify the
rules of the game such that the equilibrium set is a singleton.12 In
the following example, we alsomodify this game, but in a way that
the set ofNE remains unchanged yetMANE refinesNE significantly.

Example 3 (Pie Division Game). Consider the simple pie division
game (usually called ‘divide the dollar’ game) inwhich every player
i ∈ N simultaneously claims ci ∈ [0, 1] of a pie of size 1. If

i∈N ci > 1, then each player receives 0 and if


i∈N ci ≤ 1,
then each player i receives his claim, ci.13 We modify this game
as follows: (i) (efficiency) if


i∈N ci < 1 then 1 −


i∈N ci is

equally divided between players, i.e. player i receives ci + kwhere
k = (1 −


i∈N ci)/n, and (ii) (satiation) each player is indifferent

between getting more than 3/4 and getting 3/4.14 In this modified
version, any strategy profile (ci)i∈N such that


i∈N ci = 1 is still a

NE (as it is in the standard version). However,MANE refines the set
of NE to

(ci)i∈N |


i∈N

ci = 1 and ∀i ∈ N with Si \ {i} ≠ ∅ : ci ≤ 3/4


.

12 For this approach, the reader is referred to Brams and Taylor (1994),
Anbarcı (2001), Ashlagi et al. (2012) and Cetemen and Karagözoğlu (2013).
13 In this standard version of the game, the strategy profile with ∀i ∈ N : ci = 1
is a NE, but it is not a MANE. In the modified version, the set of equilibria is refined
further.
14 This can be justified in a setting where nobody is able to consume more than
3/4 (e.g., the pie will go bad before a single person can eat the three quarters of it).
Alternatively, one can also think about consumption capacities.
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In fact, if everyone cares about someone else and every player is
indifferent between receiving more than 1/n and receiving 1/n,
then there would be a unique pure strategy MANE. Note that the
set of NE would still not change. ♦

The following example is a version of the well-known threshold
public good game. It shows that if players in this game care about
each other’s well-being,MANE gives a different prediction thanNE,
and in a special case, MANE predicts that a socially optimal level
of public good will be produced whereas some NE still predict a
suboptimal level of public good production.

Example 4 (Threshold Public Good Game). In this game, players
contribute some amount, ci ∈ [0, C], to cooperatively produce two
public goods, labeled k and m. If


i∈N ci < K , then no public good

is produced. Thus, each player receives 0, but incurs the cost ci,
leading to a net payoff of −ci. If


i∈N ci ≥ K but


i∈N ci < M ,

then k will be produced but not m. Thus, each player receives his
value vi,k < K and incurs the cost ci, leading to a net payoff of
vi,k − ci. Besides, the residual amount,


i∈N ci − K , is realized as

additional payoff by some players. In particular, assume that there
are two types of players which differ in these additional utilities.
Type tm agents realize π(tm) = 0 in case


i∈N ci < M and they

realize π(tm) =


i∈N ci − K in case


i∈N ci ≥ M; whereas type tk
agents realize π(tk) =


i∈N ci − K as long as


i∈N ci ≥ K . In this

game, if


i∈N vi,k < K , then public good k cannot be produced in
equilibrium since ci = 0 for each i. If not, letting C ≥ M , in some
pure strategy NE, public good m cannot be produced. However, in
all pure strategy MANE except the one with ∀i ∈ N : ci = 0, both
public goods are produced under the condition that at least one
type tk player cares about some type tm player. The special case
in which the optimal production, ci = C for every i ∈ N , will be
realized is the case where every player cares about some type tm
agent. ♦

Finally, we study a simple version of the famous congestion
game (Rosenthal, 1973). In the following example, six out of eight
possible strategy profiles are NE, whereas with the given priority
structure, only two of them areMANE.

Example 5 (Congestion Game). In this game, the set of players is
N = {1, 2, 3}. There are two possible routes from their originat-
ing point to a destination, labeled A and B. Players simultaneously
choose a route. Hence, the strategy set isXi = {A, B} for every i ∈ N .
If a route is used by more than one player, there will be a conges-
tion. In that case, none of these players using the same route can
reach the destination on time. If a player can reach the destination
on time, he receives a payoff of 1. Otherwise, he receives a payoff
of 0. Clearly, there are six pure strategy NE of this game: (A, B, B),
(A, B, A), (B, A, A), (B, A, B), (B, B, A), and (A, A, B). Now, let us as-
sume that Player 3 is in an emergency situation and hence both
Player 1 and Player 2 care about Player 3 in a minimally altruistic
sense. Moreover, Player 3 is still assumed to be selfish. It follows
that the set of pure strategy MANE is {(A, A, B), (B, B, A)}. Hence,
even if Player 1 and 2 cared about Player 3 in aminimal fashion, this
leads to the elimination of NE that were favorable to them. More-
over, note that neither Berge equilibrium nor Berge–Nash equilib-
rium exists in this game. ♦

6. Conclusion

In this paper, we first introduce a minimal yet very reasonable
notion of altruism. It isminimal since it stipulates that people care
about others only after maximizing their own well-being.15 Then,
we use this notion to refine the set of Nash equilibria in normal

15 Despite the fact that we focus on altruism in this paper, the scope of the paper
could be more general than altruism. In particular, it could concern games where
each player’s preferences over outcomes are lexicographic over a finite collection of
utility functions. We would like to thank an anonymous reviewer for pointing this
out.
form games. We prove the existence of equilibrium under this
new refinement through three different channels, relate it to Nash
equilibrium and Berge–Nash equilibrium, and provide examples
showing the usefulness of this refinement concept. The definition
ofminimally altruisticNash equilibriumcontainsNash equilibrium
as a special case (e.g., selfish best-responses). It gives sharper and
more reasonable predictions than Nash equilibrium if players not
only care about themselves but also care about other players’
well-being in a lexicographic fashion when best-responding
to others’ strategies in a strategic game. Minimally altruistic
Nash equilibrium shares a flavor similar to that of Berge–Nash
equilibrium in that it is also based on altruistic behavior. However,
from an empirical point of view we believe that it is much
easier to support minimal altruism.16 Moreover, from a theoretical
perspective, there are games where Berge–Nash equilibrium (or
Berge equilibrium) does not exist whereas minimally altruistic
Nash equilibrium exists. Future theoretical work may study
simultaneous application of the concept together with other
refinement concepts, investigate general families of games where
its use is fruitful, and characterize the family of games where the
effects of changes in priority structure on equilibrium payoffs is
more systematic. The investigation of the relationship (e.g., the
domain of games where they coincide) between minimally
altruistic Nash equilibrium and Kantian equilibrium (see Roemer
(2010)) may also be of interest. Finally, future experimental work
may shed light on the empirical validity of its predictions.
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