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Abstract In the present paper, the nonlinear behav-
ior of bubble growth under the excitation of an acous-
tic pressure pulse in non-Newtonian fluid domain has
been investigated. Due to the importance of the bub-
ble in the medical applications such as drug, protein
or gene delivery, blood is assumed to be the reference
fluid. Effects of viscoelasticity term, Deborah num-
ber, amplitude and frequency of the acoustic pulse are
studied. We have studied the dynamic behavior of the
radial response of bubble using Lyapunov exponent
spectra, bifurcation diagrams, time series and phase
diagram. A period-doubling bifurcation structure is
predicted to occur for certain values of the effects of
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parameters. The results show that by increasing the
elasticity of the fluid, the growth phenomenon will be
unstable. On the other hand, when the frequency of the
external pulse increases the bubble growth experiences
more stable condition. It is shown that the results are
in good agreement with the previous studies.

Keywords Bubble dynamics · Non-Newtonian
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1 Introduction

In view of the escalating use of bubbles in new appli-
cations, particularly medical and industrial, research
on the growth and collapse of bubbles in different
structures and environments has increased [1]. In more
important medical applications, bubbles are used for
the delivery of drugs [2–4], cancer treatment [5–7],
and in the barrier opening of clogged veins and ar-
teries [8, 9]. In all of these cases, bubbles should
move and grow in the blood stream and collapse in
the intended location. The researches conducted on
blood indicate that considering the blood to be a non-
Newtonian fluid correlates well with the experimen-
tal results and hence, most of the models presented
for fluid field analysis assume the blood to be a non-
Newtonian fluid [10–14].

Therefore, the study of bubble growth and its sta-
bility in non-Newtonian fluid will be of the most im-
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portant concern [15]. The chaotic behavior of bub-
bles moving in a non-Newtonian fluid has been in-
vestigated experimentally by Jiang et al. [16]. In ad-
dition to experimental studies [17–21], there have
also been many theoretical investigations on bubble
growth [22–26]. In the article presented by Wang
et al. [27], the nonlinear vibration of a protein bub-
ble submerged in Bingham liquid has been mathemat-
ically modeled, and the bubble’s reaction to pressure
pulses has been studied. By presenting an analytical
model for bubble growth in linear viscoelastic flu-
ids and solving it through the perturbation method,
Allen and Roy [28] showed that the increase of Deb-
orah number leads to the increase of bubble oscilla-
tion amplitude. In another article, Allen and Roy [29]
extended their analytical model to nonlinear non-
Newtonian fluid (UCM fluid), and used numerical
methods to solve the integro-differential equations.
They have also demonstrated the increase of bubble
oscillation amplitude with the increase of Deborah
number. In the work of Jimenez-Fernandez and Cre-
spo [30], through the development of analytical rela-
tions for bubble growth in non-Newtonian fluid field
effect by external pulses, the growth of bubbles under
the influence of factors like pulse intensity, Reynolds
number and the amount of elasticity has been investi-
gated. In this study, it has been emphasized that with
the increase of Deborah number, bubble growth will
become chaotic and the bubble will approach the state
of collapse.

Also, in different theoretical study, the subject of
bubble growth in non-Newtonian fluid has showed that
in cases where the Reynolds number is of the order 1,
the growth and collapse of bubbles can be controlled
via Newtonian viscosity. Lind and Phillips [31] have
presented the growth of bubbles in non-Newtonian flu-
ids through different constitutive equations. Accord-
ing to their results, at large Deborah numbers, bub-
ble displays a completely elastic behavior and its en-
ergy diagram indicates a rebound in bubble growth.
Brujan [32] used the perturbation method to study
the growth of bubbles in non-Newtonian compress-
ible fluid. He showed that at larger Reynolds numbers,
sound emission plays the major role in the damping of
bubble oscillations. Also, because of the importance of
bubble dynamics, several studies have been conducted
on the subject of bubble stability. That is, when the
bubble motion gets chaotic, its behavior becomes un-
predictable and very hard to deal with [33, 34]. Hence,

the chaotic nature of the equation requires particular
tools for resolution, since the analytical and linear so-
lutions are not sufficient.

The main argument of this study is focused on
various aspects of the dynamics of bubble in non-
Newtonian fluid and, also, the effects of substantial pa-
rameters that influence the bubble dynamics are stud-
ied in a large domain using chaos theory and con-
sidering the measure of the non-Newtonian state of
the fluid (Deborah number). Bifurcation and Lyapunov
exponent diagrams [35–37] are presented for special
cases to determine the chaotic regions. It will repre-
sent comprehensive information about extremely non-
linear pulsations of bubble in non-Newtonian fluid at
high amplitudes of acoustic pressure where determin-
istic chaos manifests itself in order to determine the
stable regions and chaotic of the system, particularly
for drug and gene delivery applications where the ap-
plied acoustic pressure is considerably greater than the
pressure employed in ultrasound imaging.

2 Dynamics of spherical bubble in viscoelastic
fluids

The governing equation of bubble growth in non-
Newtonian fluid follows the general Rayleigh–Plesset
equation (GRP), and with regards to the viscoelastic
effects of the fluid, the following integro-differential
equation is obtained [29]:

RR̈ + 3

2
Ṙ2

= 1

ρ

[
pg − p∞ − 2σ

R
+ 2

∫ ∞

R

(
τrr − τθθ

r

)
dr

]
.

(1)

In the above equation, τrr and τθθ are components of
shear stress tensor, which have non-uniform field dis-
tribution because of the deformation that exists in the
fluid field. Equation (1) has been written for a bub-
ble with radius R which is affected by a pressure field
far away from the bubble, p∞, in the form of p0 +
Pa sin(ωt), where p0 is the ambient pressure. Pressure
pulse enters the fluid field with angular frequency ω

and pressure amplitude Pa . Also, pg and σ denote the
uniform pressure inside the bubble and surface tension
of fluid, respectively. For simplicity, we assume that
the internal gas follows a polytropic relationship with
exponent k, and we have pg = pg0(

R0
R

)3k , where pg0
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Fig. 1 A single gas bubble immersed in a non-Newtonian fluid

and R0 are, respectively, the gas bubble pressure and
the bubble radius at the initial equilibrium state. Fig-
ure 1 shows a single gas bubble immersed in a Non-
Newtonian fluid. By considering the upper convective
time derivative (UCM) method [28, 29], the radial and
theta stress tensor terms will be obtained through the
following simplified differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τrr + λ1

(
∂τrr

∂t
+ R2Ṙ

r2

∂τrr

∂r
+ 4R2Ṙ

r3
τrr

)

= 4η0
R2Ṙ

r3
,

τθθ + λ1

(
∂τθθ

∂t
+ R2Ṙ

r2

∂τθθ

∂r
− 2R2Ṙ

r3
τθθ

)

= −2η0
R2Ṙ

r3
,

(2)

where η0 is the zero shear-rate viscosity, λ1 is the re-
laxation time, and r is the distance of each element
from the coordinate system’s origin. By applying the
perturbation method, Allen and Roy [28, 29] solved
the above coupled equations and then in 2001, by us-
ing the Lagrangian perspective and attaching the co-
ordinates onto the bubble, they have changed variable
y = r3 − R3(t) and have solved the simplified form
of the above equations, with y = 0 indicating bub-
ble boundary [29]. The upper limit of the integral in
Eq. (1) should be selected in such a way that both
terms of the shear stress tensor (radial and theta) be-
come zero.

Equation (1) shows the growth of a bubble im-
mersed in a non-Newtonian fluid, which oscillates at
its dimensionless radius R∗ (the ∗ has been omitted in
the rest of the article) under the influence of an exter-

nal pressure pulse. The Deborah number (De = λ1ω)
is a dimensionless number which designates the time
required for fluid response divided by the time of flow
pulse; in fact, it measures the non-Newtonian state of
the fluid.

If the following definitions of non-dimensional
time, radius, radial spatial variable, stress and Reyn-
olds number are being used [29],

t̄ = ωt; R̄ = R/R0; r̄ = r/R0;

τ̄ = τ
R0

η0

√
ρ/ρ0; Re = ρωR2

0

η0
,

(3)

then Eq. (1) can be rewritten in non-dimensional form,
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where α is the ratio of the acoustic forcing pressure
amplitude to the ambient pressure. In dimensionless
form, the stress tensor components of Eq. (2) could be
rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(5)

Since the constitutive equations used are based on the
incompressible assumption, radiation damping is not
considered.

3 Analysis tools

There are several mathematical tools available for
quantifying bubble stability ranging, the reasons to use
maximum Lyapunov exponents and bifurcation struc-
ture in the absence of direct mathematical methods
are:
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– The maximum Lyapunov exponents, approximated
computationally for a wide range of injection val-
ues, clearly indicate the chaotic behavior of bubble
dynamics.

– The computationally based bifurcation analysis il-
lustrates that the bubble dynamics transits among
different regions such as fixed point, chaotic attrac-
tors and intermittent behavior.

3.1 Computation of Lyapunov exponents

One of the significant ways studying the behavior of
bubble dynamics is to calculate the Lyapunov expo-
nent spectrum which is a measure of the sensitivity
of the system to initial conditions and the exponential
rates of divergence or convergence of nearby trajec-
tories in state space. The Lyapunov exponents can be
considered as “dynamic” measures of attractors com-
plexity and called “time average” [38]. They can be
used to characterize chaos and bifurcation which are
common as nonlinear effects in bubble dynamics. The
Lyapunov exponents are defined as follows.

Consider two nearest neighboring points (usually
the nearest) in phase space at time 0 and t , with dis-
tances of the points in the ith direction ‖δxi(0)‖ and
‖δxi(t)‖, respectively. The Lyapunov exponent is then
defined through the average growth rate λi of the ini-
tial distance,

‖δxi(t)‖
‖δxi(0)‖ = 2λi t (t → ∞) or

λi = lim
t→∞

1

t
log2

‖δxi(t)‖
‖δxi(0)‖ .

(6)

There are three possibilities:

– If λ < 0 the trajectories go close to each other →
stable radial oscillation.

– If λ = 0 the orbits maintain their relative positions,
they are on a stable attractor.

– If λ > 0 implies that the orbit never falls within the
basin of attraction of any periodic orbits → unstable
radial oscillation (chaotic behavior).

The existence of a positive Lyapunov exponent is the
indicator of chaos showing neighboring points with in-
finitesimal differences at the initial state abruptly sep-
arate from each other in the ith direction. On the other
hand, even if the initial states are near each other, the
final states are very different. Hence this phenomenon
is sometimes called a sensitive dependence on initial

conditions. Commonly, Lyapunov exponents (λ) can
be extracted by observed signals by the following dif-
ferent methods:

– Based on the opinion of following the time-evolu-
tion of nearby points in the state space.

– Based on the estimation of local Jacobi matrices.

The first method is usually called Wolf algorithm [40]
and it provides an estimation of the largest Lyapunov
exponent only. The second method is capable of esti-
mating all the Lyapunov exponents. Using one of these
methods, the Lyapunov exponent is calculated rather
than a given control parameter. So, there is a slight
increase in value of the control parameter and the Lya-
punov exponent is calculated for the new control pa-
rameter. By continuing this method the Lyapunov ex-
ponent spectrum of the bubble dynamics system is
plotted versus the control parameter.

3.2 Bifurcation diagrams

Period-doubling, quasi-periodicity and intermitten-
cy [41] are well known routes of transition from pe-
riodic to chaotic behavior with their origins in local
bifurcations. A qualitative change in the dynamical
behavior of a system, such as dynamics of bubbles in
ultrasonic fields, when a parameter of the system is
varied, is called a bifurcation. As it is known, an ap-
propriate method of studying bifurcation is by bifur-
cation diagram, which provides a helpful insight into
the transition between different types of behavior that
can occur as one parameter of the system alters.

In this paper, the dynamical behavior of the bubble
radial oscillations is studied by plotting the bifurca-
tion diagrams of the normalized radius of the bubble
in comparison with different control parameters. The
analysis of the bifurcation diagram was carried out in
the Poincaré section (P ). To choose the appropriate
Poincaré section, we use the general technique of set-
ting one of the phase space coordinates to zero. In our
analysis the following condition was used:

P ≡ max
R

{
(R, Ṙ) : Ṙ = 0

}
which gives the maximal radius from each acoustic pe-
riod. Also, this condition was used to plot the bifurca-
tion diagram of a cavitation bubble in [42]. In order
to generate the bifurcation points, the equation of the
bubble motion was solved numerically for 900 acous-
tic cycles of the lower frequency and then a Poincaré
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section was constructed. Considering just the last 300
cycles convinces that the initial transient behavior is
eliminated. To create the bifurcation diagram:

– on the x-axis is plotted a bifurcation parameter
which is varied;

– on the y-axis plotted is the asymptotic behavior of a
sampled state parameter as a discrete point ( R

R0
).

After the system reached its steady state, up to 600 or-
bits of R

R0
in the condition of θ0 = 0 Poincaré section

were plotted in the bifurcation diagram versus bubble
control parameter. This method continued through in-
creasing the control parameter and the new resulting
discrete points were plotted in the bifurcation diagram
versus the new control parameter. For a full discus-
sion on the bifurcation diagram and Lyapunov expo-
nent spectrum, their utilization in order to study the
bubble dynamics, one can refer to [43, 44].

4 Results and discussion

In this section, we explain the dynamics of bubble
in non-Newtonian fluid by using standard methods of
nonlinear dynamics and theory of deterministic chaos,
because of its importance, the stability of bubbles un-
der the influence of viscoelasticity term, the Deborah
number, the amplitude and frequency of the acoustic
pulse.

At t = 0, no pressure pulse is applied to the field
and, thus, there is no shear stress distribution, and
assuming R(0) = 1, equations will be solved in the
coupled form (see Appendix). In this study, the UCM
method has been used, since it is the most appropri-
ate technique for the modeling of bubbles in medical
applications [28, 29].

4.1 Impact of Deborah Number

Deborah number (De), as a measure of the non-
Newtonian state of the fluid, best describes the bub-
ble stability. By plotting the time series in this study,
it has been demonstrated that De is an important pa-
rameter in the nonlinear oscillation of a bubble, and its
increase causes the collapse of a bubble. The attrac-
tor dimension is an appropriate criterion for measur-
ing the complexity of an attractor in the phase space,
and properly delineates the instability threshold of a
bubble. It can be stated that with the increase of De

number, bubble growth inside the blood fluid becomes
chaotic, and due to instability, its control becomes im-
possible, so an elasticity threshold should be deter-
mined for the fluid. Also, other research works have
reported the instability of time series with the increase
of De [22, 24, 28–30, 45], which did not determine
a threshold of De for stability of bubble. We exam-
ine the stability of bubble growth in non-Newtonian
fluid by considering the De number of the bubble.
Radial motion of single bubble dynamics is investi-
gated versus a prominent domain of De number from
2 to 7. Figures 2(a)–2(c) shows the bifurcation dia-
grams and the corresponding Lyapunov spectrum of
the bubble radius when De number of the bubble is
taken as the control parameter with the pressure am-
plitude of 200 kHz for several values of frequency of
the bubble which are 3, 4 and 5 MHz, whose stable
and chaotic pulsations can be observed in respective
parts of Figs.2(d)–2(f). The figure shows the chaotic
oscillations of bubble by increasing the values of De
and that the bubble demonstrates more chaotic oscil-
lations as the frequency is decreasing.

Figure 3 shows a selection of associated radius-
time profiles illustrating the cascade to chaos through
a period-doubling bifurcation. As can be seen, the
motion is initially stable with period one and under-
goes early cascades of period-doubling to chaos. Fig-
ure 3(a) shows a stable one-period radius-time pro-
file of bubble at De = 2.2, which undergoes a period-
doubling bifurcation. Also, for this value of the ap-
plied De, the oscillations settle on one stable limit cy-
cle (Fig. 3(d)). The global dynamics enters a more or-
ganized region of period-4 oscillation for 4.25 < De <

4.75. In this region the oscillation settles onto four sta-
ble limit cycles in the state space trajectory (Fig. 3(e)).
Figure 3(c) indicates the chaotic oscillations of a bub-
ble at parameter values (Pa = 0.2, f = 4, De = 6.5).
The orbit projection (Fig. 3(f)) reveals the strange at-
tractor that is created. As the figures show, by increas-
ing number De, the period doubling occurs and at
higher De values, the dynamics of the system become
totally chaotic. This value, which differs according to
Pa and f value of the system, illustrates the stabil-
ity limit of the system. This effect of De number has
also been stated in other research works by plotting
time series [22, 24, 28–30]. Diagrams in Figs. 3(d)–
3(f) show that at small values of De, Lyapunov expo-
nent is negative, which indicates that with the reduc-
tion of the non-Newtonian effects of the fluid, trajec-
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Fig. 2 Bifurcation
diagrams and the
corresponding Lyapunov
spectrum of a bubble with
1 μm initial radius versus
pressure and Deborah
number. A control
parameter is Deborah
number (2–7) while (a) the
driving frequency is 3 MHz,
(b) the driving frequency is
4 MHz, (c) the driving
frequency is 5 MHz,
(d) corresponding
Lyapunov spectrum of (a),
(e) corresponding Lyapunov
spectrum of (b), and (f)
corresponding Lyapunov
spectrum of (c). All other
physical parameters were
kept constant at values
given in Table 1

Table 1 Constant parameters used in the general Rayleigh–
Plesset equation [28, 29]

Symbol Description Units Value

σ Fluid static surface tension dyn/cm 72.5

ρ Fluid density kg/m3 1000

p0 Ambient pressure atm 1

R0 Equilibrium bubble radius μm 1

Re Reynolds number 2.5

k Polytropic exponent 1.4

tories’ dependence on initial conditions gets smaller,
and as time passes, these trajectories converge to each
other. While with the increase of De number, the diver-
gence of trajectories increases, and in the positive re-
gions of Lyapunov exponent, this divergence increases
exponentially.

4.2 Impact of pressure pulse amplitude

Pressure pulse amplitude is a measure of the intensity
of pulses applied to a bubble in a period. Due to the

importance of pulse intensity in medical practice and
the fact that these pulses should be applied to bubbles
in order to collapse them in the blood stream [1], a
proper value should be obtained for pulse intensity by
which the range of bubble stability can be determined
and controlled. Here, these thresholds will be evalu-
ated with respect to various frequencies and De num-
bers, by plotting the bifurcation and Lyapunov expo-
nent diagrams. In Fig. 4, Pa has been considered as the
control parameter and the bifurcation and Lyapunov
exponent diagrams have been plotted. The chaotic ef-
fect of pressure pulse amplitude on bubble dynamics is
very clear. In view of Fig. 4 it can be concluded that at
Pa = 300 kPa, for low values of frequency the oscilla-
tions of a bubble is unstable. Bubble growth to the ini-
tial radius of 1 μm, Re = 2.5, f = 3 MHz and De = 3
with various acoustic pressure amplitudes models the
growth of bubble in blood [28]. In Figs. 4(c) and 4(f)
these parameters have been used to model the bubble
behavior in blood. Figures 4(c) and 4(f) shows that the
growth of the bubble will be unstable if Pa reaches
220 kPa, which determines a threshold of Pa . The ef-
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Fig. 3 Time series and
trajectory in state space
projection plot of a bubble
radius driven by 1 μm
initial radius, 4 MHz of the
riving frequency and
200 kPa of pressure while:
(a) the Deborah number is
2.2, (b) the Deborah
number is 4.5, (c) the
Deborah number is 6.5,
(d) corresponding trajectory
in state space projection
of (a), (e) corresponding
trajectory in state space
projection of (b), and (f)
corresponding trajectory in
state space projection of (c).
All other physical
parameters were kept
constant at values given in
Table 1

fect of Pa as normal stress at high frequencies lead
to bubble stability and, thus, the reduction of bubble
radius. While with the increase of Pa and bubble sta-
bility due to normal effects, high amount of stresses
will be eliminated. Also, Fig. 4 illustrates the transi-
tion through the instability threshold; however, due to
the applied frequency being high, this transition occurs
at a larger Pa . The Lyapunov exponent diagram shows
that in these conditions, by making the pressure pulse
amplitude larger, Lyapunov exponent at Pa = 800 kPa
will be larger than zero. Comparing the figures pre-
sented above, some limits of stable behavior may be
determined for the bubble.

Comparison of Figs. 4 and 5 properly illustrates
the effect of Pa on chaotic degree of the system. In-
creasing Pa means applying higher normal stresses
to the surface of the bubble, which will simulate the
bubble growth. As Figs. 4 and 5 show, by increas-
ing Pa , stable range of the bubble decreases dras-

tically, and reduces the windows in bifurcation dia-
gram. These results have also been verified in previ-
ous works [28–30]. As Pa is being increased more,
the possibility of the bubble collapse increases. As a
result the control of Pa should be considered in med-
ical applications. By comparing these figures, it can
be found that the oscillation amplitude of bubble ra-
dius decreases considerably at high frequencies and
low Deborah number, which could be due to the appli-
cation of large pressure pulses on bubble surface at a
shorter time. It can be concluded that the amplitude of
the pressure pulse causes the instabilities in the bub-
ble behavior, and this confirms the findings of other
studies [28, 29].

4.3 Impact of pressure pulse frequency (f)

In order to get more information about the bubble
growth in blood (for the purpose of finding periodic or-
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Fig. 4 Bifurcation
diagrams and the
corresponding Lyapunov
spectrum of a bubble with
1 μm initial radius and
Deborah number is 3 versus
pressure and Deborah
number, control parameter
is pressure while (a) the
driving frequency is 7 MHz,
(b) the driving frequency is
5 MHz, (c) the driving
frequency is 3 MHz,
(d) corresponding
Lyapunov spectrum of (a),
(e) corresponding Lyapunov
spectrum of (b), and (f)
corresponding Lyapunov
spectrum of (c). All other
physical parameters were
kept constant at values
given in Table 1

bits and their stability), we calculated numerous bifur-
cation diagrams of the bubble dynamics considering
several values for driving the frequency. In Fig. 6, bi-
furcation diagrams for the conditions of bubble growth
in blood (conditions cited above) have been shown
for various pressure pulse amplitudes and De num-
bers. The control parameter in the bifurcation dia-
grams is pressure pulse frequency in order to evalu-
ate the effects of frequency on the stability of bub-
ble at various pressure pulse amplitudes and De num-
bers. From these figures it can be concluded that
with the increase of the pressure pulse frequency,
the bubble becomes more stable and the amplitude
of bubble radius decreases considerably. According
to the bubble growth equation, the frequency of the
acoustic pulse is the main parameter in fluctuations
over the bubble interface. Most recently, Dual forc-
ing frequency (through applying a periodic perturba-

tion [46]) methods of control have been proven to
be successful in the controlling chaotic oscillations
of bubble. This method is usually presented a tech-
nique based on using periodic perturbation to sup-
press chaotic oscillations of a spherical cavitation bub-
ble.

It can be understood from the results that the mo-
tions of bubble can be chaotic or stable in particular
ranges. The results are in agreement with the prior
studies clearly highlighting that bubbles are dependent
on the driving frequency variations [22, 28, 29, 46–
48]. Most of the results demonstrate the uncontrollable
and chaotic motion in a bubble dynamics. In dissim-
ilar situations and values for controlling parameters
such as: pressure, frequency and the Deborah num-
ber, bubble shows various motions and oscillations by
themselves and in addition they change their motion
from one type to another. This involves simple pe-
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Fig. 5 Bifurcation
diagrams and the
corresponding Lyapunov
spectrum of a bubble with
1 μm initial radius and
6 MHz the driving
frequency versus pressure
and Deborah number,
control parameter is
pressure while (a) Deborah
number is 3, (b) Deborah
number is 5, (c) Deborah
number is 7,
(d) corresponding
Lyapunov spectrum of (a),
(e) corresponding Lyapunov
spectrum of (b), and
(f) corresponding Lyapunov
spectrum of (c). All other
physical parameters were
kept constant at values
given in Table 1

riod one, transformation by period-doubling bifurca-
tion to period two, successive period doubling leading
to chaos and high periods, symmetry breaking transi-
tion, etc.

5 Conclusions and outlook

In this article, bubble stability in non-Newtonian fluid
has been investigated through the chaos theory and
the ranges in which bubble has stable behavior have
been shown by diagrams and also been tabulated to
show stability limits of the bubble, which is extremely
important in applications. The presented results in-
dicate that the Deborah number, which is a measure
of the non-Newtonian state of the fluid, severely af-
fects bubble stability, and with the increase of Deb-

orah number, bubble experiences irregular oscilla-
tions. These findings confirm the results reported
in [22, 24, 28–30, 45]. In view of this fact, the injec-
tion and conveyance of bubbles in the blood stream
should be performed very carefully, and the non-
Newtonian state of blood should be tested and mea-
sured. Also, according to the presented diagrams, the
increase of acoustic pressure amplitude causes insta-
bility in bubble boundary and may lead to bubble col-
lapse. This finding has also been pointed out [28–30].
In addition, by increasing the acoustic wave frequency,
which indicates the number of pressure pulses in a
time unit, the surface of the bubble could be subjected
to pressure force, and its irregular oscillations could be
avoided. It has been demonstrated in this article that
the increase of pressure pulse frequency causes the os-
cillation amplitude to decrease, and leads to bubble
stability.
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Fig. 6 Bifurcation
diagrams of a bubble with
1 μm initial radius versus
pressure, driving frequency
and Deborah number,
control parameter is and
driving frequency while
(a) Deborah number is 3
and Pa = 200 kPa,
(b) Deborah number is 5
and Pa = 200 kPa,
(c) Deborah number is 7
and Pa = 200 kPa,
(d) Deborah number is 3
and Pa = 400 kPa,
(e) Deborah number is 3
and Pa = 600 kPa,
(f) Deborah number is 3
and Pa = 800 kPa. All
other physical parameters
were kept constant at values
given in Table 1

By focusing on the mechanisms governing the tran-
sition from the chaotic oscillations to the stable region,
this study opens a new horizon in studying chaotic be-
havior of nonlinear dynamics of gas bubble in non-
Newtonian fluid. It is essential to consider the im-
pression of the bubble–bubble interaction in choos-
ing the control parameter, since the bubble pulsation
is affected by interacting surrounding bubbles [49].
Based on the results, the global dynamics exhibits
complicated behavior that undergoes a series of bifur-
cations as the pressure amplitude increases. In gen-
eral, the introduced method can be used for study-
ing the behavior of cluster with large number of bub-
bles.

Appendix: Stability analysis

Equations (4) and (5) can be expressed as a system
of first-order ordinary differential equations in which
the zero point is located on the wall of the spherical
bubble:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dR

dt
= U,

dU

dt
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[
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2
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ρω2R2
0

(
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(
1

R

)3k

− We

(
1

R

)
− (

1 + α sin(t)
))]

1

R

+ 1

R

2

3Re

(
1

ωR0

√
p0

ρ

)

×
∫ ∞

0

(
τrr (y, t) − τθθ (y, t)

yi + R3

)
dy,

dτrr (y, t)

dt
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((−4R2Ṙ

yi + R3

)
− 1
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)
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+ 4
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(
ωR0

√
p0

ρ

)(
R2Ṙ

yi + R3

)
,

dτθθ (y, t)
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((
2R2Ṙ

yi + R3

)
− 1
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)
τrr

− 2
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(
ωR0

√
p0

ρ

)(
R2Ṙ

yi + R3

)
.

(7)
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We is the Weber number, defined as

We = 2σ

pcR0
. (8)

Also, in above equation the initial conditions are taken
as

R(0) = 1[R0], (9)

τθθ (0) = τrr (0) = 0, (10)

U(0) = 0. (11)

This study is conducted for De ∼ O(1) to avoid nu-
merical difficulties because of the division by this
quantity in Eq. (7).
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