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ABSTRACT: Soybean oil-based polymer nanocomposites were synthesized from acrylated epoxidized soybean oil (AESO) combined

with styrene monomer and montmorillonite (MMT) clay by using in situ free radical polymerization reaction. Special attention was

paid to the modification of MMT clay, which was carried out by methacryl-functionalized and quaternized derivative of methyl oleate

intercalant. It was synthesized from olive oil triglyceride, as a renewable intercalant. The resultant nanocomposites were characterized

by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of increased nanofiller loading in thermal and

mechanical properties of the nanocomposites was investigated by thermogravimetric analysis (TGA) and dynamic mechanical analysis

(DMA). The nanocomposites exhibited improved thermal and dynamic mechanical properties compared with neat acrylated epoxi-

dized soybean oil based polymer matrix. The desired exfoliated nanocomposite structure was achieved when the OrgMMT loading

was 1 and 2 wt % whereas partially exfoliated nanocomposite was obtained in 3 wt % loading. It was found that about 400 and

500% increments in storage modulus at glass transition and rubbery regions, respectively were achieved at 2 wt % clay loading com-

pared to neat polymer matrix while the lowest thermal degradation rate was gained by introducing 3 wt % clay loading. VC 2013 Wiley

Periodicals, Inc. J. Appl. Polym. Sci. 130: 2031–2041, 2013
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INTRODUCTION

Synthetic polymers including both thermosets and thermoplastics

have been widely used in the synthesis of polymer-clay nanocom-

posites by different methods.1,2 However, these polymers are

obtained from petroleum-based monomers and their resources

are being consumed quickly and their cost increases continuously.

On the other hand, polymers obtained from renewable resources

have potential advantages compared with synthetic petroleum

based polymers such as their low production cost and possible

biodegradability.3 To enhance properties of bio-based polymers

for engineering applications, composite materials are prepared by

the addition of reinforcing agents like clays and fibers to the

polymer matrix.4 Therefore, in recent years, many studies have

been done to prepare polymeric composites having at least one

component from renewable resources.5–10 Among products from

agricultural, natural oils contain raw materials useful in polymer

synthesis. Soybean oil, which is a kind of plant oil triglyceride, is

one of the most commonly used renewable resources. It mainly

involves triglycerides of oleic and linoleic acids.11 Triglyceride

molecules are converted to those having polymerizable groups by

using the reactive sites on them such as double bond, allylic car-

bon and ester groups. It is known that plant oil triglyceride based

polymers do not exhibit sufficient rigidity and strength required

for structural applications by themselves. In the literature, poly-

mers with improved physical and mechanical properties have

been synthesized by reacting renewable monomers with petro-

leum based monomers such as styrene12–15 and diglycidyl ether

of bisphenol F.16 There are quite limited studies about the poly-

mer nanocomposites based on the use of bio-based monomers.

They have been prepared in presence of synthetic alkyl ammo-

nium salts as intercalants.17–20 Wool and coworkers12 prepared

the bio-based nanocomposites of functionalized plant oils and

quaternary alkyl ammonium modified MMT clay by in situ poly-

merization. They reported that the nanocomposites resulted in a

mix of intercalated and partially exfoliated structures with a 30%

increase in flexural modulus. Uyama et al.17 dispersed quaternary

alkyl ammonium modified MMT clays in epoxidized soybean oil

and epoxidized linseed oil by an acid catalyzed curing reaction.

They obtained both intercalated and exfoliated nanocomposite

structures with enhanced thermal and mechanical properties. In

VC 2013 Wiley Periodicals, Inc..
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all the abovementioned works, MMT clay was modified with

conventional quaternary alkyl ammonium ions.

In the literature, in addition to conventional alky ammonium

ions, there are also those containing styryl groups and vinyl

groups used for the modification of layered clay (MMT) in

polymeric nanocomposites because they participate in the poly-

merization reaction.21–25

On the other hand, a quaternized acrylated epoxidized soybean

oil (AESO) derivative was used as the first renewable intercalant

for the modification of the MMT clay15 in the synthesis of

AESO-based nanocomposite. It was found that the resultant

nanocomposites had exfoliated nanocomposite structures with

improved thermal and mechanical properties.

Recently, our group has reported the synthesis of a new renew-

able methyl oleate based intercalant having allylic functional

group used for the modification of MMT clay in preparation of

AESO-MMT nanocomposites.26 It was synthesized from olive oil

triglyceride by following three transformations which were trans-

esterification, allylic bromination, and quaternization reactions,

respectively. The three step synthesis of this intercalant was

thought to be more advantageous than five steps synthesis proce-

dure of quaternized functionalized acrylated epoxidized soybean

oil based intercalant.15 It was found that the desired exfoliated

nanocomposite structure was achieved when the OrgMMT load-

ing was 1 and 2 wt %, whereas a partially exfoliated or interca-

lated nanocomposite was obtained for 3 wt % loading. All the

nanocomposites exhibited improved thermal and mechanical

properties as compared with virgin acrylated epoxidized soybean-

oil-based polymer matrix. The property enhancement observed

for the nanocomposites was ascribed to a maximized interaction

between the clay and the polymer matrix due to the probable

contribution of the allylic group of the modifier in the polymer-

ization reaction. However, since the allylic radical of the interca-

lant is too stable to reinitiate polymerization, the intercalant was

expected to bind to the polymer by undergoing mostly termina-

tion reaction with reactive propagating radicals of the matrix.

This study involves a new design of biosource-based intercalant

for the modification of MMT clay. The use of more reactive

methacryl derivative of quaternized methyl oleate as a novel

biosource-based intercalant for modification of MMT clay is

thought to be more effective in preparation of exfoliated AESO-

based nanocomposites with much higher mechanical and ther-

mal properties than allylic group-functionalized intercalant.26 In

this article, we report the synthesis of a new renewable and re-

active methyl oleate based intercalant, quaternized methyl ole-

ate, for the modification of MMT clay and its use in

preparation of bio-based polymer nanocomposites. Quaternized

and reactive methyl oleate was synthesized from olive oil triglyc-

eride by following three transformations which were transesteri-

fication, allylic bromination and quaternization reaction with

N,N-(dimethylamino) ethyl methacrylate, respectively. Acrylated

epoxidized soybean oil (AESO) and styrene mixture was poly-

merized by in-situ free radical polymerization in the presence of

the quaternized and reactive methyl oleate-modified MMT clay

in order to obtain polymeric nanocomposites. Unlike the allylic

functionalized intercalant,26 through the use of a reactive

quaternized methyl oleate intercalant with relatively bigger and

longer methacryl moiety which acts as a more effective spacer,

we expected to get increased expansion of the clay galleries.

Moreover, the organic modifier is expected to participate in po-

lymerization reaction via its reactive double bond leading to

enhanced mechanical strength and thermal properties as well as

exfoliated nature in the nanocomposites. The effect of organo-

clay content on the dynamic mechanical, thermal and morpho-

logical properties of the resultant nanocomposites are discussed

in detail.

EXPERIMENTAL

Materials

Acrylated epoxidized soybean oil (AESO) was obtained from

Sartomer Company (Exton, PA, USA). This AESO is acrylated

with approximately 3.5 acrylates per triglyceride and an average

molecular weight of 1200 g/mol. N,N-(dimethylamino) ethyl

methacrylate (DMAEM) was purchased from Aldrich (Stein-

heim, Germany) and used as received. Styrene (Aldrich, Stein-

heim, Germany) was used without any purification. The clay,

sodium montmorillonite (NaMMT) was kindly donated by S€ud

Chemie, (Moosburg, Germany) (Nanofil 1080; cationic (Na1)

exchange capacity of 100 meq/100 g). 2,20-Azoisobutyronitrile

(AIBN) was obtained from Merck (Darmstadt, Germany) and

dried in vacuum at room temperature. Olive oil was supplied

by Komili (_Istanbul, Turkey). Syntheses of methyl oleate and al-

lylic brominated methyl oleate were carried out in a similar

manner to that reported previously.27–30

Synthesis of Methacryl-Functionalized Quaternary

Ammonium Salt of the Allylic Brominated Methyl Oleate

Ten grams of allylic brominated methyl oleate (ABMO) (0.0266

mol) was diluted in 20 mL of THF. Four grams of N,N-dime-

thylamino ethyl methacrylate (DMAEM) (0.0266 mol) was

added into this solution. After 1 h, the solution became turbid.

Then, the solution was stirred overnight at 50�C under N2

atmosphere. Then, THF was evaporated in a rotary evaporator

and the crude product (QMO) was used without any purifica-

tion. Figure 1 shows the quaternization reaction of ABMO.

Figure 1. Quaternization of ABMO.
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Modification of NaMMT Clay with the Quaternized Methyl

Oleate

NaMMT (2 g) was dispersed in a 300 mL solvent mixture of

THF and deionized water in equal volumes at 50�C. A sepa-

rate solution of 2 g quaternized methyl oleate (QMO) in the

same amount of solvent mixture and composition was slowly

added to the clay solution and mixed vigorously, while keep-

ing the temperature of the solution at 50�C for 4 h. The

organically modified MMT (OrgMMT) was recovered by filter-

ing the solution, followed by repeated washings of the filter

cake with THF-deionized water mixture to remove any excess

ions. The final product was dried at 50�C in a vacuum oven

for 48 h.

Preparation of Nanocomposites

The modified clay, OrgMMT (1, 2, or 3 wt %, with respect to

the monomer) was mixed with the monomer mixture which

has 50 wt % AESO and 50 wt % styrene, under a nitrogen

atmosphere at 50�C for 5 h. The AIBN initiator (1 wt %, with

respect to the monomer) was then added to the monomer-clay

solution and stirred. Then, the polymerization reaction was car-

ried out at 50�C for 24 h and post-cured at 110�C for 2 h to

obtain AESOPS nanocomposites, namely AESOPS1M-C,

AESOPS2M-C, and AESOPS3M-C.

Characterization
1H-NMR spectra were recorded on a 400 MHz Varian Mercury-

VX NMR spectrometer (Varian Associates, Palo Alta, CA). Fou-

rier-transform infrared (FTIR) spectra of samples were obtained

with a Perkin Elmer 1600 FTIR spectrophotometer (Massachu-

setts, USA).

In order to measure the basal spacing (d001 reflection) of MMT

clays, wide angle X-ray diffraction (XRD) measurements were

conducted on a Rigaku D/Max-Ultimate diffractometer (Rigaku,

Tokyo, Japan) with CuKa radiation (k 5 1.54�A), operating at

40 kV and 40 mA and a scanning rate of 0.2 deg/min.

Morphology of the nanocomposites was investigated by both

XRD and transmission electron microscopy (TEM) measure-

ments. TEM analysis was performed using a FEI TecnaiTM G2

F30 (FEI, Hillsboro, OR) instrument operating at an accelera-

tion voltage of 200 kV. About 100 nm ultrathin TEM specimens

were cut by using cryo-ultramicrotome (Leica EMUC6/EMFC6,

Vienna, Austria) equipped with a diamond knife. The ultrathin

samples were placed on copper grids for TEM analyses.

The fracture surfaces of the composites were investigated by

scanning electron microscopy (SEM) analysis, using ESEM-FEG

and EDAX Philips XL-30 microscope (Philips, Eindhoven, The

Netherlands).

Thermogravimetric analysis (TGA) was performed on a Seiko

TG/DTA 6300 thermal analysis system instrument (Seiko Instru-

ments Inc., Tokyo, Japan) under nitrogen flow with a heating

rate of 10�C/min. Dynamic mechanical properties of the com-

posites were measured with a dynamic mechanical analyzer

(DMA Q800, TA Instruments, New Castle, DE) in single cantile-

ver mode at a frequency of 1 Hz and at a heating rate of 3�C/

min. The average dimensions (w x l x t) of the molded samples

were 12 3 30 3 2.5 mm3.

RESULTS AND DISCUSSION

Synthesis of Quaternized Methyl Oleate Intercalant

Characterization of the quaternary ammonium salt of methyl ole-

ate (QMO) was done by IR (Figure 2) and 1H-NMR (Figure 3)

techniques. IR spectra (Figure 2) showed the same characteristic

peaks for both ABMO and QMO. The peak observed at around

2750 cm21 was probably due to the C-H stretching of the di-

methyl ammonium group. The peaks appeared at 1640 cm21

belong to double bonds. The peaks of fatty acid methyl ester and

acrylate ester groups are depicted at 1740 and 1719 cm21

Figure 2. FTIR spectra of DMAEM, ABMO, and QMO.

Figure 3. 1H-NMR spectra of ABMO and QMO.

ARTICLE

WWW.MATERIALSVIEWS.COM WILEYONLINELIBRARY.COM/APP J. APPL. POLYM. SCI. 2013, DOI: 10.1002/APP.39391 2033

http://www.materialsviews.com/
http://onlinelibrary.wiley.com/


respectively. New C-H stretching peaks appeared at the spectrum

of QMO at 2818 and 2720 cm21 and they probably belong to -

CH2- groups of quaternized N,N-dimethyl amino ethyl methacry-

late part of the salt. This observation is congruent with the litera-

ture.31,32 Also, the peaks at 1317, 1295, 1098, 1069, and 1020

cm21 were probably due to C-N out of plane bending vibration.

When quaternization occurred, a new peak was observed at 3.9

ppm which belongs to allylic hydrogens that is geminal to qua-

ternary ammonium group. 1H NMR spectrum of QMO also

showed peaks that appear at 5.5 and 6.0 ppm belonging to the

double bond hydrogens of methacrylate group. The peaks

observed at 1.75 ppm are due to methyl hydrogens of methacry-

late group. The peak appeared at 2.75 ppm belongs to a-hydro-

gens to quaternary ammonium salt. Peaks at 3.2 ppm are

belong to the methyl hydrogens of quaternary ammonium salt.

Integration of the all peaks is congruent with each other.

Modification of NaMMT Clay

Modification of the MMT clay was followed by X-ray diffrac-

tion analysis. XRD analysis gave the values of the interlayer

spacing or d-spacing of the NaMMT and OrgMMT which were

obtained from the peak position of the d001 reflection in the

diffraction patterns (Figure 4). The XRD data are given in Table

I. A 2h angle of 7.28 � and basal spacing of 12.13 Å was found

for NaMMT clay. It can be seen from Table I and Figure 4 that

the interlayer spacing of the OrgMMT clay was found to be

35.30 Å together with a decrease in the diffraction angle (2.5�).

Thus, a decrease in the diffraction angle and increase in inter-

layer distance indicates that intercalation of this new renewable

and reactive quaternized methyl oleate (QMO) into MMT clay

layers through the ion-exchange reaction was successful, result-

ing in organophilic clay.

The existence of the metharcyl-functionalized and quaternized

methyl oleate intercalant in the MMT structure was also con-

firmed by TGA. Figure 5 shows the TGA thermograms of

NaMMT and OrgMMT clays and their derivative curves of

weigh loss. It is clear from the figure that OrgMMT shows a

lower decomposition onset temperature as well as higher degra-

dation dependent weight loss compared to pure NaMMT. Pure

MMT has only 7.5% total weight loss indicating water removal.

After the intercalation, this amount reaches almost 40% at

higher temperatures, resulting from the degradation of interca-

lated and edge/surface attached methyl oleate [Figure 5(a)]. As

it can be seen from the first derivative curves of the weight loss

[Figure 5(b)] that NaMMT was found to have two distinctive

weight loss at 60 and 600�C most probably due to removal of

moisture and bound water present in the clay galleries, respec-

tively. On the other hand, TGA trace of the OrgMMT was com-

pletely different. It showed maximum weight loss at

temperatures, 200, 300, and 360�C with much higher weight

loss compared to NaMMT clay. This result can be accepted as

an indication of the successful modification of the MMT clay.

Structural Morphology of the Nanocomposites

XRD analysis was used to identify the polymer nanocomposite

structures as exfoliated or intercalated. Figure 6 shows the XRD

Table I. XRD Data for Clays and Nanocomposites

Material d001 of clay, Åa

NaMMT 12.13 (7.28�)

OrgMMT 35.30 (2.50�)

AESOPS1M-C No reflection

AESOPS2M-C No reflection

AESOPS3M-C 29.25 (3.01�)

a Two-Theta angles are given in parentheses.

Figure 4. XRD patterns of NaMMT clay and organoclay.
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Figure 5. (a) TGA thermograms of NaMMT clay and organoclay and (b) derivatve curves of weight loss.

Figure 6. X-ray diffraction curves of AESOPS nanocomposites.
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curves of the AESOPSM-C nanocomposites that were obtained

by dispersing the organically modified clay in 1, 2, and 3 wt %

loading in the monomer mixture of AESO and styrene. The

XRD data are also summarized in Table I. It can be seen that

the nanocomposites, AESOPS1M-C and AESOPS2M-C did not

exhibit any d001 reflection in the XRD region either because of a

much too large spacing between the layers or because the nano-

composite does not present ordering any more resulting in an

exfoliated nature.1 This may be possibly due to good swelling of

OrgMMT clay in 1 and 2 wt % loading and homogeneous and

fine dispersion of it in the matrix. On the other hand, the

nanocomposite, AESOPS3M-C exhibited a small and broad

peak in the relevant angle region representing the diffraction

from the (001) crystal surface of the silicate layers as an indica-

tion of partially intercalated nanocomposite structure. Based

upon this information, it seems that there might be relatively

more attractive forces between the clay layers at higher loading

which may lead to some intercalated tactoids with a small peak

in XRD analysis.29

The morphology of the nanocomposites was also investigated by

TEM analysis as one of complementary techniques for XRD and

the images were displayed in Figures 7 and 8 in two different

magnification scales. The dark lines observed in the TEM images

represent individual silicate clay layers. As it can be seen from the

images, all the nanocomposites have some irregular dispersion of

the silicate layers. Some particles of the silicate layers were fully

exfoliated (white circles) with orientation in different directions,

while some kept an ordering of the expanded layers. Exfoliation is

quite clear for AESOPS1M-C nanocomposite and the nano-sized

clay layers with an average thickness of 1 nm are separated from

each other in a broad range of separation (44–77 Å). For the

nanocomposite AESOPS2M-C, exfoliated OrgMMT silicate layers

with a thickness of layered silicate of 1 nm and in a broad range

of separation (50–70 Å) can also be seen in the Figures 7 and 8.

Even though the AESOPS1M-C and AESOPS2M-C nanocompo-

sites showed no peak in its XRD pattern (Figure 6), the TEM

analysis resulted in a partially exfoliated structure with relatively

more exfoliated silicate layers and a few laminated silicate layers

Figure 7. Low-magnification TEM images of AESOPSM-C nanocomposites; (a) AESOPS1M-C, (b) AESOPS2M-C, and (c) AESOPS3M-C (scale bar: 20 nm).
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in comparison with other nanocomposite, AESOPS3M-C. Disap-

pearance of XRD peak and presence of relatively high amount of

exfoliated layered silicates in AESOPS1M-C and AESOPS2M-C

may be explained by homogeneous and fine dispersion of clay

layers in the polymer matrix at 1 and 2% clay loading.

In the case of AESOPS3M-C nanocomposite [Figures 7(c) and

8(c)], one can easily see intercalated nanocomposite structure

together with some exfoliated OrgMMT layers with a thickness

of 1 nm (white circles). For this nanocomposite, the separation

between the dispersed platelets is also irregular and in the broad

range of 24.5–78 Å which is in good agreement with its XRD

result (Figure 6). Based on this information, one can postulate

that the nanocomposite AESOPS3M-C may also have a partially

intercalated structure.1

Thermal and Mechanical Properties of AESOPSM-C

Nanocomposites

The thermal stabilities of neat AESOPS matrix and the nano-

composites were studied by thermogravimetric analysis (TGA)

and shown in Figures 9 and 10. The onset degradation tempera-

ture at which 5% degradation occurs (Td5), representative of

the onset temperature of degradation and the mid-point degra-

dation temperatures (Td50) together with char yield are all given

in Table II.

As it can be seen from the TGA trace (Figure 9) and Table II,

although the differences in thermograms seem to be small, all

the nanocomposites degrade at a slightly faster rate in the tem-

perature range of 180–400�C compared with pure polymer. For

the nanocomposites, the weight loss in the abovementioned

temperature range is most probably resulted from degradation

of intercalant as well as water on clay surface and that between

silicate layers. These nanocomposites display retardation of the

thermal degradation above 425�C. On the other hand, it is clear

from the figure and Table II, char yield of all the nanocompo-

sites was found to be higher than that of neat AESOPS and

increase with increasing OrgMMT clay loading. The midpoint

degradation temperatures (Td50) of the nanocomposites were

found to be very close to that of neat UPE (Table II).

Figure 8. High-magnification TEM images of AESOPSM-C nanocomposites; (a) AESOPS1M-C, (b) AESOPS2M-C, and (c) AESOPS3M-C (scale bar: 10 nm).
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The peak maximum temperature values from the first derivative

(DTG) of weight loss (Figure 10), which is representative of the

temperature at which maximum rate of weight loss occurs, are

also given in Table II. Although, the maximum temperatures of

the derivative curves of the nanocomposites seems to be

unchanged, all the nanocomposites exhibited a much slower deg-

radation rate at their maximum weight loss temperature com-

pared to neat AESOPS. The rate of decomposition at the

maximum weight loss temperature was found to decrease with

increasing amount of OrgMMT. This result may be attributed to

the promotion of polymerization from inside the clay galleries

and also from surface/edges of the clay with the help of meth-

acryl reactive double bond present in the intercalant, bonded to

the clay which leads to decrease in degradation rate of the poly-

mer around clay surface in the nanocomposites. On the other

hand, the lowest degradation rate of the AESOPS3M-C may be

attributed to the confinement of AESOPS matrix between the

MMT layers in alternating multilayered structure of polymer and

the clay in the intercalated system.30,33 The more compact sili-

cate-matrix in multilayered intercalated systems (Figures 6 and 7)

may cause a decrease in permeability or diffusivity of volatile

degradation products. In other words, it may cause hindered

out-diffusion of the volatile decomposition products or at least

slow down escape of them from interlayer galleries.34 Therefore,

it can be safely stated that AESOPS3M-C nanocomposite, with

the lowest degradation rate and, the modest degradation onset

temperature and midpoint degradation temperature, as well as

the highest char yield, has the highest thermal stability relative to

other nanocomposites and neat matrix. Moreover, in comparison

with AESOPS matrix, the enhanced thermal stability of the nano-

composites may be attributed to extensive interaction of polymer

chains with nanodispersed OrgMMT clay, so leading to restricted

Figure 9. TGA thermograms of neat AESOPS matrix and its nanocomposites.

Figure 10. TGA derivative thermograms of neat AESOPS matrix and its nanocomposites.
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molecular mobility of the polymer chains and resulting in inhibi-

tion of the diffusion of the decomposed product in the polymer

matrix.35

The dynamic mechanical performances of AESOPS and its

nanocomposites were investigated by dynamic mechanical anal-

ysis (DMA). Two different parameters were determined as a

function of temperature. The tan delta versus temperature and

storage modulus (E0) versus temperature plots are all shown in

Figures 11 and 12, respectively. The glass-transition temperature

(Tg) was taken as the maximum tan delta peak point which was

calculated from the E00 (loss modulus)/E0 (storage modulus) ra-

tio.34–36 The shift of the tan delta peak to higher temperatures

indicate an increase in the glass-transition temperature (Tg) and

enhanced thermo mechanical properties.

Compared with neat AESOPS, all the nanocomposites were

found to have higher tan delta peak temperatures or Tg values.

The nanocomposites, AESOPS2M-C and AESOPS3M-C display

much higher increase in the tan d peak temperature (Figure

11), which is also in good agreement with higher increase in

the storage modulus compared to AESOPS1M-C (Figure 12).

This may be probably due to higher contribution of reactive

methacryl part and allylic part of the modifier in the polymer-

ization at higher clay loadings, leading to a strong interaction

between clay layers and polymer matrix.

The storage moduli at 50�C and 70�C were determined and

reported in Table III. It is well known that whether in static or

dynamic tests, the modulus change under Tg is not very clear

and sensitive because of the highly restricted motion of the

chains with very low energies. In Figure 12, as a much more

meaningful comparison, the moduli of all the nanocomposites

around Tg (50�C) and above Tg (70�C), were observed to be

higher than that of the neat AESOPS (Table III) which is con-

sistent with lower the maximum tan delta peak values (Figure

11). This might be ascribed to a maximized interaction between

the clay and the polymer matrix most probably due to above-

mentioned contribution of reactive methacryl and allylic groups

of the modifier in the polymerization process.37,38 It can be

clearly seen from the Table III that the storage modulus of the

AESOPS1M-C was found to be about 24% higher than that of

neat AESOPS matrix. About 400% and 350% increase in storage

modulus around Tg was achieved as a result of incorporation of

2 wt % and 3 wt % of OrgMMT clay into the AESOPS matrix,

respectively. Although, in our previous study,26 the storage

modulus was found to increase about 140% for AESOPS in

presence of only allylic-functionalized intercalant and at 2 wt %

clay loading, having extraordinary high storage modulus for the

nanocomposites in this study is remarkable.

Moreover, the rubbery plateau moduli at 70�C of the nanocom-

posite AESOPS2M-C and AESOPS3M-C are about six times

higher than that of neat AESOPS. This is a strong advantage of

Table II. TGA Data for Neat AESOPS and AESOPS Nanocomposites

Material Td5 (�C)a Td50 (�C)a Maximum rate of weight lossb (lg/min at �C) Char content at 500�C (%)a

AESOPS 373.80 (6.71) 419.50 (3.58) 1004.00 (2.93) at 430.00 (2.34) �C 0.99 (0.31)

AESOPS1M-C 362.20 (3.13) 417.50 (4.04) 814.80 (4.91) at 426.00 (4.02) �C 1.98 (0.12)

AESOPS2M-C 365.80 (3.22) 415.80 (2.18) 775.50 (4.83) at 424.70 (4.42) �C 2.44 (0.13)

AESOPS3M-C 365.00 (2.36) 416.00 (2.04) 635.70 (1.31) at 426.10 (0.93) �C 4.50 (0.16)

a Calculated from weight loss versus temperature curve of TGA thermograms.
b Calculated from derivative thermograms.

Data in parentheses represent standard deviations.

Figure 11. Tan d versus temperature plots of neat AESOPS matrix and its

nanocomposites.

Figure 12. Storage modulus versus temperature plots of neat AESOPS

matrix and its nanocomposites.
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nanocomposite that it is able to retain a high modulus even at

temperatures above the glass transition temperature. The highest

value of storage modulus for AESOPS2M-C behavior can be

attributed to the extraordinarily large aspect ratio of exfoliated

silicate layers with good dispersion of organoclay particles in

the polymer matrix (Figures 6 and 7). This increases the poly-

mer–clay interactions, making the entire surface area available

for the polymer which prevents the segmental motions of the

polymer chains near organic–inorganic interfaces39,40 and lead-

ing to dramatic changes in mechanical properties.

SEM Analyses of Fracture Surfaces of the Nanocomposites

The morphological appearance of the fracture surfaces is shown

in the SEM micrographs in Figure 13. In pure AESOPS, a brittle

fracture surface with cracks of large size is observed, typical of a

glassy material. The image of AESOPS3M-C shows a heteroge-

neous fracture surface having cracks with poor distribution and

different sizes as well as some areas without any crack propaga-

tion. This result may be due to incomplete dispersion of the

reinforcing phase inhibiting enough surface contact between the

polymer and clay, leading to large regions of pure polymer in

the intercalated structure (Figure 6) of the composite. The

nanocomposite AESOPS1M-C, which has a partially exfoliated

nanocomposite structure (Figures 7 and 8) with absence of X-

ray diffraction peak (Figure 6), indicated a better crack distribu-

tion in its fracture surface than neat AESOPS and AESOPS3M-

C. The AESOPS2M-C nanocomposite exhibited a more homo-

geneous fracture surface with crack propagation along a more

“tortuous path,” which may be ascribed to much better disper-

sion and adhesion of the OrgMMT clay in the matrix and

which is highly consistent with the XRD data without any d001

reflection (Figure 6) and modest damping temperature and the

highest stiffness for the related nanocomposite (Figures 11

and 12).

CONCLUSIONS

Acrylated epoxidized soy bean oil (AESO)-based nanocompo-

sites were successfully prepared by in situ free radical polymer-

ization of AESO-styrene monomer mixture in the presence of

montmorillonite (MMT) clay. Organically and functionally

modified MMT clay was used as nanosized reinforcer in differ-

ent loading degrees. Organophilic modification of NaMMT clay

was carried out with a renewable intercalant, quaternized

methlyl oleate (QMO) having a methacryl group making it a re-

active intercalant. The effect of the renewable intercalant with

double bond contribution on the properties of AESO-based

polymeric nanocomposite was discussed in terms of structural,

mechanical and thermal properties. Success in both intercalation

Table III. DMA Data for Neat AESOPS and AESOPS Nanocomposites

Material E0 at 50�C (MPa) E0 at 70�C (MPa)

AESOPS 210.40 (3.69) 10.68 (1.04)

AESOPS1M-C 260.10 (2.79) 12.31 (0.97)

AESOPS2M-C 1053.00 (19.95) 67.13 (3.98)

AESOPS3M-C 948.30 (12.35) 64.35 (2.99)

Data in parentheses represent standard deviations.

Figure 13. SEM micrographs of the fracture surfaces of (a) neat AESOPS, (b) AESOPS1M-C, (c) AESOPS2M-C, and (d) AESOPSM-C nanocomposites.
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of intercalant into MMT clay layers through the ion-exchange

reaction and nanosized dispersion of clay in polymer matrix

were confirmed via XRD, TGA, and TEM analyses. All the

nanocomposites were found to have partially exfoliated struc-

tures. AESOPS nanocomposites at 1 and 2 wt % clay loadings

exhibited relatively high degree of exfoliation as evidenced by

the absence of any diffraction peak in the XRD region and

delamination of relatively more silicate layers as thin platelets in

the matrix as observed in its TEM image. All the polymer nano-

composites were found to have higher thermal stability and bet-

ter dynamic mechanical properties as compared to neat

polymer matrix. This is probably due to the polymerization

reaction occurring in between silicate layers and from the edge/

surface of the modified clay through the intercalated and edge/

surface attached reactive intercalant. The highest storage modu-

lus increment (ca. 400%) and damping temperature was

obtained for the AESOPS2M-C nanocomposite even with a clay

content as low as 2 wt % which exhibited partially exfoliated

nanocomposite structure having relatively higher exfoliation of

the clay layers. Accordingly, SEM image of the fracture surface

of the AESOPS2M-C showed that presence of OrgMMT clay

with a homogeneous and nanosized dispersion in the polymer

matrix, led to crack propagation along a more “rougher” path

compared to AESOPS matrix. AESOPS3M-C nanocomposite

with relatively high amount of intercalated nature, on the other

hand, showed the best thermal stability with the lowest degrada-

tion rate and the highest char yield. As a result it can be safely

concluded that partially exfoliated AESO-based nanocomposites

with different degrees of exfoliation can be prepared as ther-

mally stable and high strength by using functionally and organi-

cally modified clay with a renewable intercalant in 1–3 wt %

clay loadings.
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