
Autopipelining for Data Stream Processing
Yuzhe Tang, Student Member, IEEE, and Bu�gra Gedik, Member, IEEE

Abstract—Stream processing applications use online analytics to ingest high-rate data sources, process them on-the-fly, and

generate live results in a timely manner. The data flow graph representation of these applications facilitates the specification of

stream computing tasks with ease, and also lends itself to possible runtime exploitation of parallelization on multicore processors.

While the data flow graphs naturally contain a rich set of parallelization opportunities, exploiting them is challenging due to the

combinatorial number of possible configurations. Furthermore, the best configuration is dynamic in nature; it can differ across

multiple runs of the application, and even during different phases of the same run. In this paper, we propose an autopipelining

solution that can take advantage of multicore processors to improve throughput of streaming applications, in an effective and

transparent way. The solution is effective in the sense that it provides good utilization of resources by dynamically finding and

exploiting sources of pipeline parallelism in streaming applications. It is transparent in the sense that it does not require any hints

from the application developers. As a part of our solution, we describe a light-weight runtime profiling scheme to learn resource

usage of operators comprising the application, an optimization algorithm to locate best places in the data flow graph to explore

additional parallelism, and an adaptive control scheme to find the right level of parallelism. We have implemented our solution in an

industrial-strength stream processing system. Our experimental evaluation based on microbenchmarks, synthetic workloads, as well

as real-world applications confirms that our design is effective in optimizing the throughput of stream processing applications without

requiring any changes to the application code.

Index Terms—Stream processing, parallelization, autopipelining

Ç

1 INTRODUCTION

WITH the recent explosion in the amount of data
available as live feeds, stream computing has found

wide application in areas ranging from telecommunica-
tions to healthcare to cyber-security. Stream processing
applications implement data-in-motion analytics to ingest
high-rate data sources, process them on-the-fly, and
generate live results in a timely manner. Stream computing
middleware provides an execution substrate and runtime
system for stream processing applications. In recent years,
many such systems have been developed in academia [1],
[2], [3], as well as in industry [4], [5], [6].

For the last decade, we have witnessed the proliferation
of multicore processors, fueled by diminishing gains in
processor performance from increasing operating frequen-
cies. Multicore processors pose a major challenge to
software development, as taking advantage of them often
requires fundamental changes to how application code is
structured. Examples include employing thread-level pri-
mitives or relying on higher level abstractions that have
been the focus of much research and development [7], [8],
[9], [10], [11], [12]. The high-throughput processing require-
ment of stream processing applications makes them ideal
for taking advantage of multicore processors. However, it is
a challenge to keep the simple and elegant data flow

programming model of stream computing, while best
utilizing the multiple cores available in today’s processors.

Stream processing applications are represented as data
flow graphs, consisting of reusable operators connected to
each other via stream connections attached to operator
ports. This is a programming model that is declarative at the
flow manipulation level and imperative at the flow
composition level [13]. The data flow graph representation
of stream processing applications contains a rich set of
parallelization opportunities. For instance, pipeline paralle-
lism is abundant in stream processing applications. While
one operator is processing a tuple, an upstream operator
can process the next tuple concurrently. Many data flow
graphs contain bushy segments that process the same set of
tuples, and which can be executed in parallel. This is an
example of task parallelism. It is noteworthy that both forms
of parallelism have advantages in terms of preserving the
semantics of a parallel program. On the other hand,
exploiting data parallelism has additional complexity due
to the need for morphing the graph to create multiple
copies of an operator and to reestablish the order between
tuples. Pipeline and task parallelism do not require
morphing the graph and preserve the order without
additional effort. These two forms of parallelism can be
exploited by inserting the right number of threads into the
data flow graph at the right locations. It is desirable to
perform this kind of parallelization in a transparent
manner, such that the applications are developed without
explicit knowledge of the amount of parallelism available
on the platform. We call this process autopipelining.

There are several challenges to performing effective and
transparent autopipelining in the context of stream proces-
sing applications.

First, optimizing the parallelization of stream processing
applications requires determining the relative costs of

2344 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013

. Y. Tang is with the College of Computing, Georgia Institute of Technology,
801 Atlantic Drive, Atlanta, GA 30332. E-mail: yztang@gatech.edu.

. B. Gedik is with the Department of Computer Engineering, Bilkent
University, Ankara 06800, Turkey. E-mail: bgedik@cs.bilkent.edu.

Manuscript received 4 Apr. 2012; revised 7 Nov. 2012; accepted 29 Nov. 2012;
published online 12 Dec. 2012.
Recommended for acceptance by X.-H. Sun.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-04-0349.
Digital Object Identifier no. 10.1109/TPDS.2012.333.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

operators. The prevalence of user-defined operators in real-
world streaming applications [5] means that cost modeling,
commonly applied in database systems [14], is not applicable
in this setting. On the other hand, profile-driven optimization
that requires one or more profile runs based on compiler-
generated instrumentation [15], [16], while effective, suffers
from usability problems and lack of runtime adaptation. On
the usability side, requiring profile runs and specification of
additional compilation options has proven to be unpopular
among users in our own experience (see Appendix J, which
can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.
2012.333). In terms of runtime adaptation, the profile run
may not be representative of the final execution. In summary,
a light-weight dynamic profiling of operators is needed to
provide effective and transparent autopipelining.

Second, and more fundamentally, it is a challenge to
efficiently (time-wise) find an effective (throughput-wise)
configuration that best utilizes available resources and
harnesses the inherent parallelism present in the streaming
application. Given N operator ports and up to T threads,
there are combinatorial possibilities,

PT
k¼0ðNk Þ to be precise.

In the absence of autopipelining, we have observed
application developers struggling to insert threads manu-
ally1 to improve throughput. This is no surprise, as for a
medium size application with 50 operators on an 8-core
system, the number of possibilities reach multiple billions.
Thus, a practical optimization solution needs to quickly and
automatically locate an effective configuration at runtime.

Finally, deciding the right level of parallelism is a
challenge. The behavior of the system is difficult to predict
for various reasons. User-defined operators can contain
locks that inhibit effective parallelization. The overhead
imposed by adding an additional thread in the execution
path is a function of the size of the tuples flowing through
the port. The behavior of the operating system scheduler
cannot be easily modeled and predicted. The impact of
these and other system artifacts are observable only at
runtime and treated as a blackbox. While the optimization
step can come up with threading configuration changes that
are expected to improve performance, such decisions need
to be tried out and dynamically evaluated to verify their
effectiveness. As such, we need a control algorithm that can
backtrack from bad decisions.

In this paper, we describe an autopipelining solution that
addresses all of these challenges. It consists of:

. A light-weight runtime profiling scheme that uses a
novel metric called per-port utilization to determine
the amount of time each thread spends downstream
of a given operator input port.

. A greedy optimization algorithm that finds loca-
tions in the data flow graph where inserting
additional threads helps eliminate bottlenecks and
improve throughput.

. A control algorithm that decides when to stop
inserting additional threads and also backtracks
from decisions that turn out to be ineffective.

. Runtime mechanics to insert/remove threads
while maintaining lock correctness and continuous
operation.

We implemented our autopipelining solution on IBM’s
system S [3]—an industrial strength stream processing
middleware. We evaluate its effectiveness using microbe-
nchmarks, synthetic workloads, and real-world applica-
tions. Our results show that autopipelining provides better
throughput compared to hand-optimized applications at no
cost to application developers.

2 BACKGROUND

We provide a brief overview of the basic concepts
associated with stream processing applications, using SPL
[5] as the language of illustration. We also describe the
fundamentals of runtime execution in System S.

2.1 Basic Concepts

Listing 1 in Appendix A, which is available in the online
supplemental material, gives the source code for a very
simple stream processing application in SPL, with its visual
representation depicted in Fig. 1 below.

The application is composed of operator instances con-
nected to each other via stream connections. An operator
instance is a vertex in the application graph. An operator
instance is always associated with an operator. For instance,
the operator instance shown in the middle of the graph in
Fig. 1 is an instance of a Join operator. In general,
operators can have many different instantiations, each
using different stream types, parameters, or other config-
urations such as windows. Operator instances can have
zero or more input and output ports. Each output port
generates a uniquely named stream, which is a sequence of
tuples. Connecting an output port to the input of an
operator establishes a stream connection. Operators are often
implemented in general purpose languages, using an event
driven interface, by reacting to tuples arriving on operator
input ports. Tuple processing generally involves updating
some operator-local state and producing result tuples that
are sent out on the output ports.

There are two important aspects of real-world applica-
tions that are highly relevant for our work:

. Real-world applications are usually much larger in
terms of the number of operators they contain,
reaching hundreds or even thousands.

. Real-world applications contain many user-defined
re-usable operators to implement cross-domain or
domain-specific manipulations.

The former point motivates the need for automatic
parallelization, whereas the latter motivates the need for
dynamic profiling.

TANG AND GEDIK: AUTOPIPELINING FOR DATA STREAM PROCESSING 2345

1. SPL language [5] provides a configuration called “threaded port” that
can be used to manually insert threads into a data flow graph.

Fig. 1. Data flow graph for the SensorQuery app.

2.2 Execution Model

A distributed stream processing middleware, such as
System S, executes data flow graphs by partitioning them
into basic units called processing elements. Each processing
element contains a subgraph and can run on a different
host. For small- and medium-scale applications, the entire
graph can map to a single processing element. Without loss
of generality, in this paper, we focus on a single multicore
host executing the entire graph. Our autopipelining
technique can be applied independently on each host when
the whole application consists of multiple, distributed
processing elements.

There are two main sources of threading in our
streaming runtime system, which contribute to the execu-
tion of the data flow graphs. The first one is operator threads.
Source operators, which do not have any input ports, are
driven by a separate thread. When a source operator makes
a submit call to send a tuple to its output port, this same
thread executes the rest of the downstream operators in the
data flow graph. As a result, the same thread can traverse a
number of operators, before eventually coming back to the
source operator to execute the next iteration of its event
loop. This behavior is because the stream connections in a
processing element are implemented via function calls.
Using function calls yields fast execution, avoiding sche-
duler context switches, and explicit buffers between
operators. We refer to this optimization as operator fusion
[16], [15]. Nonsource operators can also create operator
threads, but this is rare. In general, the number and location
of operator threads are not flexible because they are dictated
by the application and the operator implementations.

The second source of threading is threaded ports.
Threaded ports can be inserted at any operator input port.
When a tuple reaches a threaded port, the currently
executing thread will insert the tuple into the threaded
port buffer, and go back to executing upstream logic. A
separate thread, dedicated to the threaded port, will pick up
the queued tuples and execute the downstream operators.
Threaded port buffers are implemented as cache-optimized
concurrent lock-free queues [17].

The goal of our autopipelining solution is to automati-
cally place threaded ports at operator input ports during
runtime, so as to maximize throughput.

3 SYSTEM OVERVIEW

In this section, we give an overview of our autopipelining
solution. Fig. 2 depicts the functional components and the
overall control flow of the solution. It consists of five main
stages that run in a continuous loop until a termination
condition is reached.

The first stage is the profiling stage. In this stage a light-
weight profiler determines how much time each of the
existing threads spend on executing the operators in the
graph. This profiling information, termed per-port utiliza-
tion, is used as input to the optimization stage. An
optimization algorithm that uses a greedy heuristic deter-
mines what the next action should be. The next action could
either be to halt, as it could find nothing but an empty set of
threaded ports at this time, or it could be to add additional
threads at specific input ports. If the optimizer decides to
add new threads, then the thread insertion component
applies this decision. This is followed by the evaluation
component, which evaluates the performance of the system
after the thread insertions. The performance results from
the evaluation are put into the controller component as a
feedback, which takes one of two possible actions. It could
vet all the thread insertions and go to the next iteration of
the process. Alternatively, it could remove some or all of the
inserted threads, reverting back the decisions taken by the
optimizer. This could be followed by moving to the next
iteration of the process or halting the process. In the former
case, it applies a blacklisting algorithm to avoid coming up
with the same ineffective configuration in the next iteration.

The system can be taken out of the halting state in case a
shift in the workload conditions is detected. However, the
focus of this work is on finding an effective operating point
right after the application launch.

3.1 An Example Scenario

Throughout the paper we use an example application to
illustrate various components of our solution. The compile-
time and runtime data flow graphs for this application are
given in Figs. 3 and 4, respectively. For simplicity of
exposition, we assume that all operators have a single input
port and a single output port. However, our solution
trivially extends to the general case and has been
implemented and evaluated for the multiport scenario
(see Section 8).

The sample application consists of an 11-operator graph
as shown in Fig. 3. There are four source operators (namely,
o0, o2, o5, and o7) which generate tuples. At runtime, there
are four threads initially, t0; . . . ; t3, that execute the
program, assuming no threaded ports have been inserted.

2346 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013

Fig. 2. Overview of the autopipelining system.

Fig. 3. Operator graph.

Fig. 4 shows the execution path of different threads in
different colors and shapes. Note that some operators are
present in the execution path of multiple threads. For
instance, threads t0 and t1 share operator o3 in their
execution paths.

The runtime graph cannot be derived solely from the
compile-time graph. The paths threads take can depend on
tuple runtime values, as well as operator runtime behavior,
such as selectivity or tuple submission decisions. Hence, the
compile-time graph restricts each thread in terms of what
operators it can traverse, but does not exactly define its
path. We derive the runtime graph based on runtime
profiling (see Section 6).

We now look at the metrics that will help us formulate
the autopipelining problem.

3.1.1 Profiling Metrics

The main profiling metric collected by our autopipelining
solution is called the per-port utilization, which we denote
with �ðo; tÞ. The variable o represents any arbitrary
operator, and t represents any thread that can execute that
operator. We define the utilization, �ðo; tÞ, to be the
amount of CPU utilized by thread t when executing all
downstream operators starting from the input port of
operator o. During program execution, the profiler main-
tains �ðo; tÞ for every operator/thread pair for which the
thread t executes the operator o. In Fig. 4, for example, the
input port of operator o6 is associated with utilization
30 percent, meaning that thread t2 spends 30 percent of the
CPU time on executing o6 and its downstream operators,
which are operators o4 and o10. Thus, �ðo6; t2Þ ¼ 0:3.

For each thread, we also define per-thread utilization,
denoted as �ðtÞ, which is the overall CPU utilization of
thread t. For example, in Fig. 4, thread t2 has a utilization of
90 percent, thus �ðt2Þ ¼ 0:9.

The reason we pick per-port CPU utilization, �ðo; tÞ, as
our main profiling metric is that it simplifies predicting the
relative work distribution between threads after inserting a
new thread on an input port. For instance, if a threaded port
is being added in front of operator o6 in Fig. 4, the newly
created thread will take 30 percent CPU utilization from the
existing thread t2.

Predicting the relative work distribution for a potential
thread insertion is performed in the following way. Assume
that T ðoÞ ¼ ft j �ðo; tÞ > 0g denotes the list of threads that
contain a given operator o in their execution path. Adding a
threaded port at operator o will have two consequences.
First, all of the threads in T ðoÞ will execute only up to the
input port of operator o. Second, a new thread, t0, will
execute the rest of the executions paths for all threads in

T ðoÞ. The prediction of the work distribution for the newly
created thread t0 is �0ðt0Þ ¼

P
t2T ðoÞ �ðo; tÞ. For an existing

thread t 2 T ðoÞ, the prediction is �0ðtÞ ¼ �ðtÞ � �ðo; tÞ. For
instance, in Fig. 4, when a threaded port is added to
operator o3, we predict �0ðt0Þ ¼ 0:4, �0ðt1Þ ¼ 0:5, and
�0ðt0Þ ¼ 1.

It is important to note that �0 is a relative metric of how
the work is partitioned between the existing threads and the
newly created thread. It is not an accurate prediction of
what the CPU utilizations will be after the thread insertion.
The expectation is that, given enough processing resources
and enough work present in the application, the actual
utilizations (�) will be higher than the relative predictions
(�0). For instance, consider a simple chain of operators
executed by a single thread that has �ðt0Þ ¼ 1. Adding a
threaded port in the middle of this chain will result in
�0ðt0Þ ¼ 0:5 and �0ðt1Þ ¼ 0:5. We use these relative utiliza-
tion values to assess whether or not inserting a new thread
in this location will improve performance. After the
insertion, the optimistic expectation is that �ðt0Þ ¼ �ðt1Þ >
0:5, because u0ðt0Þ < 1 and u0ðt1Þ < 1, which leaves room for
improvement in throughput. The evaluation and control
stages of our solution deal with cases where this expectation
does not hold.

3.1.2 Utility Function

The predicted relative utilizations are used to define a
utility function that measures a threaded port insertion’s
goodness. Given an insertion at operator o, causing the
creation of thread t0, we define its utility as

Uðo; t0Þ ¼ maxð�0ðtÞ j t 2 T ðoÞ [ft0gÞ:

The utility function for a given operator and its new
thread is the largest predicted relative work distribution
across all of the threads with that operator in its path. Our
goal is to minimize this utility function. The intuition
behind the utility function is simple: the thread that has
the highest predicted work (�0) will become the bottleneck
of the system.

Suppose T ðoÞ ¼ ft0g and our predictions after insertion
of a new thread t0 at operator o are �0ðt0Þ ¼ 0:3 and
�0ðt0Þ ¼ 0:6. The utility of this insertion is Uðo; t0Þ ¼ maxð0:6;
0:3Þ ¼ 0:6. A better insertion at a different operator o0, where
T ðo0Þ ¼ ft0g, that would give a lower utility value is:
�0ðt0Þ ¼ 0:5 and �0ðt0Þ ¼ 0:5, leading to Uðo0; t0Þ ¼ 0:5. How-
ever, it may not always be possible to find such an insertion
based on the per-port utilizations of the operators reported
by profiling.

For a set of thread insertions, say C ¼ fho; t0ig, we define
an aggregate utility function UðCÞ as

UðCÞ ¼ maxðUðo; t0Þ j ho; t0i 2 CÞ:

Here, we pick the maximum of the individual utilities. We
will further discuss and illustrate the aggregate utility
function shortly.

3.2 The Optimization Problem

Recall that the goal of the optimization stage is to find one
or more threaded ports that will improve the throughput of

TANG AND GEDIK: AUTOPIPELINING FOR DATA STREAM PROCESSING 2347

Fig. 4. Runtime op. graph.

the system. We propose the following heuristic for the
optimization stage:

Minimize the aggregate utility function while making sure
that one and only one threaded port is inserted in the
execution path of each heavily utilized thread.

This formulation is based on three core principles:

1. Help the needy. At each step, we only insert threads
in the execution path of heavily utilized threads. A
heavily utilized thread is a bottleneck, which
implies that if it has more resources, overall
throughput will improve.

2. Be greedy but generous. By definition our solution is
greedy, as at each step it comes up with incremental
insertions that will improve performance. However,
inserting a single thread at a time does not work,
which is why we make sure that a thread is inserted
in the execution path of each heavily utilized thread.
To see this point, consider the scenario where two
threads execute a simple chain of four equal sized
operators. The first thread executes the first two
operators, and the second thread executes the
remaining two. As an incremental step, if we only
help the first thread, we will end up having three
threads, where the last thread still executes two
operators. This imbalance will become the bottleneck
and, thus, the throughput will not increase. But, if
we help both of the two original threads, we expect
the throughput to increase.

A more subtle, but critical, point is the require-
ment that one and only one thread is added to the
execution path of each heavily utilized thread. This
is strongly related to the greedy nature of the
algorithm. If we are to insert more than one thread
in the execution path of a given thread, then the
prediction of a thread’s �0 requires significantly
more profiling information (such as the amount of
CPU time a thread spends downstream of a port
when it reaches that port by passing through a given
set of upstream input ports). We want to maintain a
light-weight profiling stage that will not disturb
application performance during profiling. Hence,
we make our algorithm greedy by inserting at most
one thread in the execution path of an existing
thread, but for each one of the heavily utilized
threads (thus generous).

3. Be fair. We minimize the utility function U , which
means that new threads are inserted such that the
newly created and the existing threads have
balanced load.

4 OPTIMIZATION ALGORITHM

We now describe a base optimization algorithm and a set of
enhancements that improve its running time. A cost
analysis is provided in Appendix B, which is available in
the online supplemental material.

4.1 The Algorithm

For a simple chain of operators, designing an algorithm that
meets the criteria given in Section 3.2 is straightforward.

However, operators that are shared across threads compli-
cate the design in the general case. We need to make sure
that one and only one thread is inserted in the execution
path of each existing thread, even though the same thread
can be inserted in the execution path of multiple existing
threads. The main idea behind the algorithm is to reduce
the search space via selection and removal of shared
operators from the set of possible solutions, and then
explore each subspace separately.

Before describing the algorithm in detail, we first
introduce a simple matrix form that represents a subspace
of possible solutions.

Matrix representation. For each thread, we initially have
all the operators in the execution path of it as a possible
choice for inserting a threaded port. As the algorithm
progresses, we gradually remove some of the operators
from the list to reduce the search space. For instance, the
runtime operator graph from Fig. 4 can be converted into
the following matrix representation:

t0
t1
t2
t3

o0; 90% o1; 15% o3; 50% o4; 20%
o2; 100% o3; 50% o4; 20%
o5; 90% o6; 30% o4; 15% o10; 5%
o7; 95% o8; 60% o9; 30% o10; 20%

0
BB@

1
CCA

The matrix contains one row for each thread in the
unmodified application. For each row, it lists the set of
operators that is in the execution path of the thread with
their associated CPU utilization metrics, which is �ðo; tÞ.
Note that the source operators are placed on the first
column and are separated from the rest. They are not
considered as potential places to add threaded ports as they
have no input ports. We exclude them from the matrix
representation for the remainder of the paper. The remain-
ing operators are in no particular order, but we sort them by
their index for ease of exposition.

The algorithm is composed of four major phases,
namely, bottleneck selection, solution reduction, candidate
formation, and solution selection.

Bottleneck selection. The first phase is the bottleneck
selection, which identifies highly utilized threads. A thresh-
old � 2 ½0; 1� is used to eliminate threads whose CPU
utilizations are below it. For instance, if � ¼ 0:92, threads t0
and t2 are eliminated since their utilizations are smaller
than the threshold and, thus, are not deemed bottlenecks.
For the rest of this section, we assume � ¼ 0:8 for the
running example, which means all of the four threads are
considered as bottlenecks.

Solution reduction. The second phase is the solution
reduction, which performs a tree search to reduce the
solution space. At the root of the tree is the initial matrix. At
each step, we choose one of the leaf matrices that still
contains shared operators based on the runtime data flow
graph. We pick one of these shared operators for that leaf
matrix and perform selection and removal to yield two
submatrices in the tree.

Selection means that we select the shared operator as a
part of the solution, and thus remove all other operators from
the rows that contain the shared operator. Furthermore, we
remove all operators that originally appeared together with
the shared operator in the same row, from other rows, since

2348 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013

they cannot be selected in a valid solution. Fig. 5 shows an
example. Consider the edge labeled S3, which represents the
case of selecting shared operator 3. After the selection, the
first two rows now have operator 3 as the only choice.
Furthermore, operators 1 and 4—which previously ap-
peared in the same row as 3—are removed from all rows,
as picking them would result in inserting more than one
thread on the execution paths of the first two threads.

Removal means we exclude the shared operator from the
solution, and thus we remove it from all rows where it
appears. Fig. 5 shows an example. Consider the edge
labeled R3, which represents the case of removing the
shared operator 3.

The solution reduction phase continues until the leaf
matrices have all of their shared operators removed.

Candidate formation. After the solution reduction phase,
all leaves of the tree contain precandidate solutions. The goal
of the candidate formation phase is to create candidate
solutions out of the precandidate ones. As a part of
candidate formation, first we apply a filtering step. If we
encounter a leaf matrix where a thread is left without an
operator in its row, yet there is another dependent thread
that has a nonempty row, then we eliminate this leaf matrix.
We consider threads that share operators in their execution
paths as dependent.

As an example, the rightmost two leaves in Fig. 5 are
removed in the filtering step. After the filtering step, we
convert each remaining precandidate solution into a
candidate solution by making sure that each nonempty
row contains a single operator, i.e., we convert each matrix
into a column vector. When there are multiple operators in
a row, we compute the utility function Uðo; tÞ for each, and
pick the one that gives the lowest value. As an example,
the precandidate solution pointed at by arrow S4 in Fig. 5
is converted into a candidate solution by picking operator
8 as opposed to operator 9. Operator 8 has a lower utility
value, Uðo8; t3Þ ¼ 0:6, compared to operator 9’s utility,
Uðo9; t3Þ ¼ 0:65.

Solution selection. In the solution selection phase, we
pick the best candidate among the ones produced by the

candidate formation phase. Recall that our utility function
Uðo; tÞ was defined on a per-thread basis. To pick the best
candidate, we use the aggregate utility function UðCÞ,
where C ¼ fho; tig represents a candidate solution. Recall
that we pick the maximum of the individual utilities,2 thus
UðCÞ ¼ maxðUðo; tÞ j ho; ti 2 CÞ. We pick the candidate
solution with the minimum aggregate utility as the final
solution. In the running example, this corresponds to
picking C ¼ fho4; t0i; ho4; t1i; ho4; t2i; ho8; t3ig with aggregate
utility of 0.8.

4.2 Algorithm Enhancements

We further propose and employ two enhancements to our
basic algorithm.

Pruning. Our enhanced algorithm stops branching when
it finds that the utility function value for some of the rows
in the current matrix is already equal to or larger than
100 percent. For example, in Fig. 5, there is no point to
continue branching after R4, since thread t1 has no potential
threaded port to add and will remain bottlenecked after
inserting other threads.

Sorting. In the solution reduction phase, we use the
degree of operator sharing as our guideline for picking the
next solution to further reduce. We sort the shared
operators based on the number of rows they appear in.
This way, if a shared operator shows up in the execution
path of many threads, it is considered earlier in the
exploration as it will result in more effective reduction in
the search space, especially when used with pruning. When
selected, shared operators have a higher chance of causing
the utility function value to go over 100 percent due to
contribution from multiple threads.

5 EVALUATION AND CONTROL

The thread insertions proposed by the optimization stage
are put into effect by the runtime. After inserting the new
threads, the evaluation stage measures the throughput on
input ports which received a threaded port. The throughput
is defined as the number of tuples processed per second. If
the throughput increased for all of the input ports that has
received a threaded port, then the controller stage moves on
to the next iteration.

If the throughput has not increased for some of the input
ports, then the control stage performs blacklisting. The ports
for which the throughput has not improved are blacklisted.
Furthermore, the thread insertions are reverted by remov-
ing these threaded ports from the flow graph. Blacklisted
input ports are excluded from consideration in future
optimization stages. If the percentage of blacklisted input
ports exceeds a predefined threshold � 2 ½0; 1�, then the
process halts. Otherwise, we move on to the next iteration.
It is possible that the process halts even before the threshold
� is reached, as a feasible solution may not be found during
the optimization stage.

Alternative blacklisting policies can be applied to reduce
the change of getting stuck at a local minima. For instance,
the blacklisted ports can be maintained on a per-pipelining

TANG AND GEDIK: AUTOPIPELINING FOR DATA STREAM PROCESSING 2349

Fig. 5. Solution reduction and candidate formation.

2. When there are more than one dependent thread groups, utility U is
computed independently for each group and the maximum is taken as the
final aggregate utility.

configuration basis rather than globally, at the cost of
keeping more state around.

6 PROFILER

We describe the basic design of the profiler component. The
implementation details can be found in Appendix C, which
is available in the online supplemental material.

Our profiler follows the design principle of gprof [18],
that is, to use both instrumentation and periodic sampling
for profiling. However, the instrumentation is not a part of
the generated code. Instead, the SPL runtime has light-
weight instrumentation which records thread activity with
respect to operator execution. More specifically, the
instrumented SPL runtime monitors the point at which a
thread enters or exits an input port, so that it can track
which ports are currently active. It uses a special per-thread
stack, called the E-stack, for this purpose.

To collect the amount of CPU time a thread spends
downstream of an input port, our system periodically
samples the thread status and traverses the E-stacks. We
call the period between two consecutive samplings the
sampling period, denoted by ps. If there are N occurrences
during the last po seconds where thread t was found to be
active doing work downstream of operator o’s input port,
then the per-port thread utilization �ðo; tÞ is given by N

po=ps
.

The intuition for this calculation is that it is the number of
observations (N) divided by how many times we sample
during a given time period (po=ps).

Periodic sampling is inherently subject to statistical
inaccuracy, thus enough samples should be collected for
accurate results. This could be achieved by either increasing
the duration of profiling (po) or decreasing the sampling
period (ps). Given the long running nature of streaming
applications, we favor the former approach.

7 DYNAMIC THREAD INSERTION/REMOVAL

Thread insertion and removal is implemented by dynami-
cally adding and removing threaded ports. Both activities
require suspending the current flow of data for a very brief
amount of time, during which the circular buffer associated
with the threaded port is added/removed to/from the data
flow graph. Finally, the suspended flow is resumed.
Suspending the flow, however, is not the only step
necessary to preserve safety. In the presence of stateful
operators, dynamic lock insertion and removal is required
to ensure mutually exclusive access to shared state. This is
further discussed in Appendix D, which is available in the
online supplemental material. Our implementation does
make use of thread pools, since the additional work that is
performed during thread injection and removal dominates
the overall cost.

8 EXPERIMENTAL RESULTS

We evaluate the effectiveness of our solution based on
experimental results. We perform three kinds of experi-
ments. First, we use microbenchmarks to evaluate the
components of our solution and verify the assumptions that
underlie our techniques. Second, we evaluate the running

time efficiency of our optimization algorithm under varying
topologies and application sizes, using synthetic applica-
tions. Third, using three real-world applications, we
compare the throughput our autopipelining scheme
achieves to that of manual optimization as well as no
optimization. The second set of experiments, based on
synthetic applications, can be found in Appendix F, which
is available in the online supplemental material.

8.1 Experimental Setup

We have implemented our autopipelining scheme in C++,
as a part of the SPL runtime within System S [3].

All of our experiments were performed on a host with 2
Intel Xeon processors. Each processor has four cores, and
each core is a two-way SMT, exposing 16 hardware threads
per node, but only eight independent cores. When running
the experiments, we turn off hyperthreading so that the
number of virtual cores equals the number of physical cores
(which is 8).3

8.2 Microbenchmarks

For the microbenchmarks, we use a simple application
topology that consists of a chain of eight operators. All
operators have the same cost and perform the same
operation (a series of multiplications). The cost of an operator
is configurable. Plots for cost-throughput tradeoff are
given in Appendix E, which is available in the online
supplemental material.

8.2.1 Pipelining Benefit

Pipelining is beneficial under two conditions. First, enough
hardware resources should exist to take advantage of an
additional thread. Second, the overhead of copying a tuple
to a buffer and a thread switch-over should be small
enough to benefit from the additional parallelism. When
these conditions do not hold, the evaluation and control
stages of our auto-pipelining solution will detect this and
adjust the adaptation process.

We evaluate the pipelining benefit and show how it
relates to the overhead associated with threaded ports by
measuring the speedup obtained when executing our
application with two threads instead of one. Fig. 6 plots the
speedup as a function of the per-tuple processing cost, for
different tuple sizes. When the per-tuple processing cost is
small, it is expected that using an additional thread will
introduce significant overhead. In fact, we observe that the
additional thread reduces the performance (speedup less
than 1). As the per-tuple processing cost gets higher, we see
that perfect speedup of 2� is achieved. The tuple sizes also

2350 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013

3. This is done to avoid impacting the scalability micro-benchmarks.

Fig. 6. Speedup versus processing cost.

have an impact on the benefit of pipelining. For large tuple
sizes, the additional copying required to go through a buffer
creates overhead. Thus, the crossover point for achieving
>1� speedup happens at a lower per-tuple cost for smaller
sized tuples. For small tuples, custom allocators [19] can be
used to further improve the performance. For large tuples,
the copying of the data contents dominates the cost. While
copy-on-write (COW) techniques can be used to avoid this
cost, it is well accepted that COW optimizations are not
effective in the presence of multithreading.

8.2.2 Profiling Overhead

Light-weight profiling that does not disturb application
performance is essential for performing autopipelining
at runtime. In Fig. 7, we study the profiling overhead.
The overhead is defined as the percent reduction in the
throughput compared to the nonprofiling case. The figure
plots the overhead as a function of the number of samples
taken per second, for different number of threads. The
operators are evenly distributed across threads. We observe
that, as a general trend, the profiling overhead increases as
the profiling rate grows. For the remainder of the experi-
ments in this paper, we use a profiling sampling rate of
ps ¼ 100, which corresponds to a 3 percent reduction in
performance. Note that the profiler is only run for a specific
period (for po seconds) during one iteration of the
adaptation phase. Once the adaptation is complete, no
overhead is incurred due to profiling.

We further observe that increasing the profiling rate
beyond a threshold does not increase the overhead any-
more. This is because the system starts to skip profiling
signals when the sampling period ps is shorter than the time
needed to run the logic associated with the profiling signal.
Interestingly, the profiling overhead does not monotoni-
cally increase with the number of threads. At first glimpse,
this may be unexpected since more threads means more
execution stacks to go through during profiling. However,
with more threads, each execution stack has less entries,
which decreases the overhead.

For most operator graphs, it is the depth of the operator
graph that impacts the worst case profiling cost, rather
than the number of threads used. For instance, for a linear
chain, the number of stack entries to be scanned only
depends on the depth of the graph. For bushy graphs this
number can also depend on the number of threads, even
though it is rarely linear in the number of threads in
practice (a reverse tree is the worst case).

8.2.3 Impact of Threads

Recall that one of the principles of our optimization is to
insert a threaded port in the execution path of each

bottleneck thread. We do this because the speedup from
adding threads one-at-a-time will result in a series of
nonimprovements, followed by a jump in performance
when all bottleneck threads finally get help. In Fig. 8, we
verify this effect. The figure plots the speedup as a function
of the number of threads, for different tuple costs. The
threads are inserted in a balanced way, by picking the
thread that executes the highest number of operators and
partitioning it into two threads.

We observe that, for sufficiently high per-tuple proces-
sing costs, the speedup is a piece-wise function which jumps
at certain number of threads, like 2, 4, and 8. Each such jump
point corresponds to a partitioning where all threads
execute the same number of operators. This result justifies
our algorithm design which inserts multiple threaded ports
in one round. For low per-tuple processing costs (such as 28)
the speedup is not ideal, and for very low per-tuple
processing costs (such as 24), the performance degrades.

8.2.4 Adaptation

We evaluate the adaptation capability of our solution by
turning on autopipelining in an application whose topology
is a simple chain of Functor operators. For this experiment,
we measure the throughput of the application as a function
of time. The adaptation period is set to 5 seconds. We report
the throughput relative to the sequential case. Fig. 9 reports
these results for different per-tuple processing costs.

We observe that our algorithm intelligently achieves
optimal speedup for different per-tuple costs. For instance,
when the per-tuple cost is 24, our algorithm finds out that
its second optimization decision does not improve overall
throughput, and thus it rolls back to the previous state. For
higher per-tuple costs, such as 220, the algorithm does not
stop adding threaded ports until it reaches the unpartition-
able state, that is 1 operator per thread. Comparing Figs. 8
and 9, we see that autopipelining lands on the globally
optimal configuration in terms of the throughput.

The total adaptation time of the system depends on two
major components: 1) the number of steps taken, and 2) the

TANG AND GEDIK: AUTOPIPELINING FOR DATA STREAM PROCESSING 2351

Fig. 7. Profiling overhead versus sampling rate. Fig. 8. Speedup for different # of threads.

Fig. 9. Adaptation with autopipelining.

adaptation period. Since our algorithm helps all bottle-
necked threads at each step, its behavior with respect to the
number steps taken is favorable. For instance, it takes
log2ð8Þ ¼ 3 steps to reach eight threads in Fig. 9. For more
dynamic scenarios, we can reduce the adaptation period to
reduce the overall adaptation time. The only downside is
that, reducing the adaptation period without decreasing the
accuracy of the profiling data requires increasing the profile
sampling rate, which can increase the profiling cost.

8.3 Application Benchmarks

The application benchmarks consist of three real-world
stream processing applications with their associated work-
loads. These applications are named Lois, Vwap, and
LinearRoad. The LinearRoad application (the smallest of
the three) is depicted in Fig. 10, whereas other applications
are depicted in Appendix G, which is available in the online
supplemental material.

The Lois [20] data set is collected from a Scandinavian
radio-telescope under construction in northwestern Europe.
The goal of the Lois application is to detect cosmic ray
showers by processing the live data received from the
radio-telescope.

The Vwap [21] data set contains financial market data
in the form of a stream of real-time bids and quotes. The
goal of the Vwap application is to detect bargains and
trading opportunities based on the processing of the live
financial feed.

LinearRoad [22] data set contains speed, direction, and
position data for vehicles traveling on road segments. The
goal of the application is to compute tolls for vehicles
traveling on the hypothetical “Linear Road” highway.

The breakdown of the operators constituting the
applications and summaries of the application character-
istics are given in Appendix G, which is available in the
online supplemental material. It is important to note that
the Lois and LinearRoad applications have few bush
segments in their topology, whereas Vwap has many. The
LinearRoad application makes heavy use of custom
operators, whereas the other applications are composted
of mostly built-in operators.

We run three versions of these programs: unoptimized,
hand-optimized, and autopipelined. The hand-optimized
versions are created by explicitly inserting threaded ports in
the SPL code of the application. This was carried out by the
application developers, independent of our work. For all
cases, we measure the total execution time for the entire
data set. For the autopipelined version, the adaptation
period is also included as part of the total execution time.

Fig. 11 gives the results. For the Lois application, we see
around 1:5� speedup compared to the unoptimized
version, for Vwap we see around 3� speedup, and for
LinearRoad we see 2:56� speedup. Note that these are real-
world applications, where sequential portions and I/O
bound pieces (sources and sinks) make it difficult to attain

perfect speedup. It is impressive that our autopipelining
solution matches the hand-optimized performance in the
case of Lois, and improves upon it by around 2� for both
Vwap and LinearRoad. It is also worth noting that in the
case of Lois, the programmer has statically added threaded
ports based on her experience and the suggestion from a
fusion optimization tool called COLA [16]. Considering that
the autopipeliner takes around 20 seconds to adapt in this
particular case, the throughout attained for the autopipelin-
ing solution is in fact higher than the hand-optimized case.

Overall, autopipelining provides equal or significantly
better performance compared to hand optimization, at no
additional cost to the application developers.

9 RELATED WORK

Our work belongs to the area of autoparallelization and we
survey the related topics accordingly. Coverage of related
work on profiling is given in the Appendix H, which is
available in the online supplemental material.

Dynamic multithreaded concurrency platforms, such as
Cilk++ [8], OpenMP [7], and �10 [12], decouple expressing
a program’s innate parallelism from its execution config-
uration. OpenMP and Cilk++ are widely used language
extensions for shared memory programs, which help
express parallel execution in a program at development-
time and take advantage of it at runtime.

Kremlin [23] is an autoparallelization framework that
complements OpenMP [7]. Kremlin recommends to pro-
grammers a list of regions for parallelization, which is
ordered by achievable program speedup.

Cilkview [24] is a Cilk++ analyzer of program scalability
in terms of number of cores. Cilkview performs system-
level modeling of scheduling overheads and predicts
program speedup. Bounds on the speedup are presented
to programmers for further analysis.

Autopin [25] is an autoconfiguration framework for
finding the best mapping between system cores and
threads. Using profile runs, Autopin exhaustively probes
all possible mappings and finds the best pinning config-
uration in terms of performance.

StreamIt [26] is a language for creating streaming
applications and can take advantage of parallelism present
in data flow graph representation of applications, including
task, pipeline, and data parallelism. However, StreamIt is
mostly a synchronous streaming system, where static
scheduling is performed based on compile-time analysis
of filters written in the StreamIt language.

Alchemist [27] is a dependence profiling technique based
on postdominance analysis and is used to detect candidate

2352 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013

Fig. 10. LinearRoad—A vehicle toll computation app.

Fig. 11. Running time for Lois and Vwap.

regions for parallel execution. It is based on the observation
that a procedure with few dependences with its continua-
tion benefits more from parallelization.

Task assignment in distributed computing has been an
active research problem for decades. General task assign-
ment is intractable. In [28], several programs with special
structures are considered and the optimal assignment is
found by using a graph theoretic approach.

There has been extensive research in the literature on
compiler support for instruction-level or fine-grained
pipelined parallelism [29]. In this work, we look at coarse-
grained pipelining techniques that address the problem of
decomposing an application into higher level pieces that
can execute in pipeline parallel.

Relevant to our study is the work in [30], which provides
compiler support for coarse-grained pipelined parallelism.
To automate pipelining, it selects a set of candidate filter
boundaries (a middleware interface exposed by DataCutter
[31]), determines the communication volume for these
boundaries, and performs decomposition and code genera-
tion to minimize the execution time. To select the best filters,
communication costs across each filter boundary are esti-
mated by static program analysis and a dynamic program-
ming algorithm is used to find the optimal decomposition.

A more detailed analysis of the differences of our work
from others is given in Appendix I, which is available in the
online supplemental material.

10 CONCLUSION

In this paper, we described an autopipelining solution for
data stream processing applications. It automatically dis-
covers pipeline and task parallelism opportunities in stream
processing applications, and applies dynamic profiling and
controlling to adjust the level of parallelism needed to
achieve the best throughput. Our solution is transparent in
the sense that no changes are required on the application
source code. Our experimental evaluation shows that our
solution is also effective, matching or exceeding the speedup
that can be achieved via expert tuning. Our solution has been
implemented on a commercial-grade data stream processing
system. We provide directions for future work in Appendix
K, which is available in the online supplemental material.

REFERENCES

[1] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I.
Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Widom,
“STREAM: The Stanford Stream Data Manager,” IEEE Data
Eng. Bull., vol. 26, no. 1, 2003.

[2] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M.
Cherniack, J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E.
Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik, “The Design of the
Borealis Stream Processing Engine,” Proc. Second Biennial Conf.
Innovative Data Systems Research (CIDR), 2005.

[3] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C.
Venkatramani, “Design, Implementation and Evaluation of the
Linear Road Benchmark on the Stream Processing Core,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, 2006.

[4] StreamBase Systems, http://www.streambase.com, Oct. 2011.
[5] B. Gedik and H. Andrade, “A Model-Based Framework for

Building Extensible, High Performance Stream Processing
Middleware and Programming Language for IBM Infosphere
Streams,” Software: Practice and Experience, vol. 42, pp. 1363-
1391, 2012.

[6] S4 Distributed Stream Computing Platform, http://www.s4.io/,
Oct. 2011.

[7] Openmp, http://www.openmp.org, Oct. 2011.
[8] Cilk++. http://software.intel.com/en-us/articles/intel-cilk-plus/

, Oct. 2011.
[9] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-

Core Processor Parallelism. O’Reilly, 2007.
[10] B.L. Chamberlain, D. Callahan, and H.P. Zima, “Parallel Pro-

grammability and the Chapel Language,” Int’l J. High Performance
Computing Applications, vol. 21, pp. 291-312, 2007.

[11] G.L. Steele Jr., “Parallel Programming and Code Selection in
Fortress,” Proc. 11th ACM SIGPLAN Symp. Principles and Practice of
Parallel Programming (PPoPP), 2006.

[12] P. Charles, C. Grothoff, V.A. Saraswat, C. Donawa, A. Kielstra, K.
Ebcioglu, C. von Praun, and V. Sarkar, “X10: An Object-Oriented
Approach to Non-Uniform Cluster Computing,” Proc. 20th Ann.
ACM SIGPLAN Conf. Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2005.

[13] B. Gedik, H. Andrade, K.-L. Wu, P.S. Yu, and M. Doo, “SPADE:
The System S Declarative Stream Processing Engine,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, 2008.

[14] M.M. Astrahan et al., “System R: A Relational Approach to Data
Management,” ACM Trans. Database Systems, vol. 1, no. 2, pp. 97-
137, 1976.

[15] B. Gedik, H. Andrade, and K.-L. Wu, “A Code Generation
Approach to Optimizing High-Performance Distributed Data
Stream Processing,” Proc. 18th ACM Conf. Information and Knowl-
edge Management (CIKM), 2009.

[16] R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J.L. Wolf, K.-L.
Wu, H. Andrade, and B. Gedik, “COLA: Optimizing Stream
Processing Applications via Graph Partitioning,” Proc. ACM/IFIP/
USENIX 10th Int’l Conf. Middleware (Middleware), 2009.

[17] J. Giacomoni, T. Moseley, and M. Vachharajani, “FastForward for
Efficient Pipeline Parallelism: A Cache-Optimized Concurrent
Lock-Free Queue,” Proc. 13th ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming (PPoPP), 2008.

[18] S.L. Graham, P.B. Kessler, and M.K. McKusick, “gprof: A Call
Graph Execution Profiler (With Retrospective),” Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation
(PLDI), pp. 49-57, 1982.

[19] TCMalloc: Thread-Caczhing Malloc, http://goog-perftools.
sourceforge.net/doc/tcmalloc.html, Aug. 2012.

[20] Lois, http://www.lois-space.net/, Oct. 2011.
[21] H. Andrade, B. Gedik, K.-L. Wu, and P.S. Yu, “Processing High

Data Rate Streams in System S,” J. Parallel and Distributed
Computing, vol. 71, no. 2, pp. 145-156, 2011.

[22] A. Arasu, S. Babu, and J. Widom, “The CQL Continuous Query
Language: Semantic Foundations and Query Execution,” The
VLDB J., vol. 15, no. 2, pp. 121-142, 2006.

[23] S. Garcia, D. Jeon, C.M. Louie, and M.B. Taylor, “Kremlin:
Rethinking and Rebooting Gprof for the Multicore Age,” Proc.
32nd ACM SIGPLAN Conf. Programming Language Design and
Implementation (PLDI), 2011.

[24] Y. He, C.E. Leiserson, and W.M. Leiserson, “The Cilkview
Scalability Analyzer,” Proc. 22nd ACM Symp. Parallelism in
Algorithms and Architectures (SPAA), 2010.

[25] T. Klug, M. Ott, J. Weidendorfer, and C. Trinitis, “Autopin:
Automated Optimization of Thread-to-Core Pinning on Multicore
Systems,” Trans. High-Performance Embedded Architectures and
Compilers, vol. 3, pp. 219-235, 2011.

[26] M.I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting Coarse-
Grained Task Data, and Pipeline Parallelism in Stream Programs,”
Proc. 12th Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2006.

[27] X. Zhang, A. Navabi, and S. Jagannathan, “Alchemist: A
Transparent Dependence Distance Profiling Infrastructure,” Proc.
IEEE/ACM Seventh Ann. Int’l Symp. Code Generation and Optimiza-
tion (CGO), pp. 47-58, 2009.

[28] S.H. Bokhari, Assignment Problems in Parallel and Distributed
Computing. Kluwer Academic Publishing, 1987.

[29] S.M. Krishnamurthy, “A Brief Survey of Papers on Scheduling for
Pipelined Processors,” ACM SIGPLAN Notices, vol. 25, no. 7,
pp. 97-106, 1990.

[30] W. Du, R. Ferreira, and G. Agrawal, “Compiler Support for
Exploiting Coarse-Grained Pipelined Parallelism,” Proc. ACM/
IEEE Conf. Supercomputing (SC), p. 8, 2003.

TANG AND GEDIK: AUTOPIPELINING FOR DATA STREAM PROCESSING 2353

[31] M.D. Beynon, T.M. Kurç, Ü.V. Çatalyürek, C. Chang, A. Sussman,
and J.H. Saltz, “Distributed Processing of Very Large Data Sets
with Datacutter,” Parallel Computing J., vol. 27, no. 11, pp. 1457-
1478, 2001.

[32] E. Je�rábek, “Dual Weak Pigeonhole Principle, Boolean Complex-
ity, and Derandomization,” Annals of Pure and Applied Logic, vol.
129, pp. 1-37, 2004.

[33] S. Liang and D. Viswanathan, “Comprehensive Profiling Support
in the Java Virtual Machine,” Proc. Fifth Conf. USENIX Object-
Oriented Technologies and Systems (COOTS), 1999. pp. 229-242.

[34] Oprofile, http://oprofile.sourceforge.net/about/, Oct. 2011.
[35] J.A.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R.

Henzinger, S.T. Leung, R.L. Sites, M.T. Vandevoorde, C.A.
Waldspurger, and W.E. Weihl, “Continuous Profiling: Where
Have All the Cycles Gone?” Proc. 16th ACM Symp. Operating
Systems Principles (SOSP), pp. 1-14, 1997.

Yuzhe Tang received the BSc and MSc degrees
in computer science and engineering from
Fudan University, Shanghai, China, in 2006
and 2009, respectively. He is currently working
toward the PhD degree at the Data Intensive
Distributed Systems Lab, College of Computing,
Georgia Institute of Technology. At the time of
this writing he was an intern at the IBM T. J.
Watson Research Center working with Dr Gedik
on high-performance streaming systems. His

research interests include distributed systems and cloud computing,
databases, system security and privacy. He has worked on HBase and
Hadoop ecosystem, profiling and system optimizations, anonymity
protocols and data management over DHT networks. He is a student
member of the IEEE.

Bu�gra Gedik received the BS degree in
computer engineering and information science
from Bilkent University, Turkey, and the PhD
degree in computer science from Georgia
Institute of Technology. He is currently an
assistant professor at the Computer Engineering
Department, Bilkent University, Turkey. Prior to
that he worked as a research staff member at
the IBM T.J. Watson Research Center. His
research interests include distributed data-in-

tensive systems with a particular focus on stream computing. In the
past, he served as the chief architect for IBM’s InfoSphere Streams
product. He is the coinventor of the SPL and the SPADE stream
processing languages. He is the corecipient of the IEEE ICDCS 2003,
IEEE DSN 2011, ACM DEBS 2011, and 2012 best paper awards. He
served as the co-PC chair for the ACM DEBS 2009 and IEEE
CollaborateCom 2007 conferences. He is an associate editor for the
IEEE Transactions on Services Computing journal. He served on the
program committees of numerous conferences, including IEEE ICDCS,
VLDB, ACM SIGMOD, IEEE ICDE, and EDBT. He has published more
than 60 peer-reviewed articles in the areas of distributed computing and
data management. He has applied for more than 30 patents, most of
them related to his work on streaming technologies. He was named an
IBM master inventor and is the recipient of an IBM Corporate Award for
his work in the System S project. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2354 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

