
PHYSICAL REVIEW A 88, 053846 (2013)

Optical bistability in one-dimensional doped photonic crystals
with spontaneously generated coherence
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We investigate optical bistability in a multilayer one-dimensional photonic crystal where the central layer is
doped with �-type three-level atoms. We take into account the influence of spontaneously generated coherence
when the lower atomic levels are sufficiently close to each other, in which case Kerr-type nonlinear response of the
atoms is enhanced. We calculate the propagation of a probe beam in the defect mode window using the numerical
nonlinear transfer matrix method. We find that Rabi frequency of a control field acting on the defect layer and
the detuning of the probe field from the atomic resonance can be used to control the size and contrast of the
hysteresis loop and the threshold of the optical bistability. In particular we find that at the optimal spontaneously
generated coherence, a three orders of magnitude lower threshold can be achieved relative to the case without
the coherence.
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I. INTRODUCTION

Optical bistability (OB) is a striking manifestation of
nonlinear behavior in an optical system where two separate
stationary output states are possible for a given input [1,2].
Technologically, this fundamental nonlinear phenomenon is
used for all-optical logic and memory operations [3,4]. Modern
applications demand more compact, more noise tolerant, and
faster OB-based devices that can operate under lower power
thresholds over a wide range of multistability.

Nonlinear photonic crystal (PC) systems [5–7] are mi-
crophotonic devices, such as photonic switches [8–10], diodes
[11–13], or transistors [14,15], which offer subpicosecond op-
eration times at milliwatt power levels and suitability for large-
scale optical integration [16]. They can be tailored for efficient
optical switching by using embedded atoms in PCs [17–22].
Conventional OB in PCs utilizes dynamic shifting of the band
edge while the doped PCs allow dispersive OB via dynamic
shifting of the defect mode [23]. One-dimensional multilayer
PC (1DPC) systems [23–25] are considered for controlling
OB. Adding extra coating layers [26], a phase-matching layer
[27], negative index layer [28], or subwavelength layers [29]
next to the nonlinear one have been proposed to control OB.
Doping 1DPC [23] was suggested as a compact alternative to
such strategies which require increasing the size of the system.

Effects of the microscopic details and possible quantum
coherence of the atomic structure are not taken into account
in the general discussion of controlling OB in doped 1DPCs.
On the other hand the effect of atomic coherence on OB has
been studied in three-level atoms [30–35]; and it is found
that the spontaneously generated coherence (SGC) effect [36]
strongly enhances the nonlinear response of three-level atoms
[37]. The effect of SGC is due to a counterintuitive role
played by the vacuum modes. When two low-lying levels are
separated less than the excited-state linewidth, same vacuum
modes can be emitted and reabsorbed so that quantum decay
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trajectories interfere to establish quantum coherence for the
lower levels. This intrinsically nonlinear effect contributes to
the enhancement of the nonlinear response. Our objective is to
utilize this fact for efficient control of OB in doped 1DPCs.

We consider a 1DPC with �-type three-level atoms em-
bedded in the central layer. Utilizing spontaneously generated
coherence which enhances Kerr-type nonlinearity of the atoms
in the central layer, we find that such a system allows wide
range control of the contrast in optical switching and the level
of power threshold. Our idea exploits first the enhancement of
the local intensity of light by the defect modes of the dopant
atoms in the central layer of the PC, and second it exploits the
additional enhancement of nonlinear response of the atoms
by SGC. Both the enhanced intensity and nonlinear response
are translated into a three orders of magnitude lowering of
the threshold power to reach the OB regime in contrast to the
case without SGC. In addition our proposal brings flexibility
to the control of the hysteresis loop, contrast, and threshold
of OB compactly via the atomic parameters such as detuning
and Rabi frequencies. In particular a high contrast between
bistable transmission states is found for a certain set of atomic
parameters. Significant recent technological progress made
in introducing dopants [38] or quantum dots [39] in PCs
makes our proposal promising for next-generation photonic
diodes and transistors to realize all-optical logic and memory
applications. Alternatively quantum dots [40], semiconductor
heterostructures [41], or equivalent dressed state schemes
[42] can be considered for possible implementations of our
proposal.

The paper is organized as follows. In Sec. II, we describe
our model and the method of calculation. The multilayer
1DPC system doped with �-type three-level atoms in the
central layer is described by presenting the level scheme,
SGC, and linear and nonlinear susceptibilities [37] in Sec. II A.
The nonlinear transfer matrix method [26,43] we employ to
calculate the probe transmission is introduced in Sec. II B.
The results are discussed in Sec. III, where the transmission
coefficient for various atomic parameters is discussed. Possible
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AAS AND MÜSTECAPLIOĞLU PHYSICAL REVIEW A 88, 053846 (2013)

FIG. 1. (Color online) Schematic of the 1DPC we consider. It is a
symmetric multilayer stack (AB)2AD(AB)2A where A, B, and D are
of thickness dA,dB , and dD . The central layer is doped with �-type
three-level atoms. The coupling field drives the transitions between
the levels |1〉 and |2〉with the Rabi frequency �c, and the probe field
drives the transitions between the levels |1〉 and |3〉 with the Rabi
frequency �p . We assume the coupling field is directly applied onto
the doped layer D while the probe field is transmitted from the left of
the 1DPC by the normal incident input field. The output is collected
from the right of the 1DPC structure.

implementation schemes of our model are discussed at the end
of that section. We conclude in Sec. IV.

II. LIGHT TRANSMISSION THROUGH 1DPC
CONTAINING A DOPED LAYER OF �-TYPE

THREE-LEVEL ATOMS WITH SGC

A. Model system

We consider a 1DPC as depicted in Fig. 1 which is a
symmetric multilayer stack (AB)2AD(AB)2A where A, B,

and D are of thickness dA, dB, and dD . All the layers are
linear dielectrics with refractive indices nA, nB, and nD . We
take nA = 2.22 and nD = nB = 1.41 as in Ref. [44]. The
parameters are related to the midgap (central) wavelength
λpc = 692 nm of the PC by nAdA = nBdB = λpc/4 and
nDdD = λpc/2. The central (defect) layer is doped with N

�-type three-level atoms. A resonant coupling field is directly
applied to the defect layer and drives the transition between
the states |1〉 and |2〉 with the Rabi frequency �c. The normal
incident field to the left of the 1DPC structure arrives at the
defect layer and drives the transition between the states |1〉
and |3〉 as the probe field with the Rabi frequency �p. The
modified spontaneous emission rates of the atoms inside the
PC are assumed to be 2γ2 and 2γ3 from the excited state |1〉 to
the lower states |2〉 and |3〉, respectively.

We assume that the lower levels are closely spaced
so that the two transitions to the excited state inter-
act with the same vacuum mode and hence SGC is
present. The first (χ (1)) and third-order (χ (3)) susceptibilities
of such �-type three-level atoms with SGC atoms are

given by [37]

χ (1) = −2N |μ13|2
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, (3)

where �p = ω13 − ωp is the detuning of the probe field
frequency ωp from the atomic transition resonance at ω13

between the levels |1〉 and |3〉. The Rabi frequencies �c and
�p are constrained as �c(p) = �0

c(p) sin θ = �0
c(p)

√
1 − p2,

where p = cos θ = �μ12 · �μ13/| �μ12 · �μ13| is defined as the SGC
parameter for the two dipole moments �μ12 and �μ13 making an
angle θ with each other. We distinguish the Rabi frequency
for the transverse aligned dipoles (θ = 90◦) as �0

c(p). The
constraint arises by the requirement that the probe and the
coupling fields do not interact with each other’s transitions so
that one must be perpendicular to the dipole moment coupled
to the other. In general Rabi frequencies are complex numbers
but we shall take them as real valued here for simplicity.
Mathematically the relative phase between the probe and
coupling fields can be studied by considering a complex valued
SGC parameter and may lead to multistability beyond OB. We
shall not include this case in our considerations.

B. Nonlinear transfer matrix method

We employ the standard characteristic (transfer) matrix
method to calculate the transmission coefficient for our 1DPC
system [26,45,46]. The transfer matrix M for the multilayer
structure in Fig. 1 is written as

M = (MAMB)2MAMD(MAMB)2MA, (4)

where Mj with j = A,B,D are the transfer matrices for the
corresponding layers. The transmission coefficient T is the
ratio of the transmitted field intensity to the incident field
intensity and it is related to the elements mij with i,j = 1,2
of the transfer matrix M by

T =
∣∣∣∣ 2n0

(m11 + m12n0) + (m21 + m22n0)

∣∣∣∣ , (5)

where n0 is the refractive index of the air. We assume the input
field is incident from the air and the output field is transmitted
into the air.

When a TE-polarized normal incident pulse is considered,
the transfer matrix for the defect layer D, doped with nonlinear
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atoms, is given by [26,47]

MD =
(

m
(d)
11 m

(d)
12

m
(d)
21 m

(d)
22

)
, (6)

where

m
(d)
11 = 1

k+ + k−
(k−e−ik+dD + k+eik−dD ), (7)
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m
(d)
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k+ + k−
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Here the propagation constants of the forward and backward
propagating probe fields inside the doped layer D are denoted
by k+ and k− and they depend on the field amplitudes due to
the nonlinear dopant atoms by

k± = k0nl(1 + U± + 2U∓)
1
2 , (11)

where k0 is the wave vector in vacuum, and

U± = χ (3)|A±|2, (12)

where Aj± and Aj± are the amplitudes of the forward
and backward propagating probe fields and nl is the linear
refractive index of the layer D including the dopant atoms.
Dielectric permittivity of defect layer (ε) can be written in
the form of ε = εl + χ (3)|E(z)|2 with εl is the linear dielectric
permittivity. For our system (a linear defect layer doped with
�-type three-level atoms) linear dielectric permittivity can be
calculated by

εl = εD + χ (1). (13)

Here εD = n2
D is the dielectric permittivity of the linear defect

layer.
The nonlinear character of the dopant atoms makes the wave

vectors k± depend on the forward and backward propagating
probe field intensities U± inside the central layer. To construct
MD we need to determine U± by solving a set of coupled
nonlinear equations,

U± =
∣∣∣∣p+
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11 + m
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12

) ± (
m

(r)
21 + m

(r)
22

)
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2

Uf , (14)

with

p± = nl

√
1 + U∓ + 2U± (15)

for a given transmitted intensity Uf (scaled by χ (3)) by
the fixed-point iteration method [26]. Here we denote the
elements of the transmission matrix for the multilayer stack
to the right of the central layer, Mr = (MAMB)2MA as m

(r)
ij .

These equations reflect the relation between the tangential field
components at the right boundary of the central layer and at
the output surface of the 1DPC.

For layers A and B, the transfer matrices MA and MB are
given by [43]

Mj =
⎛
⎝ cos(kjdj ) −i

√
μj√
εj

sin(kjdj )

−i
√

εj√
μj

sin(kjdj ) cos(kjdj )

⎞
⎠ , (16)

where kj = √
εjμjωp/c with j = A,B. Using the relation

between the incident intensity Ui (scaled by χ (3)) and the
transmitted intensity Uf by Ui = Uf /T we determine the
dependence of the transmission to the Ui .

As the relations among the intensities U±, Uf , and Ui

are scaled by the nonlinear susceptibility χ (3), the explicit
dependence of the transfer matrix to the atomic parameters
are only due to the linear index nl . To control OB efficiently
both the linear and nonlinear susceptibilities hence should
be carefully considered together. In the next section we
numerically evaluate the transmission coefficient to reveal the
effects of atomic parameters and SGC on the OB in light of
the linear and nonlinear responses of the dopant atoms.

III. RESULTS AND DISCUSSION

Our purpose is to examine the influence of atomic param-
eters, specifically the probe detuning, the coupling field Rabi
frequency, and the SGC parameter, on the OB. For that aim
it is convenient for us to write the expressions of the linear
and nonlinear susceptibilities in forms that explicitly depend
on these parameters per se. We take equal decay rates from
the excited state to the closely spaced doublet, γ2 = γ3 := γ ,
for simplicity and divide the numerators and denominators of
Eqs. (1) and (2) by γ and γ 13, respectively.

We use γ to scale quantities in frequency units, especially
�c and �p, and to make them dimensionless, so that
we can write χ (1) = s(1)χ̃ (1) and χ (3) = s(3)χ̃ (3) where the
factors

s(1) = 2N |μ13|2
ε0h̄γ

, s(3) = 2N |μ13|4
3ε0h̄

3γ 3
, (17)

depending on the atomic constants, are separated from the
dimensionless factors
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with

β̃ = [
�3

c − i�c(2 − i�p)�p

]2[
�2

c + i(2 + i�p)�p

]3
, (20)

depending on the control parameters. Using the relation
between the dipole moment and the decay rate γ =
|μ13|2ω3

13/3πε0h̄c3, it can be verified immediately that s(1) =
6πNc3/ω3

13 is dimensionless while s(3) = s(1)πε0c
3/ω3

13h̄γ

has units of inverse electric field squared.
We apply the nonlinear transfer matrix method to determine

the transmission of an incident probe light with carrier
frequency ωp = 2.5 × 1015 Hz near the midgap frequency
ωpc = 2πc/λpc = 2.72 × 1015 Hz of the 1DPC. Doped 1DPC
supports a linear defect mode around the midgap frequency
and allows for a linear transmission window within the band
gap. To make the nonlinear response relevant for the probe
transmission we consider the following scheme. The atomic
resonance is assumed to be slightly detuned from the probe
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FIG. 2. (Color online) Dependence of the real part of the nonlin-
ear susceptibility Re(χ 3) (dimensionless) on the SGC parameter p

and the probe detuning �p for �0
c = 4. Significant enhancement of

the nonlinear response of the system can be obtained at the optimal
value of p ∼ 1. (�p and �0

c are dimensionless and scaled by the
spontaneous decay rate γ .)

and thus lies within the photonic band gap but just below the
transmission window opened by the linear defect mode. The
atomic spontaneous decay rate would then be modified [16]
but we do not need its actual value because we use it for

a scaling factor. Typical ranges of values for the control
parameters we use in our simulations relative to γ are as
follows. Detuning of the incident light from the atomic probe
transition is assumed to be in the range from �p = 0.05 to
�p = 0.15. The control field Rabi frequency �0

c is considered
to be in the range �0

c ∼ 1–10. We also assume background
material as air surrounding the nonmagnetic dielectric layers
so that n0 = 1 and μA,B,D = 1.

While we use χ (3) when we investigate the transmission as
a function of the incident field intensity Ii , it only indirectly
appears in the treatment of the nonlinear transfer matrix
method, as a scaling factor within U± in Eq. (12). The linear
susceptibility, however, is directly and explicitly used in the
calculations. Due to these two distinct stages of using χ (1) and
χ (3), we drop the factor s(3) in χ (3) by assuming the intensity
is measured in arbitrary units (a.u.). In the following we shall
drop the tilde notation and use χ (3) in place of χ̃ (3). We further
assume that s(1) = 1, which can be satisfied by taking a proper
N . In our case ω13 ∼ 1015 Hz so that N � 1020 m−3. For the
same parameters s(3) ∼ 5.4 × 10−8 m2/V2. Intensity can be
converted from a.u. to physical units of mW/cm2 for these
atomic variables by a multiplication factor of 50. Despite this
theoretical association of a.u. with the physical units here, we
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FIG. 3. (Color online) (a) Real Re(χ (1)) and (b) imaginary Im(χ (1)) parts of the linear susceptibility as a function of probe detuning �p

when SGC is absent (p = 0). (c) Real Re(χ (1)) and (d) imaginary Im(χ (1)) parts of the linear susceptibility as a function of probe detuning �p

when SGC is present (p = 0.99). Curves with red solid line, blue dashed line, and green dash-dotted line correspond to the �0
c = 4, �0

c = 6,
and �0

c = 8, respectively. (�p and �0
c are dimensionless and scaled by the spontaneous decay rate γ .)
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FIG. 4. (Color online) (a) Real Re(χ (3)) and (b) imaginary Im(χ (3)) parts of the nonlinear susceptibility (dimensionless) as a function of probe
detuning �p when SGC is absent (p = 0). (c) Real Re(χ (3)) and (d) imaginary Im(χ (3)) parts of the nonlinear susceptibility (dimensionless)
as a function of probe detuning �p when SGC is present (p = 0.99). Curves with red solid line, blue dashed line, and green dash-dotted line
correspond to the �0

c = 4, �0
c = 6, and �0

c = 8, respectively. (�p and �0
c are dimensionless and scaled by the spontaneous decay rate γ .)

follow the common conventional wisdom to give intensity in
a.u. due to its specific measurement dependence.

We first examine the behavior of χ (3) to determine the opti-
mal set of parameters to get significant nonlinear response out
of the doped 1DPC system. Enhancement of the nonlinearity
by the SGC can be seen in Fig. 2 where the largest value of
χ (3) is found at �p ∼ 0.05 for p ∼ 1. Such a large nonlinear
response can be exploited for OB if the absorption is weak in
the corresponding frequency window.

We subsequently explore the linear susceptibility and
absorption properties of the system in Figs. 3 and 4, where we
compare the cases of the lack of SGC (p = 0) and the presence
of optimal (p = 0.99) SGC. These figures also explore the
effect of the coupling laser Rabi frequency. The curves with
the red solid line, blue dashed line, and the green dash-dotted
line correspond to �0

c = 4, �0
c = 6, and �0

c = 8, respectively.
The real part of the linear susceptibility exhibits steep

negative dispersion near the probe resonance if SGC is
present, as can be seen by comparing Fig. 3(a) with Fig. 3(c).
This is consistent with the superluminal light propagation
and the Hartman effect which are enhanced by the SGC
according to recent investigations of 1DPC doped with �-type
three-level atoms [48]. Barrier-length independence of the

tunneling time [49], known as the Hartman effect [50], in
the doping region can be beneficial for OB-based fast optical
switching applications for practical implementation of our
model system. When we investigate the imaginary part of
the linear susceptibility in Figs. 3(b) and 3(d), we see that the
transmission window becomes more narrow in the presence of
SGC. Nevertheless, a strong nonlinearity regime, in particular
around the optimal detuning of �p ∼ 0.05, remains in the
narrow transmission window. The negative dispersion gets
steeper and the width of the transmission window gets smaller
with the decrease of the �0

c .
These conclusions hold true when we consider the nonlinear

dispersion and absorption curves in Fig. 4. The real parts of the
nonlinear susceptibilities plotted in Figs. 4(a) and 4(c) show
that the steep changes around the probe resonance emerge
in the presence of SGC. In contrast to anomalous linear
dispersion, a nonlinear one is normal with positive slope.
More crucial observation for the ease of OB operation is the
significant enhancement of the magnitude of χ (3) with the
SGC. About an order of magnitude increase is obtained at
p = 0.99. The nonlinear transmission window is narrowed as
well. The detuning required for the strong nonlinear response
is within the narrow window of transmission. Additional
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information to the similar Fig. 2 available here is the effect
of �0

c . The nonlinear dispersion gets steeper and the nonlinear
transmission window gets narrower with the decrease of �0

c .
Accordingly these observations suggest that we can make
a further optimal choice for large nonlinear response in a
transmission window by taking �0

c = 4 at �p = 0.05.
If we calculate the linear transmission spectrum (by taking

χ (3) = 0) we can notice the emergence of the defect mode
within the photonic band gap. The results for different values
of Rabi frequencies of the control field are plotted in Fig. 5.
The transmission resonances become narrower for smaller
�0

c . It is expected that it is easier to achieve OB with sharp
defect modes [51]. A typical solution to achieving such narrow
Airy resonances in Fabry-Perot type systems is to enlarge the
number of coupled resonators or photonic crystal coatings
[26]. Our atomic control parameter �0

c could potentially be
a more compact solution than increasing the layers in the
1DPC. On the other hand the effect of �0

c on OB is not
trivial. In addition to its influence on the width of the defect
mode, an accompanying frequency shift of the defect mode
from the probe frequency can also be seen in the Fig. 5. It is
known that a high-frequency shift of the linear defect mode
yields a higher OB threshold [23]. The width of the defect
mode becomes sharper while its frequency shifts higher away
from the probe resonance with the decrease of �0

c . In our case
therefore beneficial and harmful effects of �0

c on OB compete.
We need to investigate carefully the nonlinear transmission to
assess the net effect of �0

c explicitly.
Including the full linear and nonlinear responses, the

transmission coefficient T is calculated and plotted as a
function of the input field intensity Ii (in arbitrary units, a.u.)
for different Rabi frequencies �0

c of the coupling field in Fig. 6.
We see that by decreasing the Rabi frequency of coupling
field �0

c the threshold of the OB is decreased. Comparison
of Figs. 6(a) and 6(b) shows that SGC significantly lowers
the OB threshold while keeping the hysteresis loop size the
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FIG. 5. (Color online) Linear transmission coefficient T of a
1DPC including a central defect layer doped with �-type three-level
atoms with SGC as a function of the incident field frequency ω

(in Hz) for �0
c = 6 (blue dashed curve), �0

c = 8 (green dash-dotted
curve), and �0

c = 4 (red solid curve). Other parameters are �p = 0.05
and p = 0.99. (�p and �0

c are dimensionless and scaled by the
spontaneous decay rate γ .)
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FIG. 6. (Color online) Transmission coefficient T of a 1DPC
including a central defect layer doped with �-type three-level atoms
with SGC as a function of the incident light intensity Ii (in arbitrary
units, a.u.) at probe detuning �p = 0.05 when (a) SGC is absent
(p = 0) and when (b) SGC is optimal (p = 0.99). Different curves
with red solid line, blue dashed line, and green dash-dotted line
correspond to �0

c = 4, �0
c = 6, and �0

c = 8, respectively. (�p and
�0

c are dimensionless and scaled by the spontaneous decay rate γ .)

same. A decrease in the threshold intensity of three orders
of magnitude can be achieved. Maximum transmission or
the contrast between the lowest and highest points in the
hysteresis loop is decreased with the increasing SGC. This
effect is stronger for smaller �0

c . An optimal choice of the Rabi
frequency of the coupling field and the SGC parameter can be
made depending on the requirements of particular applications.

The nonlinear transfer matrix method produces the relation
between T and scaled dimensionless incident field intensity
Ui . We used the expression Ii = cε0Ui/2Re(χ (3)) for the
incident field intensity to plot Figs. 6 and 7. Dependence
of χ (1) on the SGC parameter p and �0

c via �c results in
differences in the values of Ui at the OB threshold. These
differences are further changed by χ (3) when Ui is translated
to the physical intensity Ii . A comparison of χ (1), χ (3), and
Ui can be made by examination of Table I which confirms the
results in Figs. 6(a) and 6(b). In particular, we see that linear
susceptibilities are close to 0 and only slightly different from
each other when there is no SGC, so the threshold values
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FIG. 7. (Color online) Transmission coefficient T of a 1DPC
including a central defect layer doped with �-type three-level
atoms with SGC as a function of the incident light intensity Ii

(in arbitrary units, a.u.) at coupling field Rabi frequency �0
c = 6

and when SGC is optimal (p = 0.99). Different curves with green
dash-dotted line, blue dashed line, and red solid line correspond to
the �p = 0.05, �p = 0.1, and �p = 0.15, respectively. (�p and �0

c

are dimensionless and scaled by the spontaneous decay rate γ .)

of Ui are not distinguishable for �c = 4, 6, 8. However,
differences in nonlinear susceptibility even in this case lead
to reasonably distinct values of threshold intensity for OB.
When SGC is present both the Ui and Ii threshold values are
well distinguishable for �c = 4, 6, 8.

In Fig. 7 the effect of atomic detuning on the threshold value
of OB is investigated. It can be seen that this atomic parameter
can also be used for controlling the OB in the system. The
threshold of OB decreases by increasing the atomic detuning
for a given �0

c at the cost of lower contrast between the highest
and lowest transmission outputs.

We conclude this section with a brief discussion of
implementation of our model in a real physical system.
Observation of SGC in real atoms, despite some controversial
experimental claims, is too difficult because of the stringent
requirement of finding closely lying levels with parallel dipole
moments. More flexibility for implementing advantages of
SGC can be achieved by designing equivalent dressed state
representations [42]. Quantum coherence of a bare state system
can be mapped to the SGC of a dressed state picture which
corresponds to quasidegenerate low-lying levels required for
SGC. On the other hand SGC has already been observed with
artificial atoms such as charged quantum dots [40]. Embedding
GaAs quantum dot structures in photonic crystals [39] is an
available technology which can be tailored to implement our

TABLE I. Linear χ (1) and nonlinear χ (3) susceptibilities, and the
corresponding probe intensity Ui at the threshold of OB for probe
detuning �p = 0.05, SGC parameter p = 0.99, and coupling field
Rabi frequencies �0

c = 4, 6, 8. All the parameters are scaled and
dimensionless as explained in the text.

p �0
c Re(χ (1)) Re(χ (3)) Ui

0 4 −0.0031 0.00039 0.31
0 6 −0.0014 0.000077 0.31
0 8 −0.0008 0.000024 0.31
0.99 4 −0.1439 0.9756 0.48
0.99 6 −0.0687 0.1969 0.38
0.99 8 −0.0391 0.0621 0.34

model system. Semiconductor quantum well heterostructures
can also be used in place of the defect layer in our system.
Quantum coherence in the resonant tunneling can replace the
SGC effect equivalently [41]. Due to the Hartman effect the
size of the heterostructures should not influence the speed
of the OB operation. The overall increase of the size of the
multilayer system would be comparable to the doped defect
layer, because the quantum well heterostructure consists of a
few thin, nanometer-size layers. Surrounding PC layers (A and
B in Fig. 1) are typically about 50–80 nm each.

IV. CONCLUSIONS

We explored the effects of spontaneously generated coher-
ence and atomic control parameters, specifically probe detun-
ing and control field Rabi frequency, on the characteristics of
optical bistability in a 1DPC doped with �-type three-level
atoms. We found that the OB threshold, size of the hysteresis
loop, and contrast between OB outputs can be controlled
over significantly wide ranges by these parameters. We also
identified the parameter regimes that simultaneously allow
negligible absorption and enhanced nonlinear response. We
discussed that the proposed model system can be implemented
effectively using artificial atoms such as charged quantum
dot heterostructures. Doped multilayer photonic crystals with
engineered quantum coherence offer more compact solutions
to flexible, wide range control in photonic switching applica-
tions than present alternatives based upon coupled systems or
systems with a large number of layers.
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(2003).

[10] S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and
K. Busch, Phys. Rev. E 74, 046603 (2006).

[11] M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and
C. M. Bowden, Appl. Phys. Lett. 66, 2324 (1995).

[12] N.-S. Zhao, H. Zhou, Q. Guo, W. Hu, X.-B. Yang, S. Lan, and
X.-S. Lin, J. Opt. Soc. Am. B 23, 2434 (2006).

[13] C. Xue, H. Jiang, and H. Chen, Opt. Express 18, 7479 (2010).
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