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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assist. Prof. Dr. Emre Berk

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

iii



ABSTRACT

PARAMETER ESTIMATION IN SWITCHING
STOCHASTIC MODELS

GÜLDAL GÜLERYÜZ

Ph.D. in Industrial Engineering

Supervisor: Prof. Dr. Ülkü Gürler

May, 2004

In this thesis, we suggest an approach to statistical parameter estimation

when an estimator is constructed by the trajectory observations of a stochastic

system and apply the approach to reliability models. We analyze the asymptotic

properties of the estimators constructed by the trajectory observations using mo-

ments method, maximum likelihood method and least squares method. Using

limit theorems for Switching Processes and the results for parameter estimation

by trajectory observations, we study the behavior of moments method estimators

which are constructed by the observations of a trajectory of a switching process

and prove the consistency and asymptotic normality of such estimators. We con-

sider four different reliability models with large number of devices. For each of the

models, we represent the system process as a Switching Process and prove that

the system process converges to the solution of a differential equation. We also

prove the consistency of the moments method estimators for each model. Simu-

lation results are also provided to support asymptotic results and to indicate the

applicability of the approach to finite sample case for reliability models.

Keywords: Parameter estimation, Switching Processes, Reliability models.
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ÖZET

DEǦİŞEN STOKASTİK MODELLERDE PARAMETRE

TAHMİNLEMESİ

GÜLDAL GÜLERYÜZ

Endüstri Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Ülkü Gürler

Mayıs, 2004

Bu çalışmada stokastik sistemlerin örnek yollarını gözlemleyerek oluşturulan

tahminleyicilerin bulunmasında kullanılan bir istatistiksel parametre tahmini

yaklaşımı önerilmekte ve bu yaklaşım güvenilirlik modellerine uygulanmaktadır.

Moment metodu, maksimum benzerlik metodu ve en küçük kareler toplamı

metodu kullanılarak, örnek yolların gözlemleriyle oluşturulan tahminleyicinin

asimtotik özellikleri incelenmiştir. Deǧişen süreçlerde örnek yol gözlemleriyle

oluşturulan moment metodu tahminleyicisinin davranışı araştırılmış, tutarlılık

ve asimtotik normalliǧi, Deǧişen süreçlerde limit teoremleri ve örnek yol

gözlemleriyle yapılan parametre tahminleme sonuçları kullanılarak ispatlanmıştır.

Çok sayıda parçadan oluşan dört farklı güvenilirlik modeli incelenmiştır. Her

modelde, sistem süreci Deǧişen süreç olarak ifade edilmiş ve sistem sürecinin bir

diferansiyel denklemin çözümüne yakınsaması ispatlanmıştır. Asimtotik sonuçları

desteklemek ve yaklaşımın sonlu örnek durumlarında da güvenilirlik modellerinde

kullanılabilirliǧini belirtmek amacıyla simülasyon sonuçları verilmektedir.

Anahtar sözcükler : Parametre tahminleme, Deǧişen Süreçler, Güvenilirlik mod-

elleri.
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Chapter 1

Introduction

The data constructed by the observations on the stochastic systems, such as com-

puter and communication systems, queueing and reliability models, are mostly

dependent and non homogenous in time. Since the classical parameter estima-

tion methods are mostly oriented to homogeneous and independent data, for

dependent observations, for instance the trajectory observations under transient

conditions, they are not appropriate for statistical estimation and can not be used

to study the asymptotic behavior of estimators.

The main purpose of this study is to investigate the asymptotic behavior

of estimators constructed by trajectory observations of Switching Processes and

indicate the applicability of the method to statistical estimation problems in

reliability models.

We suggest an approach to statistical parameter estimation from observations

of trajectories of stochastic systems (trajectory of a stochastic system is a sample

path or one particular realization of the system). According to this approach, us-

ing statistical estimation methods, we represent the estimators by the solutions

of stochastic equations or extreme points of random functions which are inte-

gral type functions defined by the observations of the trajectories of stochastic

systems.

1



CHAPTER 1. INTRODUCTION 2

For moments method and least squares method, we represent the estimator as

the solution of a stochastic equation in the form f(θ) = 0 where the function f(θ)

is an additive function constructed by the trajectory observations of the stochastic

system. For the maximum likelihood method, we represent the estimator as the

extreme point of a random function variable, F (θ) where in this case F (θ) is the

function constructed by the trajectory observations.

Using averaging type results for additive functions, along with the results

about the behavior of solutions of stochastic equations, we study the asymptotic

properties of the estimators.

To illustrate this approach consider the following example. Let {X(t),t ≥ 0}
be a continuous time ergodic Markov process with following properties: Assume

that xk = X(tk) is the imbedded ergodic Markov chain which is homogenous and

irreducible with finite state space, where tk, k = 1, 2, ..., n , are the times of jumps.

Also assume that the stationary probabilities of the imbedded process exists and

defined by πi, i = 1,m. Let us denote vj as the exit rate of the process from state

j and vij as the rate of transition from state i to state j so that vj =
∑m

i=1,i6=j vji.

Suppose that we have an independent family of random variables {γk(i), i ∈
1, 2, ..m}, k = 1, 2, ... with distributions not depending on k. Also suppose that

the first moments of random variables {γk(i), i ∈ 1, 2, ..m} exist and belong to

parametric family of functions {g(θ, i) θ ∈ Θ, i ∈ Rr} where, Eγ1(i) = g(θ0, i) =

g(i). We observe the variables xk = X(tk) and yk = γk(xk) at the times of jumps

tk on the interval [0, T ] for k ≤ v(T ), where v(T ) is the number of observations.

Then the moments method estimator for the unknown parameter θ is the solution

of the following equation:

1

T

v(T )∑

k=1

g(θ, xk) −
1

T

v(T )∑

k=1

γk(xk) = 0.

Let us denote

fT (θ) =
1

T

v(T )∑

k=1

g(θ, xk) −
1

T

v(T )∑

k=1

γk(xk)

and the solution of equation fT (θ) = 0 by θ̂. Since xk is an ergodic process, using
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the Law of large Numbers for Markov Processes, it is known that [44],

1

T
v(T )

P−→ 1
∑m

i=1 πi/vi

.

Multiplying and dividing fT by v(T ) we have the following expression for fT :

v(T )

T


 1

v(T )

v(T )∑

k=1

g(θ, xk) −
1

v(T )

v(T )∑

k=1

γk(xk)


 .

Then the function fT (θ) converges in probability to the function f0(θ) where,

f0(θ) =
1

∑m
i=1 πi/vi

[
m∑

i=1

πig(θ, i) −
m∑

i=1

πig(θ0, i)

]
.

It is obvious that, θ0 is the solution of the equation f0(θ) = 0. The question

of interest here is, under what conditions and in what sense θ̂ converges to θ0.

For homogenous and ergodic Markov processes such convergence results are

expected. However for more general classes of processes it may be difficult.

Among those processes we can also consider the Switching Processes.

Switching Processes have the property that the character of the process

switches in epochs of time which may be a random functional of the previous

trajectory. At times tk the switches occur and the behavior of the process de-

pends only on Xk which is the discrete switching component and Sk which is the

value of the previous trajectory at time tk.

Switching Processes are very suitable in analyzing and asymptotically investi-

gating stochastic systems with ’rare’ and ’fast’ switchings [6]. In particular, sums

of random variables, processes with independent increments, random evolutions,

dynamic systems with random perturbations, queuing systems, some stochastic

networks and branching processes can be analyzed by using the properties of

Switching Processes.

Let us illustrate a possible application of Switching Processes on the following

example.
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Consider a general queuing system GI/M/1/∞. Assume that the incoming

process is a recurrent process and the service rate is µ(Q) given that Q(t) = Q.

We observe the value of queue Qk = Q(tk) at times of arrivals tk such that

t1 < t2 < t3.... The process between the arrival times tk and tk+1 is a birth and

death process with pure death property. In this case the process Q(t) is not a

Markov Process but it can be described as Switching Process with the switching

times tk, k ≥ 0 where between switching times it behaves as a birth and death

process.

We mainly consider parameter estimation when the trajectory of the stochas-

tic system under investigation can be represented as a Switching Process. To

illustrate the results, we apply our asymptotic results to several reliability mod-

els with large but finite number of devices. In applications, we represent the

trajectory of the Reliability systems as Switching Processes, and using the result

about the behavior of stochastic equations and extreme points of random func-

tions along with the limit theorems for Recurrent Process of semi-Markov type

(a special class of Switching Processes) we study the asymptotic behavior of mo-

ments method estimators. We prove the consistency and asymptotic normality

of such estimators.

Even for stationary and homogenous systems, explicit characteristics and an-

alytic representation may not be possible to find so that some results of the

estimation may be difficult to achieve. But especially for nonstationary cases,

this may cause bigger problems which are not easy or sometimes impossible to

solve analytically. Simulation methods may help the asymptotic investigation

in several ways. For example, in the case when the stationary distribution is

unknown it may be possible to find it with simulation and use the results in

the corresponding analytic relations for asymptotic properties. While finding a

limiting point, we need to define some limiting function. If we don’t have the un-

derlying distribution for nonstationary cases we can approximate it by simulating

corresponding random variables and functions on the trajectory of the stochastic

system.
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Simulation is also an important part of our study. Our theoretical calcula-

tions for reliability models are illustrated with the simulations. We simulate and

observe the trajectories of these reliability systems. Using our theoretical calcu-

lations, we estimate the unknown parameters and verify our asymptotic results

for finite samples also.

The thesis is organized as follows:

In the second Chapter, we give a literature review on parameter estimation

approaches which are investigated in the literature. We also give the necessary

definitions and theorems for further studies in second chapter. We present the

Switching Processes and also give the limit theorems for Recurrent Process of

semi-Markov type.

In the third Chapter, we consider the asymptotic properties of Moments

method type, maximum likelihood and least squares method estimators, con-

structed by trajectory observations of stochastic processes. We also present mo-

ments method estimators which are constructed by the trajectory observations

of Switching Processes.

The main part of the thesis is presented in Chapter four. The applications to

Reliability models are considered, on four different but related models. Simulation

results of the estimation procedure are also given to support our asymptotic

results.

We finally give the conclusions in Chapter five.



Chapter 2

Literature Review and

Preliminary Work

2.1 Literature review

In literature, parameter estimation studies for stochastic processes are usually de-

voted to diffusion processes and there are various types of estimation techniques,

mostly related to martingale estimation.

Bibby and Sørensen [20] consider different martingale estimating functions of

a diffusion process. They show that the estimators obtained are asymptotically

normal and consistent and discuss the results of simulation studies of some specific

examples. Kutoyants [35] considers the parameter estimation for the Gaussian,

diffusion and non-homogenous Poisson processes. Barndorff-Nielsen and Sørensen

[19] review the asymptotic likelihood theory for stochastic processes and partic-

ularly investigate the martingale properties. They also give some examples such

as Birth-and-Death processes, Gaussian autoregressive processes and stochastic

differential equations to show that the likelihood function for many situations are

martingales and give the asymptotic results for maximum likelihood estimator.

We will briefly consider different parameter estimation approaches considered

6
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in the literature for different models and processes.

Kutoyants [35] considers a non-homogenous Poisson Process. Let xT =

{x(t), 0 ≤ t ≤ T} be a Poisson process with intensity ST (θ) = {S(θ, t), 0 ≤ t ≤ T}
and the unknown parameter θ ∈ (α, β). Under their conditions, they form the

likelihood function and find the estimator for the unknown parameter β for a

particular case when ST (θ, t) = θf(t).

Anisimov [3] and Anisimov, Orazklychev [12] consider asymptotic properties

of parameter estimators for Poisson type processes switched by some ergodic se-

quence and asymptotic properties of maximum likelihood estimators constructed

by observations on trajectories of recurrent processes of semi-Markov type.

Saldanha, et. at. [45] consider the estimation of rate of occurrence of failures

(ROCOF) of a non-homogenous Poisson process when the rate of occurrence of

failure depends on time. If we denote by v(t) the rate of occurrence of failures,

then v(t) is defined as the time derivative of the number failures in the assigned

time interval [18]. For two different forms of v(t) , (v(t) = exp(β0 + β1t) and

v(t) = γδt−δ−1), they consider the maximum likelihood estimation of parameters

of v(t) from observations at the times of failure of the system, for different values

of stopping time (i.e. stop at a fixed time T, stop after n’th transition, stop at

d’th departure, stop at m’th arrival).

Keiding [30] considers the maximum likelihood method for parameter estima-

tion in Birth-and-Death processes. Let the population size at time t be Xt. With

birth rate λ and death rate µ, they form the likelihood function in terms of λ, µ

and Xt and estimate the unknown parameters λ and µ.

Keiding [30] also considers the case of discrete observations. Denote by

Xnτ , n = 1, 2, 3, ..., k the observations at times τ, 2τ, 3τ, ..., kτ . The process stud-

ied, has particles which may or may not have offsprings, and the number of

particles among the X(n−1)τ that have 0 offspring is known and denoted by Cn.

The likelihood function is represented in term of λ, µ, τ and Cn.

Applications of parameter estimation in Birth-and-Death Processes also vary
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according to environment. Phelan [39], [40], [41] considers the case of Birth-and-

Death on a flow. Birth-and-Death on a flow refers to a particle system on a

Brownian Motion [40]. Generally it is a Birth-and-Death process on a Brownian

environment. Phelan [39] develops likelihood methods for parametric estimation

of system parameters from a particle process which is observed over a fixed period

of time. The follow up study of Phelan [41] considers the asymptotic properties

of the estimators as the process is observed over a long period of time.

A different approach of estimation in Birth-and-Death processes is also con-

sidered by Zeifmann [54], [55]. Zeifmann [55] estimates the bounds for state

probabilities for some nonhomogenous Birth-and-Death processes with known

intensity functions and gives some examples of application.

Watson and Yip [52] extends the work of Chao and Severo [22] for parameter

estimation for pure birth process. They consider a simple stochastic epidemic

model with population size N and infection rate β. If we denote the number of

infective at time t by I(t), at times tk the number of infective, Ik are observed.

Note that the sequential observation times, tk are nonrandom. Using martingale

techniques they estimate the unknown parameter β.

Volokh [50] studies the parameter estimation on a function of random variables

which have exponential type distributions.

Wolff [53] discusses the maximum likelihood estimating and likelihood ratio

tests for a class of ergodic queueing models. Basawa and Prabhu (1998) proves

the consistency and asymptotic normality of MLE for single server queues.

Acharya [1] also studies MLE estimators and rate of convergence of the distri-

bution of MLE of the arrival and services rates in a GI/G/1 queueing system. As

a special case, consider an M/M/1 queueing system. Interarrival times uk, k ≥ 1

and the service times vk, k ≥ 1 are independent and identically distributed ran-

dom variables with densities f(u, θ) = θexp(−θu) and g(v, φ) = φexp(−φv) re-

spectively. The system is observed in the time interval (0, T ], where T is a suitable

stopping time. Let A(T ) be the number of arrivals and D(T ) be the number of

departures in the time interval (0, T ]. They form the log-likelihood function and
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estimate the unknown parameters θ and φ.

Maintenance related studies generally consider the cost optimization and find-

ing the optimal maintenance policy. A survey of maintenance models for multi-

component systems is given by Cho and Parlar [21].

An interesting study by Heidergott [26] considers a multicomponent mainte-

nance system controlled by an age replacement policy. The main idea of the study

is to estimate the threshold age θ of the components to minimize the total cost

of operation. They consider a system with n components. The lifetimes of com-

ponents are independent and identically distributed with distribution function F

and F is assumed to be continuous. When a component fails, it is immediately

replaced at a cost r and all components with age older then θ are preventively

replaced at a cost p. The long range average cost per time unit for θ is denoted

by C(θ). They obtain an estimator θ to minimize the long-run costs per time

unit so that

C(θ∗) = min
θ∈Θ

C(θ) (2.1)

where Θ is closed bounded region.

Without finding the explicit representation for C(θ), they use the stochastic

approximation to solve (2.1).

Most of the studies in the parameter estimation literature consider the case

of independent observations, such as Ibragimov, K’hasminski [28], Kutoyants

[35] and Prakaso Rao [43]. Another main study direction necessarily uses the

martingale techniques as in the works of Barndorf-Nielsen and Sørensen [19],

Bibby and Sørensen [20] and Lipster and Shiryaev [36]. Some problems in the

theory of statistical investigation are studied by Dupocava and Wets [23], Pflug

[37] and Shapiro [47]. Kutoyants [35] considers some nonclassical problems using

direct probabilistic methods. Kaniovski and Pflug [29] and Pflug [38] consider

the stationary conditions for parameter estimation.

Using both simulation in finite samples and asymptotic theory for infinite

samples, moments method estimators are derived and compared to maximum

likelihood estimators for finite samples by Shi [48].
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Some results on the statistical parameter estimation by trajectory observa-

tions are given by Anisimov [8], Bibby and Sørensen [20], Kutoyants [35].

Several results devoted to analysis of solutions of stochastic equations which

are constructed for parameter estimation are considered by Anisimov and Kaibah

[14], Anisimov [8] , Anisimov and Pflug [16] and Korolyuk and Swishchuk [33].

Asymptotic behavior of maximum likelihood estimators as function of the length

of interval are considered in the papers of Anisimov and Orazklichev [12] and

Anisimov [9].

Weak convergence and convergence in probability of sets of extreme points of

random fields to the extreme point of some limiting field and basic applications to

parameter estimation are studied by Anisimov and Seilhamer [17] . Their results

are very closely connected with the results about the convergence of stochastic

infima given by Dupacova and Wets [23] and Salinetti and Wets [46].

Parameter estimation for switching stochastic systems are not widely consid-

ered in the literature.

Switching Processes are described in the paper of Anisimov [7] as the general-

ization of Markov processes homogenous in the second component [24], processes

with independent increments and semi-Markov switches [2], Markov processes

with semi-Markov interference of chance and Markov and semi-Markov random

evolutions [27], [31], [42].

Subclasses of Switching Processes are considered for different applications by

Anisimov [2], [7] and Anisimov and Aliev [11]. For processes with independent

increments and Markov and semi-Markov switches, law of large numbers and

central limit theorem were proved in the literature [33], [34], [51]. Based on

the asymptotic properties of Recurrent Processes of semi-Markov type (RPSM),

a special type of Switching Processes, and theorems about the convergence of

recurrent sequences to solutions of stochastic differential equations [2], [7], it

is proved by Anisimov [7] that for the additive type functionals on the RPSM

trajectories, the normed trajectory of the functional converges in probability to

some non stochastic differential equation. Using another approach Averaging
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principle type results for stochastic differential equations are also given by Giego

and Hersh [25], Hersh [27], Khas’minskii [32] and Skorokhod [49].

2.2 Preliminary Work

In different models that appear in statistical parameter estimation from observa-

tions of trajectories of stochastic systems, estimators can be represented by the

solutions of stochastic equations or extreme points of random functions which are

integral type functions defined by the observations on the trajectories of stochas-

tic systems.

We consider a stochastic model in which different classes of problems appear

during estimation process. Let S(t) be the trajectory of a stochastic system

observed on the interval [0,T], T ≥ 0. Let tk, k = 1, 2, ... be times of observations.

Assume that, we observe the variables sk = S(tk) and yk = γ(sk) where γ(α) is an

independent family of random variables. Assume also that there is an unknown

system parameter θ which we want to estimate.

Let the total number of observations on the interval [0,T] be n. Under different

additional assumptions and situations, we can represent moments type, maximum

likelihood and least squares method estimators of the unknown parameter θ in

terms of solutions of equations which are in the form f(θ) = 0 or extreme points

of a function F (θ) where θ ∈ Θ and Θ is a closed bounded set in Rr. For each

of these cases fn(θ) and Fn(θ) are constructed by the trajectory observations.

Note that, when we study the asymptotic behavior of the estimator we usually

consider the case when T or n (or some other parameter) goes to infinity.

Assume that, the solution of the equation f(θ) = 0 exists and is defined as

{θ}. Additionally, suppose that f(θ) converges (in some sense) to a limiting

function f0(θ) where θ0 is the solution of equation f0(θ) = 0. The problem here

is that under what conditions and in what sense the set of solutions of f(θ) = 0

converges to θ0 as T → ∞.
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Another problem can be described as finding the conditions of the convergence

of sets of extreme points of random functions to some limiting point. Let us

denote the set of points of global minimum for the function F (θ) by {θ} =

arg minθ∈Θ F (θ). We can study the convergence of {θ} to θ0 when the function

F (θ) converges in some sense to a limiting function F0(θ) as n → ∞.

Another important but different kind of problem is to find the conditions of

convergence f(θ) → f0(θ) and F (θ) → F0(θ) themselves. Usually, f(θ) and F (θ)

are constructed as additive functions on the trajectories of the systems. In this

case, to study the conditions of convergence of f(θ) → f0(θ) and F (θ) → F0(θ)

on the trajectory of stochastic systems, we need to study the behavior of additive

functional which can be found for wide classes of stochastic systems such as

Markov processes.

We can also examine the behavior of the estimator which is constructed as

a solution of some stochastic equation or as an extreme point of some random

function on the trajectory of some stochastic system, in terms of the length of

the interval of observations. Let F (θ, t), θ ∈ Θ, t ∈ [0, T ] be a random function

and {θ(t)} = arg minθ∈Θ F (θ, t) be a set valued process. Consider the case where

F (θ, t) converges in the region θ ∈ Θ, t ∈ [0, T ] to some limiting function F0(θ, t).

The problem in this case, is to find under which conditions and in what sense the

sequence of set valued process {θ(t)} converges to θ0(t) = arg minθ∈θ F0(θ, t) on

the interval [0,T].

In such cases, we need to study the asymptotic properties of solutions of

stochastic equation and extreme sets of random functions in order to be able to

analyze the problems of statistical parameter estimators.

Using these results and limiting theorems for Switching Proceesses along with

statistical estimation methods we can study the asymptotic behavior of the sta-

tistical estimators for stochastic processes which can be described in terms of

Switching Processes.

In this part we give the necessary definitions and theorems from the literature

which are necessary for the further chapters of the thesis.
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2.2.1 Analysis of Solutions of Stochastic Equations

This section mainly follows from the results of Anisimov and Pflug, [16] which

are related to the asymptotic behavior of solutions of stochastic equations.

We now give necessary definitions in reference to Anisimov, Guleryuz [13].

Definition 2.2.1 (Condition of Separateness): We say that the r dimensional

function g(θ), θ ∈ Θ where Θ is a bounded region in Rr, satisfies the condition of

separateness S if there exists such δ > 0 that for any y ∈ Rr, |y| < δ the equation

g(θ) = y

has a unique solution and the solution θ0 of the equation g(θ0) = 0 is the inner

point of the region Θ.

Note that if the function g(θ) is random, and satisfies the condition S it means

that the condition of separateness is satisfied with probability one.

We also like to mention that, if a function f(θ) is a random function then

1. for each θ, f(θ) is a random variable,

2. if θ ∈ [0,∞), then f(θ) is a random process,

3. if θ ∈ Rr, then f(θ) is a random field.

Let fn(θ), t ≥ 0, θ ∈ Θ, n > 0 be a sequence of continuous random functions

with values in Rr, where Θ is some bounded region in Rr. Consider a stochastic

equation in vector form

fn(θ) = 0, (2.2)

and denote the set of all possible solutions by {θn}. Hence, the random set {θn}
is constructed as the solution set of the equation fn(θ) = 0.
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Definition 2.2.2 (Modulus of Continuity): For any function f(θ), θ ∈ Θ modu-

lus of continuity in the vicinity of c is defined as,

∆U(c, f(·)) = sup
|θ1−θ2|<c,θ1∈Θ,θ2∈Θ

|f(θ1) − f(θ2)|.

Definition 2.2.3 (Uniform Convergence): We say that the sequence of functions

fn(θ) uniformly converges (U-converges) to the function f0(θ) on the set Θ if:

1. For any k = 1, 2, ... and for any θ1, θ2, ...θk ∈ Θ the multidimensional dis-

tribution function of vector (fn(θi), i = 1, k) weakly converges to the distribution

function of vector (f0(θi), i = 1, k) ;

2. For any ε > 0

lim
c→+0

lim sup
n→∞

P{∆U(c, fn(·)) > ε} = 0.

We like to mention that, the function f0(θ) can be random or deterministic.

The following theorem related to the solutions of stochastic equations follows

from Anisimov, Kaibah [14] and Anisimov, Pflug [16].

Theorem 2.2.1 1). Suppose that the sequence of functions fn(θ) U-converges

in each set K ⊂ Θ to the function f0(θ) which can be random or deterministic.

Suppose also that f0(θ) satisfies the condition of separateness S, and the point θ0

is the solution of a limiting equation:

f0(θ0) = 0. (2.3)

Then with probability which tends to one the solution of the equation (2.2) exists

and the sequence of sets {θn} converges in probability to θ0. That is

{θn} P−→ θ0. (2.4)
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2). Suppose further that θ0 is a non-random point and there exists β > 0 and a

non-random sequence vn → ∞ such that for any L > 0 the sequence of random

functions vβ
nfn(θ0+v−1

n u) U-converges in the region {|u| ≤ L} to some (random)

function η0(u), which satisfies the condition S and the point κ0 is the solution of

the limiting equation

η0(κ0) = 0. (2.5)

Then there exists a solution θ̂n of the equation (2.2) such that the sequence

vn(θ̂n − θ0)
w⇒ κ0. (2.6)

We will use Theorem 2.2.1 to prove the consistency of the estimators when

the estimators are represented as the solution of stochastic equation fn(θ) = 0.

2.2.2 Asymptotic Behavior of Extreme Sets of Random

Functions

This section follows from the results of Anisimov, Seilhamer [17].

First, we give some necessary definitions in reference to Anisimov [8].

Definition 2.2.4 Let Gn be a sequence of random sets in Θ. We say that the

sequence Gn converges in probability to some point g0 which can be random or

non-random, if ρ(g0, Gn)
P−→ 0, where ρ(g,G) = supz∈G ||z − g||.

We denote this convergence as Gn
P−→ g0.

Definition 2.2.5 Let Gn be a sequence of random sets in Θ. We say that the

sequence Gn weakly converges to some random variable γ0, if gn weakly converges

to γ0 for any subsequence gn such that P{gn ∈ Gn} = 1.

We denote this convergence as Gn
w⇒ γ0.
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Let at each n ≥ 0, Fn(θ), θ ∈ Θ ⊂ Rr be a random function with values in

R, Θ is a bounded closed set, n is the parameter of series.

Consider the function F (θ) = lim infθ′→θ F (θ′). If the function F (θ) is random

then this limit is determined for any realization of F (θ). Let

{θn} = arg min
θ∈Θ

F n(θ).

Here {θn} is the set of points of global minimum for the function Fn(θ).

Hence, the random set {θn} is constructed as the points of global minimum for

the function Fn(θ).

Definition 2.2.6 (Condition of Separateness S2): The condition of separateness

S2 is satisfied if : with probability one F0(θ0) < F0(θ
′) for any random variable θ′

given on the same probabilistic space and such that θ′ 6= θ0 with probability one,

where

θ0 = arg min
θ∈Θ

F0(θ).

Now according to Anisimov, Seilhamer [17] we give two theorems, concerning

the convergence of the sequence of sets {θn}.

Theorem 2.2.2 Let Fn(θ) be the sequence of random functions and following

conditions are true:

1) There exists a continuous random function F0(θ) such that Fn(θ) U-

converges to F0(θ);

2) Condition of S2 is satisfied.

Then

{θn} w⇒ θ0. (2.7)
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Note that if the function F0(θ) is non-random, then under the same conditions

we have that

{θn} P−→ θ0. (2.8)

The proof is given by Anisimov and Seilhamer [17].

Consider now the behavior of the normed deviation for {θn}. Let us consider

the random function

An(z) = νβ
n(Fn(θ0 +

1

νn

z) − Fn(θ0))

as a function of a new argument z ∈ Rr.

Theorem 2.2.3 Let the conditions of Theorem 2.2.2 hold and a nonrandom se-

quence vn → ∞ and a value α > 0 exist such that for any L > 0 the sequence

of functions An(z) U-converges to some random function A0(z) in the region

|z| ≤ L. Suppose also that the point κ0 = arg minz A0(z) is a proper random vari-

able (that is P{|κ0| < ∞} = 1) and with probability one satisfies the condition

S2 of separateness.

Then there exists a subsequence of points of local minimum θ̃n for the function

Fn(θ) such that

νn(θ̃n − θ0)
w⇒ κ0. (2.9)

The proof is also given by Anisimov and Seilhamer [17].

2.2.3 Switching Processes

In this part we consider the description of Switching Processes (SP ) and a sub-

class of Switching Processes, Recurrent Process of semi-Markov type (RPSM).

We also give the limit theorems for Recurrent Process of semi-Markov type.
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Switching Processes are described as two-component processes (x(t), ζ(t)), t ≥ 0,

with the property that there exist a sequence of epochs t1 < t2 < · · · such that on

each interval [tk, tk+1), x(t) = x(tk) and the behavior of the process ζ(t) depends

on the value (x(tk), ζ(tk)) only. The epochs tk are switching times and x(t) is the

discrete switching component [6].

Note that switching times may be determined by external factors and also

by inner and interconnected factors. In general switching times may be some

random functions of the previous trajectory of the system [7].

2.2.3.1 Switching processes

Now we give a general construction of a Switching Process (SP ). Let

Fk = {(ζk(t, x, α), τk(x, α), βk(x, α)), t ≥ 0, x ∈ X,α ∈ Rr}, k ≥ 0

be jointly independent parametric families. At each fixed k, x, α, also let ζk(t, x, α)

be a random process in Skorokhod space Dr
∞. Note that Skorokhod space consists

of the functions with discontinuities of type I. Such functions may have finite

jumps and are right continuous at the time of jumps. The representation Dr
∞

indicates that the function is r dimensional and is defined on the interval [0,∞).

Let also at each fixed k, x, α, τk(x, α), βk(x, α) be random variables which

are possibly dependent on ζk(·, x, α) and τk(·) > 0, βk(·) ∈ X. Let also (x0, S0)

be an initial value, independent of Fk, k ≥ 0 . We put

t0 = 0, tk+1 = tk + τk(xk, Sk), Sk+1 = Sk + ξk(xk, Sk),

xk+1 = βk(xk, Sk), k ≥ 0, (2.10)

where ξk(x, α) = ζk(τk(x, α), x, α), and set

ζ(t) = Sk + ζk(t − tk, xk, Sk), (2.11)

x(t) = xk, as tk ≤ t < tk+1, t ≥ 0. (2.12)
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Then a two-component process (x(t), ζ(t)), t ≥ 0 is called a SP [6], [7]. In

concrete applications the component x(·) usually means some random environ-

ment, and S(·) means the trajectory of the system. We should also mention

that the general construction of a SP allows the dependence (feedback) between

both components x(·) and S(·). Figure (2.1) illustrates a behavior of components

S(t), ζ(t) and x(t).

2.2.3.2 Recurrent Processes of semi-Markov Type

Let Fk = {(ξk(α), τk(α)), α ∈ Rr}, k ≥ 0, be jointly independent families of ran-

dom variables with values in Rr × [0,∞). Let also S0 be a random variable which

is independent of Fk, k ≥ 0 and with values in Rr. We assume the measurability

in α of variables introduced concerning σ-algebra BRr . Denote

t0 = 0, tk+1 = tk + τk(Sk), Sk+1 = Sk + ξk(Sk), k ≥ 0 (2.13)

and

S(t) = Sk as tk ≤ t < tk+1, t ≥ 0. (2.14)

Then the process S(t) forms a Recurrent Process of a Semi-Markov type

(RPSM) (Anisimov and Aliev [11]). Figure (2.2) shows and illustration of RPSM.

We mention that the representation may depend on scaling factors according

to the construction of the process. We like to give another representation in

reference to Anisimov and Guleryuz [13], which we will use in Chapter 4, for

RPSM .

Consider the case when ζn(t, θ) is a trajectory of a Switching Process. We fix

θ and for simplicity omit it. Let for each n=1,2..., Fnk =
{
(ξnk(α), τnk(α)), α ∈

Rr
}
, k ≥ 0, be jointly independent families of random vectors with values in

Rr × [0,∞) and distributions not depending on index k, and sno be an initial

value in Rr independent of Fnk, k ≥ 0. Let δn be some scaling factor, δn → 0 as

n → ∞. We construct the following recurrent sequences:
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tno = 0,

tnk+1 = tnk + τnk(snk)δn,

snk+1 = snk + ξnk(snk)δn (2.15)

and denote ζn(t) = snk, as tnk ≤ t < tnk+1, t ≥ 0. Then ζn(t), t ≥ 0, is a

Recurrent Process of a semi-Markov type.

Consider following models of Switching Processes as example according to

Anisimov [7].

Let {f(x, α), α ∈ Rr}, x ∈ X be a family of deterministic functions with

values in Rr, Γk = {γk(x, α), x ∈ X,α ∈ Rr}, k ≥ 0, be jointly independent

families of random variables with values in Rr and x(t), t ≥ 0 be a SMP in X

independent of introduced families Γk. Put xk = x(tk) and denote by 0 = t0 <

t1 < ... sequential times of jumps for the process x(t). We introduce the process

ζ(t) as follows: ζ(0) = ζ0 and

dζ(t) = f(xk, ζ(t))dt, tk ≤ t < tk+1,

ζ(tk+1 + 0) = ζ(tk+1 − 0) + γk(xk, ζ(tk+1 − 0)), k ≥ 0.

Then the process ζ(t) forms a dynamical system with semi-Markov switches.

A class of SP ’s also gives possibility to describe various classes of stochastic

queueing models such as some state-dependent queueing systems and networks.

For these models switching times are usually times of any changes in the

system (Markov models), times of jumps of the environment (in case of exter-

nal semi-Markov environment), times of exit from some regions for the process

generated by queue, waiting times, etc. Several examples of switching queueing

systems are given by Anisimov [10].
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2.2.4 Averaging Principle and Diffusion Approximation

for Switching Processes

This section exposes the results of Anisimov [7] for limit theorems of Recurrent

process of semi-Markov type. We will consider the process on the interval [0, nT ],

n → ∞ and characteristics of the process depend on the parameter n in such a

way that the number of switches on each interval [na, nb], 0 < a < b < T tends,

by probability, to infinity.

2.2.4.1 Averaging Principle (AP) for RPSM

Let us first consider Averaging Principle for simple RPSM . Note that Averaging

Principle type theorems for Switching Processes are studied by Anisimov [5], [7],

Anisimov and Aliev [11]. Below we give the construction and related theorem

according to Anisimov [7].

Let for each n=1,2..., Fnk = {(ξnk(α)), τnk(α), α ∈ Rr} , k ≥ 0 be jointly

independent families of random variables taking values in Rr × [0,∞), with dis-

tributions do not depend on index k, and let Sn0 be independent of Fnk, k ≥ 0

initial value in Rr. Put

tn0 = 0, tnk+1 = tnk + τnk(Snk), Snk+1 = Snk + ξnk(Snk), k ≥ 0,

Sn(t) = Snk as tnk ≤ t < tnk+1, t ≥ 0. (2.16)

Assume that there exist functions mn(α) = Eτn1(nα), bn(α) = Eξn1(nα).

Theorem 2.2.4 Averaging Principle

Suppose that for any N > 0

lim
L→∞

lim sup
n→∞

sup
|α|<N

{
Eτn1(nα)χ(τn1(nα) > L)+

+E|ξn1(nα)|χ(|ξn1(nα)| > L)
}
= 0, (2.17)
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as max(|α1|, |α2‖) < N ,

|mn(α1) − mn(α2)| + |bn(α1) − bn(α2)| < CN |α1 − α2| + αn(N), (2.18)

where CN are some bounded constants, αn(N) → 0 uniformly in |α1| < N, |α2| <

N, and there exist functions m(a) > 0, b(a) and a proper random variable s0 such

that as n → ∞ n−1Sn0
P−→ s0, and for any α ∈ Rr

mn(α) → m(α) > 0, bn(α) → b(α). (2.19)

Then

sup
0≤t≤T

|n−1Sn(nt) − s(t)| P−→ 0, (2.20)

where

s(0) = s0, ds(t) = m(s(t))−1b(s(t))dt, (2.21)

and T is any positive number such that y(+∞) > T with probability one, where

y(t) =
∫ t

0
m(η(u))du, (2.22)

η(0) = s0, dη(u) = b(η(u))du (2.23)

(it is supposed that a solution of equation (2.23) exists on each interval and is

unique).

We like to mention that the condition (2.18) is a modification of Lipschitz

condition, and we use the form that, as max(|α1|, |α2|) < N , N > 0, CN are

some bounded constants and αn(N) → 0 uniformly in |α1| < N, |α2| < N , the

following condition for a function f(x) is satisfied:

|f(x, α1) − f(x, α2)| < CN |α1 − α2| + αn(N).

2.2.4.2 Diffusion Approximation for RPSM

Now we consider a convergence of the process γn(t) = n−1/2(Sn(nt)− ns(t)), t ∈
[0, T ] to some diffusion process according to Anisimov [7]. Denote

b̃n(α) = mn(α)−1bn(α), b̃(α) = m(α)−1b(α),
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ρn(α) = ξn1(nα) − bn(α) − b̃(α)(τn1(nα) − mn(α)),

qn(α, z) =
√

n
(
b̃n(α +

1√
n

z) − b̃(α)
)
, D2

n(α) = Eρn(α)ρn(α)∗y

(We denote the conjugate vector by the symbol *).

Theorem 2.2.5 DA (Diffusion approximation) Let conditions (2.2.4)-(2.20) be

satisfied where in (2.18)
√

nαn(N) → 0 , there exist continuous vector-valued

function q(α, z) and matrix-valued function D2(α) such that in any domain |α| <

N |q(α, z)| < CN(1 + |z|), and uniformly in |α| < N at each fixed z

√
n
(
b̃n(α + n−1/2z) − b̃(α)

)
→ q(α, z), (2.24)

D2
n(α) → D2(α), (2.25)

γn(0)
W⇒ γ0, and for any N > 0

lim
L→∞

lim sup
n→∞

sup
|α|<Nn

{
Eτ 2

n1(α)χ(τn1(α) > L)

+E|ξn1(α)|2χ(|ξn1(a)| > L)
}

= 0. (2.26)

Then the sequence of the processes γn(t) J-converges on any interval [0,T]

such that y(+∞) > T to the diffusion process γ(t) which satisfies the following

stochastic differential equation solution of which exists and is unique: γ(0) = γ0,

dγ(t) = q(s(t), γ(t))dt + D(s(t))m(s(t))−1/2dw(t), (2.27)

where s(·) satisfies equation (2.21) (J-convergence denotes a weak convergence of

measures in Skorokhod space DT .)

The detailed proofs of the Theorems 2.2.4 and 2.2.5 can be found in Anisimov

[7].
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Figure 2.1: Switching Processes: An illustration
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Figure 2.2: RPSM: An illustration



Chapter 3

Estimation by Trajectory

Observations

3.1 Asymptotic Properties of Estimators Con-

structed by Trajectory Observations

In this chapter using the results of section 2.2.1 and 2.2.2, the analysis of stochas-

tic equations and asymptotic properties of extreme sets of random functions, we

consider a technique to solve the problems of statistical parameter estimation by

observations of the trajectory of stochastic systems.

Our general construction explained below follows from Anisimov, [8].

Let {γk(α), α ∈ R, k ≥ 0} be parametric families of random variables with

values in Rr. Let also {xnk, k ≥ 1} be a trajectory of a (random or non-random)

system with values in some space S ⊂ Rr. Assume that, {γk(α), α ∈ R, k ≥ 0}
are jointly independent and independent of {xnk, k ≥ 1}.

Suppose that we have a complete scheme of observations. That is we ob-

serve variables xnk and yk = γk(xnk), k = 1, 2, ..., n, where n is the number of

observations.

26
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For simplicity we assume that distributions of random variables γk(α) do not

depend on index k.

Let us consider the illustration how this general technique can be applied

to statistical parameter estimation for several estimating methods: the method

of moments, maximum likelihood method and least squares method in the non-

classical situation when the observations are constructed on the trajectory of

some random sequence.

3.2 Moments Method - Transient Case

We consider a one-dimensional case (r = 1) to illustrate the method. Suppose

that first moment’s of random variables {γk(α), α ∈ R} exist and belong to

the parametric family of functions {g(θ, α), θ ∈ Θ ⊂ R, α ∈ R}. Also let

Eγ1(α) = g(θ0, α) = g(α) where θ0 is an inner point of the region Θ.

Then we can represent the moments method estimator as a solution of the

equation
1

n

n∑

k=1

g(θ, xnk) −
1

n

n∑

k=1

yk = 0. (3.1)

In this case, since the estimator is represented as a solution of a stochastic

equation, we will use the results of Theorem 2.2.1.

Denote the set of possible solutions of the equation (3.1) by {θn}. We study

the asymptotic behavior {θn} as n → ∞.

Let us give a necessary definition for an averaging condition which will be

useful in the further studies.

Definition 3.2.1 If there exists a continuous function x(u) such that for any

continuous bounded function f(x), x ∈ X

1

n

n∑

k=0

f(xnk)
P−→

∫ 1

0
f(x(u))du, (3.2)
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is satisfied then we say that an averaging condition A is satisfied.

Note that the condition (3.2) is mostly oriented on non-stationary (transient)

conditions. An average principle for rather general stochastic recurrent sequences

in transient conditions is given by Anisimov, [4] and [7].

The following theorem is similar to Theorem 6.1 of Anisimov and Pflug [16]

with the modification of condition 6.2. (more strong condition (6.2) is changed

to a weaker condition of averaging type).

Theorem 3.2.1 Suppose that the sequence xnk satisfies following averaging con-

dition A and variables γk(α) satisfy the following condition: for any L > 0

lim
N→∞

sup
|α|≤L

E (|γ1(α)|χ{|γ1(α)| > N}) = 0, (3.3)

the function g(θ, α) is continuous in both arguments (θ, α) and there exists δ > 0

such that the equation

∫ 1

0
g(θ, x(u))du −

∫ 1

0
g(θ0, x(u))du = v (3.4)

has a unique solution for any |v| < δ.

Then with probability which tends to one a solution of the equation (3.1) exists

and {θn} P−→ θ0.

Proof. We prove the convergence of second term in the left part of

equation(3.1) under the conditions (3.2), (3.3).

Since g(θ, α) is continuous and from the conditions (3.2) and (3.3), we have

1

n

n∑

k=1

g(θ0, xnk)
P−→

∫ 1

0
g(θ0, x(u))du. (3.5)

We now can see that

1

n

n∑

k=1

yk
P−→

∫ 1

0
g(θ0, x(u))du. (3.6)
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The first term of the left hand side of (3.1) for any L > 0 uniformly in |θ| ≤ L

converges to the function ∫ 1

0
g(θ, x(u))du.

And finally, since the equation

∫ 1

0
g(θ, x(u))du −

∫ 1

0
g(θ0, x(u))du = 0

has the unique solution (from (3.4)), it follows from the result of the Theorem

(2.2.1) that θn
P−→ θ0, and this proves the Theorem (3.2.1).

Consider now the behavior of the normalized deviations
√

n(θn − θ0). The

following theorem is similar to Theorem 3.3 of Anisimov [8] where he considers

an estimator which depends on time also on the observation interval [t0, T ].

Theorem 3.2.2 Suppose that conditions of Theorem 3.2.1 hold and there exists

a continuous in both arguments derivative

R(θ, α) =
∂

∂θ
g(θ, α)

and a continuous variance

σ2(α) = E(γ1(α) − g(α))2.

Denote

R̂(θ0) =
∫ 1

0
R(θ0, x(v))dv, σ̂2 =

∫ 1

0
σ2(x(v))dv. (3.7)

Suppose that R̂(θ0) > 0 and variables γk(α) satisfy Lindeberg condition: for any

L > 0

lim
N→∞

sup
|α|≤L

Eγ1(α)2χ{|γ1(α)| > N} = 0. (3.8)

Then there exists a solution θ̂n of the equation (3.1) such that the sequence
√

n(θ̂n − θ0) weakly converges to a normal random variable with mean 0 and

variance R̂−2σ̂2.

Proof. We will use the second part of Theorem 2.2.1..
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Let us denote

fn(θ) =
1

n

n∑

k=1

g(θ, α) − 1

n

n∑

k=1

yk. (3.9)

We then have

νβ
nfn(θ0 +

ν

νn

) = νβ
n(

1

n

n∑

k=1

g(θ0 +
ν

νn

, xnk) −
1

n

n∑

k=1

yk). (3.10)

Let us put νn =
√

n, β = 1. By adding and subtracting some terms we can

write the right hand side of equation (3.10) as follows,

√
n

(
1

n

n∑

k=1

g(θ0 +
ν√
n

, xnk) −
1

n

n∑

k=1

yk

+
1

n

n∑

k=1

g(θ0, xnk) −
1

n

n∑

k=1

g(θ0, xnk)

)
. (3.11)

Rearranging the terms of (3.11) we have the right hand side of equation (3.10)

equal to

√
n

(
1

n

n∑

k=1

g(θ0 +
ν√
n

, xnk) −
1

n

n∑

k=1

g(θ0, xnk)

)
−√

n

(
1

n

n∑

k=1

yk −
1

n

n∑

k=1

g(θ0, xnk).

)

(3.12)

Consider the first part of (3.12). Using Taylor’s formula we have;

√
n

(
1

n

n∑

k=1

g(θ0 +
ν√
n

, xnk) −
1

n

n∑

k=1

g(θ0, xnk)

)

=
√

n

(
1

n

n∑

k=1

g(θ0, xnk) +
1

n

n∑

k=1

∂g(θ0, xnk)

∂θ

ν√
n
− 1

n

n∑

k=1

g(θ0, xnk)

)
+ o(.),

which is equal to
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1

n

n∑

k=1

R(θ0, xnk)ν + o(.) (3.13)

Notice that, according to condition A, (3.13) uniformly converges in any

bounded region |ν| ≤ L to the value,

∫ 1

0
R(θ0, x(u))νdu = R̂(θ0)ν. (3.14)

The second part of equation (3.12), due to the Lindeberg condition, weakly

converges to a normal random variable N(0, σ̂2), where

σ̂2 = lim
n→∞

(
1

n

n∑

k=1

E(γk(xnk) − g(θ, xnk))
2

)

and from the conditions of theorem,

σ̂2 =
∫ 1

0
σ2(x(u))du.

Then the limiting equation can be written as

R̂(θ0)ν + N(0, σ̂2) = 0

and

ν =
1

R̂(θ0)
N(0, σ̂2).

From Theorem 2.2.1 it follows that

√
n(θ̂n − θ0)

w⇒ N
(

0,
σ̂2

R̂(θ0)2

)
.

This means that, θ̂ is the asymptotically normal estimator of θ0 with coefficient
σ̂

R̂(θ0)
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3.3 Maximum Likelihood Method

Consider now the behavior of maximum likelihood method estimators. At the

investigation we use the results of Theorem 2.2.2 about the behavior of extreme

points.

Suppose that we have the same scheme of observations xnk and ynk,for k =

1, 2, ..., n as was described in the introduction of model. For simplicity we assume

that distributions of random variables γk(α) do not depend on index k.

Let densities of random variables {γk(α), α ∈ Rr} exist and belong to the

parametric family of densities {p(z, θ, α), z ∈ Rd, θ ∈ Θ, α ∈ Rr} where Θ is

some bounded closed region in Rd. Suppose that p(z, θ0, α) is the density of the

variable γk(α) and θ0 is the inner point of the region Θ. Note that, same scheme of

observations and assumptions are given by Anisimov [8], and results are provided

for RPSM.

We can write logarithmic maximum likelihood function Ln(θ) in the form:

Ln(θ) =
1

n

n∑

k=1

ln p(ynk, θ, xnk). (3.15)

Let us denote {θn} as the set of points of maximum in the argument θ for Ln(θ)

and let f(θ, α) = E ln p(γ1(α), θ, α).

The following Theorem about the behavior of the estimator is similar to The-

orem 3.1 of Anisimov [8]. We have the relaxation that the estimator itself does

not depend on time.

Theorem 3.3.1 Suppose that the averaging condition A (see section 3.2) holds

and the following conditions are true:

1. supθ,α E| ln p(γ1(α), θ, α)|2 < ∞;
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2. for any L > 0

lim
c→+0

sup
α

E sup
|θ1−θ2|<c

| ln p(γ1(α), θ1, α)−

ln p(γ1(α), θ2, α)| = 0;

3. the point θ0 is the unique point of maximum for the function

L0(θ) =
∫ 1

0
f(θ, x(u))du. (3.16)

Then

{θn} P−→ θ0.

Proof.

Let f(θ, α) = E ln((γ1(α), θ, α) = E ln(z, θ, α). Consider the difference;

f(θ, α) − f(θ0, α) = E ln p(z, θ, α) − E ln p(z, θ0, α) = E(ln
p(z, θ, α)

p(z, θ0, α)
)

since ln x ≤ x − 1,

E

(
ln

p(z, θ, α)

p(z, θ0, α)

)
≤
∫ (

p(z, θ, α)

p(z, θ0, α)
− 1

)
p(z, θ, α)dz = 0. (3.17)

The equation (3.17) indicates that f(θ, α) − f(θ0, α) ≤ 0. This shows that, θ0

is the point of maximum for f(θ, α) and correspondingly point of maximum for

L0(θ).

From the condition A, it follows that at each fixed θ the sequence of functions

Ln(θ) converges in probability to the function

L0(θ) =
∫ 1

0
f(θ, x(u))du.

In order to prove the uniform convergence we need to check the modulus of

continuity (see Definition(2.2.2))

P{∆u(c, Fn(·)) > ε} = P ( sup
|θ1−θ2|<c

|Ln(θ1) − Ln(θ2)|) > ε
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= P ( sup
|θ1−θ2|<c

| 1
n

n∑

k=1

ln p(ynk, θ1, xnk) −
1

n

n∑

k=1

ln p(ynk, θ2, xnk)|) > ε.

P ( sup
|θ1−θ2|<c

1

n

n∑

k=1

| ln p(ynk, θ1, xnk) − ln p(ynk, θ2, xnk)|) > ε. (3.18)

Since we now have nonnegative jointly independent random variables, we can

use the Chebychev Inequality in the form,

P

{
1

n

n∑

k=1

xk > ε

}
≤ 1

ε
E(x1).

to estimate the right hand side of (3.18).

Then an upper bound of the probability of (3.18) can be estimated by,

1

ε
E sup

|θ1−θ2|<c
| ln p(γ1(α), θ1, α) − ln p(γ1(α), θ2, α)|.

According to condition 2 of the Theorem, we have

lim
c→+0

sup
|α|<L

1

ε
E sup

|θ1−θ2|<c
| ln p(γ1(α), θ1, α) − ln p(γ1(α), θ2, α)| = 0.

Which means that

lim
c→+0

lim sup
n→∞

P{∆u(c, Fn(·)) > ε} = 0

hence, the modulus of continuity is equal to zero and Ln(θ) uniformly con-

verges to L0(θ). According to Theorem 2.2.2 this implies θn
P→ θ0.

Based on Theorem 2.2.3 the convergence of deviations also can be studied.

The following Theorem about the behavior of deviations is similar to Theorem

2.1 of Anisimov [9]. He considers the behavior of the process in time interval

[0, T ], have an additional convergence assumption and their estimator depends

on time.
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Let a vector of first derivatives ∇θϕ(y, θ, α) and matrix of second derivatives

G(y, θ, α) = || ∂2

∂θi∂θj

ϕ(y, θ, α)||, ij.

exist.

Theorem 3.3.2 Assume that conditions of Theorem 3.3.1 hold and for any L >

0:

1.

lim
N→∞

sup
|α|≤L

E
(
|∇θϕ(γ1(α), θ0, α)|2χ|∇θϕ(γ1(α), θ0, α)| > N

)
= 0;

2.

lim
c→ +0

sup
|α|≤L

E

(
sup

|θ−θ0|<c
|G(γ1(α), θ, α) − G(γ1(α), θ0, α)|

)
= 0; (3.19)

3.

lim
N→∞

sup
|α|≤L

E (|G(γ1(α), θ0, α)|χ|G(γ1(α), θ0, α)| > N) = 0;

4. functions

B(θ0, α)2 = E (∇θϕ(γ1(α), θ0, α)∇θϕ(γ1(α), θ0, α)∗)

and C(θ0, α) = EG(γ1(α), θ0, α) satisfy local Lipschitz condition in argu-

ment α.

Then there exist a sequence of random variables θ̃n such that θ̃n is a point of a

local maximum of the function Ln(θ) and the sequence κn =
√

n(θ̃n − θ0) weakly

converges to κ0, where

κ0 = (
∫ 1

0
C(θ0, s(u))du)−1

∫ 1

0
B(θ0, s(u))dw(u), (3.20)

and w(t) is a standard Wiener process in Rr.
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Proof. We use Theorem 2.2.3 about the behavior of extreme points. Consider

the function

An(ν) = νβ
n(Ln(θ0 +

ν

νn

) − Ln(θ0)).

Let ν =
√

n and β = 2. Then we have,

An(ν) = n(
1

n

n∑

k=1

ln p(ynk, θ0 +
ν

νn

, xnk) −
1

n

n∑

k=1

ln p(ynk, θ0, xnk)).

Using the Taylor expansion up to the second order we have An(ν) equal to

n(
1

n

n∑

k=1

ln p(ynk, θ0, xnk) +
1

n

n∑

k=1

∇θ ln p(ynk, θ0, xnk)
ν√
n

)

+n(
1

2n

n∑

k=1

G((ynk, θ0, xnk)ν, ν)
1

n
+ Rθ0

(·)) −
n∑

k=1

ln p(ynk, θ0, xnk)

Then

An(ν) =
1√
n

n∑

k=1

∇θ ln p(ynk, θ0, xnk)ν +
1

2n

n∑

k=1

G((ynk, θ0, xnk)ν, ν) + Rθ0
(·),
(3.21)

where Rθ0
(·) is the remainder part of Taylor’s formula up to second order and

converges uniformly to 0 as n → ∞.

Let us consider the expectation of the first part of equation (3.21) at point

θ = θ0 for z = ynk, α = xnk.

Eθ=θ0
(∇θ ln p(z, θ, α)) = Eθ=θ0

∇θ(p, z, α)

p(z, θ, α)

=
∫

∇θp(z, θ0, α)
1

p(z, θ0, α)
p(z, θ0, α)dz

= ∇θ

∫
p(z, θ0, α)dz = 0.

Furthermore also at point θ = θ0 we have,

E(∇θ ln p(z, θ0, α)∇θ ln(p(z, θ0, α))∗) = B(θ0, α)2du.
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Note that, the sum 1√
n

∑n
k=1 ∇θ ln p(ynk, θ0, xnk)ν forms a process with inde-

pendent increments where increments have, in the limit, Normal distribution with

expectation 0 and covariance matrix B(θ0, xnk)
2.

In reference to Anisimov [9] we write that,

1√
n

n∑

k=1

∇θ ln p(ynk, θ0, xnk)ν →
∫ 1

0
B(θ0, x(u))νdw(u) (3.22)

uniformly in ν.

The second term in the right hand side of equation (3.21) has the expectation
1
2n

∑n
k=1 C(θ0, xnk) and the variance tends to 0 as n → ∞. Additionally, from

conditions 3 and 4, we have

1

2n

n∑

k=1

C(θ0, xnk)
P−→ 1

2

∫ 1

0
C(θ0, x(u))du.

That is, the second term in the right-hand side of (3.21) converges in proba-

bility to the deterministic value (
∫ 1
0 C(θ0, x(u))duν, ν).

Then the limiting function A0(ν) can be written as

A0(ν) =
∫ 1

0
B(θ0, x(u))dw(u)ν +

1

2

∫ 1

0
C((θ0, x(u))νdu, ν).

Matrix C(θ0, α) is negatively defined and self-conjugated. We can now find

the solution κ0 of the equation A0(ν) as

κ0 = (
∫ 1

0
C(θ0, x(u))du)−1

∫ 1

0
B(θ0, x(u))dw(u).

Finally, following from Theorem (2.2.3) we have

√
n(θ̂n − θ0)

w⇒ κ0.
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3.4 Analysis of Least Squares Method Equation

This section exposes the results of Anisimov and Kaibah [15] for the analysis of

least squares method in non-homogenous case.

For the same scheme of observations {xnk, k ≥ 0} with values in the space X,

which was given in the original construction, suppose that the parametric family

of functions g(θ, x), θ ∈ Θ ⊂ Rr, x ∈ X with values in Rr are given. Also let the

jointly independent family of random vectors {ξk(x), k ≥ 0} with values in Rr

with the same distributions be given.

For k = 1, 2, ..., n we observe the following:

ynk = g(θ0, xnk) + ξk(xnk), k = 0, 1, ..., n. (3.23)

If the partial derivatives of g(θ, x) exist, so that,

∇θg(θ, x) =
∣∣∣
∣∣∣

∂

∂θj

gi(θ, x)
∣∣∣
∣∣∣, i = 1,m, j = 1, r,

then the least squares method estimator is a solution of the equation,

1

n

n∑

k=0

∇θg(θ, xnk)
∗(ynk − g(θ, xnk)) = 0. (3.24)

Let us denote

fn(θ) =
1

n

n∑

k=0

∇θg(θ, xnk)
∗(ynk − g(θ, xnk))

and denote the set of all solutions of equation (3.24) by{θn}. Let also f0(θ)

be the limiting function of fn(θ) .

Suppose that the sequence xnk satisfies the averaging condition A of section

3.1 and the function

∫ 1

0
∇θg(θ, x(u))∗

(
g(θ, x(u)) − g(θ0, x(u))

)
du.
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satisfies the condition of S.

The following two theorems follows from the theorems of Anisimov and Kaibah

[15] and we give the extended proof of the theorems.

Theorem 3.4.1 Let the function ∇θg(θ, x) be uniformly continuous in Θ × X,

the function f0(θ) satisfies the condition of separateness S , and for any x ∈ X

Eξ1(x) ≡ 0, Eξ1(x)ξ1(x)∗ = R(x)2, (3.25)

the condition A holds and

sup
x∈X

||R(x)2|| ≤ C < ∞. (3.26)

Then

{θn} P−→ θ0. (3.27)

Proof. Under the conditions of theorem (3.4.1), it can be seen that fn(θ)

uniformly converges to f0(θ) where,

f0(θ) =
∫ 1

0
∇θg(θ, x(u))∗

(
g(θ, x(u)) − g(θ0, x(u))

)
du. (3.28)

It follows from Theorem(2.2.1) that {θn} P−→ θ0.

Now, consider the behavior of deviations.

Theorem 3.4.2 Let the conditions of Theorem (3.4.1) hold, and Lindeberg con-

dition be satisfied in the following form:

lim
L→∞

sup
x∈X

E||ξ1(x)||2χ(||ξ1(x)|| > L) = 0. (3.29)



CHAPTER 3. ESTIMATION BY TRAJECTORY OBSERVATIONS 40

Then there exists the sequence θ̃n of the points of solutions of equation fn(θ)

such that

√
n(θ̃n − θ0)

w⇒ Q−2BN (0, 1). (3.30)

where

Q2 =
∫ 1

0
g′

θ(θ0, x(u))∗g′
θ(θ0, x(u))du,

B2 =
∫ 1

0
g′

θ(θ0, x(u))∗R(x(u))2g′
θ(θ0, x(u))du (3.31)

(here for simplicity we denote g′
θ(θ, x) = ∇θg(θ, x)).

Proof. Using the second part of Theorem 2.2.1 let us consider a random

function

fn(v) = vβ
nfn(θ0 +

v

vn

)

= vβ
n(

1

n

n∑

k=1

∇θg(θ0 +
v

vn

, xnk)
∗(ynk − g(θ0 +

v

vn

, xnk)))

so that

fn(v)

= vβ
n(

1

n

n∑

k=1

∇θg(θ0 +
v

vn

, xnk)
∗(g(θ0, xnk) + ξk(xnk) − g(θ0 +

v

vn

, xnk))). (3.32)

Furthermore,

fn(v) = vβ
n(

1

n

n∑

k=1

∇θg(θ0 +
v

vn

, xnk)
∗(g(θ0, xnk) − g(θ0 +

v

vn

, xnk)))

vβ
n(

1

n

n∑

k=1

∇θg(θ0 +
v

vn

, xnk)
∗ξk(xnk)). (3.33)

Note that using Taylor expansion we can write,

g(θ0, xnk) − g(θ0 +
v

vn

, xnk)
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= g(θ0, xnk) − g(θ0, xnk) −∇θg(θ0, xnk)
v

vn

− o(·)

= − v

vn

∇θg(θ0, xnk) − o(·).

Let vn =
√

n, β = 1. Using the uniform continuity of the gradient the first

term of (3.33) can be written as

− 1

n

n∑

k=1

∇θg(θ0, xnk)
∗∇θg(θ0, xnk)v − o(·),

which by the conditions of the theorem converges to

−
∫ 1

0
∇θg(θ0, x(u))∗∇θg(θ0, x(u))du = Q2.

According to Lindeberg condition, (3.29),the second part of (3.33) has expec-

tation 0 and the covariance matrix

1

n

n∑

k=1

E((∇θg(θ0, xnk)
∗ξk(xnk))

2) =
1

n

n∑

k=1

∇θg(θ0, xnk)
∗R(xnk)

2∇θg(θ0, xnk)

which converges to

∫ 1

0
∇θg(θ0, x(u))∗R(x(u))2∇θg(θ0, x(u))du = B2.

Then the second part of (3.33) converges to Normal random variable with

expectation 0 and covariance matrix B2.

Following from those facts, the sequence of random functions fn(θ) uni-

formly converges to −Q2v + N(0, B2). Therefore, according to the second part

of Theorem (2.2.1)
√

n(θ̂n − θ0)
w⇒ κ0, where κ0 is the solution of equation

−Q2v + N(0, B2) = 0 and in this case it is equal to κ0 = Q−2N(0, B2). This

completes the proof.

As a special case we can consider the behavior of the least squares method

estimator constructed by observations in a random external environment. For this

case we can construct the estimator as an extreme point of a random function .
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3.5 Parameter Estimation in Switching Models

3.5.1 Preliminary Work

In this section we consider the asymptotic behavior of moments method esti-

mators constructed by observations on the trajectory of a switching stochastic

system. We will prove the consistency and asymptotic normality of the moments

method estimators.

We first consider the results of Anisimov and Guleryuz [13].

For each n = 1, 2..., θ ∈ Θ , let {ζn(t, θ), t ≥ 0} be a sequence of random

processes in Dr
∞, where Θ is a bounded closed region in Rd, and {γnk(θ, α), θ ∈

Θ, α ∈ Rr}, k ≥ 1, be an independent of ζn(·) sequence of random variables with

values in Rd and distributions not depending on k. Suppose that on the inter-

val [0, T ] we observe variables ynk = γnk(θ0, ζn(kahn, θ0)), k = 1, 2, .., [T/(ahn)],

where a > 0, hn → 0 as n → ∞.

Suppose that ζn(·) satisfies the following property: there exists a deterministic

function s(t, θ) in Dr
T such that at any θ ∈ Θ and at some T > 0

sup
0≤t≤T

|ζn(t, θ) − s(t, θ)| P−→ 0. (3.34)

Suppose also that there exist functions gn(θ, α) = Eγnk(θ, α), θ ∈ Θ, α ∈ Rr.

Then an analog of moments method equation can be written in the form:

hn

[T/(ahn)]∑

k=1

ynk −
1

a

∫ T

0
gn(θ, s(t, θ))dt = 0.

Let us denote

fn(θ) = hn

[T/(ahn)]∑

k=1

ynk −
1

a

∫ T

0
gn(θ, s(t, θ))dt
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Consider the equation

fn(θ) = 0. (3.35)

Theorem 3.5.1 Suppose that the condition (3.34) holds,

lim
L→∞

lim sup
n→∞

sup
|α|≤N

E (|γn1(θ0, α)|χ(|γn1(θ0, α)| > L)) = 0, (3.36)

and there exists a continuous function g0(θ, α) such that gn(θ, α) → g0(θ, α) as

n → ∞ uniformly in θ, α in each bounded region.

Suppose also that the function

f0(θ) =
∫ T

0
(g0(s(t, θ0), θ0) − g0(s(t, θ), θ)) dt (3.37)

satisfies condition S. Then {θn} P−→ θ0, where {θn} is the set of solutions of

(3.35).

Proof.

First we prove that

∆1n = hn

[T/hn]∑

k=1

ynk − hn

[T/hn]∑

k=1

gn(θ0, ζnk)
P−→ 0, (3.38)

where ζnk = ζn(khn, θ0). Condition (3.36) implies that E exp{iφγnk(θ0, α)hn} =

1 + iφgn(θ0, α)hn + o(hn), where h−1
n o(hn) → 0 uniformly in |α| ≤ N . Now, using

formula of conditional expectations and a method of characteristic functions, we

get

E exp{iφ∆1n} = E (E [exp{iφ∆1n} |ζnk])

= E




[T/hn]∏

k=1

(1 + iφgn(θ0, ζnk)hn + o(hn)) exp



−iφhn

[T/hn]∑

k=1

gn(θ0, ζnk)








≈ E exp





[T/hn]∑

k=1

(iφgn(θ0, ζnk)hn + o(hn)) − iφhn

[T/hn]∑

k=1

gn(θ0, ζnk)



→ 1,
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which proves (3.38). According to condition (3.34), supk≤T/hn
|ζnk −

s(khn, θ0)| P−→ 0. Then, as gn(θ0, α) → g0(θ0, α) uniformly in α ≤ N and g0(θ0, α)

is continuous, we can easy prove that

hn

[T/hn]∑

k=1

gn(θ0, ζnk) − hn

[T/hn]∑

k=1

g0(θ0, s(khn, θ0))
P−→ 0.

Further,

hn

[T/hn]∑

k=1

g0(θ0, s(khn, θ0)) →
∫ T

0
g0(θ0, s(t, θ0))dt,

and also
∫ T
0 gn(θ, s(t, θ))dt → ∫ T

0 g0(θ, s(t, θ))dt uniformly in θ as n → ∞.

Therefore, fn(θ) in (3.35) U -converges to the function f0(θ) in (3.37), and our

result follows from Theorem (2.2.1).

Consider now the behavior of deviations. Let

Rn(θ, α)2 = E ((γn1(θ0, α) − gn(α, θ0, α))(γn1(θ0, α) − gn(α, θ0, α))∗)

.

Theorem 3.5.2 Suppose that conditions of Theorem 3.5.1 are satisfied,

h−1/2
n sup

0≤t≤T
|ζn(t, θ0) − s(t, θ0)| P−→ 0, (3.39)

there exist continuous functions B(θ, α), R(θ, α) such that

gn(θ0 + z
√

hn, s(t, θ0 + z
√

hn)) = gn(θ0, s(t, θ0))

+
√

hnB(θ0, s(t, θ0))z +
√

hnon(1), (3.40)

where on(1) → 0 uniformly in each bounded region |z| ≤ L, |α| ≤ N , for any

N > 0 Rn(θ0, α) → R(θ0, α) uniformly in |α| ≤ N , and

lim
L→∞

lim sup
n→∞

sup
|α|≤N

E
(
|γn1(θ0, α)|2χ(|γn1(θ0, α)| > L

)
= 0.

Then there exists a solution θ̃n of equation (3.35) such that h−1/2
n (θ̃n − θ0)

weakly converges to the gaussian vector with mean 0 and covariance matrix

aB−1R2(B∗)−1, where

R2 =
∫ T
0 R(θ0, s(t, θ0))

2dt, B =
∫ T
0 B(θ0, s(t, θ0))dt.
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Proof. We will apply the results of Theorem 2.2.1. Consider the function,

vβ
nfn(θ0 +

z

vn

).

For vn = h−1/2
n and β = 1, we have

h−1/2
n fn(θ0 +

z

h
−1/2
n

)

=
1√
hn


hn

[T/ahn]∑

k=1

γnk(θ0, ζn(kahn, θ0)) −
1

a

∫ T

0
gn

(
(θ0 + z

√
hn), s(t, θ0 + z

√
hn)

)
dt


 .

(3.41)

Note that for any bounded function f(x) the integral
∫ T
0 f(x)dx can be ap-

proximated by an integral sum up to the order of hn so that

∫ T

0
f(x)dx =

T/hn∑

k=1

f(khn)hn + o(·).

Using this fact, the integral

∫ T

0
gn(θ0, s(t, θ0))dt

can be represented in the summation form as

ahn

[T/ahn]∑

k=1

gn(θ0, ζn(kahn, θ0)) + o(1).

From this representation and the condition (3.40) we can write the right hand

side of (3.41) as follows:



√

hn

[T/ahn]∑

k=1

γnk(θ0, ζn(kahn, θ0)) −
1

a
√

hn

(ahn

[T/ahn]∑

k=1

gn(θ0, ζn(kahn, θ0)))




−1

a

∫ T

0
B(θ0, s(t, θ0))zdt. (3.42)
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According to conditions of the theorem, the first two terms of (3.42) uniformly

converges to a Normal random variable with mean zero and covariance matrix
1
a
R2 such that,

√
hn

[T/ahn]∑

k=1

Rn(θ0, ζn(kahn, θ0))
2 → 1

a

∫ T

0
R(θ0, s(t, θ0))

2dt =
1

a
R2.

The last term of (3.42) is equal to the deterministic function 1
a
Bz. Fi-

nally, h−1/2
n fn(θ0 + z

h
−1/2

n

) uniformly converges in any bounded region |z| ≤ L

to N(0, 1
a
R2) − 1

a
Bz and aB−1R2(B∗)−1 is the solution of equation

N(0,
1

a
R2) − 1

a
Bz = 0

According to Theorem 2.2.1, h−1/2
n (θ̃n − θ0) weakly converges to the Gaussian

vector with mean 0 and variance aB−1R2(B∗)−1.

3.5.2 Moments Method for Switching Processes

In applications we need to check the conditions (3.34) and (3.39). Consider now

the case when we observe data on the trajectory of a Switching Process. In this

case (3.34) and (3.39) can be verified in terms of individual characteristics of the

process such as switching intervals and increments of the process on the switching

intervals.

Let ζn(t, θ) be a trajectory of a Switching Process . Let at each θ ∈ Θ for each

n=1,2... Fnk =
{
(ξnk(θ, α), τnk(θ, α)), α ∈ Rr

}
, k ≥ 0, be jointly independent

families of random vectors with values in Rr × [0,∞) and distributions not

depending on index k. Also let Sno(θ) be an initial vector in Rr independent of

{Fnk, k ≥ 0}.

Let

tno(θ) = 0,

tnk+1(θ) = tnk(θ) +
1

n
τnk(θ, Snk(θ)),
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Snk+1(θ) = Snk(θ) + n−1ξnk(θ, Snk(θ)),

and denote

ζn(t, θ) = Snk(θ),

as tnk(θ) ≤ t < tnk+1(θ), t ≥ 0. Then ζn(t, θ), t ≥ 0, is a recurrent process of a

semi-Markov type (RPSM).

Assume that at each θ ∈ Θ and for any N > 0

lim
L→∞

lim sup
n→∞

sup
|α|≤N

{
E (τn1(θ, α)χ(τn1(θ, α) > L) + E (|ξn1(α)|χ(ξn1(θ, α)| > L)

}
= 0, (3.43)

there exist functions

mn(θ, α) = Eτn1(θ, α), bn(θ, α) = Eξn1(θ, α)

such that

|mn(θ, α1) − mn(θ, α2)| + |bn(θ, α1) − bn(θ, α2)| ≤ CN |α1 − α2| + αn(N), (3.44)

as max(|α1|, |α2|) ≤ N , where CN are some constants, αn(N) → 0 uniformly in

max(|α1|, |α2|) ≤ N , and there exist functions m(θ, a) > 0 , b(θ, α) such that for

any α ∈ Rr as n → ∞
mn(θ, α) → m(θ, α),

bn(θ, α) → b(θ, α),

and

Sno(θ)
P−→ s0(θ).

Then all the conditions of Averaging Principle (Theorem 2.2.4) for RPSM are

satisfied hence, the relation (3.34) holds where s(t, θ) satisfies the differential

equation:

ds(t, θ) = m(θ, s(t, θ))−1b(θ, s(t, θ))dt,

and

s(0, θ) = s0(θ),
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and T is chosen in such a way that y(+∞, θ) > T a.s., where

y(t, θ) =
∫ t

0
m(θ, η(u, θ))du, η(0, θ) = s0(θ),

dη(u, θ) = b(θ, η(u))du

(it is supposed that a unique solution η(u, θ) exists on each interval).

Suppose that in addition, (3.43) holds for second moments, in (3.44)
√

nαn(N) → 0, there exist continuous functions D2(θ, α), σ2(θ, α), Q(θ, α), q(θ, α)

such that uniformly in |α| ≤ N ,

Eξn1(θ, α)ξn(θ, α)∗ → D2(θ, α),

Eτn1(θ, α)2 → σ2(θ, α),

√
n
(
mn(θ, α+ z/

√
n)−1bn(θ, α+ z/

√
n)−m(θ, α)−1b(θ, α)

)
→ Q(θ, α)z + q(θ, α),

and
√

n(Sn0(θ) − s0(θ))
w⇒ γ0.

Then all the conditions of Diffusion Approximation (section 2.2.4) are satisfied

and (3.39) holds at nhn → ∞.

In the following chapter, we will study the moments method estimators for

different reliability models.



Chapter 4

Parameter Estimation in

Reliability Models

In this chapter, we will use the results of section 3.5.2 to estimate the unknown

parameters for several reliability models and study the asymptotic properties of

the estimators. We show that the trajectories of reliability models we consider

can be represented as Switching Processes. Our first model a reliability model

without replacement and was included for illustration of our approach for param-

eter estimation. Second and third models are constructed with several changes

of the first model. The final model, is the most extended model and includes the

case when it is not possible to find an exact representation of the solutions of

differential equations describing the system. We also give estimation results of

two unknown parameters for that final model.

4.1 Model 1: A Reliability Model without Re-

placement

Suppose that a system consists of n devices subject to random failures. Any

working device is considered as ’good’ and any failed device is considered as ’bad’.

49
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Figure 4.1: Model 1: Illustration

Let Sn(t) be the number of failed devices at time t. If at time t, 1
n
Sn(t) = s then

each ’good’ device has a local failure rate λ(θ0, s), and each ’bad’ device has a local

repair rate µ(θ0, s) where the nonnegative functions λ(θ0, α), µ(θ0, α), Θ ∈ Rd are

given. Here and further we assume both the time until the next failure and the

time until the next repair are exponentially distributed.

Suppose that on the interval [0,T] we can provide a sample inspection at times

kahn, k = 1, 2, ..., [T/ahn] and a is a constant. At the time of inspection, we take

a random sample of size m (m is fixed) and observe the number of failed devices in

that sample without any repair. After the inspection, we return the sample back.

Our goal is to estimate the parameter θ0 from the observations of a trajectory of

the system. Figure (4.1) illustrates the structure of our model.

Let ynk be the number of failed devices in the observed sample taken at time
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kahn and also let Sni = Sn(tni), i = 1, 2, ... where tni are the times of sequential

jumps of the process Sn(t). Note that, since both the time until the failure and

the time until a repair are exponentially distributed then the times between the

jumps are also exponentially distributed. Let s = 1
n
Sni. Then the process Sn(t) is

a Birth-and-Death Process. In state ns, birth and death rates are (n−ns)λ(θ, s)

and nsµ(θ, s).

Figure (4.2) illustrates the first transitions of a system trajectory.

 

Figure 4.2: Model 1: A trajectory for the initial transitions

We can now write the following representation:

Sni+1 = Sni + ξni(θ, s) (4.1)

where

ξni(θ, s) =





1 with probability (n−ns)λ(θ,s)
(n−ns)λ(θ,s)+nsµ(θ,s)

−1 with probability nsµ(θ,s)
(n−ns)λ(θ,s)+nsµ(θ,s)
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We can now represent the normalized process sn(t) = Sn(t)
n

as follows

tni+1 = tni + τni(θ, s)
1

n

sni+1 = sni + ξni(θ, s)
1

n
(4.2)

sn(t) = sni, tni ≤ t < tni+1

where τni(θ, s) is exponential with rate (1 − s)λ(θ, s) + sµ(θ, s).

Then letting δn = 1
n

in the representation of RPSM (see section 2.2.3), the

process sn(t) is a Recurrent Process of semi Markov type. We need to check

the conditions of Averaging Principle for RPSM (Theorem 2.2.4) for the process

sn(t). Note that the process sn(t) corresponds to the process 1
n
S(nα) in Theorem

2.2.4.

Following the notation of Theorem 2.2.4, we have the expectations

E(τni(θ, s)) = mn(θ, s) =
1

(1 − s)λ(θ, s) + sµ(θ, s)
(4.3)

and

E(ξni(θ, s)) = bn(θ, s) =
(1 − s)λ(θ, s) − sµ(θ, s)

(1 − s)λ(θ, s) + sµ(θ, s)
(4.4)

hence

m(θ, s) =
1

(1 − s)λ(θ, s) + sµ(θ, s)
,

b(θ, s) =
(1 − s)λ(θ, s) − sµ(θ, s)

(1 − s)λ(θ, s) + sµ(θ, s)
.

From continuous and finite expectation functions we see that the conditions

of Averaging Principle are satisfied and

sup
t∈[0,T ]

|sn(t) − s(t, θ)| P−→ 0, (4.5)

where,

ds(t, θ) = m(s(t, θ))−1b(s(t, θ))dt
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so that,

ds(t, θ) = [λ(θ, s(t, θ)) − (λ(θ, s(t, θ)) + µ(θ, s(t, θ)))s(t, θ)]dt, (4.6)

with some initial condition s(0, θ) = s0

Note that, the solution of differential equation (4.6), s(t, θ), represents the

proportion of failed devices at time t.

Assume that Sn(0) = 0, hence, s(0, θ) = 0. Let us take some function ϕ(y)

which has the same dimension d as the dimension of the vector of unknown param-

eters θ0, where ϕ(y) = [ϕ(1)(y), ϕ(2)(y), ..., ϕ(d)(y)], y = 0, 1, 2, ...,m. and denote a

binomial random variable with parameters (m, p) by B(m, p). Let us denote the

expectation as g(p) = E(ϕ(B(m, p)), 0 ≤ p ≤ 1. Consider the following equation

constructed as analog of Moments Method equation:

hn

[T/ahn]∑

k=1

ynk =
1

a

∫ T

0
g(s(t, θ))dt (4.7)

where s(t, θ) satisfies the differential equation (4.6).

Let

fn(θ) = hn

[T/ahn]∑

k=1

ynk −
1

a

∫ T

0
g(s(t, θ))dt. (4.8)

Suppose that the functions λ(θ, s), µ(θ, s) satisfy the local Lipschitz condi-

tion (see section 2.2.4) uniformly in θ, nhn → ∞, and the function f0(θ) =
∫ T
0 (g(s(t, θ0)) − g(s(t, θ)))dt satisfies the condition of separateness S. Then ac-

cording to Theorem 2.2.1, θn
P→ θ0, where θn is the set of solutions of (4.8).

Suppose that λ(θ, s) = λ, µ(θ, s) = µ. Consider the case when µ is known

and we want to estimate the actual failure rate λ0. Since the unknown parameter

is one dimensional we can take ϕ(y) = y. The differential equation (4.6) is now

reduced to

ds(t, λ) = [λ − (λ + µ)s(t, λ)]dt (4.9)
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and

s(t, λ) =
1

λ + µ
λ(1 − e−(λ+µ)) (4.10)

satisfies equation (4.9) with s(0, λ) = 0. In this case, fn(θ) uniformly converges

to the limiting function f0(λ), which satisfies the condition S, where

f0(λ) =
∫ T

0
(ms(t, λ0) − ms(t, λ))dt.

Note that λ0 is the solution of equation f0(λ) = 0. Thus the estimator λ̂ is a

consistent estimator of λ0.

We can find the estimator λ̂ by substituting s(t, λ) in to the equation (4.7)

and solving the resulting equation

mλ

a(λ + µ)

(
T − e−(λ+µ)T

λ + µ
+

1

λ + µ

)
= hn

[T/hn]∑

k=1

ynk

for λ.

In the steady state, as t → ∞, total repair rate of ’bad’ devices and the total

failure rate of ’good’ devices will be equal. Then the trajectory of the system

will be stochastically trembling around a constant level. The function s(t, λ) also

indicates the same result since

s(∞, λ) =
λ

λ + µ
.

This means, the proportion of failed devices in steady state will be λ/(λ + µ).

Let us also prove the asymptotic normality. According to Theorem 3.5.2, we

have to check the condition (3.40).

Let z =
√

n(λ̂ − λ0). From Taylor’s formula we can write,

s(t, λ) = s(t, λ0) + B′ z
√

h + o(·)
√

h

where B′ = ( d
dλ

s(t, λ))λ0
. As in our case g(p) = m p then in (3.40) B(θ0, s(t, θ0)) =

mB′
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Let us define, B =
∫ T
0 B′dt and R2 =

∫ T
0 ms(t, λ0)(1 − s(t, λ0))dt. Then ac-

cording to Theorem 3.5.2, z weakly converges to a normal random variable with

mean zero and variance aR2/B2.

4.2 Model 2: Estimation in a Reliability Model

with Replacement

Consider n devices subject to independent random failures (any ’good’ device has

a failure rate λ0). Assume that on the interval [0, T ] we have the possibility to

provide a sample inspection at times khn, k = 1, 2, .., [T/hn], that means we take

at random a sample of a fixed size m and can observe the number of failed devices

Qnk in it. Each failed device in the sample with probability β0, 0 ≤ β0 ≤ 1, is

immediately replaced by a new one. Otherwise, (if not replaced) the failed device

remains failed in the sample. After the inspection we return the sample back.
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Figure 4.3: Model 2: Illustration
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Figure (4.3) illustrates the structure of the model. Our goal is to estimate the

failure rate λ0 and the probability β0.

Suppose that λ0 = λ(θ0), β0 = β(θ0), where the functions λ(θ), β(θ), θ ∈ Θ,

are some continuous functions, Θ is a bounded closed set in Rd, and θ0 is the

unknown parameter.

Consider a d-dimensional function ϕ(y) = (ϕ(1)(y), ..., ϕ(d)(y)) of a discrete

argument y = 0, 1, ..,m. Denote by B(m, p) a binomial random variable with

parameters (m, p). For fixed m, g(p) = Eϕ(B(m, p)) be a function of argument

p, 0 ≤ p ≤ 1. Denote also ynk = ϕ(Qnk). Assume that hn = a/n, a > 0, and

without loss of generality assume that initially all devices are good. Consider the

moments method equation:

∫ T

0
g(s(t, θ))dt = hn

[T/hn]∑

k=1

ynk, (4.11)

where

s(t, θ) =
λ(θ)

λ(θ) + mβ(θ)/a
(1 − e−(λ(θ)+mβ(θ)/a)t). (4.12)

Theorem 4.2.1 Suppose that the function

f0(θ) =
∫ T

0

(
g(s(t, θ0)) − g(s(t, θ))

)
dt, (4.13)

as a function of θ, satisfies condition S . Then {θn} P−→ θ0, where {θn} is

the set of solutions (4.11) in θ.

Proof.

Denote by Sn(t) the number of failed devices at time t. If we observe Sn(t)

at times khn, for the initial transactions k = 1, 2 we would observe a behavior

similar to Figure (4.4).

First we study the asymptotic behavior of the trajectory of the normalized

process ζn(t) = Sn(t)/n. For this, we represent ζn(t) as a Switching Process at

points khn.
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Figure 4.4: Model 2: A trajectory for the initial transitions

Denote

s−nk = ζn(khn − 0), s+
nk = ζn(khn + 0),

so that s−nk is the number of failed devices just before k-th inspection normal-

ized by n, and s+
nk is the number of failed devices just after k-th inspection and

replacement, normalized by n. Between the inspections, the system will show a

behavior similar to Figure (4.5).

According to the figure, let us denote h−
n as the time just before the first

inspection and 2h−
n as the time just before the second inspection. Between 2h−

n

and h−
n , an inspection is applied just after h−

n , if a failed device is found then it

is replaced. After inspection some of the ’good’ devices may fail until the next

inspection. Hence, we have two actions to include in our representation of the

trajectory.

Denote by H(n, j,m) a hypergeometric random variable with parameters

(n, j,m):

P (H(n, j,m) = i) =

(
j
i

) (
n−j
m−i

)

(
n
m

) , i = 0, 1, ..,m. (4.14)

Let λ be the failure rate and β be the probability of a correct replacement.

Denote by pn(λ) = 1 − e−λhn a probability that a good device fails during time
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Figure 4.5: Model 2: Behavior between the inspections

hn (between two successive inspections).

According to the evolution of the process, we can write stochastic relations:

s+
nk = s−nk −

1

n
B
(
H(n, ns−nk,m), β

)
, (4.15)

s−nk+1 = s+
nk +

1

n
B
(
n − ns+

nk, pn(λ)
)
, k = 0, 1, ... (4.16)

Assuming initially all devices are good, we have s−n0 = 0.

Thus, we represented ζn(t) as an RPSM with switching points khn taking

δn = hn, τnk(·) = 1 (see Section 2.2.3). As hn = a/n, we get from (4.15) and

(4.16) that

s−nk+1 = s−nk + ξnk(s
−
nk)hn, (4.17)

tnk+1 = tnk + τnk(·)hn (4.18)

where, given s−nk = s,

ξnk(s) = −B (H(n, ns,m), β) a−1 + B
(
n − ns+(s), pn(λ)

)
a−1,
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and

s+(s) = s − 1

n
B (H(n, ns,m), β) .

We now need to check the conditions of Averaging Principle to prove the

convergence of trajectory of ζn(t). Note that ζn(t) corresponds to 1
n
Sn(nt) of

Theorem 2.2.4.

As pn(λ) ≈ λhn = λa/n,then

Eξnk(s) → −smβ/a + (1 − s)λ (4.19)

uniformly in s ∈ [0, 1].

Following from the notation of Theorem 2.2.4, we have

m(s) = 1

and

b(s) = −smβ/a + (1 − s)λ

Now, using the averaging principle for RPSM, and recurrent relation (4.17),

we get

sup
t∈[0,T ]

|ζn(t) − s(t)| P−→ 0, (4.20)

where the function s(t) is a solution of a linear differential equation

ds(t) = m(s(t))−1b(s(t))dt.

Using the functions m(s) and b(s) obtained, we have,

ds(t) =
(
λ − s(t)(λ + mβ/a)

)
dt, s(0) = 0. (4.21)
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Note that, λ and β are the functions of θ, therefore s(t) = s(t, θ). Solving

equation (4.21) with initial value s0 = 0 we get,

s(t, θ) =
λ(θ)

λ(θ) + mβ(θ)/a
(1 − e−(λ(θ)+mβ(θ)/a)t),

which is the same expression with (4.12) for the function s(t, θ).

Therefore, for any θ, the condition (3.34) is satisfied and we can use Theorem

4.2.1.

In our case, ynk = ϕ(Qnk). As ynk are bounded, condition (3.36) is true.

Now, given s−nk = s, the variable Qnk (the number of failed devices in a sample)

has hypergeometric distribution H(n, ns,m). Therefore, in notation of Theorem

3.5.1, gn(θ, s) = Eϕ(H(n, ns,m)).

If n → ∞ and j = [ns], then we can check directly using (4.14) that for any

i = 0, ..,m uniformly in s ∈ [0, 1],

P (H(n, ns,m) = i) →
(

m

i

)
si(1 − s)m−i.

The right-hand side corresponds to Binomial distribution with parameters (m, s).

This means, as n → ∞, H(n, ns,m) converges in distribution to B(m, s) and

Eϕ(H(n, ns,m)) → g(s) uniformly in s. Thus, all conditions of Theorem 3.5.1

are satisfied and our statement is true.

Note that if nhn → ∞, then the replacement is too slow and our system

is asymptotically equivalent to the system without replacement which can be

obtained by putting β = 0. In this case s(t, θ) = 1 − e−λ(θ)t.

If initially Sn(0) ≈ ns0, then in the equation (4.21) s(0) = s0 and

s(t, θ) =
λ(θ)

λ(θ) + mβ(θ)/a
(1 − e−(λ(θ)+mβ(θ)/a)t) + s0e

−(λ(θ)+mβ(θ)/a)t.

Consider some particular cases.

Assume that β0 = β and λ0 = λ are given, probability β0 is known and we

need to estimate only the failure rate λ0. In this case the unknown parameter is
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θ = λ, and

s(t, λ) =
λ

λ + mβ/a
(1 − e−(λ+mβ/a)t). (4.22)

The function s(t, λ) represents the proportion of failed devices at time t.

Let us take ϕ(y) = y so that ynk = Qnk. Then g(p) = mp, and the moments

method equation has the form:

m
∫ T

0
s(t, λ)dt = hn

[T/hn]∑

k=1

ynk, (4.23)

and the function f0(λ) in (3.5.1) has the form:

f0(λ) = m
∫ T

0
(s(t, λ0) − s(t, λ))dt. (4.24)

It is easy to check that both functions λ
λ+mβ/a

and 1 − e−(λ+mβ/a)t strictly

monotonically increase in λ, therefore, the function s(t, λ) at each t strictly mono-

tonically increases in λ and the function f0(λ) satisfies condition S . Thus, the

left-hand side of the equation (4.23) also strictly monotonically increases in λ.

Integrating s(t, λ) in t, we can write (4.23) in the form

mλ

λ + mβ/a

(
T − 1 − e−(λ+mβ/a)T

λ + mβ/a

)
= hn

[T/hn]∑

k=1

ynk. (4.25)

The right-hand side of equation (4.25) is changing in the interval (0,mT ). When

λ is changing from 0 till ∞, the left-hand side is monotonically changing from

0 till mT . Therefore, a unique solution λ̂n of equation (4.25) exists and the

estimator λ̂n is consistent according to Theorem 3.5.1

Suppose now that the failure rate λ0 = λ is known but the probability β0 = β

is unknown. In this case the parameter θ = β. The moments method equation

has the form (4.23) where s(·) = s(t, β) now depends on parameter β.

It is easy to check that ∂s(t,β)
∂β

< 0. Thus, the left-hand side in (4.23) with

function s(t, β) is strictly monotonically decreasing. Therefore, the function f0(λ)

satisfies condition S . In this case, the solution β̂n of the equation (4.25) exists at

large n, is unique and the estimator β̂n is consistent according to Theorem 2.2.1.
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If both λ0 and β0 are unknown, then θ = (λ, β) and we have to solve a system

of two equations. Therefore, let us consider, for example, a two dimensional

function ϕ(y) = (y, y2). Then

g(1)(p) = EB(m, p) = mp,

g(2)(p) = E(m, p)2 = mp(1 − p) + m2p2.

Thus, a system of moments method equations for two parameters (λ, β) has the

form: the first equation is (4.23) and the 2nd equation has the form

∫ T

0

(
ms(t, θ)(1 − s(t, θ)) + m2s(t, θ)2

)
dt = hn

[T/hn]∑

k=1

y2
nk, (4.26)

where s(t, θ) is given by the expression (4.23). The left-hand side of (4.26) can

be calculated explicitly and we get a system of two nonlinear equations for two

unknown parameters (λ0, β0).

4.3 Model 3: Reliability Model with N Repair-

men

Consider n devices subject to independent random failures with rate λ0. There are

N repairmen each with large repair rate nµ0. Each failed device is immediately

taken for repair if at least one repairman is available, otherwise the device is

waiting its turn. After repair, the device is considered to be as good as new and

immediately starts to work again.

Suppose that on the interval [0, T ] we provide a sample inspection at times

khn, k = 1, 2, .., [T/hn]. That is, we take at random a sample of a fixed size m

and can observe (without repair) the number of failed devices Qnk in it. After

inspection we return the sample back. Assume that initially all devices are ’good’.

We will consider the behavior of the system under heavy traffic, so that λ0 > Nµ0.

Suppose that λ0 = λ(θ0), µ0 = µ(θ0), where the functions λ(θ), µ(θ) θ ∈ Θ,

are continuous functions, Θ is a bounded closed set in Rd, and θ0 is the unknown

parameter.



CHAPTER 4. PARAMETER ESTIMATION IN RELIABILITY MODELS 63

 

 

 

G 

G 

G 

......... 

Br 

B 

B OBSERVATIONS 

Devices x, y, z  

 

G G B 

Br 

n
 d

e
v

ic
e
s 

Figure 4.6: Model 3: Illustration

The Figure (4.6) presents the case when there are two repairmen and the

devices which are in repair are indicated as Br.

We consider a d-dimensional function ϕ(y) = (ϕ(1)(y), .., ϕ(d)(y)), y =

0, 1, ..,m. Let g(p) = Eϕ(B(m, p)), 0 ≤ p ≤ 1, where B(m, p) is a binomial

random variable with parameters m and p. Denote ynk = ϕ(Qnk) so that ynk is a

function of our observations . Assume that λ0 > Nµ0 and consider the equation:

∫ T

0
g(s(t, θ))dt = hn

[T/hn]∑

k=1

ynk, (4.27)

where s(t, θ) = (1 − Nµ(θ)/λ(θ))(1 − e−λ(θ)t).

Theorem 4.3.1 Suppose that hn → 0, and the function in the left-hand side of

(4.27) satisfies condition S.
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Then {θn} P−→ θ0, where {θn} is the set of solutions of (4.27).

Proof. Let Sn(t) be the number of failed devices at time t and ζn(t) =

Sn(t)/n. Also let the failure and the repair rates be λ and nµ. First we need to

check the condition (3.34). For this, we represent ζn(t) as a Switching process.

Note that Sn(t) is a Birth-and-Death process with birth and death rates in state

j, (n− j)λ and min(j,N)nµ, respectively. Denote by tnk the sequential times of

jumps of Sn(·). We construct a switching process by the times tnk.

Denote snk = ζn(tnk + 0) and let hn = 1/n. Note that for j ≥ N , the time

spent in state j is exponential with rate (n − j)λ + Nnµ. Otherwise, the time

spent in state j is exponential with rate (n − j)λ + jnµ. But since we consider

the system under heavy traffic, asymptotically j ≥ N . Denote j/n = s. Then at

s > 0 and large n such that ns ≥ N , the time spent in state j can be represented

as τnk(s)/n, where τnk(s) has an exponential distribution with rate (1−s)λ+Nµ.

For δn = 1
n
, we can write the following recurrent relations:

snk+1 = snk + ξnk(snk)δn

tnk+1 = tnk + τnk(snk)δn,

where given snk = s,

ξnk(s) =





1 with probability (1−s)λ
(1−s)λ+Nµ

,

−1 with probability Nµ
(1−s)λ+Nµ

.

Hence we represented the process ζn(t) as an RPSM (see section 2.2.3) with

switching points tnk.

Following the notation of Theorem 2.2.4, we now have

m(s) =
1

(1 − s)λ + Nµ

and
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b(s) =
(1 − s)λ − Nµ

(1 − s)λ + Nµ
.

Note that, ζn(t) corresponds to 1
n
Sn(nα) in Theorem 2.2.4. Since all the

conditions of Averaging principle are satisfied, for λ > Nµ, the condition

sup
0≤t≤T

|ζn(t) − s(t)| P−→ 0.

is also satisfied for any T > 0, where s(t) is the solution of differential equation

ds(t) = m(s(t))−1b(s(t))dt

so that

ds(t) = ((1 − s(t))λ − Nµ)dt.

Assume that initially all devices are good. Since λ > Nµ, we can find the

exact solution of the differential equation with an initial condition s0 = 0 as

s(t) = (1 − Nµ/λ)(1 − e−λt).

Taking into account that λ and β are functions of θ, we get

s(t, θ) = (1 − Nµ(θ)/λ(θ))(1 − e−λ(θ)t).

As the right-hand side of (4.27) has the same form as in (4.23), then using

the same arguments as at the proof of Theorem (4.2.1) we get our statement.

Consider as an example the case when the functions µ(θ) = µ and λ(θ) = λ

are given, µ = µ0 is known, and λ0 is unknown. Now θ = λ and we can take

ϕ(y) = y so that ynk = Qnk. Then g(p) = mp and after integration the moments

method equation can be represented as the equation

m(1 − Nµ/λ)
(
λT − 1 + e−λT

)
/λ = hn

[T/hn]∑

k=1

ynk (4.28)
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with respect to λ. Note that the function s(t, λ) = (1−Nµ/λ)(1− e−λt) at each

t > 0 is strictly monotonically increasing in λ. Also, the left-hand side of (4.28)

is changing from 0 till mT as λ is changing from Nµ till ∞. Thus, condition S

is satisfied and a unique solution λ̂n of (4.28) exists and is consistent according

to Theorem 3.5.1. Note that the case µ0 = 0 (no repair) is equivalent to the case

β0 = 0 considered in the previous section.

4.4 Model 4: A Reliability Model with Proba-

bilistic Chance of Repair

We have n devices subject to random failures. Any ’good’ device has a failure rate

λ0. There are N repairmen in the system each working with a large repair rate of

nµ. When a device fails, it goes to repair only with probability β0. That is, with

probability 1− β0, a failed device may not be sent to repair and just stays failed.

1− β0 can be interpreted as the error of the recognition of the failed devices and

in this case that failed device can be found only during further inspections. A

device which is sent to repair, starts to get repaired if at least one repairman is

available, otherwise it waits its turn in queue.

For constant hn, at times khn, k = 1, 2, ..[T/hn], we provide a sample inspec-

tion as follows: we take, at random, sample of size m from the machines which

are not in repair and observe the number of failed devices, Qnk,in that sample.

The observed failed devices are immediately sent to repair and the remaining

’good’ devices are returned back to operation. We study the behavior of the sys-

tem under heavy traffic, so that the number of devices in the repair is large and

λ0β0 > Nµ.

Figure (4.7) illustrates the structure of the model. Our goal is to estimate the

failure rate λ0 and the probability β0 by sample observations Qnk.

We consider a d-dimensional function ϕ(x) = (ϕ(1)(x), .., ϕ(d)(x)), x =

0, 1, ..,m, and let g(p) = Eϕ(B(m, p)), 0 ≤ p ≤ 1. Denote ynk = ϕ(Qnk), where
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Figure 4.7: Model 4: Illustration

B(m, p) is a binomial random variable with parameters m and p. Assume that

λ0β > Nµ0 and consider the moments method equation:

∫ T

0
g(p(t, θ))dt = hn

[T/hn]∑

k=1

ynk, (4.29)

where p(t, θ) is a continuous deterministic function, satisfying the condition

hn
∑[T/hn]

k=1 ynk → ∫ T
0 g0(p(t, θ0))dt.

In the following parts we will give the analytical and computational ap-

proaches for how to calculate the function p(t, θ).

Theorem 4.4.1 Suppose that hn → 0, and the function in the left-hand side of

(4.29) satisfies condition S.
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Then {θn} P−→ θ0, where {θn} is the set of solutions of (4.29).

Proof.

Denote Sn(t) as the total number of failed devices at time t. Also denote

Rn(t) as the number of devices in repair or waiting in queue to be repaired ( in

repair process) and Yn(t) as the number of failed devices which are not in repair

or waiting to be repaired (not in repair process) at time t. From the construction,

we have Sn(t) = Yn(t) + Rn(t).

Also denote Zn(t) = (Rn(t), Yn(t)) as a two component process of number

of failed devices. Given that (Rn(t), Yn(t)) = (R, Y ) we have three possible

transactions at the time of next jump as follows: 
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Figure 4.8: Model 4: Transactions

We will study the asymptotic behavior of the normalized process zn(t) =

Zn(t)/n = (Rn(t)/n, Yn(t)/n) = (rn(t), yn(t)).

Let Zk = Zn(tk) and znk = zn(tk) so that zn(tk) = (rn(tk), yn(tk)). We first

will consider the behavior of the process zn(t) on the time interval [0, T ] in case

when no inspection is provided.

Let rn(t) = r, yn(t) = y so that zn(t) = (r, y). While at state (r, y), there are

three possible transitions at the time of next jump: to the states (r − 1
n
, y), (r +

1
n
, y) and (r, y + 1

n
) with respective rates nNµ, n(1 − r − y)λβ and n(1 − r −

y)λ(1 − β).
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Time spent in each state (r, y) is exponential with parameter nNµ + (n −
nr−ny)λ. Let τnk(r, y) be an exponential random variable with parameter Nµ+

(1 − r − y)λ. Then the two component process Zn(t) = (Rn(t), Yn(t)) is a quasi

Birth-and-Death process. Let 1
n
ξnk(r, y) be the size of jump from state (r, y) at

the time of exit from this state. Then taking δn = 1
n
, we can write the following

stochastic relations:

znk+1 = znk + ξnk(znk)δn

tnk+1 = tnk + τnk(znk)δn,

Note that given rnk = r and ynk = y, ξnk(r, y) is a random vector such that,

ξnk(r, y) =





(−1, 0) with probability Nµ
Nµ+(1−r−y)λ

(1, 0) with probability (1−r−y)λβ
Nµ+(1−r−y)λ

(0, 1) with probability (1−r−y)λ(1−β)
Nµ+(1−r−y)λ

with vector expectation

E(ξnk(r, y)) =

[
(1 − r − y)λβ − Nµ

Nµ + (1 − r − y)λ
,
(1 − r − y)λ(1 − β)

Nµ + (1 − r − y)λ

]
. (4.30)

Hence we represented the process zn(t) as RPSM with switching points tnk.

Following the notation from Theorem 2.2.4, and taking α = (r, y),mn(α) =

Eτnk(r, y) and bn(α) = E(ξnk(r, y)) we have

m(r, y) =
1

Nµ + (1 − r − y)λ

and

b(r, y) = E(ξnk(r, y)) =

[
(1 − r − y)λβ − Nµ

Nµ + (1 − r − y)λ
,
(1 − r − y)λ(1 − β)

Nµ + (1 − r − y)λ

]

Note that, zn(t) corresponds to 1
n
S(nα) of Theorem 2.2.4. Then the conditions

of Averaging Principle are satisfied so that the condition

sup
0≤t≤T

|zn(t) − z(t)| P−→ 0
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is also satisfied, where, z(t) is the solution of differential equation

dz(t) = m(z(t))−1b(z(t)).

Since z(t) = (r(t), y(t)), we have,

dz(t) = [((1 − r(t) − y(t))λβ − Nµ) dt, ((1 − r(t) − y(t))λ(1 − β))] dt.

Note that, the individual components r(t) and y(t) satisfy

dr(t) = [(1 − r(t) − y(t))λβ − Nµ]dt (4.31)

dy(t) = (1 − r(t) − y(t))λ(1 − β)dt (4.32)

with some initial condition (r(0), y(0)).

Let us denote s(t) = r(t)+y(t). Adding equations (4.31) and (4.32)we obtain

a differential equation for s(t) such that

ds(t) = ((1 − s(t))λ − Nµ)dt

with the solution

s(t) = 1 + (s(0) − 1)e−λt − Nµ(1 − e−λt)/λ.

Let s(0) = 0. Then substituting s(t) into the equations (4.31), (4.32)we can

also find the exact solutions for r(t), y(t) so that,

r(t) = −βe−λt + Nµβt +
Nµ

λ
e−λt − Nµt,

y(t) = −(1 − β)e−λt + Nµ(1 − β)t +
Nµ(1 − β)e−λt

λ
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Note that, these solutions are valid only in the initial interval when both

0 < r(t) < 1, 0 < y(t) < 1. For large t, y(t) becomes greater than 1, and r(t)

become negative thus having no relation to the interpretation of the model.

Now consider the behavior of the process on the interval [tkhn , t(k+1)hn), when

inspection is provided at times khn where tkhn is the time of k’th inspection.

Let tnd be the sequential times of jumps of zn(t) on the interval [tkhn , t(k+1)hn).

The time between the sequential jumps (tnd+1−tnd), are exponentially distributed

with rate (n − nrnd − nynd)λ + nµN where rnd = rn(tnd), ynd = yn(tnd).

Note that from (4.30) and the exponential time between the sequential

jumps, the process zn(t) is a Quasi-Birth-and-Death process on each interval

[tkhn , t(k+1)hn) . Now, taking δn = 1
n

we can write the following stochastic equa-

tions

(rnd+1, ynd+1) = (rnd, ynd) + ξnd(rnd, ynd)δn

tnd+1 = tnd + τnd(rnd, ynd)δn

where given rnd = r and ynd = y

ξnd(r, y) =





(−1, 0) with probability Nµ
Nµ+(1−r−y)λ

(1, 0) with probability (1−r−y)λβ
Nµ+(1−r−y)λ

(0, 1) with probability (1−r−y)λ(1−β)
Nµ+(1−r−y)λ

and τnd(r, y) has exponential distribution with rate (1 − r − y)λ + Nµ.

Then zn(t) forms an RPSM on the time interval tkhn ≤ t < t(k+1)hn .

We can now check if the Averaging Principle holds. Let α = (r, y). Following

from the notation of Theorem 2.2.4, we have mn(α) = (1 − r − y)λ + Nµ and

bn(α) is the expectation of ξnd(r, y) in the vector form so that

bn(α) =

{
(1 − r − y)λβ − Nµ

(1 − r − y)λ + Nµ
,
(1 − r − y)λ(1 − β)

(1 − r − y)λ + Nµ

}
.

Hence we have

m(r, y) = (1 − r − y)λ + Nµ
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b(r, y) =

{
(1 − r − y)λβ − Nµ

(1 − r − y)λ + Nµ
,
(1 − r − y)λ(1 − β)

(1 − r − y)λ + Nµ

}
.

Note that, since ynk are bounded the condition (3.36) holds. Then the condi-

tions of Averaging principle holds hence the condition

sup
0≤t≤T

|zn(t) − z(t)| P−→ 0

is satisfied. The process zn(t) converges in probability to the process z(t) =

(r(t), y(t)) which satisfy a system of differential equations such that

dz(t)

dt
= m(z(t))−1b(z(t)) (4.33)

and

dz(t)

dt
= ((1 − r(t) − y(t))λβ − Nµ, (1 − r(t) − y(t))λ(1 − β)) (4.34)

with some initial condition (r0, y0) = z0.

At times khn, due to the inspection, there is an additional jump to the process

zn(t). Let z+
nk+1 = (r+

nk+1, y
+
nk+1) be the value of process z(t) just after the k+1’st

inspection and let z−nk+1 = (r−nk+1, y
−
nk+1) be the value of process zn(t) just before

the k+1’st inspection. Let also H be a hypergeometric random variable with

parameters (c, j,m) such that

P (H(c, j,m) = i) =


 j

i




 c − j

m − i





 c

m




.

We can now write the following stochastic equation:

z+
k+1 = (r+

k+1, y
+
k+1)

= (r−k+1, y
−
k+1) +

1

n
(H(n(1− r−k+1), ny−

k+1,m),−H(n(1− r−k+1), ny−
k+1,m)) (4.35)

We take hn = a/n. Note that for given (r−k+1, y
−
k+1) = (r, y) as n → ∞, using

the result about asymptotic behavior of H(n, ns,m) (section 4.2) we have:
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E(H(n(1 − r), ny,m),−H(n(1 − r), ny,m)) → (
my

1 − r
,− my

1 − r
).

Consider now the total increment of the process zn(t) on the interval

[tkhn , t(k+1)hn ] taking into account the change on this interval without replace-

ment and the change due to the replacement at the inspection point. Then,

according to (4.34) we can represent the main parts of the increment for each

component as follows:

rn((k + 1)hn) ≈ rn(khn) + (1 − rn(khn) − yn(khn))λβhn − Nµhn

+
1

n
H (n(1 − rn(khn)), nyn(khn),m)

and

yn((k + 1)hn) ≈ yn(khn) + (1 − rn(khn) − yn(khn))λ(1 − β)hn

− 1

n
H (n(1 − rn(khn)), nyn(khn),m) .

As hn = a/n, it can be seen from (4.35) that the individual components r(t)

and y(t) satisfy the differential equations

dr(t)

dt
= (1 − r(t) − y(t))λβ − Nµ +

a−1my(t)

1 − r(t)
(4.36)

and
dy(t)

dt
= (1 − r(t) − y(t))λ(1 − β) − a−1my(t)

1 − r(t)
(4.37)

with an initial condition z0 = (r0, y0).

Let us denote s(t) = r(t) + y(t). Note that we can now rewrite the equations

(4.36) and (4.37) in the following form;

dr(t)

dt
= (1 − s(t))λβ − Nµ +

a−1my(t)

1 − s(t) + y(t)
(4.38)
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and
dy(t)

dt
= (1 − s(t))λ(1 − β) − a−1my(t)

1 − s(t) + y(t)
(4.39)

Then the sum of equations (4.36) and (4.37) reduces to

ds(t)

dt
= (1 − s(t))λ − Nµ (4.40)

with s(0) = s0 = r0 + y0 and general solution

s(t) = 1 + (s(0) − 1)e−λt − Nµ(1 − e−λt)

λ

Since by construction 0 ≤ y(u) ≤ 1, 0 ≤ r(u) ≤ 1, and 0 ≤ s(u) ≤ 1, the

solution s(t) in this form can be written on some interval [0, t] only if for all

0 < u < t, we have the following restrictions: 0 < y(u) < 1, 0 < r(u) < 1 and

0 < s(u) < 1.

Without loss of generality, assume that initially all devices are ’good’ so that

s(0) = 0. Then, for λβ > Nµ (due to the fact that (4.36) can not be negative at

t=0) the exact solution of (4.40) is found as

s(t) =
λ − Nµ

λ
(1 − e−λt). (4.41)

Since all the conditions are satisfied we can now use the results of Theorem 3.5.1.

To complete the proof of Theorem 4.4.1 we need to show that the left hand

side of (4.29) satisfies the condition S. In our case p(t, θ) = y(t)
1−r(t)

. Unfortunately,

we could not find the exact solutions of differential equations (4.36) and (4.37),

hence could not determine p(t, θ), so we can not exactly determine the left side

of (4.29). But, if these solutions can be found and they satisfy the condition of

S, this will be sufficient to complete the proof.

The following three different methods are suggested to approximate the solu-

tions for differential equations (4.36) and (4.37) and then to estimate the unknown

parameters.



CHAPTER 4. PARAMETER ESTIMATION IN RELIABILITY MODELS 75

Numerical Calculations and Statistical Estimation:

Let ynk be the number of failed devices in the sample at the time of the control

ka/n. Assuming that β0 is known, for one-dimensional parameter λ0 consider the

estimation of λ.

Consider the relation (4.29). Since the Averaging principle for zn(t) holds

it follows that it also holds for for the sequences ynk and rnk. So the condition

hn
∑[T/hn]

k=1 ynk → ∫ T
0 g(p(t, θ))dt is satisfied. We will now give the expressions for

functions g(p(t, θ)) and p(t, θ).

At the time of k’th inspection we take a sample from nyn(khn), the devices

which are not in repair (not being repaired or waiting in queue to be repaired).

Given rn(t) = r and yn(t) = y the number of failed devices in the sample we

observe is a Hypergeometric random variable, with parameters n(1 − r), ny and

m, that is H(n(1 − r), ny,m).

As asymptotically

E(H(n(1 − r), ny,m)) → my

1 − r

in this case p(t) = y(t)
1−r(t)

. Taking g(p(t)) = mp(t), we can re-write the equation

(4.29) as follows.

1

a

∫ T

0

my(t)

1 − r(t)
dt =

1

n

[Tn/a]∑

k=1

ynk (4.42)

The right hand side of the equation (4.42) is calculated by observations. For

each fixed λ, β we can find a numerical solution of the system together with the

left hand side of (4.36) using the recurrent procedure below.

Consider the system of equations (4.36) and (4.37) and rewrite the system in

the following form:

dr(t) = A(r(t), y(t), λ, β)dt

dy(t) = B(r(t), y(t), λ, β)dt.

Let us denote

C(t, λ, β) =
1

a

∫ t

0

my(t)

1 − r(t)
dt
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so that the equation (4.42) can be written as

C(T, λ, β) =
1

n

[T/hn]∑

k=0

ynk. (4.43)

Also let y(0) = 0, r(0) = 0 and C0(0) = 0. For some value of δ we can now

construct recurrent sequences:

rk+1 = rk + A(rk, yk, λ, β)δ, (4.44)

yk+1 = yk + B(rk, yk, λ, β)δ, (4.45)

Ck+1 = Ck +
myk

a(1 − rk)
δ. (4.46)

The sequence of rk at points kδ gives a numerical solution for r(t) (and the

sequence of yk at points kδ gives a numerical solution for y(t)) and CT/δ is the

approximation of the numerical value of C(T, λ, β).

If β0 is known and λ0 is unknown, initially a value of λ and a default lag l is

chosen. Keeping β fixed to its known value, in order to make left and right hand

sides of equation (4.43) equal, the value of λ is changed accordingly and the best

λ value to make this equation closest is chosen as a solution. Denote this value

of λ by λ̂.

Note that since C(T, λ, β) is a strictly monotonically increasing function, it

satisfies the condition S.

Then the unknown parameter λ0 can be numerically calculated using the

equation (4.43) and λ̂ is the consistent estimator of λ0.

Analytical Approximation and Statistical Estimation:

The behavior of numerical solutions suggests , that both r(t) and y(t) as well

as the division p(t) = y(t)
1−r(t)

shows a behavior in the form of C0+C1e
−λt+C2e

−mt/a.

Even though we cannot find the explicit solution we can try to approximate the

numerical solution with some error component. This would give the opportunity

to visualize the underlying function and having an analytical representation on

hand would make it easier to solve for unknown parameters.
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Assume that

y(t) = c0 + c1e
−λt − c2e

−mt/a (4.47)

where c0 + c1 = c2 and let u = (λ − Nµ)/λ. Substituting r(t) = s(t) − y(t) we

then get

p(t) =
c0 + c1e

−λt − c2e
−mt/a

(1 − u + c0) + (c1 + u)e−λt − c2e−mt/a

ln p(t) = ln

(
c0 + c1e

−λt − c2e
−mt/a

(1 − u + c0) + (c1 + u)e−λt − c2e−mt/a

)

ln p(t) ∼= ln
(

c0

1 − u + c0

)
+
(

c1

c0

− c1 + u

1 − u + c0

)
e−λt −

(
c2

c0

− c2

1 − u + c0

)
e−mt/a

and

p(t) ∼=(
c0

1−u+c0

)
+
(

c0
1−u+c0

) (
c1
c0
− c1+u

1−u+c0

)
e−λt −

(
c0

1−u+c0

) (
c2
c0
− c2

1−u+c0

)
e−mt/a

.

(4.48)

For y(0) = 0 we have p(0) = 0. For an approximation of p(t) = C0 +C1e
−λt −

C2e
−mt/a we should have C0 + C1 = C2 where C0 = c0

(1−c0+u)
.

We now consider the differential equation (4.39),using (4.47) with this ap-

proximation:

dy(t)

dt
= −c1λe−λt + c2

m

a
e−mt/a (4.49)

and

dy(t)

dt
= (1 − (u − ue−λt))λ(1 − β) − m

a

(
C0 + C1e

−λt − C2e
−mt/a

)
(4.50)

Equating the related parts of equations (4.49) and (4.50) the explicit solution

of differential equation (4.50) can be found if,

C0 =
(1 − u)λ(1 − β)

m/a
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c0 =
C0(1 − u)

1 − C0

=
λ(1 − β)(1 − u)2

(m/a) − (1 − u)λ(1 − β)

C1 =
(λ − Nµ)(1 − β) + (C0 − c0)λ

(m/a − λ)

C0 + C1 = c0 + c1 = c2 = C2

and

C0 =
a

m
Nµ(1 − β), (4.51)

c0 =
a
m

(Nµ)2(1 − β)

λ(1 − a
m

Nµ(1 − β))
(4.52)

C1 =
(λ − Nµ)(1 − β) + aNµ(1 − β)λ[1 − Nµ

λ(1−aNµ(1−β)/m)
]/m

m/a − λ

C2 =
a

m
Nµ(1 − β) +

(λ − Nµ)(1 − β) + aNµ(1 − β)λ[1 − Nµ
λ(1−aNµ(1−β)/m)

]/m

m/a − λ

The coefficients of p(t) found by division are not same with the coefficients

found by this differential equation solution, except the terms c0 and C0 as ex-

pected. The error consists of terms not included both in y(t) and p(t) and some

remainder which is not included in the explicit solution. But both show good

approximations to the numerical solutions of y(t) and p(t).

We can check if the solution found by the approximation captures, in some

sense, the behavior of original process by considering the balance equations when

t → ∞. Note that s(t) → (1 − Nµ/λ) when t → ∞. Denote r∗ = lim r(t), y∗ =

lim y(t) as t → ∞. From (4.39) we get the equation

Nµ(1 − β) =
my∗

a(1 − λ−Nµ
λ

+ y∗)

which has a solution as

y∗ =
a
m

(Nµ)2(1 − β)

λ(1 − a
m

Nµ(1 − β))
(4.53)

As t → ∞, lim y(t) = c0 where c0 was found by equation (4.52) which is equal

to the value of the limit in (4.53). We also like to mention that these calculations

are valid for a
m

Nµ(1 − β) < 1 along with the condition that λβ > Nµ.



CHAPTER 4. PARAMETER ESTIMATION IN RELIABILITY MODELS 79

Assume that the probability β0 = β is known and we need to estimate only

the failure rate λ0.

The left hand side of equation (4.42) is now changed and we consider the

moments method equation

m
∫ T

0
p(t, λ)dt = hn

[T/hn]∑

k=1

ynk, (4.54)

where p(t, λ) = C0 + C1e
−λt − C2e

−mt/a.

Integrating p(t, λ) in t on the interval [0,T], we can write (4.54) in the form

C0T − C1

λ
e−λT +

C2

m/a
e−mT/a +

C1

λ
− C2

m/a
=

hn

m

[T/hn]∑

k=1

ynk. (4.55)

Since the left hand side of equation (4.55) now satisfies the condition S we can cal-

culate the consistent estimator for the unknown parameter λ0 by solving equation

(4.55) for λ .

Note that, since the p(t) is just an approximation to a function which is

represented in terms of numerical solutions of differential equations (4.36) and

(4.37), it may not always be possible to find the solution of equation (4.55). But,

solving analytical equation (4.55) is simpler then solving the equation (4.43) and

needs less computing time.

We also would like to mention that, this approximation is better when u,C0, C1

and C2 are smaller compared to 1. The steady state values will be equal in any

case, but as u gets closer to 1, the transient values will be departing from each

other. For visualization of this fact, we give the Figures (A.5) and (A.6) which

show the numerical solution and analytical approximation of numerical solution

when N = 5, µ = 0.1, T = 10, n = 1000 and hn = 1/1000 for two different cases

of λ0 = 1, β0 = 0.8, a = 1 and λ0 = 2, β0 = 0.8, a = 2.

For λ0 = 1, β0 = 0.8, a = 1, we have

p(t) = 0.01 + 0.11661e−t − 0.0221661e−10t
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and for λ0 = 2, β0 = 0.8, a = 2 we have

p(t) = 0.02 + 0.1099e−2t − 0.1299e−5t.

Approximation when the Number of Machines in Repair is Known:

If the number of machines in repair at the end of the inspection period (t=T)

is known,we can rewrite (4.36) using equation (4.29) as follows:

∫ T

0
dr(t) =

∫ T

0
{(1 − r(t) − y(t))λβ − Nµ + a−1(

my(t)

1 − r(t)
)}dt. (4.56)

Assume that r(0) = 0. Then (4.56), using (4.29) reduces to

r(T ) + Nµ(1 − β)t|T0 + (1 − Nµ

λ
)βe−λt|T0 =

∫ T

0
a−1(

my(t)

1 − r(t)
)dt (4.57)

so that,

r(T )+Nµ(1−β)T +(1− Nµ

λ
)βe−λT − (1− Nµ

λ
)β =

∫ T

0
a−1(

my(t)

1 − r(t)
)dt (4.58)

and using (4.42)

r(T ) + Nµ(1 − β)T + (1 − Nµ

λ
)βe−λT − (1 − Nµ

λ
)β =

1

n

[T/hn]∑

k=1

ynk. (4.59)

Since the left hand side of equation (4.59) satisfies the condition of S. The

consistent estimator for the unknown parameter λ0 can be calculated solving the

equation (4.58) for λ.

4.4.1 When Both Parameters are Unknown

If both λ0 and β0 are unknown, then θ = (λ, β) and we have to solve a system of

two equations. Therefore, let us consider, for example, a two dimensional function

ϕ(y) = (y, y2). Then

g(1)(p) = EB(m, p) = mp,
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g(2)(p) = EB(m, p)2 = mp + (m2 − m)p2.

Thus, a system of equations for two parameters (λ, β) has the form:

m
∫ T

0
p(t, θ)dt = hn

[T/hn]∑

k=1

ynk (4.60)

∫ T

0

(
mp(t, θ)) + (m2 − m)p(t, θ)2

)
dt = hn

[T/hn]∑

k=1

y2
nk, (4.61)

Then we get a system of two nonlinear equations for two unknown parame-

ters (λ, β) which can be solved in a similar way using the analytic and numeric

technique discussed above.

Numerical Calculations and Statistical Estimation:

Consider the equations (4.60) and (4.61). Using the iterative method which

was used for the single unknown parameter case, and equations (4.44),(4.45) we

can find a numerical solution for the system of equations (4.60), (4.61) using the

following:

Let us denote

C∗(t, λ, β) =
∫ t

0
mp(t, θ)dt +

∫ t

0
(m2 − m)p2(t, θ)

and,

C∗
k+1 = C∗

k + Ck +
1

a
(m2 − m)(

yk

1 − rk

)2δ.

Then C∗
T/δ(T, λ, β) gives the approximation of the numeric value of C∗(T, λ, β).

We can now estimate the unknown parameters λ0, β0 using the system of

equations,

C(T, λ, β) =
1

n

[T/hn]∑

k=1

ynk (4.62)

C∗(T, λ, β) =
1

n

[T/hn]∑

k=1

y2
nk. (4.63)
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In this case, we choose an initial value both for λ and β and adjust the values

until both of the equations (4.62) and (4.63) have left and right hand side closest

to each other and find the estimators of unknown parameters.

Analytical Approximation and Estimation:

The system of equations (4.60) and (4.61) is represented in terms of p(t),

which was approximated analytically with p(t) = C0 + C1e
−λt − C2e

−mt/a. Using

this approximation, we have the system of equations,

m

a

∫ T

0
(C0 + C1e

−λt − C2e
−(m/a)t)dt =

1

n

[T/hn]∑

k=1

ynk (4.64)

m

a

∫ T

0
(C0 + C1e

−λt − C2e
−(m/a)t)dt+

1

a

∫ T

0
(m2−m)(C2

0+C2
1e

−2λt+C2
2e

−2mt/a+C0C1e
−λt−C0C2e

−mt/a−C1C2e
−(λ+m/a)t)dt =

1

n

[T/hn]∑

k=1

y2
nk. (4.65)

Then the estimators for the unknown parameters (λ0, β0) can be calculated

by simultaneously solving the equations (4.64) and (4.65).

Approximation when the Number of Machines in Repair is Known:

If the number of failed machines in the repair is known, we can rewrite the

system of equations (4.60), (4.61) using equation(4.59) in the following way:

r(T ) + Nµ(1 − β)T + (1 − Nµ

λ
)βe−λT − (1 − Nµ

λ
)β =

1

n

[T/hn]∑

k=1

ynk. (4.66)

1

n

[T/hn]∑

k=1

ynk +
1

a

∫ T

0
(m2 − m)p2(t)dt =

1

n

[T/hn]∑

k=1

y2
nk. (4.67)

And finally, we can find the estimators for λ0 and β0 by solving the system

of equations 4.66) and (4.67) for two unknowns, λ and β. Note that, the equa-

tion (4.67) can be solved using either the numerical method or the analytical

approximation.
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4.5 Simulation Results

The theoretical results obtained in the sections 4.1 through 4.4 are devoted to

the asymptotic analysis, when n → ∞. In this section we consider the simulation

of the system for finite samples and estimate the unknown parameters using

trajectory observations. For Model 1: A reliability model without replacement,

we also provide the comparison between theoretical results and simulation results.

For the other models, we provide the estimators and their properties obtained by

simulations.

Model 1: A Reliability Model without Replacement

The system is simulated for the failure rate λ0 = 0.1 and the repair rate

µ = 0.3 and different values of n,m, hn and total observation time T . Consider

the case when µ is known and λ is unknown, and we want to estimate λ. We

find the estimator solving the moments method equation obtained in Section 4.1,

which is
mλ

a(λ + µ)

(
T − e−(λ+µ)T

λ + µ
+

1

λ + µ

)
= hn

[T/hn]∑

k=1

ynk

for λ.

The summation on the right hand side of (4.7) is obtained by observations,

and the left hand side was calculated using the function s(t), which is given by

(4.10).

The estimated values of λ0 and the bias |λ̂−λ0| for T = 10 using 5 run results

and different values of n,m, ahn are given in Table (4.1).

n m ahn λ̂ |λ̂ − λ0|
10000 500 0.001 0.09926 0.00074
5000 500 0.001 0.09855 0.0145
1000 100 0.001 0.097775 0.002225
100 10 0.01 0.095375 0.04625

Table 4.1: Model 1: Estimated values for λ0

We will now study the effect of values of the system parameters n, hn and a
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to the value of the estimator.

When n → ∞, we have the relations (3.34) and (3.39) valid. For simulation,

if n is not large enough, we can see from the results that the mean square error

increases significantly. The mean square error for n = 10000 was calculated as

3.54 ∗ 10−6 while for n = 100 it was calculated as 0.00803.

Note that theoretical calculations were based on the assumptions that,

n → ∞, hn → 0 and nhn → ∞. It is obvious from the weak convergence

(λ̂ − 0.1)/
√

hn
w⇒ N(0, aR2/B2), that λ̂ − 0.1 asymptotically has normal distri-

bution with mean zero and variance hn aR2/B2. The asymptotic variance of the

difference λ̂ − 0.1 depends on the values of hn, a, T and m.

According to this relation, as hn decreases the variance decreases as well.

For practical reasoning, while a is constant, if hn is selected too small, then the

time between the inspections will be small that it will be close to continuously

observing the system. If ahn is constant, then we can choose the value of hn as

small as possible, but this would force a to be very large so the resulting variance

would not reduce. Also, for simulation choosing hn too small forces nhn be too

small which violates the assumption of our theoretical calculations that nhn is

large.

For n = 5000, T = 3.28, a = 1 and m = 100 the variances of the limiting

distribution of the estimators and estimated values of λ for different values of hn

are given below.

hn variance λ̂ (λ̂ − 0.1)
0.001 0.009934*10−5 0.0995 0.0005
0.01 0.496718*10−5 0.102 0.002
0.05 0.0.99344*10−5 0.107 0.007

Table 4.2: Model 1: Effect of hn to the estimator

Keeping other parameters constant, the result is that the smallest hn choice

gave the best estimator in terms of bias, which was expected.

The results of simulation are very much in agreement with our theoretical
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results. Even for n = 100, which is very small compared to other chosen n values,

the bias is 0.0426. This result would improve if we would use more then five runs

for estimation. For other cases, the quality of the estimators even for single runs

are very good and this is reflected in the five run results.

Model 2: Reliability Model with Replacement:

The model was simulated for n = 1000, hn = 1/n, and different values of

T, a, λ0, m and β0. In the Figure (A) for λ0 = 0.5, β0 = 1, a = 1, T = 5,m = 10

we give the trajectory observations and s(t, λ) which was calculated as

s(t, λ) =
λ

λ + mβ/a
(1 − e−(λ+mβ/a)t).

With the given values of parameters s(t) = 0.0476(1 − e−10.5 t). Note that,

this is the case when replacement is perfect, i.e. all failed devices in the sample

are replaced immediately.

In Figure (A) we give the trajectory observations and s(t, λ) for λ0 = 0.8, β0 =

0.6, a = 2 and T = 2. In this case s(t) = 0.347(1 − e−2.3 t).

The function s(t, λ) behaves very much like the trajectory of the process for

both of the cases. They are also good examples of why we can study the transient

conditions. The function captures the behavior of the trajectory even for small t.

Consider the case when β0 is known and we want to estimate the unknown

parameter λ0. We now use the equation

mλ

λ + mβ/a

(
T − 1 − e−(λ+mβ/a)T

λ + mβ/a

)
= hn

[T/hn]∑

k=1

ynk,

where ynk are our observations, to find the estimator.

In Tables (B.1), (B.2) and (B.3) the estimated values of λ0, bias |λ̂ − λ0|,
relative error |λ̂ − λ0|/λ0 and Mean Square Error (MSE) using 5 runs for the

reliability model with replacement grouped according to different values of T are

given.

For all T values, the maximum bias obtained is 0.2639, maximum relative error
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is 0.0034133779 and maximum mean square error value obtained is 0.00264134,

all of which was obtained when T = 1. When T = 10 the bias is less then 0.014,

and when T = 4 the bias is less then 0.02. From the tables we see that, as T

increases, the quality of the estimator increases also.

Since hn was fixed to the value 1/n = 1/1000, the choice of a did not affect the

results of simulation significantly. Even though increasing a from 1 to 2 resulted

in higher bias and relative error values for the same parameter sets, in several

cases the situation is otherwise, i.e. bias and relative error decreases as it can be

seen when T = 1, λ0 = 1, β0 = 0.6

In tables (B.4), (B.5) and (B.6) we give the simulation results when λ0 is

known and we want to estimate β0.

All simulation results agree with our theoretical results.

Model 3: Reliability Model with N Repairmen.

The model was simulated for different values of T, λ, µ,N and m when n =

1000, hn = 1/1000 and a = 1. For λ0 = 1.5, µ0 = 0.2, m = 5 and N = 5, Figure

(A) shows the trajectory observations and the function s(t, λ). It was obtained

in section 4.3 that

s(t, λ) = (1 − Nµ/λ)(1 − e−λt).

With the given values of parameters we now have s(t) = 1
3
(1 − e−1.5t)

Figure (A.4) shows s(t, λ) and trajectory observations for m = 10, λ =

0.8, T = 5, N = 5, µ = 0.1. In this case s(t) = 0.375(1 − e−0.8t)

The function s(t) very much captures the behavior of the trajectory for both

of the cases.

We consider the case when µ0 is known and we want to estimate the unknown

parameter λ0.



CHAPTER 4. PARAMETER ESTIMATION IN RELIABILITY MODELS 87

We use the equation

m(1 − Nµ/λ)
(
λT − 1 + e−λT

)
/λ = hn

[T/hn]∑

k=1

ynk

to estimate the unknown parameter and ynk are the observations.

Table (B.7) summarizes the results of estimation for different cases of param-

eters T, λ0, µ0, N .

The condition λ > Nµ is satisfied by all parameter sets chosen for each

realization. But the ratio Nµ/λ is not the same for all cases. We see from our

estimation function that as this ratio gets closer to 1, the estimation function

gets closer to 0, independent of observations, making estimation procedure less

effective. Due to this fact, the worst estimator obtained was with λ0 = 1.5, µ0 =

0.2, N = 5 and T = 1 having the ratio Nµ/λ = 2/3 which is the biggest ratio in

the simulation.

The simulation results supported our theoretical results indicating a bias for

estimators less than 0.029, relative error less then 0.019 and mean square error

less than 0.0045.

Model 4: Reliability Model with Probabilistic Chance of Repair

The simulation was performed for different values of λ0, β0 and a for hn = 1/n,

n = 1000, µ = 0, 1, N = 5, and T = 10. The Figure (A.8) shows the simulated

values of yk/(1 − rk) for λ0 = 1, β0 = 0, 8 and a = 1 and Figure (A.7) shows the

simulated values of observations ynk. Due to great variation in the observations,

total time of inspection is chosen as T = 10.

Single Unknown Parameter Case.

Consider the case when β0 is known and we want to estimate the value of the

parameter λ0.

Numerical Solution: In the Figure (A.9), we give the simulated values

yk/(1 − rk) for λ0 = 1, β0 = 0.8 and the numerical approximation C(t, λ, β).

For illustration we also provide the figures for simulated values of yk and the
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numerical solution of y(t) and simulated values of rk and numerical solution of

r(t) in the Figures (A.10) and (A.11).

It can be seen from Figures (A.9), (A.10) and (A.11) that the numerical

solution captures the behavior of trajectories for all cases.

Consider the case when the parameter β0 is known and we want to estimate

the parameter λ0. For estimation we use the equation

C(T, λ, β) =
1

n

[T/hn]∑

k=0

ynk

where ynk are observations.

Tables (B.8) and (B.9) give the results of estimation of λ0 for 5 and 10 runs

respectively.

Analytical Approximation: The Figure (A.12) shows the simulated values

yk/(1 − rk) for λ = 1, β = 0.8, a = 1 and the analytical approximation p(t).

p(t) was obtained in the section 4.4 as

p(t) = C0 + C1e
−λt − C2e

−mt/a.

With the given values of parameters we have

p(t) = 0.01 + 0.011661e−t − 0.021661e−10t.

We also like to mention that with the same values of parameters we have

s(t) = 0.5(1 − e−t),

y(t) = 0.00505 + 0.01661e−t − 0.02166e−10t,

and

r(t) = 0.49495 − 0.51661e−t + 0.02166e−10t.

We also give the simulated values of the number of failed devices which are

not in repair yk and the number of failed devices which are in repair, rk and their



CHAPTER 4. PARAMETER ESTIMATION IN RELIABILITY MODELS 89

analytical approximation of numerical solution, y(t) and r(t) for visualization in

Figures (A.13) and (A.14).

Consider the case when the unknown parameter is λ0

In the estimation we use the equation

C0T − C1

λ
e−λT +

C2

m/a
e−mT/a +

C1

λ
− C2

m/a
=

hn

m

[T/hn]∑

k=1

ynk.

Tables (B.10) and (B.11) summarize the results of the estimation of λ0 for 5

and 10 runs respectively.

Estimation when r(T) is Known:

In the case when r(T) is known we give the results of estimation of λ0 in the

Tables (B.12) and (B.13). We use the numerical solution to find the right hand

side of equation

r(T ) + Nµ(1 − β)T + (1 − Nµ

λ
)βe−λT − (1 − Nµ

λ
)β =

1

n

[T/hn]∑

k=1

ynk.

When λ0 is known, the estimation results of the β0 by simulation is given in

the tables (B.14), (B.15) and (B.16) . Note that, hn is chosen as 1/n, n = 1000,

µ = 0.1, N = 5, and T = 10.

When both Parameters are Unknown:

For 5 runs, we give the simulation results in the Tables (B.17), (B.18) and

(B.19), for n = 1000, hn = 1/1000 and T = 10 and different values of λ0, β0 and

using three approaches presented in section (4.4).

We see from Figures (A.9), (A.10) and (A.11) that, numerical solutions of

functions p(t), y(t) and r(t) give very good approximation to the simulated values

of trajectories. Hence, our simulation results agree with our theoretical calcula-

tions.
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For 10 runs, maximum relative error using numerical solution is less than 0.19,

using analytical approximation it is less than 0.082 and when r(T ) is known it is

less than 0.074. With two exceptions, which belong to numerical solution, relative

error of the estimator for λ0 is less then 0.082 for all methods. Even though, we

were not able to represent the function p(t) exactly, we still can use the approach

for parameter estimation.

As was expected, analytical approximation to numerical solution did not pro-

vide a solution of equation (4.29), so the estimator could not be found for several

cases using analytical approximation when both parameters are unknown. For a

single unknown parameter case, there was only one set of observations yielding

the same no solution situation when λ0 is the unknown parameter.

For comparison, the results given in tables are provided so that we can find

a solution of equation (4.55) and same set of observations are used to estimate

the parameters with each method for respective values of λ0, β0 and a. We also

like to mention that, when analytical approximation does not provide a solution,

numerical solution provides an estimator which has very high bias and absolute

error which would not be appropriate.

Due to the fact that, the analytical approximation undervalues the numerical

solution for our parameter sets (in different degrees for different values of parame-

ters for the chosen sets), the estimators obtained by analytical approximation are

always smaller then the ones obtained by numeric solution. But, since in most of

the cases numerical solution tends to overestimate the parameter, the analytical

approximation gave better results then numerical solution case.

When only a single parameter is unknown, for several estimators of λ0 the

absolute error and mean square error were relatively high. This is due to the fact

that observations have great variance and we were not able to solve the differential

equations but used the approximations. These errors are considerably reduced

when r(T ) is known.

When we analyze the equation (4.55) we see that the function on the left hand

side is linear with respect to β and non linear with respect to λ. That is why
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it is not a surprise that when β0 is unknown, the estimation results are better

then when λ0 is unknown. All methods results are quite satisfactory with very

small bias, absolute errors and mean square errors for the estimators of β0. The

simulation results of estimation when λ0 is known and β0 is unknown for each of

three methods explained are given in Tables (B.14), (B.15) and (B.16).

The value of the information of r(T ) even more visible when both parameters

are unknown. Generally since we have two unknowns and two equations it was

expected to have higher error values of the estimators. The fact that both λ0

and β0 are unknown did not effect the estimators for β0 and the errors are very

small.



Chapter 5

Conclusions

In this thesis, we consider an approach to statistical parameter estimation in

stochastic systems. Depending on the nature of the problem, an estimator is

represented as one of the following ways:

1. As a solution of stochastic equation fn(θ) = 0, with an additive type of

function constructed on the trajectory of the observed system,

2. As the extreme point (set) of a random function Fn(θ) constructed on the

trajectory of the observed system.

In order to be able to analyze the asymptotic behavior of the estimator con-

structed as a solution of stochastic equation, such as moments type estimators, we

give the results about the solutions of stochastic equations. We present the result

that, if the functions fn(θ) uniformly converges to a limiting function f0(θ) such

that f0(θ) satisfies the condition S, then the solution set of equation fn(θ) = 0

converges in probability to the solution of equation f0(θ) = 0. We also consider

the asymptotic normality of such estimators and show that the normed devia-

tion weakly converges to a random variable which is the solution of a limiting

equation.

We also consider the asymptotic behavior of extreme points of random func-

tions Fn(θ). We give the result that if Fn(θ) uniformly converges to some limiting

92
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function F0(θ) where, F0(θ) satisfies the condition S2, then the extreme points

of Fn(θ) converges in probability to the extreme point of F0(θ). We also give the

result of weak convergence of normed deviation.

Definition and properties of Switching Processes and a subclass of Switching

Processes are also given. We give the results of averaging principle and diffusion

approximation for Recurrent Processes of semi-Markov (RPSM) type.

Using these results, we study the asymptotic properties of estimators con-

structed by trajectory observations of stochastic systems. For moments type,

maximum likelihood and least squares method estimators, we show that the es-

timators are consistent and asymptotically normal.

Combining the results of solutions of stochastic equations and the limit theo-

rems for Switching Processes, we further investigate the properties of the moments

method type estimators when estimators are constructed on the trajectory of a

Switching Process.

The approach of representing the estimator by trajectory observations is il-

lustrated on the applications of four different but related reliability models. For

each model, we represent the trajectory of the process as a switching process and

prove that the system process converges to the solution of a differential equation.

Using our previous results, we estimate the unknown parameters. Commonly

in all models, we consider a large number (n) of devices which are subject to

independent random failures with failure rate of each device given as λ. All

systems are inspected at the sequential times tk so that t1 < t2 < t3... on the time

interval [0, T]. The inspection is provided instantaneously.

Model 1 is a reliability model without any disturbance to the system. In addi-

tion to the failures, each device has a repair rate µ. The inspection is performed

as follows: At the time of inspection a sample is selected at random and the

number of failed devices in that sample is observed. Without any replacement

the sample is returned back. We estimate the unknown parameter λ and prove

the consistency and asymptotic normality of the estimator.
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In the second model we consider a reliability model with replacement. In

this case no repair is available. At the inspection times, a sample is selected in

random and the number of failed devices in that sample is observed. The observed

(detected) failed devices are immediately replaced by new ones, and sample is

returned back. However, the inspection is imperfect so that, a failed device

in the sample is observed (or detected) only with probability β. We estimate

the unknown parameters (for a single unknown case) λ and β and prove the

consistency of the estimators.

The case where we have N repairmen each with large repair rate in a relia-

bility system is considered in third model and we have no replacement. At the

inspection time, we take a sample at random and observe the failed devices in

that sample. After the inspection, we return the sample back immediately. In

this case, we estimate the unknown parameter λ and prove the consistency of the

estimator.

The final model has a more general and complicated structure than the other

ones, including N repairmen each having large repair rate. When a device fails,

there is a chance that it will not be sent to the repair immediately. In this

case, when a device fails, it is sent to repair process only with probability β,

so that a failed device will be considered as working and stay in the workplace

with probability 1 − β. If at least one repairman is available, the device which

is sent to repair starts being repaired and otherwise, it waits in queue (FCFS)

for its turn. At the times of inspections, a sample is selected at random from

the devices which are not in repair process and the number of failed devices are

observed in that sample. The observed failed devices are sent to repair process

immediately and the remaining of the sample is returned back to working. We

estimate the unknown parameters λ and β for single unknown parameter and

when both parameters are unknown.

For this model, we were unable to find a solution to system of differential

equations which represent the behavior of the system. We estimated the unknown

parameters with three different approaches: using numerical solution, using an

analytical approximation for numerical solution and finally assuming that the
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number of devices which are in repair at the end of the inspection period (at time

T) is known.

We also would like to mention that, this model could be also analyzed by

assuming that the number of failed devices in repair process is always known.

This assumption is reasonable since we assume that the failed devices are not

being repaired in their working place, but sent somewhere else. This information

is very much likely to increase the quality of the estimators.

We could extend our final model for future studies in several ways. Since the

number of devices in repair process is very large, it is possible to replace the failed

devices which are observed in the inspections. We can also consider the case when

the devices have more than one type of failures, or when the time between the

inspections is not constant, possibly random, depending on the previous value of

the trajectory.

The simulation results are very much in agreement with the theoretical results.

We successfully proved the convergence of the trajectories of systems to a limiting

deterministic function. The calculated functions representing the system process

behave very much like the trajectories of simulated systems.

Although we studied only the consistency of the moments method estimators,

except for the first model, it is possible to study the asymptotic normality using

our previous results. It is also possible to consider maximum likelihood and least

squares method estimators for Switching Processes for future works.
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Appendix A

Figures
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Figure A.1: Model 2: Simulation of trajectory of failed devices for reliability
model with replacement (λ0 = 0.5, β0 = 1, T = 5,m = 10)
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Figure A.2: Model2: Simulation of trajectory of failed devices for reliability model
with replacement (λ0 = 0.8, β0 = 0.6, a = 2, T = 2)
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Figure A.3: Model3: Simulation of trajectory of failed devices for reliability model
with N repairmen (m = 5, λ0 = 1.5, T = 2, N = 5, µ0 = 0.1)
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Figure A.4: Model 3: Simulation of trajectory of failed devices for reliability
model with N repairmen (m = 10, λ0 = 0.8, T = 5, N = 5, µ0 = 0.1)
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Figure A.5: Model 4: Numerical solution and analytical approximation of nu-
merical solution when λ0 = 1, β0 = 0.8 and a = 1.
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Figure A.6: Model 4: Numerical solution and analytical approximation of numeric
solution when λ0 = 2, β0 = 0.8 and a = 2.
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Figure A.7: Model 4: Observations ynk for λ0 = 1, β0 = 0.8 and a = 1
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Figure A.8: Model 4: Simulated values for yk/(1 − rk) versus time when λ0 = 1,
β0 = 0.8 and a = 1
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Figure A.9: Model 4: Simulated values for yk/(1 − rk) and numerical solution
when λ0 = 1, β0 = 0.8 and a = 1
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Figure A.10: Model 4: Simulated values for yk and numerical solution when
λ0 = 1, β0 = 0.8 and a = 1
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Figure A.11: Model 4: Simulated values for rk and numerical solution when
λ0 = 1, β0 = 0.8 and a = 1



APPENDIX A. FIGURES 107

0

0.005

0.01

0.015

0.02

0.025

0.03

0 2 4 6 8 10

 simulated values analytical approximation

Figure A.12: Model 4: Simulated values for yk/(1 − rk) and analytical approxi-
mation of numerical solution when λ0 = 1, β0 = 0.8 and a = 1

0.000

0.005

0.010

0.015

0.020

0.0 2.0 4.0 6.0 8.0 10.0 12.0

simulated values analytical approximation of y(t)

Figure A.13: Model 4: Simulated values of yk and analytical approximation of
numerical solution when λ0 = 1, β0 = 0.8 and a = 1
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Figure A.14: Model 4: Simulated values of rk and analytical approximation of
numerical solution when λ0 = 1, β0 = 0.8 and a = 1
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Tables

T λ0 β0 a λ̂0 |λ̂ − λ0| |λ̂ − λ0|/λ0 MSE

10 0.5 1 1 0.50096931 0.00096931 0.001938619 7.76242E-05

10 0.5 1 2 0.501820594 0.001820594 0.003641188 6.74354E-06

10 0.5 0.6 1 0.499942028 5.79724E-05 0.000115945 0.000166628

10 0.5 0.6 2 0.49841524 0.00158476 0.00316952 6.98167E-05

10 0.8 0.8 1 0.791839167 0.008160833 0.010201041 0.000138495

10 0.8 0.8 2 0.813604912 0.013604912 0.017006141 0.000260837

10 1 1 1 1.001518792 0.001518792 0.001518792 0.000154411

10 1 1 2 1.0002315 0.0002315 0.0002315 2.72806E-05

10 1 0.6 1 0.987725583 0.012274417 0.012274417 0.000306165

10 1 0.6 2 1.00150455 0.00150455 0.00150455 0.000518706

Table B.1: Model 2: Estimated values , bias, relative error and mean square error
for λ̂, T=10 (5 runs).

109



APPENDIX B. TABLES 110

T λ0 β0 a λ̂ λ̂ − λ0 |λ̂ − λ0|/λ0 MSE

4 0.5 1 1 0.500133952 0.000133952 0.000267904 0.000259277

4 0.5 1 2 0.515968582 0.015968582 0.031937164 0.000303882

4 0.5 0.6 1 0.502947142 0.002947142 0.005894284 0.000162302

4 0.5 0.6 2 0.498818593 0.001181407 0.002362813 0.000180248

4 0.8 0.8 1 0.78648003 0.01351997 0.016899963 0.000490233

4 0.8 0.8 2 0.80742046 0.00742046 0.009275575 0.000327522

4 1 1 1 0.997878267 0.002121733 0.002121733 0.000168736

4 1 1 2 0.99441705 0.00558295 0.00558295 0.000124261

4 1 0.6 1 0.980128565 0.019871435 0.019871435 0.000565488

4 1 0.6 2 0.995710834 0.004289166 0.004289166 0.000101969

Table B.2: Model 2: Estimated values, bias, relative error and mean square error
for λ̂, T=4 (5 runs).

T λ0 β0 a λ̂ λ̂ − λ0 |λ̂ − λ0|/λ0 MSE

1 0.5 1 1 0.514292605 0.014292605 0.02858521 0.000442754

1 0.5 1 2 0.517066889 0.017066889 0.034133779 0.000394497

1 0.5 0.6 1 0.492029461 0.007970539 0.015941078 0.000913741

1 0.5 0.6 2 0.491485229 0.008514771 0.017029543 0.001126099

1 0.8 0.8 1 0.773609776 0.026390224 0.03298778 0.001367691

1 0.8 0.8 2 0.800458801 0.000458801 0.000573501 0.000725807

1 1 1 1 1.013997088 0.013997088 0.013997088 0.001113522

1 1 1 2 0.995500596 0.004499404 0.004499404 0.001001699

1 1 0.6 1 0.986711215 0.013288785 0.013288785 0.00264134

1 1 0.6 2 0.98983021 0.01016979 0.01016979 0.000772969

Table B.3: Model 2: Estimated values, bias, relative error and mean square error
for λ̂ , T=1 (5 runs)
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T λ0 β0 a β̂ |β̂ − β0| |β̂ − β0|/β0

10 0.5 1 1 0.998353 0.001647 0.001647058
10 0.5 1 2 0.996311 0.003689 0.003689408
10 0.5 0.8 1 0.799985 0.000015 1.88159E-05
10 0.5 0.8 2 0.790380 0.009620 0.012025549
10 0.5 0.6 1 0.600470 0.000470 0.000783956
10 0.5 0.6 2 0.602147 0.002147 0.003577824
10 0.8 1 1 1.002609 0.002609 0.002608958
10 0.8 1 2 0.996262 0.003738 0.003738204
10 0.8 0.8 1 0.808445 0.008445 0.010555632
10 0.8 0.8 2 0.786366 0.013634 0.017042914
10 0.8 0.6 1 0.599340 0.000660 0.001100468
10 0.8 0.6 2 0.600774 0.000774 0.001290252
10 1 1 1 0.998620 0.001380 0.001379511
10 1 1 2 0.999792 0.000208 0.000208398
10 1 0.8 1 0.807329 0.007329 0.009161841
10 1 0.8 2 0.800380 0.000380 0.000475528
10 1 0.6 1 0.607681 0.007681 0.012802373
10 1 0.6 2 0.599393 0.000607 0.001010954

Table B.4: Model 2: Estimated values, bias and relative error for β̂, T=10

T λ0 β0 a β̂ |β̂ − β0| |β̂ − β0|/β0

4 0.5 1 1 1.000798 0.000798 0.000797504
4 0.5 1 2 0.967535 0.032465 0.032465117
4 0.5 0.8 1 0.854106 0.054106 0.067632947
4 0.5 0.8 2 0.788455 0.011545 0.014430989
4 0.5 0.6 1 0.596693 0.003307 0.005511412
4 0.5 0.6 2 0.602028 0.002028 0.003379871
4 0.8 1 1 1.003356 0.003356 0.003356284
4 0.8 1 2 1.003925 0.003925 0.003924998
4 0.8 0.8 1 0.814631 0.014631 0.018288654
4 0.8 0.8 2 0.792491 0.007509 0.009385756
4 0.8 0.6 1 0.598919 0.001081 0.001801463
4 0.8 0.6 2 0.606624 0.006624 0.011040659
4 1 1 1 1.002351 0.002351 0.002350862
4 1 1 2 1.006019 0.006019 0.006019373
4 1 0.8 1 0.805840 0.005840 0.007300236
4 1 0.8 2 0.795309 0.004691 0.005864239
4 1 0.6 1 0.612824 0.012824 0.021372717
4 1 0.6 2 0.602886 0.002886 0.004810483

Table B.5: Model 2: Estimated values, bias and relative error for β̂, T=4
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T λ0 β0 a β̂ |β̂ − β0| |β̂ − β0|/β0

1 0.5 1 1 0.969734 0.030266 0.030265772
1 0.5 1 2 0.957369 0.042631 0.042631287
1 0.5 0.8 1 0.810403 0.010403 0.013003315
1 0.5 0.8 2 0.758366 0.041634 0.052042868
1 0.5 0.6 1 0.614664 0.014664 0.02444035
1 0.5 0.6 2 0.620395 0.020395 0.033992328
1 0.8 1 1 1.023811 0.023811 0.023810752
1 0.8 1 2 1.014220 0.014220 0.014220079
1 0.8 0.8 1 0.832733 0.032733 0.040916107
1 0.8 0.8 2 0.800561 0.000561 0.000701582
1 0.8 0.6 1 0.607227 0.007227 0.012044887
1 0.8 0.6 2 0.578141 0.021859 0.036432477
1 1 1 1 0.985490 0.014510 0.014509584
1 1 1 2 1.007070 0.007070 0.007069815
1 1 0.8 1 0.813064 0.013064 0.016330311
1 1 0.8 2 0.778592 0.021408 0.026760006
1 1 0.6 1 0.611750 0.011750 0.019582669
1 1 0.6 2 0.610308 0.010308 0.017180276

Table B.6: Model 2: Estimated values, bias and relative error for β̂, T=1

T λ µ N λ̂ λ̂ − λ |λ̂ − λ|/λ MSE
1 1 0.1 5 0.987050727 0.012949273 0.012949273 0.000722053
2 1 0.1 5 1.002429756 0.002429756 0.002429756 0.000899369
1 2 0.1 10 1.997986067 0.002013933 0.001006966 0.002951017
2 2 0.1 10 1.994035697 0.005964303 0.002982152 0.002176102
1 2 0.2 5 1.990849951 0.009150049 0.004575024 0.002873985
2 2 0.2 5 1.99006516 0.00993484 0.00496742 0.000901891
1 1.5 0.2 5 1.528625077 0.028625077 0.019083385 0.004431895
2 1.5 0.2 5 1.505427764 0.005427764 0.003618509 0.00049552

Table B.7: Model 3: Estimated values, bias, relative error and MSE for λ̂ (5
runs).
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λ0 β0 a λ̂ λ̂ − λ0 |λ̂ − λ0|/λ0 MSE
1 0.8 1 1.039 0.039 0.039 0.0546926
1 0.8 1 0.93546 0.06454 0.06454 0.027104178
1 0.8 2 1.0478 0.0478 0.0478 0.0502278
1 0.8 2 1.1426 0.1426 0.1426 0.1290346
1 0.6 1 0.98 0.02 0.02 0.0200272
1 0.6 1 1.0158 0.0158 0.0158 0.036437
1 0.6 2 0.9518 0.0482 0.0482 0.0083754
1 0.6 2 1.2244 0.2244 0.2244 0.1426488
2 0.8 1 2.0934 0.0934 0.0467 0.2645554
2 0.8 1 2.1542 0.1542 0.0771 1.253969
2 0.8 2 2.5486 0.5486 0.2743 0.417305
2 0.8 2 2.0876 0.0876 0.0438 0.4976952
2 0.6 1 2.1138 0.1138 0.0569 0.054767
2 0.6 1 1.8026 0.1974 0.0987 0.3459062
2 0.6 2 2.2584 0.2584 0.1292 0.2911372
2 0.6 2 2.4914 0.4914 0.2457 1.0060054

Table B.8: Model 4: Estimated values, bias, relative error and MSE for λ̂ using
the numeric solution (5 runs).

λ0 β0 a λ̂ λ̂ − λ0 |λ̂ − λ0|/λ0 MSE
1 0.8 1 0.98723 0.01277 0.01277 0.040898389
1 0.8 2 1.0952 0.0952 0.0952 0.0896312
1 0.6 1 0.9979 0.0021 0.0021 0.0282321
1 0.6 2 1.0881 0.0881 0.0881 0.0755121
2 0.8 1 2.1238 0.1238 0.0619 0.7592622
2 0.8 2 2.3181 0.3181 0.15905 0.4575001
2 0.6 1 1.9582 0.0418 0.0209 0.2003366
2 0.6 2 2.3749 0.3749 0.18745 0.6485713

Table B.9: Model 4: Estimated values, bias, relative error and MSE for λ̂ using
the numeric solution (10 runs)
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λ0 β0 a λ̂ λ̂ − λ0 |λ̂ − λ0|/λ0 MSE
1 0.8 1 1.0228 0.0228 0.0228 0.0493316
1 0.8 1 0.92476 0.07524 0.07524 0.027032248
1 0.8 2 1.0316 0.0316 0.0316 0.0441192
1 0.8 2 1.119 0.119 0.119 0.1086678
1 0.6 1 0.96906 0.03094 0.03094 0.018795098
1 0.6 1 1.0024 0.0024 0.0024 0.03241
1 0.6 2 0.94144 0.05856 0.05856 0.009086288
1 0.6 2 1.1978 0.1978 0.1978 0.118391
2 0.8 1 1.9584 0.0416 0.0208 0.1690748
2 0.8 1 1.934 0.066 0.033 0.7574628
2 0.8 2 2.3308 0.3308 0.1654 0.1812344
2 0.8 2 1.934 0.066 0.033 0.3040444
2 0.6 1 1.9892 0.0108 0.0054 0.0284808
2 0.6 1 1.706 0.294 0.147 0.3046364
2 0.6 2 2.0948 0.0948 0.0474 0.1558252
2 0.6 2 2.2326 0.2326 0.1163 0.4730562

Table B.10: Model 4: Estimated values, bias, relative error, MSE for λ̂ using the
analytic approach (5 runs).

λ β a λ̂ λ̂ − λ |λ̂ − λ|/λ MSE
1 0.8 1 0.97378 0.02622 0.02622 0.038181924
1 0.8 2 1.0753 0.0753 0.0753 0.0763935
1 0.6 1 0.98573 0.01427 0.01427 0.025602549
1 0.6 2 1.06962 0.06962 0.06962 0.063738644
2 0.8 1 1.9462 0.0538 0.0269 0.4632688
2 0.8 2 2.1324 0.1324 0.0662 0.2426394
2 0.6 1 1.8476 0.1524 0.0762 0.1665586
2 0.6 2 2.1637 0.1637 0.08185 0.3144407

Table B.11: Model 4: Estimated values, bias, relative error and MSE for λ using
the analytic approach (10 runs)
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λ0 β0 a λ̂ λ̂ − λ0 |λ̂ − λ0|/λ0 MSE
1 0.8 1 1.01932 0.01932 0.01932 0.011467432
1 0.8 1 0.9978 0.0022 0.0022 0.0046754
1 0.8 2 1.0372 0.0372 0.0372 0.005452
1 0.8 2 1.0018 0.0018 0.0018 0.0131486
1 0.6 1 1.0072 0.0072 0.0072 0.017818
1 0.6 1 1.0824 0.0824 0.0824 0.0515
1 0.6 2 1.0806 0.0806 0.0806 0.0152486
1 0.6 2 0.931 0.069 0.069 0.0129558
2 0.8 1 2.1298 0.1298 0.0649 0.0346554
2 0.8 1 2.1624 0.1624 0.0812 0.1847108
2 0.8 2 2.0318 0.0318 0.0159 0.036183
2 0.8 2 1.9946 0.0054 0.0027 0.0703102
2 0.6 1 1.8916 0.1084 0.0542 0.0641188
2 0.6 1 2.4022 0.4022 0.2011 0.3184426
2 0.6 2 2.1824 0.1824 0.0912 0.28052
2 0.6 2 2.0622 0.0622 0.0311 0.1313546

Table B.12: Model 4: Estimated values, bias, relative error and MSE for λ̂ when
r(T) is known (5 runs).

λ0 β0 a λ̂ λ̂ − λ0 |λ̂ − λ0|/λ0 MSE
1 0.8 1 1.00856 0.00856 0.00856 0.008071416
1 0.8 2 1.0195 0.0195 0.0195 0.0093003
1 0.6 1 1.0448 0.0448 0.0448 0.034659
1 0.6 2 1.0058 0.0058 0.0058 0.0141022
2 0.8 1 2.1461 0.1461 0.07305 0.1096831
2 0.8 2 2.0132 0.0132 0.0066 0.0532466
2 0.6 1 2.1469 0.1469 0.07345 0.1912807
2 0.6 2 2.1223 0.1223 0.06115 0.2059373

Table B.13: Model 4: Estimated values, bias, relative error, MSE for λ̂ when
r(T ) is known (10 runs)
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λ0 β0 a β̂ |β̂ − β0| |β̂ − β0|/β0 MSE
1 0.6 1 0.60542 0.00542 0.009033333 0.0000974
1 0.6 1 0.60206 0.00206 0.003433333 0.000026
1 0.6 2 0.6079 0.0079 0.013166667 0.0008
1 0.6 2 0.60188 0.00188 0.003133333 0.00000525
2 0.8 1 0.7996 0.0004 0.0005 0.0000048
2 0.8 1 0.8027 0.0027 0.003375 0.0000342
1 0.8 2 0.7958 0.0042 0.00525 0.0000402
1 0.8 2 0.80298 0.00298 0.003725 0.0000426
1 0.8 1 0.799 0.001 0.00125 0.0000406
1 0.8 1 0.80148 0.00148 0.00185 0.0000535
2 0.8 2 0.8011 0.0011 0.001375 0.00000825
2 0.8 2 0.7994 0.0006 0.00075 0.0000254

Table B.14: Model 4: Estimated values, bias, relative error and MSE for β̂ using
the numeric solutions (5 runs)

λ0 β0 a β̂ |β̂ − β0| |β̂ − β0|/β0 MSE
1 0.6 1 0.6062 0.0062 0.010333333 0.000109
1 0.6 1 0.608 0.008 0.013333333 0.000122
1 0.6 2 0.5966 0.0034 0.005666667 0.0000638
1 0.6 2 0.6027 0.0027 0.0045 0.00000885
2 0.8 1 0.8008 0.0008 0.001 0.0000052
2 0.8 1 0.8035 0.0035 0.004375 0.0000404
1 0.8 2 0.7964 0.0036 0.0045 0.0000352
1 0.8 2 0.8032 0.0032 0.004 0.0000444
1 0.8 1 0.7994 0.0006 0.00075 0.0000458
1 0.8 1 0.8018 0.0018 0.00225 0.0000566
2 0.8 2 0.802 0.002 0.0025 0.0000123
2 0.8 2 0.8001 1E-04 0.000125 0.0000236

Table B.15: Model 4: Estimated values, bias, relative error, MSE for β̂ using the
analytic approximation (5 runs).
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λ0 β0 a β̂ |β̂ − β0| |β̂ − β0|/β0 MSE
1 0.6 1 0.6072 0.0072 0.012 0.000202
1 0.6 1 0.6057 0.0057 0.0095 0.0000765
1 0.6 2 0.5996 0.0004 0.000666667 0.0000512
1 0.6 2 0.602 0.002 0.003333333 0.0000192
2 0.8 1 0.79776 0.00224 0.0028 0.0000354
2 0.8 1 0.8032 0.0032 0.004 0.0000484
1 0.8 2 0.7944 0.0056 0.007 0.0000496
1 0.8 2 0.7988 0.0012 0.0015 0.0000556
1 0.8 1 0.7972 0.0028 0.0035 0.0000928
1 0.8 1 0.8001 1E-04 0.000125 0.0000319
2 0.8 2 0.8024 0.0024 0.003 0.0000556
2 0.8 2 0.80046 0.00046 0.000575 0.0000547

Table B.16: Model 4: Estimated values, bias, relative error, MSE for β̂ when
r(T ) is known (5 runs).

λ0 β0 a β̂ λ̂ |β̂ − β0| |λ̂ − λ0| |β̂ − β0|/β0 |λ̂ − λ0|/λ0 MSE β̂ MSE λ̂
1 0.6 1 0.60788 1.5227 0.00788 0.5227 0.01313 0.5227 8.88E-05 0.552

1 0.6 1 0.605 1.0656 0.005 0.0656 0.00833 0.0656 4.58E-05 0.037

1 0.6 2 0.6082 1.5562 0.0082 0.5562 0.01366 0.5562 0.00014 0.633

1 0.6 2 0.6028 1.606 0.0028 0.606 0.00466 0.606 0.0002 0.146

2 0.8 1 0.7958 2.73 0.0042 0.73 0.00525 0.365 7.34E-05 2.590

2 0.8 1 0.7982 1.92 0.0018 0.08 0.00225 0.04 1.95E-05 0.265

2 0.8 1 0.8006 2.2894 0.0006 0.2894 0.00075 0.1447 6.38E-05 1.291

1 0.8 2 0.8002 1.2004 0.0002 0.2004 0.00025 0.2004 0.000027 0.067

1 0.8 2 0.8038 1.4676 0.0038 0.4676 0.00475 0.4676 0.000119 0.582

1 0.8 1 0.8008 1.444 0.0008 0.444 0.001 0.444 6.44E-05 0.734

1 0.8 1 0.7994 1.4346 0.0006 0.4346 0.00075 0.4346 0.000011 0.917

2 0.8 2 0.7982 1.9012 0.0018 0.0988 0.00225 0.0494 7.46E-05 0.529

2 0.8 2 0.7968 2.3888 0.0032 0.3888 0.004 0.1944 5.40E-05 0.723

2 0.8 2 0.7996 2.885 0.0004 0.885 0.0005 0.4425 1.28E-05 1.745

Table B.17: Model 4: Estimated values, bias, relative error and MSE for β̂ and
λ̂ using numeric solutions (5 runs).
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λ0 β0 a β̂ λ̂ |β̂ − β0| |λ̂ − λ0| |β̂ − β0|/β0 |λ̂ − λ0|/λ0 MSE β̂ MSE λ̂
1 0.6 1 0.6094 1.589 0.0094 0.589 0.0156 0.589 0.000113 0.6907

1 0.6 1 0.6062 1.0906 0.0062 0.0906 0.0103 0.0906 6.02E-05 0.045

1 0.6 2 0.6116 1.64 0.0116 0.64 0.0193 0.64 0.000212 0.747

1 0.6 2 0.6056 1.228 0.0056 0.228 0.0093 0.228 0.000241 0.215

2 0.8 1 0.7976 3.059 0.0024 1.059 0.003 0.5295 6.64E-05 4.029

2 0.8 1 0.7994 2.035 0.0006 0.035 0.0008 0.0175 0.000017 0.321

2 0.8 1 0.80054 2.1282 0.00054 0.1282 0.0007 0.0641 6.82E-05 1.887

1 0.8 2 0.8014 1.26972 0.0014 0.26972 0.0018 0.26972 2.90E-05 0.107

1 0.8 2 0.8052 1.632 0.0052 0.632 0.0065 0.632 0.000141 0.921

1 0.8 1 0.8022 1.5206 0.0022 0.5206 0.0027 0.5206 6.74E-06 0.918

1 0.8 1 0.7988 1.7204 0.0012 0.7204 0.0015 0.7204 3.32E-05 1.203

2 0.8 2 0.8002 2.2128 0.0002 0.2128 0.00025 0.1064 7.58E-05 1.021

2 0.8 2 0.8002 2.914 0.0002 0.914 0.00025 0.457 5.50E-05 2.064

2 0.8 2 0.802 3.8042 0.002 1.8042 0.0025 0.9021 2.36E-05 6.025

Table B.18: Model 4: Estimated values, bias, relative error and MSE for β̂ and
λ̂ using analytic approximation (5 runs).

λ0 β0 a β̂ λ̂ |β̂ − β0| |λ̂ − λ0| |β̂ − β0|/β0 |λ̂ − λ0|/λ0 MSE β̂ MSE λ̂
1 0.6 1 0.5952 1.1358 0.0048 0.1358 0.008 0.1358 0.000366 0.0266

1 0.6 1 0.6044 1.0418 0.0044 0.0418 0.0073 0.0418 7.12E-05 0.0038

1 0.6 2 0.596 1.1217 0.004 0.1217 0.0066 0.1217 7.00E-05 0.0216

1 0.6 2 0.6008 1.053 0.0008 0.05296 0.00133 0.05296 0.000024 0.0106

2 0.8 1 0.7942 2.219 0.0058 0.21996 0.00725 0.10998 0.000119 0.188

2 0.8 1 0.8003 2.004 0.0003 0.00442 0.000375 0.00221 6.51E-06 0.033

2 0.8 1 0.8004 2.117 0.0004 0.1167 0.0005 0.05835 6.24E-05 0.177

1 0.8 2 0.79609 1.01894 0.00391 0.01894 0.0048 0.01894 4.62E-05 0.001

1 0.8 2 0.7978 1.02972 0.0022 0.02972 0.00275 0.02972 6.30E-05 0.0038

1 0.8 1 0.7938 1.0004 0.0062 0.0004 0.00775 0.0004 0.000131 0.0059

1 0.8 1 0.79 1.06034 0.01 0.06034 0.0125 0.06034 0.000254 0.1693

2 0.8 2 0.8044 2.0017 0.0044 0.0017 0.0055 0.00085 3.00E-05 0.112

2 0.8 2 0.7955 2.14238 0.0045 0.14238 0.0056 0.07119 0.00013 0.0394

2 0.8 2 0.79562 2.35488 0.00438 0.35488 0.0055 0.17744 2.92E-05 0.212

Table B.19: Model 4: Estimated values, bias, relative error and MSE for β̂ and
λ̂ when r(T) is known (5 runs).


