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ABSTRACT

STATISTICAL MODELING OF AGGLUTINATIVE
LANGUAGES

Dilek Z. Hakkani-Tii,ir
Ph.D. in Computer Engineeri:-mo·

Supervisor; Assoc. Prof. Kemtil Oflazer
August, 2000

Recent advances in computer hardware and availability of very large corpora 
have made the application of statistical techniques to natural language proce.ss- 
ing a possible, and a very appealing research area. Alany good results h;.i,ve been 
obtained by applying these techniques to English (and similar languages) in pars
ing. word sense disambiguation, part-of-speech tagging, and speech recognition. 
However, languages like Turkish, which have a number of characteristics that dif
fer from English have mainly been left unstudied. Turkish presents an interesting 
problem for statistical modeling. In contrast to languages like English, for which 
there is a very small number of possible word forms with a gi\’en root wc>rd. for 
languages like Turkish or Finnish with very productive agglutinative morphology, 
it is possible to produce thousands of forms for a given root word. This causes a 
serious data sparseness problem for language modeling.

This Ph.D. thesis presents the results of research and development of statisti
cal language modeling techniques for Turkish, and tests such techniques on basic 
applications of natural language and speech processing like morphological dis
ambiguation, spelling correction, and ?r-best list rescoring for speech recognition. 
For all tasks, the use of units smaller than a word for language modeling were 
tested in order to reduce the impact of data sparsity problem. For morphological 
disambiguation, we examined n-gram language models and ma.ximum entropy 
models using inflectional groups as modeling units. Our results indicate that 
using smaller units is useful for modeling languages with complex morphology 
and n-gram language models perform better than maximum entropy models. For 
n-best list rescoring and spelling correction, the n-gram language models that 
were developed for morphological disambiguation, and their approximations, via 
prefix-suffix models were used. The prefix-suffix models performed very well for 
n-best list rescoring, but for spelling correction, they could not beat word-based
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models, in terms of accuracy.

keywords: Natural Language Processing, Statistical Language Modeling, Agglu
tinative Languages, Morphological Disambiguation, Speech Recognition, Spelling 
Correction, n-gram Language Models, Maximum Entropy Models.



ÖZET

SONDAN EKLEMELİ DİLLERİN İSTATİSTİKSEL
MODELLENMESİ

Dilek Z. liakkani-Tür 
Bilgisayar Mühendisliği, Doktora.

Tez Yöneticisi: Doç. Dr. Kemal Oliazer 
.Ağustos. 2000

Bilgisayar donanımındaki .yeni geli.'jrneler ve çok büyük derlemlerin varlığı is
tatistiksel tekniklerin doğal dil işlemeye uygulanmasını mümkün ve çok çekici 
bir ara.ştırma alanı 3'apıru.ştır. Bu tekniklerin İngilizce ve benzeri dillerde cümle 
çözümleme (parsing), kelime anlamı tekleştirme (word sense disambiguation), 
sözcük sınıfı işaretleme (PO.S tagging) ve konuşma tanımaya uygulanmasıyla 
oldukça iyi sonuçlar elde edilmiştir. Ancak, Türkçe gibi, İngilizce ve benzeri diller
den bir takım farklı özellikleri olan diller genellikle bu açıdan incelenmernişlerdir. 
Türkçe'nin istatisi iksel modellenmesi ilginç bir problemdir. Verilen bir kökten 
az sayıda kelime üretilebilen İngilizce \'e benzeri dillerin aksine Türkçe 're Fince 
gibi üretken eklemeli biçimbinmi olan dillerde, veriien bir kökten binlerce, hatta 
milyonlarca, yeni kelime üretmek mümkündür. Bu dil modelleme açısından çok 
ciddi bir veri yetersizliği problemine sebep olur.

Bu doktora tezinde, Türkçe için istatistiksel dil modelleme tekniklerinin 
geliştirilmesi ve uygulanması ve bu tekniklerin biçimbirimsel tekleştirme. }'azım 
hatalarının düzeltilmesi ve konuşma tanıma için aday (u-best) listesini yeniden 
değerlendirme gibi temel doğal dil ve konuşma işleme uygulamalarında denenmesi 
anlatılmaktadır. Bütün bu uygulamalarda veri yetersizliği probleminin etkisini 
azaltmak için kelimeden daha küçük birimler kullanıldı Biçimbirimsel tekleştirme 
için, çekim eki grupları (inflectional groups) modell-'me birimi olarak kullanılarak 
/?.-birimli dil modelleri (n-gram language models) ve maksimum düzensizlik (ma;c- 
irnurn entropy) modelleri geliştirildi. Aldığımız sonuçlar, karmaşık biçimbirimsel 
yapı\’a sahip dilleri modellemek için sözcükten daha küçük birimler kullanmanın 
gerçekten de çok faydalı olduğunu gösterdi ve n-birimli dil modelleme yöntemi, 
maksimum düzensizlik yönteminden daha iyi sonuçlar verdi. .-\.day listesini 
i'eniden değerlendirmek ve yazım hatalarının düzeltilmesi içinse biçimbirimsel 
tekleştirme için geliştirilen bu modeller ve bunların önek-sonek (prefi.N'-suffi.N)

vı



v ı ı

modelleri gibi yakınsamaları kullanchldı. Önek-sonek modelleri, aday listesinin 
yeniden değerlendirilmesinde çok iyi sonuçlar verdi, ancak yazım hatalarının 
düzeltilmesinde doğruluk açısından sözcük tabanlı modellerden daha iyi sonuç 
vermedi.

Anahtar sözcükler: Doğal Dil İşleme, İstatistiksel Dil Modellerne. Biçirnbirirnsel 
lekleştirme, Konuşma Tanıma, Yazım Hatalarının Düzeltilmesi, n-birimli Dil 
-Vlodelleri. Maksimum Düzensizlik Modelleri.
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Chapter 1

Introduction

1.1 Overview

Statistical language modeling is the study of finding, characterizing and e.x'ploit- 
ing the regularities in natural language using statistical techniques. Recent ad
vances in computer hardware, and availability of \-ery large corpora have made 
the application of statistical techniques to natural language processing a feasi
ble and a very appealing research area. Many useful and successful results have 
been obtained by applying these technicpies to English (and similar languages) in 
parsing, word sense disambiguation, part-of-speech tagging, speech recognition, 
etc. However, languages which display a substantially different behavior than 
English, like Turkish. Czech. Hungarian, etc. in that, they have agglutinative or 
inflecting morphology and relatively free constituent order, have mainly been left 
unstudied.

This thesis presents our work on the development and application of statistical 
language modeling techniques for Turkish, and testing such techniques on basic 
applications of natural language processing like morphological disambiguation, 
n-best list rescoring for speech recognition, and spelling correction.
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Morphological disambiguation is the problem of selecting the sequence of mor
phological analyses (including the root) corresponding to a sequence of words, 
from the set of possible parses for these words. Morphological disambiguation 
is a very important step in natural language understanding, text-to-speiech syn
thesis, etc. For example, the pronunciation of the words may differ according to 
their parses (i.e.. the Turkish word 'bostancı' is pronounced different!}  ̂ depend
ing on whether it is"a proper noun (thri name of a location), or it is a common 
noun). Morphological disambiguation also reduces the search space during syn
tactic parsing i \ ’oucilainen. 1998].

.Speech recognition is the task of finding the uttered sequence of words, given 
the corresponding acoustic signal. Most of the time, the recognizer outputs a list 
of candidate utterances, that is, an n.-best list. Using a language model and the 
/i-best list, the accuracy of the speech recognizer can be impro\'ed. This process is 
called n-best list rescoring, and is a very impotant step for improving the speech 
recognition accuracy.

Spelling correction is the task of finding the correct \'ersion of a mis-spelled 
word, among the candidates that the spell checker proposes. Spelling checkers 
and correctors are a part of all modern word processors' and are also important 
in applications like optical character recognition and hand writing recognition.

The techniques developed in this thesis comprise the first comprehensive use 
of statistical modeling techniques for Turkish, and they can be used for other 
language processing and understanding, and speech processing tasks. These tech
niques can certainly be applicable to other agglutinative languages with produc
tive derivational morphology.

1.2 M otivation

The motivation for this thesis work can be summarized as below:
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• Statistical language modeling techniciues are successfully used for natural 
language processing tasks, for languages like English.

• Turkish displays different characteristics than mostly studied languages like 
English. Turkish is a free-constituent order language, with an agglutinative 
morphology. These differences complicate the straightforwiird application 
of statistical language modeling techniques to Turkish.

• There have I. een no previous studies in statistical language modeling of 
Turkish.

In the following subsections, we will concentrate on the cidvantages of statis
tical language processing techniques, and the differences of Turkish from other 
mostly studied languages, which motivate this study.

1.2.1 Statistical Language Modeling-

Approaches to speech and language processing can be divided into two main 
piiradigms: Symbolic and Stati$tical. Symbolic approaches are based on hand
crafted linguistically motivated rules. This paradigm is rooted back to Chomsky’s 
work on formal language theory, and has become very popular in linguistics and 
computer science. On the other hand, statistical approaches attempt to learn 
the patterns of the language using training data. .Statistical language processing 
emerged from the electrical engineering domain, by the application of Bayesian 
method to the problem of optical character recognition [.Jurafsky and .Martin, 
1999j. Statistical methods are based on probability theory, statistics, and infor

mation theory.

Some of the most important advantages and disadvantages of these approaches 
are listed below. Note that, the advantage of one approach is generally the 

disadvantage of the other.

• Symbolic approaches are usually developed for specific domains, and require 
extensive labor in building the rules or the grammars. Changes in the
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specifications of the task result in expensive tuning.

• Statistical approaches generally reciuire annotated training data, which is 
usually unavailable. This is true especially for lesser studied languages, such 
as Turkish.

• Por most of the tasks, rule-based systems give better performance than 
statistical systems. However, in recent years, with the availability of larger 
training data and more sophi.sticated statistical frameworks, it is possible 
to get better results using statistical methods.

• Statistical methods are more suitable for combining multiple information 
sources, such as prosodic or linguistic information.

1.2.2 Turkish

Turkish is a free constituent order language, in which constituents at certain 
phrase levels can change order rather freely according to the discourse context 
and text flow. The typical order of the constituents is Subject-Object-Verb, but 
other orders are also common, especially in discourse. The morphology of Turkish 
enables morphological markings on the constituents to signal their grammatical 
roles without relying on the word order. This doesn't mean that word order isn’t 
important, sentences with different word orders reflect different pragmatic con
ditions. However, the free constituent order property complicates the statistical 
language modeling approach.

Turkish has agglutinative morphology, with productive inflectional and deriva
tional suffixations. Hence, the number of distinct Turkish word forms is very 
larse. .So, we have to deal with data sparseness problem while training our lan
guage models. A detailed discussion on the properties of Turkish is given in the 

following chapters.
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1.3 Approach

All of the tasks, to which we applied our techniques, search for a sequence among 
possible sequences, using statistical language modeling techniques. So, all of these 
problems can be represented as the problem of finding the most probable sequence 
of units, X " . among the set of possible sequences of units. given corresponding 
information, Y. Then the problem can be represented as follows:

A'" = argmax P( A’lV’)
A '6 \

In morphological disambiguation. A is the sequence of morphological parses and 
}■' is the sequence of words that we are tiudng to analyze morphologically. In n- 
besr list rescoring, A' is the sequence of words and is the sequence of acoustic 
signals that we are trying to transcribe. In spelling correction. A' is again the 
sequence of words and Y  is the sequence of possibly mis-typed words.

Figure I.l shows the general architecture for all these tasks. The decoder is 
the morphological analyzer for morphological disambiguation, speech recognizer 
for n-best list rescoring, and the spelling checker for spelling correction. .-Vll of 
these systems output a set of possible candidates, and we use statistical models 
to select one of these possible candidates, which is shown as the rescoring box in 

that figure.

Y

Possible X 
sequences

Figure 1.1: .A generalization of all the tasks.
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1.4 Layout of the Thesis

The organization of this thesis is as follows: In Chapter 2, we describe the ba
sics of statistical language modeling techniques. In Chapter 3. we summarize 
the properties of Turkish, which make it different from la.nguages like English, 
which have been amply studied in this context, emphasizing the properties which 
complicate the straightforward application of statistical language modeling tech
niques. In Chapter 4, we describe briefly the related work on part-of-speech 
tagging, morphological disambiguation, statistical language modeling and Turk
ish. VVe include the related work on part-of-speech tagging, since our models are 
influenced from statistical part-of-speech tagging studies for English. In Chap
ter 0. we describe two approaches for morpbological disambiguation of Turkish, 
leased on ;t-gram language models and maxinuum entropy models. We present 
and compare our results with both techniques. In Chapters 6 and 7. we describe 
the application of our n-gram based models and their approximation to speech 
recognition and spelling correction, respectively. We present our ideas for future 
work and conclude in Chapter S.



Chapter 2

Statistical Language Modeling

2.1 Introduction

Statistical language modeling is the study of the regularities in the natural lan
guage. and capturing them in a statistical model. In this framework, natural 
language is viewed as a stochastic process, and the units of text (i.e., letters, 
morphemes, words, sentences) are seen as random variables with some probability 
distribution. Statistical language modeling attempts to capture local grammati
cal regularities.

Traditionally, statistical language modeling has been extensively used in 
speech recognition systems [Bahl eA al.. 1983; Sankar et ai. 1998; Beyerlein eJ. 
«/.. 1998, among others]. For example, in speech recognition, given an acoustic 
signal A. tlie aim is to find the corresponding seciuence of words W. So. we seek 
the word sequence W" that maximizes P{W\A). Applying Bayes’ Law, we getd

P(W)  X P ( / 1 | H / ' )  
ax 

'w
IT = argmax P(kT|,4) = argmax

IV P(,-l)
(2 .1 )

argmax/(x·) is the value of x that maximizes /(x)·
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The above maximization is carried out with the variable /1 fixed, so / ’(/I) is 
constant for different W, which leaves us with the following equation;

W  = argmaxT(1T|/1) -- argmaxTflT) x P{A\W)
PK w

(2 .2)

For a given acoustic signal /1, P{A\W) is estimated by the acoustic model, and 
P{\V) is estimated by the language model. So, language modeling deals with 
assigning a probability to ev'ery conceivable word string, IF. The probability 
distribution of the units of a statistical model is inferred using on-line text and 
speech corpora.

We can formulate many problems of natural language processing, like mor- 
|)hological disambiguation and noun phrase extraction, in a similar framework. 
For example, in morphological disambiguation, the input is a sequence of words 

-instead of the cicoustic signal, and the aim is to find the sequence of morphological 
parses belonging to each word. In the case of noun phrase bracketing, the output 
is the type of the boundary between the words, which can also be seen as tags 
attached to the words preceding or following the boundary.'

2.2 Evaluating the Performance of M odels

The most common metrics to evaluate the performance of language models are 
ait ropy, cro. ŝ entropy and perplexity. The concept of entropy was borrowed from 
thermodynamics by Shannon [Shannon, 1948], as a way of measuring the infor
mation capacity of a channel, or the information content of a language. Another 
measure, especially used by the speech recognition community is perplexity [Bahl 
et al. 1983]. In the following subsections, we will briefly describe each of these 
metrics. For a more detailed discussion on these metrics, the reader is referred 
to one of the textbooks on statistical language modeling, such as the one by 
-Vianning and Schütze [Manning and Schütze, 1999].

-The type of the boundary between the words can be "beginning of noun phra-se", "end of 
noun phrase’’ , or ■’none".
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2.2.1 Entropy

Entropy is a measure of avercige uncertainty of a random variable [Cover and 
Thomas, 1991]. Let A' be a random variable that ranges over the unit we are 
predicting, like \V(.)rds or letters, and P{x)  be the probability mass function of the 
random variable A' over the idphabet of our units:

P(x) = P(A' = ;r),:r G A'

Then the entropy of this random variable, denoted by H{X)  is:

H( X)  = -  y  Fix) log, P[x)
A

(2.3)

(2.4)

The log can be computed in any ba.se. If we use base 2. then the entropy is 
measured in bits.

Entropy, the amount of information in a random variable, is the lower bound 
on the average number of bits it would take to encode the outcome of that random 
\'ariable.

2.2.2 Cross Entropy

The quality of a language model M  can be judged by its cross entropy [Charniak, 
1993: Manning and .Schütze, 1999]:

EI{T. M) = -  -  E  Pm Cu’;) (2.5)

where = lui. too, ■ ■ ■ , iOn is a sequence of words of the language L, Pj· is the 
actual probability distribution that generated the data, that is, the possible word 
sequences of the language in consideration, and P\{ is a model of Pj·  ̂ that is, an 
approximation to Pj, that we try to construct using training data. .According to 
the Shannon-McMillan-Breiman Theorem [Cover and Thomas, 1991], if language 
is both stationary and ergodic, the following equations hold:^

La. stochastic process is stationary, if the probabiiities that it a.ssigns to a sequence are 
invariant with respect to time changes. A ianguage is ergodic. if any sanipie of the ianguage, if 
made iong enough, is a perfect sampie.
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H{T, M)  = - j u n  -  ^  Pt {lû ) log P^iw^)' Tl ;i

= — lini -log P.\[{tu'I)
n — X · n  · '  1 /

(2.6)

(2.7)

(,'ro.ss entrop}'· is a measure ol how muclx our appro.Kimated probabilit}^ cli.s- 
cributiou, M.  depcU'ts from actual language use, so one of the goals in language 
processing is to minimize it. Cross entrop}  ̂ can also be u.sed to compare differ
ent prc !)abilistic models, the model that has a lower cross entropy is better than 
the models that have higher cross entropies, in that it is closer to the actual 
probability distribution, that generates the language we use.

2.2.3 Perplexity

In the speech recognition community, often the perplexitij of the data, with re
gard to the model is reported to evaluate the performance of a language model 
[.Manning and Schütze, 1999];

ptrpltx i ly iT, M) — 2 d̂r,A·/) ( 2 .8 )

A perplexity ot k means that you are as surprised on the average, as \mu would 
have been, if you had to guess between k ec^uiprobable choices at each step. So 
the aim is again to minimize perplexittc

2.3 n-gram Language Models

Let i r  = WiW-2 ■.. Wn = lit" be a sec[uence of words, where Wi are the words in an 
hypothesis. P (1C) can be estimated using the chain rule:

P{W) = JJ  P{iui\iui. tm ,... = J][ M
i = l  i = l

(2.9)

In any practical natural language processing system, even with a moderate vo
cabulary size, it is clear that the language model probabilities / ’(■iyt|iu|~ )̂ can
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not be stored for each possible sequence wi_iu-2 ■ ■ - lOi. One way of limiting the 
number of probabilities is to partition the possible word histories -wiiU2 ■ ■ ■ Wi into 
a. reasonable number of equivalence classes An effective defini
tion of equivalence classes is the conventional n-gram language model, where two 
sequences of words are considered equivalent if they end in the same n — 1 words:

(2.10)

Figure 5.3 gives an example of a 4-gram model that approximates the probability 
of W(i given all the previous words.

w w.'1 ^2 ” .3
Orta Asya’daki petrol

W4
ve

w.
enerji

P(w^J Orta, Asya’daki, petrol, ve, enerji)» P(w ,̂l petrol, ve, enerji)

Figure 2.1: .A. 4-gram language model.

n-gram language models can be trained (that is. the probabilities 
P ( J  can be estimated) using a training corpus, and counting all the 
u-grams. The probability of a particular word Wn, given a sequence of n — 1 
words is estimated tis:

C 'jtnpT Wn)
P{tOn\iEr) = ( 2. 11)

where a>„) is the nimiber of times the word sequence tw" occurred in the
training text. This ratio is called a relative frequency, and the use of relative tre- 
([uencies in order to estimate probabilities is an example of the technique known 
as .Maximum Likelihood Estimation (MLE), since the resulting probability dis
tribution is the one using which the likelihood of the training data is maximized 

[.Jurafsky and Martin. 1999].

Even for small values of ?r. the number of probabilities to be estimated in an n- 
grarn model is enormous. Consider a 3-gram language model. For a vocabulary ol 
20.000 words, the number of 3-word sequences, thus the number of probabilities 
to be estimated is 8 * 10̂ .̂ This causes a data sparseness problem, since there 
is rarely enough data to estimate these probabilities. So, the n-grams that are
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not seen in the training data are assigned a zero probability, some of which 
should really have a non-zero probability. These zero-probability -n-grams can be 
assigned small probabilities using smoothing technicpies. In the next section, we 
will briefly mention some of the most popular smoothing techniques.

There are methods for clustering the words that are similar (i.e., that occur 
in similar contexts) into classes, so that the vocabulary size is reduced to the 
number of classes [Brown et ai, 1992b; Martin et al.. 1995; McMahon and vSmith, 
1996]. .-\.s a result, the parameter space spanned by n.-gram language models is 
also reduced, and the reliability of the estimates is increased.

The weakness of vr-gram language models is that with this method, it is as
sumed that a word can only depend on the preceding n — 1 words, although this 
is not ahvvys the case for natural language. For example, in the sentence “The 
dog that chased the cat barked.”, the history of the word ’barked’ consists of the 
words ’the’ and ‘cat’ in a 3-gram model. On the other hand, n-gram models have 
l)een s irprisingly successful in many domains.

2 A  Sm oothing Techniques

Smoothing is the process of assigning small probabilities to ?r-grams that were 
not seen in the training data because of chita sparseness. Different smoothing 
methods usually offer similar performance results. Chen and Goodman [1996] 
present extensive evaluations of different smoothing algorithms and demonstrate 
that the performance of certain techniques depend greatly on the training data 
size and n-gram order (that is. the number n). In the following subsections, we 
l)riefly describe some of the most popular smoothing techniques.
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2.4.1 D eleted  Interpolation

A solution to the sparse data problem is to interpolate multiple models of order 
1 . . . . .  n. .so that

-P( X P(u-’,|u 'L i+ i) + A) X P(ru;|ri ,̂--n+2) + · ■ · + ''̂ « ^ P i’-'-’i) (2.12)

where A,; ^  1. that is. we weight the contribution of each model so that the 
result is another probability tunction.

The values of the weights A; ma.y be set by hand, but in order to find the 
weights that work best, usually a previously unseen corpus, called the held-out 
data is used. The values of A/ that ma.ximize the likelihood of that corpus are 
selected using the E.xpectation .Vlaximization (EM) algorithm [Bahl tl ai, 1983;

. .Jelinek, 1998].

Linear interpolation can also be used as a way of combining multiple knowl
edge sources. Combining models using linear interpolation or another method can 
l)e seen as a solution to the blindness of the n-gram models to larger contexts, as 
well as the data sparseness problem.

2.4.2 Backing Off

The backoff smoothing techniciue, similar to deleted interpolation, uses lower 
order probabilities in case there is not enough evidence from higher order n- 
grams. i3ut. instead of interpoltiting the models, this method backs off to a lower 
or-’ler model. Backoff n-gram modeling is a method introduced by Katz [1987]. 
For example, the trigram model probabilities, according to the backoff method, 

ran be represented as follows:

P{u'i[wi-2, Wi-i) = <
P{Wi\Wi-2,'<-0i-l) if CilUi-2A-0i-l, Wi) > Cl
cti X P{wi[wi-i) if t(;,_i, to,·) < Cl and to,·) > c-2
02 X P{wi) otherwise

(2.13)
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I'he values of «i and a 2 are chosen appropriately, so that ro,_i) is
normalized. In this way, when there is not enough evidence to estimate the 
probability using the trigram counts, we back off and rely on the bigrams.

2,4.3 Good-Tiiring Smoothing

(Jood-Turing methods provide a simple estimate of the probability of the objects 
not seen in the training data, as well as an estimation of the probabilities of 
observed objects, that is consistent with the total probability assigned to the 
unseen objects [Gale, 1994]. The basic idea is to re-estimate the probability 
t'alues to assign to ?i-grams that do not occur or occur very rarely in the training 
data, by looking at the number of n-grarns which occur more frec[uently.

[;et r be a frec[uency in the training data, and N,· be the frec[uency of tlie 
frequency r. and A' be the total number of objects observed (in our case, the size 
of the training data). So. Ns -  11 means that there are only 11 distinct n-grams 
which occurred o times in the training data. Let P, be the probability that we 
estimate for the objects seen r times in the training data. Then, according to the 
Good-Turing methods,

Pr = N'
(2.14)

The r” should be set in a way that makes the sum of the probabilities for all 
the objects equal to 1. A precise statement of the theorem underlying the Good- 
Turing Methods is [Gale. 1994·]:

C = (r + i),£'(-AV+i)
E(Nr)

(2.1.5)

where E{x) represents the expectation of the random variable x. Therefore, 
the total probability assigned to the unseen objects is P’(A'i)/.V. This method 
assumes that we already know the number of unseen ??.-grarns. The number of 
unseen n-grams can be computed using the vocabulary size, and the number 
of seen n-grarns, so this method assumes that we already know the vocabulary- 
size. Table 2.4.3 gives a simple example of smoothing the bigriim probabilities 
computed using a training text of 65 tokens, where the vocabulary size, V is 10.
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r / P r" Psmoothed

0 63 0 0.3077 0.00488
1 20 0.01538 1 0.01538
2 10 0.03077 1.2 0.01855
3 4 0.04615 2 0.03077

Table 2.1: A simple bigram example for Good-Turing smoothing.

The third column lists the probabilities before smoothing, and the fifth column 
lists the smooth probabilities. The mass probability reserved for unseen bigrams is
0.5077. and is distributed among unseen bigrams. The number of unseen bigrams 

-  Â .IS

2.5 Hidden Markov M odels

In this section, we will discuss the most widely used and the most successful 
lechnique in the speech recognition domain, the hidden Markov models (HMMs). 
HMMs are also widely used for other language processing tasks like part-of-speech 
tagging, information extraction, etc.

An HMM is a probabilistic finite state machine specified by a five-tuple M =< 
S .T . l l .T .  О >. Here .5' is the set of the states with a unicpie starting state 
•s,j. T is the output alphabet. П is the set of initial state probabilities. T  is 
the set of state transition probabilities, p(.s,|.s,_i). and О is the set of output 
probabilities (either for transitions in arc-einNsion HMMs, q{wi\si-i, sp or for 
states in state-emission HMMs, r ( [ M a n n i n g  and .Schütze, 1999]. The 
probability of observing an HMM output string lüi, w-y. . . . .  tt’n can be computed 
by summing the probabilities of all the paths that generate that string. Therefore, 

the probability of wi, W2 , ■ ■ ■ ■ Wn is given by:

P{wi, W2,.. ■ ,гОп\М) = X] Y[p{ai,\ak-i) X q(wkWk-\/cik) (2.16)
ao 1
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for arc-emission HMMs and

P{Wy,W2,...,tUn\M) =
ill

Д  p(ajt|ayt_i) X r{wk\ak) (2.17)
k = l

for .state-emission HMMs, where G S represent the states traversed while emit
ting the output. These two HMM formulations are entirely equivalent [.Jelinek, 
1998]. so we will only give the algorithms for arc-emission HMMs in the remaining 
of this chapter.

Figure 2.2 is an e.xample of a three-state arc-emissioii HMM. The states are 
denoted by So, Si, and S2. The arcs represent the transitions between states, and 
are shown by the lines and arrows. Each arc is marked by a pair ,r : ij. where ,r 
is the s\'mbol emitted if that arc is taken, and y is the probability of taking that 
transition and outputting x. The calculation of the observation probability of the 
sequence "baab" using its trellia is also shown in this figure. A trellis is an easy 
way of showing the time evolution of the traversal process [.Jelinek. 1998]. The 
number of stages on the trellis is determined by the number of symbols in the 
output. There are two paths for generating "baab" as output, marked as solid 
lines on the trellis. The probability of generating this string is the sum of the 
probability of following those two paths.

2.5.1 Finding the Best Path

Gi\'en an observed output sequence W  = lui.to·), ■ ■ ■ ■ f-On, and an H.MM 
M =z < ,S', E. n, r ,  0  >. we can find the state sequence A" ■ ai, fl.>.. . . ,  a*, 
most likely to have caused it. using the Viterbi algorithm, a dynamic program
ming algorithm [Viterbi. 1967]. Our aim is to find .4'. satisfying the following:

= argmax P ( .4 ] IV. Л/ )
'■ .4

P(A, W\M)
argmax

= argm ax P{A,W\ M )

(2.18)

(2.19)

(2 .20 )

The probability P{W\M) is a constant for all /1, since the sequence W  is fixed, so 
it does not affect the result of the maximization. Define a variable. ¿j(i), which
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The solid lines on the trellis are the transitions that are taken. The probability 
of the observation is found by summing the probability of the two paths that 
produce this observation.

Figure 2.2: A simple arc-emission HMM and computation of the probability of 
an observation using a trellis.
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stores the probability of the most probable path which leads to that node, for 
each node in the trellis:

6j(t) = mcix P(a^,a2 , . .. .at-uWi,i0 2 , . .. ,wt-i,at = j \M)  (2.21)

and define another variable. which stores the node of the incoming arc
that led to this most probable path. The most probable path can be computed 
as follows:

1. initialize:
6j(l) = 77j for l < j < N  

where N  is the number of states of the HMM.

2. Induction: Compute

8j{t + 1) = ma.x 6,-(0 x piCVi) x ([[wtV-i· Ipl< I < .\

for i < j  < N, and store the l)ack-trace:

^ijit + 1) = argmax6i(C x pili lD  x J
KK.V

(2.2;!)

;3. Termination:

ci’i+i = argmax(5'dn + 1) 

P{\V) = max 6i{n + 1)KK.Y ^

(2.24)

(2.25)

where PiW)  is the probability of the most probable state sec[uence out- 
putting W. and is the final state of that sequence.

4. Backtracking: The state sequence, ,4” = Oj, a.^,. . . .  a”, can be ob

tained by backtracking from state

cq = + 1); i — n , . . . ,  i.
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2.5.2 Finding the Probability o f an Observation

Given an observed output sequence W = Wi,iu2 , . ■ ■ ,Wn, and an HMM M =< 
S .E A J .T ,0  >, the probability of the observing a string can be computed by 
summing the probability of all the paths that generate that string, as mentioned 
in the previous sectipns. But, as in the problem of finding the best state se
quence, there is no need to enumerate all the possible paths, and then sum their 
probability. There is a dynamic programming algorithm, very similar to Viterbi 
algorithm, that computes the probability of an observation sequence [Manning 

and Schütze,

Define a variable which stores the total probability of being in state
/, ar time t (so the observations w\, . . . .  were seen) for each node of the 
rrellis. We can compute cxjit) by summing the probabilities of all possible ways 
of reaching that node:

N

¿= I
Therefore the algorithm is as follows:

1. Initialize:
a j(l)  = 77j fori < j  < N

where N  is the number of states of the HMivf.

2. Induction: Compute
A'

3. Termination:

C(j{t - M )  =  ^  a,{t) X p{tj\ti) X q(iot\ti,ti) 
1 = 1

N
P[W\M)  = y ]a ,(n  + i)

1 =  1

(2.26)

(2.27)

(2.2S)

2.5.3 Param eter Estim ation

There is no good way of estimating both the structure and the parameters of 
an HMM at the same time. But, if we design the HM.M using our intuition and
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knowledge of the situation, we can estimate the parameters of the HMM through 
the use of a special case of the Expectation Maximization (EM) algorithm, the 
Baum-Welch or Forward-Backward algorithm [Bahl et al., 1983; Jelinek, 1998]. 
In the SLibsec[uent sections, instead of using the parameter estimation algorithms, 
we use the relative frequencies as the transition probabilities, and employ the 
Maximum Likelihood Estimation technique [.Jurafsky and Mcirtin,

2.5.4 Using HMMs for Statistical Language and Speech  

Processing

IIMMs are useful for various language and speech processing tasks. For example, 
in speech recognition, if we consider each word as being generated in a state, 
we can use the acoustic model probabilities P(a!;\ic;) as state observation likeli
hoods, and the bigrarn language model probabilities P{ wi\wi — 1) as the transition 
|)robabilities. We can then use the PIMM algorithms to find the probability of a 
sequence of words given a sequence of acoustic symbols [Rabiner, 1989]. We can 
use liMMs tor part-ot-speech tagging in a similar way.

HMMs can also be used in generating parameters, i.e. A,·, for deleted inter
polation of //-gram language models [.Jelinek. 1998]. We can construct an PIMM 
with hidden states that enable the interpolation of multiple models. Then, the 
EM algorithm can be used to find the parameters, that is, the optimal weights 
given as probabilities for transitions entering these hidden states. P'igure 2.4 is a 
fragment of an HMAi for smoothing a bigram language model, corresponding to 
the marked (with a dashed line) part of the bigram language model, a fragment 
of which is given in Figure 2.3.

2.6 M aximum Entropy M odels

.Maximum Entropy (ME) Modeling is an approach for combining multiple infor
mation sources for classification. This approach was first proposed by .Jaynes
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Each transition is marked with the output produced and the probability of taking 
that transition.

Figure 2..'3: .A fragment of the Markov Model for a bigram language model.

The parameter £ means that no output is generated by taking that transition.

Figure 2.4; .A fragment of the HMM for estimating the parameters of a linearly 
interpolated bigram language model.
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[1957] for statistical mechanics and has been recently successfully applied to nat
ural language processing problems, including machine translation [Berger et ai.
1996] , sentence boundary decection [Mikheev, 1998: Reynar and Ratnaparkhi,
1997] , part-of-speech tagging [Ratnaparkhi, 1996], prepositional phrase iittach- 
rnent [Ratnaparkhi, 1998b], parsing [Ratnaparkhi. 1998a], statistical language 
modeling for speech recognition [Rosenfeld, 1996]. part-of-speech tagging of in
flective languages [Hajic and Illadka, 1998], and named-entity tagging [Borthwick 
et al.. 1998; Mikheev et al.,

2.6.1 The Maximum Entropy Principle

The ME approach attempts to capture all the information provided l)y various 
knowledge sources, under a single, combined model. The training data for a prob
lem is described as a number of features, with each feature defining a constraint on 
the model. The ME model is the model that satisfies all the constraints with the 
highest entropy. The aim is selecting the most uniform model among the models 
that satisfy the constraints, so nothing is assumed about what is unknown. In 
other words, given a collection of constraints, the aim is selecting a model which 
is consistent with all the constraints, but otherwise as uniform as possible [Berger 
el ai, 1996].

2.6.2 Representing Information via Features

In the ME framework, the information is represented via features. The features 
/',■ are binary valued functions that can be used to characterize the properties of 
the context 6 and the corresponding class a:

f i - . A x B ^ O A

where A = {ui. ao,. . . ,  «n} is the set ot all possible classes, and 
B = {61, 62, . . . ,  bk} is the set of all possible contexts that we can observe. Our 
aim is to find an estimate for p{a\b).
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The features in this thesis are of the form: 

fi{a, b) =
1 if a = a and b G j9,· 
0 otherwise

and check the co-occurrence of a class a with an element of a set of contexts Bi, 
similar to those defined by Ratnaparkhi [l99Sci].

2.6.3 An Exampl·

In order to illustrate the use of maximum entropy-modeling, we are going to give 
a \‘ery simple example for sentence segmentation, using word categories. The task 
is to estimate a joint probability distribution, p{b.a). where a G .4 = {0,1} and 
h (=■ B — [Noun. Adjective, Verb, Preposition). The elements of /1 represent the 

•presence/absence of a sentence end after the categories in B.

.Suppose that w'e only know that:

pi Noun.0) -r p{.-\djective,0) + p[\'erb,0) A p( Preposition,ti) — 0.8 (2.29) 

and that:

Y ,  P{b,a) = 1·
aeA,beB

(2.30)

The aim of our model is to predict the probability of the presence/absence of a 
sentence end with any category in B. We can define two features as follows:

Ilia, b) =
1 if a = 0 
0 otherwise

and
/ 2 (0 . 6) =  1.

Eciuations 2.29 and 2.30 are the constraints on model p's expectations of the 

features:

where

Epf\ = O.S and Epf2 — 1

Epfi= Y  p{a,b) X fiia.b) 
aeA,beB

( 2 . 31 )
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In the computation of the expectations, p{a, b) is the probability assigned by the 
model.

The aim of the ME framework is to maximize the entropy:

H{P)--=- РІТ b) log pia.b)
аеЛ,ЬеВ

(2.32)

The most ‘uncertain’ way of scitisfying the constraints is assigning uniform 
probabilities to unconstrained cases. So, the sentence segmentation model ihat 
has the maximum entropy assigns the following probabilities:

pi{Noun.O) = 0.2 pi{Noun. 1) = 0.05 

Pi{ Adjective. 0) = 0.2 pi{ Adjective. 1) = 0.05

pi(V’er6.0) = 0.2 p]^{V erb. 1) = 0.05

Pi(i-^reposition.O) = 0.2 pi{Preposition. i) = 0.05

(2.33)

This model is the maximum entropy model anioiig the ones that itisfy the 
constraints. The entropy of this model is:

II(P] ) = —(4 X 0.2 X log0.2 + 4 x 0.05 x log0.05)

= 2.73

.•Vnother model that also satisfies the given constraints, but a.ssumes that a non
sentence boundary is less probable with a Preposition and a I e;7;, than wir.h a 
Noun or an Adjective.

poiNoun. 0) = 0.3 p-i{Noun, 1) = 0.02 

P2 {Adjective. 0) = 0.3 p2 {Adjective, 1) = 0.02

P2{Verb.0) = 0.1 p2 [V erb. 1) = 0.08

pii Preposition.!)) = 0.1 p2 { Preposition. 1) = 0.08

(2.34)

The entropy of the second model is:

H{P2 ) = - (2  X 0.3 X logO.3 + 2 X 0.1 X logO.l +
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2 X 0.02 X log 0.02 + 2 x O.OS x log 0.08)

9.02

which i.s lower than the first model, that assigns uniform probabilities to uncon
strained cases.

2.6.4 Conditional Maximum Entropy Models

In this thesis, our aim will be to estimate a conditional probability distribution 
instead of a joint probability distribution. In previous studies using conditional 
ma.Kimum entropy models, the most uncertain distribution p” that satisfies a set 
of k con.straints is [Rosenfeld, 1996; Ratimparkhi, 1998a]:

p' = argrnax 
f-eP

wdiere

Hip)

P

EfJ)

= -  logp(«|/))

= {p\Epfi = Epfn'i = 1-2.

= y ]p (o ,6)/,(« ,6)
ti,6

:A.·}

(2.35)

and Hip) is the conditional entropy averaged over the training data, Epji is the 
observed expectation of the feature i (that is, observed in the training data), 
Epfi is the model’s expectation of the feature i. p{b) and p{a.b) are the observed 

probabilities, and p(a|6) are the model probabilities.
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2.6.5 Combining Information Sources

A particular way of combining evidence from multiple information sources is to 
weight the corresponding features in an exponential, or log-linear model:

k
(2.36)p{a\b] 1

m  “
where h is the number of features, a,; is the weight for the featur· /,■. and Z{h) 
is a normalization constant to ensure that the resulting distribution is a valid 
probability distribution, and can be computed as:

k
(2.37)LEDZ(h) = V  [ I  a.f‘

Therefore, the conditional probability p{a\b) is a normalized product of the 
weights of the features that are hictive' on the («.6) pair [Ratnaparkhi. f998a]. 
The feature weight.) for the model that satisfies the .Maximum Entropy Prin
ciple can be estimated using the Generalized Iterative Scaling (CIS) algorithm 
[Darroch and Ratcliff, 1972], which we will de cribe in the next section.

2.6.6 Param eter estim ation

Ihe parameters of the maximum entropy model, p", that satisfies the set of 
constraints:

E r h  = Epfi (2.3S)

can be found using the GIS algorithm, that is guaranteed to converge to /A 
[Darroch and Ratcliff. 1972]. This algorithm requires that the sum of feature 
values for each possible (a.b) should be equal to a constant. C:

Y^f,{a.b) = C (2.39)
1 = 1

If this condition is not already true, we can use the training set to choose C:

C -- maXaeA.beB X] /.(«,
i=l

( 2 . 4 0 )·



CHAPTER 2. STATISTICAL LANGUAGE MODELING

and add a correction feature fk+i, such that

A+i(a,i>) = C '-X ] / ,( a .6 ) (2.41)
i = l

for any (a, 6) pair, as suggested by Ratnaparkhi [l998a]. In this case, unlike 
any other feature, might get values greater than 1. A variant of the GiS 
algorithm, the Improved Iterative Scaling algorithm [Pie'-ra et ai. 1997] does not 
impose this constraint. But, in this thesis, we use the GIS algorithm, since adding 
a single correction feature is not very costly.

The GIS algorithm is as follows:

1. Compute the observed probabilities, p[a.b) and /5(6).

2. Compute the observed e.xpectation of the features. Ef,f,. for each feature:

for / = 1.2....... /.·
a .6

'■]. Initialize the weight, cv,·. for each feature:

aj = 1, for / = 1.2.. . . ,  ^

4. Compute the normalization constants, Z(6). for each pos.sible context:

Z(b) = y b e B
i=l

b. Compute the model probabilities:

P > w  = 7 ] r - n w ) ' ' ' * ‘’

6. Compute the model’s expectations of the features:

Ep’Kfi = X]/5(6)p"(a|6)/,(a,6)
a.6

(2.42)

(2.43)

( 2 .44 )
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7. Stop if
\Epfi -  Epnfil < t

otherwise update the model weights as follows:

Ea' inr -^p.· ’·a f + 1 = t,pnji

and goto step 4.”

for i = 1,

So. the algorithm iteratively updates the feature weights. Qt·. so that the model’s 
e.x'pectation of the features becomes close to their observed expectations. Once 
the difference between these values is smaller th.an some e. the algorithm termi
nates. The cx values and the normalization constants are used to compute the 
probabilities that the model assigns.



Chapter 3

Turkish

3.1 Introduction

Application of statistical language modeling techniques to English (and similar 
langi.ui.ges) for natural langauge and speech processing tasks like parsing, word 
sense disambiguation, part-of-speech tagging, speech recognition, etc. has been 
ver\' useful. However, languages which display a substantially different behavior 
than English, like Turkish, Czech, Hungarian (in that, they have agglutinative 
or inflective morphology and relatively free constituent order) have mainly been 
left unstudied. In this chapter, we will discuss the properties of Turkish, that 
complicate the straightforward application of traditional language modeling ap

proaches.

3.2 Syntactic Properties of Turkish

3.2.1 Word Order

Turkish is a free constituent order language, in which constituents at certain 
phrase levels can change order rather freely according to the discourse context

20
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or text flov/. The typical order of the constituents is subject-object-verb (SOV), 
however, other orders are also common, especially in discourse.

The morphology of Turkish enables morphological markings on the con
stituents to signal their grammatical roles without relying on their order. This 
does not mean that the word order is not important, sentences with different 
word orders reflect djfferent pragmatic conditions, that is the topic, focus, and 
background information conveyed by those sentences differ [Erguvanli. 1979]. For 
example, a constituent that is to be emphasized is generally placed immediately 
before the verbd

(1) a. Ben okula gittiin.
I school-|-DAT go-|-PA.SI-f.AlSG 

/  luent to school.

b. Okula ben gittim.
school-FD.AT I go+PAST+AlSG 

It luas me who went to school.

Word order inside the embedded clauses is more strict; not all the variation ; of 
the order of the constituents are grammatical. A good discussion of the funcrion 
of word order in Turkish grammar can be found in Erguvanli [1979].

The variations in the word order complicates statistical language modeli' g, 
since more training data is rec[uired in order to capture the possible word order 

variations.

3.2.2 Morphology

Turkish has agglutinative morphology with productive inflectional and deriva
tional suffixations [Oflazer, 1994]. The number of word forms one can derive 
from a Turkish root form may be in the millions [Hankamer, 1989]. The number

'DAT: dative case, PAST: past tense, AISG: first person singular agreement.
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CATEGORY Number of Overt Morphemes
i 3

NOUN 33 490 4,825
VERB 46 895 11.313
AD.J 32 478 4.789

Table 3.1: The number of possible word formations obtained by suffixing 1, 2 and 
3 morphemes to a NOUN, a VERB and an AD.JECTIVE.

of possible word forms that can be obtained from a NOUN, a VERB, aind an 
.AD.JECTI\’E root form by suffixing 1. 2. and 3 morphemes is listed in Table 3.1. 
Figure 3.1 lists the 33 possible word forms that can be obtained from the noun 
hnasa’ by suffixing only one morpheme.

The number of words in Turkish is theoretically infinite, since, for example, it 
is possible to embed multiple causatives in a single word (as in: somebody causes 
some other person to cause another person .... to do something). Figure 3.2 
gives an example of some possible word formations from the root 'uyu' ('sleep' in 
English). Multiple causatives are the final examples of this table.

3.3 Issues for Language M odeling of Turkish

Due to the productive inflectional and derivational morphology of Turkish, the 
number of distinct word forms, i.e.. the vocabulary size, is very large. For in
stance. Table 3.2 shows the size of the vocabulary for 1 and 10 million word 
corpora of Turkish, collected from on-line newspapers. We also give these num
bers for English corpora of the same size to give an idea about the difference. 
This large vocabulary is the reason tor a .serious data sparseness problem and 
also significantly increases the number of parameters to be estimated even for a 
bigrarn language model. The size ot the vocabular}' also causes the perplexity to 
be large (although this is not an issue in morphological disambiguation, it is im- 
portcint for language modeling tor speech recognition.) lable 3.3 lists the training 
and test set perplexities ot trigrarn language models trained on 1 and 10 million



CHAPTER 3. TURKISH

i. masaca 21. masayız
2. m as arasına 22. masayım
·)o. ııicisacı •23. masada
■1. m as al aş •24. masadır
0. m as al an •25. masam
6. nicisalar 26. masamız
7. masaları •27. rnasamsı
S. masasız 28. masan
9. masalı ■29. masanız
10. masalık 30. masadan
U. masanın 31. masasal
I'i. masası 32. masasın
l:]. masa\'ken 33. masasınız
14. m as aykene
15. masayla
16. masaymış
17. masaysa
IS. masaya
19. masaydı
20. masayı

Figure; 3.1: The list of words that
pheme to a noun 'masa’ ("table’ in English.).
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Root: uyu- ('sleep’ in English)

Some W ord Form ations English T ranslations
uyuyorum I am sleeping
uyuyorsun ,you are sleeping
uyuyor he/she/it is sleeping
uyuyoruz we are sleeping
uyu\'orsunuz you are sleeping
uyuyorlar they are sleeping
uyuduk we slept
uyudukça as long as (somebody) sleeps
uyumalıyız we must sleep
uyurnadiin without sleeping
uyuman your sleeping
uyurken while (somebody) is sleeping
uyuyunca when (somebody) sleeps
uyutmak to cause somebody to sleep
uyutturmak to cause (somebody) to cause (another person) 

to sleep
uyutturtturrnak to cause (somebody) to rause (some other 

person) to cause (anocher person) to sleep

Figure 3.2: Example of possible word formations with derivational and inflectional
su ffixes from a Turkish verb.
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Lcuiguage Corpus size Vocabulary size
Turkish IM words 106,547

lOM words 417,775
English IM words 33,398

lOM words 97,734

Table 3.2: Vocabulary .sizes lor two Turkish and English corpora.

word corpora for Turkish and English. For each corpus, the first column is the 
perplexity for the data the language model is trained on, and the second column
i.s the |)erplexity for previously unseen test data of 1 million words. Note that 
the trigram-language model perplexity that we found for English is very close to 
the one reported by Brown et.al [l992a].

Language Training
.Data

Training Set 
Perplexity

Test Set (IM  words) 
Perplexity

Turkish IM words 66.13 1449.81
lOM words 94.08 1084.13

E.iiglish lAI words 43.29 161.16
iOM words 44.38 108.52

Table 3.3: The perplexity of Turkish and English corpora using word-based tri- 
grarn language models.

.Another major reason for the high perplexity of Turkish is the high percentage 
of out-of-vocabulary words (words in the test data which do not occur in the 
training datai: this also results from the productivity of the word formation 
process.

The issue of large vocabulary brought in by productive inflectional and deriva
tional nrorphology also makes tagset design an important issue. In languages like 
English, the number of POS tags that can be assigned to the words in a text is 
rather limited (less than 100) (though some researchers have used large tag sets 
to refine granularity, but they are still small compared to Turkish.)" But, such a 
finite tagset approach for languages like Turkish may lead to an inevitable loss of

'.More information on the issues of tagset design is given by Elworthy [1995].
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information. The reason for this is that the morphological features of intermedi
ate derivations can contain markers for syntactic relationships. Thus, leaving out 
this information within a hxed-tagset scheme may prevent crucial syntactic infor
mation from being represented [Oflazer et al., 1999]. For e.xample. it is not clear 
what POS tag should be assigned to the word saglamla§tvnnak. without losing 
any information: the category of the root (Adjective), the final category of the 
word as a whole (Ncn.m) or one of the intermediate categories (Verb).^ Ignoring 
the fact that the root word is an adjective may sever any relationships with an 
adverbial modifier modifying the root.

saglam+l.a§+11 r+inak 
saglam+Adj "DB+Verb+Become'"DB 
-fVerb+Caus+Pos"DB+Nomi+Inf+A3sg+Pnon+Nom 

fo cause (something) to become strong /  
to strengthen (something)

Thus instead of a simple PO.S tag. we use the full morphological analyses of 
the words, represented as a combination of features (including any derivational 
markers) as their rnorphosyntactic tags. For instance in the example above, we 
would use everything including the root form as the morphosyntactic tag.

3.4 Examples of Morphological Am biguity

III this section, we will give an example of morphological ambiguity in Turkish, 
usine the word ‘izinh which occurs in the three sentences below;

1. Yerdeki izin temizlenmesi gerek.
The trace on the floor should be cleaned.

The morphological features other than the POSs are: +Become: become verb, +Caus: 
causative verb, +i^os: Positive polarity, +lnf: marker that derives an infinitive form from a 
verb. +A3sg: 3sg number-person agreement, +Pnon: No possessive agreement, and +Nom: Nom
inative case. "DB's mark derivational boundaries.
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2. Üzerinde parmak izin kalmış.
Your finger print is left on (it).

3. içeri girmek için izin alman gerekiyor.
You need a permission to enter.

and tho' following are the corresponding morphological analysis, respectively:

i z i n

1. iz+Moun+A3sg+Pnon+Gen (trace/print)

2. iz+Moun+A3sg+P2sg+Nom (trace/print)

3. izin+Noun+A3sg+Pnon+Mom (permission)

Further examples of morphological ambiguity, and a clas.sifica.tion of frecpient 
types of ambiguities is given in the M.Sc. thesis of Tür [1996].

3.5 Inflectional Groups

In order to alleviate the data sparseness problem we break down the full 
into smaller units. We represent each word as a sec[uence of inflectional groups 
(IGs hereafter), separated by "DBs denoting derivation boundaries, as described 
by Oflazer [1999]. Thus a morphological parse is represented in the following 
general form:

root+IGi''DB+IG-2 ~DB+· · -~DB+IG,;

where IG;· denotes relevant inflectional features of the inflectional groups, includ
ing the part-of-speech for the root or any of the derived forms.

For example, the infinitive form sağlamla.ştırmak given in .Section 3.3 would 
be represented with the adjective reading of the root sağlam and the following 4 
IGs:
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1. Adj

2. Verb+Become

3. Verb+Caus+Pos

4. Moun+Inf+A3sg+Pnon+Nom

In order to sirnplif}  ̂our models Kirther. we will use the following property of 
the dependeuc}· grammar for Turkish: When a word is considered as a sequence 
of IGs. syntactic relation links only emanate from the last IG of a (dependent) 
word, and land on one of the IGs of the (head) word on the right, as shown 
in Figure 3.3 [Oflazer, 1999]. Fi gure 3.4 shows an example sentence with the 
dependency relations marked, taken Irom [Oflazer. 1999]. In this example, the 
words are segmented along the IG boundaries, marked with a ’-i- sign. The 
inflectional suffi.xes are marked preceding sign.

Links from Dependents

Figure 3.3: Inflectional groups in a word and the syntactic relation links.

3.6 Statistics on the Inflectional Groups

The number of possible units to be modeled is important for statistical language 
modeling. Table 3.4 provides a comparison of the number distinct full morphosyn- 
tactic tags (ignoring the root words in this case) and IGs, generatively possible 
and observed in a corpus of IM words (considering all ambiguities). .As we already
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Det Pos

Mod Mod

gül-ün|[böyle büyü +me-si

Subj

Obj
Mod

N

e-di

D ADJ N ’M N ADV V N PN ADV V

F igure 3.4: .An e.xample dependency tree for a Turkish sentence. The words are
segmented along the IG boundaries.

Possible Observed
Full Tags (No roots) CXI) 10.531
Inflectional Groups 9.129 2,194

Table 3.4: Numbers of Tags and IGs

mentioned, the number of possible tags that are theoretically possible is infinite 
for Turkish. In a 1 million word corpus, collected from Turkish daily newspa
pers. we observed 10,531 part-of-speech tags ignoring the root words, which is 
\-ery high. The number of possible IGs is 9,129 and we observed 2.194 IGs in 
our corpus. The number of observed IGs is still very high, but smaller than the 
number of full tags (as e.xpected).

On the average, in running text of about S50K tokens, there are 1.76 morpho
logical parses/token and 1.38 IGs/parse. 55% of the tokens have only one parse. 

Of all the parses:

• 72% have 1 IG,

• 18% have 2 IGs.

• 7% have 3 IGs,

• 2% have 4 IGs, and

• 1% have 5 or more IGs.
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There are also parses which have 7 or 8 IGs. However, these are verj'· rare, as can 
be seen from the statistics. Since most of the parses have only one or two inflec
tional groups, dividing morphological parses from their derivational boundaries, 
should not complicate the processing for our tasks.



Chapter 4

Related Work

4.1 Introduction

in order to enhance the presentation of our motivation, vve will review some of 
the previous studies on part-of-speech tagging, morphological disambiguation, 
statistical language modeling, and language and speech processing systems for 
Turkish and other similar, morphologically rich languages, in this chapter.

4.2 Part-of-Speech Tagging

There has been a large number of studies in tagging and morphological disam
biguation using various technicpies. Part-of-speech tagging systems have used 
either a rule-based or a statistical approach.

In the rule-based approach, first, a dictionary is used to assign each word a list 
of potential part-of-speech tags, then a large number of hand-crafted linguistic 
constraints are used to eliminate impossible tags or morphological parses for a 
given word in a given context [Karlsson tt ai, 199oj.

In the statistical approach, a large, labeled corpus has been used to train a

40
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probabilistic model which then has been used to tag new text, assigning the most 
likely tag for a given word in a given context (e.g., Church [1988], Gcirside [l988|, 
DeRose [l988]). It is also possible to train a stochastic tagger using unlabeled 
data, with the expectation maximization algorithm (e.g. Cutting et al. [1992]).

Part-of-.Speech tcigging is one of the first NLP tasks, for which Maximum 
Entropy Modeling approach has been used [Ratnaparkhi. 1996].

Brill [l995a] has pre.sented a transformation-based learning approach, which 
induces rlisambiguation rules from tagged corpora.

Morphological disambiguation in inliecting or agglutinative languages with 
complex morphology involves more than determining the major or minor parts-of- 
speech of the lexical items. Lypically, morphology marks a number of inflectional 
.or derivational features and this involves ambiguity. For instance, a given word 
may be chopped up in different ways into morphemes, a given morpheme may 
mark different features depending on the morphotactics, or lexicalized variants of 
deri\'ed words ma}’ interact with productively deri\'ed versions. VVe assume that 
nil syntactically relevant features of word forms ha\'e to be determined correctly 
for morphological disambiguation.

In this context, there have been some interesting previous studies for differ
ent languages. Levinger et al. [1995] have reported on an approach that learns 
morpholexical probabilities from an untagged corpus and have used the result
ing information in morphological disambiguation of Hebrew. Hajic and Hlaclka 
[1998] have used maximum entropy modeling approach for morphological disam
biguation of Czech, which is an inflecting language. Ezeiza et al. [l998] have 
combined stochastic and rule-ba.sed disambiguation methods for Bascpie, which 
is also an agglutinative language. Megyesi [1999] has adapted Brill’s PCS tagger 
with extended lexical templates to Hungarian.

Previous approaches to morphological disambiguation ol Turkish text had 
emplot-ed a constraint-based approach [Oflazer and Kuruöz, 1994; Oflazer and 
Tür. 1996; Oflazer and Tür, 1997]. Although results obtained earlier in these 
approaches were reasonable, the fact that the constraint rules were hand crafted
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a rather serious impediment to the generality and improvement of these 
systems.

4.3 Statistical Language M odeling

Statistical language modeling roots back to Markov's work on predicting whether 
an upcoming letter in Pushkin’s Eugene Onegin would be a vowel or a consonant, 
using bigrams and trigrcuns [.Juralsky and .Martin. 1999]. Shannon used n-grams 
to compute the entropy ot English and to compute appro.ximations to English 
word sequences [Shannon, 1948].

Today, statistical language modeling techniques are used successfully in almost 
. all natural language and speech processing tasks. For more information about 
statistical language modeling techniques and the application of these techniques 
to langucige processing tasks, the reader is referred to te.xtbooks on the subject 
(some recent good examples are, Manning and Schütze [1999] and .Jurafsky and 
Martin [1999]).

Elefore proceeding to related work lor Turkish, we would like to mention a 
study for large vocabulary continuous speech recognition (LVCSR) of Korean, 
which is an agglutinative language. Unlike the previous approaches based on 
the sequence words or letters, this study suggests the use of syllables as language 
modeling units, to overcome the problem of large x'ocabulary size and so to reduce 
perplexity [Kiecza et al., 1999]. However, due to the shortness of syllables, their 
acoustic confusability is high (which is important for speech recognition) and a 
standard trigram language model using syllables has very limited scope (which 
is also a problem for our case). So, a unit that lies between the two extremes, 
syllables and words, should be used. In that stud\··. a dn.a-driven approach is 
used to find the appropriate unit for language modeling.

Another study, again on Korean compares the performance of LVCSR systems 
using syllables and morphemes as the recognition unit [Kwon, 2000]. With the 
syllables, the percentage of out-of-vocabulary is nearly zero, but they also note
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that syllables have high acoustic confusability. Their best results are obtained 
using units that are formed merging morphemes.

A recent study which also uses morphemes for language modeling of English 
reports that lower w”ord error rates can be obtained in speech recognition by de
composing words into their component morphemes [Fang and Huckvale, 2000]. 
['hey use phonologically constrained morphological analysis (PCM.-\.) that divides 
words into their morphemes conditioning both on their orthography and pronun
ciation. The benefits of I-̂ C.M.A include: reduced lexicon size, reduced perplexity, 
reduced language model size, and reduced word error rate.

4.4 Turkish

.\lmost all of the systems developed for processing Turkish text until today, can 
be considered as rule-based. \¥e can list the systems developed for Turkish as 
follows:

• a morphological analyzer using finite state transducers [Oflazer, 1994],

• a morphologiccd disambiguator using voting constraints [Oflazer and Tür, 

1997],

• a syntactic parser using the Lexical Functional Grammar formalism 
[Güııgördü and Oflazer. 1995].

• a dependency parser using an extended finite state approach [Oflazer, 1999],

• a parser using the government binding approach [Birtiirk. 1998],

• a parser using sign-based phrase structure grammars [.Şehitoğlu, 1996],

• spelling checkers [Solak and Oflazer, 1993] and correctors [Oflazer and 
Güzey, 1994; Oflazer, 1996].
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• two machine translation systems from English to Turkish, one using 
structural mapping [Çiğdem Keycler Turhan, 1997] and the other using 
interlingua-based methods [Hakkani et ai, 1998],

• a large vocabulary isolated word speech recognition system [Yılmaz, 1999], 

and

• a large vocabulary continuous speech recognition system for agglutinative 
languages, including Turkish [Çarkı et al, 2000].

We believe that this thesis is the first work e.Kamining statistical language mod
eling techniques for understanding Turkish, together with a concurrent Ph.D. 
thesis on information extraction from Turkish using statistical techniques [d'iir, 

2000 ] .



Chapter 5

Morphological Disambiguation

5.1 Introduction

Morphological disambiguation is the problem of selecting the sequence of mor- 
],)holoiical parses (including the root). T = = ti-t-i.-.-Jn· corresponding to a
sec[uence ol words W = tyj' = tci.ao.....Wn, from the set of possible parses for
these words.

For e.Kample. the words of the Turkish noun phrase have the parses given 
below:

f ctn terast
1. evin+Noun+.A3.sg+Pnon+N'om 1. teras-FN oun+A 3sg4-P3sg+N om
2. ' evT-Noun+.A3sg+P2sg+Nom 2. teras+N’oun+A3sg+Pnon+.Acc
3. ev+N ound-A 3sg4-P iion+G en

The correct parse for each word is given in boldface. Among the possible parse 
combinations, only the first parse of the first word with the first parse of the sec
ond word, and the third parse of the first word with the first parse of the second

45
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word make up a grammatical noun phrase. Among the grammatical combina
tions, only the root of the third parse of the first word occurs frequently with the 
root of the first parse of the second word.

Morphological Disambiguation is a useful prior step for syntactic parsing, 
since it decreases the ambiguity of the sentence.'and hence makes the computa
tional problem smaller [Voutilainen, 1998]. Spelling correction and te.Kt to speech 
synthesis systems can also benefit from a morphological disambiguator for con
text sensitive selection of correct pronunciation and for selection of true spellings, 
respectively.

Our approcich is to model the distribution of morphological parses given the 
words, using a hidden Markov model, and then to seek the variable T, that 
maximizes P{'T\W):

argmax PfTIlA') = argmax P{T) X P(H''|T') 
P{W)

=  a r g m a x  P ( r )  X P ( l F | r )  
r

r
(5.1)

(5.2)

The term P[W)  is a constant for all choices of T. and can thus be ignored when 
choosing the most probable T. Thus, Equation .5.1 can be simplified into Ec[uation 
5.2.

We can simplify the problem of morphological disambiguation using following 
assumptions [Manning and Schütze, 199'

• Words are independent of each other, given their tags, that is,

P[w\T) = f [P [w , \q ) ,

and,

• .A. word’s identity depends only on its tag, and not on previous words or 

tags, that is,
P[w,\t’l) ^  P[wi\U).



CHAPTER 5. MORPHOLOGICAL DISAMBIGUATION 47

We can then conipute P{W\T)  as follows:

P{W\T) = n  i ’(iOilir) = n  (3.3)
1=1 1=1

We can compute P{T) using the chain rule:

P(T') = n P ( i . | i i - ‘ ) (.5.-1)
1=1

We can simplify Ecjuation 5.4 further with the trigram tag model, so:

P { T ) ^ f l P ( L \ L _ , . L _ 0  (5.5)
¿=1

Therefore, eciuation can be computed as:

n
argma.xP(T’|W) = argmax IT x P(n;,-|h) (5.6)

T T

'riiis is the basic formulation of part-of-speech tagging for languages like En
glish [Charniak d  ai, 1993; Merialdo. 1994; Dermatas and Kokkinakis, 1995; 
Brants, 20001. and also is the basis of our baseline model where we use the full 
morphological analysis including the root word as the tag of the word. In the 
remaining of this chapter, we will use the terms tag, morphological analysis or 
parse interchangeably, to refer to individual distinct morphological parses of a 
token.

5.2 Simplifying the problem for Turkish

In Turkish, given a morphological analysis including the root, there is only one 
surface form that can correspond to it, that is. there is no morphological genera
tion ambiguity.^ Therefore, we can assume that = 1 in the formulation

'This is almost always true. There are a few word forms like g e l i r k e n e  and n e rd e ,  which 
have the same morphological parses with the word forms g e l i r k e n  and n e red e ,  respectively but 
are pronounced (and written) slightly differently. These are very rarely .seen in written texts, 
and can thus be ignored.
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above, since includes the root form and all morphosyntactic features to uniquely 
determine the word form. In our case,

therefore, we can write:

P{iv,\q) = = 1,

p{w\T)  =

(5.7)

io.8)

and the morphological disambiguation problem can be represented as below:

argrnax .P(T'| IF) = argma.x'P(I')
r  T

(5.9)

5.3 Morphological Disam biguation of Turkish 

with n-gram Language M odels

We use trigram language models for morphologically disambiguating Turkish 
words. The probability of a sec[uence of tags. PiT) can be computed as follows 
according to the chain rule:

P(T) = P m t ' l - ^ )  X P[H^,\t'l--) X . . .  X PiMVD X P{ty) (5.10) 

Simplifying Equation 5.10 further with a trigram tag model, we get:

P{T) = P{tn\tn-'iHn-0 X X . . .P{h\h. .G)  X PiGlti) X P[U)

= n P ( i ; |W „ h - , )  (5.11)
1 =  1

where we define P(ii|i_ i,io) = P{U), ^(¿^¡¿o.T) = PU-2 \I\) to simplify the nota
tion.

In order to determine the trigram probabilities, we use the Maximum Like
lihood Estimation technique, and smooth the probabilities using Good-Turing 
method [Gale, 1994] combined with the Backoff modeling [Katz, 1987].

The tag sequence that we are looking for, is the tag sequence that has the 
maximum probability according to our trigram tag model (see equation 5.9).
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5.3.1 Using IGs for Morphological Disambiguation

If we consider morphological analyses as a sequence of root and IGs, each parse 
/,· can be represented as (?’, ■ , . . . . /Gd,n.), where n-i is the number of IGs in 
the P''' word [Hakkani-Tur el al., 2000]." r,· includes the part-of-speech of the root 
word. This representation changes the problem as follows:

== P{[r,. IG,j ... )|(r._.,, /G,_2,i. . .  /G,

(r,_ i,/G '_ i,i.../G ,_ i..„_ .)) (0.12)

We can use the chain rule to factor out the individual components:

P{U\t'C^) = P{>'i\{ î-2: IGi->.l ■ ■ ■ IGi-2,n,-2)^ ('’i- l ' fG',_|.i . . . f G,_ i ) X

P (I Gi. 11 (/'i-2 < I G',_2.i ..../G-',_2,,i,), (/■ ,■ -1, /G',_ 1,1... / G ' i _ i ), /q) x

. . .  X

P(/GW J(w- 2 , /G ; - 2,i .../G,_2,„._.,),

{r,_,JG,-r.i:.IG,-i,n.^,),n.IG,,,,... ,IGi.n.-,) (5.13)

This formulation still suffers from the data sparseness problem, since the pa
rameter space is still very large. To alleviate this, we make the following s 

lying assumptions:

I. root word depends only on the roots of the previous words, and is inde
pendent of the inflectional and derivational productions on them:

P { r i \ { ’ ' i -2 , IG i -2 ,1 ,  . . · , /G k-2,a ,_>),

/GWl.l, . . .  , /G._l,u._,)) = ^(r.|r,_.2, r ._ J  (5.14)

"In OLir training and test data, the number of IGs in a word form is on the average 1.6, 
therefore, Ui is usually 1 or 2. VVe have seen, occasionally, word forms with 5 or 6 inflectional 
groups.
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The intention here is that this will be useful in the disambiguation of the 
root word when a given form has morphological parses with different root 
words. So, for instance, for disambiguating the surface form adam with the 
following two parses:

(a) adam+Noun+A3sg+Pnon+Mom [man)

(b) ada+Moun+A3sg+Plsg+Nom (m?/ island)

in tlie noun phrase kirmizt kazaklı adam, [Iht: man with a red sweater), only 
the roots (along with the part-of-speech of the root) of the previous words 
will be used to select the right i-'x-t.

Note that the selection of the root has some impact on what the next IG 
in the word is. but it is very hard to isolate this, so we assume that IGs are 
determined by the syntactic context and not by the root.

2. .An inieresting observation that we can mtike about Turkish is that when a 
word is considered as a sequence of IGs. syntactic relations are only between 
the last IG of a (dependent) word and with some 'including the last) IG of 
the (head) word on the right [Oflazer, 1999].'^

Based on these assumptions, we dehne three models, all of which are based on 
word level trigrarns. In the following subsections, we will describe each of these 
models.

Model 1

In Model 1, the presence of IGs in a word only depends on the final IGs of the 
last two words. That is. in order to estimate the probability of an IG in a word, 
we only look at the hnal IGs of the previous two words, as shown in Figure 5.1. 
This model ignores an\’ morphotactical relation between an IG and any previous 
IG in the same word. Therefore, the probability of an IG is estimated as follows:

'^There are minor e.xcepcioas co this, especially in conversations. With some word orderings, 
the dependency relation links might land on an IG of the word on the left.
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M odel 1: The root of a word depends only on the roots of the previous two 
words, and an IG of a word depends only on the final IGs of the previous two 
words in our first model, as shown with underlining and boldfacing.

t j - 2  ■ Vi-2  IGri_2,ni_2

: m i  ■■■ iG ,
i ,  : n  I G n  IG i ,2 . . .  / G a - i  I G i .k

Figure 5.1: The dependency between current word and its history word according 
to Model 1.

C{I Ci,k I (/’¿_2, 1 Gi-2.1 ■■■! Gi-2.n,_2) ■

, /G',_i,i, . . . .  )· ’’i- ^Gi,i- MC'i^k-i) =

(5.15)

As a result, the probability of an analysis given the previous two analyses is 
estimated as follows:

P(F|F-2, h-i)  = P(r,!r,-2,/V-i) X
a,

·̂=ı
(5.16)

The first factor is the relationship between the roots, as shown with underlining in 
Figure 5.1. the second factor (which itself is the product of probabilities) models 
the relationship between the IGs, as shown with boldfacing in Figure 5.1.

M odel 2

In Model 2, we use the assumption that the presence of IGs in a word only depends 
on the final IGs of the previous two words and the previous IG in the same word, 
as shown in Figure 5.2. In this model, we consider morphotactical relations and 
assume that an IG (except the first one) in a word form has some dependency on 
previous IGs. Given that on the average a word has about F.6 IGs, IG bigrams 
should be sufficient. Therefore, the probability of an IG is estimated as follows:

P(/G ' , , | ( r , -2, /G;_2,l.../G,-2,n._2),
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M odels 2 and 3: The root of a word depends only on the roots of the previous 
two words, and an IG of a word depends only on the final IGs of the previous 
two words and the previous IG in the same word, in our second model, as shown 
with underlining and boldfacing.

t,;_2 ; Vi-2 I G i - 2 , [  ^ G i - 2 ,2  ·■· (^'/-2,n,·_·.>-1 I'^i-2.ni_2

¿̂—1 · 1 -^^/—1,1 J-Gi—12 ■■■ ICri —

U : n  I G m  I G i ,2  . . .  I G i . k _ i  I G i . k  /G'·  . . .  / G , . , ,

figure 5.2: The dependency between current word and its history word according 
to Models 2 and 3.

(r,_ i, , . . . ,  ICri-i.n,- \ )■ >'i· IGi,i , . . . ,  IGi^k- \ ) —

P(/Cr',jt|/G',_2.n,_2) IGi-],,n,-i '■ IGli.k-i )

Therefore, we compute the probability of a morphological analysis given the 
previous two analyses as follows:

i,-i) = P(r,|r,_2, ri_i)

X n  P(/6';y-|/G-2.,.-,,_.>-/G_i,„,_,,IGi.k-i) (5.17)
k-i

M odel 3

Model 3 uses the same assumptions with Model 2. e.xcept that the dependence 

on the previous IG in a word is assumed to be independent of the dependence on 
the Final IGs of the previous words. This allows the formulation to separate the 
contributions of the morphotactics and local synta.x. That is.

P{I CL.k \Gi-2 ■ I  G,_2,1 . ■•IGi-2.n,-2 ) ·

(r,_i. /G ',_ u ,. . . .  iG‘,-i,„,_i )■  ̂IGi^k-i —

P(/G,· i.|/G'_2,n._..,, , IG,.k-i )

and,

.P(/Gi-,r.|/G'j-_2,n,_2 ) I G i - \ ,m - i  i)

_  P ( / G ' , - 2.n,-2) ^Gr'i-i,n,_i, IG j ,k -\ \ I G i .k )  X P j l C u . k )

"  P ( / G . - 2 , n . _ . , G G _ i , . , _ , , / G ' a - i )
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X P(/6'-,,_i|/Ga·) x P(ICkk) 
P(/G .-2,„,_,,/G ._ i.„._J X P(IGi,k-i) 

i^(/G._2,„._,,/G,_i,„._J/G,,,) X P(/G.-,G 
P(/G,-2,„...,,/G ,_i ,„._J 

P(IGi,k-i\IG,,k) X P{IGi,k) 1

X

Tlierefore,

P ( /G a - i)  P{ICu,k)
P(/G ,,|/G ,_2.„._ ,,/G '_ i,„._J X P (/G .-.,|/G a-i)

PilGi.k)

|í¿_2,¿¿-l) = .P(ri|r,_2,ri_|)

X n (^ (/i^a -|/G .-2 ,„ ._ ,,/G ' _ i.„ ,_ J  X
 ̂= 1

P( /G , , , | /GV,_i) ,

(5.18)

:5.19)
P{IG,,,) '

in order to simplify the notation in the description of our models, we have
defined the following:

P(ri|,r_i,ro) -  P{ri)
Pir2\ro,ri) =  p {M a )
P(/Gi,, |/G_i.„_,, /Go,no) = P{ICn,,)

P(/G2,/|/Go,no,/Cn,ru) =  P(/G'2,/|/GVn,)

P(/G5,i|/G\_2.„._.,,/G'_i,n._. =  P(7Gu|/G._2,n._2,/Cd_

P(/Gi„c-|/G_i,,._,,/Go,„o,/Gi,,-i) =  P( /G i , , | /G i . ,_G

P(/G2,/ | /Go,„o, / G i,„,,/G2,/-i ) =  P’(.^G-'2,/|/Gi,„j , IG>,i-i)
P(/G'2,i | / G i,„,,/G2,o) = P( /G2, i | / G i ,„J

P ( / G u | / G , o) -  PilCki)

for k = / = l , 2,...,n 2, and i =

We also have built a baseline model based on the standard definition of the 
tagging problem in Equation 5.1. For the baseline, we have assumed that the part 
of the morphological analysis alter the root word is the tag in the conventional 
sense (and the assumption that P(iu,|i,) = 1 no longer holds).
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5.3.2 An Exam ple

In this section, we will give an example of how our three models compute the 
probability of the sequence of analyses, given their surface forms. For example, 
the probability of the analysis sequence: 

k i r m i z i + A d j

k a z a k + M o u n + A 3 s g + P n o n + N o m " D B + A d j  + W i t h  

a d a m + M o u n + A 3 s g + P n o n + M o m

gi\'en the surface form ‘kırmızı kazaklı adam' (‘the man with a red sweater’ in 
Fnglish) is computed as follows:

.-Vccording to Model i.

i ^ f k i r m i z i  +  A d j , k a z a k  +  N o u n  +  A 3 s g  +  P n o n  +  Nom'DB +  A d j  4- W i t h ,  

a d a m  4- N o u n  4- A 3 s g  +  P n o n  4- N o m |k i r m i z i ,  k a z a k l ı ,  a d a m )

P ( ; ' i  =  k ı r m ı z ı  4- A d j  j x

P { r 2 =  k a z a k  +  M o u n | i4 =  k ı r m ı z ı  4- A d j ) x

P ( r ,3 =  a d a m  4- M oun|7q =  k ı r m ı z ı  +  A d j ,  r -2 =  k a z a k  4- N o u n )  X

P{ I Gi , t  =  A d j )  X

P{IG- 2.i — N o u n  +  A 3 s g  +  P n o n  4- N o m | /G ' i , i  =  A d j )  x  

P ( / G b ,2 =  A dj +  W i t h | / G i , i  =  A d j )  x

P ( / G ' 3,i — N o u n  4- A 3 s g  +  P n o n  +  N o m | /G ' i , i  == A d j , I G o a  ~  A d j  +  W i t h )

.•Vccording to Model 2,

P ( k i r m i z i  4- A d j  , k a z a k  4· N o u n  4· A 3 s g  +  P n o n  +  Nom^DB +  A d j  +  W i t h ,  

a d a m  4- N o u n  4- A 3 s g  +  P n o n  4- N o m |k i r m i z i ,  k a z a k l ı ,  a d a m )  =

P ( ? ' i  =  k ı r m ı z ı  +  A d j )  x

P f r 2 =  k a z a J k  4- N o u n j r i  =  k ı r m ı z ı  +  A d j  ) x
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P{r3 — adam + Noun|ri = kırmızı + Adj, r’2 = kazak + Noun) x

P{IGi,i = Adj|/G'i,o = < ROOT >) X

P(/G'2,i = Noun t· A3sg + Pnon + Nom|/G'i,i =  Adj,

/G'2,0 = < ROOT >) X 

PiJG-2.2 ~ Adj -h With|/Gi,i — Adj,

” APG.i = Noun + A3sg + Pnon + Norn) x

P(TG'3.i = Noun + A3sg + Pnon + Nom|/G'i,i — Adj,

AG'2,2 = Adj + With. /G'3,0 = < ROOT >)

Note that, we use the symbol < ROOT >, when estimating the probability of 
each word's initial IG to emphasize that there is no IG between the current IG 
and the root, that is, the current IG is the first IG of the corresponding word 
■form.

According to Model 3,

P(kirmizi + Adj, kazak + Noun + A3sg + Pnon + NornTB + Adj + With, 

adam + Noun + A3sg + Pnon + Nom|kirmizi, kazaklı, adam)

P(7'i = kırmızı + Adj) x

P{r2 = kazak + Noun|ri = kırmızı + Adj) x

P (;’3 = adam + Noun|ri — kırmızı + Adj, r'2 = kazak + Noun) x

P(/G'i,i Adj|/G'i,o = < ROOT >) X

PiJGi,! = Noun + A3sg + Pnon + Nom|/Gr'i,i = Adj) x 
PİIG 2.1 = Noun + A3sg + Pnon + Nom|/G'2,o = < ROOT >

P(/G '2,i = Noun + A3sg + Pnon -f Norn)
P{ICt2,2 ~ Adj -p W ith|/G ij = Adj) x 
P(/G'2.2 ^  Adj + With|/G2.o = < ROOT >

P{IG2,2 = Adj + With)
P{IG2 ,\ = Noun + A3sg + Pnon + Nom|/G'i,i = Adj,

/G2,2 “  Adj ~h With) X
P[IG2,,\ — Noun + A3sg + Pnon + Nom|/G'3,o = < ROOT >)

— Noun + A3sg + Pnon -f Norn)
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5.3.3 Im plem entation of the M odels

The models described above require two types of probabilities for the computa
tion of the probabilities of the correct morphological analysis: root probabilities 
and IG probabilities. One way to construct the models is to form the root and 
IG models that give us an estimate for the root and IG trigram probabilities, 
and then merge these two models by computing the pro!)abilities of all possible 
morphological analysis sequences. However, the number of these sequences is 
infinite, because of the derivational morphology, so it is impossible to construct 
the complete model, that has the probabilities for all possible trigram sequences.

However, it is possible to construct a model for the test data at run-time, 
by taking the product of the root and IG probabilities. The model will not be 
complete, but we will only compute the probabilities for the seciuences that we 
will need as we try to find the most probable tag sequence. Figure 5.3 shows the 
sequence of steps for combining the two models.

We first count the root and IG sec(uences in the training data. Using these 
counts, and the oRlLM -- the SRI language modeling toolkit [Stolcke, 1999]. we 
form two trigram models that estimate the root and IG probabilities. SRIL.M is 
a toolkit for building and applying statistical language models (LMs), primarily 
for use in speech recognition, statistical tagging and segmentation. The toolkit 
builds /r-grarn language models in ARPA -n-gram format.

We construct the combined models using the test data and the root and IG 
models, at run-time, and use the Viterbi .Algorithm to find the most probable 
tag sequence. Figure 5.4 shows an example hidden Markov model we use for 
morphological disambiguation of each sentence in our test data. The state output 
probabilities of this HMM are set to one, and we use the trigrarn and bigram 
language model probabilities as state transition probabilities, which are computed 

according to our models.
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Training Data

Coiiiu Root and IG ngranis

i
root iigram counts IG ngram counts

test data

Disambiguated text

Figure 5.3: Implementation of the ?z-gram models.
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Sentence: <S> w, W3 Wj </S> 

Parses of vv,»: t,

Parses of w,; t, , ,^ 2  

Parses of w,: ,

Parses of ŵ ; ,,142

KMM:

Figure 5.4; The trigram HMM for morphological disambiguation. <S> is the 
sentence start tag, and < /S>  is the sentence end tag.
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5.3.4 Experiments and Results

To e,valuate our models, we first trained our models and then performed morpho
logical disambiguation on our test data.

Training and Test Data

Both the test data and training data were collected from the web resources of 
a Turkish daily newspaper. The tokens were analyzed using the morphological 
analyzer/generator, developed by Oflazer [1994]. We preprocessed the training 
and test data, to reduce the morphological ambiguit}·'. The steps of preprocessing 
are e.xplained in the ne.x't section.

The training data consists of the unambiguous sec(uences (US) consisting of 
about 650K tokens in a corpus of 1 million tokens, and two manually disam- 
luguated te.xts of 12,000 cind 20,000 tokens. The idea of using unambiguous 
sequences is similar to Brill’s work on unsupervised learning of disambiguation 
rules for POS tagging [ 1995b).

Preprocessing for Ambiguity Reduction

We preprocess the training and test data to reduce the morphological ambiguity, 
without reducing accuracy. The following are the steps of preprocessing:

1. We eliminate very rare root words that are ambiguous with a very frequent 
root word. An e.xample is the word ’bunlar’ (These’ in English), which has 

the following two morphological parses:

(a) bun+Moun+A3pl+Pnon+Nom

(b) bu+Pron+DemonsP+A3pl+Pnon+Moin

‘bun’ is cin extremely rare word in Turkish, whereas ‘bu’ is very frequent, 
so any parse with the root ‘bun’ is eliminated.
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2. VVe disambiguate the lexicalized and non-lexicalized collocations involving 
compound verbs. An example is the compound verb ‘yemek ye-’. For 
example in the sentence ‘Yemek yenecek’ (in English ‘The dinner will be 
eaten’), the first word has the following two parses;

(a) yemek+Noun+A3sg+Pnon+Mom

(b) ye+Verb+Pos'DB+Moun+Inf+A3sg+Pnon+Mom

and the second word hcis the fodoudng four parses:

(a) ye+Verb"DB+Verb+Pass+Pos+Fut+A3sg

(b) ye-t-Verb''DB+Verb+Pass+Pos''DB+Adj+FutPart+Pnon

(c) y9n+Verb+Pos+Fut+A3sg

(d) yen-t-Verb+Pos"DB+Adj+FutPart+Pnon

But, we know that when these words are seen consecutively, the correct 
parse for the first word is the first parse above, and the correct parse for 
the second word is the one that is deri\'ecl from a \'erb with root ‘ye’, that 
is. the one that start.s with 'ye+Verb.

•3. VVe disambiguate postpositional phrases: Postpositions impose a constraint 
on the case of the preceding word, some subcategorize for 'Dative’ noun 
objects, while others subcategorize for an ‘Ablative’, ‘Nominative’etc. noun 
just preceding them. The subcategorization information can be inferred 
from the type of the postposition. For example, the word ‘sonra’ has the 
following two parses;

(a) sonra+Postp+PCAbl+Temp

(b) sonra+Adv

If the preceding word is a noun in Ablative case, then the correct parse is 

the first one above.

The ambiguity of the training data was reduced from 1.75 to 1.55 using this 
preprocessor.
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The preprocessor analyzes unknown words with an unknown word processor. 
The unknown words are almost always foreign proper name,s, words adapted into 
the language and not in the lexicon, or very obscure technical words. These are 
sometimes inflected using Turkish word formation paradigms. The unknown word 
proce.ssor assumes that all unknown words have nominal roots. It is constructed 
in the same way as the morphological analyzer, only the nominal root lexicon 
recognizes S+. where S is the Turkish surface alphabet.

The test data consists of 2763 tokens, 935 (~34%) of which have more than 
one morphological analysis after preprocessing. The ambiguity of the test data 
was reduced from 1.74 to 1.53 after preprocessing.

Evaluation

As our evaluation metric, we used accuracy, which is the percentage of the correct 
parses among all selected parses:

^  of correct parses
accuracy X 100

^  of selected parses

The number of selected parses is the number of tokens in our case, since our 
algorithm selects one parse among the set of po.ssible parses for each token.

There are also other evaluation metrics like recall and precision, but since our 
system returns only one parse for each token, accuracy results are sLifficient.

Results

The accuracy results are given in Table 5.1. For all cases, our models performed 
better than baseline tag model. As expected, the tag model suffered considerably 
from data sparseness. Using all of our training data, we achieved an accuracy 
of 93.95%, which is 2.57% points better than the tag model’trained using the 
same amount of data. Models 2 and 3 gave similar results. For Model 2, we 
needed IG 4-gram probabilities, however Model 3 needed only IG 3-grarn and
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TVaining D ata Tag M odel 
(Baseline)

M odel 1 M odel 1 
(Bigram )

M odel 2 M odel 3

US 86.75% 88.21% 89.06% 87.01% 87.19%
US-hr2,000 words 91.34% 93.52% 93.34% 92.43% 92.72%
US+32,000 words 91.34% 93.95% 93.56% 92.87% 92.94%

Table 5.1: .Accuracy results for different models. In the first column, US is an 
abbreviation for unambiguous sequences.

2-gram probabilities. As can be seen from the result.s. Model 2 suffered from data 
•sparseuess slightly more than Model 3. as e.xpected.

Surprisingly, the bigram version of Model 1 (i.e., Equation (7). but with bi
grams in root and IG models), also performs quite well. If we consider just the 

.syntactically relevant morphological features and ignore any semantic features 
that we mark in morphology, the accuracy increases a bit further. These stem 
from two properties of Turkish: Most Turkish root words also have a proper noun 
reading.·' We count it as an error if the tagger does not get the correct proper noun 
marking. Biu this is usualh' impossible especially at the beginning of sentences 
where the tagger can not exploit capitalization and has to back-off to a lower-order 
model. In almost all of such cases, all syntactically relevant morphosyntactic fea
tures except the proper noun marking are actually correct. .Another important 
case is the pronoun o, which has both personal pronoun (s/he) and demonstrative 
pronoun readings fit) (in addition to a syntactically distinct determiner reading 
(that)). Resolution of this is always by semantic considerations. When we count 
as correct any errors involving such semantic marker cases, we get an accuracy 
of 95.07% with the best case (cf. 93.91% of the Model 1). This is slightly better 
than the precision figures that is reported earlier on morphological disambigua
tion of Turkish using constraint-based techniques [Oflazer and Tür, 1997]. Our 
results are slightly better than the results on Czech of Hajic and Hladka [1998]. 
.Megyesi [1999] reports a 95.53% accuracy on Hungarian (a language whose fea
tures relevant to this task are very close to those of Turkish), with just the POS 
tags being correct. In our model this corresponds to the root and the POS tag of

'In fact, any word form-is a potential first name or a last name.
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the last IG being correct and the accuracy of our best model with this assumption 
is 96.07%. When POS tags and subtags are considered, the reported accuracy 
for Hungarian is 91.94% while the corresponding accuracy in our case is 95.07%. 
We can also note that the results presented by Ezeiza et al. [1998] for Basque 
are better than ours. The main reason for this is that they employ a much more 
.sophisticated (compared to our preprocessor) consi;raint-grammar based system 
which improves precision without reducing recall. Statistical techniques applied 
after this disambiguation yield a better accuracy compared to starting from a 
more ambiguous initial state.

Since our models assumed that we have independent models for disambiguat
ing the root words, and the IGs, we ran e.Kperiments to see the contribution of the 
individual models. Table 5.2 summarizes the accuracy results of the individual 
models for the best case (Model 1 in Table 5.1.)

Model A ccuracy
IG Model 
Root Model 
Combined Model

92.08%
80.36%
93.95%

Table 5.2: The contribution of the individual models for the best case.

There are quite a number of classes of words which are always ambiguous and 
the preprocessing that we have employed in creating the unambiguous sequences 
can never resolve these ca.ses. Thus statistical models using only these unam
biguous sequences as the training data do not handle these ambiguous cases at 
all. This is why the accuracy results with only unambiguous sequences are sig
nificantly lower (row 1 in Table 5.1). The manually disambiguated training sets 
have such ambiguities resolved, so those models perform much better.

An analysis of the errors indicates the following: In 15% of the errors, the last 
IG of the word is incorrect but the root and the rest of the IGs, if any, are correct. 
In 3%; of the errors, the last IG of the word is correct but the either the root or 
some of the previous IGs are incorrect. In 82% of the errors, neither the last IG 
nor any of the previous IGs are correct. Along a different dimension, in about



CHAPTER o. MORPHOLOGICAL DISAMBIGUATION 64

51% of the errors, the root and its part-of-speech are not determined correctly, 
while in 84% of the errors, the root and the first IG combination is not correctly 
determined.

5.4 M orphological D isam biguation of Turkish 

with M aximum Entropy M odels

Maximum Entropy (ME) Modeling is an approcich for combining multiple infor-. 
rnation sources for classification. Recently, ^4E modeling approacli was success
fully applied to natural language processing problems, including piirt-of-speech 
(PO.S) tagging [RatnapcU'khi, 1996; Hajic and liladka, 1998]. Therefore, we de
cided using ME modeling approach for morphologically disambiguating Turkish 
text.

In .Section 5.2, we show that the problem of morphological disamibiguation 
of Turkish can be reduced as follows, since the morphological parses include the 

root of the words:

argm axP(T |lE)
T

argmax P{T)
T

a r g m a x P ( i „ I x  P{tn-i\t'l~-) x
T

. x P{ U\ G) x P{ t , )

In the previous section, we approximate the probability of a morphological 
parse given the previous morphological parses using 3-gram language models. In 
this section, we appro.ximate this probability as follows:

t=l

and use ME models to compute these probabilities. Note that, we are not using 
the roots in the approximation above. Using the preceding two words as the 
history would increase (at least double) the number of features. So for simplicity, 
we condition the probability only on the final IG of the previous word.
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5.4.1 The Probability M odel

The number of possible IGs is very large for classification with ME models. There
fore, we try to reduce the number of classes for the ME models, in a similar way 
with a recent study for morphologically tagging a similar language, Czech (which 
is also a free word., order, and a highly inflective language.) This study also sug
gests using the morphological features of the words, as well as the original word 
forms and pcirt-of-speech tags [Hajic and Hladka, 1998]. The words are analyzed 
morphologically, and each analysis is seen as a set of 13 morphological features, 
which can capture the part-of-speech, gender, number, tense etc., information of 
all the words. Because of the derivational morphology, the analysis of a Turkish 
w o r d  might contain more than one part-of-speech category, so such an approach 
is not directly applicable. Instead of the whole morphological parses, we represent 

■an IG with 9 categories, namely:

1. Major Part-of-Speech (POS),

2. Minor Part-of-Speech (SUBPOS),

3. .A.greement (.A.GR),

4. Po.ssessive (POSS),

0. Case (CASE),

6. Polarity (POL),

7. Tense-.Aspect-Mood Marker 1 (TAMl),

5. Tense-.Aspect-Mood Marker 2 (T.AM2), and

9. Copula (COP).

The values that these categories can take are listed in Appendix A. Table 5.3 
gives examples of how .some IGs are represented according to this representation.
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I G 1 2 3 4 5 6 T 8 9
Nouii+A3sg+P3sg+Nom Noun - A3sg P3sg Nom - - - -
Moun+Inf+A2sg+Pnon+Acc Noun In f A2sg Pnon Acc - - - -
Verb+Pos+Progl+A 2sg Verb - A2sg - - Pos P ro g l - -
Verb+Pos+Fut+Cop+A3sg Verb - A3sg - - Pos Fut - Cop
Verb+Pos+Progl+Cond+A3sg Verb - A3sg - - Pos P ro g l Cond -
V erb+Pass+Pos+Progl+A 3pl Verb Pass A3pl - - Pos P rog l - -
Nurn+Card Num Card - - - - - - -
Adv+As Adv As - - - - - - -
Pron+PersP+A3sg+Pnon+Abl Pron PersP A3sg Pnon Abl - - - -
Q u es+ P res+ A lp l Ques - A lp l - - - Pres - -
A d j+ A slf Adj A s i f - - - - - - -

Table 0.3; Examples for representations of IGs using 9 categories. The category 
liiat is missing in the IG takes the value

The probability of an IG. given the final IG of the previous word is computed 
as the product of the probabilitie.s of the individual category values-given the 
final IG of the previous morphological parse:

7 = 1
(.5.20)

wliere ,P,(.r|y) is the probability according to the model, and catj{IGi,k) is a 
function which returns the value of the category for /6',·, .̂, as in the following 

examples:
caii(Adj +  A s i f ) =  Adj 

cai2 (Adj +  AsIf) =  A sIf 

cai3 (Adj +  A sif)  =  —

In order to find the probabilities of the individual category values given the 
final IG of the previous analysis, we construct 9 different models, for each cate-

gory.

Pjixxttj{IGi,k)\IGi-i,n,.i) = 7
m,
n %

where. fi^{catj{IGi^k)·, IGi-i^m^-^) features of our model, ag are the weights
of the features, and 2'j(/G,-_i,„,_J is the normalization constant for the history

/G,
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So. for example:

P(Noun +  A3sg + P3sg -f Nom|/Cr'j;) Pi(Moun|/G'j;) X

Pii-IIG,)  X 

P3(A3sg|/6G) X 

P4(P3sg|/GV) X 

,P5(Mom|/Gr) X

IM-\IO,) X 

Pr(-|7G.,) X 

Ps(- | /GP) X 

P 9 ( - | /G , )

5.4,2 Features for M orphological Disambiguation

The conditional probability of a history /G,_i,„,_, and IGi„k is deterniiiied by the 
weights vvdiose corresponding features are active (that is, that have the value 1). 
VVe tried two types of features for morphologically disambiguating Turkish text. 
All of these features check the occurrence of category values or IGs with other 
category values. VVe have not included features that check the identity of the root 
or the surface form of the words, in order to keep a small number of features. 
Our features are described in the following sections.

Type-1 Features

The first type of features check the co-occurrence of a category in the previous 
word's final IG, with another category of the current IG. These features are used 
in Ecpiation 5.20, and have the following format:

1 if c a i j { l G i , k )  = « and b € /G',_i,n,_i 
0 otherwise
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Here, b € means that has the category value b in it. An
example feature is:

/ 1̂ (cahi(/G',y·), )

and. therefore.

1 if cat^{IGi^k) = P3sg and A3sg 6 ICL,
0 otherwise

/i,(P3sg, Moun + A3sg + Pnon + Nom) = i 

,/\JP 3sg ,A dj+ A slf) = 0  

/[, (Acc, Noun + A3sg + Pnon + Mom) — 0.

Type-2 Features

The second type of features check the co-occurrence of the previous vvorchs final 
IG with a category of the current IG. These features are used in Equation 5.20, 
and have the following format;

An example feature is: 

h,[cat.x{IGi,k)-IGi-\,n,-,) = <

1 if catj(ICn:,ic) = « and IGi-i,n,_^ = b
0 otherwise

1 if cohi(/G',-,A.·) = P3sg and
IGi-i,m-i — Noun -f- A3sg -b Pnon + Mom 

0 otherwise

and. therefore.
/1 JP3sg, Noun + A3sg -h Pnon + Mom) = 1 

/ц  (P3sg, Noun + A3sg + P3sg + Mom) = 0 

/i^(Acc, Noun -|- A3sg -f Pnon -p Nom) = 0.

5.4.3 Training the M odels

There are two issues for training the models to use for morphological disambigua

tion;
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1. D eterm in ing  the  features to use: We extract the features to use auto
matically, examining the training data. We use the IG bigrams that occur 
more than some threshold (that we call as the IG  count threshold) in 
the training data for selecting the features.

i^or the type-1 features, we list the carte:sian product of all the feature values 
(excluding the "-”s) as the candidate features. For type-2 features, we list 
the pair of IGs (of the first word) and the feature values of the second word 
(excluding the '‘-''s again) of the bigrams, as candidate features. From tlie 
list of candidate features, we only select the ones that are active in more 
than a second threshold (that we call as the feature count threshold) of 
the IG bigrams selected from the training data.

2. F inding the weights of the features: We use the Generalized Iterative 
■Scaling algorithm [Darroch and Ratcliff. 1972]. that is described in Chapter 
2, to find the weights of the features. As a stopping criterion for the GIS 
algorithm (as step 7 of the algorithm given in Section 2.6.C), we use;

\LpJi LpnL\ c X Lpli

and we call e the threshold weight.

5.4.4 Testing the Models

Once the features and their weights are computed, we find the probabilities for 
all possible bigrams in the text to be disambiguated. We then u e the Viterbi 
algorithm [Viterbi, 1967], to find the most probable path, for each sentence, which 
is returned as the disambiguated sequence.

5.4.5 Experiments and Results

We tested our ME models in a similar framework with the n-gram models. We 
performed various experiments to optimize the three threshold values: the IG
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count threshold, the feature count threshold and the threshold weight. Our train
ing and test data and these experiments are described in the following subsections.

Training and Test Data

The training data is the same as the training data we use for training models 
for morphological di.sambiguation of d'urkish using n-grarn language models. We 
use r.wo sets of test data for testing our models, the first set· (toistl) the same as 
the test data we use for testing our models tor morphological disambiguation of 
Turkish using /i-gram language models and the second set (test2) is a 958 token 
subset of it. We use the subset for optimizing some of the parameters of out 
models. The training and test data are preprocessed for ambiguity reduction, as 
(explained in .Section -5.3.4.

Determ ining the IG Count and Feature Count Thresholds

The number of features that we use for ME modeling is very important, because 
the running time of the G.IS algorithm is dependent on the number of features. 
Therefore, we tried to limit the number of features, and used thresholds for this 
purpose. We tried to find optimum values for the thresholds, that result in high 
accuracy.

Table 5.4 shows the relationship between the thresholds and accuracy using 
type-1 features, in these 3 experiments, the threshold weight is 0.1. As, we 
increase the number of features, the accuracy increases. Table 5.5 lists the number 
of features for each model of these 3 experiments.

Contribution of the Individual Models

In order to evaluate the contribution of the individual category models, we ran 
an experiment excluding one model (that uses type-1 features) each time. Table 
5.6 lists the accuracy values that we obtained with a threshold weight of 0.1.
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Test D a ta IG  Count Threshold Feature C ount T hreshold A ccuracy
test2 > 10 > 3 86.74%
test 2 > 10 > 1 88.93%
test2 > 5 > 1 89.56%
testi > 5 > 1 88.70%

Table 5.4: The acx;uracy results with models trained varying the counts of the 
features and IGs to include.

M odel IG  Count 
Threshold>10 

Feature Count 
Threshold>3

IG C ount 
T hreshold>10 

Feature C ount 
T h resh o ld > l

IG  Count 
T hreshold>5 

Feature Count 
T h resh o ld > l

POS 253 376 709
SUBPOS 196 659 851
AGR 114 256 308
POSS 100 226 263
CASE 154 369 431
POL 89 177 193
TAMl 118 276 347
TA M2 72 139 140
COP 59 113 124

Table 5.5: The number of features used tor the models, with different threshold 
\'alue for the features and IGs to include.

Excluding POS, SUBPOS, POL, and GOP models did not decrease accuracy. So, 
we ran another experiment excluding all of these models, and got an accuracy ol

S9.56'̂ ^̂ 0.

Intuitively. POS and SUBPOS models make similar contributions, and using- 
one of them in our model should be sufficient. We ran another experiment ex
cluding only one of them and the other two models POL and COP. and obtained 
an accuracy of 89.77%, which is the best accuracy, with this threshold. This re
sult supports our intuition, and we excluded only the SUBPOS. POL, and COP 

models in the remaining experiments.

We trained the 6 models (that we found useful) with the type-1 features,
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M odel A ccuracy
all - {POS} 89.56%
all - {SUBPOS} 89.77%
all - {AGR} 89.14%
all - {POSS} 85.28%
all - {CASE} 88.30%
cdl - (POL) 89.35%
ail - (TAMI) 88.93%
all - {TAM2} 89.'24%
all - {COP} 89.35%
all 89.35%
all - {COP.POL,SlJBPOS,POS} 89.56%
all {COP.POL.SUBPOS} 89.77%

Table 0.6: The accuracy results for a threshold weight of 0.1. "all" iaclude.s 9 
models. The test set used for these e.Kperimeats is test'd.

decreasing the threshold weight to 0.01 This also increased the accuracy. Table
6.7 lists the accuracy obtained with models trained using a threshold weight of 
!J.01. The best accuracy with this threshold, which is also the best accuracy we 
obtained using ME models, is 90.60%. and is obtained using the 6 individual 
category models. The' accuracy corresponding to the same experiment with a 
threshold weight of 0.1 was 89.77%.

Test D ata Model A ccuracy
test'2 all - {POS} 83.82%
test'2 all - {AGR} 86.01%
test 2 all - {POSS} 88.51%
test'2 all - {CASE} 87.58%
test 2 all - {TAMI} 83.08%
test 2 all - {TAM2} 89.45%
test 2 all 90.60%
testl all 89.57%

Table 0.7: The accuracy results for a threshold weight of 0.01. "all" includes the 
remaining 6 models.
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Type-2 Features

In our experiments with the type-2 features, we only used the (useful) 6 models. 
The IG count threshold was 5, the feature count threshold was 1. Table o.S 
lists the number of type-2 features for these experiments and Table 5.9 lists the 
accuracy values. The best accuracy that we obtained using type-2 features is 
89.77%. which is the same for threshold weights of 0.1 and 0.01.

M odel N um ber of Features
POS 1383
AGR 677
POSS 636
CASE 846
1 rViVi 1
TAM2

L) i 0
430

Table 5.8: The number of type-2 features used for the models, with IG Gount>5 
and Feature Count Threshold>l.

Test D ata T hreshold  W eight Accuracy
test2 0.1 39.77%
test 2 0.01 89.77%
test 1 0.1 89.57%
tesvl 0.01 89.93%

Table 5.9: The accuracy results with Type-2 features. Only the IG bigrams that 
occurred more than 5 times were used when finding the features.

5.5 Discussion

The best accuracy that results with the n-gram modeling approach is 93.95%., 
and with the ME modeling approach is 89.93%, with the same training and test 

data.
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In terms of accuracy, ME models perform worse, because of the following 
reasons:

• The num ber of classes is very large. Even if we used tags instead of 
categories of features, the number of classes that we are trying to model 
is very large. This causes a sparsity problem. Furthermore, the running 
time of the GIS algorithm is (linearly) dependent on the number of classes. 
Therefore, we make too many assumptions to reduce the number of classes. 
For e.v'arnple. we represei:,·ed IGs using 9 categories, and assumed the r.iu' 
probabilit}· of an IG is the product of the probabilities of the values of these 
9 categories.

• The num ber of features is very large. The running time of the GIS 
algorithm is also dependent on the number of features. Therefore, we tried 
to reduce the number of possible features. For example, we introduced two 
thresholds, one for reducing the number of IG bigrams to use for inducing 
the candidate features, and one for the count of the features to include in 
the models. We also checked for only \'er}· simple features. This may also be 
a reason for the poor performance. One can include more complex features, 
which can check for multiple category values.

• We m ade too many approxim ations to sim plify the m odels. We
assume that the IGs depend only on the final IG of the previous word for tiie 
.ME models, otherwise the number of features to use would be much larger. 
So. our ME models still have the weakness of the bigram language models. 
We also assume that the values of categories in an IG is independent of the 
values of other categories’ values.

• Roots are not included in the m odels. With the n-gram modeling 
approach, we have found that roots are very useful for morphological dis
ambiguation. We obtained a 1.87% absolute accuracy improvement by com
bining the IG model probabilities with the root model probabilities. How
ever. we have not included roots when using ma.ximum entropy models, in 
order to simplify our models, by reducing the number of parameters.
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On the other hand, our results are consistent with those of Brants [2000], who 
found that 7i-gram models outperform ME models for part of speech tagging of 
English.

In terms of training speed, n-grarn models are again better. Training n- 
gram models with MLE is much faster than training ME modtis with the GIS

algorithm.



Chapter 6

Application to Speech 
Recognition

6.1 Introduction

Speech is the most natural way of communication for human beings, there
fore the use of speech as a way of communication between people and com
puters is very important. Hence, recognition of speech by computers is very 
important. Speech recognition is the problem of finding the sequence of words 
W — 'w1 = Wi, tU2 , ■. ■ , Wn corresponding to a sequence of acoustic signals 
A = a"* = a\,ci2 , . ■ ■ ,a,n· hi the past 20 years, signihcant advances have been 
made in speech recognition, and many successful systems have been developed 
[Woodland et al., 1999; Davenport et al.. 1999: Wegmann et al.. 1999, among 
others].

The aim of speech recognition is to find the sequence IT'“, that maximizes

IW* = argmax Pf W |/l) 
w

P(A\W) X PiW)
= argmax-------- --------------

w P[A)

76
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= argmaxP(/l|PK) x P(i/V)
IV

(6.1)

For a given acoustic signal /1, P{A\W) is estimated by an acoustic model and 
P{W) is estimated by a language model [Jelinek, 1998].

The most popu4ar evaluation metric for speech recognition systems is word 
error rate (VVER), which is the percentage of the incorrectly recognized words. 
.So the aim of a speech recogaizer is to produce output with a low VVER.

.-Vu alternative to the VVER is accuracy, which is the percentage of the correctly 
recognized words:

accuracy = (100 — WER)%

Decreasing the WER is the same as increasing the accuracy. VVe use both of these 
.metrics for evaluating our methods.

In this chapter, we e.xplain our work on reorganizing the output of a speech 
recognizer in order to increase its accuracy. In the next section, we describe the 
recognizer that we use. then we elaborate on the problem that is the subject of 
this chapter. VVe describe how we approximate the acoustic models ¿xnd present 
different approaches for language modeling. VVe conclude with our experiments 
and results and their analysis.

6.2 The Recognizer

The speech recognizer we use is an isolated word, large vocabulary speech recog
nition system for Turkish, developed as an M..Sc. thesis, at Bilkent University 
[Yilrnaz. 1999]. .-Vn isolated word speech recognition system requires the speaker 
to make a pause of a reasonable amount of duration between consecutive words. 
The alternative to this is a continuous speech recognition system, for which the 
speakers utter their sentences in a natural manner, like in the real life.

The recognizer uses three state left-to-right hidden Markov models to model 
the triphoru s (sequences of three phones) of the uttered words. The HMMs for
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words is constructed by appending the HMMs of the triphones making up the 
words, as described by Young [1995].

This recognizer uses only the acoustic model probabilities to recognize speech, 
that is, it tries to estimate the spoken words using only the probabilities P (/l|fh ), 
and does not utilize any language model information. It outputs a 10-best list 
for each word, in the order of decreasing probability, but the probability values 
are not listed.

6.3 Problem

In this chapter, we describe our work on rescoring the n.-best list output of a 
-speech recognizer, in order to get better estimates for the word sequence W. Our 
aim is to reduce the VVER. The 7i-best list is the most probable n word sequences, 
that the speech recognizer outputs, given the acoustic signal sec|uence /1.

VVe form a lattice for each sentence, using these 10-best lists, and try to 
rmike better estimates for the uttered sentences, incorporating the langmige model 
probabilities. VVe use the Vhterbi algorithm [Viterbi, 1967]. to find the most 
probable path through the lattice, where the probability of a path is computed 
using both acoustic and langauge model probabilities. Phgure 6.1 gives an example 
of the lattice construction from a 3-best list, which is the speech recognizer output, 
and the rescoring process through this lattice.

6.4 Approximating the Acoustic M odel Proba

bilities

,-Vs we mentioned in the previous sections, the recognizer that is available to us 
lacks the acoustic model probabilities for the /r-best list, but outputs the n most 
probable words in a decreasing order. Therefore, we needed to approximate the 
anoustic model probabilities to use for rescoring the n-best lists. VVe tried three
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(a) The speech recognizer output (3-best list for each word):

'» 1 ” 3̂

W
\ 1 H^2.1 H -’,
1 . 1

W
1.2 ^ ^ 2 .2 VI/3

V V , , v v .2,3

(h) The corresponding lattice:

HA

(c) The best path through the lattice:

— D

(d) The output:

'̂ 1.3 ’'"̂3,2

Figure 6.1; The n-best list rescoriag process.
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approaches for this purpose, and these are explained in detail, in the following 
sections.

6.4.1 Equal Probabilities

riie first approach assumes that, ail the words in the iO-best list are ec|uaby- 
probable. This is a weak assumption, since we already kno■̂ v that the words 
are ordered according to decreasing probability. Hower'er, this can be seen as a 
baseline in order to demonstrate the contribution of the language model alone.

6.4.2 Linearly Decreasing Probabilities

The second approach assumes that the acoustic model probabilities for the words 
in the 10-best list should decrease linearly, that is, if the first word is assigned an 
acoustic model probability of fOa;, then the second word is assigned an acoustic 
model probability of 9r, the third word is assigned an acoustic model probability 
of Sx. and the last word is assigned an acoustic model probability of x, as shown 
in Figure 6.2.

6.4.3 Exponentially Decreasing Probabilities

The third approach assumes that the acoustic model probabilities for the words in 
the 10-best list should decrease exponentially, that is, if the first word is assigned 
an acoustic model probability of lOo;, then the second word is assigned an acoustic 
model probability of the third word is assigned an acoustic model probability 
of ^ x ,  and the last word is assigned an acoustic model probability of ^ x ,  as 
shown in Figure 6.3.



CHAPTER 6. APPLICATION TO SPEECH RECOGNITION 81

P(A\w)

¡Ox 
9x 
Sx 
7x 
»6x 
5x 
4x 
3x f 
2a'

W j U ',  W j W j VW. \\Ĵ

Figure 6.2: Approximating acoustic model probabilities with a linear function.

P(A\w)

¡Ox

9x

Sx

7x

6x
. IJA f
4x

3x

2a

Figure 6.3: Approximating acoustic model probabilities with an exponential func
tion.
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6.5 Language M odeling

[a order to estimate the language model probabilities tor a seciuence of Turkish 
words, we constructed three different language models, a word-based language 
model (similar to the language modeling approaches for Elnglish), an fG-based 
language model, and a prefix-suffix language model. T'he IG-based model is 
a consec(uence of our models for morphological disambiguation and the prefix- 
suffix langnage modeling is an approximation of the IG-based modeling approach, 
f'hese models are described in detail in the following sections.

6.5.1 W ord-Based Language M odeling

Por word-based language modeling, we constructed trigram language models 
where the probability of a word given the previous words is approximated by 
the probability of this word given only the previous two words. The language 
model probabilities are computed as follows:

P{W) =
l=[
n

a (6.2 )

This approach has been successfully used for languages like English in various 
natural language and speech processing tasks.

The trigram language models are constructed using the SRILM Toolkit, which 
smooths the probabilities using Good-Turing modeling [Gale, 1994] combined 
with Backoff smoothing technique [Katz. 1987].
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6.5.2 IG-Based Language M odeling

Part-of-speech tags or morphological parses can be used as the basis of equiva
lence classes for language modeling [Heeman and Allen, 1997; Niesler and Wood
land. 1996: Bangalore. 1996], as in class-bcised language modeling. The typical 
approach for using part-of-speech tags in language modeling is to sum the i^rob- 
abilities over all of the part-of-speech tag possibilities. So. the probability of a 
word sequence is computed as follows, using the trigram sequences;

p i u n  = E c (« -r ,i;· )

t\̂  k = l  
n

~ P{wt:\t0 X P{tk\T-->N-h-l) (6.3)
k=i

udiere /{' is the sequence of part-of-speech tags, or morphological parses in our 
Ccise.

Heenian [199T] suggests another approach, redefining the speech recognition 
problem, so that it finds the best word and part-of-speech tag sequence. Let T 
be the part-of-speech tag sequence for the word sequence W. The goal of speech 
recognition is now to solve the following:

W r  = argmax.P(W.T!..4) 
iv,T

— argmax 
W.T

P(/l|LF .r) X P{W:T) 
P{A)

= argmax P[A\W. T) x P[IF. T)
W,T

(6.4)

The first probability P{A\W.T) is again computed by the acoustic model, which 
traditionally excludes the part-of-speech category assigmerit. In fact, this prob
ability can be reasonably approximated by P(/1|IF). The second probabilit;.' 
Pi W.T)  is computed by the part-of-speech based language model, and this ac
counts for both the sequence of words and the part-of-speech tag assignment tor 
those words. The P(W,T)  can be rewritten as follows:

P{W.T) =
'̂=1
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k—i

k=[
(6.5)

¿i) = 1 since we use the full morphological parses as part-of-speech 
tags. We then appro.v'irnate ¿i“ )̂ by ) and then compute
P{\V. T]. using trigram models as follows:

PiW.T) (6 .6 )

VVe then use the root and IG probabilities to compute the probability of the parse 
sec[uence as in the morphological disaxiibiguation approach.

For the IG-ljased language modeling approach, we first analyze all the words 
in the /?.-best list morphologically, using the morphological analyzer/generator. 
rleveloped by Ofiazer [1994]. This process increases the number of candidates in 
the 10-best list, since some of these words are morphologically ambiguous. We 
assign the same acoustic model probability to all of the morphological parses of 
a word and this probability is the acoustic model probability of the surface form 
of the word. We then form the lattice for each sentence, using the e.xtended 
set of candidates and rescore the lattice using the acoustic model and IG-based 
language model probabilities. Once the most probable path through the lattice 
is selected, the surface forms of all of the parses on this path are generated using 
rhe same toolkit.

(.'sing the lGd)ased language modeling approach, we can also morphologi
cally disambiguate the recognized seciuence of words, using our statistical models. 
However, the morphological analysis and generation processes are the e.xtra steps
requii·'ired in order to use IG-based language models.
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6.5.3 Prefix-Suffix Language M odeling

Prefix-Suffix language modeling is an approximation of tlie IG-based language 
modeling approach, in order to get rid off the morphological analysi.s and gener
ation steps. As I already mentioned, Turkish is an extremely suffixing language, 
and looking at the suffixes of the words, we can clearl\· see some patterns. For 
example, in a nouii-noun NP, with an owner relationship, the first word gets a 
genitive case marker, and the second word is marked wirdi a [possessive suffix that 
agrees with tiie first word;

rocugim kalemf (the pencil of the child)
child+G'A’.V pend\+P3SG

okultm yeri (the location of the school)
school+ GEN loccitionAP3SG

'Though, the surface forms of these suffixes may change as a result of vowel 

harmony;

ev/n terasi (the terrace of the house)
house-F GEN iewAce+PSSG

these patterns may still be captured by a statistical model.

In this model, the initial part of a word corresponds to the root, and the 
final part corresponds to the suffix appended to the root. Figure 6.4 shows the 
dependence of the letter sequences.

This model approximates the probability of a word given the previous two 
words by the product of the probability of the initial part of the word given the 
initial parts of the previous two words and the probability of the final part of the 
word given the final parts of the previous two words;

P(W)  -
i = l 
/1

l =  [
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P

T v w .
1-1

w
1

Figure 6.4: Dependence of the letter sequences.

= P(Prep{wi)\Prep{w,^>)· P/-e,,(((,·,_,)) x

/ , , (■№,) | 5 » / , ( tr . , _2 ) .  Suf,.{wi-i))
i=l

(6.7:

Prtp[w,) is a function that returns the initial p letters of the word up. and 
Saf,,(LUi) is a.nother function that returns the final q letters of the word lo,·. if 
the word tvi is shorter than p characters, then »;,■) returns the whole word.
Likewise, if it is shorter than q characters, then S u returns the whole word. 
I'he para.nieter p corresponds to the length of the root part and q corresponds to 
the length of the suffix part of the words.

We tried various experiments changing the values of the parameters p and 
</. Examining f million words of morphologicall}· disambiguated Turkish text, 
we found out that the average root length is 4.f0 letters, and the a.verage suffix 
length is f.71 letters.

6.6 Experim ents and Results

In order to test our langiuige models, we trained the speech recognizer, and formed 
a.n iO-best list for each word in our test data, and then constructed a lattice for 
each sentence. We returned the sequence of words on the most probable path, 
according to each model, as the recognized sentence.

In order to modify the contribution'of the acoustic and language models, we
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introduced two weights, a and [3. Then, the formulation of the problem changes 
as follows:

IT. = argmax
w

= argmax.P(T|lT) x P(l'V)

= argrnax P (/i| l-F)" x P( W)>̂  
w

(6.S)

(6.9)

a is called as the acoustic m odel weight, and 3 is called as the language 
m odel weight. Tor the word based language modeling approach, there is no 
constraint on the weights a and ¡3. However, for the IG-based and prefix-suffix 
language modeling approaches, a and 3 satisfies the following constraint:

a -b 6 = 1 (6.10)

This is because, for the word-based language modeling approach, we only used 
the SR.ILM toolkit. However, for the other two approaches, we used SRILM 
toolkit, only when constructing the root and IG models (for 1G-I)ased modeling) 
and the word-initial and word-final sec[uence models (for prefix-suffix modeling). 
For combining the individual models, we developed another program. Note that 
the two weighting schemes are the same, since one can always scale the wei 'hts 
of the models, so that their sums will be 1.

In all our experiments, we tried using ecpial weights for the acoustic and 
language models. These weights are 1 when word-based language models are 
used, and 0.-5 when IG-based or prefix-suffix language models are used. VVe also 
tried to find the optimum weights.

In the following sections, we describe the training and test cUita and our 
experiments.

6.6.1 Training and Test D ata

Our training data for the speech recognizer consists of .53.5 words which cover all 
the phone trigrams in our test data. Each word in the training set is uttered 
three times, by a female speaker.
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Accurcic}' 60.83%
Best Possible Accuracy 79.41%

Table 6.1; The initial pei'fofrnance of the recognizer.

The training data for the word-ba.sed and prefi.x-.sufhx language models are 
I million and 20 million words, collected from the web pages of a Turkish daily 
newspaper. Around 60% of the numbers in these corpora are converted into their 
\'ocaI ized versions.

riie training data for the lC-l:>ased language model is the one that we used 
for forming IG-I)ased language models we used for training the morphological 
disambiguation system.

The test data consists of 1361 words, and the vocabulary size of our test data, 
is 773 words.

6.6.2 Initial Performance of the Recognizer

Table 6.1 lists the initial accuracy results of the recognizer with our test data. 
When only the acoustic model is used, the accuracy is 60.83%i. This number is 
obtained assuming that the lirst candidate in tlie 10-best list is returned as the 
recognized word. 79.-11% of the words have the correct form in the 10-best list. 
Therefore, this is the best possible accuracy that can be obtained Avhen we rescore 
the 10-best list by incorporating the language model.

%

6.6.3 W ord-Based Language M odeling

For word-based language modeling, we used traditional 3-gram language models. 
Table 6.2 lists the accuracy when we use the word-based language models trained 
with 1 million and 20 million words. The third column of the table lists the 
accuracy obtained with no weighting (that is, the a and 3 weights have value 1).



CHAPTER 6. APPLICATION TO SPEECH RECOGNITION 89

LM Training- 
D ata  Size

Acoustic M odel Accuracy 
(No W eighting)

A ccuracy 
(W ith  W eights)

1 Million 
\V'ords

Equal 43.43% -
Linear 66.68% 68.15% (a = 1.2. d = 1)
E.xponential 59.49% 67.42% (a = 2.3. G = 1)

20 Million 
Words

Equal •51.03% -
LineLvr 59.36% 61.09% (q =-- 1.2. d = 1)
Exponential .55.42% 61.09% (a = 2.3. ,'i = 1)

Table 6.2: The performance of the recognizer after re.scoring the /i-best li,st with 
a word ba.sed LM.

The fourth column lists the accuracy obtained with optimized weights.^ Since 
the toolkit works very slow with training data of 20 million words, we have not 
optimized the weights for this training data, instead used the optimum weights 
obtained using training data of i million words.

The best accuracy that we achieved using word-based language models 'vith 
ec[ual weights is 66.68%, and with optimized weights is 68.15%;. .Note that the 
accuracy of the speech recognizer is reduced when we appro.ximate the acoustic 
model in’obabilities with eciual probabilities.

6.6.4 IG -Based Language M odeling

IG-based language models gave the worst results for the /?.-best list rescoring task. 
The accuracy numbers obtained udth these models is listed in Table 6.3. .All ap- 
pro.x'i[nations to acoustic model probabilities with ec|ual weights for acoustic and 
language models reduced the accuracy of our speech recognizer. However, small 
gains over the baseline accuracy (that is. the initial accuracy of the recognizer] 
could be acciuired optimizing the acoustic and language model weights.

The run-time of the system using IG-based language models is longer than

^The weights are given in parentheses.
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A coustic M odel Accuracy 
(No W eighting)

Accuracy 
(AM W eight)

Ecpial 29.31% -
Linear 41.37% 63.22% (0.03)
Exponential 58.-12% 64..35% (0.14)

Table 6.3; Tlie performance of the recognizer after rescoring the n-best list with 
an IG based LM. The .A.M Weight stands for the Acoustic Model Weight.

LM Training- 
D ata  Size

Acoustic M odel Accuracy 
(No W eighting)

A ccuracy 
(AM W eight)

1 Million 
Words

Equal 35.24%
Linear 67.29% 67.88% (0.56)
Exponential 66 , 67.62% (0.43)

Table 6.4: The performance of the recognizer after rescoring the nd-)est list with 
a prefix-suffix LM, which has a root size of 3 letters and suffix size of 2 letters.

tlie run-time of the systems using the other models, because of the extra morpho
logical analysis and generation steps. The increase in the number of candidates 
in the n.-best list, introduced· as a result of morphological ambiguity is another 
factor, increasing the run-time of this system.

6.6.5 Prefix-Suffix Language M odeling

We acc[uired the best results with the prefix-suffix language models. We tried 3 
versions of these models, modifying the length of the root and the suffix parts:

1. .3-letter prefix, 2 -le tter suffix approxim ation: The accuracy numbers 
that we acciuired with 3-letter root and 2-letter suffix approximation is 
listed in Table 6.4. The best accuracy achieved using this model with equal 
acoustic and language model weights is 67.29%, and with optimized weights 
is 67.88%. Both ax'e obtained when we used linearly decreasing probabilities 

for approximating the acoustic models.
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LM Training 
D ata  Size

Acoustic M odel Accuracy 
(No W eighting)

Accuracy 
(AM W eight)

1 Million 
Words

Equal 40.37% -
.Linear 67.75% 68.89% (0.61)
Exponential 67.75% 68.82% (0.39)

Table 6.5; The performance of the recognizer after rescoring the /i-best list with 
a prefix-.suffix LM. which ha.s a root size of -1 letters and suffix size of 2 letters.

LM Training 
D ata  Size

Acoustic M odel Accuracy 
(No W eighting)

Accuracy 
(AM W eight)

L Million 
Words

Ec(ual
Linear
Exponential

12.10%
69.08% 69.82% (0.57:
68.28% 69.95% (0.;32)

20 Million 
Words

Ec[ual
Linear
Exponential

46.4.3%
ro.6 1% 71.;35% (0.53)
69.42% 70.95% (0.42)

Lable 6.6: The performance of the recognizer after rescoring the /i-l.)est list, with 
a prefix-sidfix LM, which has a root size of 4 letters and suffix size of 3 letters.

2. 4 -le tte r prefix, 2 -le tte r suffix approxim ation: We achieved better ac
curacy results when we increased the length of the sequence approximating 
the root. These results are listed in Table 6.5. The accuracy for linearly 
decreasing and exponentially decreasing acoustic model probabilities, with 
equal weights for acoustic and language models is the same, and 67.75%. 
When we optimized the model weights, we obtained an accuracy of 68.89%: 
with linearly decreasing acoustic model probabilities.

3. 4 -le tte r prefix, 3 -le tte r suffix approxim ation: The best accuracy re
sults are obtained with a root length of 4 letters and a suffix length of 3 
letters, as listed in Table 6.6. Since this model gave the best results with 
a training data of 1 million words, we also tried using training data of 20 
million words, and achieved our best results for n-best list rescoring. The 
best accuracy that we achieved by n-best list rescoring is 71.35%, and is ob
tained using linearly decreasing acoustic model probabilities, and optimized .
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A Accuracy
0.03 45.26%
0.06 52.31%
0.15 64.07%
0.5 64.91%

Table 6.7; The effect of expotientially clecrea,sing acou.stic model probabilities on 
performance.

model '.veighting.

In our experimeiit.s with our best prefix-suffix models, we also tried changing 
the approximation function for acoustic model probabilities. We used exponen
tially decreasing probabilities, which decay slower than our initial exponential 
approximation, so the probability of the word in the /r-best list is estimated 
by the follou'ing function:

-  X e “ '^‘
X

wliere x is a normalization constant, i is the order of the word, and A is a param
eter to control the decay. Table 6.7 lists our results with various A values.

AVe made our experiments with 4 letter prefix and 3-letter suffix models, which 
gave the best performance, for our task, which was 68.28% with our exponen- 
tia.l function. .-Vs can be seen from the new results, the accuracy gets better as 
we increase A for exponential functions, which means that we get better results 
when the nrobabilities for the words in the n-best list decrease faster, which is 
also consistent with our initial exponential approximation. We obtained similar 
results, when we changed our linear function, coo.

6.7 Discussion

In rescoring the u-best list output of a speech recognizer in order to increase its 
accuracy, the prefix-suffix language models, which we proposed as an approxima
tion to IG-based models outperformed all our models. The reason that IG-based
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models performed poorly is that ambiguity is introduced by morphological analy
sis. Morphological parses of the words are ambiguous, and since we do not know 
which one is the correct parse in that context, we are using all of the parses, 
which complicates the selection procedure.

Prefix-suffix models eliminated the ambiguity problem of IG-based models, 
since we are using fixed lengths that only approximate the root and the suffix 
part.s.

Howe\’er. there is still room for further impro\'ement. so clustering and real 
stem-hsuffix models, which are described in the concluding chapter, can be inves
tigated as a future work.



Chapter 7

Application to Spelling 
Correction

7.1 Introduction

The aim of a spelling checker is to find words in a text which are mis-spelled 
and return a set of possible candidates for the correct version of those words, 
and the goal of a spelling corrector is to find and return the correct version of 
the mis-spelled word, among the possible candidates, most of the time using the 
context in which the word occurs. .Spelling checkers and correctors are a part 
of all modern word processors and are also important in applications like optical 
character recognition and hand writing recognition.

In this chapter, ŵe describe the application of our language modeling ap
proaches for context dependent spelling error correction. In a similar way to 
i?-best list rescoring for speech recognition, we form a lattice using the correct 
words and the spelling corrector candidates for the mis-spelled words. We then 
use the language model to select the most probable path through the lattice, 
which we return as the spell corrected version of the text.

We use the spelling checker developed by Oflazer [1996]. The spelling checker

94
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produces as output an unorclered list of candidate words, wiiicli might be the cor
rect version of the mis-spelled word. All of the candidates have ec(ual probability 
(which is not true in real applications).

in the ne.xt section, we describe the types of spelling errors with e.xarnples. 
riien, we describe how we use the previously described language modeling ap
proaches for this task and we conclude with e.Kperimental results and discussion.

7.2 Spelling Errors

•Spelling errors can be classified into 4 types [.Jurafsky and .Vlartin, 1999]d

1. Insertion: an e.xtra letter is inserted into the word.

2. Deletion: one of the letters of the word is omitted.

•'i. Substitu tion : one of the letters of the word is mis-spelled, that is anorher 
letter is typed instead of the correct tetter.

4. Transposition: two consecutive letters of a word are interchanged.'

E.xarnples to the 4 types of spelling errors for English and Turkish are given in 
Table 7.1.

Note that spelling correction in a language like Turkish, which has a comple.x 
morphology is not always an easy task. .Sometimes the error might be on the 
suffi.Kes of the word, or longer words might have more than one spelling error, as 
in the following e.xample:
M is-spelled word: uygarla5tiramadiklarmziz 
C orrect W ord: uygarla§tiramadiklarimiz

 ̂We do not con.sider the word.s that are pronounced very .similarly, but spelled in a different 
way, such as p r in c ip l e  and p r in c ip a l  o r  w h e th e r  a.nd w e a t h e r  as in .\Iangu and Brill [.Mangu and 
Brill, 1997]. We do not treat a word’s surface form which corresponds to another word’s surface 
form as mis-spelled.
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Error type Language Correct Word M is-spelled Word
Insertion Elnglish table

Turkisli evlerdeki
Uibale
evleri deki

Deletion English bird
Turkish rali.skan

brd
çhşkan

Substitution English house
Turkish önündeki

hoube
önündeki

Transposition English
Turkish

school 
ti Ü3Ün

scholo
tirbün

Table 7.1: Elxamples of 4 types of spelling errors for English and Turkish.

In the e.xarnple above, there is one substitution and one transposition mistake, 
[.'he letters tvhich cause the error are sliown in italic in the mis-spelled word.

If the mis-spelled version of a word is also a grammatical word in the langua.ge. 
the spelling checker does not search for its correct versions. For example, the 
spell-checker does not classifv the word 'tale' as mis-spelled, even though it is the 
mis-spelled version of the word 'table'. Similarly, the word 'evdekileriiT might be 
mis-spelled as 'evdekileri'. which is also a Turkish word, and the spelling corrector 
does not classify this word as mis-spelled and so does not try to find the possilile 
( orrect candidates.

7.3 Language M odeling

We use the langiuige model probabilities in order to select the best path through 
rhe lattice, which is formed using the words of the text and the candidates of a 
.spelling corrector for the mis-spelled words. For spelling checking, we used the 
word-based and prefix-suffix language models that we used n-best list rescoring 
for speech recognition. We again used the word-based models as a baseline, and 
we preferred prefix-suffix language models, since they resulted in better results 
in the previous task. We set the preh.x length to 4 letters and the suffix length 
IQ '■’) letters, since these lengths gave the best results in the previous task.
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In the spelling correction, we do not have prior probabilities for the possible 
candidates, since the spelling checker does not output probabilities for each word 
or an ordered list. So, we assume that each candidate word is equally likely, 
and assign each of them an equal probability. We use these probabilities as 
the acoustic model probabilities of the n-best list lattice, and compute the most 
probable word sequence in the same way as described in the previous chapter.

T.4 Experiments and Results

We made a variety of e.xperiments for spelling correction. In our experiments, we 
used accuracy as our evaluation metric, as in the previous tasks.

In the following sections, we describe these experiments and rdreir results, 
along with the test and training data that we used.

7.4.1 Training Data

The training data that we used for spelling correction is the same set as we 
used for training the word-based and prefix-suffix language models lor speech 
recognition. We used two corpora of 1 million and 20 million words ol newspaper 

text.

7.4.2 Test Data

The test data that we used is also the same text of 1361 words that we used for n- 
best list rescoring. We first distorted the test data, assuming equal probabilities 
for the 4 types of spelling errors. The distortion software required only two 
parameters, the percentage of the mis-spelled words, and what percentage ot 

those words contain two errors.

During distortion, we randomly selected the words that contain the errors, and
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Test File Error Percentage Double Error Percentage
1 10% 10%
2 10% 20%
3 20% 10%
4 20% 20%

The IDouble FTtoi· Percencage is the percentage of double errors in a word among 
tlie mis-spelled words.

Table 7.2: The variations of our test data.

the location of the error inside the word. .-Vlso. for insertion and substitution, we 
randomly selected the new letter, so we did not consider the locations of the 
letters on the keyboard, or the similarity of the shapes of the letters.

For simplification, we assumed that each word can have at most two errors. 
Table 7.2 lists our test hies and their properties, that is their total error rates 

and double error rates.

Then we used a spelling checker in order to hnd possible candidates tor mis
spelled words. The spelling checker gets the number ol mistakes to correct in 
each word, as a parameter. .Since we distorted the data so that each word can 
have a..t most two errors, we also set the spell checker parameter to two.

7.4.3 Results

The results of spelling correction are listed in Table 7.3. for each file, we used 
two language models, each trained with 1 million and 20 million words. VVe also 
report the best possible accuracy after spelling correction, where we assume that 
a word can be corrected after spelling correction, if it has a correct version in the 
candidate list. There are two reasons why a word can not be corrected:

1. The mis-spelled version of that word is another word in the language. In 
this case, since the spelling checker does not consider it as a mis-spelled 
word, it does not return any correction candidate.
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Test
File

Best Possible 
Accuracy

Language
Model

Training 
Data Size

Accuracy

1 98.01% Word-based 1 million words
20 million words

Prefix-.Suffi.\' 1 million words
20 million words

95.37%
95.88%
94.93%
95.29%

97.94% Word-based 1 million words

Prefix-Suffi.x
20 million words
1 million words

20 million words

95.59%
96.10%
95.22%
95.44%

96.76% Word- based 1 million words
20' million words

Prefix-Sutfi.K 1 million words
20 million woi'ds

93.13%
94.26%.
91.99%
92.94%

96.39%. Word-based 1 million words
10 million words

PreRx-S affix 1 million words
20 million words

92.79%
93.1
91.40%
92.21%

Table 7.3: The accuracy results for the spelling correction.

2. The spelling corrector could not find and return the correct version in the 
candidate set. This may occur either because the correct word is not in the 
Icuiguage, that is, the correct word may be a foreign word, or because the 
word is not in the database of the spelling checker, that is, it may be a rare 

proper name.

When we use more training data, the accuracy of the spelling corrector increases 
as expected. Plowever, for spelling correction, we couldn't achieve better results 
with the prefix-suffix language models. The word-based language models outper
formed the prefix-suffix language models in all our experiments..
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7.5 D iscussion

Unlike the n-best list rescoring task, we could not achieve better results using the 
prefix-suffix language models. This has several reasons. For example, if the error 
is outside the prefix and suffix region (i.e., the 5th letter in a 10 letter word is 
substituted with another letter), and one of the candidates has a probable suffix 
and prefix, but the whole candidate is very rare, this wrong candidate is selected 
bv the prefix-suffix rnodei. whereas the word-based model discards it.

1 he spelling corrector sometimes outputs Very rare words as candidates, l)e- 
cause it has a \'ery large vocabulary. Also, the surface forms of the candidates are 
\-ery similar to each other, since the spelling checker looks for words that have an 
edit-distance of at most 2 letters from the mis-spelled word. However, the speech 
recognizer has a vocabulary size of 10,000 words. Therefore, the surface forms 
of the candidates are not very similar. The prefix-suffix models l)enefit from this 
property.

Tlie speech recognizer outputs an ordered list ol candidates tor each word, 
that is. the lists at the top of the list are more probable than the ones at the 
fiottom. The recognizer uses the acoustic signals in assigning the candidate words 
a probability. However, the spelling checker outputs only the candidate words, 
and does not assign any probability to each candidate, using inlorma-tion such as 
the confusability of the erroneous parts. .Л spelling corrector may benefit a lot 
from the usage of such information.



Chapter 8

Conclusions and Future Work

8.1 Summary

VVe liave jiresented our approaches to statistical modeling for agglutiaati\-e lan
guages, such as Turkish, especially those having productive derivational phenom
ena.

Our approach for morphological disambiguation essentially involves breaking 
up the full morphological analysis across derivational boundaries and treating the 
components, which we call as inflectional groups, as subtags, and then determin
ing the correct secpience of subtags via statistical technic[ues. In order to model 
the distribution of inflectional groups we used various methods based on the 
dependency relationships. We tried both n-gram language modeling approach, 
and maximum entropy modeling approach for estimating the probabilities in our 
models, n-gram language models gave better accuracy results for morphological 
disambiguation, therefore we continued using this approach in our further task:.

For n-best list rescoring for speech recognition and spelling correction, we have 
approximated IG-based language modeling approach using prefix-suffix language 
models. VVe compared word-based, IG-based and prefix-suffix language models 
for reducing the word error rate of a speech recognizer. VVe obtained the best
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accuracy using prefix-suffix language models for ?i-best list rescoring. The reason 
behind this is that, we do not need labeled data to train these models, so we 
trained these models using much more data. Also, these models do not introduce 
ambiguity, so they do not introduce additional search space. We also analyzed the 
effect of root and suffix length for best accuracy. However, for spelling correction, 
tlie prefix-suffix models did not give the best performance. The best result.s were 
achieved using the word-based models, although there is very little differeir'e in 
accufacy. .Similar"to the IG-based models, since the spelling checker proposes a 
large number of candidates for each word, the search space increases a lot. .Also, 
since the prefix-suffix models only look at the'beginning and end of the words. 
au\' mistake out of the scope of the prefix and suffix parts remains unresolved.

This, to our knowledge, is the first detailed attempt in statistical modeling 
of agglutinative languages and can certainly be applied to other such languages 
like Hungarian and Finnish with productive derivational morphology or other 
Turkic languages. Similar techniciues can also be used in other applications like 
syntactic parsing, morphologicaf analysis. Note that, we can benefit from the use 
of a statistical morphological analyzer, which returns probabilities along with the 

parses.

In the following subsections, we summarize the contributions of this thesis, 
and then present our suggestions/ideas lor future work.

8.2 Contributions

The contributions of this thesis can be grouped under three subtopics.

8.2.1 Theoretical Contributions

This thesis presents a pioneering effort for statistical language modeling of Turk
ish. Previous statistical natural language processing studies have used words as
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an appropriate unit for language modeling, which is suitable for languages like En
glish. For languages with richer morphology, the best unit for language modeling 
might be smaller than a word, like morphemes or other units such as inflectional 
groups. This thesis searched for the best unit for modeling Turkish. VVe built 
statistical models in order to effectively use these smaller units, and used them 
successfully in our tasks. VVe found that, using inflectional groups instead of the 
whole parse sequences for morphological disambiguation, and prefix and suffixes 
instead of the whole words for //-best list rescoring and spelling correction, gave 
\'ery good results. While building these systems, we computed the vocabulary 
size a.nd the perplexity of Turkish, using a large corpus.

8.2.2 Experim ental Contributions

While searching for the most appropriate unit for modeling Turkish, we per- 
foniied various experiments with different techniques. We also reported results 
using different amo'.mt.s of training data,, and with variations of our techniques. 
For example, for morphological disambiguation using //.-gram modeling, we built 
three different models, modifying our assumptions, or tor speech recognition, we 
I'oiupared word-based. IG-based. and prefi.x-suffl.x language models. Idowc'.'er. 
note that this stud}' would be naore complete it »ve had a lar,ge vocal)ulary con
tinuous siseech recognizer system which uses language jnodels during recognition.

8.2.3 Contributions for Further Studies on Turkish

For traiuins' our word-based models, we collected 20 million word corpus Irom 
the web archives of a Turkish daily newspaper, using a web robot, which filters 
unnecessarv information, such as HTML tags. Further data can be collected 
using this robot, on other web sites. This robot is publicly available for research 

purposes.

VVe morphologically analyzed and preprocessed (in order to reduce ambiguity) 
a. 1 million word portion of this corpus. The preprocessor module is also publicly
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available. We then disambiguated this portion, using our best model. Both the 
ambiguous and disambiguated versions of this corpus is available at:

h t t p : / / WWW.n i p . c s .b i l k e n t . e d u . t r / C e n t e r / C o r p u s /

During this thesis work, we have developed a morphological disambiguation 
system and language models for Turkish, these are also available for further stud
ies on Turkish.

8.3 Future Work

We have obtained satisfactory results for both tcisks. using our language models, 
fiowever. there is still room for further improvement. Clustering and real stem 
and suffix models can be investigated as a future work. .-Vutomatic acquisition of 

language modelin·’; units is also promising.

f
8.3.1 Real Stem-Suffix M odels

Instead of using a pre-defined 1 -ngth for extracting the prefix and suffix part ol 
the words, we can stem all the words in the n-best list, and construct two models 
for the stem and the suffix part. For example, the word dm'zdolabmda’ (’in the 
refrigerator' in English) can be divided into two parts as follows:

buzdolabında — buzdolabi-nda

Here, the root and suffix parts are separated with a ·-'. However, there will again 
I.e ambiguity for words like 'koyun· or dtadink for which multiple segmentations 

are possible:

koyun koy-un OR koyu-n OR koyun 
kadın —’ kadi-n OR kadın

http://WWW.nip.cs.b
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We can also use a statistical sternmer, which returns probabilities for possible 
stem-suffix segmentations, and incorporate these probabilities into the corre
sponding application.

8.3.2 Class-based M odels

VVe can cluster the space of all our modeling units in order to reduce the data 
sparseness problem. For example, we can use:,

• words for word-based modeling,

• IGs for IG-based modeling,

• prefixes and/or suffixes for prefix-suffix modeling, and

• stems and/or suffixes for real stem-suffix modeling

For clustering, any of the automatic clustering techniques (that we cite in 
Chapter 2) can be used.

ft is also possible to use some rules based on heuristics for clu.steriiig. For 
example, using the fact that the surface forms of the Turkish suffixes change 
as a result of the vowel harmony, the suffixes (both for prefix-suffix models and 
for real stem-suffix models) can be clustered according to their consonants and 
\'owels. For example, both of the following suffixes used for genitii’e case marking 
of nouns:

nin, n in , nun, nün, in , in , un, ün

can be clustered and modeled as a single suffix.
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8.3.3 A utom atic Acquisition of Language M odeling Units

In this study, we used our intuition and linguistic knowledge about Turkish to 
select the Ifinguage modeling units. However, there are also methods for selecting 
appropriate units for language modeling [Kiecza ei a/., 1999], which start from 
letters and then combine letter sequences in order to obtain a better language 
modeling unit. Methods like this one can also be investigated as a future work.
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Categories

In the maximum entfopy modeling approach, we represent each inflectional using 
9 categories. The values that these categories may take are listed in the following 
sections.

A .l M ajo r Part-o f-S peech

Ad.)
Adv
BDTag
BSTag

BTTag
t.'onj
Det
Dup
EDTag
E.STag
ETTag

.Adjective

.Adverb
Begin Document Tag 
Begin .Sentence Tag 
Begin Title Tag 
Conjunction 
Determiner 
Duplication 
End Document Tag 
End Sentence Tag 
End Title Tag
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Interj Interjunction
Noun 
N um

Pron
Pune
Ques
Verb

Noun
Number

Postp Postposition
Pronoun
Punctuation
Question
Verb

A .2 Minor Part-of-Speech

Able
Agt
ByDoingSo 
(Jard 
Cans 
DernonsP 
Distrib .
Fit For
FutPart
Inf
Ness
PersP
Ord
Pass
Past Part 
Percent 
Pres Part 
Prop 
Quant P 
QuesP



APPENDIX A. CATEGORIES 119

Range
Ratio
Real
Recip

;x
RefiexP
'['irae
When
vVliile
VVitM

Without
\Vi t hou t Ha\’ingDoneSo

Zero
РСАЫ
РГ'Лсс
PCDat
PCGen

PC Ins
PCNom
Acquire
ActOI
AfterDoingSo
Almost

As
As If
Become
EverSince
FeelL ike
li.isnh·
InBetween 
.1 ustLike

Ly
AotState
Belated
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Repeat
.Since
SinceDoingSo
Start
Stav

A.3 Agreement

Alpl 1st person plural
ALsg 1st person singular
A2pl 2nd person plural
A2sg 2nd person singular

AO pi 3rd person plural
AO.sg 3rd person singular
- No agreement

A .4 Possessive

PI pi 1st person plural
Plsg 1st person singular
P2pl 2nd person plural
P2sg 2nd person singular

P3pl 3rd person plural

P3sg 3rd person singular
Pnon No possessive marker
- No possessive category
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А .5 Case

АЫ Ablative 
Асе ccusative 
Dal: Dative
Equ Equative 
Ceil Genitive 
Loc Locative 
ins instfumeutal 
Nom Nomina ri\'e

No case category

A. 6 Polarity

Pos Positive 

Neg Negati\'e
No poiarity category

A .7 Tense-A spect-M ood Marker 1

Aor Aorist 
Desr Dv'sire 
Put Future 
Imp imperative 
Narrl Narrative 
Neces Necessity 
Opt Optative 
Past! Past 
Pres Present 
Progl Progressive 1 
Prog2 Progressive 2

No TAMl marker
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A .8 Tense-A spect-M ood Marker 2

Cond Conditional 
Nan'2 Narrative 
Past 2 Past

No T'AM2 marker

A .9 Copula

Cop Copula
No copula or no copula category


