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ABSTRACT

STATISTICAL MODELING OF AGGLUTINATIVE
LANGUAGES

Dilek 7. Hakkani-Tiir
Ph.D. in Computer Engineering
« Supervisor: Assoc. Prof. Kemal Oflazer
August, 2000

Recent advances in computer hardware and availability of very large corpora
have made the application of statistical techniques to natural language process-
ing a possible, and a very appealing research area. Many good results have been
obtained by applying these techniques to English (and similac languages) in pars-
ing, word sense disambiguation. part-of-speech tagging, and speech recognition.
However, languages like Turkish, which have a number of characteristics that dif-
fer from English have mainly beer left unstudied. Turkish presents an interesting
problem for statistical modeling. In contrast to languages like English, for which
there is a very small number of possible word forms with a given root word. for
languages like Turkish or Finnish with very productive agglutinative morphology,
it is possible to produce thousands of forms for a given root word. This causes a

serious cata sparseness problem for language modeling.

This Ph.D. thesis presents the results of research and development of statisti-
cal language modeling techniques for Turkish, and tests such techniques on basic
applications of natural language and speech processing like morphological dis-
ambiguation, spelling correction, and n-best list rescoring for speech recognition.
For all tasks, the use of units smaller than a word for language modeling were
tested in order to reduce the impact of data sparsity problem. For morphoiogical
disambiguation. we examined n-gram language models and maximum entrony
models using inflectional groups as modeling units. Our results indicate that
using smaller units is useful for modeling languages with complex morphology
and n-gram language models perform better than maximum entropy models. For
n-best list rescoring and spelling correction, the n-gram language models that
were developed for morphological disambiguation, and their approximations, via
prefix-suffix models were used. The prefix-suffix models performed very well for

n-best list rescoring, but for spelling correction, they could not beat werd-based
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models, in terms of accuracy.

Keywords: Natural Language Processing, Statistical Language Modeling, Agglu-
tinative Languages, Morphological Disambiguation, Speech Recognition, Spelling
Correction, n-gram Language Models, Maximum Entropy Models.



OZET

SONDAN EKLEMELI DILLERIN ISTATISTIKSEL
MODELLENMESI

Dilek Z. Hakkani-Tir
Bilgisayar Mihendisligi, Doktora
Tez Youneticisi: Doc. Dr. Kemal Oflazer
Agustos. 2000

o

Bilgisayar donanimundaki yeni gelismeler ve ¢ok biyiik derlemlerin varhg is-
tatistiksel tekniklerin dogal dil islemeye uygulanmasini midnmkin ve cok cekici
bir arastirma alani yapmustic. Bu tekniklerin Ingilizce ve benzeri dillerde ciimle
coztiumleme (parsing), kelime anlamui teklestirme (word sense disambignation).
sozciik simfi isaretleme (POS tagging) ve konusma tanimaya uygulanmasivia
oldukca ivi sonuglar elde edilmistir. Ancak, Ttirkge gibi. Ing’ilizce ve benzeri diller-
den bir takim farkll 6zellikleri olan diller genellikie bu acidan incelenmerislerdir.
Tiirkce'nin istatistiksel modellenmesi ilging bir problemdir. Vervilen bir kdkten
az savida kelime uretilebilen ingilizce ve benzeri dillerin aksine Tiirkce ve [Fince
gibi iiretken eklemel bicimbirimi olan dillerde, veriien bir kékten binlerce. hatra
milyonlarca, yeni kelime dretmek mimkiindur. Bu dil modelleme acisindan ¢ok

cickdi bir veri yetersizligi problemine sebep olur.

Bu doktora tezinde, Thirkce icin istatistiksel il modelleme tekniklerinin
geligtirilmesi ve uygulanmasi ve bu tekniklerin bigimbirimsel teklestirme. yazim
hatalarinin diizeltilmesi ve konusma tamma icin aday (n-best) listesini veniden
degerlendirme gibi temel dogal dil ve konugma isleme uvgulamalarinda denenmesi
anlatiimaktacir. Bitiin bu uygulamalarda veri vetersizligi probleminin etkisini
azaltmak icin kelimeden daha kiguk bivimler kullamldi Bicimbirimsel teklegtirme
i¢in. cekim eki gruplar (inflectional groups) modell-'me hirimi olarak kullanilarak
n-birimli dil modelleri (n-gram language models) ve maksimum diizensizlik (max-
irmum entropy) modelleri gelistirildi. Aldigimiz sonuglar. karmagik bigimbirimsel
vapiva sahip diileri modellemek i¢in sézcikten daha kiiglik birimler kullanmanin
gergekten de ¢ok faydal oldugunu gosterdi ve n-birimli dil modelleme yontemi.
maksimum diizensizlik yonteminden daha iyi sonuglar verdi. Aday listesini
veniden degerlendirmek ve yazim hatalarinin dizeltilmesi iginse bicimbirimsel

teklestirme i¢in geligtirilen bu modeller ve bunlarnn dnek-sonek (prefix-suffix)
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modelleri gibi yakinsamalar kullandildi. Onek-sonek modelleri, aday listesinin
veniden degerlendirilmesinde ¢ok iyi sonuglar verdi, ancak yazim hatalarinin
diizeltilmesinde dogruluk agisindan sézciik tabanlh modellerden daha 1yl sonug

vermedi.

Anahtar sozcikler: Dogal Dil i§leme, Istatistiksel Dil Modelleme. Bicimbirimsel
Teklestirme, Konugma Tanima, Yazim Hatalarinin Diizeltilmesi, n-birimli Dil

Modelleri. Maksimum Diizensizlik Modelleri.
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Chapter 1

Introduction

1.1 Overview

Statistical language modeling is the study of finding. characterizing and exploit-
ing the regularities in natural language using statistical techniques. Recent ad-
vances in computer hardware, and availability of very large corpora have made
the application of statistical techniques to natural language processing a feasi-
ble and a very appealing research area. Many useful and successful results have
been obtained by applying these techniques to English (and similar languages) in
parsing, word sense disambiguation, part-of-speech tagging, speech recognition.
etc. However. languages which display a substantially different behavior than
English, like Turkish. C'zech. Hungarian, etc. in that. thev have agglutinative or
inflecting morphology and relatively free constituent order. have mainly been left

unstudied.

This thesis presents our work on the development and application of statistical
language modeling techniques for Turkish, and testing such techniques on basic
applications of natural language processing like morphological. disambiguation,

n-best list rescoring for speech recognition, and spelling correction.
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CHAPTER 1. INTRODUCTION

Morphological disambiguation is the problem of selecting the sequence of mor-
phological analyses (including the root) corresponding to a sequence of words,
from the set of possible parses for these words. Morphological disambiguation
is a very important step in natural language understanding, text-to-speech syn-
thesis, etc. For example. the pronunciation of the words may differ according to
their parses (i.e.. the Turkish word ‘bostanci’ is pronounced differently depend-
ing on whether it is"a proper noun (thie name of a location). or it is a common
noun). Morphological disambiguation also reduces the search space during syn-

tactic parsing [Vourilainen. 1998].

Speech recognition is the task of finding the uttered sequence of words, given
the corresponding acoustic signal. Most of the time. the recognizer outputs a list
of candidate utternnces. that is, an n-best list. Using a language model and the
n-best list, the accuracy of the speech recognizer can be improved. This process is
called n-best list rescoring, and is a very impotant step for improving the speech

recognition accuracy.

Spelling correction is the task of finding the correct version of a mis-spelled
word, among the candidates that the spell checker proposes. Spelling checkers
and correctors are a part of all modern word processors and are also important

in applications like optical character recognition and hand writing recognition.

The techniques developed in this thesis comprise the first comprehensive use
of statisticai modeling techniques for Turkish, and they can be used for other
language processing and understanding, and speech processing tasks. These tech-
niques can certainly be applicable to other agglutinative languages with produc-

tive derivational morphology.

1.2 Motivation

The motivation for this thesis work can be summarized as below:
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e Statistical language modeling techniques are successfully used for natural

language processing tasks, for languages like English.

o Turkish displays different characteristics than mostly studied languages like
English. Turkish is a free-constituent order language. with an agglutinative
morphology. These differences complicate the straightforward application

of statistical language modeling techniques to Turkish.

e There have Leen no previous studies in statistical langnage modeling of

Turkish.

[n the following subsections. we will concentrate on the advantages of statis-
tical language processing techniques. and the differences of Turkish from other

mostly studied languages, which motivate this study.

1.2.1 Statistical Language Modeling

Approaches to speech and language processing can be divided into two main
paradigms: Symbolic and Statistical. Symbolic approaches are based on hand-
crafted linguistically motivated rules. This paradigm is rooted back to Chomsky’s
work on formal language theory, and has become very popular in linguistics and
computer science. On the other hand, statistical approaches attempt to learn
the pattetns of the language using training data. Statistical language processing
emerged from the electrical engineering domain, by the application of Bayesian
method to the problem of optical character recognition [Jurafsky and Martin,
1999]. Statistical methods are based on probability theory, statistics, and infor-

mation theory.

Some of the most important advantages and disadvantages of these approaches
are listed below. Note that. the advantage of one approach is generally the

disadvantage of the other.

e Symbolic approaches are usually developed for specific domains, and require

extensive labor in building the rules or the grammars. Changes in the
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specifications of the task result in expensive tuning.

» Statistical approaches generally require annotated training data, which is
usually unavailable. This is true especially for lesser studied languages, such

as Turkish.

e [or most of the tasks. rule-based systems give better performance than
statistical systems. However. in recent vears, with the availability of larger
training data and more sophisticated statistical frameworks. it is possible

fo get better results using statistical methods.

o Statistical methods are more suitable for combining multiple information

sources, such as prosodic or linguistic information.

1.2.2 Turkish

Turkish is a free constituent order language. in which constituents at certain
phrase levels can change order rather freely according to the discourse context
and text How. The typical order of the constituents is Subject-Object-Verb, but
other orders are also common, especially in discourse. The morphology of Turkish
enables morphological markings on the constituents to signal their grammatical
roles without relying on the word order. This doesn’t mean that word order isn't
important, sentences with different word ovders reflect different pragmatic con-
ditions. However. the free constituent order property complicates the statistical

language modeling approach.

Turkish has agglutinative morphology, with productive inflectional and deriva-
tional suffixations. Hence. the number of distinct Turkish word forms is very
larze. So. we have to deal with data sparseness problem while training our lan-
guage models. A detailed discussion on the properties of Turkish is given in the

toliowing chapters.
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1.3 Approach

All of the tasks, to which we applied our techniques, search for a sequence among
possible sequences, using statistical language modeling techniques. So, all of these
problems can be represented as the problem of finding the most probable sequence
of units, X™. among the set of possible sequences of units. y. given corresponding

information, Y. Then the problem can be represented as follows:

w

X7 = argmax P(.X]Y)
Xex

In morphological disambiguation. X is the sequence of morphological parses and
¥ 1s the sequence of words that we are trying to analyze 1‘norphologica‘llyg In n-
best list rescoring, .X is the sequence of words and Y™ is the sequence of acoustic
signals that we are trying to transcribe. In spelling correction. X is again the

sequence of words and 1" is the sequence of possibly mis-typed words.

Figure 1.1 shows the general architecture for all these tasks. The decodler is
the morphological analvzer for morphological disambiguation. speech recognizer
for n-best list rescoring. and the spelling checker for spelling correction. All of
these systems output a set of possible candidates, and we use statistical models

to select oue of these possible candidates, which is shown as the rescoting box in

rhat figure.

' X

Y DECODER : RESCORING |— X~

Possible X
sequences

Figure 1.1: A generalization of all the tasks.
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1.4 Layout of the Thesis

The organization of this thesis is as follows: In Chapter 2, we describe the ba-
sics of statistical language modeling techniques. In Chapter 3. we summarize
the properties of Turkish, which make it different from languages like English,
which have been amply studied in this context, emphasizing the properties which
complicate the straightforward application of statistical language modeling tech-
niques. [n Chapter 4, we describe briefly the related work on part-of-speech
tagging. morphological disambiguation. statistical language modeling and Turk-
ish. We include the related work on part-of-speech tagging, since our models are
influenced from statistical part-of-speech tagging studies for English. In Chap-
ter 5. we describe two approaches for morphological disambiguation of Turkish.
based on n-gram language models and maximum entropy models. We present
“and compare our results with both techniques. In Chapters 6 and 7. we describe
the application of our n-gram based models and their approximation to speech
recognition and spelling correction. respectively. We present our ideas for future

work and conclude in Chapter 8.



Chapter 2

Statistical Language Modeling

2.1 Introduction

Statistical language modeling is the study of the regularities in the natural lan-
guage. and capturing them in a statistical model. In this framework. natural
language 1s viewed as a stochastic process, and the units of text (i.e., letters,
morphemes, words. sentences) are seen as random variables with some probability

cdistribution. Statistical language modeling attempts to capture local grammati-

cal regularities.

Traditionally, statistical language modeling has been extensively used in
speech recognition systems [Bahl et al.. 1983; Sankar et al.. 1998; Beyerlein et
al.. 1998, among othcrs]. For example, in speech recognition. given an acoustic
signal A. the aim is to find the corresponding sequence of words . So. we seek
the word sequence W that maximizes P(W|A). Applying Bayes’ Law, we get:!

: P(W) x P(A|W
117" = argmax P(W|A) = argmax (W) x PAAIV)

W W P(4) (2:1)

argmax f(z) is the value of x that maximizes f(z).
.r
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The above maximization is carried out with the variable A fixed, so P(4) is

constant for different VW, which leaves us with the following equation:
W™ = argmax P(W|A) = argmax P(W) x P(A|W) (2.2)
W W

For a given acoustic signal A, P(A|W) is estimated by the acoustic model, and
P(1V) is estimated by the language mode!l. So, language modeling deals with
assigning a probability to every conceivable word string, W'. The probability
distribution of the units of a statistical model is inferred using on-line text and

speech corpora.

We can formulate many problems of natural language processing, like mor-
phological disambiguation and noun phrase extraction, in a similar framework.
For example. in morphological disambiguation, the input is a sequence of words
instead of the acoustic signal, and the aim is to find the sequence of morphological
parses belonging to each word. In the case of noun phrase bracketing. the output
is the type of the boundary between the words, which can also be seen as tags

atrached to the words preceding or following the boundary.?

2.2 Evaluating the Performance of Models

The most common metrics to evaluate the performance of language models are
entropy, cross entropy and perplexity. The concept of entropy was borrowed from
thermodynamics by Shannon [Shannon, 1948], as a way of measuring the infor-
mation capacity of a channel, or the information content of a language. Another
measure, especially used by the speech recognition community is perplexity [Bahl
et al.. 1983]. In the following subsectious, we will briefly describe each of these
metrics. For a more detailed discussion on these metrics, the reader is referred
to one of the textbooks on statistical language modeling, such as the one by

Manning and Schiitze [Manning and Schiitze, 1999].

?The type of the boundary between the words can be “beginning of noun phrase”, “end of
noun phrase”, or “none”.
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2.2.1 Entropy

Entropy i1s a measure of average uncertainty of a random variable {Cover and
Thomas, 1991]. Let X be a random variable that ranges over the unit we are
predicting, like words or letters, and P(x) be the probability mass function of the

random varlable X over the alphabet of our units:

Then the entropy of this random variable. denoted by H(.X) is:
H(X)=->_ P(x)log, P(x) (2.4)
reX
The log can be computed in any base. If we use base 2, then the entropy is-

measured in bits.

Entropy. the amount of information in a randomn variable, is the lower bound

on the average number of bits it would take to encode the outcome of that random

variable.

2.2.2 Cross Entropy

[he quality of a language model M can be judged by its cross entropy [Charnialk,

1993: Manning and Schiitze, 1999]:

l\r
(&1
S—

1
H(T. M) = - n Y. Pr(w}) log Py(w}) (2.

wiel
where w0} = wy,ws,...,Wws 15 a sequence of words of the language L, Pr is the
actual probability distribution that generated the data, that is, the possible word
sequences of the language in consideration, and Py is a model of Pr, that is, an
approximation to Pr, that we try to construct using training data. According to
the Shannon-McMillan-Breiman Theorem [Cover and Thomas, 1991], if language

is both stationary and ergodic, the following equations hold:?

3A stochastic process is stationary, if the probabilities that it assigns to a sequence are
invariant with respect to time changes. A language is ergodic. if any sample of the language, if
ntade long enough, is a perfect sample.
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. 1 . :
H(T.M) = = lim — > Pr(w}) log Pr(u}) (2:6)
. L
= — lim —log Py(wy) (2.7)
n—x p

("ross entropy is a measure of how much our approximated probability dis-
tribution, M. departs from actual language use, so one of the goals in language
processing is to minimize it. Cross entropy can also be used to compare differ-
ent prebabilistic models. the model that has a lower cross entropy is better than
the models that have higher cross entropies. in that it is closer to the actual

probability distribution. that generates the language we use.

'2.2.3 Perplexity

In the speech recognition community, often the perplexity of the data with re-
gard to the model is reported to evaluate the performance of a language model

[Manning and Schiitze, 1999):
perplexity(T, M) = 2H(T:AM) (2.3)

A perplexity of £ means that you are as surprised on the average. as you would
have been, if vou had to guess between k& equiprobable choices at each step. So

the aim is again to minimize perplexity.

2.3 n-gram Language Models

Let TV = wyws ... w, = w be a sequence of words. where w; are the words in an

hypothesis. P(117) can be estimated using the chain rule:

n n

P(W) = H.P(wihu,, Wy, ..., Wiy ) = HP(w;Iwi'i) (2.9)

=1 =1
[n any practical natural language processing system, even with a moderate vo-

cabulary size. it is clear that the language model probabilities P(w;]w{™*) can
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not be stored for each possible sequence w,w;...w;. One way of limiting the
number of probabilities is to partition the possible word histories wytw, . .. w; 1nto
a reasonable number of equivalence classes ®(wjws ... w;). An effective defini-
tion of equivalence classes is the conventional n-gram language model, where two
sequences of words are considered equivalent if they end in the same n — 1 words:

Pluw;|wi™") = PlwwiZ ). (2.10)

Figure 5.3 gives an example of a -gram model that approximates the probability

of 1w given all the previous words.

wl W2 W3 W Wi W6
Orta  Asya’daki petrol ve enerji ?

P(w,| Orta, Asya’daki, petrol, ve, enerji)= P(w;l petrol, ve, enerji)

Figure 2.1: A 4-gram language model.

n-gram language models can be trained (that is. the probabilities
i~ , - - o . :

Plw;wiZ, ) can be estimated) using a training corpus. and counting all the

n-grams. The probability of a particular word w,, given a sequence of n — |

words wi™" is estimated as:

C'(w’l‘-l, wn) (.,) [l)
Z:.UGVV C"(Iw?—l: lU) o

where C(w}™". 10,) is the nimber of times the word sequence w} occurred in the

training text. This ratio is called a relative frequency, and the use of relative fre-

Plw,w}™) =

(uencies in order to estimate probabilities is an example of the technique known
as Maximum Likelihood Estimation (MLE), since the resulting probability dis-
rribution is the one using which the likelihood of the training data is maximized

[Jurafsky and Martin. 1999}

Even for small values of n, the number of probabilities to be estimated in an n-
gram model is enormous. Consider a 3-gram language model. I'or a vocabulary of
20. 000 words. the number of 3-word sequences, thus the number of probabilities
to be estimated is 8 x 102, This causes a data sparseness problem, since there

is rarely enongh data to estimate these probabilities. So, the n-grams that are
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not seen in the training data are assigned a zero probability, some of which
should really have a non-zero probability. These zero-probability n-grams can be
assigned small probabilities using smoothing techniques. In the next section, we

will briefly mention some of the most popular smoothing techniques.

There are methods for clustering the words that are similar (i.e., that occur
in similar contexts) into classes, so that the vocabulary size is reduced to the
number of classes [Brown et al., 1992b; Martin et al.. 1995; McMahon and Smith,
1996]. As a result, the parameter space spanned by n-gram language models is

also recuced. and the reliability of the estimates is increased.

The weakness of n-gram language models is that with this method, it is as-
sumed that a word can only depend on the preceding n — 1 words, although this
is not always the case for natural language. For example, in the sentence “The
dog that chased the cat barked.”, the history of the word *barked’ consists of the
words “the’ and ‘cat’ in a 3-gram model. On the other hand, n-gram models have

been s wprisingly successful in many domains.

2.4 Smoothing Techniques

Smoothing is the process of assigning small probabilities to n-grams that were
not seen in the training data because of data sparseness. Ditferent smoothing
methods usually offer similar performance results. Chen and Goodman [1996]
present extensive evaluations of different smoothing algorithms and demonstrate
that the performance of certain technicques depend greatly on the training data
size and n-gram order (that is. the number n). In the following subsections, we

briefly describe some of the most popular smoothing techniques.
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2.4.1 Deleted Interpolation

A solution to the sparse data problem is to interpolate multiple models of order

L., .. s0 that
(wiwiZh ) = A x Pluw; JwiTh )+ A x PlwiwiZl )+ A x Plws) (2.12)
vhere Y1 | A\, = 1. that is. we weight the contribution of each model so that the

result is another probability function.

The values of the weights \; mayv be set by hand, but in order to find the
weights that work best. usually a previously unseen corpus. called the held-out
data is used. The values ot \; that maximize the likelihood of that corpus are
selected using the Expectation Maximization (EM) algorithm [Bahl et «l., 1983;

Jelinek, 1993].

Linear ii.terpolation can also be used as a way of combining multiple knowl-
ecdge sources. ('ombining models using linear interpolation or another method can
he seen as a solution to the blindness of the n-gram models to larger contexts, as

well as the data sparseness problem.

2.4.2. Backing Off

The backoff smoothing technique, similar to deleted interpolation, uses lower
order probabilities in case there is not enough evidence from higher order n-
grams. ut. instead of interpolating the models, this method backs off to a lower
order model. Backoff n-gram modeling is a method introduced by Katz [1987].
For example, the trigram model probabilities. according to the backoff method.

can bhe represented as follows:

P(wifwi—a,wier) it Clwizg, wioy, wi) > €
(wilwimg, wim1) =< ap x Plwiwi—y) if C(wia, wimy,wi) < € and Clwiop, w;) > €

oy X P(w;) otherwise
(2.13)
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The values of o; and v are chosen appropriately, so that P(w;|wi_y, w;_y) is
norrnalized. In this way, when there is not enough evidence to estimate the

probability using the trigram counts, we back off and rely on the bigrams.

2.4.3 Good-Turing Smoothing

Good-Turing methods provide a simple estimate of the probability of the objects
not seen in the training data. as well as an estimation of the probabilities of
observed objects. that is consistent with the total probability assigned to the
nnseen objects [Gale, 1994]. The basic idea is to re-estimate the probability
values to assign to n-grams that do not occur or occur very rarely in the training

data, by looking at the number of n-grams which occur more frecuently.

Let r be a frequency in the training data, and N, be the frequency of the
frecquuency r. and 2V be the total number of objects observed (in our case. the size
of the training data). So. V5 = 11 means that there ave only 11 distinct n-grams
which occurred 5 times in the training data. Let P. be the probability that we
estimate for the objects seen r times in the training data. Then. according to the

Good-Turing methods,

,
—_ 2 1.
= (2.14)
The r* should be set in a way that makes the sum of the probabilities for all
the objects equal to L. A precise statement of the theorem underlying the Good-
Turing Methods is [Gale. 1994]:

E(Noi1)

= (r+1) E(N,)

where FE(z) represents the expectation of the random variable x. Therefore,
the total probabhility assigned to the unseen objects is E(N7)/.N. This method
assumes that we alreacdy know the number of unseen n-grams. The number of
unseen n-grams can be computed using the vocabulary size. and the number
of seen n-grams, so this method assumes that we already know the vocabulary
size. Table 2.4.3 gives a simple example of smoothing the bigram probabilities

computed using a training text of 65 tokens, wheve the vocabulary size, V" is 10.
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r ./ P r* Psmoothed
016310 0.3077 | 0.00488
1120 }0.01538 | 1 0.01538
2110 {0.03077 | 1.2 0.01855
314 ]0.04615 | 2 0.03077

Table 2.1: A simple bigram example for Good-Turing smoothing.

The third column lists the probabilities before smoothing, and the fifth column
lists the smooth probabiiities. The mass probability reserved for unseen bigrams is
0.3077. and is distributed among unseen bigrams. The number of uuseen bigrams

is V2 — V.

2.5 Hidden Markov Models

[n this section. we will discuss the most widely used and the most successtul
technique in the speech recognition domain, the hidden Markov models (HMMs).
N Ms are also widely used for other language processing tasks like part-of-speech

tagging, information extraction, etc.

An HMM is a probabilistic finite state machine specified by a five-tuple M =<
S. S IIL.T.0 >. Here 5 is the set of the states with a unique starting state
s9. O is the output alphabet. IT is the set of initial state probabilities, 1" 1s
the set of state transition probabilities, p(s,|s;,-1). and O is the set of output
probabilities (either for transitions in arc-emission HMMs, q(w;|si—y, s;) or for
states in state-emission HMMs, r(w;)s;)) [Manning and Schiitze, 1999]. The
probability of observing an HMM output string wy, ws. ..., w, can be computed

by summing the probabilities of all the paths that generate that string. Therefore,

the probability of wy, w,, ..., w, is given by:

Py, wa, ... we|M) = Z H plaklag—1) x q(wilar-1, ax) (2.16)
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for arc-emission HMMs and
n
P(wy,we, ..., w0, M) = Z H plaklag—1) X r(rwg|ar) (2.17)
Q1 yeeyln k=1
for state-emission HMMs, where ay € .5 represent the states traversed while emit-
ting the output. These two HNMM formulations are entirely equivalent [Jelinek,
1993]. so we will only give the algorithms for arc-emission HMMs in the remaining

of this chapter.

Figure 2.2 is an example of a three-state arc-emission HMM. The states are
denoted by Sp, S1, and S,. The arcs represent the transitions between states, and
are shown by the lines and arrows. Each arc is marked by a pair x : y. where x
is the symbol emitted if that arc is taken, and y is the probability of taking that.
transition and outputting x. The calculation of the observation probability of the
sequence “baab” using its trellis is also shown in this figure. A trellis is an easy
way of showing the time evolution of the traversal process [Jelinek. 1998]. The
number of stages on the trellis is determined by the number of symbols in the
output. There are two paths for generating “baab”™ as output. marked as solid
lines on the trellis. The probability of generating this string is the sum of the

probability of following those two paths.

2.5.1 Finding the Best Path

(iven an observed output sequence W' = wy,ws,....w,, and an HMM
M = < S ELT,0 >, wecan find the state sequence A™ = aj,a3...., a5, 4},

most likely to have caused it. using the Viterbi algorithm, a dynamic program-

ming algorithm [Viterbi. 1967]. Our aim is to find A" satisfving the following:

A® = argmax P(A|IV. M) (2.18)
4
P(A, W|M) 5
= 2 AX ————————— -“19
argmax POV (2.19)
= argmax P(A, W|M) (2.20)
A

The probability P(W|M) is a constant for all A, since the sequence W is fixed, so

it does not affect the result of the maximization. Define a variable. §;(¢), which
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Output: baab

Trellis:

P(baab) = 0.4*0.6%0.3%0.4 + 0.4*0.60.2%0.8

The solid lines on the trellis are the transitions that are taken. The probability
of the observation is found by summing the probability of the two paths that
produce this ohservation.

.

Figure 2.2: A simple arc-emission HMM and computation of the probability of
an observation using a trellis.
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stores the probability of the most probable path which leads to that node, for

each node in the trellis:

6;(t) = o max Play, a2, ... ey, W1, Way ooy Wiy, @ = J| M) (2.21)

and define another variable, W,(¢). which stores the node of the incoming arc
that led to this most probable path. The most probable path can be computed

as follows:
L. Initialize:
oj(1) =7 for | <) <N
where .V is the number of states of the HMM.

2. Induction: Compute

§;(t+1) = max 0:(£) x plkjlt:) x q(ree]ti b)) (2.22)
for I < <V, and store the back-trace:
Wit 4+ 1) = argmax 6;(t) x p(4;]E;) % qlwti b)) (2.23)
1<i<N
3. Termination:
tyy, = argmaxé;(n + 1) (2.24)
lSiS.’V
[3(”') = 11%12&’ 5t(n +1) (2_)5)

where P(¥) is the probability of the most probable state sequence out-

putting W, and @}, is the final state of that sequence.

4. Backtracking: The state sequence, A* = aj,a},...,a},a} ., can be ob-

tained by backtracking from state a;,, .

a; =V (t+1), t=mn,...,L
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2.5.2 Finding the Probability of an Observation

Given an observed output sequence W = wy,w,,...,wy,, and an HMM M =<

S.I.T,0 >, the probability of the observing a string can be computed by
summing the probability of all the paths that generate that string, as mentioned
in the previous sectipns. But, as in the problem of finding the best state se-
quence, there is no need to enumerate all the possible paths, and then sum their
probability. There is a dynamic programming algorithm, very similar to Viterbi
algorithm. that computes the probability of an observation sequence [Manning

and Schiitze. 1999].

Define a variable «;(4), which stores the total probability of being in state
I, at time t (so the observations wy..... Wi were seen) for each node of the
rrellis. We can compute ¢;(¢) by summing the probabilities of all possible ways

of reaching that node:

(]
[
(@)
~—

Zal E—1) x p(&;1t:) x qlwe]ts, t5) (2.

N
=1

Therefore the algorithm is as follows:

1. [nitialize:
a;(ly=r; forl <j <N

where V is the number of states of the HMM.

2. Induction: Compute

N
i(t+1) Z ) x p(t5]ts) x q(wets, t;) (2.27)

3. Termination: N
P(WI[AM) => ailn+1) (2.28)

=1

2.5.3 Parameter Estimation

There is no good way of estimating both the structure and the parameters of

an HMM at the same time. But, if we design the HMM using our intuition and
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knowledge of the situation, we can estimate the parameters of the HMM through
the use of a special case of the Expectation Maximization (EM) algorithm, the
Baum-Welch or Forward-Backward algorithm [Bahl et al., 1933; Jelinek, 1998].
[n the subsequent sections, instead of using the parameter estimation algorithms,
we use the relative frequencies as the transition probabilities, and employv the

Maximum Likelihood Estimation technique [Jurafsky and Martin., 1999].

"

2.5.4 Using HMMSs for Statistical Language and Speech

Processing

[IMA[s are useful for various language and speech processing tasks. For example.-
in speech recognition. if we consider each word as being generated in a state.
we can use the acoustic model probabilities P(«y|w;) as state observation likeli-
hoods. and the bigram language model probabilities P(w;|w,; —1) as the transition
probabilities. We can then use the HMM algorithms to find the probability of a
sequence of words given a sequence of aconstic svmbols [Rabiner. 1939]. We can

use HMNIs for part-of-speech tagging in a similar way.

HMNMIs can ;ilso be used in generaling parameters, i.e. A;. for deleted inter-
polation of n-gram language models [Jelinek. 1998]. We can construct an HMM
with hidden states that enable the interpolation of multiple models. Then. the
EM algorithm can be used to find the parameters. that is, the optimal weights
given as probabilities for transitions entering these hidden states. Figure 2.4 is a
fragment of an HMM! for smoothing a bigram language model, corresponding to
the marked (with a dashed line) part of the bigram language model, a tragment

of which is given in Figure 2.3.

2.6 Maximum Entropy Models

Maximum Entropy (ME) Modeling is an approach for combiniﬁg multiple infor-

mation sources for classification. This approach was first proposed by Jaynes
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~

‘--.‘—’

Each transition is marked with the output produced and the probability of taking
that transition.

Figure 2.3: A fragment of the Markov Model for a bigram language model.

The parameter ¢ means that no output is generated by taking that transition.

Figure 2.4: A fragment of the HMM for estimating the parameters of a linearly
interpolated bigram language model.
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[1957] for statistical mechanics and has been recently successfully applied to nat-
ural language processing problems, including machine translation [Berger et al..
1996]. sentence boundary detection [Mikheev, 1993; Revnar and Ratnaparkhi.
1997). part-of-speech tagging [Ratunaparkhi, 1996}, prepositional phrase attach-
ment [Ratnaparkhi, 1998b], parsing [Ratnaparkhi. 1998a], statistical language
modeling for speech recognition [Rosenfeld, 1996]. part-of-speech tagging of in-
fective languages [Haji¢ and Illadkd, 1998], and named-entity tagging [Borthwick

et al.. 1998; Mikheev et al., 1999).

2.6.1 The Maximum Entropy Principle

The ME approach attempts to capture all the information provided by various
knowledge sources, under a single, combined model. The training data for a prob-
lem is described as a number of features, with each feature defining a constraint on
the model. The ME model is the model that satisfies all the constraints with the
highest entropy. The aim is selecting the most uniform model among the models
that satisfy the constraints. so nothing is assumed about what is unknown. [n
other words, given a collection of constraints, the aim is selecting a mocel which
is consistent with all the constraints, but otherwise as uniform as possible (Berger

et al.. 1996].

2.6.2 Representing Information via Features

In the ME framework. the information is represented via features. The features
f; are binary valued functions that can be used to characterize the properties of

the context b and the corresponding class a:
firAxB—=0,1

where A = {ay.aa,....as} is the set of all possible classes. and

B = {by,bs,.... b} is the set of all possible contexts that we can observe. Gur

aim is to find an estimate for p(«|d).
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The features in this thesis are of the form:

1 fa=aand be B;

0 otherwise

fila,b) = {

and check the co-occurrence of a class @ with an element of a set of contexts B;,

similar to those defined by Ratnaparkhi [1998a)].

2.6.3 An Example

[n order to illustrate the usc of maximum entropy modeling, we are going %o give
a very simple example for sentence segmentation, using word categories. The task
is to estimate a joint probability distribution, p(b. «). where a € A = {0,1} and
he B = {Noun. Adjective, Verb, Preposition}. The elements of A represent the
presence/absence of a sentence end after the categories in 5.

Suppose that we only know that:
p(Noun.0) + p(Adjective,0) + p(Verb,0) + p(Preposition,0) = 0.8 (2.29)

and that:

> plba) = L. (2.30)

n€d,beEB
The aim of our model is to predict the probability of the presence/absence of a

sentence end with any category in B. We can define two features as follows:

1 ifa=0

) otherwise

fila,b) = {

and
fala.b) = 1.
Equations 2.29 and 2.30 are the constraints on model p’s expectations of the

features:

E,fi=03and E,fy =1

where

E.fi = Z pla,b) x fi(a,b) (2.31)

a€AbeB
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In the computation of the expectations, p(a, b) is the probability assigned by the

model.

The aim of the ME framework is to maximize the entropy:

Z P(CL,[)) logp(a.b) ( E

a€db€EB

AN
[
Q]
g

The most uncertain’ way of satisfying the constraints is assigning uniform
probabilities to unconstrained cases. So, the sentence segmentation model that

has the maximum entropy assigns the following probabilities:

pi(Noun.0) = pr(Noun.1) = 0.05
pi(Adjective.0) = p(Adjective. 1) = 0.03
pi(Verb.0) = pr(Verb, 1) =0.05
pi( Preposition.0) = 0.2 py(Preposition. 1) = 0.05

(2.33)

This model is the maximum entropy model among the ones that iisty the
constraints. The entropy of this model is:
H(P) = —(4x0.2xlog0.2+4x0.05 < log0.05)
= 2.73
Another model that also satisfies the given constraints, but assumes that a non-

sentence boundary is less probable with a Preposition and a Verb. than with a

Noun or an Adjective.

pa(Noun.0) =03  py(Noun.1) =0.02
pa(Adjective.0) = 0.3 py(Adjective, 1) = 0.02
p2(Verb.0) = 0.1 po(Verb. 1) = 0.08

2

p2(Preposition.0) = 0.1 pa(Preposition. 1) = 0.08

The entropy of the second model is:

H(P,) = —(2x0.3x1log0.3+2x0.1xlogd.1+
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2 x 0.02 x log 0.02 4+ 2 x 0.08 x log 0.08)

which is lower than the first model, that assigns uniform probabilities to uncon-

strained cases.

2.6.4 Conditional Maximum Entropy Models

fn this thesis. our aim will be to estimate a conditional probability distribution
instead of a joint probability distribution. In previous studies using conditional
maximurn entropy models, the most uncertain distribution p* that satisfies a set

of & constraints is [Rosenfeld, 1996; Ratnaparkhi, 1998a]:

p" = argmax H(p)

PeEP
where
H(p) = = p(b)pialb)logplalb)
P = {P|Ep/ci =FEsfi1 = 1.2,...,k}

Bl = LHeb)fila)

Efi = Zp )p(alb) fila, b)
(2.35)

and H(p) is the conditional entropy averaged over the training data, E;f; is the
observed expectation of the feature / (that is, observed in the training data),
E, f: is the model’s expectation of the feature 7, p(b) and p(a.b) are the observed

probabilities, and p(«|b) are the model probabilities.
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2.6.5 Combining Information Sources

A particular way of combining evidence from multiple information sources is to
weight the corresponding features in an exponeutial. or log-linear model:

l .
[Tl (2.36)

plalb) = 70 L

k
:‘1
where £ is the number of features, a; is the weight for the featur f;. and Z(b)

is a normalization constant to ensure that the resulting distribution is a valid

probability distribution. and can be computed as:

Z(h) =Y [AIcrf““'“ (2.37)

T
Thevefore, the conditional probability p(alb) is a normalized product of the
weights of the features that are ‘active’ oun the (a.b) pair [Ratnaparkhi. 1993a.
The feature weights for the mode: that satisfies the Maximum Entropy Prin-
ciple can be estimated using the Genevalized [terative Scaling (GIS) algorithm

[Darroch and Ratcliff, 1972), which we will de cribe in the next section.

2.6.6 Paramecter iostimation

The parameters ot the maximum entropy model, p~, that satisfies the set of
constraints:

Epefi = Esfs (2.38)
can be found using the GIS algorithm. that is guaranteed to converge to p”
[Darroch and Ratcliff. 1972]. This algorithm requires that the sum of feature

values for each possible («.b) should be equal to a constant. C":

k
S filab)=C (2.39)

=1

[f this condition is not already true, we can use the training set to choose C':

k
C' = mazaeaseB p_ fila,b) (2.40)-

=1



CHAPTER 2. STATISTICAL LANGUAGE MODELING 27
and add a correction feature fry1, such that
frg1(a, b) = Lf, (a,b) (2.41)

for any (a,b) pair, as suggested by Ratnaparkhi [1998a). In this case, unlike
any other feature, fi4; might get values greater than 1. A variant of the GI>
algorithm, the Improved Iterative Scaling algorithm [Pictra et al.. 1997] does not
impose this constraint. But, in this thesis, we use the GIS algorithm, since adding

a single correction feature is not very costly.

The GIS algorithm is as follows:

I. Compute the observed probabilities, p(a.b) and p(b).

Compute the observed expectation of the features. £ f;. for each feature:

o)

L f ~-~Zpab (a,b), for ¢=1.2.....k

3. Initialize the weight, ;. for each feature:

4. Compute the normalization constants, Z(b). for each possible context:
=5 1‘[ sb) vbe B (2.42)

5. Compute the model probabilities:

p"(a H ryfilsh) (2.43)

>

6. Compute the model’s expectations of the features:

Epn f Z p(b)p™(alb) fila.b) (2.44)
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7. Stop if
'E,;fi — Ep“fil < €

otherwise update the model weights as follows:

Eﬁ .,;

1
— -]  for :=1..... k
E’p"fi]

ar + 1= af

and goto step 4."

So. the algorithm iteratively updates the feature weights. a;. so that the model’s
expectation of the features becomes close to their observed expectations. -Once
the difference between these values is smaller than some e, the algorithm termi-

nates. The o values and the normalization constants are used to compute the

probabilities that the mocel assigns.



Chapter 3

Turkish

‘3.1 Introduction

Application of statistical language modeling techniques to English (and similar
languages) for natural langauge and speech processing tasks like parsing, word
sense disambiguation, part-of-speech tagging, speech recognition, etc. has been
very useful. However, languages which display a substantially different behavior
than English, like Turkish, Czech, Hungarian (in that, they have agglutinative
or inflective morphology and relatively free constitusnt order) have mainly been
left unstudied. 'In this chapter, we will discuss the properties of Turkish. that

complicate the straightforward application of traditional language modeling ap-

proaches.

3.2 Syntactic Properties of Turkish

3.2.1 Word Order

Turkish is a free constituent order language, in which constituents at certain

phrase levels can change order rather freely according to the discourse context

29
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or text flow. The typical order of the constituents is subject-object-verb (SOV),

however, other orders are also cormnmon, especially in discourse.

The morphology of Turkish enables morphological markings on the con-
stituents to signal their grammatical roles without relying on their order. This
does not mean that the word ovder is not important, sentences with different
word orders reflect different pragmatic conditions. that is the topic, focus, and
background information conveyed by those sentences differ (Erguvanli. 1979]. For

example, a constituent that is to be emphasized is generally placed immediately

before the verb:!

(1) a. Ben okula gittim.
[ school+DAT go+PAST+AILSG

[ went to school.

b. Okula ben gittim.
school+DAT I  go+PAST+A1SG

It was me who went to school.

Word order inside the embedded clauses is more strict; not all the variation : of
the order of the constituents are graminatical. A good discussion of the funcrion

of word order in Turkish grammar can be found in Erguvanl [1979].

The variations in the word order complicates statistical language modeli: 2,
since more training data is required in order to capture the possible word order

variations.

3.2.2 Morphology

Turkish has agglutinative morphology with productive inflectional and deriva-
tional suffixations [Oflazer, 1994]. The number of word forms one can derive

from a Turkish root form may be in the millions [Hankamer, 1989]. The number

LDAT: dative case, PAST: past tense, A1SG: first person singular agreement.
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CATEGORY | Number of Overt Morphemes
L 2 3
NOUN 33 490 4,325
VERB 46 395 11,313
ADJ 32 478 14,789

Table 3.1: The number of possible word formations obtained by suffixing l; 2 and

3 morphemes to a NOUN, a VERB and an ADJECTIVE.

of possible word forms that can be obtained from a NOUN, a VERB. and an
ADJECTIVE root form by suffixing 1, 2. and 3 morphemes is listed in Table 3.1.
Figure 3.1 lists the 33 possible word [orms that can be obtained from the noun

‘masa’ by suffixing only one morpheme.

The number of words in Turkish is theoretically infinite. since, for example. it
is possible to embed multiple causatives in a single word (as in: somebody causes
some other person to cause another person .... to do something). Iigure 3.2
gives an example of some possible word formations from the root "uyu’ {*sleep” in

English). Multiple causatives are the final examples of this table.

3.3 Issues for Language Modeling of Turkish

Due to the productive inflectional and derivational morphology of Turkish. the
number of distinct word forms, i.e.. the vocabulary size. is very large. For in-
stance, Table 3.2 shows the size of the vocabulary for | and [0 million word
corpora of Turkish. collected from on-line newspapers. We also give these num-
bers for English corpora of the same size to give an idea about the difference.
This large vocabulary is the reason for a serious data sparseness problem and
also significantly increases the number of parameters to be estimated even for a
bigram language model. The size of the vocabulary also causes the perplexity to
he large (although this is not an issue in morphological disambigﬁation, it is im-
portant for language modeling for speech recognition.) Table 3.3 lists the training

and test set perplexities of trigram language models trained on 1 and 10 million
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L. masaca 21. masayiz
2. masacasina 22, masayin
3. 1masacl 23. masada
L. masalasg 24. masadir
5. masalan 23.  rnasain
6.  masalar 26. masamiz
7.  masalar 27.  masamst
5. masasiz 28, masan

9.  masali 29. masaniz
10. masalik 30. masadan
L. masann 31. masasal
12, masas 32.  masasin
13, masayken  33. masasimnz

l4. masavkene
15. masayla
16. masaymig
L7. masaysa
IS. masaya

19. masaydi
20. masayi

[igure 3.1: The list of words that can be obtained by suffixing only one mor-
pheme to a noun "masa’ (‘table’ in English.).
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w

Root: uyu- {"sleep’ in English)

Some Word Formations
Lyuyorum
UYILYOrsiil
Uyuyor
nyuyoruz

LY UYOrsunuz
uyuyorlar
nvuduk
nvudukea
uyumaliyviz
uyumacdan
uvuman
uvurken
nyuyunca
uvutmak
uyutturmak

uyvutturtturmak

English Translations

[ am sleeping

you are sleeping

he/she/it is sleeping

we are sleeping

you are sleeping

they are sleeping

we slept

as long as (somebody) sleeps

we must sleep

without sleeping

your sleeping

while (somebody) is sleeping

when (somebody) sleeps

to cause somebody to sleep

to cause (somebody) to cause (another person)
to sleep

to cause (somebody) to cause (some other
person) to cause (another person) to sleep

Figure 3.2: Example of possible word formations with derivational and inflectional

suffixes from a Turkish verb.
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Language | Corpus size | Vocabulary size
Turkish 1M words 106,547

10M words 417,775
English 1M words 33,398

LOM words 97,734

Table 3.2: Vocabulary sizes for two Turkish and English corpora.
word corpora for Turkish and English. For each corpus. the first column is the
perplexity for the data the language model is trained on, and the second column
is the perplexity for previously unseen test cdata of 1 million words. Note that
the trigram-language model perplexity that we found for English is very close to

the one reported by Brown et.al [1992a].

Language | Training | Training Set | Test Set (1M words)
Data Perplexity Perplexity
Turkish LM words - 66.13 1449.81
10M words 9:1.08 108413
English LAl words 13.29 161.16
LOM words 14,38 108.52

Table 3.3: The perplexity of Turkish and English corpora using word-based tri-
gram language models.

Another major reason for the high perplexity of Turkish is the high percentage
of out-of-vocabulary words (words in the test data which do not occur in the
training dataj: this also results from the productivity of the word formation

process.

The issue of large vocabulary brought in by productive inflectional and deriva-
rional morphology also males tagset design an important issue. In languages like
English, the number of POS tags that can be assigned to the words in a text is
rather limited (less than 100) (though some researchers have used large tag sets
to refine granularity, but they are still small compared to Turkish.)? But, such a

finite tagset approach for languages like Turkish may lead to an inevitable loss of

“More information on the issues of tagset design is given by Elworthy (1995).
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information. The reason for this is that the morphological features of intermedi-
ate derivations can contain markers for syntactic relationships. Thus, leaving out
this information within a fixed-tagset scheme may prevent crucial syntactic infor-
mation from being represented [Oflazer et al., 1999]. For example. it is not clear
what POS tag should be assigned to the word saglamlastirmak. without losing
any information: the category of the root (Adjective), the final category of the
word as a whole (Noun) or one of the intermediate categories (Verb).? Ignoring
the fact that the root word is an adjective may sever any relationships with an

aclverbial modifier modifyring the root.

saglam+las+tir+mak

saglam+Adj DB+Verb+Become"DB
+Verb+Caus+Pos " DB+Noun+Inf+A3sg+Pnon+Nom
to cause (something) to become strong /

to strengthen (something)

Thus instead of a simple POS tag. we use the full morphological analyses of
the words, represented as a combination of features (including any derivational
markers) as their morphosyntactic tags. For instance in the example above, we

would use evervthing including the root form as the morphosyntactic tag.

3.4 Examples of Morphological Ambiguity

[n this section. we will give an example of morphological ambiguity in Turkish,

using the word "izin'. which occurs in the three sentences below:

I. Yerdeki izin temizlenmesi gerek.

The trace on the floor should be cleaned.

3The morphological features other than the POSs are: +Become: become verb, +Caus:
causative verb, +2os: Positive polarity, +Inf: marker that derives an infinitive form from a
verb. +A3sg: 3sg number-person agreement, +Pnon: No possessive agreement. and +Nom: Nom-
inative case. “DB’s mark derivational boundaries. :
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2. Uzerinde parmak izin kalmis.

Your finger print is left on (it).
3. Iceri girmek igin 1zin alman gerekiyor.
You need a permission to enter.
and the following are the corresponding morphological analysis. respectively:

1z1n

l. iz+Noun+A3sg+Pnont+Gen (trace/print)
2. iz+Noun+A3sg+P2sg+Nom (trace/print)
3. izin+Noun+A3sg+Pnont+Nom (permission)

Further examples of morphological ambiguity, and a classification of frequent

tyvpes of ambiguities is given in the M.Sc. thesis of Tir [1996].

3.5 Inflectional Groups

[n order to alleviate the data sparseness problem we break cdown the full tags
into smaller units. We represent each word as a sequence of inflectional groups
(IGs hereafter). separated by "DBs denoting derivation boundaries. as described

by Oflazer [1999]. Thus a morphological parse is represented in the following

general form:
root+IG, DB+IG, DB+ - -"DB+IG,

where IG; denotes relevant inflectional features of the inflectional groups, includ-

ing the part-of-speech for the root or any of the derived forms.

For example, the infinitive form saflamlagtirmak given in Section 3.3 would
be represented with the adjective reading of the root saglam and the following 4

[Gs:
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1. Adj

Lo

Verb+Become
3. Verb+Caus+Pos

4. Noun+Inf+A3sg+Pnon+Nom

In order to simplify our models further. we will use the following property of
the dependency grammar for Turkish: When a word is considered as a sequence
of IGis. syntactic relation links only emanate from the last IG of a (dependent)
word. and land on one of the IGs of the (head) word on the right. as shown
in Figure 3.3 [Oflazer, 1999]. Figure 3.4 shows an example sentence with the
dependency relations ma.rked, taken from [Oflazer. 1999]. In this example, the

words are segmented along the IG boundaries, marked with a "+ sign. The

inflectional suffixes are marked preceding ‘- sign.

Links from Dependents

Link to Head

—

!

716+ 16+ 16,)+[ 16,

Word

Figure 3.3: Inflectional groups in a word and the syntactic relation links.

3.6 Statistics on the Inflectional Groups

The number of possible units to be modeled is important for statistical language
modeling. Table 3.4 provides a comparison of the number distinct full morphosyn-
tactic tags (ignoring the root words in this case) and IGs, generatively possible

and observed in a corpus of 1M words (considering all ambiguities). As we already
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Det Pos Subj
Mod | Mod Mod Obj
. Mod
Yy v y \A 4 YY
(Buleski] bahce-deki giil-in [bsyle [btiytﬂﬂne-si][herkes—i]|goéLetkﬂe-diJ
J
D AD] N ™M N ADV vV N PN ADV V

Figure 3.4: An example dependency tree for a Turkish sentence. The words are
segmented along the IG boundaries.

Possible | Observed
Full Tags (No roots) 20 10.531
Inflectional Groups 9.129 2,194

Table 3.4: Numbers of Tags and IGs

mentioned, the number of possible tags that are theoretically possible is infinite
for Turkish. In a | million word corpus. collected from Turkish daily newspa-
pers. we observed 10,5331 part-of-speech tags ignoring the rvoot words, which is
very high. The number of possible [Gs is 9,129 and we observed 2.194 [Gs in
our corpus. The number of observed [Gs is still very high. but smaller than the

number of full tags (as expected).

On the average, in running text of about 850K tokens, there are 1.76 morpho-
logical parses/token and 1.38 IGs/parse. 55% of the tokens have only one parse.
Of all the parses:

o 2% have 1 IG,

o 13% have 2 IGs.

e 7% have 3 IGs,

o 2% have 4 IGs, and

e 1% have 5 or more [Gs.
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There are also parses which have 7 or 8§ IGs. However, these are very rare, as can
be seen (rom the statistics. Since most of the parses have only one or two inflec-
tional groups, dividing morphological parses from their derivational boundaries,

should not complicate the processing for our tasks.
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Related Work

‘4.1 Introduction

[n ovder to enhance the presentation of our motivation, we will review some of
the previous studies on part-of-speech tagging, morphological disambiguation.
statistical language modeling, and language and speech processing systems for

Turkish and other similar, morphologically rich languages. in this chapter.

4.2 Part-of-Speech Tagging

There has been a large number of studies in tagging and morphological disam-
bignation using various technicques. Part-of-speech tagging systems have used

either a rule-based or a statistical approach.

In the rule-based approach, first, a dictionary is used to assign each word a list
of potential part-of-speech tags, then a large number of hand-crafted linguistic
constraints are used to eliminate impossible tags or morphological parses for a

given word in a given context (Karlsson et al., 1995;.
In the statistical approach, a large, labeled corpus has been used to train a

40
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probabilistic model which then has been used to tag new text, assigning the most
likely tag for a given word in a given context (e.g., Church {1988}, Garside [1988],
DeRose [1988]). It is also possible to train a stochastic tagger using unlabeled

data, with the expectation maximization algorithm (e.g. Cutting et al. [1992]).

Part-of-Speech tagging is one of the first NLP tasks, for which Maximum

Entropy Modeling approach has been used [Ratnaparkhi. 1996].

Brill [1995a] has presented a transformation-based learning approach, which

incduces disambiguation rules from tagged corpora.

Morphological disambiguation in intecting or agglutinative languages with
complex morphology involves more than determining the major or ininor parts-of-
speech of the lexical items. Typically, morphology marks a number of inflectional
or derivational features and this involves ambiguity. For instance, a given word
may be chopped up in different ways into morphemes, a given morpheme may
mark different features depending on the morphotactics. or lexicalized variants of
derived words may interact with productivelyv derived versions. We assume that
all syntactically relevant features of word forms have to he determined correctly

for morphological disambiguation.

[n this context. there have been some interesting previous studies for differ-
ent languages. Levinger et al. [1995] have reported on an approach that learns
morpholexical probabilities from an untagged corpus and have used the result-
ing information in morphological disambiguation of Hebrew. Haji¢ and Hladka
[1995] have used maximum entropy modeling approach for morphological disam-
biguation of Czech, which is an inflecting language. Ezeiza et al. [1998] have
combined stochastic and rule-based disambiguation methods for Basque, which
is also an agglutinative language. Megyesi [1999] has adapted Brill's POS tagger

with extended lexical templates to Hungarian.

Previous approaches to morphological disambiguation of Turkish text had
emploved a constraint-based approach [Oflazer and Kurudz, 1994; Oflazer and
Tiir. 1996; Oflazer and Tiir, 1997]. Although results obtained earlier in these

approaches were reasonable, the fact that the constraint rules were hand crafted
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posed a rather serious impediment to the generality and improvement of these

systems.

4.3 Statistjcal Language Modeling

Statistical language modeling roots back to Markov's work on predicting whether
an upcoming letter in Pushkin’s Eugene Onegin would be a vowel or a consonant.
using bigrams and trigrams [Jurafsky and Martin. 1999]. Shannon used n-grams
to compute the entropy of Inglish and to compute approximations to English

word sequences [Shannon, 19:8].

Today. statistical language modeling techniques are used successfully in almost
~all natural language and speech processing tasks. For more information about
statistical language modeling techniques and the application of these techniques
to language processing tasks, the veader is referred to textbooks on the subject
(some recent good examples are, Manning and Schiitze [1999] and Jurafsky and

Martin [1999]).

Before proceeding to related work for Turkish. we would like to mention a
study for large vocabulary continuous speech recognition (LVCSR) of Korean.
which is an agglutinative language. Unlike the previous approaches based on
the sequence words or letters, this study suggests the :se of syllables as language
modeling units. to overcome the problem of large vocabulary size and so to reduce
perplexity (Kiecza et al., 1999]. However, due to the shortness of syllables. their
acoustic confusability is high (which is important for speech recognition) and a
standard trigram language model using syllables has very limited scope (which
is also a problem for our case). So, a unit that lies between the two extremes.
syllables and words, should be used. In that study, a da.a-driven approach is

used to find the appropriate unit for language modeling.

Another study, again on Korean compares the performance of LVCSR systems
using syllables and morphemes as the recognition unit [IKwon, 2000]. With the

syllables, the percentage of out-of-vocabulary is nearly zero. but they also note
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that syllables have high acoustic confusability. Their best results are obtained

using units that are formed merging morphemes.
(=} [}

A recent study which also uses morphemes for language modeling of English
reports that lower word error rates can be obtained in speech recognition by de-
composing words into their component morphemes (Fang and Huckvale, 2000].
They use phonologically constrained morphological analysis (PCMA) that divides
words into their morphemes conditioniag both on their orthography and pronun-
ciation. The benefits of PCMA include: reduced lexicon size, reduced perplexity,

recluced language model size. and reduced word error rate.

4.4 Turkish

Almost all of the systems developed for processing Turkish text until today, can
he considerad as rule-based. We can list the systems developed for Turkish as

follows:

¢ a morphological analyzer using finite state transducers [Oflazer, 1994],

e & morphological disambiguator using voting constraints [Oflazer and Tiir,

1997],

e a svatactic parser using the Lexical [unctional Grammar formalism

[(Hingérdit and Oflazer. 1995].

o a dependency parser using an extended finite state approach [Oflazer, 1999],
e a parser using the government binding approach [Birtirk. 1998].

e a parser using sign-based phrase structure grammars [Sehibtoélu, 1996},

o spelling checkers [Solak and Oflazer, 1993] and correctors [Oflazer and

Cilizey, 1994; Oflazer, 1996].
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e two machine translation systems from English to Turkish, one using
structural mapping [Cigdem Keyder Turhan, 1997] and the other using

interlingua-based methods [Hakkani et al., 1998],

e a large vocabulary isolated word speech recognition system [Yilmaz, 1999,

and

e a large vocabulary continuous speech recognition system for agglutinative

languages. including Turkish [Carky et al.. 2000].

WWe believe that this thesis is the first work examining statistical language mod-
eling techniques for understanding Turkish, together with a concurrent Ph.D.
thesis on information extraction from Turkish using statistical techaiques [Tiir.

2000).
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Morphological Disambiguation

‘5.1 Introduction

Morphological disambiguation is the problem of selecting the sequence of mor-
pholozsical parses (including the root). T = 7 = £.¢5. ... L,. corresponding to a
sequence of words W = w{ = w,wy.....w,, from the set of possible parses for

these words.

For example, the words of the Turkish noun phrase have the parses given

helow:
£rin terast
L. evin+Noun+A3sg+Pnon+Nom 1. teras+Noun+A3sg+P3sg+Nom
2. ev+Noun+A3sg+P2sg+Nom 2. teras+Noun+A3sg+Pnon+Acc

3. ev+Noun+A3sg+Pnon+Gen

The correct parse for each word is given in boldface. Among the possible parse
combinations, only the first parse of the first word with the first parse of the sec-

ond word, and the third parse of the first word with the first parse of the second
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word make up a grammatical noun phrase. Among the grammatical combina-
tions, only the root of the third parse of the first word occurs frequently with the

root of the first parse of the second word.

Morphological Disambiguation is a useful prior step for syntactic parsing,
since it decreases the ambiguity of the sentence.’and hence makes the computa-
tional problem sma,lle:r [Voutilainen, 1998]. Spelling correction and text to speech
synthesis systems can also benefit from a morphological disambiguator for con-
text sensitive selection of cotrect pronnunciation and for selection of true spellings.
respectively.

Our approach is to model the distribution of morphological parses given the
words, using a hidden Markov model, and then to seek the variable T, that
maximizes P(T'|W):

P(T) x P(WI|T)

zu‘g;}mx P(T|W) = zu‘g;nax BT (5.1)
= argmax P(T) x P(W|T) (5.2)
T

The term P(W) is a constant for all choices of T'. and can thus be ignored when
choosing the most probable T'. Thus, Equation 5.1 can be simplified into Equation

;3 2

o

We can simplify the problem of morphological disambiguation using following

assumptions [Manning and Schiitze, 1999):

o Words are independent of each other. given their tags. that is,
n

P(I’V|T) = H P(wilt"f),

1=1
and,

e A word’s identity depends only on its tag, and not on previous words or

tags, that is,

P(w;lt’l‘) = P('wilt,').
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We can then compute P(W|T') as follews:
PWI|T) = [T P(wt}) = I] Pwilt;) (5.3)

=1 1=1

We can compute P(T') using the chain rule:

n

P(T) = ] P(4]£7) (5.4)

i=1

We can simplify Equation 5.4 further with the trigram tag model, so:
P(T) =[] P(t|tica- tizy) (5.5)
=1
Therefore. equation can be computed as:

n

argmax P(T|W) = argmax H P(ti|tiza, ticy) x Plw;|t;) (5.6)
T T o '

"T'his is the basic formulation of part-of-speech tagging for languages like En-
elish [Charniak et al., 1993: Merialdo, 1994; Dermatas and Kokkinakis, 19953:
Brants, 2000]. and also is the basis of our baseline model where we use the full
morphological analysis including the 1'oot’word as the tag of the word. In the
remaining of this chapter, we will use the terms tag, morphological analysis or
parse interchangeably, to refer to individual distinct morphological parses of a

token.

5.2 Simplifying the problem for Turkish

[n Turkish. given a morphological analysis including the root, there is only one
surface form that can correspond to it, that is, there is no morphological genera-

tion ambiguity.! Therefore, we can assume that P(w;|t;) = 1 in the formulation

'This is almost always true. There are a few word forms like gelirkene and nerde, which
have the same morphological parses with the word forms gelirken and nerede, respectively but
are pronounced (and written) slightly differently. These arve very rvarely seen in written texts,
and can thus be ignored.
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above, since ¢; includes the root form and all morphosyntactic features to uniquely

determine the word form. In our case,

Plwilt?) = Plw;lt;) = 1, (5.7)
therefore, we can write:
PIWI|T) = HP('LU,‘“;') =1 (5.8)
=1

and the morphological disambiguation problem can be represented as below:

argmax P(T|W) = 'cu'gma‘.\'[)('[') (5.9)
T T

Morphological Disambiguation of Turkish

%)
W

with n-gram Language Models

We use trigram language models for morphologically disambiguating Turkish
words. The probability of a sequence of tags. P(T") can be computed as follows

accorcding to the chain rule:
P(T) = Plu]ir™") x P(tus 1773 x .o x P(ks]ty) x P(t)  (5.10)
Sunplifving Equation 5.10 further with a trigram tag model. we get:
P(T) = Pltaltnoy,tao1) X Pllailtns, taa) % ... P(ts]ty, t2) x P(ta]tr) x P(t,)
= ﬁ P(t|tima tizy) (5.11)
i=1
where we define P(ti|t-1,to) = P(t1), P(t2ito. ti) = P(£:]t1) to simplify the nota-
ton.

In order to determine the trigram probabilities, we use the Maximum Like-
lihood Estimation technique, and smooth the probabilities using Good-Turing

method [Gale, 1994] combined with the Backoff modeling [Katz, 1987].

The tag sequence that we are looking for, is the tag sequence that has the

maximum probability according to our trigram tag model (see equation 5.9).
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5.3.1 Using IGs for Morphological Disambiguation

If we consider morphological analyses as a sequence of root and IGs, each parse
t; can be represented as (1, [G1,..., (G ,,), where n; is the number of IGs in
the i** word [Hakkani-Tir ef al., 2000].2 r; includes the part-of-speech of the root

word. This representation changes the problem as follows:

PliE™YY = Pltiftiea, tiey)
.P((T'g. .[Cr’i'] e .[(_r’l"nl-),(’l‘i_g, [Gi-'.l,l e [Cr‘,'_-gy,”_,_, )
(7','_1, [Cr','__]‘l e [Gi—lyni—l )) (3].2)

il

We can use the chain rule to factor out the individual compouents:

PEIETY = Plrilrice, IG g o A CGicgn ), (e LGy o IGioyng ) X
PG (Pieas [Gia o A Gy )y (Picy TG T Gy )i 1) X%
. X
PUG a0 gy LGi_g o LGz ),
(ric, [Gioy gL Gizyny )y ri [y o L Gini21) (5.13)

This formulation still suffers from the data sparseness problem, since the pa-
rameter space is still very large. To alleviate this, we make the following simpli-

fving assumptions:

L. A root word depends only on the roots of the previous words, and is inde-

pendent of the inflectional and derivational productions on them:

P(".il(ri—'la -[Gi—'l,l) DRI ]C;i—-'z,n._g)v
(7'£—1=[Gi—1,1,--~,[Gi—1,n.-_1)) = P("il"'i—?;"’i—l) (5-14)

“In our training and test data, the number of IGs in a word form is on the average 1.6,
therefore, n; is usually 1 or 2. We have seen, occasionally, word forms with 5 or 6 inflectional

sroups.
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The intention here is that this will be useful in the disambiguation of the
root word when a given form has morphological parses with different root
words. 50, for instance, for disambiguating the surface form adam with the

following two parses:

(a) adam+Noun+A3sg+Pnon+Non (man)

(b) ada+Noun+A3sg+Plsg+Nom (my island)

in the noun phrase kirmiz kazakle adam (the man with a red sweater), only
the roots (along with the part-of-speech of the root) of the previons words
will be used to select the right roct.

Note that the selection of the root has some impact on what the next I(3
in the word is. but it is very hard to isolate this. so we assume that [Gs ave

determined by the syntactic context and not by the root.

2. An interesting observation that we can make about Turkish is that when a
word is considered as a sequence of [Gs. syntactic relations arve onlv between
the last [G of a (dependent) word and with some rincluding the last) 1G ol

the (head) word on the right [Oflazer. 1999).>

Based on these assumptions, we define three mo-lels. all of which are based on

word level trigrams. In the following subsections, we will describe each of these

models.

Model 1

[n Model 1, the presence of IGs in a word only depends on the final IGs of the
last two words. That is. in order to estimate the probability of an IG in a word.
we only look at the final IGs of the previous two words. as shown in Figure 3.1.
This model ignores any morphotactical relation between an IG and any previous

IG in the same word. Therefore, the probability of an [G is estimated as follows:

3There are minor exceptions to this, especially in conversations. With some word orderings,
the dependency relation links might land on an IG of the word on the left.
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Model 1: The root of a word depends only on the roots of the previous two
words, and an 1G of a word depends only on the final IGs of the previous two
words in our first modlel, as shown with underlining and boldfacing.

ticgr 1imy 1G9y IGi_9y .. IGi_yp; 1 IGi_on.

ticv s riml IGi IGizyy o IGis ny -1 IGiZ1m,,
;o r; I"Gi,l 1G9 ... [Gi,k—l IG; [Gi,k.H [Gi,n,'

Figure 5.1: The dependency between current word and its history word according
to Model 1.

PG el(rice, [Gio0y. A Giign, ).
(ricv LGy LGy )i IGy TG py) =
P([Gi.kl[(—;i—'z.m_gy [C”i—l,n,'_l ) (513)

As a result, the probability of an analvsis given the previous two analvses is
v o o o

estimated as follows:

P(tifticg ticy) = Plrilrica,riog) %
H P(-[C"i.kljc"’i—ln,'_ge[G{——l.n,'_l) (516)
k=1

The first factor is the relationship between the roots, as shown with underlining in
IFigure 5.1, the second factor (which itself is the product of probabilities) models

the relationship between the IGs, as shown with boldfacing in Figure 5.1.

Model 2

[n Model 2, we use the assumption that the presence ot IGs in a word only depends
on the final IGs of the previous two words and the previous IG in the same word,
as shown in Figure 5.2. In this model, we consider morphotactical relations and
assume that an [G (except the first one) in a word form has some dependency on
previous IGs. Given that on the average a word has about 1.6 IGs, IG bigrams

should be sufficient. Therefore, the probability of an IG is estimated as follows:

PG i |(rica, [Gican A Gican ),
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Models 2 and 3: The root of a word depends only on the roots of the previous
two words, and an IG of a word depeands only on the final IGs of the previous
two words and the previous IG in the same word. in our second model, as shown
with underlining and boldfacing.

ticor ricy LG9 IGign oo Gy pp—1 Iari_on,
=1 1 il
ticgt i IGio0 IGic1y o TG -1 IGioi g,

e o IGiIGig oo 1Gik TGk IGiggr oo IGyy,

Figure 5.2: The dependency between current word and its history word according
to Models 2 and 3.
(”'l‘—-lv [C'![—l.l! vt [Gi—’l.n,_l )* . [Gi.l: ey -[G[,k—l) =
PUG G ierini oy LG imimi 2y s L Gik-1)

Therefore, we compute the probability of a morphological analysis given the

previous two analyses as follows:

P(tiltiza, tin) = Plrijrice, rica)
4 [T PUC Gz Gt IGikeor)  (5.17)

k=1

Model 3

Model 3 uses the same assumptions with Model 2. except that the dependence
on the previous I(i in a word is assumed to be independent of the dependence on
the Anal IGs of the previous words. This allows the formulation to separate the

contributions of the morphotactics and local syntax. That is.
.P(IG,'.;\-I(T;'_Q, fGi—m-~-1Gi_-z,n,_2),
(ric1 IGici 1, - [Gi—-l,n,-_l ). i IGiy, ..., [Gi,k—L =
P([Gi,kllGi—‘Z.n.'_'_n [C”i-l,n._l y [Gi.k—l )

and,

PUIG k| IGizami sy IGicimi_y, [Gik—1)
P([Gi—'.’.n._.g ) [Gi--l.n,'_l ) [Gi,k—l I[le) X P([Gl/»)
P(-[Gi—2,n(_'33 [Gi—l,n_,‘_l ) [GIL-—I)
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- P([Gi—'z,n;_'z7]Gi—1,71i_1 l[Gg’k) X P(.[G;,k_llfG,’,k) X P([Gi'k)
P(UGi—gmia, IGici i) % P(LGi5—y)
N P(_-[Gi—‘Z,n,'_gy-[Gi—l,n;_l '-[C"i,lc) X P([G,,k)
P(IGi =2y IGictmy) )
P(IGi,k—luGi,k) X P([Cr’zk) « 1
P(IGip1) P(IG:y)
. A/')(IGi,kl'[Gi—Z.n;_g) -[Gi—l.ni._l ) X P(_[C;i,klf(-;i,k—l) - 18
= P(IC:s) (5.18)
Therefore,
P(tiltica, tier) = Plrilrica, rizy)
X H(P([C;'i.k,IC;i~2,IL,'_'_>1 -[(”'i—l.ll.'_l) X
=1
PTG | IG; - o
(IG x| I 1)) (5.19)

P(IG; k)

[n order to simplify the notation in the description of our models, we have

defined the following:

P(ri|r_1,70) = P(r1)

P(ralro,m1) = P(rafr)

PG TG 1,y [Gong) = P(IG )

P(IGa2 |1 Gongs [G1iny) = PUGy[IG )

P(UG: | ICi—amns [Gicimiy, [Gin) = PUGGicgn_y, IGiiini,)
PUGL G g LGongs [Gri-1) = PG [IG1e-1)

P(LGy I Gong, IGy nys [G20-1) = PG |I[G1ny, [G2yo1)
P(ICG 1| LGy, [Gap) = P(IGy1|ICyny)

P(IG; |G ) = P(IG;,)

for k=1,2,...,n;,{=1,2,...,n9,and : = 1,2,...,n.

We also have built a baseline model based on the standard definition of the
tagging problem in Equation 5.1. For the baseline, we have assumed that the part
of the morphological analysis after the root word is the tag in the conventional

sense (and the assumption that P(w;|t;) = 1 no longer holds).
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5.3.2 An Example

[n this section, we will give an example of how our three models compute the
probability of the sequence of analyses, given their surface forms. For example,
the probability of the analysis sequence:

kirmizi+Adj

kazak+NouniA3sg+Pnon+Nom“DB+Adj+With

adam+Noun+A3sg+Pnon+Nom

given the surface form ~kumizt kazaklh adam™ (‘the man with a red sweater’ in

Fonglish) is computed as follows:

According to Model 1.

P(kxirmzi 4+ Adj, kazak + Noun + A3sg 4 Pnon + Nom™DB + Adj + With,

adam + Noun + A3sg -.I— Pnon + Nom|kirmuzi, kazakli, adam) =

P(ry = kirmizi + Adj) X

P(r, = kazak + Noun|r; = kirmizi + Adj) X

P(ry = adam + Noun|r; = kirmizi + Adj, ry = kazak + Noun) x
PGy, = Adj) x

P([(y, == Noun + A3sg + Pnon + Nom|/(F;; = Adj) X

P(ICisy = Adj + With|[(G = Adj) X

P([(G5, = Noun + A3sg + Pnon + Nom|[(7y,;, = Adj, [(ay = Adj -+ With)
According to Model 2,

P(kirmzi + Adj, kazak 4- Noun + A3sg + Pnon + Nom™DB -+ Adj -+ With,

adam + Noun + A3sg + Pnon + Nom|kirmiz, kazakl, adam) =

P(r; = kirmz1 + Adj) X
P(ry = kazak + Noun|r; = kirmz1 + Adj) X
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P(r3 = adam + Noun|r1 = kirmizi + Adj, ry = kazak + Noun) X
P(IGy, = Adj|IGrp = <ROOT >) x
P(IG>, = Noun + A3sg + Pnon + Nom|/ Gy | = Adj,

[(iy9 = < ROQT >) x
P([Cyy = Adj + With|[(), = Adj,

[Gi3,1 = Noun + A3sg + Pnon + Nom) x
P[5, = Noun + A3sg + Pnon + Nom| /Gy ; = Adj,

[(iyy = Adj + With. (3 = < ROOT >)

Note that, we use the symbol < ROOT >, when estimating the probability of
each word’s initial [G to emphasize that there is no [G between the current IG
and the root. that is, the current IG is the first IG of the corresponding word

form.

According to Model 3,

P(kirmzi + Adj, kazak + Noun 4 A3sg + Pnon + Nom™DB + Adj + With,

adam + Noun + A3sg + Pnon + Nom|kirimizi, kazakli, adam)

P(ry = kirmzi + Adj) x
P(r; = kazak + Noun|r; = kirmizi + Adj) X
P(r; = adan + Noun|r; = kirmzi + Adj, ry = kazak + Noun) X
P(IG,) = Adj|{G o = < ROOT >) x
P([G,, = Noun + A3sg 4 Pnon + Nom|/ (1 = Adj) X
P(I(C5, = Noun + A3sg + Pnon + Nom|/G» 9 = < ROQT > y
P(IG4, = Noun + A3sg + Pnon + Nom)
P([Gg_g = AdJ + With,[Gl'l = AdJ) X
P(IGys = Adj + With|[Gag = <ROOT >
P(IG4, = Adj + With)
P(IG3, = Noun + A3sg + Pnon + Nom| /() = Adj,

[G'g,g = Adj + With) X
P(IG3, = Noun + A3sg + Pnon + Nom|/ (30 = < ROOT >)
P(I(l5, = Noun + A3sg + Pnon + Nom)
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5.3.3 Implementation of the Models

The models described above require two types of probabilities for the computa-
tion of the probabilities of the correct morphological analysis: root probabilities
and [G probabilities. One way to construct the models is to form the root and
IG models that give us an estimate for the root and IG trigram probabilities,
and then merge these two models by computing the probabilities of all possible
morphological analysis sequences. However. the number of these sequences is
infinite. because of the devivational morphology. so it is impossible to construct

the complete model. that has the probabilities for all possible trigram sequences.

However. it is possible to construct a model tor the test data at run-time,
by taking the product of the root and [G probabilities. The model will not be
complete, but we will only compute the probabilities for the sequences that we
will need as we try to find the most probable tag sequence. Figure 5.3 shows the

sequence of steps for combining the two models.

We first count the root and IG sequernces in the training data. Using these
counts, and the SRILM ~ the SRI language modeling toolkit [Stolcke, 1999]. we
form two trigram models that estimate the root and IG probabilities. SRILM is
a toolkit for building and applying statistical language models (LMs), primarily
for use in speech recognition. statistical tagging and segmentation. The toolkit

builds n-gram language models in ARPA n-gram format.

We construct the combined models using the test data and the root and [G
models, at run-time. and use the Viterbi Algorithm to find the most probable
tag sequence. Figure 5.4 shows an example hidden Markov model we use for
morphological disambiguation of each sentence in our test data. The state output
probabilities of this HMM are set to one, and we use the trigram and bigram

language model probabilities as state transition probabilities, which are computed

according to our models.
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Training Data

|

!

Count Root and [G ngrams

root model

-

test data

ﬁI

i
root ngram counts IG ngram counts
SRI- LM SRI-LM
Toolkit Toolkit
Y

[G model

S

Form the Combined
Language Model

(,ombmed LM

\ Find the most probable path

(Viterbi Algorithm)

Y

Disambiguated text

Figure 5.3: Implementation of the n-gram models.
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(S 13
[&%s]

Sentence: <S> w, w, W, W, </S>

Parses of wp:t) .t 50t ,
Parses of w,: t, ,t,,
Parses of w,: t;

Parses of w,: t, ,t,,

HMM:

Figure 5.4: The trigram HMM for morphological disambiguation. <S> is the
sentence start tag, and </S> is the sentence end tag.
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5.3.4 Experiments and Results

To evaluate our models, we first trained our models and then performed morpho-

logical disambiguation on our test data.

w

Training and Test Data

Both the test data and training data were collected from the web resources of
a Turkish daily newspaper. The tokens were analvzed using the morphological
analyzer/generator, developed by Oflazer [1994]. We preprocessed the training
and test data., to reduce the morphological ambiguity. The steps of preprocessing

are explained in the next section.

The training data consists of the unambiguous sequences (UiS) consisting of
about 650K tokens in a corpus of 1 million tokens, and two manually disam-
biguated texts of 12,000 and 20,000 tokens. The idea of using unambiguous
sequences is similar to Brill's work on unsupervised learning of disambiguation

vules for POS tagging [1995b).

Preprocessing for Ambiguity Reduction

We preprocess the training and test data to reduce the morphological ambiguity,

without reducing accuracy. The following are the steps of preprocessing:

. We eliminate very rare root words that are ambiguous with a very frequent
root word. An example is the word ‘bunlar’ (‘these’ in English), which has
the following two morphological parses:

(a) bun+Noun+A3pl+Pnon+Nom
(b) bu+Pron+DemonsP+A3pl+Pnon+Nom

‘hun’ is an extremely rare word in Turkish, whereas ‘bu’ is very frequent,

50 any parse with the root ‘bun’ is eliminated.
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2. We disambiguate the lexicalized and non-lexicalized collocations involving
compound verbs. An example is the compound verb ‘yemek ye-'. For
example in the sentence ‘Yemek yenecek’ (in English ‘The dinner will be

caten’), the first word has the following two parses:

(a) yemek+Noun+A3sg+Pnon+Nom

(b) yet+Verb+Pos DB+Noun+Inf+A3sg+Pnon+Nom
and the second word has the following four parses:

(a) ye+Verb DB+Verb+Pass+Pos+Fut+A3sg
(b) ye+Verb”DB+Verb+Pass+Pos DB+Adj+FutPart+Pnon

(c) yan+Verb+Pos+Fut+i3sg

(d) yen+Verb+Pos DB+Adj+FutPart+Pnon

But, we know that when these words are seen consecutively, the correct
patse for the first word is the first parse above. and the correct parse for
the second word is the one that is derived from a Verh with voot ye’, that
is. the one that starts with ‘ye+Verb.

3. We disambiguate postpositional phrases: Postpositions impose a constraint
on the case of the preceding word, some subcategorize tor ‘Dative’ noun
objects, while others subcategorize for an *Ablative’. ‘Nominative’ etc. noun
just preceding them. The subcategorization information can be inferred
from the tvpe of the postposition. For example. the word ‘sonra’ has the

following two parses:
(a) sonratPostp+PCAbl+Temp
(b) sonra+Adv

[f the preceding word is a noun in Ablative case, then the correct parse is

the first one above.

The ambiguity of the training data was reduced from 1.75 to 1.55 using this

preprocessor.
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The preprocessor analyzes unknown words with an unknown word processor.
The unknown words are almost always foreign proper names, words adapted into
the langnage and not in the lexicon, or very obscure technical words. These are
sometimes inflected using Turkish word formation paradigms. The unknown word
processor assumes that all unknown words have nominal roots. It is constructec
in the same way as the morphological analyzer, only the nominal root lexicon

recognizes Si, where S is the Twrkish surface alphabet.

The test data consisis of 2763 tokens, 935 (=34%) of which have more than
one morphoiogical analysis atter preprocessing. The ambiguity of the test data

was reduced from 1.74 to 1.53 after preprocessing.

Evaluation

As our evaluation metric, we used accuracy, which is the percentage of the correct
parses among all selected parses:

# of correct parses
# of selected parses

x 100

accuracy =

The number of selected parses is the number of tokens in our case, since our

algorithm selects one parse among the set of possible parses for each token.

There are also other evaluation metrics like recall and precision, but since our

system returns only one parse for each token, accuracy results are sufficient.

Results

The accuracy results are given in Table 5.1. For all cases, our models performed
better than baseline tag model. As expected, the tag model suffered considerably
from data sparseness. Using all of our training data, we achieved an accuracy
of 93.95%, which is 2.57% points better than the tag model trained using the
same amount of data. Models 2 and 3 gave similar results. For Model 2, we

needed IG 4-gram probabilities, however Model 3 needed only IG 3-gram and
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Training Data | Tag Model | Model 1 | Model 1 | Model 2 | Model 3
(Baseline) (Bigram)
Us 36.75% 83.21% 89.06% 87.01% 87.19%
U7S-+12,000 words 91.34% 93.52% 93.34% 92.43% 92.72%
1i5432.000 words 91.34% 93.95% 93.56% 92.87% 92.94%

Table 5.1: Accuracy results for different models. In the first column, US is an
abbreviation for unambiguous sequences.

2-gram probabilities. As can be seen from the results. Model 2 suffered from data

sparseness slightly more than Model 3. as expected.

Surprisingly. the bigram version of Model | (i.e.. Equation (7). but with bi-
graws in root and [G models), also performs quite well. [f we cousider just the
syntactically relevant morphological features and ignore any semantic features
that we mark in morphology, the accuracy increases a bit further. These stem
from two properties of Turkish: Most Turkish root words also have a proper noun
reacing.? We count it as an ervor if the tagger does not get the correct proper noun
marking. Buu this is usually impossible especially at the beginuing of sentences
where the tagger can not exploit capitalization and has to back-off to a lower-order
model. In alimost all of such cases. all syntactically relevant morphosyntactic fea-
tures except the proper noun marking are actually correct. Another important
case is the pronoun o, which has both personal pronoun (s/he) and demonstrative
pronoun readings (it) (in addition to a syntactically distinct determiner reading
(that)). Resolution of this is always by semantic considerations. Wheu we count
as correct any ervors involving such semantic marker cases, we get an accuracy
of 95.07% with the best case (cf. 93.91% of the Model 1). This is slightly better
than the precision figures that is reported earlier on morphological disambigua-
tion of Turkish using constraint-based techniques [Oflazer and Tir, 1997]. Our
results are slightly better than the results on Czech of Haji¢ and Hladka [1993].
Megyesi [1999) reports a 95.53% accuracy on Hungarian (a language whose fea-
tures relevant to this task are very close to those of Turkish), with just the POS

tags being correct. In our model this corresponds to the root and the POS tag of

*In fact, any word form is a potential first name or a last name.
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the last IG being correct and the accuracy of our best model with this assumption
is 96.07%. When POS tags and subtags are considered, the reported accuracy
for Hungarian is 91.94% while the corresponding accuracy in our case is 95.07%.
We can also note that the results presented by Ezeiza et al. [1998] for Basque
are better than ours. The main reason for this is that they employ a much more
sophisticated (compared to our preprocessor) consiraint-grammar based system
which improves precision without reducing recall. Statistical techniques applied
after this disambiguation yield a better accuracy compared to starting from a

more ambiguous initial state.

Since our models assumed that we have independent models for disambiguat-
ing the root words, and the [Gs, we ran experiments to see the contribution of the
individual models. Table 5.2 summarizes the accuracy results of the individual

5]
models for the best case (Model 1 in Table 5.1.)

Model Accuracy
I1G Model 92.038%
Root Model 30.36%
Combined Model 93.95%

Table 5.2: The contribution of the individual mocdels for the best case.

There are quite a number of classes of words which are always ambiguous and
the preprocessing that we have employed in creating the unambiguous sequences
can never resolve these cases. Thus statistical models using only these unam-
biguous sequences as the training data do not handle these ambiguous cases at
all. This is why the accuracy results with only unambiguous szquences are sig-
nificantly lower (row 1 in Table 5.1). The manually disambiguated training sets

have such ambiguities resolved, so those models perform much better.

An analysis of the errors indicates the following: In 15% of the errors, the last
IG of the word is incorrect but the root and the rest of the IGs, if any, are correct.
In 3% of the errors, the last IG of the word is correct but the either the root or
some of the previous IGs are incorrect. In 82% of the errors, neither the last IG

nor any of the previous IGs are correct. Along a different dimension. in about
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51% of the errors, the root and its part-of-speech are not determined correctly,
while in 84% of the errors, the root and the first IG combination is not correctly

determined.

5.4 Morphological Disambiguation of Turkish
with Maximum Entropy Models

Maximum Entropy (ME) Modeling is an a.pproéxch for combining multiple infor-.
mation sources for classification. Recently, ME modeling approach was success-
fullv: applied to natural language processing problems, including part-of-speech
(POS) ragging (Ratnaparkhi, 1996; Haji¢ and Hladka, 1998]. Therefore. we de-
cided using ME mocdeling approach for morphologically disambiguating Turkish

text.

[n Section 5.2, we show that the problem of morphological disambiguation

of Turkish can be reduced as follows, since the morphological parses include the

root of the words:

argmax P(T|W) = argmax P(T)
T T
: = argmax Pt t771) x Pta_i|t}77) X ... x Pta]ty) x P(ty)
T

[n the previous section, we approximate the probability of a morphological
parse given the previous morphological parses using 3-gram language models. In
this section, we approximate this probability as follows:

n,

P(tllt;-l) x H P(IGi,kllGi—l.n,._l)

k=1
and use ME models to compute these probabilities. Note that, we are not using
the roots in the approximation above. Using the preceding two words as the
history would increase (at least double) the number of features. So for simplicity,

we condition the probability only on the final IG of the previous word.
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5.4.1 The Probability Model

The number of possible IGs is very large for classification with ME models. There-
fore, we try to reduce the number of classes for the ME models, in a simtlar way
with a recent study for morphologically tagging a similar language, Czech (which
1s also a free word, order, and a highly inflective language.) This study also sug-
gests using the morphological features of the words, as well as the original word
forms and part-of-speech tags [Haji¢ and Hladké, 1998]. The words are analyzed
morphologically, and each analysis is seen as a set of 13 morphological features.
which can capture the part-of-speech, gender, number, tense etc., information of
all the words. Because of the derivational morphology, the analysis of a Turkish
word might contain more than one part-of-speech category, so such an approach
is not directly applicable. Instead of the whole morphological parses. we represent

-an G with 9 categories, namely:

L. Major Part-of-Speech (POS),

Minor Part-of-Speech (SUBPOS),

Q)

3. Agreement (AGR),

4. Possessive (POSS),

5. Case (CASE),

6. Polarity (POL),

7. Tense-Aspect-Mood Marker 1 (TAM1),

Tense-Aspect-Mood Marker 2 (TAM2), and

(Va)

9. Copula (COP).

The values that these categories can take are listed in Appendix A. Table 5.3

gives examples of how some [Gs are represented according to this representation.
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1G 1 2 3 4 5 6 7 8 9
Noun+A3sgt+P3sg+Nom Noun | - A3sg | P3sg | Nom | - - - -
Noun+Inf+A2sg+Pnon+Acc Noun | Inf A2sg [ Pnon | Acc | - - - -
Verb+Pos+Progl+A2sg Verb | - A2sg | - - Pos | Progil | - -
Verb+Pos+Fut+Cop+A3sg Verb | - A3sg | - - Pos | Fut - Cop
Verb+Pos+Progl+Cond+A3sg | Verb | - A3sg | - - Pos | Progl | Cond | -
Verb+Pass+Pos+Progl+A3pl | Verb | Pass A3pl | - - Pos | Progl | - -
Num+Card Num Card - - - - - - -
Adv+As Adv As - - - - - - -
ProntPersP+A3sg+Pnon+Abl | Pron | PersP | A3sg | Pnon | Abl | - - - -
Ques+Pres+Alpl " Ques | - Alpl | - - - Pres | - -
Adj+AsIf Adj AsIf - - - - - - -

Table 5.3: Examples for vepresentations of [Gs using 9 categories. The category
that is missing in the IG takes the value -~

The probability of an IG. given the final IG of the previous word is computed
as the product of the probabilities of the individual category values- given the
final IG: of the previous morphological parse:

9
PGk IGi—imiy) = [ Pileat;(1Gi) [ CGizin,_,) (5.20)
j=1
where Pj(e]y) is the probability according to the j* model, and cat;([/Gig) is a
function which returns the value of the j”‘ category for [Gi, as in the following
examples:
cat (Adj + AsIf) = Adj

cato(Adj + AsIf) = AsIE

catz(Adj + AsIf) = —

[n ovder to find the probabilities of the individual category values given the
final IG of the previous analysis. we construct 9 different models, for each cate-
Q0rY.

1 T f (caty (G, 1) Gy n, ) ,
Pleat (G MG = - o’ ' - (5.21
N J( t,A)l L l,n,_l) Zj(-[(-;i—l,ni_‘) [}I;[l l_, )

where, fi (cat;([Gix), [Gio1n;_,) are the features of our model. au; are the weights
of the features, and Z;([/(G-1.n,_,) is the normalization constant for the history

[(—'l.—l.lv,,_l .
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So, for example:

P(Noun + A3sg + P3sg + Nom|/G;) = P;(Noun|/G,) x
Py(—|1G) %
P3(A3sgllCy) %
Py(P3sg|IG,) x
Ps(Nom|IGy) x
Ps(=]1GC,) x
P-(—|IG)
Ps(—1G,) =
Py(—|IGy)

5.4.2 Features for Morphological Disambiguation

The conditional probability of a history [G;_y ,,_, and [Gry 1s determined by the
weights whose corresponding features are active (that is, that have the value 1).
We tried two types of features for morphologically disambiguating Turkish text.
All of these features check the occurrence of category values or [Gs with other
category values. We have not included features that check the identity of the root
or the surface form of the words, in order to keep a small nwmber of features.

Our features are described in the following sections.

Type-1 Features

The first type of features check the co-occurrence of a category in the previous
word’s final IG, with another category of the current IG. These features are used

in Equation 5.20, and have the following format:

1 if catj(IGig) = aand b€ IGiog i,

0 otherwise

fi,(eat;([Gix) L Gicini,) = {
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Here, b € IG;-1 n,_, means that IG;_y,;_, has the category value b in it. An

example feature is:

i L if caty(IGy) = P3 =[Gy s
fu, (caty({Gip), IGi—ini_,) :{ if caty([Gig) sg and A3sg € [y,

0 otherwise

and, therefore,
f1,(P3sg,Noun + A3sg + Pnon + Nom) = |

f1,(P3sg,Adj + AsIf) =0

fi,(Acc,Noun + A3sg + Pnon + Nom) == 0.

Type-2 Features

The second type of features check the co-occurrence of the previous word’s final
[G with a category of the current IG. These teatures are used in Equation 5.20,

and have the following format:

‘ 1 '[.‘ t [C,’, o all _[ [(:7’[— n :/
ot Goa)s [Croamy ) = { b cati(1Crik) = a anc Ly =0

0 otherwise

An example feature 1s:

1 if caty([Gp) = P3sg and
Fr(eaby(LGig) IGicin, ) = [G;_ ni_, = Noun + A3sg + Pnon + Nom

0 otherwise

and. therefore.
f1,(P3sg,Noun + A3sg + Pnon + Nom) = |

f1,(P3sg,Noun + A3sg + P3sg + Nom) = 0

f1,(Acc,Noun + A3sg + Pnon + Nom) = 0.

5.4.3 Training the Models

There are two issues for training the models to use for morphological disambigua-

tion:
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1. Determining the features to use: We extract the features to use auto-
matically, examining the training data. We use the IG bigrams that occur
more than some threshold (that we call as the IG count threshold) in

the training data for selecting the features.

Xor the tvpe-1 features, we list the cartesian product of all the feature values
(excluding the “-”s) as the candidate features. For type-2 teatures, we list
the pair of IGs (of the first word) and the feature values of the second word
(excluding the “-"s again) of the bigrams. as candidate features. From the
list of candidate features, we onlv select the ones that are active in more
than a second threshold (that we call as the feature count threshold) of

the 1G bigrams selected from the training data.

2. Finding the weights of the features: We use the Generalized Iterative
Scaling algorithm [Darroch and Ratcliff. 1972]. that is described in Chapter
2, to find the weights of the features. As a stopping criterion for the GIS

algorithm (as step 7 of the algorithm given in Section 2.6.G), we use:
|E,5./FL‘ - Ep"jil < € X 1/5/,

and we call € the threshold weight.

5.4.4 Testing the Models

Once the features and their weights are computed. we find the probabilities for
all possible bigrams in the text to be disambiguated. We then w.e the Viterbi
algorithm [Viterbi, 1967}, to find the most probable path. for each sentence. which

is returned as the disambiguated sequence.

5.4.5 Experiments and Results

We tested our ME models in a similar framework with the n-gram models. We

performed various experiments to optimize the three threshold values: the IG
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count threshold, the feature count threshold and the threshold weight. Our train-

ing and test data and these experiments are described in the following subsections.

Training and Test Data

The training data is the same as the tralning data we use for training models
for morphological disambiguation of Turkish using n-gram language models. We
nse two sets of test data for testing our models, the first set (testl) the same as
the test data we use for testing our models for morphological disambiguation of
Turkish using n-gram language models and the second set (test2) is a 958 token
subset of it. We use the subset for optimizing some of the parameters of out
models. The training and test data are preprocessed for ambiguity reduction. as

explained in Section 5.3.4.

Determining the IG Count and Feature Count Thresholds

The number of features that we use for MIE modeling is very important, because
the running time of the GIS algorithim is dependent on the number of features.
Therefore, we tried to limit the number of features. and used thresholds for this
purpose. We tried to find optimum values for the thresholds, that result in high

accuracy.

Table 5.1 shows the relationship between the thresholds and accuracy using
type-1 features. In these 3 experiments, the threshold weight is 0.1. As, we
increase the number of features. the accuracy increases. Table 5.5 lists the number

of features for each model of these 3 experiments.

Contribution of the Individual Models

[n order to evaluate the contribution of the individual category models, we ran
an experiment excluding one model (that uses type-1 features) each time. Table

5.6 lists the accuracy values that we obtained with a threshold weight of 0.1.
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Test Data | IG Count Threshold | Feature Count Threshold | Accuracy
test? > 10 >3 86.74%
test2 > 10 > 1 83.93%
test2 > 5 > 1 89.56%
testl > 5 > 1 33.70%

Table 5.4: The accuracy results with models trained varving the counts ol the
features and IGs to include.

Model IG Count IG Count IG Count
Threshold>10 Threshold>10 Threshold>5
Feature Count | Feature Count | Feature Count
Threshold>3 Threshold>1 Threshold>1
POS 253 376 709
SUBPOS 196 659 551
AGR (14 250 303
POSS 100 226 263
CASE 154 369 431
POL 39 177 193
TAMI1 118 276 347
TAM?2 T2 139 40
Ccop 39 113 [24

Table 5.5: The number of features used for the models. with different threshold
value for the features and IGs to include.

Excluding POS, SUBPOS, POL, and COP models did not decrease accuracy. So,

we ran another experiment excluding all of these models. and got an accuracy of

39.56%.

Intuitively. POS and SUBPOS models make similar contributions. and using

one of them in our model should be sufficient. We ran another experiment ex-

cluding only one of them and the other two models POL and COP. and obtained

an accuracy of 39.77%, which is the best accuracy. with this threshold. This re-

sult supports our intuition, and we excluded only the SUBPOS. POL, and COP

models in the remaining experiments.

We trained the 6 models (that we found useful) with the tvpe-1 features,
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~1
o

Model Accuracy
all - {POS} 89.56%
all - {SUBPOS} 89.77%
all - {AGR} 89.14%
all - {POSS} 85.28%
all - {CASE} 83.30%
all - {POL} 89.35%
all - {TAM1} 38.93%
all - {TAM2} 89.24%
all - {COP} 89.35%
all 39.35%
all - {COP.POL,SUBPOS,POS} | 89.56%
all  {COP.POL.SUBPOS} 39.77%

Tal.le 5.6: The accuracy results for a threshold weight of 0.1. ~all™ incluces 9
models. The test set used for these experiments is test2.

decreasing the threshold weight to 0.01 This also increased the accuracy. Table

5.7 lists the accuracy obtained with models trained using a threshold weight of

0.01. The best accuracy with this threshold, which is also the best accuracy we

obtained using ME models, is 90.60%. and is obtained using the 6 individual

category models. The accuracy corresponding to the same experiment with a

threshold weight of 0.1 was 89.77%.

Test Data | Model Accuracy

test?2 all - {POS}
test2 all - {AGR}
test2 all - {POSS}
test2 all - {CASE}
test2 all - {TAM1}
test2 all - {TAM?2}
test2 all

testl all

83.32%
86.01%
38.51%
S7.58%
33.08%
39.45%
90.60%
89.57%

Table 5.7: The accuracy results for a threshold weight of 0.01.

remaining 6 models.

“all™ includes the
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Type-2 Features

[n our experiments with the type-2 features, we only used the (useful) 6 models.
The IG count threshold was 5, the feature count threshold was 1. Table 5.8
lists the number of type-2 features for these experiments and Table 5.9 lists the
accuracy values. The best accuracy that we obtained using type-2 features is

89.77%. which is the same for threshold welghts of 0.1 and 0.01.

Model | Number of Features
POS 13383
AGR 67T
POSS 636
CASE S5
TAMIL 673
TAM?2 130

Table 5.3: The number of type-2 features used for the models. with [G Count>5
and Feature Count Threshold>1.

Test Data | Threshold Weight | Accuracy
test 0.1 39.77%
test2 0.01 89.77%
test | 0.1 39.57%
testl 0.01 89.93%

Table 5.9: The accuracy results with Type-2 features. Only the [G bigrams that
occurred more than 3 times were used when finding the features.

5.5 Discussion

The best accuracy that results with the n-gram modeling approach is 93.95%,

and with the ME modeling approach is 89.93%, with the same training and test

data.
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[n terms of accuracy, ME models perform worse, because of the foilowing

reasons:

¢ The number of classes is very large. Even if we used tags instead of
categories of features, the number of classes that we are trying to model
15 very large. This causes a sparsity problem. Furthermore. the running

time of the GIS algorithm is (linearly) dependent on the number of classes.

T

m . A I3 -y o |- |- N - N 1

I'herefore. we make too many assumptions to recduce the number of classes.
[For example. we vepreseried [Gs using 9 categories, and assumed the the
probability of an I(r is the product of the probabilities of the values of these

9 categories.

e The number of features is very large. The running time of the GIS
algorithm is also dependent on the number of features. Therefore, we tried
to reduce the number of possible features. For example, we introduced two
thresholds. one for reducing the number of IG bigrams to use for inducing
the candidate features, and one for the count ot the features to include in
the models. We also checked for only very simple features. This may also be
a reason for the poor performance. One can include more complex features.

which can check for multiple category values.

¢ We made too many approximations to simplify the models. We
assume that the IGs depend only on the final IG of the previous word for the
ME models. otherwise the number of features to use would be much larger.
So. our ME models still have the weakness of the bigram language models.
We also assume that the values of categories in an IG is independent of the

values of other categories’ values.

e Roots are not included in the models. With the n-gram modeling
approach. we have found that roots are very useful for morphological dis-
ambiguation. We obtained a 1.87% absolute accuracy improvement by com-
bining the [G model probabilities with the root model probabilities. How-
ever. we have not included roots when using maximum entropy models. in

order to simplify our models, by reducing the number of parameters.
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On the other hand, our results are consistent with those of Brants [2000], who
found that n-gram models outperform ME models for part of speech tagging of

IEnglish.

[n terms of training speed, n-gram models are again better. Training n-
gram models with MLE is much faster than training ME modeis with the GIS

algorithuin.



Chapter 6

Application to Speech

Recognition

6.1 Introduction

Speech is the most natural way of communication for human beings, there-
fore the use of speech as a way of communication between people and com-
puters is very important. Hence, recognition of speech by computers is very
important. Speech recognition is the problem of finding the sequence of words
W= w! = w,ws,...,w, corresponding to a sequence ol acoustic signals
A = a* = ay,a2,...,a,. In the past 20 years, significant advances have been
made in speech recognition, and many successtul svstems have been developed

|Woodland et al., 1999; Davenport et al., 1999: Wegmann et al.. 1999, among

others].

The aim of speech recognition is to find the sequence W™, that maximizes

P(IV|A):

W* = argmax P(W|A)

%
T P(AW) x P(W)
= argma
gw P(A)

76
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= argmax P(A|W) x P(W) (6.1)
%

For a given acoustic signal A, P(A|WV) is estimated by an acoustic model and

P(WV) is estimated by a language model [Jelinek, 1998].

The most popudar evaluation metric for speech recognition svstems is word
error rate (WER). which is the percentage of the incorrectly recognized words.

50 the aim of a speech recogauizer is to produce output with a low WER.

Analternative to the WER is accuracy. which is the percentage of the correctly
recoguized words:
accuracy = (100 — W ER)%
Decreasing the WER is the same as increasing the accuracy. We use both of these

.metrics for evaluating our methods.

[n this chapter, we explain our work on reorganizing the output of a speech
recognizer in order to increase its accuracy. [n the next section, we describe the
recoguizer that we use. then we elaborate on the problem that is the subject of
this chapter. We describe how we approximate the acoustic models and present
different approaches for language modeling. We conclude with our experiments

and resuits and their analysis.

6.2 The Recognizer

The speech recognizer we use is an isolated word. large vocabulary speech recog-
nition svstem for Turkish, developed as an M.Sc. thesis, at Bilkent University
[Yilmaz. 1999]. An isolated word speech recognition system requires the speaker
ro make a pause of a reasonable amount of duration between consecutive words.
The alternative to this is a continuous speech recognition system, for which the

specxers utter their sentences in a natural manner. like in the real life.

The recognizer uses three state left-to-right hidden Markov models to model

the triphon:s (sequences of three phones) of the uttered words. The HMMs for
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words is constructed by appending the HMMs of the triphones making up the

words, as described by Young [1995).

‘This recognizer uses only the acoustic model probabilities to recognize speech,
that is, it tries to estimate the spoken words using only the probabilities P(A|W),
and does not utilize any language model information. [t outputs a 10-best list
for each word, in the ovder of decreasing probability, but the probability values

are not listed.

6.3 Problem

[n this chapter, we describe owr work on rescoring the n-best list output of a
speech recognizer, in ovder to get better estimates for the word sequence . Our
alm 1s to reduce the WER. The n-best list is the most probable n word sequences.

that the speech recognizer outputs, given the acoustic signal sequence A.

We form a lattice for each sentence. using these [0-best lists. and try to
make better estimates for the uttered sentences, incorporating the language model
probabilitics. We use the Viterbi algorithm [Viterbi, 1967]. to find the most
probable path through the lattice, where the probability of a path is computed
using both acoustic and langauge model probabilities. Figure 6.1 gives an example
of the lattice construction from a 3-best list, which is the speech recognizer output.

aud the rescoring process through this lattice.

6.4 Approximating the Acoustic Model Proba-
bilities

As we mentioned in the previous sections, the recognizer that is available to us
lacks the acoustic model probabilities for the n-best list, but outputs the n most
probable words in a decreasing order. Therefore, we needed to approximate the

acoustic model probabilities to use for rescoring the n-best lists. We tried three



CHAPTER 6. APPLICATION TO SPEECH RECOGNITION

(a) The speech recognizer output (3-best list for each word):

W, W, w,

Wi Wa Wi
W, Wi, Wi,
W 4 W 4 W,

ML eX X
S A .
N ~
_>/\/ Wia Wao > Wis Q
A A A '
~ e . - ~
S~ \_/ ~—
M Was Wy,

W3 W3 3.3

)

(d) The output:

Figure 6.1: The n-best list rescoring process.
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approaches for this purpose, and these are explained in detail, in the following

sections.

6.4.1 Equal Probabilities

The first approach assumes that, all the words in the 10-best list are equaiiv
m . M N M

probable. This is a weak assumption, since we already know that the words

are ordered according to decreasing probability. However, this can be seen as a

baseline in order to demonstrate the contribution of the language model alone.

6.4.2 Linearly Decreasing Probabilities

The second approach assumes that the acoustic model probabilities for the wouvds
in the 10-best list should decrease linearly, that is. if the first word is assigned an
acoustic model probability of 10z, then the second word is assigned an acoustic
mocdel probability of 9z, the third word is assigned an acoustic model probability
of Sx. and the last word is assigned an acoustic model probability of x, as shown

in Figure 6.2.

6.4.3 Exponentially Decreasing Probabilities

The third approach assumes that the acoustic model probabilities for the words in
the 10-best list should decrease exponentially, that is, if the first word is assigned
an acoustic model probability of 10z, then the second word is assigned an acoustic
model probability of ‘2z, the third word is assigned an acoustic model probability

of ¥z, and the last word is assigned an acoustic model probability of 3z, as

shown in Figure 6.3.
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P(Alw)

10x .
v .
Sx .
7x .
wOx .

W

Y 1

Figure 6.2: Approximating acoustic model probabilities with a linear function.

P(Alw)

10xt .

7x

Ox

w

W, WZ WJ w, WS W, w. Wy W,} w

10

Figure 6.3: Approximating acoustic model probabilities with an exponential func-

tion.
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6.5 Language Modeling

[n ovder to estimate the language model probabilities for a sequence of Turkish
words, we constructed three different language models, a word-based language
model (similar to the language modeling approaches for English), an [G-based
language model. and a prefix-suffix language model. The [G-based model is
a consequence of our models for morphological disambiguation and the prefix-
suffix language modeling is an approximation of the [G-based modeling approach.

These models are described in detail in the following sections.

6.5.1 Word-Based Language Modeling

For word-based language modeling, we constructed trigram language models
where the probability of a word given the previous words is approximated by
the probability of this word given only the previous two words. The language

model probabilities ave computed as follows:

P(W) = T]Plwiw™)

=1

1
H Pw;|wi—g,wizy) (6.2)

i=1

X

This approach has been successfully used for languages like English in various

natural language and speech processing tasks.

The trigram language models are constructed using the SRILM Toolkit. which
smooths the probabilities using Good-Turing mocleling [Gale, 1994] combined

with Backoff smoothing technique [Katz. 1987].
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6.5.2 IG-Based Language Modeling

Part-of-speech tags or morphological parses can be used as the basis of equiva-
lence classes for language modeling [Heeman and Allen, 1997; Niesler and Wood-
land. 1996: Bangalore, 1996], as in class-based language modeling. The typical
approach tor using part-of-speech tags in language modeling is to sum the prob-
abilities over all of the part-of-speech tag possibilities. So. the probability of a
word sequence is computed as follows, using the trigram sequences:

POV) = S Pul.1})

n
t!

n
= > I Pluhoy= . tF) x P(tylof™ ")

k=1
n
~ Y [ Plwelte) x Pltg|tiz, tes) (6.3)
l;‘ k=1
where 1% is the sequence of part-of-speech tags. or motphological parses in our

case.

Heeman [L997] sugeests another approach. redefining the speech recoenition
ge o g 1 0

problem, so that it finds the best word and part-of-speech tag sequence. Let T

be the part-of-speech tag sequence for the word sequence W. The goal of speech

recognition is now to solve the following:

W T" = argmax P(W,T!4)
W,T

) P(AIW.T) x P(W.T)
= remax
W P(A)

= argmax P(A|W.T) x P(W.T) (6.4)
w,T

The first probability P(A|W,T') is again computed by the acoustic model. which
traclitionally excludes the part-of-speech category assigment. [u fact. this prob-
ability can be reasonably approximated by P(A|W). The second probabilit:
P(W.T) is computed by the part-of-speech based language model. and this ac-
counts for both the sequence of words and the part-of-speech tag assignment for
those words. The P(W,T) can be rewritten as follows:

P(W,T) = ] Pluwx, tehot~ t571)

k=1
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= J[ Plwrlw{™'¢]) x P(telw=t, tk-1)
k=1

= [T Ptelwy™, 67") (6.5)
k=1

Plwgwf™ t4) = 1 since we use the full morphological parses as part-of-speech
tags. We then approximate P(tplwi™ t571) by P(4]¢5™") and then compute

P T). using trigram mocdels as follows:

PW.Ty = ] Plteltecs tisy) (6.6)

s=1

\We then use the root and IG probabilities to compute the probability of the parse

secuence as in the morphological disambiguation approach.

For the [G-based language modeling approach. we first analvze all the words
“in the n-best list morphologically. using the morphological analyzer/generator.
developed by ORazer [1994]. This process increases the number of candidates in
the 10-best list. since somne of these words are morphologically ambiguous. Ve
assign the same acoustic model probability to all of the morphological parses of
a word and this probability is the acoustic model probability of the surface form
of the word. We then form the lattice for each seatence, using the extended
set of candidates and rescore the lattice using the acoustic model and IG-based
language model probabilities. Once the most probable path through the lattice
is selected, the surface forms of all of the parses on this path are generated using

rhe same toolkit.

(sing the [G-based language modeling approach, we can also morphologi-
cally disambiguate the recognized sequence of words, using our statistical models.
However. the morphological analysis and generation processes are the extra steps

required in order to use [G-based language models.
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6.5.3 Prefix-Suffix Language Modeling

Prefix-Suffix language modeling is an approximation of the [G-based language
modeling approach, in order to get rid off the morphological analysis and gener-
ation steps. As I already mentioned, Turkish is an extremely suffixing language.
and looking at the suffixes of the words, we can clearly see some patterns. For
example, in a noun-noun NP, with an owner relationship, the first word gets a
genitive case marker, and the second word 1s marked with a possessive suffix that

agrees with the first word:

cocugun kalemi (the pencil of the child)

child+GEN  pencil+P35¢

okulun veri (the location of the school)

school+GEN  location+P35G
Though. the surface forms of these suffixes may change as a result of vowel
harmony:

evin teras: (the terrace of the house)

house+GEYN  terrace+P35G
these patterns may still be captured by a statistical model.
[n this model, the initial part of a word corresponds to the rvoot, and the

final part corresponds to the suffix appended to the root. Figure 6.4 shows the

cependence of the letter sequences.

This model approximates the probability of a word given the previous two
words by the product of the probability of the initial part of the word given the
initial parts of the previous two words and the probability of the final part of the

word given the final parts of the previous two words:
n
P(W) = H P(w;|wi™1)
=1

n
= HP w;|wi—a, wi—1)
=1
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Figure 6.4: Dependence of the letter sequences.

r
= H P(Pre,(w)|Prey(wizs). Prey(wiy)) x
1=1

P{Sufy(wi)]Su folwizy). Swf,(wizy)) (6.7)
Pre,(w;) is a function that returns the initial p letters ol the word w;. and
Suf,(w;) is another-function that returns the final ¢ letters of the word w;. If
the word w; is shorter than p characters, then Pre,(w;) returus the whole word.
Likewise. if it is shorter than ¢ chau‘acters, then Su f,(w;) returns the whole word.
The parameter p corresponds to the length of the root part and ¢ corresponds to

the length of the suffix part of the words.

We tried various experiments changing the values of the parameters p and
¢. Examining | million words of morphologically disambiguated Tuckish text.
we found out that the average root length is £.10 letters. and the average suffix

length is 1.71 letters.

6.6 Experiments and Results

lu order to test our language models, we trained the speech recognizer, and formed
an L0-best list for each word in our test data. and then counstructed a lattice for
each sentence. We returned the sequence of words on the most probable path,

according to each model, as the recognized sentence.

[n order to modify the contribution of the acoustic and language models, we
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introduced two weights, o and 8. Then, the formulation of the problem changes

as [ollows:

W. = argmaxP(W|A)

W
= argmax P(A|W) x P(W) (6.3)
W
= argmax P(A|W)* x P(WV)? (6.9)
W

e is called as the acoustic model weight. and 7 is called as the language
model weight. Tor the word based language modeling approach, there is no
constraint on the weights o and 3. However, for the [G-based and prefix-suffix

language modeling approaches. «v and /3 satisfies the following constraint:

atB=1 (6.10)

This is because. for the word-based language modeling approach, we onlyv used
the SRILM toolkit. However. for the other two approaches. we used SRILM
toolkit. only when constructing the root and [G models (for [G-base'l modeling)
and the word-initial and word-final sequence models (for prefix-suffix modeling).
For combining the individual models, we developed another program. Note that
the two weighting schemes are the same, since one can always scale the wei-hts

of the models, so that their sums will be 1.

In all our experiments, we tried using equal weights for the acoustic and
language models. These weights are | when word-based language models are
used, and 0.5 when IG-based or prefix-suffix language models are nsed. We also

tried to find the optimum weights.

[n the following sections. we describe the training and test data and our

experiments.

6.6.1 Training and Test Data

Our training data for the speech recognizer consists of 535 words which cover all
the phone trigrams in our test data. Each word in the training set is uttered

three times, by a female speaker.
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" Accuracy 60.83%
Best Possible Accuracy | 79.41%

Table 6.1: The initial performance of the recognizer.

The training data for the word-based and prefix-suffix language models are
I million and 20 nullion words. collected from the web pages of a Turkish daily
newspaper. Avound 60% of the numbers in these corpora are converted into their

vocalized versions.

The training data for the [G-based language model is the one that we used
for forming [G-based language models we used for training the morphological

disambignation system.

The test data consists of 1361 words, and the vocabulary size of our test data

773 words.

[

6.6.2 Initial Performance of the Recognizer

Table 6.1 lists the initial accuracy vesults of the recognizer with our test data.
\When only the acoustic model is used, the accuracy is 60.83%. This number is
obtained assuming that the first candidate in the 10-best list is returned as the
recognized word. 79.11% of the words have the correct form in the 10-best list.
Therefore, this is the best possible accuracy that can be obtained when we rescore

rhe 10-best list by incorporating the language model.

6.6.3 Word-Based Language Modeling

For word-based language modeling, we used traditional 3-gram language models.
Table 6.2 lists the accuracy when we use the word-based language models trained
with 1 million and 20 million words. The third column of the table lists the

accuracy obtained with no weighting (that is, the « and .3 weights have value 1).
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LM Training | Acoustic Model | Accuracy Accuracy

Data Size (No Weighting) | (With Weights)

1 Million Equal 43.43% -

Words Linear 66.63% 63.15% (o =1.2.4=1)
Exponential 59.49% 67.42% (o =2.3.3 = 1)

20 Million Cqual 51.03% -

Words Linear 59.36% 61.09% (a =1.2.3=1)
I'xponential 55.42% 61.09% (o =2.3.3 = 1)

Table 6.2: The pertormance of the recognizer after rescoring the n-best list with

a woud based L.

The fourth column lists the accuracy obtained with optimized weights.! Since
the toolkit works very slow with training data of 20 million words. we have not
optimized the weights for this training data, instead used the optimum weights

obtained using training data of 1 million words.

The best accuracy that we achieved using word-based language models 'ith
equal weights is 66.63%, and with optimized weights is 63.15%. Note that the
accuracy of the speech recognizer is reduced when we approximate the acoustic

model probabilities with equal probabilities.

6.6.4 IG-Based Language Modeling

[G-based language models gave the worst results for the n-best list rescoring task.
The accuracy numbers obtained with these models is listed in Table 6.3. All ap-
proximations to acoustic model probabilities with equal weishts for acoustic and
langnage models reduced the accuracy of our speech recognizer. However, small
gains over the baseline accuracy (that is, the initial accuracy ot the recognizer)

could be acquired optimizing the acoustic and language model weights.

The run-time of the system using [G-based language models is longer than

!The weights are given in parentheses.
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Acoustic Model | Accuracy Accuracy
(No Weighting) | (AM Weight)

FEqual 29.31% -

Linear 11.37% 63.22% (0.03)

Exponential 58.42% 64.35% (0.1-1)

Table 6.3: The performance of the recognizer after rescoring the n-best list with
an 13 based LML The AM Weight stands for the Acoustic Model Weight.

LM Training | Acoustic Model | Accuracy Accuracy

Data Size (No Weighting) | (AM Weight)

[ Million Equal 35.24% -

Words Linear 67.29% 67.88% (0.56)
Exponential 66.33%, 67.62% (0.43)

Table G.:t: The performance of the recognizer after rescorving the n-best list with
a prefix-suffix LM, which has a root size of 3 letters and suffix size of 2 letters.

the run-time of the systems using the other models. because of the extra morpho-
logical analysis and generation steps. The increase in the number of candidates
in the n-best list. introduced-as a result of morphological ambiguity is another

factor, increasing the run-time of this system.

6.6.5 Prefix-Suffix Language Modeling

We acquired the best results with the prefix-suffix language models. We tried 3

versions of these models. modifying the length of the root and the suffix parts:

l. 3-letter prefix, 2-letter suffix approximation: The accuracy numbers
that we acquired with 3-letter root and 2-letter suffix approximation is
listed in Table 6.4. The best accuracy achieved using this model with equal
acoustic and language model weights is 67.29%, and with optimized weights
is 67.88%. Both are obtained when we used linearly decreasing probabilities

for approximating the acoustic models.
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LM Training

Acoustic Model

Accuracy

Accuracy

Data Size (No Weighting) | (AM Weight)

1 Million Equal 40.37% -

Words Linear 67.75% 63.89% (0.61)
Exponential 67.75% 68.82% (0.39)

Table 6.5: The performance of the recognizer after rescoring the n-best list with
a prefix-suffix LM. which has a root size of 4 letters and suffix size of 2 letters.

LM Training
Data Size

Acoustic Model

Accuracy
(No Weighting)

Accuracy

(AM Weight)

L Million Equal 42.10% -

Words Linear 69.08% 69.82% (0.57)
Exponential 68.28% 69.95% (0.32)

20 Mitlion Equal 46.43% -

Words Linear 70.61% 71.35% (0.53)
Fxponential 69.42% 10.957 (0.42)

Table 6.6: The performance of the recognizer alter rescoring

the n-best list with

a prefix-suffix LM, which has a root size of 4 letters and suffix size of 3 letters.

2. 4-letter prefi:, 2-letter suffix approximation: We achieved better ac-

curacy results when we increased the length of the sequence approxumating

the root. These results are listed in Table 6.5. The accuracy for linearly
cecreasing and exponentially decreasing acoustic model probabilities, with
equal weights for acoustic and language models is the same. and 67.75%.
When we optimized the model weights. we obtained an accuracy of 63.89%:

with linearly decreasing acoustic model probabilities.

3. 4-letter prefix, 3-letter suffix approximation: The best accuracy re-

sults are obtained with a root length of 4 letters and a suffix length of 3
letters, as listed in Table 6.6. Since this model gave the best results with
a training data of 1 million words, we also tried using training data of 20
million words, and achieved our best results for n-best list rescoring. The
best accuracy that we achieved by n-best list rescoring is 71.35%, and is ob-

tained using linearly decreasing acoustic model probabilities, and optimized .
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A Accuracy
0.03 | 45.26%
0.06 | 52.31%
0.15 | 64.07%
0.5 | 64.91%

Table 6.7: The effect of exponentially decreasing acoustic model probabilities on

"

performance.

model weighting.

[n our experiments with our best prefix-suffix models. we also tried changing
the approximation function for acoustic model probabilities. We used exponen-
tiallv decreasing probabilities, which decay slower than our initial ekl'_)onent.ial
“approximation. so the probability of the i word in the n-best list is estimated
by the following tunction:

X €

Lo
£

where 1 1 a normalization constant. ¢ 1s the order of the word. and A is a param-

eter to control the decay. Table 6.7 lists our results with various A values.

We made our experiments with 4 letter prefix and 3-letter suffix models, which
gave the best performance, for our task, which was 68.28% with our exponen-
tial function. As can be seen from the new results, the accuracy gets better as
we increase A for expenential functions, which means that we get better results
when the probabilities for the words in the n-best list decrease faster, which is
also consistent with our initial exponential approximation. We obtained similar

results, when we changed our linear function, too.

6.7 Discussion

In rvescoring the n-best list output of a speech recognizer in order to increase its
accuracy. the prefix-suffix language models, which we proposed as an approxima-

tion to IG-based models outperformed all our models. The reason that IG-based
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models performed poorly is that ambiguity is introduced by morphological analy-
sts. Morphological parses of the words are ambiguous. and since we do not know
which one is the correct parse in that context, we are using all of the parses,

which complicates the selection procecure.

Prefix-suffix models eliminated the ambiguity problem of [G-based models.
since we are using fixed lengths that only approximate the root and the suflix
parts.

However. there is still room for further improvement. so clustering and real
stem-tsuffix models. which are described in the concluding chapter. can be inves-

tigated as a future work.



Chapter 7

Application to Spelling

Correction

7.1 Introduction

The aim of a spelling checker is to find words in a text which are mis-spelled
and return a set of possible candidates for the correct version of those words,
and the goal of a spelling corrector is to find and return the correct version of
the mis-spelled word, among the possible candidates. most of the time using the
context in which the word occurs. Spelling checkers and correctors are a part
of all modern word processors and are also important in applications like optical

character recognition and hand writing recognition.

[n this chapter. we describe the application of our language modeling ap-
proaches for context dependent spelling error correction. In a similar way to
n-best list rescoring for speech recognition, we form a lattice using the correct
words and the spelling corrector candidates for the mis-spelled words. We then
use the language model to select the most probable path through the lattice,

which we return as the spell corrected version of the text.

We use the spelling checker developed by Oflazer [1996]. The spelling checker

94
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produces as output an unordered list of candidate words, which might be the cot-
rect version of the mis-spelled word. All of the candidates have equal probability

(which 1s not true in real applications).

[n the next section. we describe the types of spelling errors with examples.
Then, we describe how we use the previously described language modeling ap-

proaches for this task and we conclude with experimental results and discussion.

7.2 Spelling Errors
Spelling errors can be classified into 4 types [Jurafsky and Martin, 1999]:

1. Insertion: an extra letter is insertecd into the word.
2. Decletion: one of the letters of the word is omitted.

3. Substitution: one of the letters of the word is mis-spelled. that is another

letter is tyvped instead of the correct letter.

+. Transposition: two consecutive letters of a word are interchanged.:

Examples to the 4 types of spelling errovs for English and Turkish are given in

Table 7.1.

Note that spelling correction in a language like Turkish. which has a complex
morphology is not always an easy task. Sometimes the error might be on the
suffixes of the word, or longer words might have more than one spelling error, as
in the following example:

Mis-spelled word: uygarlastiramadiklarmuz

Correct Word: uygarlagtiramadiklarimiz

'We do not consider the words that are pronounced very similarly, but spelled in a different
way, such as principle and principal or whether and weather as in Mangu and Brill [Mangu and
Brill, 1997]. We do not treat a word’s surface form which corresponds to another word’s surface

form as mis-spelled.
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Error type | Language | Correct Word | Mis-spelled Word
[nsertion English table tabale

Turkish evlerdeki evlerideki
Deletion English bird brd

Turkish cahigkan chigkan
Substitution | English house hoube

Turkish ontndeki ontindeki
Transposition | English school scholo

Turkish tr-hin tirbin

Table 7.1: Examples of 4 types of spelling errors tor English and Turkish.

[n the example above, rhere is one substitution and one transposition mistake.

The letters which cause rhe error are shown in italic in the mis-spelled word.

If the mis-spelled version of a word is also a grammatical word in the language.
the spelling checker does not search for its correct versions. I'or example, the
spell-checker does not classity the word “tale’ as mis-spelled. even though it is the
mis-spelled version of the word “table”. Similarly, the word “evdekilerin® might be
mis-spetled as *evdekileri’. which is also a Turkish word, and the spelling correntor
does not classifv this word as mis-spelled and so does not try to find the possible

correct candidates.

7.3 Language Modeling

\We nse the language model probabilities in order to select the best path through
rhe lattice, which is formed using the words of the text and the candidates of a
spelling corrector for the mis-spelled words. For spelling checking, we used the
wor-l-based and prefix-suffix language models that we used n-best list rescoring
for speech recognition. \We again used the word-based models as a baseline, and
we preferred prefix-suffix language models, since they resulted in better results
in the previous task. Ve set the prefix length to 4 letters and the suffix length

to 3 letters, since these lengths gave the best results in the previous task.
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In the spelling correction, we do not have prior probabilities for the possible
candidates, since the spelling checker does not output probabilities for each word
or an ordered list. So, we assume that each candidate word is equally likely,
and assign each of them an equal probability. We use these probabilities as
the acoustic model probabilities of the n-best list lattice, and compute the most

probable word sequence in the same way as described in the previous chapter.

7.4 Experiments and Results

We made a variety of experiments for spelling correction. In our experiments, we

nsed accuracy as our evaluation metric, as in the previous tasks.

In the following sections. we describe these experiments and their results,

along with the test and training data that we used.

7.4.1 Training Data

The training data that we used for spelling correction is the same set as we
used for training the word-based and prefix-suffix language models for speech
recognition. We used two corpora of 1 million and 20 million words of newspaper

rext.

7.4.2 Test Data

The test data that we used is also the same text of 1361 words that we used for n-
best list rescoring. We first distorted the test data, assuming equal probabilities
for the 4 types of spelling errors. The distortion sottware L'equirecf onlv two
parameters, the percentage of the mis-spelled words, and what percentage of

those words contain two errors.

During distortion, we randomly selected the words that contain the ervors. and
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Test File | Error Percentage | Double Error Percentage
l 10% 10%
2 10% 20%
3 20% 10%
4 20% 20%

The Double Error Percentage is the percentage of double errors in a word among

the mis-spelled words.

Table 7.2: The variations of our test data.

the location of the ervor iustde the word. Also, for insertion and substitution. we
rancdomly selected the new letter, so we did uot consider the locations of the

letters on the kevboard. or the similarity of the shapes of the letters.

Fov simplification. we assumed that each word can have at most two errors.
"Table 7.2 lists our test files and their properties. that is their total error rates

and double error rates.

Then we used a spelling checker in order to find possible candidates for mis-
spelled words. The spelling checker gets the number of mistakes to correct in
each word, as a parameter. Since we distorted the data so that cach word can

have at most fwo errors. we also set the spell checker parameter to two.

7.4.3 Results

The results of spelling correction are listed in Table 7.3. For each file. we used
two language models. each trained with 1 million and 20 million words. We also
report the best possible accuracy after spelling correction. where we assume that
a word can be corrected after spelling correction, if it has a correct version in the

candidate list. There are two reasons why a word can not be corrected:

|. The mis-spelled version of that word is another word in the language. In
this case. since the spelling checker does not consider it as a mis-spelled

word. it coes not return any correction candidate.
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Test | Best Possible | Language Training Accuracy
File Accuracy Model Data Size

1 98.01% Word-based | 1 million words 95.37%
20 million words 95.38%
Prefix-Suffix | 1 million wouds 94.93%
20 million words | 95.29%
2 97.94% Word-hased | 1 mullion words 95.59%
20 million words |  96.10%
Prefix-Suffix | 1 million words 95.22%
20 million words 95..14%,
3 96.76%. Word-based | 1 million words 93.13%
20" million words 91.26%
Prefix-Suffix { 1 million words 91.99%,
20 million words 92.91%
1 96.39% Word-based | 1 million words 92.79%,
20 million wordls 93.90%
| Prefix-Suffix | 1 million words 91.40%
20 million words 92.21%

Table 7.3: The accuracy results for the spelling correction.

2. The spelling corrector could not find and return the correct version in the
candicate set. This may occur either because the correct word is not in the
language. that is, the cotrect word may be a foreign word. or because the
word is not in the database of the spelling checker, that is, it may be a rare

proper name.

When we use more training data. the accuracy of the spelling corrector increases
as expected. However, for spelling correction, we couldn’t achieve better results
with the prefix-suffix language models. The word-based language models outper-

formed the prefix-suffix language models in all our experiments..
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7.5 Discussion

Unlike the n-best list rescoring task, we could not achieve better results using the
prefix-suffix language models. This has several reasons. For example, if the error
is outside the prefix and suffix region (i.e., the 5th letter in a 10 letter word is
substituted with another letter). and one of the candidates has a probable suffix
and prefix. but the whole candidate is very rvare, this wrong cundidate is selected

by the prefix-suffix modei. whereas the word-based model discards it.

The spelling corrector sometimes outputs very rarve words as candicates, be-
cause it has a very large vocabulary. Also. the surface forms of the candidates are
very similar to each other. since the spelling checker looks for words that have an
ecdit-distance of at most 2 letters from the mis-spelled word. However. the speech
recognizer has a vocabulary size of 10,000 words. Therefore. the surface forms
of the candidates are not very similar. The prefix-sutfix mocels benefit from this

property.

The speech recognizer outputs an ordered list of caundidates for each word,
that is. the lists at the top of the list are more probable than the ones at the
hottom. The recognizer uses the acoustic signals in assigning the candidate worcds
a probability. However, the spelling checker outputs only the candidate words.
and coes not assign any probability to each candidate. using information such as
the confusability of the erroneous parts. A spelling corrector may benefit a lot

from the usage ot such information.



Chapter 8

Conclusions and Future Work

8.1 Summary

We have presented our approaches to statistical modeling for agglutinative lan-
gnages, such as "Turkish, especially those having productive derivational phenom-

ena.

Our approach for morphological disambiguation essentially involves breaking
up the full morphological analysis across derivational boundaries and treating the
components, which we call as inflectional groups, as subtags, and then determin-
ing the correct sequence of subtags via statistical techniques. In order to modiel
the distribution of inflectional groups we used various methods based on the
dependency relationships. We tried both n-gram language modeling approach,
and maximum entropy modeling approach for estimating the probabilities in our
models. n-gram language models gave better accuracy vesults for morphological

disambiguation, therefore we continued using this approach in our further task:.

For n-best list rescoring for speech recognition and spelling correction. we have
approximated [G-based language modeling approach using prefix-suffix language
models. We compared word-based, [G-based and prefix-suffix language models

for reducing the word error rate of a speech recognizer. We obtained the best

101
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accuracy using prefix-suffix language models for n-best list rescoring. The reason
behind this is that, we do not need labeled data to train these models, so we
trained these models using much more data. Also, these models do not introduce
ambiguity, so they do not introduce additional search space. We also analvzed the
effect of root and suffix length for best accuracy. However, lor spelling correction.
the prefix-suffix models did not give the best performance. The best results were
achieved using the word-based models, although there is very little differene in
acenracy. Similar"to the IG-based models, since the spelling checker proposes a
large number of candidates for each word, the search space increases a lot. Also.
since the prefix-suffix models only look at the beginning and end of the words.

any mistake out of the scope of the prefix and suffix parts remains unresolved.

This. to our knowledge, is the first detailed attempt in statistical modeling
of agglutinative languages and can certainly be applied to other such languages
like Hungarian and Finnish with productive derivational morphology or other
Turkic languages. Similar techniques can also be used in other applications like
svntactic parsing. morphological analysis. Note that. we can benefit from the use
of a statistical inorphological analyzer, which returns probabilities along with the

parses.

[n the following subsections, we summarize the contributions of this thesis,

and then present our suggestions/ideas for future work.

8.2 Contributions

The contributions of this thesis can be grouped under three subtopics.

8.2.1 Theoretical Contributions

This thesis presents a pioneering effort for statistical language modeling of Turk-

ish. Previous statistical natural language processing studies have used words as
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an appropriate urnit for language modeling, which is suitable for languages like En-
glish. For languages with richer morphology, the best unit for language modeling
might be smaller than a word, like morphemes or other units such as inflectional
groups. This thesis searched for the bhest unit for modeling Turkish. We built
statistical models in order to effectively use these sinaller units, and used them
successtullv in our tasks. We found that. using inflectional groups instead of the
whole parse sequences for morphological disambiguation, and prefix and suffixes
tustead of the whole words for n-best list rescoring and spelling correction. gave
vers eood results. \While building these systerns. we computed the vocabulary

size and the perplexity of Turkish. using a large corpus.

8.2.2 Experimental Contributions

While searching for the most appropriate unit for modeling Turkish. e per-
forined various experiments with diflerent techniques. We also reported results
using diffevent amounts of training dava. and with variations of our techniques.
For example. for morphological disambiguation using r-gram modeling, we built
three different models, modifying our assumptions. or for speech recoguition. we
compared word-based. [G-based. and prefix-suffix language models. However.
note that this study would be more complete it we had a large vocabulary con-

tinwous speech recognizer system which uses language models during recognition.

8.2.3 Contributions for Further Studies on Turkish

For training our word-based models, we collected 20 million word corpus from
tiie web archives of a Turkish daily newspaper. using a web robot, which filters
unnecessary information, such as HTML tags. Further data can be collected

using this robot. on other web sites. This robot is publicly available for research

purposes.

We morphologically analyzed and preprocessed (in order to reduce ambiguity)

a | million word portion of this corpus. The preprocessor module is also publicly
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available. We then disambiguated this portion, using our best model. Both the

ambiguous and disambiguated versions of this corpus is available at:
http://www.nlp.cs.bilkent.edu.tr/Center/Corpus/

During this thesis work. we have developed a morphological disambiguation
svstem and language models for Turkish. these are also available for further stud-

ies on Turkish.

8.3 Future Work

We have obrained satisfactory results for both tasks. using our language models.
[However. there is still room for further improvement. Clustering and real stem
and suffix models can be investigated as a future work. Automatic acquisition of

language modelin< units is also promising.

8.3.1 Real Steni-Suffix Models

[nstead of using a pre-cefined | ngth for extracting the prefix and suffix part of
the words. we can ster all the words in the n-best list. and construct two models
for the stem and the suffix part. For example. the word ‘buzdolabmda’ (" the

refrigerator” in English) can be divided into two parts as tollows:
buzdolabinda — buzdolabi-nda

Here. the root and suffix parts are separated with a *-". However, there will again

le ambiguity for words like "koyun” or ‘kadin’, for which multiple segmentations

are possible:

kovun — koy-un OR kovu-n OR koyun

kacin — kacdi-n OR kadin


http://WWW.nip.cs.b

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 105

We can also use a statistical sternmer, which returns probabilities for possible
stem-suffix segmentations, and incorporate these probabilities into the corre-

sponding application.

8.3.2 Class-based Models

o

We can cluster the space of all our modeling units in ovder to reduce the data

sparseness problem. For example. we can use:

e words for word-based modeling,

[Gs for [G-based modeling,

prefixes and/or suffixes for prefix-suffix modeling, ancd

stems and/ov suffixes for real stem-suffix modeling

For clustering. any of the automatic clustering techniques (that we cite in

Chapter 2) can be used.

[t is also possible to use some rules based on heuristics for clustering. For
example. using the fact that the surface forms of the Turkish suffixes change
as a result of the vowel harmony, the suffixes (both for prefix-suflix models anc
for real stem-suffix models) can be clustered according to their consonants and
vowels. For examiple. both of the following suffixes nused for genitive case marking

of nouns:

nin, nin, nun, nin, in, in, un, un

can be clustered and modeled as a single suffix.
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8.3.3 Automatic Acquisition of Language Modeling Units

In this study, we used our intuition and linguistic knowledge about Turkish to
select the language modeling units. However. there are also methods for selecting
appropriate units for language modeling [Kiecza et al., 1999], which start from
letters and then combine letter sequences in order to obtain a better language

modeling unit. Methods like this one can also be investigated as a future work.
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Appendix A
Categories

[n the maximum entropy modeling approach, we represent each inflectional using
9 categories. The values that these categories may take are listed in the follywing

sections.

A.1 Major Part-of-Speech

Ad) Adjective

Adv Adverb

BDTag Begin Document Tag
BSTag Begin Sentence Tag

BTTag Begin Title Tag

'onj Conjunction
Det Determiner
Dup Duplication

EDTae End Document Tag
ESTag End Sentence Tag
ETTag End Title Tag
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[nter;
Noun
Num
Postp
Pron
Punc
Ques

Verb

A2

A 5} le
Aot

2

Interjunction
Noun
Number
Postposition
Pronoun
Punctuation
Question

Verb

Minor Part-of-Speech

ByDoingSo

Card

Caus

DemonsP

Distrib
FitEFor
[FutPart
Inf
Ness
PersP
Ord

Pass

PastPar

Percent

PresPar

Prop
QuantP
QuesP

t

t
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Range
Ratio
Real
Recip
Reflex
RaflexP
Time
When
While
Wik
Without
\WithoutHavingDoneSo
Zero
PCADI
PClAcc
PCDat
PCGen
P('Ins
PC'Nom
Acquire
ActOf
AfterDoingso
Almost
As
Aslf
Become
[EverSince
FeelL ke
Hastly
InBetween
JustLike
Ly
NotState

'elated
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Repeat

Since
SinceDoingSo
Start

Stay

A.3 Agreement

Alpl  1st person plural
Alsg  Ist person singular
A2pl  2nd person plural
A2sg  2nd person singular
A3pl  3rd person plural
A3dsg  3rd person singular

No agreement

A.4 Possessive

Plpl st person plural
Plsg Ist person singular
P2pl  2nd person plural
P2sg  2nd person singular
P3pl  3rd person plural
P3sg  3rd person singular
Pnon No possessive marker

- No possessive category
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A.5

Abl
Acc
Dat
Equ
Cen
Loc
[ns
Nom

A.6

Pos

Neg

A.T

Aor
Desr
Fut
Linp
~Narrl
Neces
Opt
Pastl
Pres
Progl

Prog?

Case

Ablative
ccusative
Dative
Equative
Gienitive
Locative
nstrumental
Nominative

No case category

Polarity

Positive
Negative

No polarity category
Tense-Aspect-Mood Marker 1

Aorist

Dosire
Fature
[mperative
Narrative
Necessity
Optative
Past

Present
Progressive 1
Progressive 2
No TAMI marker
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A.8 Tense-Aspect-Mood Marker 2

Cond Conditional
Narr2 Narrative
Past2 Past

- No TAM?2 marker

A.9 Copula

Cop Copula

No copula or no copula category



