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ABSTRACT

CIRCUIT THEORETICAL METHODS FOR EFFICIENT 
SOLUTION OF FINITE ELEMENT STRUCTURAL 

MECHANICS PROBLEMS

Ahmet Suat Ekinci
Ph. D. in Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Abdullah Atalar 
July 6, 1999

Shrinking device dimensions in integrated circuit technology made integrated circuits 
with millions of components a reality. As a result of this advance, electrical circuit simu
lators that can handle very large number of components have emerged. These programs 
use new circuit simulation techniques which approximate the system with reduced order 
models, and can find solutions accurately and quickly. This study proposes formulating 
the structural mechanics problems using FEM, and then employing the rec:ent speedup 
techniques used in circuit simulation. This is obtained by generating an equivalent 
resistor-inductor-capacitor circuit containing controlled sources. We analyze the circuits 
with general-purpose circuit simulation programs, HSPICE, and an in-house developed 
circuit simulation program, MAWE, which makes use of generalized asymptotic wave
form evaluation (AWE) technique. AWE is a moment matching technique that has been 
successfully used in circuit simulation for solutions of large sets of equations. Several 
examples on the analysis of the displacement distributions in rigid bodies have shown 
that using circuit simulators instead of conventional FEM solution methods improves 
simulation speed without a significant loss of accuracy. Pole analysis via congruence 
transformations (PACT) technique is a recent algorithm used for obtaining lower order 
models for large circuits. For a further reduction in time, we employed a similar al
gorithm in structural mechanics problems before obtaining the equivalent circuit. The 
results are very promising.

Keywords: Circuit Simulation, Asymptotic Waveform Evaluation (AWE), Pole Analysis 
via Congruence Transformations (PACT), Electrical Modeling.
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ÖZET

YAPISAL MEKANİKTE SONLU ELEMAN PROBLEMLERİNİN 
HIZLI ÇÖZÜMÜ İÇİN DEVRE TEORİSİ YÖNTEMLERİ

Ahmet Suat Ekinci
Elektrik ve Elektronik Mühendisliği Doktora 
Tez Yöneticisi; Prof. Dr. Abdullah Atalar 

6 Temmuz 1999

Tümleşik devre tciknolojisinde küçülen eleman boyutları milyonlarca parçadan oluşan 
tümleşik devrelerin gerçekleştirilmesini sağladı. Bu gelişmenin sonucu olarak, çok yüksek 
sayıda parçayı ele alabilecek elektriksel devre benzetim yazılımları ortaya çıktı. Bu 
yazılımlar, sistemleri düşük dereceli modellerle yaklaştıran yeni benzetim yöntemlerini 
kullanmakta ve çözümkiii doğru ve, hızlı bir biçimde bulabilmektedir. Bu çalışma, yapısal 
mekanik problemlerinin sonlu eleman yöntemiyle forrnülize edilmesini ve sonra da devre 
benzetimlerinde kullanılan yeni hızlandırma yöntemlerinin uygulanmasını önermekte
dir. Bu, kontrollü kaynaklar da içeren eşdeğer direnç-irgiteç-sığaç devreleri oluşturularak 
sağlanmaktadır. Biz bu devreleri genel amaçlı devre benzeticileriyle; HSPICE ve genelleş
tirilmiş asimtotsal eğri bulma (AEB) yöntemini kullanan, üniversiterrıizd(i geliştirilmiş 
MAWE yazılım programı ile, çözümledik. AEB devre benzetiminde büyük eşitlik kümele
rinin çözümlerini bulmakta kullanılan bir moment eşleme tekniğidir. Yapılan çeşitli sert 
kitlelerdeki yerdeğiştirme dağılımı çözümü örnekleri, geleneksel sonlu eleman yöntemi 
çözüm metotlarının yerine devre benzeticilerinin kullanılmasmm doğruluktan kaybetme
den benzetim hızında ilerleme sağlandığını göstermiştir. Eşleşik dönüşümlerle kutup 
analizi, devreler için düşük dereceli modeller bulunmasında kullanılan yeni bir yöntemdir. 
Zamanda daha fazla bir kısalma sağlamak için, yapısal mekanik problemlerinde eşdeğer 
devre bulmadan önce bu yönteme benzer bir algoritma kullandık. Sonuçlar gele(;ek için 
çok iyi şeyler vaadediyor.

Anahtar Kelimeler: Devre Benzetimi, Asimtotsal Eğri Bulma Yöntemi, Eşleşik Dönüşümlerle 
Kutup Analizi, Elektriksel Modelleme.
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Chapter 1

Introduction

Finite element method, which is used for finding an approximate solution for problems, 

has found extensive a])plicability in the field of structural mechanics. This method has 

now become a predominant analysis and design tool.

Finite element formulations result in large sets of equations. Space/frequency formu

lations involve th(! solution of the large system at many frequency points or require; the; 

computationally expensive process of determining eigenvalues and corresponding eigen

vectors of large matric(;s.

In both structural mechanics problems and electrical circuit simulation probl(;nis 

we meet similar types of analyses; namely steady state (or time independent) analysis, 

eigenvalue analysis, and propagation (or transient) analysis.

The electrical circuit simulation programs employ different methods to find the circuit 

behaviour. Spice-like programs [1-3] are used for intensive verification of large circuits 

and find high accuracy solutions. In these programs the inverse of the matrix is calcidated 

at a large number of points in both freciuency and time domains. However, most of the 

new simulators involve; smaller number of matrix solutions.



Asymptotic waveform evaluation [4] (AWE) technique is widely used in the simulation 

of very large circuits. In this method, the system behaviour is approximated with a low(!r 

order model. The method is based on the Taylor series expansion of the circ:uit response 

around s = 0, and it is very efficient to extract the low frequency behaviour of the circuit.

To find the behaviour in a freiiuency range of interest, which does not contain oidy 

the low frequency region, complex frequency hopping (CFH) technique is introduced [5]; 

and recently a rrndti-point Pade-approxiniation technique is developed [6,7]. In these 

studies, the expansions for difierent frequency points are found. The multi-point mo

ment matching method may also be extended to use the information of expansions at 

infinity [8]. This inforination is basically needed to approximate the transient behaviour.

Several studies have; Ireen done to use the simplicity of the circuit solution t(ich- 

niques in the field analysis |)robleins. G. Kron suggested equivalent circuits of th(i elastic 

fields [9], and G. K. Carter dealt with the solution techniques of these circuits [10]. In 

those circuits, the stresses are represented by currents and the strains by voltages. Elec

trical equivalents of the equations are obtained and satisfied by the equivalent networks.

In the recent years, electrical thermal network analogy is widely used to study 

thermal behaviour of (¡lectronic c.ornponents, and the analogy hiads to large resistor- 

capacitor (RC) networks which are analyzed by using circuit simulation techniques. In 

the work of Hsu et. al., elemental thermal circuit networks, which correspond to ele

ments in 1-D, 2-D and 3-D cases are developed [11]. These networks are connected to the 

electrical networks to provide complete electro-thermal models that can be used in any 

circuit simulation packages. Same authors also studied model order reduction techni(iues 

for large problems [12] in electro-thermal analysis.

There are studies on coupling the external circuit equations with finite element mod

els. These studies can be classified into two different approaches; the equations of the



finite element model and circuit model may be handled as a single system of e(iua- 

tions [13-17], or finite element part may be handled as a separate system which commu

nicates with the circuit model [18-21]. The first approach is called direct coupling and 

the second is called indirect coupling. Direct coupling is popular, because quite effectivci 

and reliably convergent computation is possible by applying Newton-Raphson iteration 

on the combined problem. Usually the number of nodes in finite element mesh is so large 

that sparse matrix methods have to be used, but the combination of the models change 

the sparsity and syrniiKitry of the finite element matrices. In indirect coupling, the finite 

element model is handled separately [19-21]. In the works of Vaaniinen [19] and Mc

Dermott et. al. [21] the parts modeled by the finite element method are considered as a 

multiport element in th(! circuit. Both of these works require the solution of the finite 

element model first.

Transmission line modeling [22] is also used in stress-strain analysis problems, but 

it is difficult to handle the analysis of transmission lines. Another disadvantage of such 

modeling is the introduction of voltage source inductor loops which have to be solved 

using special techniques. AWE technique in circuits containing transmission limis is 

not as efficient as in the R.LC circuits because of the extra multiplications in nionumt 

updating procedure.

Recently, techniques mainly developed for circuit simulation are used in the solution 

of electromagnetic analysis problems. AWE is proposed in the study by Gong [23], wheni 

the reduction of the order of the parameters, such as input impedance, S parameters, 

and far field pattern using a new moment update procedure is discussed. In the work 

of Kolbehdari, CFH technique is studied [24]. In CFH technique frequency range is 

divided into regions and the response is approximated by different transfer functions at 

each frequency region. Both studi(!s show that usage of circuit simulation techni(iu(is is 

promising.

Most of the new techniques for Bade based model order reduction employ Krylov



subspace methods. Tlie Lariczos algorithm and the Arrioldi process have long been rec

ognized as poweriVd tools for large scale matrix computations. Krylov subspace imitli- 

ods [25] involve tlu; matrix only in the form of matrix-vector products with matrix or 

its transpose, and hav(i become standard tools for iterative solutions of large systems 

of linear equations and for largx; scale eigenvalue computations [26]. Krylov subspac(! 

methods are also adai)ted to solves the problems for structural systems [27- 31].

There is a rec(uit increase of interest in Krylov-subspace methods for reduced order 

modeling because of the luied of svich simulation techniques in the simulation of inte

grated electronic circuits. Feldrnann and Freund used the Lanezos connection of Fade 

approximation to obtain high order Fade approximations in circuit simulation [32]. The 

numerical problems of AWE can be remedied by using Lanezos process. This approach 

is called FVL. For single-input single-output RLC circuits, the symmetry of the transfer 

functions can be exploited by employing a symmetric version of Lanezos algorithm. The 

SyFVL is introduc(!d in [3

The FVL approach is generalized to multi-input multi-output case by thc! same au

thors [34] where the iiKdliod is developed in [35]. The symmetric version of the algorithm 

(SyMPVL), for the computation of multiport transfer functions of RLC circuits is de

scribed in manuscripts [36] and [37].

It is desirable that nxluced order models inherit the essential properties of the original 

linear dynamical systems. These properties are stability and passivity. SyMPVL does 

not guarantee passivit.y, but it can be changed to give passive reduced order models which 

match half as many mormints as the Fade approximation of the same order. Reccmtly, 

Odabasioglu [38] developed an Arnoldi based reduced order modeling technique which 

preserves passivity.

For RC circuits, a different Fade-based reduced order modeling technique, the PACT 

algorithm, was proposoxl [39]. H(iie one block of circuit variables is eliminated in the 

transfer function. Ttici result has a smaller state-space dimension. The algorithm gives a



passive reduced order model and is efficient when the number of network ports is large;. 

An extension of the; method, for RLC circuits, based on split-congruence transformation 

is studied by the same; authors [40].

In [41], R.W. Freund i(;views main ideas of reduced order modeling techniques l)ased 

on Krylov subspac(;s and their usage in circuit modeling.

The model order r(;duction methods for structural mechanics employ Modal Sup(;ipo- 

sition(MS) and Component Mode Synthesis(MS) methods [12]. In MS, the eigenvalu(;s 

and eigenvectors of tin; system are obtained. Using the information from the dominant 

ones the equations ar(' made uncoupled, and the problem is solved easily. The id(;a of 

CMS method is to find reduced models for various structures independently, and to use 

compatibility conditions to connect these reduced substructure models.

In this thesis, we studied electrical circuit simulation methods in the solutions of 

structural mechanics problems modeled using finite element method. We introduc(;d a 

technique to obtain an equivalent electrical circuit for a structure. Solving the circuit 

using general purpose circuit simulators, HSPICE [3] and MAWE [7], we obtaiii(;d a 

great speedup. For a further increase in simulation efficiency we developed a model 

order reduction algorithm leased on both PACT algorithm and Krylov subspace methods. 

Using this techniciue w<; first find a reduced order model, then we obtain tin; equival(;nt 

circuit.



Chapter 2

Finite Element Formulation

In a typical structural analysis, we try to find the stress and displacement distribution

in a rigid body under a set of loading and boundary conditions, 

have to be solved to find an analytical solution of the problem.

The following equations

f9v
V „ . T  = p ^ - F (2.1 )

T = c : S (2.2)

S = V,u (2.3)

In these equations the i'ollowing notation is used:

u : Displacement vector (k ,,.,M,y, n^),

V : velocity vector ('a,;, v;̂ ),

S : Strain tensor (^i = S2 — Syy, S·̂  — Szz, = Syz, S5 = Sxz, Sq = S^y),

T : Stress tensor (Ti = T.,:x, T2 = Tyy, = Tzz, = Tyz, T5 = T^z, Te = T^y),

c : elastic stiffness matrix 

p : mass density

6



Table 2.1: Equations (1),(2),(3) and unknowns in structural problems.

type of equations number of equations unknowns number of unknowns
Translational eqn. of motion 3 Displacement

Stress-strain relation Stress
Strain-displacement

relations
Strain

Total 15 Total 15

In the equations “V ,” corresponds to an operator represented by the following matrix:

V.,

djdx 0 0

0 d/dy 0

0 0 d/dz

0 d/dz d/dy

d/dz 0 d/dx

d/dy d/dx 0

and “Vi·” corresponds to the operator represented by the transpose of the same matrix.
duVelocity, the time derivative of displacement; i.e., v = -^  , is also used. Table 2.1 shows 

the equations and unknowns.

In practice, equations known as compatibility equations (continuity of strains and 

displacements), and boundary conditions (conditions on displacements, forces at the 

boundary) also have to l)e satishoxl.

2.1 Finite Element M ethod

Finite Element rruithod is used to hnd an approximate solution of the problem. In the 

literature, displaciunent method or the minimum potential approach have been (ixten- 

sively used. In this rruithod, all the equations are written in terms of the displacement



components and soIvchI for unknown displacements. We will give a brief flow of al

gorithm [42-44] for th(i dynamical systems in order to make the analogy betwi'.en tin; 

structural problems and the electrical circuit problems clear.

Let the body b(; rmished into E  elements. The displacement model of the element 

is denoted as :

u ^ \ x , y , z , t )

= N{x,y ,z)Q^^\ t) (2.4)

Where is the vector of displacement, N is the matrix of shape functions, Q̂ ''  ̂ is 

the vector of degrees of freedom and is assumed to be a function of time t.

Using (2.3) with B = V,,N, the strains can be approximated as

= B (2.5)

and stresses as
T(e) = c : = cB (2 .6 )

The kinetic energy tta; and the potential energy 7Tp can be expressed as:

. .  = t 4 ‘” = 5 Q ' [ i : / / t . / N ‘ N d K
v.— Y Le—J

Q (2.7)

where denotes the transpose of the matrices and the vectors, and Q denotes the time 

derivative.

c-\ ^ 1(̂ =1
Q -  (S-'Pii) (2.8)

where P(i) is the total load vector

Matrices M, master mass matrix of the structure; and K, master stiffness matrix of the



structure, are defined as:

M

K

= E / / X , . , p N - N d K (2.9)
ii=l

= E / / X , . . B ‘ CB, IK
(—1

Using a modified ibnn of Lagrange’s equations [45],

d \ DL^ OL OR+ —  = 0 i = 1,2, ...,n (2.10)d,t [dQi ] OQi dQi 

where L = — is tiie Lagrangian, n is the number of unknowns and R  stands for tlie

dissipation, we obtain the desired dynamic equations of motion of the structure.

MQ(f) + CQ( t )+KQ( i )  = P ( t )  (2.11)

C is the master damping matrix of the structure, and it is usually defined as

C = «M  + /IK + Ci ( 2 .12)

where a  and j3 are constants, and is the frequency dependent damping matrix. If 

damping is neglected, we have the lossless case:

MQ(i) + KQ{t) = P(i) (2.1.3)

Equations (2.11) and (2.13) can be solved using different mathematical techniciues, 

once the vector Q(t) is known, the variations of the displacements, stresses and strains 

in the elements can b(i found.

Various kinds of analysis of dynamical systems can be done using the equation of 

motion.

If the aim of the stress analysis or solid mechanics problems is to find the distribution 

of displacements and stresses under the stated loading and boundary conditions, thei(i 

will be no time dependency, so the equation becomes:

KQ = P
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In transient analysis all the unknowns are time-dependent, and the equation of motion 

has to be solved. Generally, the finite difference method or Newrnark’s method is used 

to find the solution.

The frequency behaviour of tin; structure can be found using harmonic analysis. Tlui 

displacements are assumed to be harmonic as

Q(i) = Qe

where j  = \ / ^  and the e(}uation becomes

f-w^M + ;/wC + K] Q = P (2J4)

The oscillatory motion occurs at certain frequencies known as natural frequencies 

or characteristic values, and follows well defined deformation patterns known as mode 

shapes or charactcuistic modes. The natural frequencies and mode shapes can b(i found 

using eigenvalue analysis techniques. The modes are the eigenvalues of the system defined 

by the equation (2.14).



Chapter 3

Electrical Circuit Simulation

Today’s integrated circuits are extremely complex, with up to millions of devices, this 

makes computational methods to simulate and analyze the behaviour of the circuit at 

the design stage very important. The first crucial issue in circuit simulation is the 

modeling of the circuit. Most of the recent electrical circuit simulators use Modified 

Node Analysis (MNA) formulation to build the circuit matrices, as it introducoîs less 

redundancy than other methods.

For linear electrical circuits MNA formulation gives the following equation system [46]:

C X = —G X + hu{t) (3.1)

where C is the matrix of capacitances and inductors, G is the admittance matrix, w(i) 

is the voltage or current excitation at the nodes defined by vector b, and the unknown 

state vector x contains nodal voltages, inductor currents and voltage supply curnnits. 

The set of the equations come from the modified node analysis. In Appendix C, modificid 

node analysis formulation is described, and the current voltage relations of the electrical 

circuit components which we use in this study are shown.

In transient analysis, time variations of the state variables, the entries of the vector

11
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X, are found. In AC analysis the frequency response of the system is investigated, i.e., 

the equation

(G + sC) X{s) -  bC/(.s) (.3.2)

is solved. Frequency response is obtained at s =  j u  (j = \/-X).

In pole-zero analysis, the eigenvalues of the system defined by the equation (3.2) an; 

found.

The dynamic equation of motion (2.11) which is a .second order differential e(}uation 

can be converted into an ecpiation of order one [43], so that it will be the same as the 

circuit equation (3.1) and it can be solved using circuit simulation techniques.

The shrinking of the circuit sizes makes it possible to build larger circuits which 

results in large systems of equations. Since the direct solutions of such systems will 

take a lot of time, the circuit simulation techniques are improved in order to handle the 

analysis. New methods for faster analysis are developed without losing the accuracy.

3.1 Overview of M oment-matching Techniques

The moment-matching techniques are widely used in circuit simulation in order to reducii 

the execution time [4- 7,47-51]. In these techniques by approximating the dominant poles 

of the circuit with a lower order model, the behaviour of the circuit is obtained.

Moment-matching uses the coefficients (moments) of the expansion of the .systcnii 

transfer function, around a point in the complex s-plane. The Taylor series ex

pansion of H{s) around .s'o is given as:

H{h) = mo + (s -  ,%)mi + (s -  so)^m.2 + .. .  (3.3)

After the moments are generated, they are matched to a ratio of two polynomials [4, 

6,7] or to a low-order set of poles and residues [5] by using Fade approximation.
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3.1.1 Generation of the M om ents

The transfer function for a circuit which consists of lumped elements is (using Ecpia- 

tion 3.2)

H{s) = (G + ,s‘C) 'b (3.4)

or with a change of variable s = .sq + a

//(.s'o + O') — (I + (t(G + 6'qC) ^C) ' (G + s’()C) 

The transfer function is approximated (for small a) as

(3.5)

where

H{a) =  (I + a A  + a^A^ H------ h a"A"')r

s =  6'„ + a 

A  = - (G  + 6-„C)-'C 

r = (G + SoC)-ib

As a result th(! moments are found using rrin = A"r. During the g(uieratioii of 

moments the LU decomposition of the circuit matrix is calculated once for th(! hist 

moment. Other moments are obtained using forward and backward substitutions.

In transient analysis, Laurent siiries expansion {s = oo) may also be used [5,48 -50,52]. 

These moments an; called the derivative moments, because they are the derivativiis of 

the time response [49,51].

3.1.2 A sym ptotic Waveform Evaluation (AW E), Complex Fre

quency Hopping (CFH) and MAWE

In asymptotic waveform evaluation technique, to approximate the behaviour of tlui cir

cuit, the Taylor (expansion around s = 0 is evaluated. Since the information carried
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by the moments is accurate at low frequency region, the AWE technique is efficient in 

extracting the low frequency poles of the circuit. At relatively higher frequencies the 

AWE technique becomes inefficient and several methods are proposed to improv(! tin! 

accuracy of AWE.

After the moments arc; generated, the transfer function is approximated with a ra

tional function.

H{s) n iQ  H- m  i S' -h m ,2 S  -h . . .  +  m „ s ”

B{s) TH=ohs^
A{s)
'' k-

T . Z
P i

(3.6)

(3.7)

where Pi's are the i)oles and A;,;’s are the corresponding residues. The methods to 

calculate the coefficients are documented in literature [4,47,50]. First the coefficients a,; 

are found by setting up a moment matrix, then poles and finally residues are calculated.

When the moments at h = oo are also included, a single moment matrix is set uj) 

again, and solved for the poles. Therefore the method is referred to as single-point Fade 

approximation.

Recently, multi-point Fade approximation techniciues were proposed [5 -7]. In tlu! 

work by Chiprout et. al. [5] complex frequency hopping (CFH) technique is introduced. 

The transfer function H{s) is expanded around s =  0 and s = joJmax, and a binary search 

algorithm is employed until two neighbour expansions have a pole in common. Using 

these common poles, a region of accuracy is assigned for each expansion point. The pohis 

in the region of accuracy and their corresponding residues are marked as accurate. The 

final estimate of transfer function contains all the marked poles and residues.

In the works of C(4ik et. al. [6] and Sungur et. al. [7] moment matching is doiu! 

by simultaneously solving all the moment matrices obtained at each expansion. MAWE 

circuit simulation tool uses this method.
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In finding circuit transfer functions, we usually choose p = g — 1 in equation (3.6). 

This rational approximation is referred to as Fade approximation of order q. The method 

that we use for finding the coefficients, a,; and 5,;, is described in detail in the study by 

Sungur et. al. [7].

The multi-point Fade approximation works not only for low frequencies, l)ut also 

in high frequency regions. Apart from the moments at s = 0 (DC), the use of shifted 

moments provides the necessary information about the frequency range of interest. This 

approach requires the solution of the circuit matrix at several frequency points.

Fade approximation tectmiqiu! is very efficient in transient analysis. After obtaining 

the poles and residues of the system, the inverse transform; i.e., impulse response can 

be found easily.

When the number of poles in the problem is large, the approximation order should 

be large. This can be achieved by increasing the number of calculated moments, but 

this may give ill-conditioned moment-matrices. To have a stable solution, 8-16 rnomiuits 

have to be evaluated at (iach expansion point. Therefore, higher order approximations 

can be reached by incrciasing the (ixpansion points which means increasing the nurnlxu· 

of LU decompositions.



Chapter 4

Equivalent circuit extraction

Equivalent circuit approach is used to simulate the behaviour of a system with a sirni)ler 

model or to solve couphul field-circuit problems. There are recent studies on electro

thermal [11], electroiiKichanical [21] and electromagnetic [19] problems which present 

procedures to build eciuivalent circuits.

In the work of McDermott et. al. [21] the behavioral model of the electromechanical 

devices is extracted from a set of parametric finite element solutions. A new circuit 

element (a piecewise linear dependent source) is introduced. This component us(is a 

lookup table produced by the FEM solutions. For example, given position and currcmt, 

it returns flux and force;.

In the work of Vaananen [19] the finite element model is handled as a circuit theoret

ical multiport element. In the FE model, unknowns other than the coupled potentials 

and currents are eliminated and a matrix equation for these electrical unknowns is de

rived. The problem is discretized in time so that the solution of a tim(;-dependent 

problem is convert(;d into successive solutions of a DC problem. The final eciuations an; 

treated as electrical circuit equations and the FE model is represented by a multiport 

element containing curr(;nt controlled current sources (CCCS), voltage controlled curi(;nt

16
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sources (VCCS), voltage controlled voltage sources (VCVS) and current controll(!d volt

age sources (CCVS). This method can handle nonlinearities by updating the multiport 

electrical circuit parameters at each iteration.

The methods mentioned in the two works require the solution of FE model which 

takes a lot of tirrui. Howcwiu, in this study we want to demonstrate that the efficiency 

of the electrical circuit simulation techniques can be applicable to FE models.

In the study p(iribrmed by Hsu et. al. [11], thermal circuit networks, which are equiv

alent to discretization of tlui heat equation by EEM, are developed. Elemental thermal 

circuit networks are constructed for 1-D, 2-D and 3-D elements. The semi-discrete heat 

equation (continuous in time) derived from a Galerkin finite element projection [11] is:

M d + K d = F (4.1)

It is easily seen that the mass matrix M can be realized using capacitor elements, the 

stiffness matrix K by resistor elements and the force vector F by current sources. The 

procedure for deriving the equivalent circuits is given in the article. The simulations 

were performed using SABER [53] circuit simulator where the thermal networks are 

written as element templates. This method is useful for field-circuit coupled probhuns, 

e.g. simulation of self-heating effects in semiconductor devices.

The works summarized up to now are suggested to solve the coupled field-circuit 

problems. While the first two methods require the simulation of the EE model, throngh- 

out the procedure in the last method no matrix inversion, or decomposition is needed. 

However, this method may introduce negative values for capacitances and resistors, and 

this is not acceptable in a general circuit simulation tool. In this study, we propose 

a method which does not need any matrix inversion in the circuit construction proce

dure. The final circuit can be solved using a general circuit simulator, and fast methods 

developed for simulation of electrical circuits can be used.

The method suggxisted by Hsu et. al. [11] can b(i generalized for use with second
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order equations. One can r(!alize matrices M, C, K in equation (2.11) by capacitances, 

resistances and inductances respectively, and the forc(! vector P by current sourc(!s. H(!ni 

the problem of negative! valued elements also arise, but there are more serious lorobhiins. 

For lossless case, inductor loops may occur and such circuits have to be solved using 

special techniques. For (!ach nondiagonal entry in the stiffness matrix an inductor is 

placed into circuit which introduces an other unknown (inductor current) in the MNA 

formulation. If the total number of entries in the stiffness matrix K is n x n the circuit 

matrices in MNA formulation may go up to (|n^) x (fn^), where a  is the density of 

sparse stiffness niarrix.

In our study the first step is to change the second order differential equation (2.11) 

into a first order differential equation.

I 0 , 1 r - - 0 - I

0 M
y —

K c
y +

0

P
(4.2)

where I is the identity matrix, and

y =
Q{t)

¿(i)

Equation(4.2) is similar to the circuit equations (3.1); but the circuit matrices ar(! positive! 

on the diagonal.

To construct the eepiivalent circuit we developed two similar methods for the lossless 

case. These methods axe of order N ‘̂, and the conv(!rsion time is very small compar(!(l 

to the simulation time!.

The difference of the methods is the choice of the unknowns which corresponds to 

Q(i). The extracted circuits have MNA matrices larger than the original FEM i)robl(!rn.
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4.1 M ethod I

In the first method, tin; displacements are chosen as node voltages. Such a choice leads us 

to choose the velocities as currents through capacitors. This means that thei(! will be one 

capacitor for each unknown displacement. The other entries are realized using voltage 

controlled voltage sources and inductors. These are the effects of the displacements in 

the neighbour elements. The force effects are handled using voltage supplies. For the 

damped case we also need current controlled voltage sources to simulate th(i entries of 

damping matrix.

In this method every coupling introduces a series branch, which means an addition 

of two rows to the circuit matrix; one for the additional node voltage and one for the 

branch current, so the matrix may become very large.

4.2 M ethod II

Another choice, where the velocities correspond to the node voltages, gives the currents 

through the inductors as displacements. There is also a capacitor in parallel for (iach 

unknown displacement. The other entries are simulated using current controlled current 

sources (CCCS). For the damped case we introduce voltage controlled current sources.

All the circuit (dements come in parallel so that no additional equations are needed, 

but to couple the currents one necids to add zero-volt voltage supplies. The loads at th(i 

finite element nodes are realized using current sources.

For each displacement-velocity pair, there are 6 rows in the circuit matrix. Although 

the size of the matrix defining the linear system is 6 times the original matrix size, the 

number of entries does not grow much. The number of entries becomes 2o:n  ̂+ 12n whei(i 

a is the density of tin; sparse, n x n, stiffness and mass matrices. So the density of tin;
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u x l ux2

Figure 4.1: Two-iriass-spriiig system

'

circuit matrix will be about 2n^nf (6n)‘̂ = 7̂ 0;.

4.3 Example

In this example w(! consider the analysis of a very simple two-rnass-spring system shown 

in Fig. 4.1.

The analysis is clone to find the modes of the system. There are only two unknowns 

uxl and ux2. In finite element formulation M and K matrices are 2 x 2.

The eciuivalent ele.ctrical circuits are shown in Fig. 4.2. The upper circuit is obtained 

using Method I, and the lower circuit is (extracted using Method II. In the first circuit 

the voltages, vcu and vc2 across the capacitors C l and C 2 correspond to the uidaiown 

displacements uxl and ux2 respectively. The circuit has 6 node eciuations and 6 branch 

current equations, so the equivalent circuit matrix is 12 x 12. In the second circuit 

the currents, i^i and i//2, through the inductors LI and L2 correspond to the unknown 

displacements. This circuit has also 6 equations for the node voltages and 6 ecinations 

for the branch currents, and the matrix of the equivalent circuit is again 12 x 12 .

In finite element analysis the natural frequencies are found to be 2.5814 Hz and 8.3263 

Hz. The equivalent circuits have poles at exactly the same frequencies. For this vcuy 

simple example, the analysis times for the finite element solver and the circuit simulator
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Figure 4.2; E(iuivalent circuit for the two-spring-mass system

MAWE are comparable (0.25 and 0.13 seconds). Only one expansion point is enough as 

it is a small circuit.



Chapter 5

PACT algorithm for mechanical 

problems

Practical problems usually lead to very large systems of equations. To increase the 

efficiency of electrical circuit techniques, model order reduction techniques may be used. 

In this study, we use Fade approximation to obtain reduced order models of the circuit.

For structural mechanics problems, two model order reduction techniques had been 

developed : Modal Su])erposition(MS) and Component Mode Synthesis(C/MS). In MS 

the dominant rnod(!s of the system are obtained, and all the behaviors of the systiun 

are modeled as a combination of these modes. In CMS, reduced models of various 

substructures are obtained and connected using compatibility relations. MS UKithod is 

described in Appendix B.

Pole analysis via congruence transformations (PACT) is a recent technique developed 

for efficient solution of PC circuits [39]. The idea is similar to CMS method, the circuit 

nodes are separated as port nodes and internal nodes. The internal nodes are eliminatixl 

and are replaced with a reduced order model. We generalized PACT algorithm to struc

tural mechanics probhuns. As the second step of algorithm, to obtain a reduced ord(!r
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model we employed Lanczos process instead of pole analysis.

In this chapter we giv(i the flow of generalized PACT algorithm. 

The equation of motion is

+ ,sC.x· + K x = F

where C = aM  + pK.

(5.1)

Let’s assume no dami)ing for simplicity, the results also apply for damped case as tlui 

damping matrix is a linear combination of mass and stiffness matrices.

o XI/j X I c K p K ' h '
\ Xp F p

+ =
M e  M l K c K i ) Xr 0

Here transfer function is defined as H{s)xp = Fp and is equal to;

H{s) = [s^Mp + Kp) -  [s^Mc + KcT'is^Mr + K i)- \s ^ M c  + I<c)

Let

(5.2)

(5.3)

K ,  = LDT*' (5.4)

where L  is lower triangular matrix, and D is a block-diagonal matrix. If K ¡  is pos

itive definite D  may l)e identity matrix and Cholesky decomposition is used. Dcdim; 

transformation matrix X  as

/  0

-K T ^K c  L-"
X  = (5.5)

X ' ^ ' K X =  K '

K p  -  K ' S K r ^ K c  0

0 L-^KiL-'^'

K'p 0

0 D

(5.6)
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r ' M X  = M'

M'p M'c''

M'c M',

where

M'p

M'c

M'l

Mp -  K lK j 'M c  -  M 'SKr^Kc  +  K 'S K r^M jK r^K c
L '^M c -  L - 'M iK j^K c

L - 'M iL - ’'’

(5.7)

(5.8)

So the transfer function in terms of the matrices after congruence transformation is 

H(s) ^  (s^M'p + K'p) -  + D )-\s^M 'a) (5.9)

At this step of algorithm we may continue with two. algorithms depending on tfu; 

positive definiten(!ss oi K j matrix.

Case I: Kj  is positive definite

Cholesky decomposition is possible K f = LL^\ so D is identity matrix. Let

M'j -  VAV'' (5.f0)
where A is diagonal and has the eigenvalues of M) as its diagonal entries; and columns 

of V  are the associated eigenvectors such that V^'V = /

Now define the transformation matrix

AT' =
/  0

0 V
(5.11)
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Then we have the matrices after transformation:

K '‘

M" =

I  0 K'p 0

0 K'·' 0 I

K'p 0

0 /

I  0 hd'p M'(Y

0 K'*' M'c M'j

M'p M'Y'V

\K'M'a A

I  0 

0 V
(5.12)

/  0 

0 V
(5.13)

+ K'p -  s „4
1 + AiS“̂ 1 + A2Ŝ  

where Aj are the eigenvalues and r,; are the corresponding columns of

(5.14)

Happily we do not need to find all the eigenvalues. There techniciues based on Krylov 

subspace methods which give the eigenvalues in the region of interest. Larger eigenvalues 

of Mj correspond to smaller eigenvalues of the system.

Case II: Kj  is not positive definite

We will find an approximation for the transfer function (5.9)

H{s) = {s^M'p + K'p) -

Let a; be a solution vector for the following equation:

Ax = b

Let X = Vy is a solution projection so that

V"Ax  =

V"AVy  -  V%

Ay = b

(5.15)

(5.16)
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The last equation is a reduced order ecjuation and x is an approximation to x.

If we apply this to our probhun we have

+ D)x = M'q ('5· 17)

where ^ is a matrix which we approximate with Vy.

+ D )vy

(ii''A,iTn + Aj,)y

y

= V"M'c

{s^A„Tn +

So M'q ^x is approximated with

M 'JV {^‘'^nTn  +

where n is the number of columns of V . 

Transformation matrix is

, '' ^ 0A '
' 0 V

we have real (uitries in V.

K" =
/  0 ' K'p 0

0 K'·' 0 D

K',, 0

0 A„,

M" =
/  0 M'p M'c
0 1/'" M'c M'l

M'f. M'c^'V

V''M'c A T

I  0 

0 V

I  0 

0 V

(6.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)
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= V'^D{I + s^D ^M',)V = An + s^AnTn (5.24;

V''D{I + s^D-^M'j)V =?

D~^Mvi = 'h —  V<2 + (Xi'Vi (5.25)

D ~'M v2 = 'h = V:\ + (y-2V2 + P2'̂ \ (5.26)

D-'Mv:i = 'D4 ~  'M + + P3'U2 +  73't’l (5.27)

(5.28)

D~^Mui, = 'h+\ = w , : + i  + ai'Oi + + jiVi^2 H----- (5.29)

vjDvi+\ - v ' l Dvi^i +ai y[Dvi +Pi w? Dvi-i +  · · · (5.30)
0 Si 0

vJMvi
(5.31)

v‘l'_yDvi^\ =' ^'L\ Pi '̂ i—[Dvi^ 1 ~f~ · · *
-̂-- V----' "----- V----- - (5..32)

0 0

i^A~\ --= v!11 Mvi (5.33)

= 4 _yMD-^Dvi (5..34)

= 4 Dvi (5.35)

-- inJ + o.i-ivJ_y + Pi-ivJ_2 + · · -)DVi (5.36)
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= v'jDvi

= iivjDvi

= CiA

(5.37)

(5.38)

(5.39)

2 + «/ vl_2Dvi +[3i vl_2Dvi^i + 7,; vJ_2Dvi^-2 +
s«

Si —2
(5.40)

7 A.iV i-2 =  vJ _ 2 D V i+ i  

= v'AzMvi 

= vl_2 MD~^ Dvi

0y;_ [ DVi

( ^ ¿ —1 P i—2'^i—3 4 "  ■  ■  '}-DVi

= 0

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

As a result 7* and all the other coefficients are zero.

The matrices are

Tn =

CVi P2 

2̂ tV2 Ps

i.3 Oi.3 /̂ 4 

<̂4 «4

P n
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Δ,,. = 5.



Chapter 6

Examples

In this chapter we will give some examples to demonstrate the speed of the circuit 

simulation method compared to the FEM solvers. First example is a demonstration of 

the extraction methods. In all examples, we preferred to use the second method to lind 

the equivalent electrical circuit. The circuits obtained using the first method giv(! th(i 

same results.

In these examples, analyses are done using finite element analysis program AN- 

SYS [44](version 5.3), electrical circuit simulation program HSPICE [3](version 97.2), 

and our in house developed electrical circuit simulation program MAWE [7] which uses 

asymptotic waveform evaluation method with multi-point moment matching. The sim

ulations are performed on a SPARCstation 20 with 50MHz clock frequency.

6.1 Example I

This example is the demonstration of the circuit theoretical method for lossy problems. 

A spring-mass system with damping is displaced by a distance of A = lin and rehiascxl 

(Fig. 6.1). The changx! of the displacement of the mass during time is examined for 4

30
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UYl U Y 2 UY3 UY4

''̂ ^̂SSSî ŜSSSSK ''̂ <̂̂^̂NSSSSSSŜ.

Figui(', 6.1: Four spring-mass system. (Example I)

damping ratios. 1) Overdamped  ̂= 2.0; 2) critically damped ^ = 1.0; 3) under-damped 

^ =  0.2 and 4) undamped  ̂= 0.0.

The equivalent circuit of one damped spring-mass system is given in Fig. 6.2. The 

other springs have the same L and C values, but the R values are different. As all 

the springs are standing alone the stiffness, mass and damping matrices are diagonal 

and there is no coupling between the circuits. Here the current passing through the 

inductor corresponds to the displacement and the voltage difference across the nodes of 

the inductor corresponds to the velocity.

The displacement versus time plots obtained by using MAWE are given in Fig. 6.3. 

The plots exactly match the ones that are obtained from ANSYS.
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+

Íl  Vx

Figure 6.2: Equivalent electrical circuit for a single damped spring-mass system.

Figure G.3; Transient analysis results for Example I.
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Table 6.1: Circuit summary for Example IL

N
Number of 
unknowns L C CCCS VS

Number of 
circuit nodes

Circuit 
matrix size

100 200 200 200 1788 400 . 601 1201
200 400 400 400 3628 800 1201 2401
400 800 800 800 7138 1600 2401 4801

6.2 Example II

This example is the harmonic analysis of a simple bar. We have divided the bar into N  

elements, apply the force at the mid-point and observe the displacement at 1/100 of the 

length (Fig. 6.4). The system has N  -  1 UY unknowns (displacements in y-direction) 

and N  + 1 ROTZ unknowns (rotations around the z-axis), which gives a total of 2N. 

The summary of extracted electrical circuit is given in Table 6.1.

It can be seen in Fig. 6.5 that the harmonic response outputs are indistinguishable. 

In Table 6.2, execution times during the harmonic analyses are shown (The number of
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X 10' Displacement

Figure 6.5; Harmonic analysis results for Example II.

expansion points used in MAWE simulation is shown in parentheses). In MAWE analysis 

6th order Fade approximation is used, evaluation point is at s =  0. Electrical solvers 

do the same job in less time. As N increases, using electrical solvers becomes even nion' 

advantageous. As the body is long and thin the couplings between the displacenuuits 

are small, and the electrical circuit matrix is sparse. For such problems the sp(!ed-u[) 

advantage of the circuit theoretical methods is very good.

As the electrical circuit gets larger, HSPICE solution time is better than MAWE. 

This is probably because the in-house developed sparse matrix solver MAWE is not veuy 

efficient for large niatric(!S. Although we use the same electrical circuit netlist hh; for
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Table 6.2: Timing results for Example II (entries are in seconds).

N
100
200
400

Number of 
frequency points

100
100
100

Execution times
ANSYS

57
424

4918

HSPICE
2.28
4.83

13.80

MAWE(l)
1.83
6.63

34.78

both HSPICE and MAVVE, the circuit reading time is very small in MAWE conii)ared 

to that in HSPICE.

In all cases, the output plots are obtained at 100 frequency points. It should be noted 

that increasing the data points in ANSYS causes a linear increase in the execution time, 

while the same increase can be achieved at almost no cost in the case of MAWE.

6.3 Example III

In this example we analyze the transient behaviour of the bar of Example II. Therefore, 

the equivalent electrical circuit is the same. A step function with a finite rise time is 

applied to the mid point of the bar (Fig. 6.4), and the behaviour of the same point in 

time is simulated. For MAWE, Fade approximation is of order 6; and as the matrix 

inversion is evaluated only for s = 0. It can be seen in Fig. 6.6 that all methods give 

the same results. The execution times are shown in Table 6.3. Again, as the number of 

unknowns increase, the advantage of using electrical simulators become more significant. 

For 200 unknowns the speed-up ratios are 1 and 4.4 for HSPICE and MAWE, and foi 

800 unknowns ratios become 17.5 and 19.4.
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Figure 6.6: Transient analysis results of the three methods for Example III.

Table 6.3: Timing results of the transient analysis in Example III (in seconds).

N
Number of 
time points

Execution times
ANSYS HSPICE MAWE(l)

100 200 8.11 8.55 1.84
200 200 76.55 18.25 7.1
400 200 686.01 39.25 35.3
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Figure 6.7: Simply supported thin annular plate (Example IV).

6.4 Example IV

In this example, the harmonic analysis of a simply supported thin annular plate has been 

done (Fig. 6.7). The x and y components of the displacements, and rotations around 

the 2:-axis are set to 0, and at the outside boundary the translations in tin; z-direction 

and rotations around the radial axis are blocked.

The number of elements along radial direction, N1, is selected as 5, and the number of 

elements along circumferential direction, N2, is chosen to be 32. As a result the number 

of unknowns is 512. W(i want to find the harmonic analysis results, wlnui a force is 

applied at a node at the inside boundary and the frequency response at the same node 

is observed.

The equivalent circuit has 1537 nodes, 512 inductors, 512 capacitors, 1024 indei)en- 

dent voltage sources, 22708 current controlled current sources, and the total matrix size 

is 3073.



38

X 10" Displacement

Figure 6.8: Harmonic analysis results around the missing pole in Example IV.

X 10" Displacement

Figure 6.9: Harmonic analysis results around the missing pole in Example IV.
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Tablo 6.4: Timing results for Example IV. (Seconds)

N1 N2
Number of 

frequency points
Execution times

ANSYS HSPICE MAWE(3) MAWE (4)
406.4 67.7 117.3 141.6
4207 561 119.4 142.8

32 100
32 1000

In 100 point analyst's we obtained a rough figure (Fig. 6.8 shows the zoomed vttrsion 

of the result obtained by ANSYS). To have a more accurate result we analyzed the samti 

circuit using MAWE only by changing the number of frequency points to 1000. We saw 

that in 100-point analyses the poh', at 15.3 Hz is missing. At each of the expansion points 

s = 0, s — 60i and s = 120i, 12 moments were calculated, and the order of the Fade 

approximation was 30. In order to locate the pole accurately we increased the number 

of expansion points by 1. We performed the 1000 point analysis, used 4 expansion 

points s = 0, s = 60'i, .s = 90'i, s = 120i and at the expansion points calculated 16, 

8, 8, 8 moments respectively. The order of the approximation became 32. To compare 

the results, harmonic analyses of the same frequency region are done by ANSYS, and 

MAWE. ANSYS requires 1681.5 seconds for 400 frequency points, while MAWE reciuires 

only 54 seconds for 4000 frequency points. The results of the analyses are shown in 

Fig. 6.9.

The results of the analyses i)erformed for a higher frequency range is shown in 

Fig. 6.10. Table 6.4 shows the solution times where the numbers of expansion i)oints 

used in MAWE simulations are shown in parentheses.
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X 1 0 Displacement

X 10“

Figure 6.10: Harmonic analysis results of the three methods for Example IV.
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Figure 6.11; Solid .s(}iuue plate supported at one edge (Example V).

6.5 Example V

Fifth example is the harmonic analysis of a solid scpiare plate supported at one (!(lg(! 

{x = 0 plane in Fig. 6.11), force is applied in the y-direction at the corner at (a,a,0). 

Displacements in the z-direction are not allowed, so the displacement has only x and y 

components.

The equivalent circuit has 1729 nodes, 576 inductors, 576 capacitors, 1152 indepen

dent voltage sourciis, 31726 current controlled current sources, and total matrix size; is 

3457. During the finite element analysis, the body is meshed into N1 x N1 elements 

in the xy-plsiue and into N2 elements in z direction. The problem is reduced to 576 

unknowns when the constraints are included. The response is observed at point (a,(),0). 

The analyses are done using ANSYS, HSPICE and MAWE. In the first analysis tin; 

number of frequency points is 100. The simulation results are shown in Fig. 6.12. Tin; 

order of the Fade approximation is chosen to be 18, in the second analysis 1024 data 

points are used in HSPICE and ANSYS simulations. Even in the second analysis tin; 

results are not accurate! and the pole at 132.88 Hz is missed (Fig. 6.13), so w(! ext(!nd(!(l 

the the data point number to 20480 in MAWE simulation with a cost of few seconds 

(increase from 285.12 s(!c. to 292.1 seconds). The moment number-evaluation point joairs 

used in MAWE simulations are shown in Table 6.5.
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Table 6.5: Evaluation point-number of moments pairs (Example V).

Evaluation
point

number of 
moments

0 12 16
800i 8
1200i 8
1600i 12 16

Approx. Order 18 40

In Table 6.7, the time consumptions are shown (the numbers of expansion points 

used in MAWE simulations are shown in parentheses). Again asymptotic wa,veform 

evaluation seemed to be the most efficient analysis tool. When the number of data 

points is increased, the efficiency becomes more apparent.

For the same example we also applied PACT algorithm with Lanczos tridiagonaliza- 

tion process. PACT algorithm has the same complexity with MAWE which us(is one 

expansion point. We hift the input and output nodes as unchanged, so the system has 2 

port nodes. Other nodes of the system are considered as internal nodes. W(! pinformed 

11 Lanczos iterations. As a result we obtained a reduced system with 13 unknowns. We 

found an equivalent circuit for the reduced system. The new equivalent circuit has 40 

nodes (including the refenmce nod(i), 13 inductors, 13 capacitors, 26 independent voltage; 

sources and 68 current controlled current sources. The total matrix size is reduced to 

79. We again us(;d circuit simulators HSPICE and MAWE to analyze the circuit, and 

obtained a very large drop in circuit simulation time. This time in MAWE we used 3 

expansion points which are shown in Table 6.6. The execution times for the reduc(Hl 

system simulations are also included in Table 6.7.
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Figure 6.12: Harmonic analysis results of the three methods for Example V.

Figure 6.13: More accurate harmonic analysis results for Example V. The pole at 132.88 
Hz can only be found by MAWE.
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Figure 6.14; Harmonic analysis result using PACT.

Table 6.6: Evaluation point-number of moments pairs for reduced circuit.

Evaluation number of
point moments

0 12
700i 6
1500i 6

Approx. Order 18
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Table 6.7: Timing results for Example V (times are in seconds).

N1 N2
Number of 
uidcnowns

Number of 
frequency points

Execution times
ANSYS HSPICE MAWE(2) MAWE(4)

8 3 576 100 584.7 288.8 149.4
8 3 576 1024 5986.4 2576.1 157.9 279.9
8 3 576 20480 291.9

After reduction using PACT
number of 
uidiiiowns

frequency
points

Execution times
HSPICE MAWE(3)

13 20480 28.5 6

H -------------------------------------- -----------------------------------  1 -------------------------------- ------------------------------------ H F

1________________________ _____ ________________________ \______________________________________________________ \— -----------

/

Figure G.15: The sketch of the problem in Example VI.

6.6 Example VI

This example is the simulation of displacement propagation along a bar with free ends 

Fig. 6.15. The steel bar is 4000 ft long and the displacements and velocities of the ends 

(nodes a and c) and the mid-point (node b) produced by a sudden force at one end 

(node c) are simulated.

First the structure is divided into 16 elements. The resultant equation of motion 

problem is solved using ANSYS, HSPICE and MAWE. the fundamental period of tin' 

system is 0.48 seconds. First simulations are performed in the first 0.24 s(icond tini(' 

interval then the simulation time is extended to 1.0 second.

In the simulations ANSYS and HSPICE results are similar, but using MAWE we
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lose accuracy with a gain of simulation time. ANSYS and HSPICE solution lasted 2.5 

seconds while the required time for MAWE is about 0.6 seconds. For 1000 eleiiKuits 

ANSYS requires 249 seconds, HSPICE requires 223 seconds and MAWE reciuirc's 22 

seconds for the same number of j)oints in time.

The results of the HSPICE simulations for the problem are given in Fig. 6.16. Tlui 

propagation of tlui dis])lacement can be seen in the plots.

In figures Fig. 6.17 and Fig. 6.18 the short-time and long-time comparisons of th(i 

simulation outputs can be seen.
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Figure 6.16: The displacement and velocity propagation in the long bar of Exanii)le VI.
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Figure 6.17: Comparison of the nisults obtained using the three simulators (0.24 see).
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time (sec)

time (sec)

time (sec)

Figure 6.18: Comparison of the results obtained using the three simulators (1 sec).



Chapter 7

Conclusions

In this thesis, the analogy between the finite element formulation of the structural nui- 

chanics problems and the electrical circuit theory is investigated. Converting structural 

mechanics problems into circuit analysis problems, we can solve them with a general 

purpose circuit simulator. Using circuit simulation techniques results in faster solutions 

for the mechanical problems.

In this work, eciuivalent circuit extraction is done by a computer program which takes 

the total mass and stiffness matrices as input and creates an electrical circuit netlist fil(!. 

In the examples largest netlist is for the last example and the file is built in 1.87 seconds. 

The resultant circuit matrix is 6 times larger, but the required time for the solution can 

be very small w I k u i  fast circuit simulation techniques are used.

One method is using moment matching techniques instead of solving the systcun 

of equations at each frequency point. The main reason behind the efficiency of thes(i 

techniques is the decrease in the number of LU decomposition requirements. Multi

point asymptotic waveform evaluation technique requires one LU decomj)osition per 

expansion point. GerKu ally, the number of expansion points is much less than the number 

of frequency points to get an accurate solution. With a good sparse matrix solver, the

50
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expected speed-up ratio is almost equal to the number of frequency points divided by 

the number of expansion points. In this study we needed 4 expansion points at most. 

These expansion points are chosen such that they divide the frequency range of interest 

into equal portions. We stop dividing if the poles of the main system do not change after 

including the information of the new expansion point.

Previous work on (i(|uivalent circuit construction is mainly dealt with coupled field- 

circuit problems. These studies arc; mentioned in Chapter 4. There are two api)ioaclies 

to the problem:

• The part modeled by FEM is solved separately and it is inserted into the circuit 

as a multiport element.

• Finite elements are converted into elemental equivalent electrical circuits, the whole 

problem is modeled as an (iquivalent circuit. The equivalent circuit may have 

negative valued circuit components, for second order problems inductor loops may 

occur in lossless cases.

The objective of our study is to solve the full problem using a general circuit simulator. 

Our method gives no negative valued electrical circuit components, has replaccxl the 

couplings with controlled sources, and can be fully solved with a general purpose electrical 

circuit simulator, so fast circuit solution methods may be applied easily.

In this work, several examples have been studied using the proposed method and an 

accurate match with the finite element method results has been obtained. Without a 

significant loss of accuracy, the simulation speed is improved using moment matching 

techniques.

Another advantage of these techniques, is that the number of data points can be 

increased without changing the simulation time significantly, and this will decrease the 

probability of missing liigh-Q poles.
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When there is no damping, the equivalent circuit does not have any resistance values, 

so the circuit matrix is not diagonally dominant. The sparse solvers ernploycxl in solving 

these circuits can be specially designed to achieve better performance.

Another approach sl,udied in this thesis is the application of a variant of the circuit 

reduction technique Pole Analysis via Congruence Transformation (PACT). This method 

is used to obtain passive; reduced order models for multi-input multi-output RC networks. 

It is similar to Comi)onent Mode Synthesis (CMS) method, which was developenl for 

structural rruichanics i)roblerns. In these methods, the unknowns are divided into two 

subgroups. First grouj) contains the port unknowns which are not reduced. Tho;se 

correspond to the' node« where forces are applied or where the outputs are observ(!(l. 

The second group contains the internal unknowns. The behaviour of these unknowns 

are simulated using tin; dominant modes (eigenvectors).

In this study, we use a Lanezos tridiagonalization procedure instead of finding tin; 

dominant modes. Then we obtain an equivalent electrical circuit for the reduced mode;!, 

and solve the circuit using a circuit simulator. Lanezos tridiagonalization proc(;ss prov 

serves the dominant poles of the system, so it is suitable for finding some of tin; eigen

values of very large matrices, and is one of the basic methods used in r(;duced ord(;r 

modeling of large circuits.

We have seen that using circuit theoretical methods for high speed simulation of 

structural problems gives very efficient results. The methods employed in this work 

can be generalized to (dectrornagnctic problems. If the semi-discrete equations of tin; 

problem have an order higher than two, special care must be taken as this wilt incr(;as(; 

the number of unknowns.



Appendix A

Langrange’s Equations

A .l  Generalized Coordinates

We use the following transformation of a set of 3N  cartesian coordinates into a s(;t of n 

generalized coordinat(!S.
•i'-j =

(A.lj

•i'HN =  J:)N ((/]) <72; · ■ · ) (]n, t )

Assume / eciuations of constraints relating .x’s, and rri equations of constraints rcdating 

f/’s; so

3N — I = n — rn = number of degrees of freedom

53
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A. 2 Constraints

Holonom ie constra in ts are defined as· · ·, (In, 0 = Ü (j = 1,2,..., m) (A.3)

They are called Sderomrmic arnstrainL· when they do not depend explicitly on tinui, 

and Bheonornic arastraints when they are explicit hinctions of time.

N onholonom ic constra in ts are defined as

11.
( i j id g i  +  a j t d t  = 0 ( j  = 1, 2, . . . ,  m)

i=\

The equations satisfy the exactness conditions

d a j j  _  d a jk  
d(ik  d (] i
d a i j  d a j t
d t  dq-i

where {i,k — 1 , 2 , ,  n) and j  =  1 ,2 ,.. . ,  m.

So another form of (A.4) is:

11
Y ,  (kj(h + (('jt =  0 (.y = 1) 2,.
■/=1

, rn)

(A.4)

(A.5)

(A.6)

(A.7)

A.3 Virtual Work
ZN

m  = Y ^F ,Sx ,
.7 = 1

or
N

SW = Y  F,· · Svj 
j=(

where the force F, is applied to a particle whose position vector is is r,.

(A.8)

(A.9)
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A .4 Constraint Forces

If the system is sul)ject to constraints, then additional forces are exerted on the joarticles 

of the system in order to (uiforcii the constraint conditions. Total virtual work of th(i 

internal constraint forces is zero for any rigid body displacement.

A .5 The Principle of Virtual Work

The necessary and sufficient condition for the static equilibrium of an initially motioidess 

scleronornic system which is subject to workless bilateral constraints is that zero virtual 

work be done by the ai)plied forces in moving through an arbitrary virtual displacement 

satisfying the constraints.

The principle of virtual work is of fundamental importance in the study of statics, 

and if one uses d ’Alemberts principle, can be extended to dynamical systems as well.

Consider a system of N particles in which all the applied forces are conservativcc

Potential energy is V{x) = V{xy,X2·, · · · /-Hn )·

The applied force in tin; direction o f i s

F··.^ dxi

Virtual work is

Using

dV
U  5.x·,:

dV5V = Y  —  5x,

and the principle of virtual work (static (Equilibrium)

SV = 0

(A.IO)

(A.ff)

(A.12)
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In terms of generalized coordinates

A  dV^V = Y^ —  8q, (A.13)

Since at an equilibrium configuration 5V = 0 for an arbitrary choice of ¿Vy’s, the 

coefficients are 0. i.e.

%
= 0 ( 7 : - l , 2 , . . . , n ) (A. 14)

A .6 D ’A lem bert’s Principle

Newton’s Law says that

F — ma = 0 (A. 15)

Consider a particle with mass rn under a force F. The term —ma is consideiiid as an 

inertial force so that tlui mass is in equilibrium and the problem can be treated as a, 

static problem.
N

(A. 16)^ (F ,: -  niTi) ■ ¿r,:

A .7 Generalized Forces

:iN
SW = Fj Sxj (A.17)

” dr 
9qi

St = 0 as time is assumed to remain constant during virtual displacement.

(A.18)

n 3A .

¿=1 7 =  1

Qi

(A.19)
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where Qi is the generalized force associated with the generalized coordinate iy,;.

Qr = - d(ii
(A.20)

A .8 Lagrange’s Equations

Kinetic energy

inserting

I ‘¿N

^  dxj . dxj

(A.21)

(A.22)

we have

1 ^  dxk . .
2 S is '̂7:

dxk .
2^ +

dxk
d t

(A.23)

1 ^ ^ / ^  d xkdxk \ . . 

^  ^  ĉ.Tfc dxk .

i= \  A:=l 
:\N1

at

(A.24) 

(A.25)

Lets define generalized momentum as

dx,
P i = d(i

(A.2G)

Using

we obtain

d: i j  d x j

d(ji dqi

:w
P i =  'fH iX

i=l

(A.27)

(A.28)
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differentiating p,;

flPi ^  .. dxj . d /5a:,· ^
dT = S ” « : ^  + g “ « d i U - ,i=i j = l

(A.29)

A f ^
(U \  dqi J 5gj5gfc d(udt dqi (A.30)

(Ip/ 4^ .. dxj dT
.7 =  1

The rrijXj term is the sum of ai)plied forces F, and constraint forces Rj.

dp. 3N dx.i 37V dxj dT
Tif -  E  ^7 5TT + E  +

,7 =  J- Oqi ^  dqi dqiJ
Qi

(A.31)

(A.32)

The second term is 0 iis the work done by constraint sources are 0. So wo luwe

d ( d T \  dT  , .  , , ,
dt ( ^ r i j  "  dqi ~  ^

If the potential energy is such that V = V{q,t).

A  ( ^ \  _  ^  —  -  0
dt I 5 g J  d q i d q i

(AM)

Define Lagrangicin L = T  — V.

A ( ^ \
df - 1 ^  = 09(ji

(A.35)

As a general e(iuation we have:

where

± ( o _ L \ a L a R ^
d t \ d ( h )  dq, dq, “'·

n n
-̂ = 9 E E

(A..'!6)

(A.37)
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is the Rayleigh’s dissipation function and is equal to one half of the instantaneous mt(! 

of mechanical energy dissipation and Q/  are the generalized forces not derivable from 

a potential function ((cg. friction forces, time-variant forces, nordiolonornic constraint 

force functions).



Appendix B

Modal Superposition

Both Modal Superposition method and Component Mode Synthesis method have been 

developed to reduce computational models in structural dynamics. The main idea is to 

approximate the solution as a combination of dominants modes. MS is applied to th(! 

system as a whohc In the CMS method, reduced models for substructuiiis with fixed 

interfaces are first devcdopiul, tlnui several reduced substructure models arc; combined 

into final reduced model. With this definition PACT algorithm may be considercid as a 

variation of this mcithod.

In this section we briefly describe the basics of Modal superposition method.

From Equation (2.11) we ha.ve

MQ(t) + CQ(i) + KQ(i) = P(t) (B.l)

Let the natural freciiKuicies of the undamped eigenvalue problem

-ca^MV + KV = 0 (B.2)

be given by W|, ^ 2,. · ·, (a; = diag(o;,:)) with the eigenvectors given by vi, V2, . . . ,  v„.
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V, the modal matrix, is defined as

V = Vi V2

Since the eigenvectors are M-orthogonal, we have

Vi‘'Mvj = <
0 for i 7̂  j

1 for % = j
(B.3)

So for the K matrix, we get

v-'Kvj =
0 for i 7̂  j

uj'f for i = j
(B.4)

We approximate tlui solution Iry a combination of the m  (m < n) eigenvectors.

rri
Q { t )  =  ( B . 5 )

1=1

Substituting this approximate solution into the equation (B.l), and using

C = ttM  +

we get

+ 2Qui'rii{t) + ufriiit) = 'i == 1, 2 , . . . ,  rn

where

M(() = v J P ( t )

and ¿̂, modal damping ratio, is defined as

a  + Puj'f
= 2uJi

(B.C)



Appendix C

Modified Node Analysis Formulation

The simplest way of analyzing an electrical linear resistive circuit is to solve for its node 

voltages with respect to a reference node. Then the branch voltages and branch cnriiiiits 

can be calculated easily, if all the (dements in the circuit other than current sourc(!s an; 

voltage-controlled.

In node analysis, tho; set of e(]uations are obtained by ecjuating the currents (uitcuing 

the nodes to the currcuits hiaving the nodes. The currents are written in terms of tin; 

node voltages.

Modified node analysis (MNA) is based on node analysis, but it is suitably modifi(!(l 

so that it can be used on any ehictrical dynamic circuit. In MNA the variables usokI are 

the node voltages with r(is[)ect to a reference node and the currents in all brancluis that 

are not voltage-coutrolhxl. The branch equations for these branches are also in tlici s<it 

of equations to be solved. MNA contains small number of unknowns so it is prefiured in 

manual analysis as wcdl as in circuit analysis programs (SPICE, MAWE).

In Table C.l the branch ecpiations, and in Fig. C.l the symbols for some ehictrical 

circuit components ai(i shown.
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Tablo! C.l: Branch equations for the circuit elenients

element abbreviation l)ranch equation
capacitor C ''f'C C · (̂'̂ 7̂7,1 '̂ 712)
inductor L Vn\ -  Vn2 = L · j f  i ' i / L )
independent voltage source VS Vn\ -  Vn2 = V
independent current source IS 1 = I
current controlhid current source cccs ./ ’ '^'coni
voltage controlled curi(',nt source vccs — fJ ' ~ '̂ n̂2coul.)
voltage controlled voltage source vevs '^^n\ ~ '^u2 — ■ i'^nlcoul. ~  '^^n2ro,u)
current controlled voltage source cevs '^^nl '^n2 — h * '^'coni

i
VS

Q

n2 o

Q 111

IS
©

o

Q

c c c s 4 >
/̂ ĉontrol

o ii2

vccs <i
*̂̂ =o„trol

vevs
e*v„

Q'

ĉontrol

6 n2

cevs
11/ V

o 111

'control

O

Figniii C.l: Symbols for the electrical circuit elements



Appendix D

Matlab Codes for PACT

D .l PACT

function [dof] = pact(infile,outfile,index,option);
“/.This is the insertion of lanczos method into PACT algorithm.

“/PACT is pole analysis via congruence transformation.
“/.

“/.infile : input file name
“/.outfile ; output file name
“/.index : the indices of the unknowns which will not change,
“/.option : if 0 lanczos method is used,
“/. if 1 eigen decompostion is used.
“/. if it does not exist in the arguments assumed to be zero.

“/.read input
“/.filename = input (’filename = ’);
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filename = infile; 
if nargin < 4 

option = 0;
end
dof = input(’dof = ’);

[K,M,F] = readmat(filename,dof); 
"/.keyboard;

n = length(K); 
m = length(index); 
ind = 1:n ;

ind = setdiff(ind,index);

KP = K(index,index);
KC = K(ind,index);
KI = K(ind,ind);

MP = M(index,index);
MC = M(ind,index);
MI = M(ind,ind);

bp = F(index);

"/.Cholesky decomposition

[L,p] = choKKI);
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if p==0
disp(’Cholesky decomposition is successful.’);
L=L’;
D = sparse(eye(size(L))); 
else
disp(’Cholesky decomposition is not successful,’); 
disp(’continuing with LDL"t ... ’);
[L,D,P] = ldl3(KI);
L = P ’*L; 
end
‘/.keyboard;

‘/.X’KX and X ’MX calculations

Linv = inv(L);
A = Linv’*inv(D)*Linv*KC;
B = MC - MI*A;

KP2 = KP - KC’*A;
KI2 = D;

MP2 = MP - A ’*MC - B ’*A;
MC2 = Linv*B;
MI2 = Linv*MI*Linv’;

‘/.Second Step

nn = input(’how many eigenvalues? ’);
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if (p==0) & option
disp(’eigendecomposition will be used.’); 
keyboard;

[V,Lambda] = eigs(MI2,nn); 
delta = sparse(eye(nn)); 
else
disp(’Lanczos method will be used.’); 
keyboard;
[V,delta,Lambda] = newlanc(MC2(:,1),D,L,MI,nn);
Lambda = delta^Lambda;
end

K3 = [KP2 zeros(m.nn); zeros(nn,m) delta];

MC3 = V ’* MC2;
M3 = [MP2 MC3’; MC3 Lambda];
F3 = [bp ; zeros(nn,1)];

disp(’The reduced model is succesfully obtained,’); 
disp([’writing to file ’,outfile,’.’]); 
mesg = writemat(outfile,K3,M3,F3);

%

function [K,M,C,F] = readmat(filename,dof)
/Call the outputs except F are transpose of the real value.

[fid,message] = fopen(filename,’r ’);
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disp(message); 
if prod(size(message)) == 0 
K = f s c a n f ( f i d , ,[dof,dof]);
M = fscanf (fid,’“/,f \  [dof ,dof] ); 
if nargout -= 4

C = fscanf(fid,'%f^,[dof,dof]); 
F = fscanf (fid,’"/.f ’, [dof ,1]) ;

else
C = f scanf (f id,’7of ’, [dof, 1] );

end
fclose(fid);
K = sparse(K);
M = sparse(M); 
end

t

function message = writemat(filename,K,M,C,F) 
K = full(K);
M = full(M); 
if nargin == 5 

C = full(C);
F = full(F);

else
F = full(C); 
end

dof = length(K);
[fid,message] = fopen(filename,’w ’);
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if prodCsize(message)) == 0 
for i=l:dof,

fprintf (fid, ̂ y..8e ' ,K(i,l:dof)); 
fprintf (fid, ’\nO ;

end
fprintf(fid,'\n’); 
fprintf(fid,’\n');

for i=l:dof,
fprintf (fid, >y..8e ' ,M(i,l:dof)); 
fprintf (fid, ’\ n O ;

end
fprintf (fid, ’\nO ; 
fprintf(fid,’\n’);

if nargin == 5 
for i=l:dof,

fprintf(f id,’%.8e ',C(i,1:dof)); 
fprintf(fid,’\n');

end
fprintf(fid,'\n’); 
fprintf(fid,'\n’);

end

fprintf(fid,’%g \n',F);
fclose(fid);
else
disp(message);
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end

D.2 L D L ^

function [L,D,P] = Idl(A)

alpha = (1 + sqrt(17))/8; 
n = length(A); nn = 0; An = A; 
pv = l:n;
L=eye(n);
D = sparse(n,n);
while nn+ Kn
[s,p] = piv(An,alpha);
An = An(p,p);
[Ll,Dl,An] = onestep(An,s);
‘/o keyboard 
"/.update L 
if nn >= 1
LL = L(nn+1:n,1:nn);
L = [L(l:nn,1:nn) zeros(nn,n-nn); LL(p,:) LI];

"/.update D
D = [D zeros(nn,s); zeros(s,nn) Dl]; 
else 
L = LI;
D = Dl; 
end
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"/.update pv 
p = [1:nn p+nn]; 
pv = pv(p);

nn = nn + s; 
end
if nn <n
D = [D zeros(nn,n-nn); zeros(n-nn,nn) An]; 
end

P
P
D
L

speye(n); 
P(pv,:); 
sparse(D); 
sparse(L);

t--

function [L,E,D] = onestep(AN,s) 
n = length(AN);
"/. LDL’ = PAP’ 
if n>s
E = AN(l:s,l:s);
C = AN((s+l);n,l:s);
B = AN((s+l):n,(s+1):n);
BB = E\C’;
L = [eye(s) zeros(s,n-s); BB’ eye(n-s)];
D = B - C*BB;
else
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L = e y e (n ); 

E = AN;

D = □ ; 

end

function  [s,p ] = piv(A ,alpha) 

n = leng th (A );

[lambda,r] = max(abs(A(2:n,1))); 
r  = r  + 1;

if lambda > 0
if abs(A(l,D) >= alpha*lambda
s = 1; p=l:n;
else
[sigma,d] = max([abs(A(l:r-1,r)); 0; abs(A(r+l;n,r))]); 
if sigma*abs(A(l,1)) >= alpha*lambda~2 
s = 1; p=l:n;
elseif abs(A(r,r)) >= alpha*sigma 
s = 1; p=[r setdiff(1:n,r)]; 
else
s = 2 ; p=[r d setdiff(1:n,[r,d])] ;
end
end
else
s=l; p = 1:n;
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end

D.3 Lanczos Process

function [V,delta,!,err] = newlanc(vl, D, L, M, N)

7. V'*(D + sM)*V = delta + s*delta*T
7o vl is the initial vector for the Lanczos process
7. N is the number of Lanczos iterations

7o this algorithm is implemented by A. Suat Ekinci 
7. Dec 16, 1998

7oinitialization

vnew = D\vl;
void = zeros(size(vD);
dold - 1;
T = sparse(N,N);
V = □;
for i=l:N
eta = norm(vnew);
vn = vnew/eta;
dnew = vn’*D*vn;
bn = eta * dnew/dold;

7. vnew = inv(D)*inv(L)*M*inv(L’)*vn;
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t = L ’\vn; 
t = M*t; 
vnew = L\t; 
vnew = D\vnew;

vnew = vnew - bn* void;

an = vn’*D*vnew; 
an = an/dnew; 
vnew = vnew - an*vn;

T(i,i) = an; 
delta(i) = dnew; 
if i > 1 
T(i-l,i) = bn;
T(i,i-1) = eta; 
end
void = vn; dold = dnew;
V = [V vn] ;
end

if nargout == 4 
err = norm(vnew); 
end
delta = sparse(diag(delta));



75

D.4 Solution

function [y] = solmec(K,M,F,x,C) 
'/.keyboard;
X = 2*pi*sqrt(-l)*x; 
n = length(x ); 
m = length( K ) ;
y = [];

if nargin == 5 
for i = l:n,
y = [y (M*x(i)*x(i) + C*x(i) + K)\F];
end
else
for i = l:n,
y = [y (M*x(i)*x(i) + K)\F];
end
end

function [y] = solcirc(G,C,F,x) 
X = 2*pi*sqrt(-l)*x; 
n = length(x); 
m = length(G);
y = □ ;

for i = l:n,
y = [y (C*x(i) + G)\F];
end
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D.5 Sample Run

D .5.1 Structural Analysis

»  pact(’data’,’red',[1,2,3]); 
dof = 512
Cholesky decomposition is successful, 
how many eigenvalues? 7 
Lanczos method will be used.

The reduced model is succesfully obtained, 
writing to file red.

»  [K,M,F] = readmatC’red’,10);
»  X = 0:0.02:20;x=x’;
»  y = solmec(K,M,F,x);y=y’;
»  plot(x,abs(y(:,1)))

»  pactC’data’,’red’,[1,2,3],1); 
dof = 512
Cholesky decomposition is successful, 
how many eigenvalues? 40 
eigendecomposition will be used.

The reduced model is succesfully obtained, 
writing to file red.
»  [K,M,F] = readmatC’red’,43);
»  y = solmec(K,M,F,x);y=y’;
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»  plot(aweh(:,1),aweh(;,2),x,abs(y(:,1))) 
»  exit

D .5.2 Circuit Sim ulation

»  pact('gcf’,'gcfred',[7,8]); 
dof = 8
Cholesky decomposition is successful, 
how many eigenvalues? 3 
Lanczos method will be used.

The reduced model is succesfully obtained, 
writing to file gcfred.
»  [G,C,F] = rd('gcfred',5);
»  X = 0;2e8:2el0;x=x';
»  y = solcirc(G,C,F,x);y = y ’;
»  load rc.dat
»  plot(rc(:,1),rc(;,2),x,abs(y(:,1)) , 'r') 
»  quit

96351 flops.
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