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ABSTRACT

GENERALIZED FILTERING CONFIGURATIONS WiTH  
APPLICATIONS IN DIGITAL AND OPTICAL SIGNAL AND

IMAGE PROCESSING

Mehmet Alper Kutay
Ph. D. in Electrical and Electronics Engineering 

Supervisor: Dr. Haldun M. Ozakta§
February 24, 1999

In this thesis, we first give a brief summary of the fractional Fourier transform which 
is the generalization of the ordinary Fourier transform, discuss its importance in 
optical and digital signal processing and its relation to time-frequency representations. 
We then introduce the concept of filtering circuits in fractional Fourier domains. 
This concept unifies the multi-stage (repeated) and multi-channel (parallel) filtering 
configurations which are in turn generalizations of single domain filtering in fractional 
Fourier domains. We show that these filtering configurations allow a cost-accuracy trade
off by adjusting the number of stages or channels. We then consider the application 
of these configurations to three important problems, namely system synthesis, signal 
synthesis, and signal recovery, in optical and digital signal processing. In the system 
and signal synthesis problems, we try to synthesize a desired system characterized by its 
kernel, or a desired signal characterized by its second order statistics by using fractional 
Fourier domain filtering circuits. In the signal recovery problem, we try to recover or 
estimate a desired signal from its degraded version. In all of the examples we give, 
significant improvements in performance are obtained with respect to single domain 
filtering methods with only modest increases in optical or digital implementation costs. 
Similarly, when the proposed method is compared with the direct implementation of 
general linear systems, we see that significant computational savings are obtained with 
acceptable decreases in performance.

Keywords: Fractional Fourier transforms, optical signal processing, signal and system 
synthesis, signal recovery, time- or space-varying filtering
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ÖZET

GENELLENMİŞ SÜZGEÇLEM E KO N FİG U RASYO N LARI V E  
BUNLARIN SAYISAL V E  OPTİKSEL İŞARET V E  G Ö R Ü N TÜ  

İŞLEMEDEKİ U YG U LAM ALAR I

Mehmet Alper Kutay
Elektrik ve Elektronik Mühendisliği Doktora 

Tez Yöneticisi: Dr. Haldun M. Özaktaş 
24 Şubat 1999

Bu tezde ilk olarak bilinen Fourier dönüşümünün bir genellemesi olan kesirli Fourier 
dönüşümünün kısa bir özeti verildi ve bu dönüşümün optiksel ve sayısal işaret işlemedeki 
önemi ve zaman-frekans gösterimleri ile olan bağlantısı üzerinde duruldu. Daha sonra 
kesirli Fourier dümenlerinde süzgeçleme devreleri kavramı ortaya konuldu. Bu kavram 
tek aşamalı süzgeçleme yönteminin genellemesi olan çokaşamalı ve cokkanallı süzgeçleme 
konfigürasyonlarmı bir çatı altında birleştirmekte ve herhangi bir uygulamada doğruluk 
maliyet değiş-tokuşu yapma olanağı sağlamaktadır. Bu süzgeçleme devre konfigürasy- 
onlarmm optiksel ve sayısal işaret işlemedeki çok önemli üç problem olan sistem sentezi, 
işaret sentezi ve işaret iyileştirmedeki uygulamaları üzerinde duruldu. Sistem ve işaret 
sentezi uygulamalarında çekirdek fonksiyonu ile tanımlanan istenen bir sistem, veya 
ikinci-derece istatistiksel özellikleri ile tasvir edilen istenen bir işaret kesirli Fourier 
domeni süzgeçleme devresi kullanılarak sentezlenmeye çalışılmıştır, işaret elde edimi 
veya iyileştirilmesi uygulamasında ise bozulmuş istenen bir işaret iyileştirilmeye veya 
kestirilmeye çalışılmıştır. Bütün bu örneklerde, süzgeçleme devresi metodumuz tek bir 
bölgecikte uygulanan filtreleme metodları ile karşılaştırıldığında, optik veya nümerik 
uygulama konusundaki masrafları fazla artırmadan sistem performansının cok daha 
fazla geliştirilebileceği gösterilmiştir. Benzer olarak, önerdiğimiz metod genel doğrusal 
sistemler ile karşılaştırıldığında, yeterli olabilecek sistem performanslarının çok daha 
düşük masraf karşılığı bizim metodumuzla elde edilebileceği anlaşılmıştır.

Anahtar Kelimeler: Kesirli Fourier dönüşümü, optiksel işaret işleme, işaret ve sistem 
sentezi, işaret iyileştirilmesi, zaman veya mekan ile değişen süzgeçleme
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Chapter 1

Introduction

In many applications in signal processing and optical information processing, it is desired 
to implement linear systems. Linear systems are easy to handle and can describe many 
phenomenon in real life to a good approximation. A general linear system is characterized 
by the relation,

g{u) = j H{u,u')f{u')du\ (1.1)

where H{u,u') is called the kernel of the system. Equation 1.1 can be discretized as

N - l

9k Hknfn·
n=0

(1.2)

The last equation, which is simply a matrix-vector multiplication, may either represent a 
system which is inherently discrete or may constitute an approximation of its continuous 
version. Digital implementation of such general linear systems takes O(N^) time. 
Common single-stage optical implementations, such as optical matrix-vector multiplier 
architectures or multi-facet architectures [1, 2] require an optical system whose space- 
bandwidth product is O(N^).

A widely known sub-class of general linear systems is linear shift-invariant or 
convolution type systems which are characterized by kernels of the special form 
H{u,u') =  h{u — u') or Hkn =  hk-n· Ordinary Fourier transformation is a very 
important operator in the analysis of such systems because these systems correspond to 
multiplication with a filter function in the Fourier domain. Their digital implementation 
takes 0{N\ogN) time (by using the FFT algorithm) and their optical implementation



requires an optical system whose space-bandwidth product is 0(N ). This efficiency 
in the implementation of such systems leads them to play an important role in 
digital signal processing and optical information processing. In most of the signal 
restoration (deblurring, denoising), reconstruction and enhancement problems the 
operators involved are approximated by shift-invariant systems [3, 4, 5]. These 
approximations are sometimes justified and the use of convolution type systems is fully 
adequate. However in other cases, their use is either totally inappropriate or at best a 
crude approximation which is employed only because of their significantly lower digital 
or optical implementation cost. This is not surprising given the fact that shift-invariant 
systems are a much more restrictive class than general linear systems, which is evident 
upon noting that general linear systems have degrees of freedom whereas shift- 
invariant systems have only N.
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Figure 1.1: Single-stage filtering in the Fourier domain (a), and the ath order fractional 
Fourier domain (b). Repeated (multi-stage or series) filtering in fractional Fourier 
domains (c). Multi-channel (parallel) filtering in fractional Fourier domains (d).



We may think of shift-invariant systems and general linear systems as representing 
two extremes in a cost-accuracy tradeoff: the general systems have O(iV^) degrees of 
freedom and can be implemented with O(iV^) cost and, shift-invariant systems have 
0{N ) degrees of freedom and can be implemented with 0{N  log N) cost. Sometimes use 
of shift-invariant systems may be inadequate, but at the same time use of general linear 
systems may be overkill and prohibitively costly. In such situations where both extremes 
are unacceptable, or simply when we desire greater flexibility in trading off between cost 
and accuracy, it would be desirable to be able to interpolate between these two extremes. 
There may be many ways of achieving this. One such way is the use of filtering in 
fractional Fourier domains [6]. Common single-stage Fourier-domain filtering is shown 
in Fig. 1.1 (a). Fig. 1.1 (b) depicts single-stage filtering in the ath order fractional 
Fourier domain. In this configuration the Fourier transform blocks in Fig. 1.1 (a) are 
simply replaced by the fractional Fourier transform blocks. It has been shown that in 
some cases this configuration enables significant improvements. More detailed discussion 
with applications are given in [7, 8, 9, 10, 11, 12]. A generalization of the single-stage 
fractional Fourier domain filtering is the repeated or multi-stage filtering in fractional 
Fourier domains and this configuration is shown in Fig. 1.1 (c). In this configuration 
M  single stage fractional Fourier domain filters (Fig. 1.1 (b)) are combined in series so 
that the output of this configuration is obtained by applying M  single fractional Fourier 
domain filters consecutively to the input. The input is first transformed into the aith 
domain where it is multiplied by a filter hi(u). The result is then transformed back 
into the original domain. This process is repeated M  times. This configuration was 
first proposed in [6] and explored in detail in [13, 14, 15, 16]. A dual configuration is 
the multi-channel filtering in fractional Fourier domains which is shown in Fig. 1.1 (d). 
This configuration was first suggested by Orhan Arikan. In this thesis, the multi-channel 
filtering configuration will be discussed in detail and a further generalization, filtering 
circuits in fractional Fourier domains will be introduced. Applications of these filtering 
circuits in digital signal and optical information processing will be given.

The fractional Fourier transform is the generalization of the ordinary Fourier 
transform. Given this, every property and application of the common Fourier transform 
becomes a special case of that of the fractional transform. A comprehensive discussion 
with some properties and its relation to well-known physical, optical and signal processing 
concepts are summarized in a chapter [17] and in more detail in a forthcoming book [18].

Overview



We here summarize what is eichieved in this thesis. One of the most important 
property of the fractional Fourier transform is its relation to the Wigner distribution 
and ambiguity function. We have shown that this property generalizes to certain other 
time-frequency distributions belonging to the so-called Cohen class [19].

In order to successfully apply the transform to digital signal processing applications, 
we need to calculate the transform digitally. We have developed an efficient algorithm 
{0{N  log N)) for the computation of the fractional Fourier transform [20]. This algorithm 
also leads to a definition for the discrete fractional Fourier transform. However, this 
definition does not satisfy exactly some of the essential properties of the discrete 
transform. Thus we have proposed a discrete fractional definition by finding the oth 
power of the discrete Fourier transform (DFT) matrix and showed that this definition is 
fully analogous to the continuous definition [21, 22, 23].

As a main application of the transform in signal processing, we have first introduced 
the concept of filtering in a single fractional Fourier domain [7, 8, 10]. We then applied 
the algorithm to image restoration problems and discussed some of the issues that do 
not exist for one-dimensional signals [12]. We improved the performance of the image 
restoration algorithm by using the non-separable definition of the transform [24].

The idea of single-domain filtering has been further generalized to multi-stage 
(repeated) filtering in fractional domains [13, 14, 15]. Recently we have proposed a 
dual configuration which is the multi-channel filtering [25, 26, 27, 28]. In this thesis we 
unify all these filtering configurations and discuss their applications under three main 
headings: system synthesis, signal synthesis and signal recovery.

The outline of the thesis is as follows. In chapter 2, we introduce the fractional 
Fourier transformation. We define it mathematically, discuss some of its properties 
including its relationship with the Wigner distribution and quadratic-phase systems, and 
generalize its definition to two-dimensions. We will also discuss the discrete fractional 
Fourier transformation. Then in chapter 3, we introduce the concept of filtering circuits 
in fractional Fourier domains. We first overview the single and multi-stage (repeated) 
fractional Fourier domain filtering configurations and then discuss in detail multi-channel 
(parallel) filtering configuration and unify all these configurations under the concept of 
filtering circuits in fractional Fourier domains. In chapters 4 , 5 and 6 we will give 
applications of filtering circuits in fractional Fourier domains with some simulation 
examples. Finally, conclusions and future work in this field are discussed in Chapter 7.



Chapter 2

The Fractional Fourier Transform

The filtering circuits concept introduced in this thesis depends mainly on the fractional 
Fourier transformation. In this chapter we introduce this transform and discuss some of 
its properties that motivate the applications in signal processing. We will also discuss 
the discrete fractional Fourier transform. Most of the material in this chapter is adopted 
from [17].

2.1 Introduction and History

The fractional Fourier transform is a generalization of the ordinary Fourier transform 
with an order parameter a. Mathematically, the ath order fractional Fourier transform is 
the ath power of the Fourier transform operator. The a =  1st order fractional transform 
is the ordinary Fourier transform. The ordinary frequency domain is merely a special 
case of a continuum of fractional Fourier domains that will be introduced later. Every 
property and application of the common Fourier transform becomes a special case of 
that of the fractional transform. In every area in which Fourier transforms and frequency 
domain concepts are used, there exists the potential for generalization and improvement 
by using the fractional transform. For instance, the theory of optimal Wiener filtering in 
the ordinary Fourier domain can be generalized to optimal filtering in fractional domains, 
resulting in smaller mean-square errors at practically no additional cost [8, 11, 12].

In essence, the oth order fractional Fourier transform interpolates between a function



f{u) and its Fourier transform F (//). The 0th order transform is simply the function 
itself, whereas the 1st order transform is its Fourier transform. The 0.5th transform 
is something in between, such that the same operation that takes us from the original 
function to its 0.5th transform will take us from its 0.5th transform to its ordinary 
Fourier transform. More generally, index additivity is satisfied; The a2th transform of 
the oith transform is equal to the (a2 +  ai)th transform. The —1th transform is the 
inverse Fourier transform, and the —oth transform is the inverse of the ath transform.

Early papers related to the fractional Fourier transform include [29, 30, 31, 32]. Of 
importance are two separate streams of mathematical papers which appeared throughout 
the eighties [33, 34, 35, 36]. However, the number of publications exploded only after 
the introduction of the transform to the optics and signal processing communities [37, 
38, 39, 40, 42]. Not all of these authors were aware of each other or building on the work 
of those preceding them, nor is the transform always immediately recognizable in some 
of these works.

The fractional Fourier transform (or essentially equivalent transforms) appear in 
many contexts, although it has not always been recognized as being the fractional power 
of the Fourier transform and thus referred to as the fractional Fourier transform. For 
instance, the Green’s function of the quantum-mechanical harmonic oscillator is the 
kernel of the fractional Fourier transform. Also, the fractional Fourier transform is a 
special case of the more general linear canonical transform [43]. This transform has been 
studied in many contexts, but again the particular special case which is the fractional 
Fourier transform has usually not been recognized as such.

The above does not represent a complete list of known historical references. For a 
more complete list and also a more comprehensive treatment of the fractional Fourier 
transform and its relation to phase-space distributions, we refer the reader to [17] and a 
forthcoming book [18].

Given the widespread use of the ordinary Fourier transform in science and 
engineering, it is important to recognize this integral transform as the generalization 
of the Fourier transform. Indeed, it has been this recognition which has inspired most 
of the many recent applications. Replacing the ordinary Fourier transform with the 
fractional Fourier transform (which is more general and includes the ordinary Fourier 
transform as its special case) adds an additional degree of freedom to the problem, 
represented by the order parameter a. This in turn may allow either a more general 
formulation of the problem (as in the optical propagation) or improvements based on



the possibility of optimizing over a (as in the optimal Wiener filtering example).

The fractional Fourier transform has been found to have several applications in the 
area known as analog optical information processing, or Fourier optics. This transform 
allows a reformulation of this area in a way much more general than that found in 
standard texts on the subject. It has also led to generalizations of the notions of space 
(or time) and frequency domains, which are central concepts in signal processing, leading 
to many applications in this area.

More specifically, some applications which have already been investigated or 
suggested include diffraction theory [41, 44, 45, 46, 47], optical beam propagation 
and spherical mirror resonators (lasers) [48, 49], propagation in graded index media 
[37, 38, 39, 50, 51, 52], Fourier optics [45, 53, 54, 55, 56], statistical optics [57, 58], optical 
systems design [59, 60], quantum optics[61, 62], radar, phase retrieval [63], tomography 
[64, 65, 66], signal detection, correlation and pattern recognition [51, 67, 68, 69, 70], 
space- or time-variant filtering [6, 8, 11, 12, 13, 15, 25, 71, 72, 73, 74], signal recovery, 
restoration and enhancement [8, 14, 15, 16, 26, 27, 28, 75], multiplexing and data 
compression [6], study of space- or time-frequency distributions [19, 42, 65, 76], and 
solution of differential equations [33, 34]. These are only a fraction of the possible 
applications.

2.2 Definition and Properties

The ath order fractional Fourier transform of the function f{u) will most often be denoted 
by fa{u) or equivalently F^f{u). The transform is defined as a linear integral transform 
with kernel Ka(u,u')\

fa(u) =  =  f  K,(u,u')f(u')du'. (2.1)

The kernel will be given explicitly below. All integrals are from minus to plus infinity 
unless otherwise stated. We prefer to use the same dummy variable u both for the original 
function in the space (or time) domain, and its fractional Fourier transform. This is in 
contrast to the conventional practice associated with the ordinary Fourier transform, 
where a different symbol, say p,, denotes the argument of the Fourier transform F{p)·.

F(ii) =  I (2.2)



/ ( « )  =  I (2.3)

When it is desirable to distinguish the argument of the transformed function from that 
of the original function, we will let Ua denote the argument of the ath order fractional 
Fourier transform: /«(wo) =  (• “̂ [/(^)])(wo)· With this convention, uq corresponds to u, 
the space (or time) coordinate, ui corresponds to the spatial (or temporal) frequency 
coordinate fx, and U2 =  —uq, U3 =  —Ui.

We will refer to or simply as the oth order fractional Fourier transform
operator. This operator transforms a function f{u) into its fractional Fourier transform 
fa{u)· /  is a finite energy signal and f{u) is a finite energy function which are well 
behaved in the sense usually presumed in physical applications.

After introducing the notation, we now define the ath order fractional Fourier 
transform fa{u) through the following linear integral transform:

fa{u) = j Ka{u,u')f{u')du\ 

Ka{u, u') =  Atj, exp [¿7r(cot — 2 CSC (f> uv! +  cot (j) u '^)],

(2.4)

where
UTT

=  \/\ — i cot (f) .

(2.5)

(2.6)

The square root is defined such that the argument of the result lies in the interval 
(—7t/ 2, 7t/ 2]. The kernel is not strictly defined when a is an even integer. However, 
it is possible to show that as a approaches an even integer, the kernel behaves like a 
delta function under the integral sign. Thus, consistent with the limiting behavior of the 
above kernel for values of a approaching even integers, we define K^j{u, u') =  S{u — u') 
and K^j±2{u,u') =  J(u +  u'), where j  is an arbitrary integer. Generally speaking, the 
fractional Fourier transform of f{u) exists under the same conditions under which its 
Fourier transform exists [34, 42].

We first examine the case when a is equal to an integer j. We note that by 
definition and correspond to the identity operator I  and the parity operator V 
respectively (that is, f 4j{u) =  f{u) and f 4j±2{u) =  / ( - « ) ) ·  For a =  1 we find <j> =  7t/2 , 
A  ̂ =  1, and

/i(u ) =  J  exp{—i2'RUu') f  (u') du'. (2.7)



We see that fi{u) is equal to the ordinary Fourier transform of f{u), which was previously 
denoted by the conventional upper case F{u). Likewise, it is possible to see that f-i{u ) 
is the ordinary inverse Fourier transform of f(u). Our definition of the fractional Fourier 
transform is consistent with defining integer powers of the Fourier transform through 
repeated application (that is, =  TF, and so on). Since cj) =  aTr/2
appears in equation 2.4 only in the argument of trigonometric functions, the definition 
is periodic in a (or <f)) with period 4 (or 27t). Thus it is sufficient to limit attention to 
the interval a G [—2,2). These facts can be restated in operator notation:

=X ,

where j, f  are arbitrary integers.

Let us now examine the behavior of the kernel for small |a| >  0:

g-i7rsgn(</>)/4
Ka(u, u') =  — —  exp[i7r(u -  u 'f/(!)]. 

Now, using the well known limit

6{u) =  lime-*'/·*

(2 .8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

the kernel is seen to approach 5{u — u') os a approaches 0. Thus defining the kernel 
Ka{ u,u') to be precisely 5{u — u') at a =  0 maintains continuity of the transform with 
respect to a. A similar discussion is possible when a approaches other integer multiples 
of 2. A more rigorous discussion of continuity with respect to a may be found in [34].

We now discuss the index additivity property:

or in operator notation
J^ai ̂ a2 — 0̂1+ 2̂ _  jrO>2

(2.16)

( 2 .1 7 )



This can be proved by repeated application of equation 2.4, and amounts to showing

I  Ka-i (u, u")Kâ  {u", v!) du" = ifoi+az (̂ , u') (2.18)

by direct integration, which can be accomplished by using standard Gaussian integrals
[17].

The index additivity property is of central importance. Indeed, without it, 
would not actually be the ath power of T. For instance, the 0.2nd fractional Fourier 
transform of the 0.5th transform is the 0.7th Fourier transform. Repeated application 
leads to statements such as, for instance, the 1.3th transform of the 2.1st transform of 
the 1.4th transform is the 4.8th transform (which is the same as the 0.8th transform). 
Transforms of different orders commute with each other so that their order can be freely 
interchanged. From the index additivity property, we deduce that the inverse of the oth 
order fractional Fourier transform operator is simply equal to the operator T~°·
(because =  X). This can also be shown by directly demonstrating that

^ Ka{u, u")K-aW  1 u') du =  5{u — u'), (2.19)

so that Kĝ  ^{u,u') =  K-a{u,u'). Thus we see that we can freely manipulate the order 
parameter a as if it denoted a power of the Fourier transform operator T.

Fractional Fourier transforms constitute a one-parameter family of transforms. This 
family is a subfamily of the more general family of linear canonical transforms which 
have three parameters [43]. As all linear canonical transforms do, fractional Fourier 
transforms satisfy the associativity property and they are unitary, as we can directly see 
by examining the kernel of the inverse transform obtained by replacing a with -a ;

Kg '■{u,u') =  K.a(u,u') =  Kg{u,u') =  K*{u\u). (2.20)

The kernel Ka{u,u') is symmetric and unitary, but not Hermitian. Unitarity implies 
that the fractional Fourier transform can be interpreted as a transformation from one 
orthogonal basis to another, and that inner products and norms are not changed under 
the transformation.

2 .2 .1  Eigenvalues and Spectral E xpansion

The eigenvalues and eigenfunctions of the ordinary Fourier transform are well known 
and they are the Hermite-Gaussian functions V’n(^)· The eigenvalues may be expressed
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as exp(—mTr/2) and are given by 1, - i ,  - 1 ,  i, 1, - e , . . .  for n =  0 ,1 ,2 ,3 ,4 ,5 ,.. .. Thus 
the eigenvalue equation for the ordinary Fourier transform may be written as

where the Hermite-Gaussian functions are more explicitly given by

ipn{u) = AnHn{\/^ ,

(2.21)

(2.22)

(2.23)

for n =  0 ,1 ,2 ,3 ,4 ,5 , —  Here Hn{u) are the Hermite polynomials. The particular scale 
factors which appear in this equation are a direct consequence of the way we have defined 
the Fourier transform with 27t in the exponent.

The ath order fractional Fourier transform shares the same eigenfunctions as the 
Fourier transform, but its eigenvalues are the oth power of the eigenvalues of the ordinary 
Fourier transform:

jF“^„(w) =  (2.24)

This result can be established directly from equation 2.4.

Function FN(A) of an operator (or matrix) A  with eigenvalues A„ will have the 
same eigenfunctions as A  and that its eigenvalues will be F7V(A„). The above eigenvalue 
equation is particularly satisfying in this light since .F“ as we have defined it, is indeed 
seen to correspond to the ath power of the Fourier transform operator (FN(·) =  (·)“ ). 
However, it should be noted that the definition of the oth power function is ambiguous, 
and our definition of the fractional Fourier transform through equation 2.4 is associated 
with a particular way of resolving the ambiguity associated with the ath power function 
(equation 2.24). Other definitions of the transform also deserving to be called the 
fractional power of the Fourier transform are possible. The particular definition we 
are considering is the one that has been most studied and that has led to the greatest 
number of interesting applications.

Knowledge of the complete set of eigenvalues and eigenfunctions of a linear operator 
is sufficient to completely characterize the operator. In fact, in some works, the fractional 
Fourier transform has been defined through its eigenvalue equation [33, 37, 38, 39]. It 
is possible to show that the kernel of the fractional Fourier transform Ka(u, u') ca.n be 
decomposed as OO

K.(u, u’) =  (2.25)
71= 0

11



This is the spectral decomposition of the kernel of the fractional Fourier transform. The 
kernel given in equation 2.25 can be shown to be identical to that given in equation 2.4 
directly by using an identity known as Mehler’s formula:

y Hn(u)Hn{u') = 1
— exp{2i(f>)

exp 2uu'e^ — +  u'̂ )
_ 2̂i(p . (2.26)

Several properties of the fractional Fourier transform immediately follow from 
equation 2.24. In particular the special cases a =  0, a =  1, and the index additivity 
property are deduced easily.

2 .2 .2  O p eration al properties

Various operational properties of the transform are given below [33, 34, 38, 42]. Most 
of these are most readily derived or verified by using equation 2.4 or the symmetry 
properties of the kernel.

^ V i u - 0 ](u) =

J^°'[uf{u)]{u) =  coscf) uT°'[f {u)]{u) — sin(/» (¿27t)

T°‘[{i2'K) d̂f {u)/ dvi]{u) = sin̂  u JF“[/(u)](u) + coŝ  (z27t)
du 

du
f{u')du']{u) = sec.̂ e-*’̂ “'*̂ "̂

L̂г¿o J J y>o
In the above f  is an arbitrary real number. A: is a real number {k 0, ±oo ), and n is an 
integer, (j)' =  arctan(A:  ̂tan<^), where (¡)' is taken to be in the same quadrant as cj).

2 .2 .3  R elation  to  the W ig n e r  distribution

The direct and simple relationship of the fractional Fourier transform to the Wigner 
distribution, as well as to certain other phase-space distributions is perhaps its most 
important and elegant property [81, 40, 42, 6].
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Неге we will define and briefiy discuss some of the most important properties of the 
Wigner distribution. The Wigner distribution Wf{u,ii) of a function f{u) is defined as

Wf{u, ix) = I  f{u  +  u'/2)f*{u -  du'. (2.27)

Wf{u, fj,) can also be expressed in terms of F (//), or indeed as a function of any fractional 
transform of f(u). Some of its most important properties are

|/(u) | 2 =

|F(//)p =  lw {u ,fi)d u , 

En[/(u)] =  j  W(u,/j,) du dfj,,

(2.28)

(2.29)

(2.30)

En[/(u)] is the total energy of the signal f(u). Roughly speaking, can be
interpreted as a function that indicates the distribution of the signal energy over space 
and frequency. The Wigner distribution of F{u) (the Fourier transform of / ( « ) ) ,  is a 
ninety degree rotated version of the Wigner distribution of f(u). More on the Wigner 
distribution and other such distributions and representations may be found in [77, 78, 
79, 80].

Now, if Wf(u,iJ,) denotes the Wigner distribution of f{u), then the Wigner 
distribution of the ath fractional Fourier transform of f{u), denoted by Wf {̂u,/j.), is 
given by

Wf^{u, fi) =  Wf{ucos^ — /Ltsin<̂ , usin(^ +  fj,cos<f>), (2.31)

so that the Wigner distribution of Wf^{u,fi) is obtained from Wf{u,iJ,) by rotating it 
clockwise by an angle (j). Let us define 72·̂  to be the operator which rotates a function 
of (u, ¡i) by angle (¡) in the conventional counterclockwise direction. Then we can write

(2.32)

This elegant and fundamental property underlies an important number of the 
applications of the fractional Fourier transform. In fact, some authors have defined the 
transform as that operation which corresponds to rotation of the Wigner distribution of 
a function [40].

A corollary of the above result follows easily [81, 65, 6]. Let us recall equations 2.28 
and 2.29 which state that the integral projection of Wf{u,/j,) onto the u axis is the 
magnitude square of the u-domain representation of the signal and that the integral
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projection of //) onto the // axis is the magnitude square of the yti-domain
representation of the signal. Now, let us rewrite the first of these equations for fa{u), 
the ath order fractional Fourier transform of f{u):

I  W,,{u,|x)d^¡=\Uu)\^‘ . (2.33)

Since Wf {̂u,iJ,) is simply Wf(u,iJ,) clockwise rotated by angle (/>, the integral projection 
of Wf^(u,!i) onto the u axis is identical to the integral projection of Wf{u,ix) onto an 
axis making angle <p with the u axis. This new axis making angle </> =  air/2 with the 
u axis is referred to as the Ua axis. Let TZAV  ̂ denote the Radon transform operator, 
which maps a two-dimensional function of to its integral projection onto an axis
making angle 4> with the u axis. Thus the above can be written as

nAV^Wf{u,^i) =  |/α(г¿) (2.34)

In conclusion, the integral projection of the Wigner distribution of a function onto the 
Ua axis is equal to the magnitude square of the ath order fractional Fourier transform of 
the function (Fig. 2.1). Equations 2.28 and 2.29 are special cases with a =  0 and a =  1. 
Wood and Barry discussed what they referred to as the “Radon-Wigner transform” 
without realizing its relation to the fractional Fourier transform (Wood and Barry 1994a, 
b). The above discussion demonstrates that the Radon-Wigner transform is simply the 
magnitude squared of the fractional Fourier transform.

The Wigner distribution is not the only time-frequency representation satisfying the 
rotation property (equation 2.32). The ambiguity function also satisfies this property 
because the ambiguity function is the two-dimensional Fourier transform of the Wigner 
distribution, and the two-dimensional Fourier transform of the rotated version of a 
function is the rotated version of the two-dimensional Fourier transform of the original 
function [6, 42]. Almeida (1994) showed that the rotation property also holds for 
the spectrogram. We have further shown that the rotation property generalizes to 
certain other time-frequency distributions belonging to the so-called Cohen class, whose 
members can be obtained from the Wigner distribution by convolving it with a kernel 
characterizing that distribution. The distributions for which the rotation property holds 
are those which have a rotationally symmetric kernel [19].

Thus, fractional Fourier transformation corresponds to rotation of many phase-space 
representations. This not only confirms the important role this transform plays in the 
study of such representations, but also supports the notion of referring to the axis making
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angle (f> — aiT¡2 with the u axis as the ath fractional Fourier domain [82]. Despite this 
generalization, the only distribution which satisfies a relation of the form of equation 2.34 
is the Wigner distribution [81].

2 .2 .4  Fractional Fourier D om ain s

Equations 2.32 and 2.34 immediately lead to the interpretation of oblique axes in 
phase space as fractional Fourier domains. Just as the projection of the Wigner 
distribution onto the space domain gives the magnitude square of the space-domain 
representation of the signal, and the projection of the Wigner distribution onto the 
frequency domain gives the magnitude square of the frequency-domain representation 
of the signal (equations 2.28 and 2.29), the projection on the axis making angle 
<f) = an/2 with the u axis gives the magnitude square of the ath fractional Fourier-domain 
representation of the signal (equation 2.34). When we need to be explicit we will use 
the variable Ua as the coordinate variable in the ath domain, so that the representation
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of the signal /  in the ath order fractional Fourier domain will be written as fa{ua). 
We immediately recognize that the 0th and 1st domains are the ordinary space and 
frequency domains and that the 2nd and 3rd domains correspond to the negated space 
and frequency domains {uq = u, ui =  /x, U2 = -u , uz = -fx). The representation of the 
signal in the a'th domain is related to its representation in the ath domain through an 
{a' — a)th order fractional Fourier transformation:

yia'i^a') J  ̂ a'—aî a'>'̂ a)fa(,'̂ a) dUd- (2.35)

When (a' — a) is an integer, this corresponds to a forward or inverse Fourier integral.

2.3 Optical And Digital Implementation

Fractional Fourier transformation can easily be realized optically [40, 83, 84, 85], which 
leads to many applications in optical signal processing as given in section 2.1. In 
addition to this, the digital implementation of fractional Fourier transformation also 
exists. In [20], we have presented a fast algorithm that calculates fractional Fourier 
transform in O(A^logTV) time. Here we briefly discuss this algorithm.

The deflning equation (equation 2.4) can be put in the form

fa(u) = j d u ' . (2.36)

We assume that the representations fa{ua,) of the signal /  in all fractional Fourier 
domains are approximately confined to the interval [—A u/2, Au/2] (that is, a sufficiently 
large percentage of the signal energy is confined to these intervals). This assumption is 
equivalent to assuming that the Wigner distribution of f{u) is approximately confined 
within a circle of diameter Au (by virtue of equation 2.34). Again, this means that a 
suflftciently large percentage of the energy of the signal is contained in that circle. We 
can ensure that this assumption is valid for any signal by choosing Au sufficiently large. 
Under this assumption, and initially limiting the order a to the interval 0.5 < [a] <  1.5, 
the modulated function assumed to be approximately band-limited
to ±Au  in the frequency domain. Thus e*’ “̂ “ '* /(u ') can be represented by Shannon’s 
interpolation formula

'V M =  J ^ ‘- « * > V ( 5 ^ ) S in e 2 Au f u' — — 112AuJ.
(2.37)
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where N =  (Au)^. The summation goes from - N  to N - 1  since f{u') is assumed to be 
zero outside [ -A u /2 , Au/2]. By using equation 2.37 and equation 2.36, and changing 
the order of integration and summation we obtain

N - i
__  A AnCOi(pu‘̂  ^Z7TCOt(fa{u) = A^e E  ·=·

n = - N

e -* 2 ’rcsc^uu'g.jj^ 2Au(·
2A'u/J

du'.

(2.38)
By recognizing the integral to be equal to (l/2Au)e~^‘̂ '"^^^2^rect{csc(f)u/2Au), we can 
write

A N —1
f  (u) =  -----1 .  incot^u  ̂ -i2n CSC cot r f  ^ ggS

 ̂ 2 A u „ f^ ^  •^V2Au7’  ̂ ’

since rect(cscu/2Au) =  1 in the interval |u| < Au/2. Then, the samples of /„ ( « )  are 
given by

( 2^ )  =  ^  ( ¿ _ )  , ( ,4 0 )

which is a finite summation allowing us to obtain the samples of the fractional transform 
fa{u) in terms of the samples of the original function f{u). Direct computation of 
equation 2.40 would require 0{N'^) operations. A fast {0{N\ogN)) algorithm can be 
obtained by putting equation 2.40 into the following form:

f  f =  J^eMcOt<l>-CSC<i>)(-^f i7r(cOt<^-CSC^)(2^)2 i
\2AuJ 2Au  ̂ \2AuJ '

(2.41)
We now recognize that the summation is the convolution of and the chirp
modulated function /( · ) .  The convolution can be computed in 0{N log N) time by using 
the fast Fourier transform (FFT). The output samples are then obtained by a final chirp 
modulation. Hence the overall complexity is O(NlogN).

We had limited ourselves to 0.5 < |a| < 1.5 in deriving the above algorithm. Using 
the index additivity property of the fractional Fourier transform we can extend this range 
to all values of a easily. For instance, for the range 0 <  a < 0.5, we can write

a _ 77a—1 + 1  __ jzo>—\T°· =  r (2.42)

Since 0.5 < |a —1| < 1, we can use the above algorithm in conjunction with the ordinary 
Fourier transform to compute /a(u). The overall complexity remains at 0 {N\ogN).

In the above algorithm, given the input vector (which is assumed to correspond to the 
samples of a continuous signal taken at the Nyquist rate), we first interpolate the vector

17



by two. To preserve duality and symmetry between the time and frequency domains, 
we also pad zeros to increase the length by an additional factor of two. This step not 
only increases the robustness of the algorithm by further oversampling the signal in 
the frequency domain, but also allows to obtain symmetric signals both in time and 
frequency domains. (Interpolation by two in the time domain results in zero-padding in 
the frequency domain, while zero padding in the time domain results in interpolation by 
two in the frequency domain. Thus if we both pad zeros and interpolate, we also get an 
interpolated and zero-padded signal in the frequency domain.)

2.4 Discrete Fractional Fourier Transform

The digital computation algorithm proposed in [20] suggests a definition for the discrete 
fractional Fourier transform (matrix) since it maps the samples of input function to the 
samples of the fractional Fourier transform of the function:

fa =  F“f (2.43)

Here fa and f  are the x 1 vectors whose elements are the samples of fa{u) and f{u) 
respectively, and F“ is the N x N discrete fractional Fourier transform matrix. The 
elements of F “ can be easily found from this algorithm using equation 2.40. Although this 
matrix approximately calculates the fractional Fourier transform, it fails to satisfy exactly 
some basic requirements of the consistent discrete fractional Fourier transformation, such 
as unitarity, index additivity and reducing to DFT (discrete Fourier Transform) matrix 
for a =  1. On the other hand, in most of the digital signal processing applications we use 
these properties in formulating and solving the problems. Thus, we need a consistent 
discrete fractional Fourier transform matrix.

In section 2.2.1, we show how the continuous fractional Fourier transform kernel 
may be decomposed in terms of the eigenvalues and eigenfunctions of the ordinary 
Fourier transform (equation 2.25). A dual equation can be used to define the discrete 
fractional Fourier transformation if the eigenvectors of DFT matrix corresponding to 
Hermite-Gaussian functions are known (the eigenvalues of the DFT matrix are same 
as the eigenvalues of the ordinary Fourier transform). In [21, 22], this idea has been 
discussed throughly and a discrete fractional Fourier transform is defined. This definition 
satisfies all the requirements for the discrete fractional Fourier transform, but its efficient 
implementation is not known yet and it is an open problem.
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In the next chapters where we introduce the concept of filtering circuits in fractional 
Fourier domains, we will use this definition of the fractional Fourier transform while 
formulating and solving the problems because it satisfies exactly the unitarity and index 
additivity. On the other hand, since it is shown that for most of the digital signals, the 
output of this definition deviates only slightly from the output of the digital computation 
algorithm of [20], this algorithm will be used in order to implement efficiently those 
filtering circuits in a given application.

2.5 Generalization to Two-Dimensional Systems

Up to here, we considered only the one-dimensional definition of the fractional Fourier 
transformation. Here, we will generalize the definition of the fractional Fourier transform 
to two-dimensions. The following subsections explain two ways of generalizing the 
definition to two-dimensional systems.

2 .5 .1  Separable T w o -D im en sio n a l IVactional Fourier Transfor

m ation

The natural extension of the fractional Fourier transform to two and higher dimensions 
is

/a(q) =  /a„.a.(M, w) =  ^ V ( q )  =  f  (u, v)

= j j '̂) du' dv',

Kau,a. {U, V, u', V') =  Kâ  (u, u')Ka„ { v ,  v ' )  (2.44)

for two dimensions and similarly for higher dimensions. Here q  =  uû -1- uv and 
a =  a„û -I- a„v where û and v  are unit vectors in the u and v directions. Ka{u,u') 
is the one-dimensional kernel defined in equation 2.4. A comprehensive discussion of 
the separable 2-D fractional Fourier transformation may be found in [86]. Notice that 
different transform orders o„ and o„ are allowed in the two dimensions, although some 
authors have defined higher dimensional transforms with only a single order parameter. 
The effect of a one-dimensional fractional Fourier transform (say in the u direction) on 
a two-dimensional function is interpreted in the obvious manner by treating the other
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dimension (in this case v) as a parameter. Denoting such one-dimensional transforms as 
JF“““ and it becomes possible to write

j:av  ̂ _  ĵ av'v ĵ auU (2.45)

constituting a concise statement of the separability of the two-dimensional transform. 
Notice that the notation we have introduced makes these equations compatible with the 
index additivity property, so that it is possible to deduce identities such as 
j«.7uj-o.5u-o.3vjpo.2vj^o.8u+o.iv ^  jp2.0u ^  .̂ ĵ̂ ere Vu IS the parity operator in the u 
dimension.

Most of the results and properties presented for the one-dimensional case are easily 
generalized to two and higher dimensions by virtue of separability as embodied by 
equation 2.45.

2 .5 .2  N o n -sep ara b le  T w o -D im en sion al Fractional Fourier  

T ran sform ation

When the definition of Fourier transformation is generalized to two-dimensional systems, 
new properties like affine property also starts to be observed. The affine property is stated 
in [100] as a theorem which says that; If f{u, v) has two-dimensional Fourier transform 
F(u, v), then f{au  -I- bv, cu + dv) has two-dimensional Fourier transform

. 1 „ [ d u  — cv -hu-\-av^
(2.46)

where A = ad — be. We may also look for a similar property for the two-dimensional 
fractional Fourier transformation. The separable fractional Fourier transformation in 
equation 2.44 does not have such a property. Starting with this motivation, in [86] a new 
two-dimensional fractional Fourier transformation definition which satisfies the affine 
property is introduced. In [86] the non-separable fractional Fourier transform is given as

where

J — oo

(q. q") = K, explrnCq̂Aq + 2q’'Bq" + q"’'Cq")|

(2.47)

(2.48)
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with
Kq —  ̂—

- T r 1
U V , q  = г¿" v ”

A  =
cot (j)ŷt 0 

0 cot (ĵ yf

C =

B =
cos 02 CSC (¡> t 
cos(0i -02; 
sin 62 CSC (¡) ,/ 
C0S(¿?1 —02)

coŝ ^^i- V t r.os2'ro, -fl,1 4>v'02) ^  COs2((?i-02)
in g; cos g2 cn f fh , 4- Sing2COSgl i. J03'̂ (el- 02) W  ^ 003̂ (01-02) W
Sin
cos'

sin ̂1 CSC 0 / 
COS(0i-^2) 
cos CSC (j) ! 
cos(01 -02} -

COŜ *̂̂ i%2) COS*'(gl-g2)
In [86] a thorough analysis of optical realization of both separable and non-separable 
two-dimensional fractional Fourier transformation is also presented.

With this non-separable two-dimensional fractional Fourier transform definition, 
we have generalized single stage fractional Fourier domain filtering to obtain further 
improvements in image restoration applications. The results of this work are reported 
in [24].
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Chapter 3

Generalized Filtering Configurations 
Based on Fractional Fourier 

Transforms

In this chapter, we introduce the concept of filtering circuits in fractional Fourier 
domains. This configuration includes the multi-stage (repeated) and multi-channel 
(parallel) filtering configurations which are generalizations of the single domain filtering 
configuration.

Single-stage and multi-stage filtering in fractional Fourier domains have been 
discussed in detail in [7, 10, 11, 12, 13, 14, 15]. In this chapter, we will introduce 
and discuss in detail the multi-channel filtering configuration, propose some possible 
extensions for all of the configurations and unify all these configurations under the 
concept of filtering circuits.

In the next sections, we will first review single-stage and multi-stage filtering 
configurations. Then we will introduce the multi-channel configuration.
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3.1 Single-stage Filtering in Fractional Fourier Do

mains

In chapter 1, we discussed time-invariant systems as the subclass of the general linear 
systems. Time-invariant systems (Fig. 1.1 (a)) may also be interpreted as a special 
case of single-stage transform domain filtering which is in turn a sub-class of general 
linear systems. General single-stage transform domain filtering configuration is shown in 
Fig. 3.1 (a). According to this configuration, the output is obtained by multiplying the 
input with a filter function h in the transform domain. The overall system is characterized 
by:

r  = S~^AS (3.1)

where <S is a transform and A corresponds to a multiplication with the filter function 
h. T  can be implemented efficiently if the transform S has efficient implementation. 
The time-invariant system is a special case with the transform <S equals to the ordinary 
Fourier transform (Fig. 3.1 (b)). Other special case may be obtained by using the identity 
transform (<S =  X) and in this case we have the time or space domain filtering for which 
the output is obtained by simply masking the input with a window function h (Fig. 3.1
(c)).

If we choose the transform in (3.1) as the fractional Fourier transform (<S =  X"“ ), we 
obtain the single-stage fractional Fourier domain filter (Fig. 3.1 (d)). In this case the 
overall system is given by;

Tss =  X " “A X “ (3.2)

This configuration interpolates between the time-domain and frequency domain filtering 
configurations and enables significant improvements in signal restoration and denoising 
as discussed below [7, 10, 12].

As a simple application of the single-stage fractional Fourier domain filtering we 
consider the signal or image restoration problem. In many signal processing applications, 
signals which we wish to recover are degraded by a known distortion and/or by noise. 
Then the problem is to reduce or eliminate these degradations. Appropriate solutions 
to such problems depend on the observation model and the objectives, as well as the 
prior knowledge available about the desired signal, degradation process and noise. A 
commonly used observation model is

a;obs = Gx + n, (3.3)
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Figure 3.1: (a) Single-stage transform domain filtering, (b) Fourier domain filtering, (c) 
time (space) domain filtering, (d) fractional Fourier domain filtering.

where Q is the linear system that degrades the desired signal (may be an image) .x·, and 
n is an additive noise term. The problem is to find an estimation operator represented 
by the kernel Ti, such that the estimated signal

êst — ^^obs

minimizes the mean square error defined as:

(3.4)

(3.5)

where || · |p denotes a norm and E[·] denotes an ensemble average. The classical Wiener 
filter provides the solution to the above problem when the degradation is time-invariant 
and the input and noise processes are stationary. The Wiener filter is time-invariant, and 
can thus be implemented effectively with a multiplicative filter in the conventional Fourier 
domain with the fast Fourier transform algorithm. For an arbitrary degradation model 
or non-stationary processes, the classical Wiener filter cannot often provide a satisfactory 
result. In this case, the optimum recovery operator is in general time-varying and has 
no fast implementation. However we can use the single-stage fractional Fourier domain 
filter to improve the performance. This filtering configuration has been studied in detail 
in [8, 10] for 1-D signals and in [12] for 2-D signals and images.
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To understand the basic motivation for filtering in fractional Fourier domains, 
consider Fig. 3.2, where the Wigner distributions of a desired signal and an undesired 
distortion are superimposed. We observe that they overlap in both the 0th and 1st 
domains, but they do not overlap in the 0.5th domain (consider the projections onto the 
«0 =  w, ui =  n, and uo.5 axes). Although we cannot eliminate the distortions in the 
space or frequency domains, we can eliminate them easily by using a simple amplitude 
mask in the 0.5th domain.

We now discuss the optimal filtering problem mathematically. The estimated 
(filtered) signal a;est is expressed as

êst — (3·^)
=  (3.7)

According to equation 3.7, we first take the ath order fractional Fourier transform of 
the observed signal Xobs» then multiply the transformed signal with the filter h and 
take the inverse ath order fractional Fourier transform of the resulting signal to obtain 
our estimate. Since the fractional Fourier transform has efficient digital and optical 
implementations, the cost of fractional Fourier domain filtering is approximately the 
same as the cost of ordinary Fourier domain filtering. With the above form of the 
estimation operator, the problem is to find the optimum multiplicative filter function 
hopt that minimizes the mean-square error defined in equation 3.5.

For a given transform order a, hopt can be found analytically using the orthogonality 
principle or the calculus of variations [8, 10, 12]:

.f f  ^)A^_a(Uo, U U ) du du
fiopt(w) =

S I  Âo(’̂ tt) ̂ )AT_a(U(i, Ŵ).Rioi,globs(̂ > ̂ 0
(3.8)

where the stochastic auto- and cross-correlation functions u') and Rxx^^Xu, u')
can be computed from the correlation functions Rxx(u,u') and Rnn{%u') (which are 
assumed to be known).

Th above formulation gives the solution for 1-D signals. The problem and the solution 
can be generalized to 2-D signals and images by using both separable and non-separable 
definitions of the fractional Fourier transform [12, 24]. When applied to 2-D signals 
and images, some form of windowing is necessary before the fractional Fourier transform 
stages to reduce the boundary artifacts [12].

Fractional Fourier domain filtering is particularly advantageous when the distortion 
or noise is of a chirped nature. Such situations are encountered in many real-life
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Figure 3.2: Filtering in fractional Fourier domain as observed in the space- (or time-) 
frequency plane.

applications. For instance, a major problem in the reconstruction fronti holograms is 
the elimination of twin-image noise. Since this noise is essentially a modulated chirp 
signal, it can be dealt with fractional Fourier domain filtering. Another example is the 
correction of the effects of point or line defects found on lenses or filters in optical systems, 
which appear at the output plane in the form of chirp artifacts. Another application 
arises in synthetic aperture radar which employs chirps as transmitted pulses, so that the 
measurements are related to the terrain reflectivity function through a chirp convolution. 
This process results in chirp type disturbances caused by moving objects in the terrain, 
which should be removed if high resolution imaging is to be achieved. Fractional Fourier 
domain filtering has also been applied to restoration of images blurred by space-varying 
point spread function or atmospheric turbulence [12]. These type of degradations are 
typical in astronomical and underwater imaging [87].
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3.2 Multi-Stage Filtering in Fractional Fourier Do

mains

In the previous section we overviewed the single stage filtering in fractional Fourier 
domains. This filtering configuration has been shown to improve the performance as 
compared to ordinary Fourier filtering in cases where the time- or space varying systems 
are involved. We can also find situations where single fractional Fourier domain filtering 
is insufficient.

As a simple example consider the Fig. 3.3, where the Wigner distributions of a desired 
signal and an undesired distortion are superimposed. This figure is similar to Fig. 3.2, 
but in this case we cannot find a single fractional Fourier domain where the noise can 
easily be separated from the signal. (If we consider the projections onto any oblique axis, 
we see that the signal and undesired distortion overlap in all of the fractional Fourier 
domains.) However, by introducing the concept of multiple fractional Fourier domain 
filters, we can eliminate the noise from the signal as follows. We can first go to the 
domain represented by <j)i and eliminate the corresponding part of noise (marked as 1 
in the figure) by simple unit amplitude mask, then we can go to the domain represented 
by <j)2 and eliminate the corresponding part (marked as 2 in the figure) and finally we 
can go to the domain represented by (f>z and eliminate the rest of the noise (marked as 
3 in the figure).

The above example illustrates a situation where using multiple fractional Fourier 
domain filters may be beneficial. There are three different ways of generalizing the 
single-domain fractional Fourier filter to multiple domains. One generalization is the 
multi-stage or repeated filtering in fractional Fourier domains which has been discussed 
in [13, 14, 15]. The other two ways are the multi-channel and the filtering circuits 
configurations which will be discussed in this thesis.

In the multi-stage filtering configuration shown in Fig. 3.4 M  single stage fractional 
Fourier domain filters are combined in series [13, 14, 15, 16]. The input is first 
transformed into the aith domain where it is multiplied by a filter hi. The result is 
then transformed back into the original domain. This process is repeated M  times 
consecutively. (Notice that this amounts to sequentially visiting the domains ai, 0,2, 
fl3, etc. and applying a filter in each.) It has been shown in [14] that, by modifying 
the filters hk appropriately, the repeated configuration can be reduced to one involving

27



NOISE

Figure 3.3: Filtering in multiple fractional Fourier domains as observed in the space- (or 
time-) frequency plane.

only ordinary Fourier transforms. However, the modified filters often exhibit oscillatory 
behavior so that this reduction is not necessarily beneficial in practice. Another point 
with this configuration is that the back transform of stage k with order a ,̂ may be 
combined with the forward transform of stage k + 1 with order Ck+i, resulting in a single 
transform of order a,k+i —a,k· Thus the system consists of multiplicative filters sandwiched 
between fractional transform stages of order a'̂  =  a^+i — a .̂

■y

h1 bM
Figure 3.4: Multi-stage filtering in fractional Fourier domains

Let Afc denote the operator corresponding to multiplication by the filter function hk- 
Then, the overall operator Tms corresponding to the multi-stage configuration is given
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by,

where represents the â tth order fractional Fourier transform operator.

(3.9)

Different applications and interpretations of this filtering configuration has been given 
and discussed in [13, 14, 15]. Namely, this filtering configuration may be applied to the 
synthesis of a desired linear transformation kernel, signal restoration and denoising and 
beam shaping in optics. In the synthesis problem the aim is to synthesize a desired linear 
transformation kernel 7d in the form of Tins· The problem is then to find the optimal 
filters hk and domains ak such that Tins is as close to Td as possible. The criteria of 
closeness may be a norm between two kernels.

In the signal restoration application, we consider a problem similar to the one 
discussed in section 3.1. In this case our estimation operator is in the form of Tms·,

êst — Tins^obs·

The problem is then to find the optimal filters hk and domains ak so that x̂ st is as close 
to X as possible. Again the criteria may be a norm.

Regardless of which of the above applications we take, the problem of determining 
the optimal filter coefficients is difficult for this configuration, since the overall kernel 
Tins depends nonlinearly on the filter coefficients hk· Nevertheless an iterative approach 
has been successfully applied [13, 15].

We should finally note that when we set M  =  1, the multi-stage configuration exactly 
corresponds to the single-stage filtering of previous section.

3.3 Multi-Channel Filtering in Fractional Fourier 

Domains

A dual configuration to the multi-stage filtering is the multi-channel filtering which we 
will discuss now. In this configuration we combine the M  single stage fractional Fourier 
domain filters in parallel (Fig. 3.5). The input is first divided into M  channels. Then
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for each channel k, the input is transformed to the a^th domain, multiplied with a filter 
hfc, and then transformed back. The output is obtained by summing the results of each 
channel.

« M

Figure 3.5: Multi-channel filtering in fractional Fourier domains

Again let A* denote the operator corresponding to multiplication by the filter function 
hk- Then, the overall operator Tmc. corresponding to the multi-channel configuration is 
given by.

M

k-i
=  J^-“iAiJF“i -K . . . -h

where represents the Ufetti order fractional Fourier transform operator.

(3.10)

We note that in a more general configuration each channel may be of the form 
JF“'fcAfcJF“* where and a'k are arbitrary and do not necessarily satisfy a'k =  -a * . In 
fact, there is no reason not to consider other parametric transforms with fast algorithms.

Different applications and interpretations of this filtering configuration will be given

30



in chapters 4, 5 and 6. Here we only state that each application discussed for the multi
stage case is also a potential application for this configuration. Finally, we note that 
M = 1 corresponds to the single-stage filtering.

3.4 Filtering Circuits

In the previous sections, we used M  single-stage fractional Fourier domain filters as 
building blocks to construct the multi-stage and multi-channel configurations in fractional 
domains. For the multi-stage case, they are combined in series. For the multi-channel 
case on the other hand, they are combined in parallel. In analogy to circuit theory, 
we can generalize these configurations further to filtering circuits in fractional Fourier 
domains. An example of such filtering circuit is shown in Fig. 3.6.

Figure 3.6: An example of filtering circuit in fractional Fourier domains. Each block 
corresponds to a single-stage filtering in fractional Fourier domain (Fig. 3.1 (d)) with 
different orders and filter functions.

The multi-channel and multi-stage configurations become the special cases of filtering 
circuit configurations. Mathematically we can represent the overall system Tft as

r(c = FC{Tss) (3.11)
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where FC{·) is the function representing the filter configuration.

This representation unifies all the configurations we have discussed so far. It can be 
used in all of the applications suggested for other filters. However the optimal choice of 
the structure (number of channels and stages) and filters and orders in that structure in 
a given application seems difficult and requires further research.

One way of obtaining the structure in a given application may be the use of Wigner 
distributions (as in Fig. 3.3). Interpreting the signal and noise regions may yield a 
suitable structure.

3.5 Discrete Formulation

Up to now, the configurations have been discussed in a general framework which apply 
to both discrete and continuous time. To benefit from the insights of linear algebra and 
to simplify the notation, we will work with the discrete form of the configurations in 
this section. The continuous formulation is completely analogous but notationally more 
cumbersome.

Let F “* denote the discrete fractional Fourier transform matrix with order ak [20, 21, 
22] and A-k denotes the diagonal matrix whose diagonal elements are the elements of the 
filter vector =  [hk[l] hk[2] . . .  /ia:[A/·]]  ̂ :

hk[l] 0 . . .

0 hk[2] 0
0
0 0 /ijk[AT]

Then the overall matrix for the single-stage, multi-stage and multi-channel configurations 
are given by:

Aik = (3.12)

T s s =  F ~ “ A F “ ( 3 .1 3 )

T m s =  H ; J l i F - “''A ifcF“''

=  F - “" A m . . . F “* - “ ^ A i F “'

M

( 3 . 1 4 )

T „ ,c =  5 3  F " “'= A ik F “*
fe=l

=  F " “' A i F “ ' +  . . .  -I- F “" A m F “^ ( 3 .1 5 )
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We can obtain the other forms for the representations of Tgg and T^c of the single- 
stage and multi-channel configurations. To do this, we first identify the columns of the 
matrix F “ “* as fk,f

F-«A- _  f 2̂ ··. ffc.Tv] (3.16)

By using the unitarity of the fractional Fourier transform, the forward matrix F"* can 
then be written as

h,i
k̂,2

k̂,N J

(3.17)

T „  =

(3.18)

Here, fl j denotes the jth  row of the matrix F “*“ and (-)  ̂denotes the Hermitian conjugate.

If we plug the above forms of the forward and inverse discrete fractional Fourier 
matrices into equations 3.13, 3.14 and 3.15 we obtain the following forms for the matrices 
(Tss , Tms and Tmc) of the filtering configurations:

.7=1

X ) hM[j]fM,j iifj

N

X  hM[j] T mj 
J=i

M N

i2 J 2 h k [j]fk j4 j
k=lj=l 
M N

= X X /i4 i]T )fe ,·

where we introduced the matrices Tkj = h,j^l,j·

N
T„,« =

N

.i=i
(3.19)

T„,. =

(3.20)

From the above equations, it is evident now that the overall matrices of the single- 
stage and multi-channel configurations are linearly dependent on the filter coefficients 
hk[j] and the matrices Tkj play the role of a family of “basis matrices” which are used 
to construct the matrices Tgg and Tmc. It is also evident that Tms depends nonlinearly 
on the filter coefficients.
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The discrete formulation of the filter circuits can be similarly obtained. The overall 
system matrix Tfc would also be dependent nonlinearly on the filter coefficients.

3 .5 .1  E xten sion  to  the R ectangular C ase

In the previous section and in [8, 10, 13, 14, 15, 25, 26], the overall filter matrices 
Tss, Tms and Tmc are assumed tobe N x N matrices of full rank. In this section we will 
generalize these configurations to input-output relations where they may be of different 
length. Thus the resulting overall matrices will be rectangular.

In some applications, we may encounter situations where the signals (vectors) 
involved may have different lengths. For example consider the following simple system 
whose input and output are of lengths iV¡n and Â out respectively:

y  =  Hx. (3.21)

H e r e H , x , y  are of dimensions TVout x Â in> -̂ ¡n x 1 and iVout x 1 respectively. In order 
to handle such applications we can generalize equations 3.13, 3.15 by modifying the 
dimensions of the diagonal matrices A*:

i^ss)No„txNi„ ~  AjVout X N-m
M

(Tm c)^„„txyV .„ ~  ^N out (AA:)Ar„„tx//j„

(3.22)

(3.23)
ik=l

where is the discrete fractional Fourier matrix of dimension N x N and i-^k) 
is the diagonal matrix of dimension Nout x Nia.

(A.) NoutxÂ ii

(Afc)Nout ̂ Nu

hh[l]
0
0

0

0

0
0
0

0

hk[2]

0

0

0 hfc[iV] 0 _

Août ^  Air (3.24)

0 ...

hk[2] 0

0 hk[N] 
0

Août ^ Air (3.25)
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where N =  min(A în, iVout)· For the case Nont < Â in, last Â i„ -  N columns of the matrix 
(■̂ *)woutxWin whereas the last Nô t ~ N  rows of the matrix (A^) AToutXÂi, are zero
if -̂ out > -̂ in· We here note that if Â in 7̂  Â out there is an ambiguity in placing the 
elements of the filters to the diagonal. We choose to start from the upper left element 
of the matrix.

The generalization of the multi-stage configuration to rectangular matrices is 
somewhat ambiguous. The only necessary condition is to match the input and output 
stage dimensions. The dimensions of the other stages are not constrained and may be 
freely chosen. But in order to preserve the information as much as possible it is better 
to choose the dimensions equal or larger than N =  min(A/out, Ain) for each stage. We 
may set the first A i and last filter Am dimensions to Ajut x Anter and Anter x An 
respectively and take the dimensions of other stages to be equal to Anter x Anter , or 
may taper dimensions gently or somehow to match from An to A>ut· In our simulations, 
the results obtained from these two choices don’t differ significantly. However, more 
conclusive statements would require further research.

We can easily generalize the alternative representations of equations 3.18 and 3.20 
to the rectangular case as well;

M N

(Tmc) No., X JV,, = £  S  [i] (Tfci) N„„, X N,o
k=lj=l

(3.26)

(3.27)

where is again obtained by multiplying the jth. column of with the
jth  row of ;

T/{j[[?7i, n] — N¡̂ [̂jí n.] m — 1, . . . , Aout ] — 1) · · · ) An· (3.28)

3 .5 .2  C o m p lex ity  A n alysis

In this section we consider the implementation costs of each of the filtering configurations 
and compare them with the implementation cost of general linear systems. The main 
idea is that if the approximation in implementing a general linear system with parallel 
or serial filtering configurations with a few number of filters {M) is an acceptable one, 
significant reduction of cost is possible.
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Let the input be represented by Nin samples and the output by TVout samples. 
Digital implementation of such general linear systems will take 0(A'out-/Vin) time. 
Common single-stage optical implementations, such as optical matrix-vector multiplier 
architectures or multi-facet architectures [2] require an optical system whose space- 
bandwidth product is O(A^out- în)· On the other hand, the digital implementation 
of shift-invariant systems takes 0 (iVin logiVin +  min(7Vi„, TVout) +  Â out logA^out) ~  
0{N'logN') time (by using the FFT), where N' =  max(A/out, Â m)· Their optical 
implementation requires a pair of optical systems whose space-bandwidth products are 
0(A/in) and 0(A/out) (for instance, by using a pair of “2f” systems to take the Fourier 
transforms). The cost of single-stage fractional Fourier domain filtering is the same as 
that of shift-invariant systems which correspond to ordinary Fourier domain filtering 
since the fractional Fourier transform can be implemented both optically and digitally 
with approximately the same cost of ordinary Fourier transform.

In the above paragraph, we have implicitly assumed that all rows of the matrix 
representing the general linear system are linearly independent. Since the rank of a 
matrix always satisfies R < N =  min(A/out) A/jn), this is possible only when R =  Â out < 
Â in. In the general case, the rank R corresponds to the number of linearly independent 
rows. Multiplying these linearly independent rows with the input takes 0{RNin) time. 
Multiplication of other rows can be accomplished more easily since it is known that 
remaining (Â out — R) rows are known to be linear combinations of the other R rows. 
Since R coefficients are sufficient to characterize these rows, multiplying them with the 
input takes 0((A/out ~ R)R) time. The total amount of time is thus

0{RN,n +  (iVo„t -  R)R) = 0{R{N,n +  A/out) -  R̂ ). (3.29)

We are not able to propose a simple scheme for exploiting rank information in optical 
implementation, so that we again take the cost of optical implementation as before.

Now we turn our attentions to the implementation costs of rectangular multi-stage 
and multi-channel filtering configurations. Since each of these configurations consists of 
M  single-stage filters, the digital implementation costs are given by:

O (M(7Vin log Win -l· A/out log No.t + N)) ^  0{M N' log N') 

for the multi-channel configuration and

(3.30)

( M \  /  M  >

WinlogA^in +  ^ (m in (W jb _ i, A/fc)-I-A/fe log A ^*)) ~  I ^  m in(N A :-i, A(fc)-I-A/fc log Â jk
fc=l / \fc=0 >
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Figure 3.7: Cost comparison of exact and approximate implementations of linear systems.

M
0 ('£N^\osNt)

)b=0
(3.31)

for the multi-stage configuration. In the last equation Nk denotes the output dimension 
at stage k. It seems natural that N\̂  = Nq < N\ < N2 < . . .  Nm- i <  Nm =  A/out or 
Nia =  No > N1 > N2 > . . .  Nm-1 >  Nm =  Nout depending on whether Nn < Nout 
or Nia > Nout· For both cases we may approximately write the cost of the multi-stage 
configuration as 0{M N'log N'). Optical costs may be similarly found. The multi
channel system requires M pairs of optical systems whose space-bandwidth products 
are 0{N\u) and O(TVout)· The multi-stage configuration on the other hand can be 
implemented with M  +  1 optical systems with space-bandwidth products 0{Nk)·

For a simple illustration, we plotted the exact costs of each filtering configuration 
together with the cost of a general linear system as a function of N in Fig. 3.7. In 
this figure, we take M  =  10 for both the series and parallel configurations, and assume 
Nout =Niu = N and R = N.

The results presented in this section have been obtained in collaboration with Hakan 
Ozakta§.

37



3.6 Discussion

In this chapter we introduced the concept of fractional Fourier domain filtering 
configurations in fractional Fourier domains. These filtering configurations may find 
applications in areas where general linear systems are used. The aim is to approximate 
the general linear system with these filters with small M, so that similar performances 
can be achieved with lower implementation cost.

Both serial and parallel filtering configurations have at most MN  +  M  degrees of 
freedom. As discussed, their digital implementation will take 0{MN\ogN) time since 
the fractional Fourier transform can be implemented in 0{N logN ) time [20]. Optical 
implementation will require an M-stage or M-channel optical system, each with space- 
bandwidth product N. We see that these configurations lie (interpolate) between general 
linear systems and shift-invariant systems both in terms of cost and flexibility. If we 
choose M  to be small, cost and flexibility are both low. If we choose M  larger, cost and 
flexibility are both higher. In between, these systems give us considerable freedom in 
trading off eflftciency and flexibility for each other, the latter which will translate into 
a better approximation and greater accuracy in most applications. M = 1 corresponds 
to single-stage filtering. As M approaches N, the number of degrees of freedom of the 
introduced filtering configurations approaches that of a general linear system.

To see the cost-accuracy trade-off better, we consider the Fig. 3.8. In this figure 
we have plotted both the cost and error as a function of number of filters in a given 
application. The cost clearly increases as M  increases, and the error will decrease since 
we have more flexibility. If we eliminate the number of filters from both plots we obtain 
the cost-error plot.

The important point is that increasing M  gives us greater flexibility and will allow us 
to realize a broader class of linear systems, or put in a different way, to better approximate 
a given linear system. In other words, the capabilities of an M-filter system can be 
characterized in two ways. First, for a given value of M, we can realize a certain subset 
of all linear systems exactly (or to some other specified degree of accuracy). As M 
increases, the subset in question becomes larger and larger. Second, and perhaps more 
useful, is to consider the problem of approximating a given linear system. For a given 
value of M , we can approximate this system with a certain degree of accuracy (or error). 
For instance, a shift-invariant system can be realized with perfect accuracy with M = 1. 
In general, there will be a finite accuracy for each value of M. As M  is increased, the
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Figure 3.8: Cost-accuracy trade-off.

accuracy will usually increase (but never decrease). Thus, in the context of a particular 
application or problem, we can seek the minimum value of M  which results in the desired 
accuracy, or the highest accuracy (or minimum error) that can be achieved for a given 
value of M. Of course, this amounts to seeking the best performance for given cost, 
or least cost for given performance. Such cost-performance points are referred to as 
Pareto optimal cost-performance combinations. The locus of such Pareto optimal points 
constitutes the cost-performance tradeoff curve. Given our particular situation, we can 
choose the most desirable point on this tradeoff curve. We envision this approach to be 
particularly useful for relatively small values of M, on the low cost, low flexibility side of 
the tradeoff curve. This is particularly true in analog optical systems, where attenuation 
and noise would limit the number of stages or channels.

Naturally, the number of stages and filters required to attain a given accuracy will be 
smaller for matrices exhibiting greater regularity or other more subtle forms of intrinsic 
structure. In such cases, direct implementation of the matrix-vector product is clearly 
inefficient. The regularity or structure inherent in a given matrix can be exploited on a 
case by case basis through ingenuity or invention; most sparse matrix algorithms and fast
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transform algorithms are obtained in this manner. In contrast, our method provides a 
systematic way of obtaining an efficient implementation which does not require ingenuity 
on a case by case basis. This approach would be especially useful when the regularity 
or structure of the matrix is not simple or is not expressed symbolically or when we 
are presented with a specific matrix in numerical form for which no easily discernible 
regularity or structure is apparent.

A distinct circumstance in which the method may be beneficial, even when a strong 
intrinsic structure does not exist, is when it is sufficient to compute the matrix-vector 
product with limited accuracy. This may be the case when some other component or 
stage of the overall system limits the accuracy to a lower value anyway, or simply when 
the application itself demands limited accuracy.

The proposed systems can be used in a given application in one of two distinct ways, 
which we distinguish in detail in chapter 4. Here we only discuss briefly, (i) Starting 
with a signal restoration, recovery, reconstruction or synthesis problem, we determine 
the optimal linear estimation or reconstruction matrix using any models and methods 
considered appropriate. Or, we may simply be given a matrix H to multiply input 
vectors X with. Then, we seek the transform orders ojfc and filters h* such that the 
resulting matrices Tgs, Tms, or T„,c (as given by (3.13), (3.14) or 3.15) is as close as 
possible to H  according to some specified criteria, (ii) We take (3.13), (3.14) or 3.15) as 
a constraint on the form of the linear estimation or reconstruction matrix to be employed. 
Given a specific optimization criteria, such as minimum mean-square error, we find the 
optimal values of and hjt such that the given criteria is optimized. We will say more 
about these approaches in the next chapter.

The repeated and multi-channel configurations may be based on other transforms 
with fast algorithms, instead of the fractional Fourier transform. For instance, the three- 
parameter family of linear canonical transforms may be used in place of the fractional 
Fourier transform [88]. Concentrating on (3.15), the essential idea is to approximate a 
general linear operator as a linear combination of operators with fast algorithms. If an 
acceptable approximation can be found with a value of M  which is not too large, the 
computational burden can be significantly reduced.

For instance, the singular value decomposition (SVD) leads to a similar approxi
mation if we keep only the M largest singular values and discard the others: y  =  
[Eikli AfcUfc] X. Since Ufc is of outer-product form, its implementation takes only 0{N ) 
time for an overall implementation time of 0{M N). The similarity between equation 3.15
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and SVD lead us to a concept of fractional Fourier domain decomposition (FFDD) [89] 
which we will discuss in chapter 4.

The multi-channel configuration may also be used for windowed fractional Fourier 
transform applications. In this case we modify the configuration as in Fig. 3.9 so that 
for each channel or branch we first multiply the input with a window function 
to select the appropriate time-slot or local region. Here the matrix is a diagonal 
matrix with the window function on the main diagonal. The window function may be 
different for each channel or it may be same and only slided to the appropriate time 
slot. This modified multi-channel structure corresponds to filtering different time-slots 
of input in different fractional Fourier domains. The overall operator corresponding to 
this configuration is given by

7wl
M

k-l

=  +  . . . -l· (3.32)

and in discrete time
M

Twmc =
k=l 
M N

k=lj=l  
M N

k=lj=l

where Tkj =  fkj as before.

(3.33)

Up to this point, we have discussed the filtering circuits for one-dimensional signals. 
Generalization to two dimensions is easy if we use the separable definition of the fractional 
Fourier transformation. Generalization using non-separable definition is also possible but 
requires more care.
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Figure 3.9: Short-time fractional Fourier filter
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Chapter 4

Applications in System Synthesis

The filtering circuits concept discussed in the previous chapter may find many 
applications in signal and optical information processing. In this and the next chapters 
we will discuss some of the possible applications. To gain useful insight, we will 
divide application areas into three groups: system synthesis, signal synthesis and signal 
recovery.

In the synthesis applications our aim is to synthesize a desired input or output signal, 
or a desired system. We will apply the concept of fractional Fourier domain filtering to 
obtain the desired input-output relation or a desired signal. We will consider the signal 
synthesis problem in the next chapter. Here we discuss in some detail the problem of 
synthesizing a given desired system in the form of a filtering circuit.

The problem of approximately synthesizing a general linear system arises when we 
want to implement that system efficiently. If we can approximately synthesize a system 
in terms of a few number of other systems with efficient implementation algorithms, then 
we can reduce the cost considerably. In section 4.1 we will discuss this idea in detail, 
overview some existing methods and propose our method of synthesizing a general linear 
system in the form of fractional Fourier domain filters. We will also give simulation 
examples showing the effectiveness of the proposed filtering configurations.

Before going into the details of the system synthesis applications, we will first discuss 
the different solution methods that can be used in both signal and system synthesis, and 
signal recovery applications.
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D istinct A pproaches in A pplications

Here we will distinguish two distinct approaches which can be pursued for the signal 
synthesis and signal recovery applications to be discussed in the next chapters: (i) 
Starting with a signal restoration, recovery, reconstruction or synthesis problem, we 
determine the optimal linear estimation or reconstruction matrix using any models and 
methods considered appropriate. Or, we may simply be given a matrix H  to multiply 
input vectors X with. Then, we seek the transform orders and filters h;t such that 
the resulting matrices Tgg, T^g, or T^c (as given by (3.13), (3.14) or 3.15) is as close 
as possible to H  according to some specified criteria. This approach is nothing but the 
system synthesis we will discuss in this chapter, (ii) We take (3.13), (3.14) or 3.15) as a 
constraint on the form of the linear estimation, reconstruction or synthesis matrix to be 
employed. Given a specific optimization criteria, such as minimum mean-square error, 
we find the optimal values of a*, and such that the given criteria is optimized.

We will briefly discuss these two approaches below.

A pp roach  (i) : K ernel Synthesis

In this approach, given a matrix H with dimensions Nout x Ajn to multiply input 
vectors X with, we seek the transform orders and filters h* such that the resulting 
matrices Tgg, T^s, or T^c (as given by (3.13), (3.14) or 3.15) is as close as possible 
to H  according to some specified criteria. The desired matrix H  may represent the 
optimum general linear estimation or reconstruction matrix that is found by other 
standard or fast techniques. This problem is in fact the system synthesis problem 
discussed below in section 4.1. Thus we can also reduce the signal synthesis, signal 
recovery or reconstruction problems to be discussed in the next chapters to a system 
synthesis problem by first finding the optimal general linear system.

A pp roach  (ii) : K ernel Constraint

In this approach, we restrict the linear transformation between the input and output 
signals to the filtering configurations whose kernels are given by equations 3.13, 3.14, 
and 3.15. That is, we take these equations as constraints on the form of the linear 
transformations to be employed in a given application. We then search for the optimum 
filter profiles. This approach may be applied to both signal synthesis and signal 
restoration problems. However, the reader may also find different applications where 
significant improvements in performance is obtained when the linear transformation 
between the input and output signals is formed as one of the filtering operations discussed
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in chapter 3.

The formulation and application of this approach depends highly on a given 
application. So this approach will be discussed in more detail in later sections when 
specific applications are discussed. We also refer the reader to section 3.1 for an example 
application.

Although for both of the approaches (i) and (ii), the aim is to approximate a linear 
system by these configurations, the criteria used in each approximation is different. 
In approach (i), determination of the optimal general linear system (determination 
of the solution) is decoupled from determination of the filters and transform orders 
(implementation of the solution), whereas these are tightly coupled in approach (ii). 
However, we conjecture that this approach is more restrictive than approach (ii), for 
which a better tradeoff curve can be obtained. An interesting problem which remains 
open is to explore the relation between the filtering configurations obtained from these 
two approaches.

The single stage and multi-stage filtering configurations possess analytic solutions for 
both of the approaches in the applications we consider. The problem can be reduced 
to a least-squares problem that can be solved using linear-algebra methods. We refer 
the reader to section 4.1.1 for an example. However solving these equations may require 
excessive memory and time. The multi-stage configuration, on the other hand, leads to 
a non-linear set of equations that may be solved using iterative approaches. Below we 
will discuss a sub-optirnal method that can be used to obtain the filter coefficients for 
both of the approaches and for all of the configurations we propose.

Matching Pursuit Algorithm

We have to solve linear or non-linear equations in order to find the optimal filter 
coefficients in the both of the approaches above. These equations may become large 
and require high implementation cost when the signal sizes involved are large. A fast 
but approximate method that can be used for the solution of both approaches is the 
matching pursuit algorithm. This algorithm is an iterative algorithm and tries to find 
the optimal orders and filter coefficients one at a time.

In a given application, we start with a single-stage filtering problem (which is 
relatively easy compared to the other configurations) and find the optimal order and 
filter coefficients. We then modify the problem with this known single-stage filter, and 
apply the algorithm once again. We go on with this procedure until the number of filters
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M  is reached.

For example we consider the signal restoration problem of section 3.1 with multi
channel filtering configuration. The estimate is given by:

êst — TjncXobs

To solve the optimal orders and filters with matching pursuit algorithm we first find 
the optimal single-stage filter Tss.opt as in section 3.1. We then find the error signal 
e =  X -  Tss.optXobs and try to estimate e from Xobs by another single-stage filter:

min E [||e -  TssXobsĤ ]

We then update the error by using this optimal single stage-filter and try to estimate it 
yet by another single-stage filter. We go on with this process until the number of filters 
M  is reached.

This method can also be used in kernel synthesis approach that will be discussed in 
section 4.1.1. We will comment on this when we discuss kernel synthesis in detail.

The matching pursuit algorithm in general does not yield the optimal filter coefficients 
and fractional orders that can be achieved by chosen number of filters and configuration. 
It finds a sub-optimal solution. Its main advantage is that the solution can be obtained 
efficiently in an iterative manner.

4.1 General Linear System Synthesis

In a system synthesis problem, we want to synthesize a desired system, i.e. a specific 
input-output relation. This problem arises especially when the direct implementation of 
this desired system is costly and we can satisfy ourselves by an approximate but efficiently 
implementable system. Direct optical implementation of general linear systems requires 
optical components with space-bandwidth products of the order of N .̂ Similarly digital 
implementation of such systems requires 0 {N ‘̂ ) multiplications. If we can approximate 
the desired system by synthesizing or decomposing it with other systems with efficient 
implementations, we can reduce the cost considerably. This problem is in fact a well 
known problem and is also related with the signal compression problem. For instance, 
■̂ out X -̂ in matrix may both represent an image or a system acting on one-dimensional
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signals. Thus the decomposition of this matrix may be interpreted both as a two- 
dimensional image (signal) representation, or a decomposition of a linear operator which 
represents a system that acts on one-dimensional signals. When interpreted as signal 
representations, these synthesis or decompositions may be used for data compression and 
when interpreted as a operator decomposition they may lead to the fast implementation 
of that operator.

The singular-value decomposition (SVD) and unitary transform domain representa
tions are the most widely known and used decompositions. In this thesis we introduce 
the synthesis or decomposition in the form of fractional Fourier domain filters. We will 
also discuss below the fractional Fourier domain decomposition (FFDD). The FFDD is a 
matrix decomposition which has some different interpretations in addition to similarities 
as compared with the above existing decompositions. We will first review these two 
important class of existing decompositions and then discuss the FFDD. Our discussion 
will be based on matrices which can be interpreted both as an image (signal) or a linear 
operator characterizing a system. Generalization to higher dimensions is possible but 
excluded from consideration here.

The singular-value decomposition (SVD) plays a fundamental role in signal and 
system analysis, representation, and processing with many applications in diverse areas. 
The SVD of an arbitrary A/out x complex matrix H  is

^ N o u t X N i „  =  ^ N oxa X N in  '^N ou txN m  ĵvioXATj,,) (4 -1 )

where U  and V  are unitary matrices whose columns are the eigenvectors of and 
HIH respectively. The superscript 1 denotes Hermitian transpose. S  is a diagonal 
matrix whose elements Oj (the singular values) are the nonnegative square roots of the 
eigenvalues of and HlH. The number of strictly positive singular values is equal 
to the rank R of H. The SVD can also be written in the form of an outer-product (or 
spectral) expansion

R

i=i
(4.2)

where Uj and vj are the columns of U and V . It is common to assume that the aj are 
ordered in decreasing value. Equation 4.2 can also be interpreted as an expansion of the 
matrix H  in terms of basis matrices of an outer-product form u^v]. Each outer-product 
matrix can be implemented with a cost of 0{N).

It is well known that the least-squares rank R' approximation of the matrix H is 
obtained by keeping the largest R' eigenvalues in equation 4.2. Thus if some or most of
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the eigenvalues of H  can be discarded, we can reduce the cost of direct implementation 
considerably. Interpreted as a two-dimensional signal, this case also corresponds to data 
compression.

Another decomposition is the transform domain representation. The transform 
domain representation of an arbitrary Août x Ajn complex matrix H  is given by:

^NoMxNin — ^NlntxNout ( P N ^ „ x i
V̂out în

k=l j=l

(4.3)

(4.4)

where P  is a unitary fast transform, are the columns of P “ ,̂ and N̂ov,txN-,„ is the 
representation of PiNox,txNm in the transform domain. For instance, if P  =  F is the 
discrete Fourier transform matrix (DFT matrix), equation 4.4 then corresponds to the 
ordinary Fourier domain representation of

If most of the components of H can be discarded, equation 4.4 may also lead to 
fast implementation of H. However it would need to be truncated quite severely to 
lead to a satisfactory fast implementation. On the other hand, we can force H  to be a 
diagonal matrix for fast implementation. However, this would correspond merely to the 
single-domain version of the scheme we will present below.

In this thesis we propose to approximate a given arbitrary Aout x Ain matrix in 
the form of fractional Fourier domain filtering configurations given by equations 3.18, 
3.19 and 3.20. The problem of approximating a given arbitrary matrix in the form of 
equation 3.19 was introduced previously in [13]. Here we will discuss the multi-channel 
configuration keeping in mind that for M  =  1 it reduces to the single-stage configuration.

We first define the fractional Fourier domain decomposition (FFDD) of a matrix H 
as [89]

N'

HyVoutXJVin =
fc=l 
N' N

k=lj=l ôut X ̂ in

(4.5)

(4.6)

where A i, A 2, . · ·, are diagonal matrices each of whose A  =  min(Aout> Ain) elements 
correspond to filter coefficients as discussed, (Tkj) is as given by (3.28), and A ' =

V / N o u t
max(A^out,^in)· When H is Hermitian (skew-Hermitian), filters are real (imaginary).
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We also note that . Equation 4.6 is simply an expansion of H  in terms of
the basis matrices Tkj, where the hk\j] serve as the weighting
coefficients of the expansion.

Comparing and contrasting the FFDD with the SVD will help gain insight into the 
FFDD. If we compare one term on the right-hand side of equation 4.6 with the right-hand 
side of equation 4.1, we see that they are similar in that they both consist of 3 terms of 
corresponding dimensionality, the first and third being unitary matrices and the second 
being a diagonal matrix. But whereas the columns of U and V  constitute orthonormal 
bases specific to H, the columns of and F^“* constitute orthonormal bases for the 
Ofeth fractional Fourier domain. Customization of the decomposition is achieved through 
the coefficients hk[j] (and perhaps also the orders a^). Also to a certain extent, the 
inner summation in equation 4.6 resembles the outer-product form of the SVD given in 
equation 4.2. The Août, x matrices (T a:j ) are of unit rank since they are the
outer product of vectors.

We can also compare the FFDD with the transform domain representation. Although 
the equations 4.6 and 4.4 look very similar, the expansion we are proposing cannot be 
written in the form of (4.3) for any choices of a*, and hk[j]. In equation 4.4, the two 
summations correspond to the two dimensions, constituting an expansion in terms of the 
separable basis images PaipJ· On the other hand, in equation 4.6, one of the summations 
runs over filter coefficients whereas the other runs over different fractional domains. 
Whereas there is only a single fixed transform in question in the previous approach, here 
we have a summation over a series of fractional Fourier transforms with the parameters 
flfc, providing a much more flexible means of approximating a given matrix.

We now turn to the problem of approximating a system in the form of a multi
channel fractional Fourier domain filter. If we can approximate a given matrix H by 
keeping a moderate number of hk[j] in equation 4.6, we may reduce the implementation 
cost considerably as discussed previously in sections 3.6. Below we will discuss how filter 
coefficients hk[j] can be found in order to approximate the matrix H in the least squares 
sense. We will then give some examples to illustrate the applications.

Some of the results presented in this section have been obtained in collaboration with 
Hakan Ozakta§.
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4 .1 .1  Solution  o f  the S ystem  Synthesis P ro blem

In this section we will show how the optimal filter coefficients of a given fractional Fourier 
filtering configuration may be found. We define the problem again: Given a matrix H 
with dimensions Nout x Nin to multiply input vectors x  with, we seek the transform orders 
Uk and filters ĥ ; such that the resulting matrices Tgs, Tms, or T„,c (as given by (3.13),
(3.14) or 3.15) is as close as possible to H  according to some specified criteria. The 
criteria of the closeness between the desired matrix and the filter configuration matrix 
is taken as Probenious norm;

al =  \\H-T\\l, (4.7)

For matrices the Frobenious norm is defined as

Nout
|H -  TIIJ. =  E  E  -  T(m,n)

m = l n = l
(4.8)

The problem is then to find the optimal filters and domains such that the resulting- 
matrix T  G (Tss, Ttns, Tmc) minimizes â .

Let us consider first the single-stage configuration. If we plug the form of Tgs 
(equation 3.22) in (4.7), the problem is

min 11H Nout ^NoutxNi U«a 
 ̂Mr 1̂ · (4.9)

Since the fractional Fourier transform matrices are unitary, the above is equivalent to

mm Fa T T  T7«—a a
Nout^^Nu, ~ N̂outxNu |2If (4.10)

Minimizing the above expression can be achieved by maximizing the diagonal of the 
matrix by varying the order a and recognizing the corresponding filter
coefficients h[k] as the diagonal elements.

In the multi-stage case, the overall kernel Tms depends nonlinearly on the filter 
coefficients hk[j] as evident from equation 3.19. The solution of the optimization problem 
arising in this case is difficult. Nevertheless an iterative approach has been successfully 
applied to this problem [13, 14, 15].

In the multi-channel case, given the domains a*, the problem can be exactly posed 
as a least-squares optimization problem leading to an associated set of normal equations 
which can be solved with other standard techniques. To see this, we first plug the form
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of Tmc (equation 3.27) into (4.7) to define the problem as
M N

min II H -  (T*i)
k = l j = l Nout X -̂ ir &· (4.11)

It is necessary to first “vectorize” the above equation in order to interpret it as a least- 
squares problem. Let H  , and denote the iVout-̂ Vin x 1 vectors obtained by 
stacking the columns of H, Tmc and Tkj on top of each other. Finally, let h denote the 
MN  X 1 vector obtained by stacking the M  column filter vectors hi, h2, . . . ,  on top 
of each other (here N  =  min(A^out)- în) as defined in the previous chapter). With these 
conventions, we obtain

MN

Xmcb] =  I ]  iib] P =  1, 2, ■ . . , ^outWin,
q=l

(4.12)

where the indice q in this case follows a row ordering over the two indices kj, i . e . g =  (kj) 
when q = N* { k  — l ) + j  k = j  =  1,..., N. This equation can also be written
in matrix form as

=  [T 1I 2 . . .  h =  T  h> (4-13)

where the new NovLtNn x MN  matrix T  has been defined.

Now, we are finally able to state our problem in standard form as follows: Minimize 
the mean-square difference ||H — T„,(;||̂  between the desired H  and Tn,c =  Th. This 
is a standard least squares problem and can be solved in a number of ways. The filter 
vector h which minimizes ||H — Th||̂  is known to satisfy the so-called normal equations 
associated with the least squares problem:

; t  i  t i
T  H =  T  T h , (4.14)

st
where T  is the Hermitian transpose of T.

The solution to above proWem can be interpreted as projecting the vector H  onto the 
column space of the matrix T. This projection can be computed easily and efficiently 
when the columns of T  are orthonormal. The filter coeflBcients in this case can be 
obtained by simply taking an inner product of the columns of T  with H. When the 
columns of T  are not orthonormal, the problem may be an ill-posed problem and some 
form of regularization may be needed.

When M  =  1, the multi-channel configuration reduces to the single-stage filtering 
configuration. In this case the columns of the matrix T  becomes orthonormal so that
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it has an inverse and T  T  is the identity matrix. The solution of equation 4.14 can 
then be shown to correspond to the solution given for single-stage filtering. The inner 
product can also be computed efficiently since the columns of T  are related to the 
columns of the fractional Fourier transform matrix and the fractional Fourier transform 
can be implemented efficiently. When M  > 1, the columns of the matrix T  are no 
longer orthonormal and solving the problem requires high computation and storage. In 
this case, we can find a biorthonormal set to the columns of T  in order to compute the 
projections efficiently. However, the problem of finding the biorthonormal set requires 
at least the same cost as finding the direct solution. This method can be justified when 
the orders in the multi-channel configuration is set apriori and the same values will be 
used for several kernel synthesis problems.

In the above formulation, the fractional orders are assumed to be given. The problem 
of choosing the optimal orders can be solved with further optimization, but it is in general 
costly and difficult. When this synthesis problem is to be applied to several desired 
matrices with no regular relation between them, a practical approach may be to choose 
the orders uniformly from the interval (—1,1] so that =  —1 +  2k/M k = 1,..., M. 
This choice also improves the condition number of T  since from the continuity of the 
fractional Fourier transform, the problem becomes more ill-posed (singular values of the 
matrix T  becomes smaller) when the orders a* are close to each other.

An interesting case is obtained when the number of filters is taken to be exactly N' =  
max (Win, Wout)· In this case T  becomes a square matrix of dimensions WnWout x Win Wont 
and the number of filter coefficients (Wi„Wout) matches the number of elements of H. The 
question that arises is whether the desired matrix can be synthesized exactly. The answer 
depends on the rank of T. In the case it is full rank, we can find the filter coefficients 
and thus any desired matrix H can be synthesized with W'-channel filter structure. 
Unfortunately, the simulations showed that it is not full rank and thus not every H  can 
be synthesized.

On page 45 we mentioned that the matching pursuit algorithm may also be used 
in finding an approximate solution of the kernel synthesis problem. In this case, this 
method corresponds to projecting H onto the columns of T  one by one and after each 
projection subtracting the part of the vector that lies along that column. This method 
would give the exact result if the columns of T  were orthogonal.
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4 .1 .2  E xten sion s

In the applications to be discussed, we will encounter problems which correspond to the 
extensions of the problem described in the previous section. In this section we will briefly 
give the solutions to these problems.

Consider the problem of minimizing

al =  IIH -TG IIJ., (4.15)

where T  is in the form of a fractional Fourier domain filtering system i.e. T  G 
(Tgg, Tmc) Tms), H  is the desired kernel, and G is the given kernel pre-multiplying the 
fractional Fourier domain filtering system. This problem is very similar to the problem 
as defined by equation 4.7.

We first note that as before the single-stage problem is the special case of the multi
channel problem with M = 1. Here we don’t consider the multi-stage problem either, 
since we can easily generalize the iterative solution algorithm given in [13]. For the 
multi-channel configuration, we can proceed along the same steps as before. Given the 
domains a*, the above problem can Ije exactly posed as a least-squares optimization 
problem leading to an associated set of normal equations which can be solved with 
other standard techniques, just like in section 4.1.1. In fact, we can solve the problem 
by slightly modifying the method discussed there. We can rewrite equation 4.15, by 
plugging the form of T^c in equation 3.27,

M  N
min ||H -

k=lj=\

m in  ||H -  T f c j G || | .
k=l  j = l

M  N

m in  IIGd -
k = l j = l

II· (4.16)

where we have defined the matrix =  TfcjG. Now we can follow the steps given in 
section 4.1.1 by just replacing the matrix Tkj with T̂ ·̂. The filter coefficients may be 
found by solving the following equation:

î t  Î t Î
T ' Gd =  T ' T 'h , (4.17)

where T ' =  nnd the underlines denote the column vectors obtained
from the corresponding matrices by column ordering as in section 4.1.1.
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Another extension is the following problem of minimizing the following:

<7? =  ||H-GT|||.. (4.18)

Exactly the same method applies in this case. We just replace Tkj with Tĵ ·̂ =  GTjkj in 
the solution given in section 4.1.1. The filter coefficients may then be found by solving 
the following equation:

f " G d  =  f " f " h ,  (4.19)

where f " =  · · · T L m n ] and underlines denote the column vectors obtained
from the corresponding matrices by column ordering as in section 4.1.1.

Lastly, we consider the solution for the windowed fractional Fourier transform 
configuration introduced at the end of section 3.6. The problem is then minimizing 
the error,

al = ||H-Twmc|||· (4.20)

where T^nic is as defined in equation 3.33. We can proceed as in section 4.1.1 and plug 
the expression of T^mc into the equation 4.20:

M  N

=  l|H -
k=ij=l

(4.21)

We can then go on as before by replacing Tkj with Tkj'Wk in the solution given in 
section 4.1.1 and find the optimal filter coefficients for given UfeS.

4.2 Examples

Some application examples of the system synthesis problem will be given in chapters 5 
and 6 where we will first find the general optimal linear system in a given application 
(signal recovery, signal synthesis) and then try to synthesize it as a fractional Fourier 
domain filtering configuration. In this section we will give few examples illustrating the 
applications of the system synthesis problem. These examples were first studied in [13] 
for multi-stage (repeated) filtering configuration.

We first consider the problem of synthesizing the Hadamard transform which is one of 
the standard unitary transformations in signal processing. Its definition and properties 
may be found in [4]. Here, we synthesize this transformation with our fractional Fourier
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domain filtering configurations, and for N =  128 we find the normalized errors, defined 
as

IIT -  Wl |2 .
Tmc), (4.22)€H =

|T -  H|||
m i

T  G (Tgg, Tms)

to be 48% with single-stage filtering, 4% with the multi-stage (repeated) filtering with 
five filters and 8% with the multi-channel filtering with seven filters . (We choose ak =  
0 + {k — l )/6 A: =  1, 2,..., 7 as the fractional Fourier domain orders.) We see that 
the multi-channel configuration is not suitable for the synthesis of this transform and 
the multi-stage configuration yields better performance. Lower error figures could be 
obtained if we optimized over the fractional orders.

In the second example, the problem of realizing one-to-one interconnection patterns 
between N input and N  output channels is considered [1, 2], and will try to implement 
these interconnection patterns with the filtering configurations introduced in this thesis. 
Some of the methods of realizing such interconnections have been discussed in [1, 2], and 
the conclusion is reached that the multistage architectures based on regular patterns 
such as the perfect shuffle or Banyan are most favorable. Here we will investigate the 
use of fractional Fourier domain filtering configurations. Our method not only provides 
a systematic way of designing such systems, but the implementation of such systems 
may be more convenient and/or cheaper since the present approach is based on the use 
of conventional spatial filters rather than microoptical elements.

Any one-to-one interconnection architecture between N input and N  output channels 
is characterized by its associated N x N permutation matrix. In such a matrix every 
row and column has only one nonzero element which is equal to one. We synthesize the 
interconnection architectures by synthesizing their associated permutation matrices.

As an example, the reverse perfect shuffle architecture shown in Fig. 4.1 is 
considered(after [13]). This interconnection pattern can be synthesized exactly by 
using 6 filters in multi-stage filtering configuration and with an error of 1% by using 
6 filters in multi-channel configuration {ak = k/6 A: =  1 ,2 , . . . ,6). We have also
considered a large number of interconnection patterns which do not exhibit any obvious 
regularity. In all cases, these patterns could be realized with a moderate number of 
filters. Conventional multistage permutation network architectures can realize arbitrary 
permutations in 0 (log  N) stages. Extensive numerical experimentation on many different 
arbitrary permutation matrices indicates that the proposed method is also able to realize 
these in a similar number of filters. Although it is not difficult to achieve the desired 
architecture with a moderate number of stages, in most cases it is possible to get away



Figure 4.1: Reverse perfect shuffle interconnection architecture. (After [13])
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with an even smaller number of stages, since due to the digital nature of such systems a 
considerable deviation can be tolerated while still retaining an acceptable eye pattern.

It may have been possible to come up with an optical setup with a comparable or 
even fewer number of stages through ingenuity and invention. Our approach, on the 
other hand, provides a systematic way of obtaining such an implementation. This would 
be of great utility especially in those cases where the structure of the transformation 
matrix is not simple or even when we are confronted with a matrix supplied in numerical 
form for which no easily discernible structure is apparent.
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Chapter 5

Applications in Signal Synthesis

We discussed the application of the proposed filtering circuits to system synthesis in the 
previous chapter. There given a desired system, we wanted to synthesize it in the form of 
fractional Fourier transform filtering circuits. In this chapter our aim is to synthesize a 
desired input or output signal by using the concept of fractional Fourier domain filtering.

One important application of the signal synthesis problem arises in optics where we 
want to synthesize a desired optical wave, from a given optical wave both of which are 
characterized by their statistical properties. These statistical properties are in general 
in the form of second-order statistics and as discussed below this leads to non-linear 
quadratic equations in most of the cases. We will propose a method which reduces these 
non-linear equations to linear ones and hence enables us to find an analytic solution. 
We will discuss this method in detail and also comment on the drawbacks. We will 
also give some simulation examples showing the effectiveness of the proposed filtering 
configurations in this problem.

5.1 Signal Synthesis

In some applications we want to synthesize a signal from another signal by designing a 
system that maps the signal we have to the desired one. The problem of obtaining a 
specific output Xout corresponding to a specific input Xin is not an interesting problem if 
Xin has all nonzero entries because we may recover Xout from Xi„ by using only a single
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multiplicative filter h. However, in the event that some of the entries of x,„ are zero, the 
problem is no longer trivial. A number of iterative algorithms have been proposed for 
this problem. We may also want to obtain an output Xout is obtained in a specific 
manner from the input, i. e. we can specify the input-output relation. However, for an 
arbitrary input, this problem reduces to the system synthesis problem discussed in detail 
in section 4.1. If some information is available about the input (in some statistical form), 
and we again want to synthesize an input-output relation that is effective for that input, 
the problem may be written as:

min E H x -  Tx|| ]̂ (5.1)

where T e  (Tss, T^s, T^c)· This problem, although having a different physical 
interpretation, is very similar mathematically to the problems we will introduce in 
section 6.1 and may be solved using approach (ii), by directly putting the form of T  
and optimizing over the filter coefficients (and possibly the orders). Another synthesis 
problem is to synthesize an input in order to have a desired output. Again although 
having a different interpretation, this problem is mathematically identical to the problem 
of signal recovery where we have an output which may be interpreted as the desired signal 
and we try to recover the input which may be interpreted as the signal to be synthesized.

Many synthesis problems also arise in optics. One important problem is to synthesize 
arbitrarily specified mutual intensity distributions from a given source with a given 
mutual intensity distribution. The systems required to achieve this goal can be efficiently 
constructed in the form of generalized fractional-Fourier-domain filtering configurations.

The mutual intensity of a quasi-rnonochromatic optical field is defined as the spatial 
autocorrelation of the field [95]:

Rx{uuU2) =  E[a;(ui)x*(u2)] (5.2)

where x{ui) represents the complex amplitude of the optical field at u =  « i. It has 
been shown that the propagation of mutual intensity through quadratic-phase systems 
[91] can be expressed as a double fractional Fourier transform [57, 49, 52]. Quadratic- 
phase systems include systems consisting of arbitrary concatenations of thin lenses and 
sections of free space [45, 47]. Single-stage fractional Fourier domain filtering has already 
been used to synthesize mutual intensity distributions in [58]. In this thesis we will 
generalize the formulation to filtering circuits so that it becomes more transparent and 
straightforward. Furthermore, it allows the optimal form of the required filters to be 
calculated in a much more computationally efficient manner.
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The basic problem we deal with is symbolically depicted in Fig. 5.1. We assume 
we have a quasi-monochromatic light source with given mutual intensity Rx{u,u'). We 
wish to design the system h{u,u'), possibly subject to certain constraints, such that the 
output mutual intensity Ry{u,u') satisfies as closely as possible the given specifications. 
One-dimensional notation is employed for simplicity, although it is possible to generalize 
the results to two dimensional problems.

Once the optimal kernel h{u,u') is determined, there remains the problem of 
implementing it. One way of implementing such general linear systems is to employ 
matrix-vector product architectures or multi-facet architectures [97]. However, these 
approaches are not space-bandwidth efficient. If the input has a space-bandwidth 
product of N  (that is, if it can be represented by a vector of length N), these systems 
require an optical system with space-bandwidth product in order to realize an 
arbitrary linear system. To alleviate this inefficiency, we can incorporate the space- 
bandwidth efficient filtering configurations in fractional Fourier domains discussed in 
chapter 3. Once, the general linear synthesis kernel h{u, u') is somehow obtained, we can 
employ approach (i) to synthesize the optimal kernel h{u, u') with these configurations. 
We can also employ approach (ii) by taking the form of these filtering configurations as a 
constraint on h{u, u') and by optimizing over the free parameters of these configurations.

Referring to Fig. 5.1, the output field y{u) is related to the input field x{u) through 
the relation

/ OO

H{u,u')x{u')du\ (5.3)
-OO

which can be discretized as
N

H{m,n)x{n), (5.4)
n=l
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y =  Hx, (5.5)

where N  is the space-bandwidth product of the signals. For simplicity in notation, we 
will assume that the dimensions of the input and the output optical fields are same 
although the discussion and the solutions we will provide may easily be generalized to 
the rectangular case where the input and the output dimensions of the optical system 
differ. The mutual intensity is the autocorrelation of the field;

R x {u i ,U2) =  E[x(ui)a;*(u2)], (5.6)

and similar for y{u). Here E[·] represents the expectation value. In discrete form this 
becomes

Rx(m,n) = ^[x{m)x* {n)], 
Ra; =  E[xx^],

(5.7)
(5.8)

where  ̂denotes the Hermitian transpose or conjugate or adjoint, and a similar definition 
holds for Ry.

It is easy to show that the output mutual intensity is related to the input mutual 
intensity through the relation

/ OO POO

I i i H  (u2, U2). âi(uj ,̂ U2) duj du2 (5.Q)
-00 J—00

Although we could directly discretize this relation, we will instead multiply both sides 
of equation 5.5 with their Hermitian conjugates and take the expectation value:

E[yyt] =  E[(Hx)(Hx)^] =  HE[xxt]Ht,

Rj; =  HRa,H^
(5.10)
(5.11)

Since the right-hand-side of the last equation is quadratic in the elements of H, 
it is desirable to introduce a representation for the mutual intensity which makes this 
equation linear in H. As a direct consequence of its definition (equation 5.8), the mutual 
intensity matrix is known to be Hermitian symmetric and positive semi-definite, as all 
autocorrelation matrices are. Such matrices can always be expressed in the form R 3; =  

in fact in several different ways. Since Rj, is Hermitian symmetric, it can be 
diagonalized by a unitary matrix U whose columns are the eigenvectors of Ra,:

R^ =  UDUt (5.12)
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where D  is the diagonal matrix of real eigenvalues. For a positive semi-definite matrix, 
the eigenvalues are always greater than or equal to 0. The above representation is just 
the singular value decomposition of the matrix Ra,. It can also be written as

R
Ra; =  Aa; UfcuJ (5.13)

k=l
where is the A:th column of U, is the eigenvalue corresponding to u*, and R is the 
number of non-zero eigenvalues. This representation is also known as the coherent mode 
representation in optics [98] since each term in equation 5.13 corresponds to a coherent 
mode of light [96]. The number of non-zero eigenvalues determines the rank of D and 
hence the rank of the mutual intensity function Ra,. The rank is closely related to the 
coherence degree of the light since it represents the number of coherent modes. For 
example, for fully coherent light the rank is 1 so that mutual intensity function can be 
represented by a single coherent mode and the mutual intensity matrix is of an outer 
product form. For the other limit which is incoherent light, the rank is N and the mutual 
intensity matrix corresponds to a diagonal matrix. (We should here note that not all 
full rank mutual intensity functions represent incoherent light.) In between, the light is 
partially coherent and 1 < r < N.

If we plug 5.13 in 5.11, we obtain

=  13 AfcVAvl
R

(5.14)
*=1

where v*, =  Hufc. Here we should note that this equation does not correspond to the 
coherent mode representation for Rj, unless H is unitary. In this representation v^ do 
not in general form a orthonormal set and A* does not correspond to the eigenvalues of 
Rj,. In [98], with some specific approximations and for unitary H this representation is 
used for solving inverse source problems in optics.

To solve the synthesis problem defined in the previous section we first define 
to be the diagonal matrix whose elements are equal to the non-negative square roots 
of the eigenvalues of D  (equation 5.12), in the same order. Then we can write D =  

since U^U is equal to the identity matrix. It follows that

R, = UDUt = (UD'/2ut)(UD^/2ut) = = r r̂ Î  (5.15)

where we have defined R j =  R|. =  Thus the mutual intensity matrix R^ is
related to the positive semi-definite square root representation R® through the relation

R j =  Ra,Ra; =  RxR^. (5.16)
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Using the above representation both for and Rj,, equation 5.11 can now be written
as,

Ry =  HR^Ht, 

R^Rj =  HR^R^H^
(5.17)

(5.18)

One solution of this equation is
Ry =  HR^. (5.19)

In order to synthesize this desired matrix H  we can first find it by standard techniques 
such as pseudo-inverse and least-squares methods [93] and then we may synthesize it in 
the form of fractional Fourier domain filtering configurations using approach (i) described 
in section 4.1.1. Or we may employ approach (ii) by directly plugging the form and 
finding the optimal filter coefficients and orders as in section 6.1. For instance, in the 
multi-channel configuration the problem is to find the optimal filter coefficients which 
minimizes the error:

— 11̂ 1/ ~ T hicR i IIf

(M N
E E M i ] t f c , | R x i

k = l j = l
(5.20)

This problem is exactly the same as the one defined in section 4.1.2, and thus can be 
solved in the same manner.

The solution of 5.19 clearly depends on the choice of matrices and which 
are not unique. We can find other matrices (Ra;)2 and (Rj,)2 which satisfy equation 
5.15. Since we are working with an arbitrary member of possible matrices, we are not 
exploiting all possible rooms for improvement. One desired matrix may be implemented 
more eflficiently in the form of fractional Fourier domain filters than other.

Lemma 1: The rank of R|. is equal to the rank of Ra·.

Lemma 2: The rank of Rj.Rx is equal to the rank of RxR|, which is equal to the 
rank of Rx.

These two lemmas can be shown by using the SVD of the matrix Rx.

Theorem 1: If Rx has rank r, then the rank of Rx is also r.

Theorem 2: If Rx (hence Rx) has rank r, then the rank of Rj, (hence ^ )  can be 
at most r.
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The proofs of these theorems directly follow from lemma 1 and 2 and the properties 
of the rank.

As already mentioned, it is possible to find many matrices (Ri)p labeled by p which 
satisfy Rj; =  (Rj;)p(R3;)l. (Ra;)p is necessarily of rank r. If its dimensions are N x Mp, 
then r < Mp. The first reason for the multiplicity of such matrices is that the choice 
of U  in equation 5.12 is not unique when the eigenvalues are not distinct or the rank 
r is less than TV — 1 (this in fact means that we have multiplicity for the eigenvalue 
0). In this case, within the subspace associated with each degenerate eigenvalue, the 
choice of orthonormal basis is not unique. Secondly, we may define the matrix 
to be the diagonal matrix whose elements are equal to the negative square-roots of the 
eigenvalues of Dj, rather than non-negative square-roots, or we may choose non-negative 
square-roots for some of them and negative square-roots for other. Thus an ambiguity 
also arises in choosing the matrix And lastly, let V  be a possibly rectangular
matrix of dimensions Mp x Q which satisfies VV^ =  Iĵ fp. (This implies that the Mp 
rows of V  are orthonormal, which implies that Q >  Mp.) Then it is easy to see that 
if Ra; =  (Ra;)p(Rj;)l tlicn (Ra:)p' =  (R i)pV  also satisfies Rj, =  (Rj,)p/(Rj;)^,. We know 
that any two such matrices would satisfy a relation

(R:c)p' =  (Rx)pM

for any value of rank r since we know from the theory of SVD that (Rx)p' and (Rx)p 
have the same column space thus we can find such a M  matrix[93]. It can be further 
shown that if the matrices (R t)p' and (Rx)p' are of dimensions N x r, then the matrix 
M  is unitary.

For the semi-definite square-root representation we require the condition (R-i)p =  
(Rx)l so (Rx)p should be of dimensions NxN.  The non-uniqueness of this representation 
also stems from the degenerate eigenvalues and from the fact that there are two possible 
square-roots of the eigenvalues of R^ leading to different D^^s. We may choose the 
positive square-roots for some eigenvalues and negative square-roots for the others. For 
each choice we get different (Rx)p. The choice also depends on the choice of basis vectors 
that span each subspace associated with the degenerate eigenvalue. The more we have 
degenerate eigenvalues, the more we can find matrices (Rx)p satisfying R^ =  (Rx)p(Rx)p. 
If we assume both R^ and Rp are of full rank, and have distinct eigenvalues and we choose 
only the positive square-roots of the eigenvalues, then we can find a unique R^ and Rp, 
and hence a unique solution to the above procedure. (Here we exclude the possibility of 
different orderings of eigenvalues in the diagonal matrix D  and assume the conventional
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practice of placing the eigenvalues in decreasing order. But this has no effect on the 
solution since the resulting matrix (Rj.) is unique and independent of how we place 
the eigenvalues, once we choose the eigenvectors.) But in general as discussed above 
we can find many solutions some of which may lead to more efficient implementations 
with fractional Fourier domain filtering. Nevertheless we will use this semi-definite root 
representation in order to reduce the quadratic mutual intensity synthesis problem to a 
linear one keeping in mind that it may have more than one solution.

Algorithm:

Overall the mutual intensity synthesis problem can be solved by the following 
algorithm:

• Given the desired mutual intensity function Rj, and the input mutual intensity 
function Rj;, find the square root representations using the singular-value- 
decomposition: Rj; =  U.i;Dy^U|, and R j, =  Uj,Dy^U|, where R ,̂ =  UajDjjUl, 
and Rj, =  Uj,Dj,Uj.

• Form the equation Rj, =  HRi and solve for H using well known linear inverse 
problem solution techniques [93]. If there exists no solution (which means that 
required synthesis is in fact physically unrealizable), solve the problem in the least- 
squares sense. Synthesize the desired kernel in the form of fractional Fourier domain 
circuits using the algorithm discussed in section 4.1.1.

or

• Find the fractional Fourier domain circuit which minimizes the error ||]̂  — TRa;|||. 
where T  € (Tss, Tmc, Tms), using the similar procedures described in section 6.1.

In this section, we formulated the mutual intensity synthesis problem, proposed a 
solution that reduces this quadratic problem into a linear one and discussed some of the 
drawbacks of the method. The main point is that the system that satisfy (5.19) can be 
used to synthesize the desired mutual intensity function from an input mutual intensity 
function. However, there may be many such equations with different semi-definite roots. 
One solution may be implemented niore efficiently by using fractional Fourier domain 
representations than other solutions. It is possible optimize over the set of possible 
solutions, but this is not undertaken in this thesis.

We may also try to directly solve the quadratic problem with iterative procedures.
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One way is to assume an initial H q in the form of a fractional Fourier filtering system 
and solve for the next H i which minimizes the error by generalizing the method given 
in [58]. This approach is also nor undertaken in this thesis.

A dual problem of synthesizing the desired mutual intensity function from a given 
light source is to synthesize the light source which after passing through an optical system 
results in a given output mutual intensity function. We may synthesize that source from 
another light source available or we may obtain it from the given (observed) output so 
the problem is essentially an inverse problem. Referring to Fig. 5.1, our aim is first to 
find the input mutual intensity function Rj, in the least squares sense, given the output 
mutual intensity function Rj, and the system H. Mathematically this corresponds to 
finding the Rj; that minimizes the error defined as

c l  =  ||R, -  HR.H'|||. (5.21)

where H is the known system. Although interpreted from a different perspective here, 
the above problem is mathematically identical to the signal recovery problems to be 
discussed in the next chapter (there we interpret the above equation as to recover Rr 
from Rj,). Here we only state that although not the most robust approach, R^ can be 
found by using the left and right pseudo-inverses of H and respectively [93].

After we find the mutual intensity function R-c, we can synthesize it from the output 
optical wave y  or from another optical source using the algorithm discussed in this 
section.

5.2 Examples

In this section we will give some computer simulations that show the applications of the 
mutual intensity synthesis problem.

First we will consider the synthesis of a Gaussian Schell-model (GSM) beam from an 
incoherent source. Then we will consider the synthesis of a Gaussian Schell-model beam 
from another Gaussian Schell-model beam. The mutual intensity function of this type of 
beam at the source can be represented by the superposition of Hermite-Gaussian modes 
[98, 99]:

OO

Ry{uuU2) =  X ) K'>Pn{ui)i}l{u2) (5.22)
71=0
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where V’n(-) is the nth order Hermite-Gaussian function discussed in chapter 2. For 
computer simulations, the above function is discretized using the definition of the discrete 
Hermite-Gaussian functions [21, 22]:

N - l
(5.23)

n=0

Here ^  is the nth order discrete Hermite Gaussian vector of length N  given in [22]. Since 
the discrete Hermite Gaussian vectors are orthonormal to each other,

%h =: Mn — m]

the expansion in equation 5.23 also corresponds to the coherent-mode representation 
of the beam (or the singular-value-decomposition of Rj,) with Hermite-Gaussians as 
coherent modes. We want to synthesize such a beam from an incoherent source whose 
mutual intensity function is given by

Rx{ui,U2) =p{ui)S{ui -  U2) (5.24)

in continuous time, and in discrete time

Rx =  (5.25)

where is a diagonal matrix of full rank.

Example 1:

In our first example, the expansion coefficients A„ in the equation 5.23 are chosen as 
plotted in Fig. 5.2 (a) with N =  64. With this choice the mutual intensity matrix Rj, 
is full rank, has no degenerate eigenvalues, and is shown in part (b) of the same figure. 
The mutual intensity of the incoherent source is taken to be the identity matrix, R^ =  I. 
The semi-definite roots are then given by:

R-x =  I
N - l

(5.26)
n=0

The desired system kernel H which satisfies Rj, =  HRa, is then simply given by H =  Rj,. 
When we synthesize this desired H  in the form of a single-stage filter, the normalized 
error, which is defined as

(8-27)
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turns out to be 22% in the optimum domain a =  0.4. For the multi-channel filtering 
configuration with M  =  4 filter.s, the normalized error is 4%, and for the multi-stage 
configuration with M  =  4 filters, ii is 3% (ai =  0.25, 02 =  0.5, =  0.75 and 04 =  1 for
both configurations). The normali/od errors

m̂ut
_  HR, -  TR,Tt||| ,
— 11X51 1 2  ’ J -m c j -Lm s/ (5.28)

in the synthesis of are then 34%, 7%, and 6% for the single-stage, multi-channel 
(M  =  4), and multi-stage (M  =  4) configurations respectively. The synthesized mutual 
intensity functions are plotted in Fig. 5.3

Expansion Coefficients

Figure 5.2: (a). The expansion coefficients of equation 5.23 used in the example 1. (b). 
The mesh plot of the resulting desired mutual intensity function Ry.

We can also take approach (ii) and directly find the optimal fractional Fourier domain 
filtering configuration by minimizing the error ||Ry — TRa;|||.. But since R® is identity 
matrix, and H  =  Ry this approach would yield the same result as above.

To illustrate the cost performance trade-off in this problem we have plotted the 
number of filters vs error plot for multi-stage (repeated) and multi-channel configurations 
in Fig. 5.4.

Example 2:
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Figure 5.3: (a). Synthesized mutual intensity function using single-stage filtering 
(b). Synthesized mutual intensity function using multi-stage filtering {M =  4) (c). 
Synthesized mutual intensity function using multi-channel filtering (M  =  4)

In the second example, the expansion coeflScients in the equation 5.23 are chosen as 
plotted in Fig. 5.5 (a) with N =  64. With this choice the mutual intensity matrix Rj, is 
of rank R =  52, has 5 degenerate eigenvalues and is shown in part (b) of the same figure. 
The mutual intensity of the incoherent source is again taken to be the identity matrix, 
Rj; =  I. The semi-definite roots are then given by:

Rx =  I

Rv =  E
71=0

(5.29)

The desired system kernel is then simply equal to Rj,. When we synthesize this desired
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Figure 5.4: Normalized error in signal restoration example versus number of filters for 
(a) multi-stage (repeated) case, (b) multi-channel case.

H  in the form of a single-stage filter, the normalized error ch turns out to be 20% in 
the optimum domain a =  0.6. For the multi-channel filtering configuration with M  =  5 
filters, the normalized error is 5% and for the multi-stage configuration with M =  5 filters 
it is 6%. The normalized errors Cmut in the synthesis of Rj, are then 30%, 9%, and 11% 
for the single-stage, multi-channel {M =  5), and multi-stage (M =  5) configurations 
respectively. (In both of the multi-stage and multi-channel configurations we choose 
Oi =  0.2, 02 =  0.4, 03 =  0.6, 04 =  0.8, and 05 =  1.)

Also in this example approach (ii) yields the same result as above.

E xam ple 3:

In the last example, we consider the problem of synthesizing a GSM beam from 
another GSM beam. The expansion coefficients of the given GSM beam and desired (to 
be synthesized) beam are plotted in Fig. 5.6. With these choices of coefficients R* is of 
rank i? =  50 and Rj, is of rank i l  =  60 and both have degenerate eigenvalues. Since Rj, 
has a rank greater than of R®, there exist no system H  exactly satisfies Rj, =  HR^H^ 
We are seeking H  in the form of a fractional Fourier domain filter which minimizes the 
Frobenious norm between synthesized and desired mutual intensity functions. Since R^ 
is of rank R =  50, we can at most achieve a synthesized mutual intensity function of 
rank R =  50. On the other hand, we know that the best rank 50 approximation of Rj, 
in the Frobenious norm criteria is achieved by keeping the largest 50 eigenvalues of Rj, 
and discarding the others. Thus our problem in this example reduces to synthesize Rj, 
from Ra; where ^  is the rank 50 approximation o f Rj, obtained by keeping the largest
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Expansion Coefficients

Figure 5.5 
The mesh

: (a). The expansion coefficients of the desired GSM beam in example 2. (b). 
plot of the resulting desired mutual intensity function Ry.

Expanxlon OMfflctonts of R

Figure 5.6: 
beam, Ry.

The expansion coefficients of (a), given GSM beam, Rj;» (t>)· desired GSM

50 expansion coefficients.

The desired system kernel H  which minimizes ||Ry -H Rx||^ can be found by solving 
linear equations. When we synthesize this desired H  in the form of a single-stage filter, 
the normalized error, ch, turns out to be 27% in the optimum domain a =  -0 .5 . For the 
multi-channel filtering configuration with M  =  5 filters, the normalized error is 10% and
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for the multi-stage configuration with M  =  5 filters it is 13%. The normalized errors, 
Cmut, in the synthesis of Ry are then 48%, 18%, and 21% for the single-stage, multi
channel {M =  5), and multi-stage {M =  5) configurations respectively. (In both of the 
multi-stage and multi-channel configurations we choose ai =  0.2, 02 =  0.4, 03 =  0.6, 
an =  0.8 , and =  1.)

Desired R

0 . 5 -

(a)
Synthesized R

0 . 5 -

(b)

Figure 5.7: The mutual intensity functions of (a), the desired GSM beam (b). the 
synthesized GSM beam.

We can also take approach (ii) and directly find the optimal fractional Fourier domain 
filtering configuration minimizing the error =  ||Ry — TRx||^. For the single stage 
filtering, the normalized error in the synthesis of Rj, turns out to be Cmut =  38% 
and it is 15%, and 17% for the multi-channel and multi-stage filtering configurations 
respectively. M  =  4 for both configurations. The mutual intensity function of the GSM 
beam synthesized by using multi-channel filtering is shown in Fig. 5.7 together with the 
desired GSM beam.
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Chapter 6

Applications in Signal Recovery

In the previous chapters we discussed the applications of filtering circuits in signal and 
system synthesis problems. In this chapter we will concentrate on the signal recovery 
applications of filtering circuits.

In the recovery applications t he aim is to recover the desired signal or system 
from the observed degraded data. This problem is well known to be an ill-posed 
problem. The general linear solution to this problem is known. However, the optical 
implementation of this direct solution would require very high space-bandwidth products. 
For this reason, fast methods such as conjugate gradient, LMS type algorithms are often 
employed. The problem with these, iterative algorithms is that generally they can not 
be implemented optically. Thus wo' propose that filtering circuits which have efficient 
optical implementations may be us(;d instead.

6.1 Signal Recovery and Restoration

In many signal processing and optic al information processing applications, signals which 
we wish to recover are degraded by a known distortion and/or by noise. A simple 
example of this is the transmission of a signal through a channel or medium, yet another 
example is the degradation of optical images by the effects of imaging through a medium 
such as air and liquids. The problem is to reduce or eliminate these degradations to 
recover the original signal or some other desired signal which is obtained from the original
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signal. Appropriate solutions to siu h problems depend on the observation model and the 
objectives, as well as the amount of prior knowledge available about the desired signal, 
degradation process and noise. A < ornmonly used observation model is

g =  Qx-\- n, (6.1)
where Q is the linear system that degrades the desired signal (may be an image) x, and 
n is an possibly additive noise term (Fig. 6.1).

n

g
Figure 6 .1; Obseia ation model for the degraded signal

The problem is to recover the oi iginal signal or another desired signal obtained from 
the original signal by using a linear system. To achieve this goal, we can employ pre- 
or post-compensation filters depending on the application. The pre-compensation or 
reconstruction filter configuration is shown in Fig. 6.2. In this configuration, we apply 
the estimation filter H  before the transmission channel or medium which degrades the 
signal. Our aim is to obtain the signal y which is as close as possible to the desired 
signal y =  Q^x (shown in the lowca part of the figure) at the receiver end. This type of 
configuration may be useful, for example, when there is one transmitter and it transmits 
a signal to many receivers. In this case we obviously don’t want to implement many 
estimation filters for each receiver, since it will increase the cost of a receiver. Instead, 
we can use one pre-filter configuration at the transmitter to compensate the effects of 
the transmission medium.

There may be situations where we don’t have access to the transmitter end. A simple 
example is ground-based astronomical imaging for which the quality of the optical image 
from the stars is degraded by the |)ropagation media, such as atmospheric turbulence. 
In this case we can apply the post-compensation filter configuration shown in Fig. 6.3. 
Here the aim is to find the linear filter Ti which yields the signal y that is as close as 
possible to the desired signal y ~ C/df-
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n

■y

Figure 6.2: Pre-compensation filter configuration.

n

/s
y

^ y

Figure 6.3: Post-compensation filter configuration.

The solutions to the above problems depend on the information available about the 
desired signal, degradation and noise. When there is no prior information available 
for input and if we concentrate on post-compensation configurations with =  X, the 
problem reduces to the well-known, ill-posed least squares problem which is to find x 
minimizing the error:

min \\Çx -  g\\̂  (6.2)

whose discrete form is :
min||Gx-g||^ (6.3)

From now on, we will concéntrale on the discrete formulation. There are many 
algorithms, some fast, proposed for the solution of this problem such as gradient methods, 
conjugate gradient methods and variational methods. In these methods, some form of 
regularization may also be introduced to overcome the ill-posed nature of the problem.
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An example is the Tikhonov regularization for which the problem can be posed as:

mill I le x -g if '^  +  (6.4)

where J (x ) serves the purpose of stabilizing the least-squares problem by penalizing 
undesirable artifacts. Another modification is the use of the weighted norm concept to 
benefit from the noise information if available [93].

If there is some information aMiilable for the input, (mostly in the form of second 
order statistics), we can then formulate the problem as a Wiener type statistical problem 
as in section 3.1 [94]. In this case we use the information available for both signal and 
noise in the solution of the prolfimn. For the time- or space-invariant systems with 
stationary input and noise, the o])tiinal solution turns out to be time- or space-invariant 
which can be implemented botli digitally and optically in an efiicient manner. For the 
time- or space-varying case, the general linear estimation operator can also be found 
but it has no longer efficient im[)l('rnentation algorithm. However, there are iterative 
algorithms for the solution of tlie post-filter configuration such as Kalman filtering.

The solution of the statistical problem can be shown to reduce to the solution of the 
least-squares problem given above' \\ hen the auto-correlation matrices are taken to be the 
identity matrices (in fact, this corresponds to the no-information case). Also the above 
least-squares problem can be modified to include the input information by introducing 
the concept of weighted norm, d’lu'u we again have the similar solutions for both cases.

The discussed methods can he used to restore the digital signals, since implementing 
these algorithms on computers is straightforward although they may require high 
computation times. However for optical systems the problem is difficult. One can 
propose to measure the optical field and store it in a digital environment and process that 
data. However it is difficult to nu'asure the optical signal completely; generally phase 
information is lost. In this cas(', wo may prefer to work in an all optical environment. 
Or we may just want to process i he optical signals by optical components. In this 
case implementing the above itérai ive algorithms which are useful on digital computers 
is difficult. Also implementing llx' general linear estimation systems requires optical 
components with space-bandwidth product of 0{N^).

We can overcome these difficulti':s by introducing the concept of filtering in fractional 
Fourier domains. Given the degradation system and available information about input 
and noise, we can first find tlu' optimal orders and filter coefficients for a given 
compensation and fractional Fourici filter configuration. We can then easily implement
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that compensation filter optically since the optical implementation of fractional Fourier 
domain filters is known and easy.

We now discuss the use of fi a< lional Fourier domain filtering configurations in the 
above introduced problems. In ( he Ibllowing formulation we will assume square matrices, 
but extension to rectangular case' is straightforward using the tools given in chapter 3.

P re-com p en sation  filter:

We consider the configuration in Fig. 6.2. We first assume that we know the 
correlation functions of input and noise (Rix and Rnn)> the undesired distorting channel 
G  and desired input-output relation G^. We want to obtain the pre-compensation filter 
H in the form of fractional Fouri('i domain filter configurations (Tgg, Tms, or Tmc). We 
can employ both of the approaches (i) and (ii) discussed in the previous chapter.

To apply approach (i), we should first find the general linear pre-estimator H. Then 
we can synthesize it in the form of Tgs, Tms, or Tmc as discussed in section 4.1.1. The 
problem can be stated as

min F'j^||GdX — (G H x I n)|pj =  min £'|̂ ||(Gd — G H )x  — n||̂ j (6.5)

It can be shown that the optimal general recovery operator H  satisfy the following 
equation:

Gk^dRxx = G^GHRo,  ̂ (6.6)

This equation can be solved by using standard techniques. For example, we may use 
the SVD of Rxx, G  and G^. Wci ran then use the methods discussed in section 4.1.1 to 
synthesize the matrix H  in one of ( he fractional Fourier domain filtering configurations.

We can also apply approacli (ii) i o the above problem. In this case we directly plug the 
form of the filter G  in the formulal ion of the problem and solve for the filter coefficients 
and possibly for the orders. We firsi consider the single-stage case. The problem is then 
to find the optimal order a and iiliin· coefficients that minimize the error:

=  E |(Gd -  G F "“A F “)x  -  n||2] (6.7)

Using the form of the single-stage' filter Tgs in equation 3.18, we can find the optimal 
filter coefl&cients for a given vahie a by solving the following linear equation for hi[l],

diag (F“G*GdR„.F -") =  diag ( f ;  ft.[¡)F*G*Gf,,,fí^R„F-“ (6.8)
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Here diag(A) returns the vector whose elements are the elements on the main diagonal 
of A  and fi,/ denotes the Zth coluiim of the matrix F~“ as defined before. This equation 
can be put in a standard linear (k|nation form. The derivation is easy but lengthy so we 
don’t give the details here.

We now consider the multi-dianiiel case. We will assume that the orders are fixed 
and given by: a* =  — 1 +  2 * A;/yV/ I: = 1 , M.  The problem is then to find the optimal 
filters for each channel that rniniinize the error:

at =  E
M

||(G„ - G ( J ] F - “‘ A iP “‘ ) ) x - n |
k =l

(6.9)

Using equation 3.20, the filter co' ificients hk[l] can be shown to satisfy the following 
linear equation:

( M N  \
^  h,[/] FtGtGf,,if^,R,,F (6.10)

*=1¿=1 /
where we introduced the MN  x ,\ matrix F:

F = p-ai . p -a 2 : : p-ttM

This equation can also be put in a. standard linear equation form which is similar to 
equation 4.13 and it can be solvofl using linear algebra techniques discussed there [93].

If there is no information available about the input and noise processes, we may 
simplify the problem and pose i( as a kernel synthesis problem. First, we consider the 
single-stage case. The problem is l o minimize the Probenious norm between the overall 
matrices of upper and lower cliarmds in Fig. 6.2:

mill ||Gd -  G F -“A F “ ||̂  

If G-^ exists, then we can rewrite' ilie above equation as:

mill IjG-^Gd -  F -“A F “ |||.

(6.11)

(6.12)

since ||Gd -  GF~®AF“ |||. < ||G' 'G d -  F “ “A F “ |||. ||G|||. The problem defined in 6.12 
is nothing but the kernel synthesis problem whose solution is discussed in section 4.1.1. 
We will consider the case where G does not exist, as a special case {M =  1) of the 
solution for multi-channel case wlii' h we will discuss next.
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In the multi-channel case the problem discussed above take the form:

M
min ||G,i -  G (5 ] F - > A jF'‘*)|P (6.13)

k=l

Given the domains a ,̂ the aboA'c problem can be exactly posed as a least-squares 
optimization problem leading to an associated set of normal equations which can be 
solved with other standard tedini(|iies, just like in section 4.1.1. In fact, we can solve 
the problem by slightly modifying the method discussed there. We can rewrite the 
equation 6.13, by plugging the fonii of T^c in equation 3.27,

min ||G,
M  N

k=ij=l 
M  N

A:=U=1 
M  N

rnin ||Gd -
k=lj=l

min ||G,. -  E E A t M G T ,-  " "

(6.14)

where we have defined the matrix =  GT)i;j. Now we can follow the steps given in 
section 4.1.1 by just replacing tlu' matrix Tkj with T' ĵ. The filter coefficients may be 
found by solving the following equation:

. t i t :
T ' Gd =  T ' T 'h , (6.15)

where T ' =  · · · TLmn and underline denotes the column vectors obtained from
the corresponding matrices by colninn ordering like in section 4.1.2.

P ost com pen sation  filter:

In this part, we consider tlie coufiguration in Fig. 6.3. Following the same order in 
pre-filter discussion, we first assume that we know the correlation functions of input and 
noise. We also assume that the sysi erns G and Grmd are known. We want to obtain the 
post-compensation filter H  in the form of fractional Fourier domain filter configurations 
(Tss, T„,s, or Tmc)· We will emphn both of the approaches (i) and (ii).

To apply approach (i), we should first find the general linear post estimator H. Then 
we can synthesize it in the form of Tss, Tms) or Tmc as discussed in section 4.1.1. The 
problem can be stated as

min E ||GdX -  H (G x +  n] =  min E 
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It can be shown that the optimal general recovery operator H  is the solution of the 
following equation:

GdR:,, =  H R ,, (6.17)

where we used the correlation iiim i ions of the observed signal g =  G x  +  n which can 
be obtained by R^, =  R i^G l and R „  =  GR.ta;Gl +  Rn^· After finding the optimal 
general linear filter H, we can ap])l / the kernel synthesis algorithm of section 4.1.1.

In order to apply approach (ii) to the above problem, we directly plug the form of 
the filter H  in the formulation oi' i he problem and solve for the filter coefficients and 
possibly for the orders. In the' singh'-stage case, the problem is to find the optimal order 
a and filter coefficients that minimize the error:

al =  E ’||(G,, -  F ' “A F “ G )x  -  F - “A F “n||2] (6.18)

The optimal filter that minimizes tie; above error is the solution of the following equation,

diag (F "G dR  ,;,F -“ ) =  diag (A F “R „F - '* )  (6.19)

The filter coefficients are givcni by.

(F“G d R .,F -“) ( i , i )
h [ j ] (F“R „ F - “)( i ,;· )

(6.20)

We now consider the multi-chamiel case. We again assume that the orders are fixed 
and given by: a* =  — 1 +  2k/M k -  1, The problem is then to find the optimal
filters for each channel that minimize the error:

M M
r? =  E (6.21)||(Gj -  "‘ A tF “‘ )G )x  -  ( J ] F -“*AtF«*)n||=

k = \  k = \

Using equation 3.20, the filter coidlicients hk[l] can be shown to satisfy the following 
linear equation:

/  M N \
diag (f 1G<|R,,f ) = diag />*(/] F tft,,fi,,R „F  (6.22)

where MN  x N  matrix F is as defim cl before. This equation can also be put in a standard 
linear equation form which is simihn to equation 4.13 and it can be solved using linear 
algebra techniques [93].

If there is no information available about the input and noise processes, we may 
simplify the problem and pose it as a. kernel synthesis. First, we consider the single-stage
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case. The problem is to minimize i lu; Frobenious norm between the overall matrices of 
upper and lower channels in Fig. 0 2:

mill ||Gd -  F -“A F “ G|||. 

If G - i  exists, then we can rewrite the above equation as:

min l|HdG-^ -  F - “A F “ ||i

(6.23)

(6.24)

since ||Gd -  F - ‘̂ A F “G ||| .  <  ||H d G  ' -  F - “A F “ |||. ||G |||. The problem defined in 6.24 
is nothing but the kernel s.ynthesis problem whose solution is discussed in section 4.1.1. 
When G “  ̂ does not exist, we can again solve the problem. The solution is the special 
case (M  =  1) of the solution for multi-channel case.

In the multi-channel case the pi oblem discussed above take the form:

M
min ||G,| -  (X ^ F -“''AfcF“*)G|p

k=l
(6.25)

Given the domains ak, the abovi' problem can be exactly posed as a least-squares 
optimization problem leading to an associated set of normal equations which can be 
solved with other standard techni(|ues, just like in section 4.1.1. In fact, we can solve 
the problem by slightly modifying the method discussed there. We can rewrite the 
equation 6.25, by plugging tlie form of Tmc in equation 3.27,

M N
min ||Gd -

k = l j = l
M  N ^

min ||Gd -
k =l  j = l

M  N

min ||Gd -  J2 ^^k[j]%j\\F (6.26)
k=lj=l

where we have defined the matrix T[.j = TkjG. Now we can follow the steps given in 
section 4.1.1 by just replacing the matrix Tkj with T' ĵ. The filter coefficients may be 
found by solving the following equation:

:■ i i t i
T ' Gd =  T ' T 'h , (6.27)

where T ' =  [T^iTi2 ··· T!.mn : denotes the column vectors obtained from the 
corresponding matrices by column ordering like in section 4.1.2.
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We haven’t considered the rnull i-stage case for all of the applications discussed above. 
The filter coefficients and orders < aiuiot be found analytically for this case. However, 
as discussed before an iterative al,i2,')t ithm may be employed [13, 14, 15]. Also matching 
pursuit algorithm may be modifi('d so that it can be used for multi-stage case as well. 
This topic requires further research.

6.2 Examples

In this section we present illustrative examples of the applications of the filtering 
configurations. In our first example, we consider restoration of images blurred by a 
space-variant point spread function characterized by G. The point spread function is 
local and Gaussian in shape and its width changes slightly with position. We first 
consider post-filter case with no iuFormation about signal. In this case, the problem 
is to find the optimal recovery operat or which is in the form of Tss, Tms, or Tmc that 
minimizes the error:

r,l =  ||HG -  III?.

where H  € (Tss, Tms, Tmc)· If we use single-stage filter (H =  Tss), the normalized error 
is 0.42. In the multi-stage case, tlu' resulting error is 0.24 with M =  S filters and 0.1 
with 4 filters and 0.03 with G filtei .s whereas for the multi-channel case it is 0.23, 0.12, 
0.04 with 3, 4 and 6 filters respect ividy. {uk =  k/M k =  1,2, ...,M ) If we consider 
the pre-filter configuration the results changes slightly. The error would be 0.40, 0.04, 
and 0.04 for the single-stage, mult i-stage (M  =  6) and multi-channel (M  =  6) filtering 
configurations respectively.

If we know the correlation of tlu' input images, we can pose the problem as a statistical 
optimization problem discussed in si'ction 6.1. We first consider the pre-filter case. The 
problem can be stated as:

mill E [||x -  GHx|p] (6.28)

where H  is in the form of Tgs, T„,s, or Tmc· For the single stage case the normalized 
error is 0.22. The multi-stage case' results in error of 0.12, 0.06, 0.03 for M  =  3, M  =  5 
and M  =  7 filters respectivel}^ 'I'lie resulting error would be 0.11, 0.07, 0.03 for the 
multi-channel case with M  — 3, M  -  d and M  — 7 filters. Figure 6.4 shows the original, 
degraded and restored images.
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(C)

Figure 6.4; Original image (a). Blurred image (b). Restored by repeated filtering (M  =  
5) (c). Restored by multi-cliamu'l iiltering [M  — 5) (d).

We next consider the iilter con figuration of Fig. 6.3. In this case the aim is to 
minimize the error:

min B |x -  HGx|p (6.29)

where H  is again in the form of T^g, or Tmc The error in this case is 0.21, 0.03, 
and 0.05 for the single-stage, mulii-stage (M  — 5) and multi-channel (M  =  5) filtering 
configurations respectively f Figm c 6.5). To illustrate the cost performance trade-off 
consider the Fig. 6.6 where w(' ha.c  plotted the number of filters vs error plot for multi
stage (repeated) and midti -chaimcl  configurations.

The above error figures re|)re:;('iit significant improvements with respect to single- 
stage (M  =  1) filtering. Ordinary Fourier domain filtering gives very poor results. 
Although the errors obtained iu both multi-stage and multi-channel configurations are
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(a)

(c)

Figure 6.5: Original image (a), niurred image (b). Restored by repeated filtering (M  =  
5) (c). Restored by πmlti-(;lı; ı̂mı■l filtering (M  =  5) (d).

close in this example, this is iioi always so. Often one or the other is clearly superior. 
Furthermore, repeated may Ix' better for certain values of M  and multi-channel for the 
other values of M.

We also investigate the us(' of fractional Fourier domain filtering circuit concept in the 
above image restoration i 'xample with the post-filtering configuration. We consider the 
filtering circuit shown in Fig. 0.7 which consists of two branches each with two repeated 
filters . The fractional domains are chosen as ai =  0.25, 02 =  0.5 for the upper branch 
and as =  0.75, U4 =  1 for the lover branch. The overall operator representing this circuit 
is given by,

■)

Tr, 53 F -“-̂ Â2fcF“2^-“^^-'A2fc-iF“^̂ -i (6.30)
/,■ !

where A; is a diagonal matri.v whose diagonal consists of the filter vector h; as before. In
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MSE vs M (Repeated) MSB vs M (Multi-Channel)

- o
CL>

"cB

Figure 6.6: Normalized error in signal restoration example versus number of filters for 
(a) multi-stage (repeated) case, (1)) multi-channel case.

h3 h4
Figure 6.7: The structure of the filtering circuit used in the image restoration problem 
with post-filtering configuration.

order to solve for the optimal filter functions we modify the iterative algorithm suggested 
in [13] so that we first initialize the filters hi and ha to vectors consisting of Is and 
then solve for the optimal filter vector h2 and h4 using an algorithm very similar to 
the one discussed in section 4.1.2. For instance, we replace the Wj^s in equation 4.21 
with the initialized single-stage fractional Fourier domain filters: W i =  
and W 2 =  F~“®A3 F“  ̂ . With this replacement, equation 6.30 becomes identical to 
equation 4.21, and can be solved analytically as described there. We then take the 
solutions for h 2 and h.i as constants and solve for the optimal filter vectors hi and ha
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again by using a similar approach. We continue to apply this procedure iteratively until 
the error does not change significantly as compared to the previous step. The normalized 
error turns out to be 0.02. O’his figure is slightly better than the figures obtained by the 
multi-stage and the multi-channel filtering configurations with 5 filters. We should here 
note that this need not always be the case. In some of the simulations we have tried we 
obtained less satisfactory results by using a filtering circuit with a total of M  filters as 
compared to the multi-channel and the multi-stage configurations with same number of 
filters. In those simulations, we s(!e that the results highly depend on the the choice of 
the filtering circuit structure.

5·

: j
: 1
5·

r ■
-5 0 5

(a) (b)

-5 0
(c) (d)

Figure 6.8: Original signal (modulated sinusoid) (a). Degraded signal (b). Restored 
signal by multi-stage with M  =  3 filters (solid) and original (dashed) (c) and by multi
channel with M  =  3 filters (d).

We next consider the problem of recovering a signal corrupted with several additive
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chirp distortions with post-filter configuration (Fig. 6.8). We assume that the second- 
order statistics of the signal and chirp distortions are given. In our example, we assume 
that the Q chirps have uniformly distributed random amplitudes and time shifts, and 
their chirp rates are clustered around P  (initially unknown) values. For Q =  9, P  =  S 
the multi-stage configuration with M  =  3 (approach (i)) results in a mean-square error 
2% and multi-channel configuration with M  =  3 results in an error <  1%.

Figure 6.9: Degraded signal (a). Restored signal by multi-channel with M  =  6 filters 
(solid) and original (dashed) (b).

We next consider the problem of recovering a signal consisting of multiple chirp
like components buried in white Gaussian noise with a signal-to-noise ratio =  0.1 
(Fig. 6.9). We assume that the signal consists of 6 chirps with uniformly distributed 
random amplitudes and time shifts, and that the chirp rates are known with a ±5%  
accuracy. With approach (i), the multi-channel configuration results in a mean-square 
error of 5.2% with M  =  6. With approach (ii), the same number of filters results in an 
estimation error of 2.6%.

In the final example, we show an application of the windowed fractional Fourier 
transform. We again consider the problem of recovering a signal buried in white Gaussian 
noise with a signal-to-noise ratio =  0.1. But this time, the signal is a chirp-like signal 
whose instantaneous frequencj'  ̂ changes paraboloidally in time. Figure 6.10 shows the 
contour plot of the Wigner distribution of such a signal. We apply the windowed 
fractional Fourier transform introduced in section 3.6. The windows W * are taken to be 
shifted and overlapping Hanning windows of length 16, and there are 12 channels. We
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obtain a normalized mean-square error of 6.8% with the above configuration. We have 
plotted the degraded and restored signals in Fig. 6.11.

Figure 6.10: Wigner distribution of a signal with quadratic instantaneous frequency

Figure 6.11: Degraded signal (a). Restored signal by the windowed fractional Fourier 
transform configuration (solid) and the original signal (dashed) (b).

The results obtained in all of the above examples represent significant improvements 
with respect to single domain filtering but are much cheaper to implement than general 
linear filtering.
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Chapter 7

Conclusions and Future Work

The fractional Fourier tr ansform is the generalization of the ordinary Fourier transform. 
Given this, every property and application of the common Fourier transform becomes a 
special case of that of tlu' fractional transform. In every area in which Fourier transforms 
and frequency domain concepts are used, there exists the potential for generalization 
and improvement by using the fractional transform. It has many interesting properties 
that have important relations with well-known optical, physical and signal processing 
concepts. These properties also lead many interesting applications, some of which we 
discussed in this work. A comprehensive discussion, which we believe will lead many 
other applications, may be found in [17, 18].

In this thesis w(' introduced the concept of generalized filtering configurations (or 
filtering circuits) in fractional Fourier domains and discussed some of their applications. 
The single-stage configuration is olfi,ained by generalizing the well-known ordinary 
Fourier filtering and was discussed before in [6, 8,10,12]. multi-stage (repeated) filtering, 
has been discussed in [13, 14, 15]. Here we introduced the dual configuration, multi
channel filtering, and unified all of the configurations under the concept of filtering 
circuits and proposed some interesting applications in an unified framework.

The filtering configurations discussed in this work allow a very flexible cost-accuracy 
trade-off. If we think of the single-stage filtering configuration and general linear 
systems as representing two extremes, then the multi-channel and multi-stage filtering 
configurations inter])ola te between these extremes. If we choose the number of filters M  
in the configuration to be small, cost and flexibility are both low; M  =  1 corresponds
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to single-stage filtering. If we choose M  larger, cost and fiexibility are both higher; as 
M  approaches N, the iniinber of degrees of freedom approaches that of a general linear 
system.

An interesting quest ion is whethe.r we can achieve the same performance offered by 
a general linear syst em l)y using exactly M =  N filters, or in other words if M  =  N  
filters are necessary and sufficient to implement an arbitrary general linear system matrix 
exactly. The simulations show that this is most likely true but a rigorous treatment is 
not available.

We considered three' main applica tions of generalized filtering configurations, namely 
system synthesis, signal synthesis and signal recovery. In the signal and system synthesis 
application, we use fractional Fourieu· domain filters to synthesize a desired signal or 
system. In the recoveiy applications we try to recover a degraded or noisy signal by 
use of fractional Fouricu' domain filters. In all of the applications we used one of the 
proposed solution methods (approach (i) or (ii)) to obtain the optimal filter coefficients. 
In approach (i) we first find the optimal linear system by applying some existing inverse 
method and then wc synthesize that linear system in the form of a fractional Fourier 
domain filter. On tlu' other hand in approach (ii), we directly constrain the system 
to be a fractional Fourier domain filter and find the optimal coefficients. In most of 
the examples we presented, general linear systems were approximated with a relatively 
small number of filters and thus a considerable amount of cost has been saved. These 
examples also illustrated the cost-accuracy trade-off offered by these configurations in 
a systematic maniK'r. These results justify the use of these filtering configurations in 
optical and digital signal and image processing.

In chapter 5, wo. considered the problem of synthesizing the desired mutual 
intensity function from a given optical source. We proposed a semi-definite square- 
root representation to reduce this cpiadratic problem to a linear one. However, this 
representation turns out to be non-unique and we have not fully exploited this in our 
simulations. Thus, if a way of ex])loiting the many available choices for the square-root 
representation can b(' found, even b(;tter results than those presented can be obtained.

The multi-chann(',l configuration possesses analytical solutions in all of the applica
tions we discussed, wlu'reas the multi-stage filtering requires iterative methods. Given 
the orders, we can find the optimal filter coefficients by solving linear equations. We 
can find the optimal orders by further optimization procedures. But this latter task is 
difficult and the det(u in ¡nation of an (dficient method requires further research. Presently,
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we satisfy ourselves by choosing the orders uniformly in the interval (—1 , 1]. This choice 
ensures that the linear equations such as given in section 4.1.1 are well-posed.

Another topic of Future research is to find efficient algorithms for solving these 
equations. In imagxi processing and o]jtical applications, the size of the equations become 
very large and the cost of solving them is too high. Given the fact that degradation 
matrices in these applications are generally sparse, it may be possible to take advantage 
of sparse matrix notation together with the structured nature of the fractional Fourier 
matrices to propose an efficient algorithm for finding the optimal filter coefficients.

A practical solution to the above problem may be to process the images block by 
block. In this cas('. we can divide the large input images to blocks, and formulate 
the problem for that .specific block and find the optimal configuration for each block. 
This method can b<; justified since degradations are generally assumed to be local. 
Although this assumption does not guarantee that the estimation filter should also be 
local, preliminary simulations show that reasonable results can be obtained in certain 
situations.

We also related i lm above nu'thod to the concept of windowed fractional Fourier 
transform which was introduced in section 3.6. We gave a simple simulation example in 
chapter 6 illustrating the potential application areas for this case. This structure may 
be useful in signal and image processing applications and requires further research.
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