
М Ш Ш Ш : Ш  111  І Й М У Ш

5? · · ΓΓ̂ ν:ίΐ·>

A DsSSSFïTAri і>Сй;·̂

SuB¿!,4sTTs0  тс  TAîI  S»?=iAiñT$̂ ;jS:rT о? SLSST^’CAI. Aí>íD

£LEGT?s£riMÄ
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Abstract
A NOVEL CAD ALGORITHM FOR THE ANALYSIS OF 

PRINTED GEOMETRIES

Noyan K inaym an

Ph. D. in Electrical and Electronics Engineering
Supervisor:

Assoc. Prof. M. I. Aksım 
May 1997

An efficient and accurate computer aided design (CAD) software for the 
electromagnetic simulation of passive microwave components, fabricated in 
planar stratified media, is developed in this work. The numerical technique 
employed in this software is based on the spatial-domain method of moments 
(MoM) in conjunction with the closed-form Green’s functions. Since the 
computational efficiency is a major issue in CAD softwares, the spatial-domain 
MoM is significantly improved in this respect with the use of the closed-form 
Green’s functions and closed-form expressions for the MoM matrix entries. 
Vertical metalizations in the form of via holes and shorting pins, which are 
the indispensable parts of the most microwave circuits, are also modeled very 
efficiently and incorporated into this formulation. The resulting approach 
is applied to some realistic microwave circuits and planar antennas, with 
and without vertical metalizations, to validate the formulation. It is also 
demonstrated that the formulation developed in this work can be efficiently used 
with an optimization algorithm for design purposes. The results obtained from 
the formulation proposed in this work are compared to those obtained from a 
commercial electromagnetic analysis software.

Keywords: CAD, Printed structures. Full-wave EM analysis, Planarly layered 
media. Green’s functions. Method of moments



özet
DÜZLEMSEL GEOMETRİLERİN ANALİZİ İÇİN YENİ BİR

CAD ALGORİTMASI

Noyan Kınayman
Elektrik ve Elektronik Mühendisliği Doktora

Tez Yöneticisi:
Doçent Doktor M. I. Aksım 

Mayıs 1997

Bu çalışmada, düzlemsel çok katmanlı ortamlardaki pasif mikrodalga 
devrelerinin elektromanyetik simulasyonu için hızlı ve hassas bir bilgisayar 
destekli tasarım yazılımı geliştirilmiştir. Bu yazılımda kullanılan sayısal tekniğin 
temelini kapalı formdaki Green’s fonksiyonları ile birlikte kullanılan uzay boyutu 
moment metodu oluşturmaktadır. Analiz hızı, bilgisayar destekli tasarım 
yazılımlarında önemli bir özellik olduğu için, uzay boyutundaki moment metodu 
kapalı formdaki Green’s fonksiyonları ve matris elemanları kullanılarak oldukça 
iyileştirilmiştir. Kısa devre bağlantıları ve katmanlar arası geçişi sağlayan 
bağlantılar şeklindeki düşey metalizasyonlar da verimli bir şekilde modellenmiş 
ve formulasyona dahil edilmiştir. Elde edilen yazılım, forrnulasyonu doğrulamak 
amacıyla, düşey metalizasyon da içeren bazı gerçekçi mikrodalga devrelerine ve 
düzlemsel antenlere uygulanmıştır. Bu çalışmada geliştirilen formulasyonun bir 
optimizasyon algoritması ile verimli olarak kullanılabileceği de gösterilmiştir. Bu 
çalışmada önerilen formulasyondan elde edilen sonuçlar, bu alanda kullanılan 
ticari bir programın sonuçları ile karşılaştırılrmştır.

Anahtar Bilgisayar destekli tasarım, Tam-dalga EM analizi. Düzlemsel çok 
Sözcükler: katmanlı ortam, Green’s fonksiyonları. Moment metodu
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Chapter 1

Introduction

The history of microwave printed circuits begins with the invention of flat-strip 
coaxial transmission lines by V. H. Rumsey and H. W. Jamieson to use in an 
antenna system and power division network during World War II [1]. Later, 
Hewlett Packard Co. developed the “slotted line” which was a commercial 
application of a planar coaxial system. Then, it was shown by Robert M. 
Barrett that the planar circuits could be also used to build passive microwave 
components like filters, directional couplers, and hybrids [1]. .\fter the realization 
of the potential of the printed circuits, R&D facilities have been concentrated in 
this field to explore the possible application areas. Some of the research centers 
worked on this field were Tufts University, the .\irborne Instruments Laboratory 
(Strip Line), the Polytechnic Institute of Brooklyn, Sanders Associates (Tri- 
Plate). and Federal Communications Research Laboratories (Micro-Strip) [1]. 
Because the printed circuits are rugged, easy to produce and reproducible, and 
because they have low cross-section and weight which make them useful in air
borne applications, they have quickly gained a lot of interest and have been used 
in many applications in places of their waveguide and coaxial line counterparts.

The advent of monolithic microwave integrated circuits (.MMIC) has increased 
the importance of printed structures in planarly layered media. Thus, 
development of a rigorous and efficient technique to characterize such structures 
has become an important issue in computational electromagnetics. Once the

1



analysis is performed with the use of a rigorous full-wave method, the lumped 
circuit model of the passive structure can be extracted to use in a circuit 
simulation program with active devices. In addition, interactions between the 
passive circuits, like coupling between array elements in a microstrip antenna 
array, can also be investigated more rigorously.

CHAPTER 1. INTRODUCTION 2

1.1 A Brief Review of the Analysis Methods of 
Printed Structures

There have been a flurry of activities in the area of computational electromag
netics to develop computationally efficient and accurate numerical techniques for 
modeling and simulating the electrical performances of printed circuits. Basicly, 
there are two approaches in the characterization of such structures: approximate 
but numerically efficient methods, like quasi-static methods [2-4] and accurate 
but computationally expensive methods such as the method of moments (Moi\I) 
[5,6], the finite element method (FEM) [7] and the finite-difference time domain 
(FDTD) method [8].

The FDTD method is formulated by discretizing the Maxwell’s ecpiations both 
in the space and time domains. One of the advantages of the FDTD method is 
that the frequency response of the circuit can be extracted through a band of 
frequency by applying a narrow Gaussian pulse excitation in the time domain. 
The FEM is a general numerical technique to find approximate solutions to the 
boundary value problems. In the FEM, the entire volume is divided into sub
volumes in which the unknown function is represented by simple interpolating 
functions. Then, a set of algebraic equations is obtained by applying the Rayleigh- 
Ritz procedure. Common advantages of the above mentioned methods are that 
they are quite general and versatile and that the resulting matrix equations are 
sparse yielding an efficient memory and CPU time requirements for solving this 
system of linear equations. However, both methods have difficulties when they 
are applied to open geometries, like radiating structures, because they require
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discretization or segmentation of the whole volume of interest. In this case, 
artificial absorbing boundaries should be introduced to satisfy the radiating 
condition. On the other hand, the MoM is applied to an integral equation 
that accounts for the geometry, so the problem domain is reduced to regions 
where the surface or volume current densities can be defined. The advantage 
of this technique, as compared to the FEM and the FDTD, is the reduced 
number of unknowns and its suitability for planar geometries. However, the 
major disadvantage is that the MoM matri.x entries are double or triple integrals 
of complex functions.

Since the MoM is used as the main numerical technique throughout this 
work, it would be instructive to give a brief introduction of the technique as 
applied to planar printed geometries in electromagnetics. The formulation of 
the MoM starts with writing an integral equation describing the problem, which 
could be electric field integral equation (EFIE), magnetic field integral equation 
(.MFIE) or mixed potential integral equation (MPIE). The formulations of EFIE 
and MFIE involve the Green’s functions of the electric and magnetic fields as 
their kernels, respectively, while the MPIE uses the Green’s functions of the 
scalar and vector potentials. Since the Green’s functions of the electric and 
magnetic fields are more singular than those of the scalar and vector potentials, 
the MPIE formulation has recently become more popular in the application of 
the MoM to the characterization of planar printed geometries [9-12]. Therefore, 
the MPIE formulation is employed in this work and its solution is obtained 
via the MoM. The MoM can be applied either in the spectral dornciin or in 
the spatial domain. The spectral domain version is applied to the spectral 
domain representation of the EFIE while the spatial domain version is applied 
to the MPIE. In this thesis, the spatial-domain MoM is employed because of the 
aforementioned advantage of the MPIE. .Although the Green’s functions used in 
the spectral-domain representation of the EFIE can be e.xpressed in closed forms 
for planar printed geometries, the MoM matrix entries become double integrals of 
complex functions over infinite domain, which requires the use of computationally 
expensive numerical integration algorithms. On the other hand, the MoM matrix
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entries for the spatial-domain MoM are double integrals over finite domains, 
but the integrands are in terms of the spatial-domain Green’s functions of the 
potentials, which are expressed as the Hankel transforms of the corresponding 
spectral-domain Green’s functions [13,14]. Since the Hankel transforms of the 
spectral-domain Green’s functions are oscillatory and slow convergent in nature, 
the use of the spatial-domain MoM was not popular until the recent introduction 
of an efficient algorithm to approximate the spatial-domain Green’s functions 
in closed forms [15,16]. This closed-form approximation of the spatial-domain 
Green’s functions not only improves the calculation of the Green’s functions, but 
also results in the MoM matrix entries that can be evaluated analytically [17]. 
Therefore, the computational efficiency of the spatial-domain MoM in the solution 
of the MPIE has been significantly improved without sacrificing the accuracy in 
the results.

In this thesis, the MPIE in the spatial-domain employing the closed-form 
Green’s functions is used to find the current distribution on the conductors which 
are immersed in a planarly layered medium. The organization of this thesis is 
as follows: In Chapter 2, the spectral- and spatial-domain Green’s functions 
for planarly stratified media are introduced. Then, in Chapter 3, a general 
MPIE formulation for planarly stratified media is presented using the closed- 
form spatial-domain Green's functions, and some numerical examples are given. 
Chapter 4 discusses some approaches that are used to improve the total solution 
time of the circuits. Then in Chapter 5, a brief introduction is provided for the 
optimization of printed circuits with genetic algorithms. Firuilly the conclusions 
are given in Chapter 6.



Chapter 2

Green’s Functions in Planarly 
Layered Media

For a planarly layered medium, the spatial-domain Green’s functions are obtained 
from the spectral-domain Green’s functions via the Hankel transformation, in 
which the spectral-domain Green’s functions are known in closed forms for layered 
media [18,19]. This transformation, also known as .Sommerfeld integral, contains 
oscillatory integrand over an infinite domain whose evaluation is computationally 
very expensive [20], hence the apparent disadvantage of the spatial-domain MoM 
formulation.

Recently it was demonstrated that the computational burden in the 
calculation of the spatial-domain Green’s functions can be circumvented by 
approximating the spectral-domain Green’s functions in terms of complex 
exponentials, whose Hankel transforms can be analytically obtained via the 
Sommerfeld identity [1-5]. Hence, the spatial-domain Green’s functions for the 
vector and scalar potentials can be cast into, so called closed forms, which are 
finite sums of complex images. In this approach the crucial step is the numerical 
implementation of the exponential approximation, which can be performed by 
using Prony’s techniques [21] or techniques based on the pencil of functions 
[22,23]. The original derivation of the closed-form Green’s functions, as proposed 
by Chow et. al. [15], employed the original Prony method and was limited in



use to thick and single layer structures, which was due to inadequacy of the 
original Prony method. This problem was eliminated by employing the least 
squares Prony method [24], and then the approximation was further improved 
by using the generalized pencil of functions method (GPOF) [19], which is 
less noise sensitive and more robust as compared to the Prony methods (see 
-Appendix C). However, the algorithm for the exponential approximation was 
still computationally expensive, because Prony’s methods and the GPOF method 
require uniform sampling of the function to be approximated along the range of 
approximation. This, in turn, makes it necessary to take a large number of 
samples for functions with local oscillations and fast variations, like spectral- 
domain Green’s functions in general, rendering the algorithm computationally 
expensive and not robust. Recently, a two-level approach that recjuires piecewise 
uniform sampling has been introduced to eliminate this problem, and is 
demonstrated to be much more efficient and robust [25]. Hence, the spatial- 
domain closed-form Green’s functions can be employed efficiently in the solution 
of MPfE for planar, multilayer geometries. There are also other approaches 
where an asymptotic closed-form Green’s functions are obtained [26,27], however 
it should be noted that the closed-form Green’s functions derived by the method 
given in this thesis are valid in all spatial regions.

In Section 2.1, the spectral-domain Green’s functions for planarly stratified 
media are given. Then, Section 2.2 describes the method of obtaining the closed- 
form spatial-domain Green’s functions. .And finally, conclusions are given in 
Section 2.3.

2.1 Green’s Functions in Spectral Domain

CHAPTER 2. GREEN’S FUNCTIONS IN PLANARLY LAYERED MEDIA 6

Consider a general source placed in a planarly stratified medium which is shown 
in Fig. 2.1. ft is assumed that all layers extend to infinity in the horizontal plane, 
and, the thickness and the relative permittivity of ¿-th layer are denoted by d, 
and Cr., respectively. Note that the origin of the coordinate axis is placed at the 
bottom of the source layer, and the time convention of has been adopted
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through the formulation.

1+1

î+m * observation point (z)
z=z m

»observation point (z)

z=z

2=Z,

• source point (z’) z=0 X

z=z

l-n z=z

Figure 2.1: A general source placed in a planarly stratified medium.

In a planarly hiyered medium, the electrical properties of the structure change 
only in one direction, e.g., in the z direction. For that reason, the vector wave 
equations need not be solved in their full forms. In fact, in the source-free case, 
the vector wave equations can be reduced to two scalar equations representing 
TE  and TM  waves which are decoupled from each other [18].

In the MPIE formulation, the Green's functions of both vector and scalar 
potentials are used. It is known that for a horizontal dipole, two components 
of the vector potential are reciuired to satisfy the boundary conditions [28,29]. 
Traditionally, the z-component is selected in addition to the component which 
is in the same direction with the dipole. The Green’s function, in this case, will 

have the following form:

Gta — {̂ xx -f" yy') GXX “h -jxG;x -f- -̂ yG2y “t” Gzz ( 2 . 1)

The scalar potential due to a single point charge associated with a time-harmonic
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Hertzian dipole can be derived from the vector potential via [28]

· G a  =  — Y'G , (2.2)

However, since the scalar potential depends on the chosen form of the magnetic 
vector potential in a layered medium, it is not unique. That is, the scalar 
potential associated with a vertical dipole is different from the scalar potential 
of a horizontal dipole when the medium is stratified. Therefore, a single scalar 
potential G', satisfying (2.2) does not, in general, exist if the traditional form of 
the vector Green’s function G a , given in (2.1). is employed.

To find the spectral-domain Green’s functions, the field components of a 
Hertzian dipole in the a direction, which is placed in a homogeneous medium, 
are written as

/ -  V V\
(2.3)E(r) =  - i ^ ^ p + —  

H (r) =  V X all-

a ll-

- j k r

-l/rr
(2.4)

from which the TM  and TE  field components of the dipole can be derived easily. 
Since the dipole is in a layered medium, the spherical wave behavior in (2.3) and 
(2.-1) must be modified. This is achieved by expanding the spherical wave terms 
in terms of plane waves using the Weyl identity

, - j k r  ■ roo— jr r̂ J /.QQ

V wTT J — OoJ — OQ
cI)J\yy

L·
(2.5)

where i·̂  +  ky +  =  Lq. Then reflections from the planar boundaries of the
stratified medium, can be easily accounted for the field expressions. Note that 
since the medium is translationally invariant in the xp plane, the phase matching 
condition requires that kj; and ky are the same in all layers.

The spectral-domain Green’s functions are first derived in the source layer 
by considering the direct wave, and the reflected waves from the boundaries, as 
shown in the next sections. Then, the field in any other layer can be obtained 
from the field expression of the source layer.
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2.1.1 Horizontal electric dipole (HED)

Derivation of the spectral-domain Green’s functions for an HED starts with 
writing Ez {TM~) and H, {TE^) components of the fields in the source layer. 
So, E, and IT are first written in a homogeneous medium as

j l l
E, =

H, =

4Tru;t dz dx r 
II d

(2.6)

(2.7)4TT dy r

Then, the spherical wave terms are expressed as an integral summation of the 
plane waves propagating in all directions using the WTiyl identity

IIIL
E, = — ----  /  /

^TT^UJSi J —ooJ — oo

H -
~  87t2

/ oo roo
/ dkx clky ky

-cc>J—oo

-̂jk:cJ:-jkyy-jk=  ̂|~|

(2.8)

(2.9)

Since these expressions are valid in a homogeneous medium, the fields in a layered 
medium are obtained by considering the reflected waves from the boundaries as 
follows:

II
E. = / CO /*00 

--XjJ—OO
II /■̂o /-X)11 /- oo /• X) -̂JksX-jkyy

y ^y------j-------- ^TE

(2.10)

( 2 . 11)

where

Fte = "

e-Aniz-z') ^  ^  >

, - j k , , ( z ' - z )  ^  ^  ( j e  - 3k .^ (z -z ‘ )

Ftm =  <

r <

c >

(2.12a)

(2.126)

< r'

e-Az,{z-z') ^

 ̂ _e-^k.,(z'-z) ^  BlCk-(z-z') A·.-,

Note that the origin is at the bottom of the source layer in this derivation (see 
Fig. 2.1). The down-going wave in the source layer is the conseciuence of the

(2.13a)

(2.136)
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reflection of the up-going wave at 2 =  cL, similarly, the up-going wave is the 
consequence of the reflection of the down-going wave at ~ =  0. Hence.

+  (2.14)

+  (2.15)

where Rtm is the generalized reflection coefficient at the boundaries [18]. By
solving (2.1-1) and (2.1.5) simultaneously, the unknown coefficients and are
found as

B-TM e — Ktm tiTu e '

Dl =

iTM
1 _  p-j2k,.d,

„ — i'2kz z' I D*|*+1~R tm  ̂ I Rtm Rtm ® .A

(2.16)

(2.17)1 _  D'-*+l ¿»■•-l -̂i2fc.-.di 1 eiTM ^TM ^

.Since the same approach is used to find the other coefficients, A\ and C^, their 
derivations are not given here for the sake of brevity. To derive the vector Green's 
functions, one can proceed as follows:

Â  = -Mi J H,dy
II f·^/ CO rco ~̂JkxZ: jktjij

/  dk  ̂dky------ --------- Fte
-CO./-CO A-v

(2 .IS)

=> =
j 2k,,

L· -b (2.19)

A, = Mi j  H^dy = ¡.li j  ^ IT , ■ ^ C- H . + j u e - E . dy

¡.till /■'»
StT̂ J -ooJ-

Ml kx

(2.20)

dkx dky e | k

Q··^ — _

Stt̂ . / —ooJ —rXJ

+  +  (2.21)

and for the scalar Green’s function.

(f>d =  “ “
V · A 1 i  dAx dAC
JUJfliSi jujyiSi V dx dz

(2.22)
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4>d =
d ,

dx'*"

^ G l  =X 2cikl \  A:-,
,

A·-.

(2.23)

L.

(2.24)

2.1.2 Vertical electric dipole (VED)

The derivation of the spectral-domain Green’s functions for a VED is similar to 
the approach used for HED, therefore it will be briefly given here. As a first step. 
E  ̂ and / / .  components of the fields due to a VED are written as follows:

E. =
jllu fl
4'irk'̂ k̂  + dz'̂  j r

= 0

(2.25)

(2.26)

Then, by using the Weyl identity, (2.25) is expanded as

E. =  -
Ilu>l.l / oo roc> (  Jĉ

/  dk, dky —  -  k,,
-ooJ-oc· \ k..

(2.27)
J - ooJ - oc·

Next, the field expression in a layered medium is obtained by considering the 
reflected waves as

II
E. =

where

Et.v  = <

-  r  r  dk,dkyk,e~^^^^-^^^^FTM
i J—ooJ — oo

(2.28)

(2.29a)

- j k .^ ( z - z ' )  ^  Q y k x , ( z - z ' )  ,  ^ (2.296)

Using the boundary conditions at the interface of the layers, the unknown 
coefficients A® and obtained as before. To derive the vector Green’s function, 

one can proceed as follows:
1 r ^

dt/ (2.30)
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f
=  ^ 8 ^ 7 r  r  dK dky ^  ^  1 Frxf

— ooJ—oo

^  G i  =  +  . 4 : , e - ^ · ^ · - - · (2.31)

aud for the scalar Green’s function,
V · A I d A.

4>d —

h  =  (2-33)

^ G \  =  +  (2.34)

where the unknown coefficients are obtained from the boundary conditions as 
before.

2.1.3 Green’s functions for electric and magnetic dipoles

In summary, the spectral-domain Green’s functions in the source layer for 
different kind of sources and orientations, are obtained by using the described 
method as follows [19]:

2jL·,

f'A _
■ W .

, - jk . ,\ z -z '\  ^  j A . - . . , ^

{A l + B l) ^  {D l - C l)

(2.35)

GV =
1

+

2j€iL·,

i ^ f c t - m ,-ik.Az-z^
K

K
(2.37)

=

CPr =

■2jL·,

2jL·,
1

yk.,U-z'\ ^ ^

^  +  Bl') e '‘ ‘ .(-= 'l +  ( / ) ”  -  c;;‘)
1,2 Dm  i 1.2 Am

-jk .,\z-z '\  ^ ')

+

2ji-iik,,
1,2/̂ m 1,2 Dm

-  l^z .^h  - i k , .  (z-z> ) (2.40)
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GV-

Gf;

6'!"‘

/i.
2jL·,

1
2j  ̂ ikzi

e.·
2jL·,

1

e-Nz,\z-z'\ ^  ^

^-jk .,\z-z '\  4^^ -^ ·^ ·--. ^  A;,.

(2.41)

(2.42)

(2.43)

(2.44)

where the superscript /1 and F  denote the electric and magnetic vector potentials, 
respectively, and qm denote the electric and magnetic scalar potentials, 
respectively. The coefficients, C^’̂ ,  and Dl’̂  are the functions of
the generalized reflection coefficients and are given [IS, 19] as

Лe,m
h

_ p î̂+1 jkfTEyTM

B e,m _  5*\î +  lIV MiTM,TE

C e,rn L
jje^m  

yi e,m 

B e ,m  

^ e ,m  

D e,m

T M J E

-  ^ t e j m ’ ĥ
T M J Ei,i — l 

T M J E Mi

_  p i . i+1 \jT E— ^TMJE^^ î
__ p i . i - 1  jirlWiJE
— ^TMJE^^^i

e -t-
-2 jk ,^ {d , - z ' )  _  D i ,i -1  . -2 jk ,^ d ,
 ̂ ^TMJE^

__ 1 rTM,TE

^-¿jkz ,[d, -z ')  , f,-2jkz^d,e -t- nrM.TE^
— f.- ‘̂ Nz,z' I D‘.‘ + l f,-'2'jkẑ d,

_ f > - ‘̂ Nz,(d, -z ’ ) I D ‘ . ‘ - l  -2jkz,d,

where
MiTE,TM

^J+hj

1 _  R‘ -‘ + l p-Jkz,2d,

dJ + I-J I o iJ -l  -jk- 2dj 
^TE.TM I ^TE.T\C ^

-1

TE,TM

(2.45)

(2.46)

(2.47) 

(2.4S) 

(2.49) 

(2..50) 

(2.51) 

(2..52)

(2..53)

(2.54)1 D . . C >i5-1  2dj

Here R and R are the Fresnel and generalized reflection coefficients [18] for 
which the subscripts TE  and TM  represent the polarization of the wave, and 
the superscripts show the layer numbers. The subscripts h and v represent 
the orientation of the source, horizontal and vertical, respectively, while the 
superscripts e and m denote the type of the source, electric and magnetic, 
respectively. It should be noted that the Green’s functions for y-oriented dipoles
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can be obtained simply by setting G ff/ k y  =  Gf//k^, and
Q'U.m ̂ y GT-

VVlien the observation layer is different from the source layer, the Green’s 
functions are modified by using the appropriate boundary conditions and 
following iterative expressions [18]:

^7 = ^7+1

4  =

1 -  

1 -

(2.55)

(2.56)

where A~ and Aj~ are the amplitudes of the down- and up-going waves, 
respectively, and T is the transmission coefficient. So, the field expressions in 
any layer can be obtained iteratively starting from the source layer.

2.2 Closed-form Green’s Functions in Spatial 
Domain

The spatial-domain Green’s functions are obtained from the spectral-domain 
counterparts through an integral transformation, called the Hankel transform 
or the Sommerfeld integral in electromagnetics [13]. This transformation is given 
as

G = 7 /
47T J s i p

dk,k,H^T\Kp)G{kp) (2.57)

where G and G are the Green’s functions in the spatial and spectral domains, 
respectively, is the Hankel function of the second kind and S IP  is the
Sommerfeld integration path. The spectral-domain Green’s function, which is the 
integrand of the Sommerfeld integral given in Eq. (2.57), contains branch-point 
and pole singularities. The branch-point singularities correspond to radiating 
modes in the outermost layers, whereas, the pole singularities correspond to 
guided modes in the dielectric layers.

In principle, there are two ways for evaluating the Sommerfeld integral when 
the exact analytical integration is not possible: i.) Asymptotic methods like
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the method of stationary phase and the method of steepest descent [18], and 
Ü.) numerical integration methods [1-1]. Although the asymptotic methods give 
better physical understanding of the integral itself, they must be re-formulated 
for different geometries, hence they are not suitable to use in a CAD software. 
On the other hand, the numerical integration of the Sommerfeld integral is 
computationally e.xpensive procedure because the integrand is an oscillatory 
complex function with the singularities mentioned above, and because the limits 
of integration extent to infinity. As a conclusion, the evaluation of the Sommerfeld 
integral with the aforementioned methods is not suitable for a CAD algorithm 
[20,25].

To eliminate the numerical integration of the Sommerfeld integral, the 
spectral-domain Green’s functions are approximated by complex exponentials, 
whose Hankel transforms can be evaluated analytically, thus the spatial-domain 
Green’s functions can be written in closed-forms [15,25]. This procedure was 
first proposed by Chow et.al. [15] for a horizontal electric dipole over a thick 
substrate and extended to a geometry with a substrate and superstrate with 
arbitrary thickness by Aksun and Mittra [2-1].

The original approach of getting the closed-form Green’s functions in 
the spatial domain requires some trial-and-error iterations for deciding the 
approximation parameters, like the number of exponentials, the number of 
sampling points and the maximum range of the approximation. Moreover, 
the c[uasi-dynamic images and the surface wave poles need to be found and 
extracted from the Green’s function prior to the approximation in order to ease 
the difficulties in the algorithm. However, with the introduction of the two-level 
approach, which is robust and very efficient, these difficulties are eliminated, and 
hence the method becomes very suitable for C.AD implementation [25]. It should 
be noted that the sampling of the spectral-domain Green’s functions should be 
performed along the SIP or along a path legitimately deformed from the SIP, 
details of which can be found in [15,25]. In this thesis, we have employed a 
deformed path from the SIP as depicted in Fig. 2.2, consisting of three connected 
paths denoted as 6api, Cap2 and Capz·, respectively, and described by the following
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parametric equations:

For Cap3 ■ — ~jLi [Foi +  To2 +  t\

For Ca,p2 ■ =  ~jki [Toi +  t]

For C.pi : L A·,

0  < i < To3

0 < t <  7’o2

0 < t < T o i

(2.58)

(2..59)

(2.60)

where t is the running variable sampled uniformly on the corresponding ranges, 
Toi, To2·, and Toz- This approach is named hereafter as three-level approach, 
which is an extension of the two-level approach introduced recently [25], so its 
details are not included in this thesis. Because the spectral-domain Green’s 
functions might have fast variations locally, and because the GPOF method 
requires uniform sampling along the range of approximation, the use of multi
level approach prevents taking thousands of samples. However, it is not necessary 
to use the three-level approach for smooth functions, for which one may use the 
two-level or one-level approach, simply by setting T03 to zero or T02 and To3 to 
zero, respectively.

kp plane

— I--- 1-----*— ►-
ko k,

P  m a x i P m a x 2 P  m a x 3

Figure 2 .2 : The path used in exponential approximation.

The exponential approximation process begins with sampling the function 
to be approximated, and then the algorithm for exponential approximation is 
employed for the sampled values of the function. In other words, one needs to 
know the values of the function at the points of samples, which requires fixing the 
parameters, like 2  and z' in Eqs. (2.35)-(2.44). After having sampled the spectral- 
domain Green’s function to be approximated, apart from the term 1/_;2A;,,, the
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GPOF method is used to obtain the exponential approximation of the function, 
which results in an approximation as follows:

N3
(7 S

1 ( N1 N2
(2.61)

n=l n = l

Once the spectral-domain Green’s functions are represented as the sum of 
complex exponentials, each exponential term in (2.61) can be transformed to 
the spatial domain via the Sommerfeld identity

-̂jkr
= 1 /

2  / Jsi
dk, [kpp)

¿j JsiP ■ "  ' k,

yielding the following Green’s function expression in the spatial domain

(2.62)

^1 Q-jkirin
G =  ain— --------h ^  o,2n

^2 g-jk,r2n 3̂ Q-jkirin

n=l n = l r-2n +  ^2
n= 1 f'Zn

(2.63)

where = y / ~  ¿im '̂ 2n =  -  ¿2u, r.3„ =  yjp'̂  -  6§„, and p =  ^ j,·- +
cirid, a „ ’s and 6„ ’s are complex numbers in general.

The extraction of the surface wave poles and the quasi-dynamic images helps 
to the exponential approximation technique, as stated before, by rendering the 
Green’s functions in the spectral domain well-behaved and rapidly converging 
functions. However, since the contribution of the surface wave poles is small 
for geometries on a thin substrate, and it is not possible to find the quasi
dynamic images for multilayer planar structures analytically except for some 
simple cases, the spatial-domain Green’s functions are obtained for a multilayer 
medium without extracting the surface wave poles and quasi-dynamic images in 
order to obtain a general-purpose algorithm.
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2.3 Conclusions

The use of the closed-form Green’s functions has eliminated the numerical 
integration of the Sommerfeld integrals improving the computational efficiency 
of the spatial-domain MoM for planar geometries in multilayer media.

The original algorithm developed for obtaining the closed-form spatial-domain 
Green’s functions has the disadvantage of choosing the proper appro.ximation 
parameters for each different geometry. Moreover, the extraction of the surface 
wave poles and quasi-dynarnic images may not be possible or efficient for 
multilayer geometries when the original version of the approach is employed. The 
new approach based on a three-level approximation is developed to overcome 
these difficulties and to make the use of the closed-form Green’s functions 
attractive for those developing the EM software as well as for researchers in 

the field.



Chapter 3

Field Analysis in Planarly 
Layered Media

Formulation of the spatial-domain MoM for the analysis of printed geometries 
begins with writing the MPIE in terms of the Green’s functions of vector 
and scalar potentials in a multilayer medium. Then, the integral equation is 
discretized by expanding the unknown current densities in terms of known basis 
functions and by applying the boundary conditions in integral sense, which is 
called as the testing procedure in the MoM. This formulation has the advantage 
of employing the MPIE, whose kernel shows a weak surface integrable singularity 
while the EFIE involves stronger singularity, but it recjuires the Green’s functions 
in the spatial domain. The spatial-domain Green's functions are obtained in 
closed form by using the technique presented in Chapter 2 . .After .solving the 
linear system obtained by the application of the .MoM, the current distribution 
on the conductors is found. For more information about the MoM, one can refer 
to .Appendix E.

In Section 3.1. a general formulation of the problem is given. Section 3.2 
presents the de-embedding algorithm which is used in the S-pararneter calculation 
of the printed circuits. Then, in Section 3.3, some numerical examples are given. 
Finally, the conclusions are presented in Section 3.4.

19



3.1 MPIE Formulation in Planarly Layered 
Media

Considei·, for the sake of illustration, a general microstrip structure in a multilayer 
environment as shown in Fig. 3.1. It is assumed that all layers and the ground 
plane extend to infinity in the horizontal plane, and the conductors are lossless 
and infinitesimally thin. The thickness and the permittivity of ¿-th layer are 
denoted by di and respectively. .Although the geometry depicted in Fig. 3.1
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Figure 3.1: A typical multilayer printed geometry.

shows only one vertical metalization, the formulation given here can be applied 
to printed geometries which contain multiple vertical metalizations.

The tangential components of the electric field on the plane of the patch and 
on the vertical strips can be written in terms of the surface current density J, and 
the associated Green’s functions of the vector and scalar potentials as follows:

1 d
E.V =  - j  wG],  ̂ * Jx

jw dx
* V · J) (3.1)
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E, =  - r w G f y j  +  J - | -  V  ■ J)
jiudy

1 d

(3.2)

Ez — jw Ct.j. * Jx j wCt. * Jy jw C “̂ ,  ̂J, -\- -— î CP' + V  · J) (3.3)
J WUZ '

where * denotes convolution and G'4 =  The term G'd represents the i-

directed vector potential at r due to a j-directed electric dipole of unit strength 
located at r', while G'’"- represents the scalar potential by a unit point charge 
associated with an electric dipole. Since the traditional form of the Green’s 
functions are employed in the formulation, the Green’s function of the scalar 
potential is not unique for horizontal and vertical electric dipoles as stated 
previously. Hence, the term involving the Green’s function of the scalar potential, 
which is common in Ecjs. (3.1)-(3.3), can be e.xplicitly written as

G'̂ ‘ * V  · J GJ' * ^  +  Gl'· * ^  + GV- * ^
ux  ̂ ay  ̂ oz (3.4)

where GtJ'- G·'̂ -j and Gl'- denote the Green’s functions of the scalar potential 
for a horizontal and vertical electric dipoles, respectively.

do solve for the surface current density J via the MoM. J is expressed as a 
linear combination of suitable sub-domain basis functions;

771 71

771 n
Jz{x,lj,z) = y,.)

(3.5)

(3.6)

(3.7)

where and are the basis functions with the unknown coefficients
and defined at (mn)-th position on the subdivided horizontal 

conductor and at (/)-th position on the subdivided vertical conductor. In this 
thesis, rooftop functions are chosen as the basis functions to represent x-, y- 
, and z-components of the current density, as shown in Fig. 3.2. The sources 
are modeled as current filaments, therefore it is suitable to use half-rooftop 
basis functions at the source terminals, as well as at the sink terminals where 
the shorting pins or via holes are terminated in the ground plane. At the
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P îgure 3.2: Basis functions used for horizontal and vertical connections in the 
MoM solution.

intersections of the vertical and horizontal conductors, half-rooftop and saw
tooth basis functions are employed on the vertical and the horizontal conductors, 
respectively, whose amplitudes are related to satisfy the conservation of charges. 
Fig. 3.2.

Following the substitution of Eqs. (3.o)-(3.7) into Eqs. (3.1)-(3.3), the 
boundary conditions for the tangential electric fields are implemented in integral 
sense through the testing procedure of the MoM, for which the field e.xpressions 
multiplied by some testing functions j^V) are integrated on the

conductors and are set to zero. This leads to a matrix equation for the unknown
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coefTicients of the basis functions as

7  7  7^xx ^xy X̂Z
ŷX Zyy Zyz

Zru Z2:

■  Ix ' ' Vx '

ly = Vy
L

(3.8)

where Zs denote the mutual impedances between the testing and basis functions, 
and V̂ s represent the excitation voltages due to the current source(s). The matrix 
entries corresponding to the horizontal and the vertical rnetalizations can be 
written explicitly as follows:

Q Q { m n ) '
( :k

dx
z . *

dx

Yxy --

7  —^yx --

7  _^yy —

Z._x =

2 :.. =

J _  / rp(m'n')
ju  \ " ' dx

^  /  rp(m'n') ______

Ix 

d

QQ(mn)

*  — - —

dy

dy

QQ(mn)
CP'- * — ^

dx

- ju , G i  .  i  L Q<U  ̂ ---- y----
" dy

dBi‘^

- j u  { t P ,  G i  » ^  ( P/\  ^

 ̂ /  rp(̂ m'n') ^
ju  ’ dx

GV *
QB(mn)

dx

G'̂ ' *
dz

dBi‘^

QB(mn)
CP:· ---- y----

dy

z , .

^  /  rp[m'n') ^

J ^ Y ^  ' dy

Gl' *
dB'i^

d l

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

where < ,  >  and * denote inner product and convolution operators, respectively, 

and they are defined as follows:

=  Jj<i^<iy f { i , y )  a(i  ̂ y) (:i.l8)



f (x ,  y) * g{x, y) =  JJ d x 'd y 'fix  -  x ’ , y -  y') ■ g[x\ y') (3.19)

The entries of the array V have the same form except the basis function, which 
is a half-rooftop function with unit amplitude to model the current source, 
therefore they are not given here. After evaluation of the inner product terms and 
substituting into Eq. (3.8), the current densities on the conductors are obtained 
by solving the matrix equation. Then, the scattering parameters are extracted 
from the current distribution.

The use of the closed-form Green's functions in conjunction with the MoM 
has been demonstrated to improve the computational efficiency of the MoM 
when applied to simple geometries like those consisting of only horizontal 
conductors. After having improved the computational efficiency and robustness 
of the derivation of the closed-form Green’s functions, the natural step towards 
the goal of developing an accurate and efficient EM simulator is to study 
this approach for general geometries. .A preliminary study shows that the 
application of the MoM in conjunction with the closed-form Green’s functions to 
a geometry with vertical metalizcition is not as straightforward as its applications 
to only horizontal geometries, i.e., there are some difficulties in cases of vertical 
metalizations [30].

3.1.1 Difficulties and Solutions
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The difficulties originate from the way the closed-form Green’s functions are 
derived, more specificly, from the exponential approximation of the spectral- 
domain Green’s functions. In Chapter 2, the representative form of the spectral- 
domain Green’s functions is given and it is stated that the parameters, c and 
z', have to be fixed in order to be able to sample the function over the range of 
approximation. In other words, the exponential approximation is valid for only 
those fi.xed values of the parameters, so are the closed-form Green’s functions. 
For horizontal conductors, fixing 2  and z' does not pose a problem because the 
conductors are situated on constant z-planes recjuiring the Green’s functions to 
be evaluated at these planes only. Therefore, one can fix these parameters prior
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to the derivation of the closed-form Green’s functions, and use these Green’s 
functions for those values of the parameters only. However, the evaluations of 
the MoM matrix entries corresponding to the vertical metalizations reciuire the 
convolution integrals and the inner-product integrals given in Ecjs. (3.13)-(3.17), 
w’hich are to be integrated over z and/or Y. So, the closed-form Green’s functions, 
derived as described in Chapter 2, can not be used efficiently in the evaluation 
of such matrix entries.

This difficulty can be eliminated by recognizing that the amplitudes of the 
up- and down-going waves in the spectral-domain Green’s functions are the 
exponential functions of z' that can be factored out (see Appendix A). As an 
example, the spectral-domain Green’s function for the scalar potential due to a 
VED can be written as 

1
Gl =  

+

2 ;k .e ,
SGi-f
T̂M }  (3.20)

after having substituted the amplitudes of the up- and down-going waves. Note 
that Rtm find MJ^  ̂ are not functions of z and z', and their explicit expressions 
are given in Chapter 2. A brief study of Ec[. (3.20) shows that there are 
two approaches to overcome the difficulty: i.) application of the exponential 
approximation to each amplitude term, and ii.) performing the integration 
over z and z' analytically in the spectral domain, then applying the exponential 
approximation process. In the first approach, one needs to deal with each term 
in Ecp (3.20) separately; the first one is the direct term with unity amplitude, 
so no need for approximation, and the rest have amplitudes as functions of kp. 
In other words, the approximation of Gl in terms of complex exponentials with 
the exponents including z and z' explicitly requires to approximate only the 
amplitude functions of the four exponentials in Eq. (3.20). namely ,

Rt\\i  ̂A lf^ ^ a n d  The cost of having z and z' explicitly in the
approximation of a Green’s function is to apply the GPOF method three times 
more and is to use exponentials four times more as compared to approximating 
the same Green’s function as a whole. The second solution is based on the fact



that c and z' dependence of the spectral-domain Green’s functions is always 
in exponential form and analytically integrable over r and z' for most basis 
functions. Therefore, the integration over z and z\ which are due to the 
testing and convolution integrals along a vertical metalization, respectively, can 
be evaluated analytically if the spatial-domain Green's functions in the inner- 
product expressions are written as the inverse transforms of their spectral- 
domain representations. Then, the exponential approximation procedure is 
implemented on the resulting spectral-domain function. This approach eliminates 
the application of the exponential approximation for each term in the spectral- 
domain Green’s function. However, it requires the application of the e.xponential 
approximation as many times as the number of testing functions, or number 
of basis functions, or number of basis times testing functions on the vertical 
metalization for the inner-product terms involving c, or z' , or :: and z' 
integrations, respectively. Although the second approach seems to employ the 
exponential approximation algorithm more than the first one, it is more efficient 
for short vertical metalizations for which only a few basis functions are used. 
For one basis function on the vertical metalization which is usually sufhcient for 
a practical geometry, the number of exponential approximation in the second 
approach is less than that in the first approach, and moreover it requires less 
number of exponentials even for several basis functions. Also note that some of 
the commercial em simulation softwares, like em from SONNET, use only one 
basis function along a vertical metalization [31].

The first approach described above is quite straightforward, where one needs 
to write the spectral-domain Green’s functions in terms of exponentials of ;  and 
z' with complex coefficients and to apply the GPOF method tor each complex 
coefficient. Therefore, there is no need to give further details for this approach. 
On the other hand, since the application of the second approach requires some 
work in the spectral-domain, it would be instructive to give the procedure and 

the details:

1. Write the spectral-domain Green's functions into the sum of exponentials 
of :: and z' with complex coefficients.
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2. Express the spatial-domain Green’s functions in the MoM matrix entries 
as the inverse transforms of their spectral-domain representations using 
Eq. (2.57).

3. Evaluate the integrals over 2; and/or z' variables analytically.

4. Approximate the resultant expression by complex exponentials via the 
GPOF method.

5. Transform the whole expression into the spatial domain via the Sommerfeld
identity Eq. (2.62), getting an auxiliary function which has the same
form as Eq. (2.63).

6. Evaluate the remaining inner-product integrals analytically in the spatial 
domain.

The exponential approximation with the GPOF method in item 4, should be 
performed with care, because it has been obser\'ed that the functions obtained 
after evaluating 2 and z' integrals may contain peaks for intermediate values of 
kp. Therefore, to capture such behaviors efficiently, the two-level approximation 
scheme is extended to three levels for these terms, as explained in Chapter 
2. Hence, it is guaranteed that the spectral-domain auxiliary functions are 
approximated successfully. It should also be noted that addition of multiple 
vertical strips will not increase the computational cost of this technique, provided 
that all vertical strips employ the same number of basis functions. This is because 
the MoM matrix entries corresponding to the basis functions on a vertical strip 
are obtained as a function of p and because the domains of integrations along the 
vertical strips are the same. In other words, once the interaction between a basis 
and a testing functions on a vertical strip is calculated, the same expression can 
be used with a different value of p for the calculation of the reaction of the same 
basis function and a testing function (or vice versa) located on another vertical 
strip at a distance of p.

To demonstrate this technique on an example, the following inner-product
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term involving an integration on z—variable is considered:

(rf 1, G i * si""») = I J d z d y T P i g , : )

■ jjd x 'd y 'a t ix  - x \ y -  y\ Ij') (3.21)

The first step of the procedure is to write the spectral-domain Green’s function 
G'}̂  (2.36) in the form of Eq. (A.6), where r and z' dependencies are explicit. 
Then, the spatial-domain Green’s function Gd  ̂ in Eq. (3.21) is replaced by the 
inverse transform of the spectral-domain Green's function Gj^  ̂ (A.6). Hence, the 
inner-product term in Eq. (3.21) becomes

= JJd zd yTP {y)Tp iz)

■ JJdx'dy' --)} r t  (:!.22)

where the separability of the basis functions is utilized, ::) =  Py'^z).

After changing the order of integrations, the following au.xiliary function is defined 
and cast into closed form via the Sommerfeld identity:

e l = / d k ,k ,H P ix \f , -f , ' \ ) 9 i !d !^
J  4TT J s i P  —J  Px

-  h  ¡SIP I / ‘*· ~~’}(3.23)

where GPO F{·} designates the approximation process with complex exponentials 
via the GPOF method. Note that Ĝ  ̂ has a multiplicative term of —jkj;, which 
needs to be eliminated for being able to apply the GPOF method. This is the 
reason why Gf^ is divided by —jkj; and its effect is added in the spatial domain as 
a derivative with respect to xk Therefore, the argument of the GPOF{·} operator 
is approximated with complex exponentials without —jk^ term, resulting in the 
following inner product expression:

{t P ,  G i  . B p '')  = - j< ly  rP iy )IId x 'd y ' Bp"(x', y ')^,F*  (3.24)

The derivative of with respect to x' is carried over to the basis function by
using the chain rule

A
dx
A  (x ', j,') F*\ = A b P ') (x ', y') F;i + B p '' ix', y') A f ;̂  (:j,25)
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and the inner-product (3.21) reduces to

( t >'\ G i .  e i " ” ! )  =  - J  d y r P ls )  J  d,y (x ', y ')  I p

+ jd y r P H y )  J j d x ' d y ' F , l ~ B p ‘Hx', !,')

X’ e ng

(3.26)

where fig is the boundary of the domain of the basis function. Following the 
substitutions X — x' =  u and y — y' — v, the inner-product expression (3.26) is 
further simplified to

{ t P ,  G i  » B p">) = J d v  FP j  dy (x -  u, y -  x)

+  j j d u d v F p j d y  T P \ y ) A B p - )  (x -  y - „ )

X' e Qg

(3.27)

where x =  Xi, ;c-coordinate of the vertical metalization, and the integrals over y 
are evaluated analytically. Note that the first term in Eq. (3.27) drops for the 
rooftop basis functions, but it must be evaluated for the basis functions that are 
not zero at the boundaries such as half-rooftop functions. The evaluation of the 
other inner-products, given in Ecis. (3.13)-(3.17), are performed similarly, so they 
are not given here for the sake of brevity, but presented in Appendix B.

3.1.2 Singularities Encountered in the Application of 
MoM

Let us consider, for the sake of illustration, the cross-section of a planar circuit 
with a vertical connection as shown in Fig. 3.3, where the vertical strip is placed in 
the y direction. Note that the continuity of the current at the intersection of the 
horizontal and vertical conductors is satisfied by simply setting 2/^ = —L· where 
/j. and / .  are the magnitudes of Bx and B,. respectively. Therefore, the inner- 
product terms due to the basis functions indicated by dashed lines in the figure, 
are combined in the same matrix term. Since discontinuous basis functions are to 
be used at the intersection points, singularities are encountered in the evaluations 
of the MoM matrix entries due to the differentiations of the basis functions. Note
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Figure 3.3: Cross-section of a planar circuit with a vertical connection showing 
the discontinuous basis functions.

that the derivatives of the testing functions do not create any singularity since 
rooftop functions are used for the testing functions on both horizontal and vertical 
metalizations.

In order to study these singularities, a MoM matrix entry involving the basis 
functions in the horizontal and the vertical directions at the intersection point is 
written as follows:

OB.
2ju . \  dx

G " » 'AL·.
‘  ex

+  A  T A
juj \ ax

GV *
dz

(3.28)

where both and B  ̂ are discontinuous at the junction, and the vertical 
metalization is like a ribbon with a finite width in (/-direction. Since the 
basis functions are discontinuous, their derivatives can be written as the sum 
of continuous and singular parts, respectively, as

=
2ju \dx dx

+ * 26y{x -  Xi, z -  Zi)  ̂ -I- ~ -

-F Gl’̂ * 6y{x -  Xi, z -  Zi) (3.29)

Where, 8y{x — X{, z — Z{) represents a line source in (/-direction at the junction 
point which is created by the derivatives of the discontinuous basis functions. By
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recombining the terms, one can obtain the following expression:

Zll  ̂ ' i- T .. GV ·  i  ^  .t -  -- -  !.)2ju \dx' dx

+ (¿ r . ,  {GV - GV) . -  J·,·. c - (3.30)

For small p values, the last term in Eq. 3.30 can be neglected since GT ~  G'J' at 
~ =  as /9 —»■ 0, that is, the contribution of the line sources resulted from the 
derivatives of the basis functions, is ignored. The accuracy of this assumption is 
verified on some examples.

3.2 The Method of De-embedding of the Port 
Discontinuities

Because there exists fringing, reactive and evanescent fields in the vicinity of 
the source and load terminals, circuit parameters, such as input impedance 
and S-pararneters, are obtained by removing these higher order effects from the 
calculations, which is called de-embedding [32]. Note that the EM simulation 
techniciue presented in this thesis uses impressed current sources to characterize 
an N-port circuit [3.3].

Since the current densities on the conductors, including the port transmission 
lines, have already been calculated, the current on each port transmission line 
is written as a linear combination of complex exponentials by using the GPOF 
method as

N
I{1) (3.31)

1=1

where / is the distance along the port transmission line. If the magnitudes 
of the higher order modes on the port transmission lines are sufficiently 
small, the current can be expressed by only two exponentials with complex 
coefficients corresponding to the incident and reflected current waves at the
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corresponding ports. Then, the S-parameters are calculated from the coefficients 
of these exponentials and transferred to the desired reference planes [34]. These 
S-parameters are inherently normalized and referenced to the characteristic 
impedances of the port transmission lines. Note that, the propagation constants 
on the transmission lines are also found as the by-product of this method 
which enables us to extract the effective permittivity at each frequency of 
operation. However, in some cases, it might be numerically difficult to extract 
the propagation constant and the unknown coefficients of the exponentials with 
sufficient precision from the same current samples by direct application of the 
GPOF method. This situation occurs in MIC structures where the electrical 
length of the port transmission line is very small. In such cases, one can 
find the propagation constant from a sufficiently long test transmission line, 
which has the same characteristics with the original port transmission line, and 
then use this propagation constant to fit the current on the original line with 
complex exponentials through a linear least-squares algorithm [35]. Finally, 
the S-parameters obtained are converted to the S-parameters with the reference 
impedance of 50 if. For a two port-network, the matrix relation, used to find the 
S-parameters, can be written in the following form

0 0

/ii At
0 0

^11 ^12 

0 0

Iti
0

4
0 /i l  Io%22

■ ■ ■ - / f i  ■

S l 2 - I n
S'n - l A

. S22 . - / T 2  .

(3.32)

where / Î  and /,,· are the current coefficients for the incident and reflected waves, 
respectively, for ¿’th port excitation and j ’th port observation. Note that, in the 
calculation of the S-parameters it is not necessary to terminate the ports because 
both the transmitted and reflected waves are considered in the calculations.

This derivation of the S-parameters does not reciuire the knowledge of the 
characteristic impedances of the port transmission lines. However, the need 
to convert these S-parameters to the S-parameters with a known reference 
impedance (usually 50 if) makes it necessary to know the characteristic 
impedances of the port transmission lines. Since rigorous calculation of the
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cluiracteristic impedance of a microstrip line in a multilayer medium is quite 
time consuming, a method based on a quasi-TEM approach is used here, which 
provides a closed-form expression for the characteristic impedance of a microstrip 
line and a stripline [36,37]. This method is valid when the transverse components 
of the current densities on the port transmission lines are very small as compared 
to the longitudinal components, which is usually the case for printed circuits. 
Note that the characteristic impedance found from the cjuasi-TEM approach 
does not change with frequency, whereas in reality it changes with frequency 
[38,39]. By using a frequency dependent effective permittivity in the closed- 
form expression for the characteristic impedance, the quasi-TEM appro.ximation 
is somewhat improved (see Fig. 3.4).

To calculate the S-parameters of a general N-port network with different 
characteristic impedances at port ¿, the following pseudo code, which fills 
the matrices in Eq. (3.32), is given here for convenience

A ^ O

n <— number of ports 
fo r  i =  0,1,2, · ■ ·, n — 1 
begin

fo r  / =  0,1,2, · · ·, n — 1 
begin

fo r  m = 0 ,1 ,2, · · ·. n — 1

begin
Aia,n+m, l+m*n  ̂ *  • 5 < / ? t ( ^ 0 i )

end
Bi.n+i <----- lu * sqrt(Zot)

end
end

Then, the S-parameters are found from S =  A “ ^B.

3.3 Numerical Examples

In this section, the application of the formulation presented in this thesis is 
demonstrated on some practical geometries and the results are compared to those
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w.
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w◄— ►

Ground Plane

Figure 3.4: Meaning oi Sg/f for a microstrip transmission line.

obtained from a commercial EM analysis software, e/n from SONNET Software 
Inc.

The main difference between em and this formulation is that an puts the 
circuit in a conducting box whose default wall conductivities are infinite [31]. 
The analysis of radiating structures in an requires adding loss to the system, but 
with the formulation presented here these structures can be characterized better, 
in the sense of accuracy and computational efficiency. One can refer to Carroll 
and Chang [40] for a general information on em software.

.A typical uniform gridding of a planar circuit is shown in Fig. 3.5, where 
A.r and Ay  are constant through the whole geometry. Note that the simulation 
software developed to implement the algorithm which is presented in this thesis, 
can accept non-uniform gridding as well. However, it should be stated that non- 
uniform gridding increases the matrix-fill time in some cases due to the increased 
complexity of the evaluation of reaction integrals. In addition to that, similarities 
between the reaction integrals are significantly reduced in the case of a non- 
uniform gridding. Therefore, one should not use non-uniform gridding unless 
it is necessary. The arrows on the port transmission lines in Fig. 3.5 show the 
reference planes used in the calculation and in the de-embedding of the circuit
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Figure 3.5: Typical gridding which is used in the simulation software.

parameters. The S-parameters provided here are normalized with respect to 50 
Q reference impedance.

3.3.1 Microstrip Patch Antenna

.A single microstrip patch antenna is one of the simplest radiating structure that 
can be built on a multilayer medium. Single patch antennas and patch antenna 
arrays are widely used in mobile microwave communication systems and airborne 
applications [41-44]. Moreover, the possibility of incorporating the antenna with 
active circuits on the same substrate increases the importance of the microstrip 
antennas.

The simplest model of a rectangular microstrip patch antenna considers 
the antenna as a transmission line which connects two parallel radiating 
slot impedances and called as the “transmission line model” . Although the 
transmission line model is simple, it has several disadvantages: i.) it is only useful
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for the patches of rectangular shape, ii.) it ignores the field variations along the 
radiating edges, and Hi.) the corrections for the fringe field must be empirically 
determined. In an another analysis method, where these disadvantages are 
eliminated, the antenna is modeled as a thin TAL mode cavity. In this method, 
which is called the “cavity model” , the field between the patch and ground plane 
is e.Kpanded in terms of the cavity resonant modes. The effect of the radiation is 
accounted for by artificially increased dielectric loss or by an impedance boundary 
condition on the walls. However, despite of these simple models, there is still 
need for rigorous full-wave analysis of microstrip patch antennas to consider the 
radiation, electromagnetic couplings, and fringing fields rigorously.

P1

0.268 cm

V

6.7 cm

e|.=2.55 
h=0.159 cm.

4.02 cm

4.02 cm

Figure 3.6: Geometry of a patch antenna.

A microstrip patch antenna, shown in Fig. 3.6, is analyzed as a first example 
and the results are given in Fig. 3.7. Note that the results of em are not smooth 
and contain artifacts. As stated previously, the formulation presented in this 
thesis has the advantage that the radiating structures can be analyzed rigorously 
since the radiation condition is automatically satisfied. In addition to that.
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Figure 3.7: r,„ of the patch antenna shown in Fig. 3.6. Frequency increases in 
the clock-wise direction (/jiari=2200 MHz, /s(op=2400 MHz).

consideration of the surface waves is also inherent to the formulation resulting a 
rigorous analysis of coupling between the elements of an antenna array.

In order to give an idea about the current distribution on a planar structure, 
3-D plots of the current density on the patch antenna near resonance are also 
given in Figs. 3.8 and 3.9. Note that at the edges of the patch parallel to x- 
axis. tangential components of the electric current density exhibit peaks due to 
the phenomena called as “edge singularity” . The reason of this behavior is that 
since it is assumed that the patch is perfectly conducting, the tangential electric 
field on the patch surface should be zero and this necessity reciuires a strong 
charge density at the edges to cancel the field generated by the charges which are
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deposited interior regions of the patch [45]. Note that through the formulation 
this singularity is not dictated by the choice of singular basis functions at the 
edges, it automatically results from the solution of the matrix system. Another 
point worth mentioning is that the y-directed current is not excited as much 
as the .r-directed current which is an indication of a linearly polarized far-held 
pattern. However, there are techniques that can excite the y-directed current as 
well as the x-directed current to produce circular polarization [46-48].

Figure 3.8: x-directed current density of the patch antenna shown in Fiff. 3.6 at 
/  =2300 MHz.

3.3.2 Microstrip Corner

Since the full-wave analysis of a MIC, including both passive and active 
components, requires a signihcant amount of CPU time, the accurate and fast 
characterization of passive components, like microstrip discontinuities, coupled 
lines, hybrids etc., plays an important role to hnd the equivalent lumped circuit
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Figure 3.9: i/-directed current density of the patch antenna shown in Fig. 3.6 at 
/  =2300 MHz.

parameters. Once the lumped circuit parameters are found they can be used in 
a circuit simulation software to analyze the whole MIC very efficiently.

In this section, a microstrip corner, whose geometry is shown in Fig. 3.10, is 
analyzed, and the S-parameters obtained from the formulation presented in this 
thesis and from the em software are compared and are given in Figs. 3.11 and 
3.12. Note that the capacitive behavior dominates at lower frequencies and as the 
frequency increases, the inductive behavior of the corner starts to be pronounced. 
To obtain better response in terms of the reflection coefficient, a small square 
region as indicated in the Fig. 3.10, is e.xtracted from the corner resulting in a 
significant improvement through the operation band. Fig. 3.11. In practice, a 
mitered corner is commonly used instead of extracting a small square region.

Once the S-parameters of the microstrip corner have been obtained, the 
lumped circuit model parameters can easily be extracted for a given circuit model.
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Figure 3.10: Geometry of a rnicrostrip corner.

Frequency (in Mhz)

Figure 3.11: Magnitude of Su of the microstrip corner shown in Fig. 3.10.
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Frequency (in Mhz)

F'igure 3.12; Phase of of the microstrip corner shown in Fig. 3.10.

The circuit model, employed to represent the microstrip corner, is devised on 
the assumption that there is no radiation, metalization, and dielectric losses. 
Therefore, no resistive element is used in the model. Fig. 3.13. To find the values 
of the lumped circuit elements in the model, an optimization algorithm with 
necessary constraints is used, for which the cost function is defined by comparing 
the S-parameters of the circuit model to those obtained from the MPIE analysis 
through the frequency band of operation. For comparison purposes, the element 
values are also calculated from the semi-analytical expressions [49], and the values 
of the extracted and calculated circuit elements for abrupt and modified corners 
can be found in Table 3.1. Note that, for the modified corner, we have lower 
capacitance and higher inductance values as compared to those of the abrupt 
corner, as expected.
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Figure 3.13: Equivalent lumped circuit model of the microstrip corner shown in 
Fig. 3.10.

Method L (nH) C(pF)
MPIE (abrupt corner) 0.0192 0.044.5
MPIE (modified corner) 0.02.36 0.0313
Analytic expressions [49] (abrupt corner) 0.0294 0.0432

Table 3.1: Equivalent lumped circuit values for the microstrip corner shown in 
Fig. 3.10.

3.3.3 Proximity Coupled Microstrip Patch Antenna

There are typically three definitions for the bandwidth of a microstrip patch 
antenna or an array: impedance bandwidth, pattern bandwidth and polarization 
bandwidth. The limiting factor for a single element is the impedance bandwidth, 
the pattern and polarization bandwidths vary relatively slow with frecpiency. 
One way to increase the impedance bandwidth is to increase the thickness of 
the dielectric material. However, as the thickness of the substrate increases, the 
impedance locus of the antenna becomes inductive, which makes the matching of 
the antenna difficult, and the surface wave excitation becomes higher, which 
causes spurious radiation. There are other techniques used to increase the 
impedance bandwidth of a patch antenna which can be listed as follows: i.) using 
a matching network to match the feed to the antenna over a broadband [.50-.52], 
ii.) using multiple resonators which are tuned to slightly different frequencies 
[53-57], Hi.) introducing loss to the system at the expense of power efficiency.
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and iv.) modifying the feeding structure of the antenna [58].
In this section, a proximity coupled patch antenna, as shown in Fig. 3.14, 

is analyzed, and the effects of the coupling is investigated for different coupling 
lengths, s. It is observed that the impedance locus of the antenna moves from 
the capacitive reactance region to the inductive reactance region as the coupling 
length increases. Fig. 3.15.

=0.158 cm e^=2.20 

h 2 =0.158 cm £2 =2.20

Figure 3.14: Geometry of a proximity coupled patch antenna.

The elements of the equivalent circuit model of the patch antenna, which 
is shown in Fig. 3.16, are also extracted by using the method described in the 
example of the microstrip corner. Note that the resistance in the model simulates 
the loss mechanisms due to the radiation and the surface waves. The element 
values of the lumped circuit model, which are obtained in this study for the 
coupling length of s=1.25 cm, are compared to the values found in the literature, 
which were extracted from an experimental data, see Table 3.2. The difference 
in Cl could be attributed to the optimization algorithm, weights used in the 
optimization for the magnitude and phase terms, and the frequency band of 
interest, since it is found that the value of Ci depends considerably on these
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Figure 3.15: Fi„ of the proximity coupled patch antenna shown in Fig. 3.14. 
Frequency increases in the clock-wise direction (/siari=3000 MHz, /jiop=4000 
MHz).

parameters.

Cl

-r -C 2

Figure 3.16: Equivalent lumped circuit model of the proximity coupled patch 
antenna shown in Fig. 3.14.
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Method Cl (pF) C-2 (pF) R (Ohm) Lj pH)
MPIE (full-band) >1000 16.5 36.6 116.8
MPIE (narrow-band) 21.5 13.9 40.3 138.2
Experimental data [58] 7.5 13.0 40.0 151.0

Table 3.2: Equivalent lumped circuit values for the proximity coupled patch 
antenna shown in Fig. 3.14.

3.3.4 Microstrip Patch Antenna with Parasitic Elements

As indicated in the previous example, the impedance bandwidth of a single 
patch antenna is relatively narrow and this can be improved by using multiple 
resonators which are tuned to slightly different frequencies. In this example, 
the parasitic elements are placed along the non-radiating edges of the microstrip 
patch antenna, as shown in Fig. 3.17, and the effect of these elements on the input 
VSWR is investigated. The input VSWR of the patch antenna is obtained for 
different lengths of the parasitic elements and the results are given in Fig. 3.18. 
Note that when the lengths of the resonators are equal to each other, the input 
VSWR has one global minimum and the antenna can only be operated around 
that point. On the other hand, it is also possible to select the resonator lengths 
different for which the input VSWR would have two local minimums, resulting 
in a dual-frequency operation of the antenna.

3.3.5 Four-pole Elliptic Band-pass Filter

It is highly desirable to obtain narrow band-pass filters with strong frequency 
selectivity, linear phase in the passband and low insertion loss. For some 
applications, requirements on the frequency selectivity and the insertion loss of a 
Filter need to be strictly satisfied. For such applications, the elliptic filter is the 
optimum choice in the sense that it provides much steeper transition band for 
a given order, and relatively small insertion losses as compared to Butterworth
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Figure 3.17; Geometry of the microstrip patch antenna with parasitics.

and Chebyshev filters. [59,60]. In circuits which have transmission channels in 
parallel, the poles of attenuation are created when the signals from different paths 
are added with proper phase and magnitude. Hence, such filters can be realized 
with low-loss cavity resonators which have cross-couplings between them.

In this example, a four-pole elliptic band-pass filter realized by cross-coupled 
resonators [61], Fig. 3.19, is analyzed, and the effect of the spacing, s, to the filter 
response is investigated. It is observed from Figs. 3.20 and 3.21 that the results 
of the method presented here and obtained from em are in good agreement with 
each other, and that there is an optimum spacing between the resonators for 
minimum insertion loss or broader bandwidth.

3.3.6 3 dB 90° Hybrid Coupler

Hybrid couplers are widely used in microwave engineering due to their unique 
features. One of the application areas of the hybrid couplers is the design of 
balanced amplifier in which the total input and output reflections of the whole
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Frequency (in MHz)

Figure 3.18: Input VSWR of the microstrip patch antenna with parasitics shown 
in Fig. 3.17.

amplifier can be reduced significantly with the use of the hybrid couplers.
In this section, a multilayer 3 dB 90° hybrid coupler, as shown in Fig. 3.22, is 

analyzed. The results obtained from the method presented in this thesis show a 
very good agreement with the results obtained from the em software. Figs. 3.23 
and 3.24. Note that the phase difference and power coupling between the coupled 
ports are nearly constant and equal to 90° and 3 dB, respectively, through the 
operation band.
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Figure 3.19: Geometry of a band-pass filter.

Frequency (in MHz)

Figure 3.20: Magnitude of ¿"n of the band-pass filter shown in Fig. 3.19 for 
different s values.
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Figure 3.21: Magnitudes of and ^21 of the band-pass fdter shown in Fig. 3.19 
for .s=0.175 crn.

Figure 3.22: Geometry of a hybrid coupler.
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Figure 3.23: Magnitudes of 5i3 and of the hybrid coupler shown in Fig. 3.22.

CDd>

Figure 3.24: Phases of 5i3 and Su of the hybrid coupler shown in Fig. 3.22.
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3.3.7 Coupled-line Band-pass Filter

In designing edge-coupled filters, it might be necessary to have small spacings, i.e., 
large couplings, between the resonant elements which would make the production 
of such filters very difficult. This difficulty can be circumvented by implementing 
such coupled lines in a stripline geometry with broad-side coupling [62,63].

In this example, a multilayer band-pass filter with broad-side coupling, as 
shown in Fig. 3.25, is designed by following the design procedure based on the 
even- and odd-mode impedances of the coupled lines [37]. The analysis of this 
filter is performed by using the method described in this thesis and by the em 
software, and the results are in perfect agreement. Figs. 3.26 and 3.27.

0.305 cm 0.244 cm

I 1 I Í3

183 cm

0.061 cm
2.195 cm

=0.20574 cm ê =2.62 

h 2 =0.09652 cm £2=2.62 

113=0.20574 cm £3=2.62

Figure 3.25: Geometry of a multilayer band-pass fdter.

3.3.8 Iiiterdigital MIC Capacitor

All examples considered so far have the dimensions comparable to the guided 
wavelength at the operating frequency. Since most of the integrated circuit
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Figure 3.26: Magnitudes of and ¿Vi of the band-pass filter shown in Fig. 3.25.

Figure 3.27: Phases of 5n  and S21 of the band-pass filter shown in Fig. 3.25.



components have very small dimensions as compared to the guided wavelength, 
it is also necessary to test the formulation presented here for such circuit 
components.

In this section, an interdigital MIC capacitor, which is a good example of 
such circuit components, is analyzed to demonstrate that the MPIE formulation 
is valid in the quasi-dynamic range, and ^21  of the MIC capacitor are obtained 
and compared to those of em software, as given in Figs. 3.29 and 3.30. In addition, 
the magnitude and the phase of of an ideal capacitor are also plotted on the 
figures and it is observed that the magnitude of the 5'u deviates considerably 
from the ideal behavior of a capacitor as the frec[uency increases.
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Figure 3.28: Geometry of an interdigital MIC capacitor.

In general, the spatial-domain Green’s functions are obtained for a wide range 
of p to be able to perform the full-wave analysis for large structures. However, 
since this structure has small dimensions as compared to the guided wavelength, it 
would be instructive to investigate the effects of using less number of exponentials 
for the paths Cap2 and Cap\ shown in Fig. 2.2 in the application of GPOF. In other
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Figure 3.29: Magnitudes of 5u  and ^21 of the MIC capacitor shown in Fig. 3.28.

Figure 3.30: Phases of 5n and S21 of the MIC capacitor shown in Fig. 3.28.
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words, the Green’s functions of the structure are weakly approximated in the 
spatial distances which will be never used. By using less number of exponentials 
for the mentioned paths, the total number of exponentials in the spatial-domain 
Green’s functions are reduced from 18 to 12 at /  =1.0 GHz, and from 26 to 17 at 
/  =10.0 GHz resulting in approximately 1.5 times increase in the computational 
efficiency without introducing significant errors to the results. Fig. -3.31.

Figure 3.31: Magnitudes of 5n and 521 of the MIC capacitor shown in Fig. 3.28.

The lumped circuit model parameters of the interdigital capacitor given in 
Fig. 3.32 can be also extracted using the same procedure as in the microstrip 
corner. The series resistance in the model accounts for the metalization losses 
and is assumed to be zero in the parameter extraction process. For comparison 
purposes, the element values of the lumped circuit model for the interdigital 
capacitor are calculated from semi-analytical expressions [49], and it is observed 
that the extracted and calculated circuit element values for the capacitance C2 

are very close to each other, see Table 3.3.
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- j p v A A

Figure 3.32: Equivalent lumped circuit model of the interdigital capacitor shown 
in F'ig. 3.28.

Method C, (pF) (pF)
MPIE 0.0381 0.127
Analytic expressions [49] N/A 0.120

Table 3.3: Equivalent lumped circuit values for the interdigital capacitor shown
in Fig. 3.28.

3.3.9 Short-circuited Microstrip Line

So far, the formulation presented in this thesis has been applied to planar 
structures with no vertical conductors, and through these examples it is verified 
that the spatial-domain MoM solution of the MPIE employing the closed-form 
Green’s functions gives accurate results for such structures. The next step is to 
apply the algorithm to planar structures with vertical metalizations.

In this example, a simple microstrip line short-circuited with a shorting pin. 
Fig. 3.33, is considered, where the shorting pin is modeled as a narrow rectangular 
strip placed between the microstrip line and the ground plane. Note that the 
same model is also used in the em simulation for the purpose of comparison. 
However, it should be stated that a more realistic shorting-pin can be modeled 
by placing the vertical strips in a form of rectangular cylinder both in ern and 
in this approach. The dielectric constant of the substrate is chosen to be 4.0, 
and two different values of the substrate thickness are used in the analysis, 8 and 
80 mils. The microstrip line is excited with a current source from the left end.
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and is left open-circuited at the right end. To simulate the unity current-source 
excitation in em, the values of the voltage source and the input impedance are 
.selected ec[ual and very large with respect to the characteristic impedance of the 
line, which is the Norton equivalent of the current source with unity amplitude. 
The current distribution on the microstrip line is obtained and given in Figs. 3.34, 
and 3.35 along with the results obtained from the em software, denoted by Sonnet 
in the figures.

.'\s can be seen from the figures, the results agree very well for a thin substrate 
case but, as the substrate thickness increases the result of em starts to deviate 
because em version 3.0 assumes constant current distributions on the vertical 
connections [31]. Note that we have employed three shorting pins for the thick 
substrate case to demonstrate the use of the formulation for multiple vertical 
metalizations, F'ig. 3.35.

Figure 3.33: Geometry of a short-circuited microstrip line.

3.3.10 Air Bridge

Air-bridges are commonly used in MICs to carry signal paths over other signal 
paths, as in the case of a series connected spiral inductor. In this example, an air
bridge, which is shown in Fig. 3.36, is analyzed. Figures 3.37 and 3.38 show the
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Distance from the source (cm)

F'igure 3.34: Current distribution on the microstrip line shown in Fig. 3.33 with 
a single shorting pin.

magnitude and phase of 5u of the air bridge, respectively. Note that the inductive 
behavior dominates at the tower frequencies and the capacitive behavior starts 
to be pronounced more as the frequency increases.

3.3.11 Short-circuited Microstrip Patch Antenna

Next example is a microstrip patch antenna with a shorting post, printed on a 
substrate with the thickness of 0.152 cm. and with the relative permittivity of 
2.43, as shown in Fig. 3.39. Placing shorting posts in a microstrip patch antenna 
shifts the resonant frequency of the antenna without effecting the radiation 
pattern significantly [48,64,65]. Therefore, it can be employed in the design of 
a dual-frequency microstrip antenna. Moreover, if these shorting posts are made 
of PLN or varactor diodes, a frequency-agile antenna is obtained by electrically 
activating the diodes. In this example, the amount of frequency shift in the 
resonant frequency of a patch antenna is assessed, and demonstrated for several
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Distance from the source (cm)

Figure 3.35: Current distribution on the microstrip line shown in shown in 
Fig. 3.33 with three shorting pins.

0.05 cm
0.5 cm

Source
0.02032 cm

Ground Plane

Figure 3.36: Geometry of an air bridge.

positions of the shorting post in Fig. 3.40, where the normalized position of the 
shorting post is defined as =  (x — 3.81)/3.81. The results obtained by the
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Figure 3.37: Magnitude of of the air bridge shown in Fig. 3.36.

a>CZ>

Frequency (in MHz)

Figure 3.38: Phase of of the air bridge shown in Fig. 3.36.



method presented in this thesis are compared to those measured and to those 
obtained by the cavity model, and the agreement is quite well considering the 
different types of feeding structures, rnicrostrip-line feed for our case and probe 
feed for experimental and the cavity model [65].

Note that the unloaded resonant frequency of the antenna is approximately 
1237 MHz, and it also corresponds to the resonant frequency for the shorting post 
located at the middle of the patch. This is because the dominant modes in this 
patch antenna, TMoi and TiVIio, have almost zero electric field in z-direction at 
the middle of the patch, hence shorting post at this position will have negligible 
effect on the resonant frequency.
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Figure 3.39: Geometry of a shorted microstrip patch antenna.

3.3.12 Square-spiral MIC Inductor

Finally, a square-spiral MIC inductor terminated in a short circuit, shown in 
Fig. 3.41, printed on a substrate with a thickness of 100 /iM and with the 
dielectric constant of 12.9, is analyzed. The magnitude and the phase of the input
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Figure 3.40: Resonant frequency of the patch antenna, shown in Fig. 3.39, vs. 
shorting pin location.

impedance, seen from the reference plane, are calculated and the magnitude is 
plotted in Fig. 3.42 as a function of frequency, the phase is equal to 90° throughout 
the frequency range. It is observed that the magnitude of the input impedance 
deviates from the ideal behavior of an inductor, as the frequency is increased, 
because of the self-resonance of the structure.

It should be noted that the model we have employed for the vertical 
metalizations, namely planar strip, is not the most accurate one. One can instead 
use circular cylindrical or square cylindrical via models within this formulation. 
But. since the main goal of this thesis is to demonstrate the use of the closed- 
form Green’s functions in conjunction with the MoM for geometries with vertical 
metalizations, the simplest model is employed to convey the ideas clearly.
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Figure 3.41: Geometry of a MIC square-spiral inductor.

Figure 3.42: Magnitude of the input impedance of the MIC inductor shown in 
Fig. 3.41.



CHAPTER 3. FIELD ANALYSIS IN PLANARLY LAYERED MEDIA 64

3.4 Conclusions

III this chapter, it was shown that the spatial domain analysis of the printed 
structures employing the closed-form Green's functions has improved the 
computational efficiency of the MoM for the planar geometries in multilayer 
media. The formulation has been applied to some realistic geometries, for which 
the scattering parameters and the relevant circuit parameters were extracted and 
compared to those obtained from a well-known commercial software, em from 
SONNET.

The formulation contains relatively less abstraction and gives accurate 
results for both microstrip and stripline structures with horizontal metalizations. 
However, there have been some difficulties in the use of these closed-form Green’s 
functions for the analysis of geometries with vertical metalizations. In this 
chapter, these difficulties have been discussed and their remedies have been 
proposed. It is observed that one of these techniques is more efficient for long 
vertical metalizations requiring several basis functions, and the other approach 
is more efficient for short vertical metalizations. Since the implementation of the 
former approach is rather simple and straightforward, we have only given the 
formulation of the second approach in detail.

The de-embedding method employed in the algorithm uses the transmitted 
and reflected waves on the port transmission lines to find the scattering 
parameters of the passive structure. The scattering parameters obtained in this 
way are very accurate provided that the correct impedance values for the port 
trcinsmission lines are used and that the current on a port transmission line is 
sampled starting from a sufficiently distant point from the discontinuity.

The formulation presented here is not limited to thin substrates, in other 
words to short vertical metalizations, as in the case of ern version 3.0, and 
is capable of incorporating additional vertical metalizations with almost no 
computational cost. Therefore, this approach is very suitable for the purpose 
of optimization of a geometry involving vertical metalizations.



Chapter 4

Methods for Improving the 
Analysis Time

Development of a computationally efficient and rigorous technique has been the 
main focus of researchers in computational electromagnetics for a long time. In 
Chapter 3, we have proposed a technique based on the spatial-domain MoM 
in conjunction with the closed-form Green’s functions, and have tested for its 
accuracy and robustness, but not for its computationally efficiency. In this 
chapter, the computational efficiency of the technique is assessed from the CPU 
time analysis and some improvements in this context are proposed and tested.

The computational efficiency of a numerical technique can be assessed either 
by the complexity analysis of the technique or by the CPU time consumed by 
the techniciue for a given number of unknowns. Since the general technique is 
quite complex and consists of three main algorithms, namely the computation of 
the closed-form Green’s functions, evaluation of the MoM matrix entries and the 
solution of the linear systems of equations, it is difficult and may not be useful 
to find the computational complexity of the whole technique. Instead, the CPU 
time consumed by each algorithm of the technique is assessed independently. 
On the other hand, the main disadvantage of this approach is that the CPU 
times also heavily depend on the programming style and compilers, whereas, the 
computational complexity approach gives the cost of an algorithm independent

65
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from the platform being used.

Among these three algorithms, the evaluation of the MoM matri.x entries is 
the one that consumes most of the CPU time of the technique for moderate size 
geometries (spanning a few wavelengths). However, for large geometries requiring 
large number of unknowns, the solution time of the linear system of equations 
dominates the total analysis time. It should be noted that the computation of 
the closed-form Green’s functions does not contribute significantly to the total 
solution time unless vertical or multilayer metalizations are used. To give an 
idea, the CPU times for some printed geometries analyzed in Chapter 3 are given 
in Table 4.1. Note that all the geometries referred to in the table have been 
analyzed with uniform segmentation, which gives rise to block symmetric MoM 
impedance matrices. Therefore, the matrix fill-time has been reduced significantly 
by exploiting the symmetry in the matrix. It is observed from Table 4.1 that 
although the number of unknowns in the analysis of the interdigital MIC capacitor 
is less than that of the band-pass filter, the matrix fill-time of the capacitor is 
greater than the matrix fill-time of the filter. This is due to the fact that the 
dimensions of the MIC capacitor are relatively small as compared to the guided 
wavelength and therefore the accelerated evaluation of the reaction integrals, 
which will be explained in detail in the next sections, cannot be employed for 
the same approximation parameters. Another point that is worth mentioning 
is the number of exponentials used to approximate the spatial-domain Green’s 
functions. Depending on the geometry and frequency, one can reduce the matrix 
fill-time by using less number of exponentials while preserving the accuracy in 
the results. Finally, the benchmarks shown in Table 4.1 do not show the ultimate 
limits of the algorithm, the CPU times can be reduced further by optimizing the 
code.

Since the matrix fill-time is the major contributor to the total CPU time 
consumed by the analysis in most cases, special care has been taken for filling up 
the impedance matrix, which is mainly the calculation of the reaction integrals. 
These integrals can be evaluated efficiently by following the steps given below:

• A look-up table is prepared to store the indices of similar inner-products
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Geometry # o f
unknowns

Analysis
frequency
(MHz)

Green’s 
function 
evalua
tion time

Matri.x
fill-time

Solution
time

Patch 
antenna 
(Fig. 3.6)

454 2300 6 8 34

Multi-layer 
band-pass fil
ter (Fig. 3.25)

862 4000 18 44 315

Band-pass fil
ter (Fig. 3.19)

16.38 2550 6 94 2122

Interdigital 
MIC capaci
tor (Fig. 3.28)

576 1000 6 262 80

Table 4.1: CPU times in terms of seconds consumed in the analysis of some 
typical geometries on a SUN SP.ARC 20 workstation.

and every new inner-product term is searched from the table to prevent 

re-calculation.

• The result of an inner-product is set to zero automatically if the distance 
between the source and observation points is greater than the predetermined 
value Ртах- The value of pmax is uniquely defined for every Green’s function.

• The method for the approximation of the Green’s function is dynamically 
changed according to the distance between the source and observation 
points.

The last two items are explained in Section 4.1 in detail. In addition to the 
efficient evaluation of the MoM matrix entries, the total CPU time required for 
the characterization of a circuit over a frequency band can be further reduced by 
using frequency interpolation, which is explained in Section 4.2.
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4.1 Evaluation of the MoM Matrix Entries

Despite the time-saving realized from the analytical evaluation of the reaction 
integrals, the need for further reducing the matrix fill-time is not obviated for 
many problems. With this background in mind, the objective of this section is 
to present a hybrid technique for the evaluation of the MoM reaction integrals in 
a numerically-efficient manner, which further reduces the CPU time needed for 
their computation.

Efficient evaluation of the MoM matrix entries, given in Eqs. (3.9)-(3.17), is an 
important issue that deserves further study, because it is the principal contributor 
to the total CPU time for small and moderate-size geometries. The MoM 
matrix entries can be calculated analytically without any numerical integration 
for piecewise continuous basis and testing functions via the rigorous approach 
described in [17,66], provided the closed form Green’s functions are used for the 
formulation. In this method, each of the exponentials in Eq. (2.63) is replaced 
by its Taylor series approximation as follows:

N M
G·'’" = E “« E { ' ' n  -  f ' c ) (4.1)

n=l m=0 ' n

where Cm's are the Taylor series coefficients and is the center of expansion 
for the exponential term e“ ·'*’’ ’’". Alternatively, one could replace the entire 
Green’s function in Eq. (2.63) with a suitable approximation that would enable 
the reaction integrals to be evaluated analytically. Eor instance, one may use the 
polynomial approximation for the Green’s function as

^ ¿ b r p ‘ (4.2)
/=-1

where 6;’s are the complex coefficients obtained from a least-squares fitting 
scheme. It is obvious that the analytical integration of the reaction integrals 
is considerably simpler for the Green’s functions expressed in Eq. (4.2), than for 
those expressed in Eq. (4.1). This is because the analytical evaluation of the inner- 
product integrals using the former representation requires extensive complex 
arithmetic operations, as well as multiple evaluations of complex logarithms and
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trigonometric functions. However, the caveat in the polynomial-fitting approach 
is that approximating the Green’s function over the entire range is very clifRcult, 
if not impossible, with a relatively small ¿, because of the singular behavior of 
the Green’s functions as p —̂ 0. One approach to resolving this dilemma is to 
utilize both of the above representations, but in complementary regions, thereby 
taking the advantage of the salient features of both. This can be done by using 
Eq. (4.1) to represent the Green’s function for small p. where it exhibits a singular 
behavior, and then switch over to Eq. (4.2) as p becomes larger.

To summarize, the direct application of the rigorous method places an 
unnecessary computational burden when p, the distance between the source and 
observation points, is greater than a predetermined value pis — \iW-. where s is 
a constant. To circumvent this problem, one can use a hybrid approach, whose 
algorithm is given as a flowchart in Fig. 4.1, which uses a judicious combination of 
the two methods to increase the computational speed with which the MoM matrix 
entries are generated. At this point, it is worthwhile to describe the strategy for 
employing the hybrid technique. To use a small L in Eq. (4.2), the polynomial
fitting algorithm should be performed over a small range of p, which requires the 
least-squares fitting with Nu sampling points to be repeated for each of the inner- 
product operations. Consequently, to accelerate the fitting process, the Green’s 
function is sampled between pis and pmax·, and the sampled values are stored in a 
look-up table before starting to fill-up the MoM matrix. These tabulated values 
can be subsequently interpolated to perform the least-squares fitting relatively 
fast for each inner-product operation. Here, one can use linear or quadratic 
interpolation scheme to find required values for the least-squares appro.ximation 
process, from the previously sampled values of the Green’s function.

4.1.1 N inner ical Examples

As a first example, the microstrip patch antenna, shown in Fig. 3.6, is analyzed 
to demonstrate the efficiency and accuracy of the hybrid method. The effects 
of the choice of pu on the matrix fill-time and on the accuracy of the results
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Figure 4.1: Flow-chart of the hybrid method for evaluating the MoM matrix 
entries.

are investigated for the parameters L and Nu, selected as 4 and 9, respectively. 
The number of basis functions for the patch antenna is chosen to be 5-37, and the 
CPU times are obtained for different values of the auxiliary parameter s, Fig. 4.2. 
Note that the rigorous method, which is used here as the reference, corresponds



to .s =  pî  =  oo which means that the polynomial fitting is not used at all (see 
Fig. 4.1). The plots shown in Figs. 4.3 and 4.4 show the impedance of the patch 
antenna obtained for different values of s. It is observed that, reducing pu below 
a certain value introduces significant errors in the results as expected.

150
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Figure 4.2: Matrix fill-time vs. auxiliary parameter s for the patch antenna.

Next example is the interdigital MIC capacitor shown in Fig. 3.28, for which 
the parameters L and N^ are selected as 4 and 9, respectively, and the number of 
basis functions is chosen to be 576. The matrix fill-time for this geometry could 
also be reduced by changing the pu parameter as shown in Fig. 4.5. Since the 
capacitor is analyzed over a relatively wide frequency band as compared to the 
patch antenna, the mean CPU times are used instead of a single CPU time at the 
center frequency. This is because the matrix fill-time depends on the frequency: 
Pis for a fixed s and the number of exponentials in the Green’s function are 
different for different frequencies. The scattering parameters for different values 
of s are given in Figs. 4.6 and 4.7. Note that although the matrix fill-time is 
considerably reduced at s =  —4.5, there are some artifacts on the results which
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F’igure 4.3: Magnitude of the input impedance of the patch antenna for different 
values of ,s.

could be attributed to the poor approximation of the Green’s functions with the 
polynomials given in Eq. (4.2).

At this point a natural question arises: Is it possible to improve the results at 
s =  —4.5 by increasing the sampling points in the least-squares approximation, 
without increasing the computation time significantly? In order to answer this 
question, the number of sampling points, yV/̂ , is increased from 9 to 12, and 
the scattering parameters are calculated again for s =  —4.5 giving the results 
in Fig. 4.8. While there is a noticeable improvement in the results for /  <7500 
MHz, above this frequency point, there is still a slight deviation from the correct 
values. The reason for this behavior is that as the frecjuency increases, the Green’s 
functions start to decay rapidly which increases the error in the least-squares 
approximation with the given order and the number of sampling points.

It should be re-emphasized here that the choice of s defines the distance 
Pis, below which the Taylor series approximation Eq. (4.1) is employed and 
above which the polynomial approximation Eq. (4.2) over the domain of each



CHAPTER 4. METHODS EOR IMPROVING THE ANALYSIS TIME 73

Figure 4.4: Phase of input impedance of the patch antenna for different values of
s.

inner-product term is used. For distances greater than pî  and less than 
Pmax, the Green’s function to be approximated was sampled and these values 
were stored in a look-up table. However, the sampled values of the Green’s 
function over the domain of an inner-product term may not be sufficient to 
find the unknown coefficients of the polynomial approximation in the least- 
scpiares sense. To remedy this, instead of evaluating the Green’s functions at 
additional intermediate points, a linear or quadratic interpolation is employed, 
using the previously calculated values of the Green’s functions from the look
up table. So far, in the examples given in Figs.4.6 and 4.7, we have employed 
linear interpolation with 9 interpolation points, for which the results have shown 
some artifacts for s =  —4.5. Although increasing the interpolation points from 
9 to 12 in the least-squares linear interpolation has improved the results to a 
degree, they are still not acceptable. Fig. 4.8. But, switching to the quadratic 
interpolation from the linear interpolation gives a significant improvement even 
for smaller values of s, as shown in Fig. 4.9 for s =  —6. Note that the
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Figure 4.5: Mean matrix fill-time vs. auxiliary parameter s for the interdigital 
capacitor.

additional computational cost of increasing the sampling points to 12 and using 
the quadratic interpolation, is minor, while the CPU time gain is approximately 
20 fold for this geometry.

It should also be stated that the CPU times given in Fig. 4.5 have been 
obtained without using the quasi-static approach which has been demonstrated 
in Section 3.3.8. If one uses the quasi-static approach (i.e. less number of 
exponentials in the unused portion of the Green’s functions), then the mean 
matrix fill-times would be reduced further. However, note that the quasi-static 
approach only effects the inner-product evaluation time in the region of Eq. (4.1), 
it has no effect on the polynomial fitting scheme.

We conclude that the proposed hybrid method can reduce the matrix fill-time 
significantly, without sacrificing the accuracy, with an appropriate choice of pu, 
Nis and the interpolation scheme. In addition, we find that the proper choice 
of pis and Nis depends on the Green’s function, as well as on the cell size used 
for discretization, and that the choice of pmax should be based on the magnitude
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Frequency (in Mhz)

Figure 4.6: Magnitudes of Sn and S21 of the interdigital capacitor for different 
values of s.

of the Green’s function at pmax- In order to obtain satisfactory results, one 
should use the quadratic interpolation scheme in the polynomial approximation 
step, which is employed to find additional sample points for the least-squares 
fitting. By considering these remarks, one can devise an adaptive algorithm to 
find the optimum value for s. Table 4.2 shows the CPU times obtained from 
the simulation software which uses an adaptive algorithm to find the optimum 
value for s. Since the values given in Table 4.1 are found for s =  —1.0, which is 
an optimized value for the patch antenna only, using an adaptive algorithm also 
improves the CPU times for other geometries and frees the user from trying to 

find the optimum value of s in each application.
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Frequency (in Mhz)

Figure 4.7: Phases of 5u and S21 of the interdigital capacitor for different values 
of .s.

Figure 4.8: Magnitudes of Sn and S21 of the interdigital capacitor for different 
number of sampling points.
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Frequency (in Mhz)

Figure 4.9: Magnitudes of Su and ¿'21 of the interdigital capacitor for different 
number of sampling points and interpolation scheme.

Geometry # o f
unknowns

Matrix fill-time 
(s =  -1 .0 )

Matrix fill-time 
(Adaptive)

Patch 
antenna 
(Fig. 3.6)

454 8 8

Multi-layer 
band-pass fil
ter (Fig. 3.25)

862 44 30

Band-pass fit
ter (Fig. 3.19)

1638 94 54

Interdigital 
MIC capaci
tor (Fig. 3.28)

576 262 20

Table 4.2: CPU times in terms of seconds consumed in the analysis of some 
typical geometries with adaptive s parameter selection on a SUN SPARC 20 
workstation.
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4.2 Interpolating Frequency Data

Since the characterization of planar circuits is usually performed over a given 
freciuency band, one needs to analyze the circuit for many frequencies in this 
band. In order to prevent oversampling of the frequencies in the band, the circuit 
is analyzed at certain frequencies, then the overall response is obtained via an 
interpolation algorithm. For this purpose, the following rational fitting model is 
emploved [67];

No + NJ + --- + Nnr
S (f) = (-1.3)1 +  D if  -f · · · +  Ddf'^

and, a least-squares fitting scheme is used to find the unknown coefficients in
Eq. (4.3). In other words, if the circuit is analyzed at L different frequency 
points then the fitting model is built by solving the following system:

S '{h )h 5'( /ı)A ^  · ■■ s ' i j M  - 1 - / l  ·· • —

S '{h )f 2 5U ) / I  · ·■ S '( h ) f i - 1 “ /2 · ·

S '{h )fL ■ s '{U )f i  - 1 - / l · ·

/2"

’ A ■

-I
D2

’ -s 'ih )  ■
Di -S V 2)
No

-
Nx . -W i )  .

. /v„
(4.4)

where S'{f )  represents the exact circuit response at frequency /  obtained from the 
simulation. After having found the unknown coefficients, they can be substituted 
into Eq. (4.3) to find the circuit response at any frequency in the band of 
approximation. Note that a different S{f )  with different coefficients are used 
for each S-parameter.

In order to model the whole frequency response with minimum error and with 
a minimum number of sampling frequencies at which the analysis is performed, 
the frequency sample points should be selected adaptively. The frequency sample 
points, which are going to be used in the least-squares fitting process, can be 
selected according to the flow-chart shown in Fig. 4.10. Moreover, the orders of
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the polynomials in the numerator and denominator should not be selected too 
large to avoid spurious oscillations in the frequency response of the circuit.

Another technique, which can be used in frequency interpolation, is the 
Hilbert transform approach. It is well known that Hilbert transform relates the 
real and imaginary parts of the transfer function of a causal system, which then 
can be used to interpolate the frequency domain response of passive microwave 
printed circuits [68].

Figure 4.10: Flow-chart of the frequency interpolation.
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4.2.1 Numerical Examples

To demonstrate the frequency interpolation algorithm, the microstrip patch 
antenna given in Fig. 3.6, and the stripline band-pass filter given in Fig. 3.25 are 
analyzed. Since the frequency response of the patch antenna is relatively smooth, 
small number of frequency points was sufficient to interpolate the response, as 
shown in Figs. 4.11 and 4.12.

Figure 4.11: Magnitude of 5'u of the patch antenna shown in Fig. 3.6 (exact:21 
points, interpolated:? points).

The results for the stripline band-pass filter are given in Figs. 4.13 and 4.14. 
It is observed that the interpolated and exact values are in a good agreement 
with each other except for the phase of 5n  in the pass-band. It should also be 
noted that the interpolation process correctly estimates the magnitude dip for 
5u  in the pass-band. Therefore, the CPU time for the analysis of the circuit 
over a band of frequency can be reduced significantly about 2-3 folds by using 
the frequency interpolation, and the accuracy of the results can be improved by 
increasing the number of sampling points, L.
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Figure 4.12: Phase of 5n of the patch antenna shown in Fig. 3.6 (exact:21 points, 
interpolated:? points).

Figure 4.13: Magnitudes of and ^21  of the band-pass filter shown in Fig. 3.25 
(exact:41 points, interpolated: 15 points).
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Figure 4.14: Phases of ¿'ll and S21 of the band-pass filter shown in Fig. 3.25 
(exact:41 points, interpolated: 15 points).
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4.3 Conclusions

In this chapter, two different methods were introduced to reduce the total analysis 
time requirement in the MoM. The first method, which is for the evaluation of 
the reaction integrals, greatly improves the matrix fill-time, while the second one 
uses the frequency interpolation algorithm to improve the total characterization 
time over a band of frequency.

By using the former approach, one can easily achieve 10 to 20 times 
improvement in the matrix fill-time, as it was demonstrated through some 
examples. Additional improvement obtained from the frequency interpolation 
is moderate, about 2 to 3 times improvement in the total characterization time, 
and the accuracy of the results over the entire frequency band is dependent on 
the smoothness of the frequency response of the circuit under study and on the 
number of frecjuency samples.

.As a result, the computational speed of the EM simulation program developed 
in this thesis has been substantially increased, and has been made on the same 
order as that of a commercial software developed for shielded geometries.



Chapter 5 

Optimization

So far, the numerical technique presented in this thesis has been discussed from 
the analysis point of view, but in designing printed circuits, optimization plays 
an important role as well. For example, in order to improve the impedance 
bandwidth of a proximity-coupled microstrip antenna, one can add small tuning- 
stub on the feeding line [58] which may result in an iterative procedure to find 
the best stub position and length.

There is a great deal of interest in the optimization algorithms that can be 
efficiently used with a full-wave EM simulation method in the design of printed 
circuits. The simulation models used in the optimization process can be classified 
as [69, 70]: i.) simplified continuous models, ¿¿.) detailed continuous models, 
¿¿i.) discrete coarse models, and iv.) discrete fine models, where the continuous 
and the discrete models are based on the circuit theory and EM field theory, 
respectively. Although the full-wave EM field theory models are more accurate 
than the continuous models, they run significantly slower. To overcome this 
difficulty, and to make the full-wave methods suitable for optimization algorithms, 
various approaches have been proposed. The direct way of doing optimization 
with a full-wave simulator requires a base generator which generates the input 
data file necessary for the EM simulation program by using the output of the 
optimizer. Another approach is called the Space Mapping Technique (SM) [69, 
71], for which a mapping scheme between the coarse and fine discrete models

84
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is established. In this approach, the optimization can be performed for a large 
number ot coarse analysis and the results are improved, via a mapping technique, 
by performing a small number of fine analysis.

It can be concluded that in all these approaches using discrete methods, the 
simulation time consumed by the full-wave simulator is the kev issue.

5.1 Genetic Algorithms

Gradient methods and random search methods are the two commonly used 
optimization algorithms which are employed in the optimization of microwave 
circuits. Gradient methods use the gradients of the cost function and converge to 
the minimum of the given functional very fast if the initial point is very close to the 
minimum, whereas, they have the disadvantage of converging to a local minimum. 
The random search methods, on the other hand, do not require the gradients but 
they are relatively slow. The two relatively new optimization methods, which can 
handle a large number of parameters, are the simulated annealing and the genetic 
algorithms [72-75]. The simulated annealing simulates the annealing process of 
metals, while the genetic algorithms simulate the evolutionary process of the 
living creatures. Since both of them try to simulate a natural phenomenon, they 
have the tendency of being slow, but give satisfactory results.

In this section, a genetic algorithm is used to demonstrate the optimization 
procedure with the formulation presented in this thesis. In a genetic algorithm, 
the parameters which are going to be optimized are encoded into binary sequences 
which are called as genes. Then, as in the natural process, the genes are 
crossed, eliminated, and mutated according to a predetermined algorithm until 
a convergence is reached. The flow-chart of a typical genetic algorithm is shown 
in Fig. 5.1.

The genetic algorithms are efficiently employed when one directly deals with 
the parameters which can be represented by single binary digits. An e.xample of 
this situation occurs when it is desirable to obtain circular polarization from a 
rectangular patch antenna by adding or removing small rectangular metalization
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cells from the antenna where each cell is represented by a binary digit [76].

Figure 5.1: Flowchart of a typical genetic algorithm used in the optimization 
process.

An optimization algorithm, in general, requires the simulation program to 
analyze the modified geometry at each iteration. If the simulation program 
needs to analyze the modified geometry from scratch, the optimization algorithm 
would be computationally expensive even though the simulation program is 
efficient. Therefore, to assess the numerical efficiency of a simulation technique 
it is necessary to consider the suitability of the technique for optimization. The 
techniciue that we have presented here is very suitable because the effects of newly 
added or removed metallic regions are handled very fast by adding an additional
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row-column pair to or removing a row-column pair from the original matrix, 
respectively. In addition to the efficient filling of the MoM matrix of the modified 
geometry, the solution time of the modified matrix equation can also be improved 
by using the solution of the matrix equation in the previous iteration through the 
method called the order recursive Gaussian elimination (ORGE) approach [77,78]. 
For more information about the application of various optimization algorithms, 
including the gradient methods, one can refer to [76].

5.2 Numerical Examples

To demonstrate the algorithm in an optimization problem, a proximity-coupled 
rnicrostrip patch antenna, as shown in Fig. 5.2, is optimized for the impedance 
bandwidth. The stub length, h, the stub position, /, and the length of the 
coupling section, s, are selected as the optimization parameters. The parameters 
of the genetic algorithm are given in Table 5.1, which also summarizes some 
important concepts of the algorithm. The basis functions corresponding to the 
places that would be modified in the optimization process should be placed to the 
end of the matrix equation to efficiently implement the ORGE. Hence, prior to 
the optimization, the optimization region should be defined and be given to the 
computer so that the computer automatically places all the basis functions which 
fall inside this region to the end of the matrix equation, thus making the system 
suitable for ORGE. Note that this approach also reduces the matrix fill time by 
enabling the use of the previously calculated reaction integrals corresponding to 
the unmodified region.

The input reflection coefficient of the patch antenna, before and after 
optimization, can be seen in Fig. 5.3. The optimized values of the parameters 
are h=0AS cm, 1=0.25 cm, and s=0.25 cm. Note that one can obtain a better 
matching by increasing the number of stub tuners at the feeding line, at the 
expense of increased spurious radiation.

It would also be instructive to demonstrate the time gained by implementing 
the ORGE. The CPU times for filling the matrix and for solving the matrix
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2.5 cm

‘igure 5.2: Geometry of the the proximity coupled microstrip antenna with 
tuning stub.
Fi

eciuation are shown in Figs. 5.4 and 5.5, respectively, during the optimization 
for each analysis. Note that if one analyzes the circuit from scratch at each 
iteration, the CPU times would be on the order of the levels shown at the 
top of the plots, which correspond to the CPU times for the analysis of the 
whole geometry with a tuning stub. So, eliminating the recalculation of the 
interactions of the basis functions which fall outside the optimization region, and 
implementing the ORGE, result in considerable improvement in the total analysis 
time. Another point which should be stressed is that after the first iteration, the 
Green’s functions evaluation time reduces significantly because the generated 
Green’s functions are saved in to the disk of the computer and are retrieved in 
the following iterations. Note that the optimization parameters do not contain 
the electrical and physical parameters of the layers, so the Green’s functions can 
be used repeatedly.

The ultimate time efficiency for evaluating the reaction integrals in optimiza
tion process is achieved by precalculating all the matrix terms in the optimization
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Parameter Value or method Remarks
Number of 
chromosomes

16 chromosomes 
per variable.

The number of chromosomes should 
be selected sufficiently high to span 
the optimization domain as much as 
possible. On the other hand, as the 
number of chromosomes increases, the 
simulation time also increases.

Number of bits 
in the
chromosomes

Minimum 4, 
maximum 8.

As the number of bit increases, quan
tization error decreases giving a chance 
to find a better minimum.

Encoding Gray encoding. In Gray encoding, small changes in bi
nary numbers also result small changes 
in continuous variables after decod
ing. Another method could be binary 
encoding.

Parent selection Chromosomes 
are sorted ac
cording to cost 
function value.

This method sorts the chromosomes 
according to their cost function values 
and selects the first half of the list 
as parents. Another method could 
be “roulette-wheel selection” which in
troduces some randomness in parent 
selection.

Crossover Two-point 
crossover.

In two-point crossover, the bit patterns 
of the parents are swapped in the 
kids between the two randomly selected 
points. Another method could be “one- 
point crossover” .

Mutation rate % 1.0 While producing a new generation dur
ing the optimization, bit patterns of 
one percent of the whole chromosomes 
are randomly changed.

Table 5.1: Parameters of the genetic algorithm used in the optimization.
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Figure 5.3: Fin of the the proximity coupled microstrip antenna shown in Fig. 5.2 
before and after optimization.

region and storing into a table. Then, by simply selecting the necessary terms 
for each geometry from the table, the impedance matrix is filled. However, note 
that the advantage of this method is fully utilized in uniform segmentation only.
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Figure 5.4: Matrix solve times during the optimization process on a SUN SPARC 
20 workstation for each analysis.

Figure 5.5: Matrix fill times during the optimization process on a SUN SPARC 
20 workstation for each analysis.
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5.3 Conclusions

The main advantage of the method presented in this thesis is its implementation 
in the spatial domain, which offers an efficient way in the design and the 
optimization of a circuit. In the design or the optimization process, one needs to 
add or subtract a small piece of conductor in each iteration. .A.ddition of a small 
metallic region needs the calculation of the inner-product terms corresponding 
to the added basis functions only, subtracting a piece of metalization from the 
initial geometry requires deleting the corresponding rows and columns, both of 
which can be performed with a little computational cost. Moreover, once the 
initial geometry is solved, the solution of the matri.x equation corresponding to 
the modified geometry in each iteration can be performed very efficiently.



Chapter 6

Conclusions

In this thesis, a novel full-wave CAD algorithm for the analysis of printed 
geometries was presented. The application of the method has been demonstrated 
on some realistic microwave circuits containing both horizontal and vertical 
conductors. The results were also verified with the results of a commercially 
available electromagnetic analysis software, em from SONNET Software Inc.

The method is formulated in the spatial-domain and uses the closed-form 
Green’s functions for planarly layered media. The use of the spatial-domain 
closed-form Green’s functions eliminates the numerical integration encountered 
in the evaluation of the reaction integrals, thus making the algorithm suitable 
to CAD applications. Vertical metalizations have been rigorously implemented 
and two approaches have been given to incorporate them with horizontal 
metalizations. In addition, a hybrid approach to fill the MoM matrices has been 
introduced in this thesis and a significant saving in the computation time has been 
achieved. With all these developments presented in this thesis, the spatial-domain 
MoM becomes the fastest method for the analysis of the printed structures in a 
general multilayer medium.

The salient features of the algorithm can be summarized as follows:

• Formulation is in the spatial-domain and uses the closed-form Green’s 
functions which eliminates the numerical evaluation of the Sommerfeld 

integral.
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• Circuits can contain both horizontal and vertical conductors, and there is 
no limitation on the lengths of the vertical connections.

• There is no limitation on the number of layers and thicknesses of layers.

• The reaction integrals are evaluated analytically with changing the 
approximation scheme of the Green’s functions in a dynamic manner.

• Circuit are not placed in a conducting box. Therefore, radiating structures 
can be analyzed rigorously.

• It is possible to place horizontal ground planes to analyze stripline 
structures.

• N-port S-parameters of the circuits can be calculated at the given reference 
planes with removing the port discontinuities, and the lumped circuit 
models can be extracted.



Appendix A

Explicit Forms of the Green’s 
Functions

As discussed in Chapter 3, some of the spectral-domain Green's functions need 
be cast into a specific form, where  ̂ and z' dependences are factored out. The 
only Green’s function that does not require this factorization is because it 
is always evaluated at constant z- and c'-planes. Therefore, the components of 
the spectral-domain Green’s functions, except are cast into suitable forms 
for the MPIE formulation presented here, and are given in this appendix for 
convenience. For a detailed derivation of the spectral-domain Green's functions, 
one can refer to Dural and .Aksun [19].

A .l The Green’s function G\

Substituting (2.51) and (2.52) into (2.42), the following expression is obtained; 

Q , ^  + R isX 'M P ’
2 j L , e i  [  ' L J

+  Rj' P m P '  j (A .l)

Then, re-arranging the terms results in

2jL·,ei >■
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A .2 The Green’s function Ĝ X

Substituting (2.49) and (2.50) into (2.41), the following e.xpression is obtained;

G i  =
V K

^ r N-^m P '  \e~A ,̂U+ '̂) +  Rpp~A..U-^'+2d,)

e-A.,Ud.-z-z')

Then, re-arranging the terms results in

A.3 The Green’s function Gi

Substituting (2.45), (2.46), (2.47) and (2.48) into (2.36). the following expression 
is obtained;

g :
fj-i i  ( Ri,i+l !i,fTE \ - jk , . (2 d , -z ' -z )  I fyi , i - l - jk ,A2d.  + z'-z)

~ 2 j L .  [  kj + ^ r E  e

+  F p P M ™  [e -A z. Ud. -z ' - z)  _  R i ^ p , - A G 2 d . W - z ) ] ^

+  L L ·  ({& ·-'M ™  [-e -^ ‘ ·.··*·') +  
kj '  t

e-Az.U+z')  +-  R ^ p M P

Then, re-arranging the terms results in 

/'-4 _
2ife, kl

+  ^-jk.,Ud.+z'-z) (̂rN̂ r P̂mP - Rp/RpPMP̂ )

+ ^-A..G+z) g)



APPENDIX A. EXPLICIT FORMS OF THE GREEN'S FUNCTIONS 97

A .4 The Green’s function Gl

Substituting (2.45), (2.46), (2.47) and (2.48) into (2.37). the following expression 
is obtained;

Gl
1

‘2jciK,

+  JT^TM Mi

^-jkz,(2d,-z' -z) ~

S  j. rT M

Then, re-arranging the terms results i 

_1----L - A z,\z- z’ \

'^-Nz,U+z')

_e-Az,(z+z·)

in

(A.7)

Gl
9ijeik,,J ‘ -tv ,

_|_ ^-jkz^ { ‘2dt+z^- z 'kl
P p /
P  p  . . .

P  P   ̂ - ■
-j^riT M  r ij^ f  Mi +  Y ^ ^ e: eite

I 5 *4  +  1 5 * 4 - 1  \ f T E+ Y^^TE ^TE

^ ^-jk,,(2d,+z-z') ( 0 * 4 - 1  0 * 4 + 1  y r T E ]
Y^TE eCte J

+  +  (A.S)



Appendix B

Evaluation of the Inner Products

In Chapter 3, the evaluation of the inner-products corresponding to the vertical 
metalizations is demonstrated on a typical inner-product term. In this appendi.x, 
the evaluations of the other inner-products containing integration operations on 

and z' variables are given.

B .l Evaluation of

This term contains integration and derivation with respect to and the inner 
product is written as follows

d

d „ „„ djhn\ f f . . d
dx

• j j dx'dy'G lix -  y -  y'̂  y') (B .i;

.At first, the spatial-domain Green’s function in (B .l) is replaced with the spectral- 
domain Green’s function by using (2.57) and then the integration with respect 
to - is considered:

= Idz f  dk,k,H ^^\k,p)G l[k,)
J az 47r Jsip

=  —  [  dk, k,l4^^ {k,p) f  dz — r,,n{z)G l (k,) (B.2)
47t Jsi p  J Oz
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where G'J is given in (A.8). After evaluating the :: integral, the inner-product 
(B .l) reduces to

— T CP * - lA - \  = jd y T U v )  jjd i'd y ' {x'. </)

by making the substitutions x -  x' =  u and y -  y' =  u, the following expression 
is obtained

^  I J j  -  11;  y -  v) (B.4)

where x =  x;.

B.2 Evaluation of G \^%

This term contains integration and derivation with respect to z, and the inner 
product is written as follows

G!,*— )  = I J d x d y — T ^ M c j )

■ JJ dz dy' G l{x  -  x\ y -  y .  z')-^^J,n[y'·, z') (B.5)

At first, the spatial-domain Green’s function in (B.5) is replaced with the spectral- 
domain Green’s function by using (2.57) and then the integration with respect 
to r is considered:

dJzr

FT =  /  M  CF, (k,)

, d=  -^  /  dk, kX'^^ (k,p) I  dz' ^ T p ~ ')G 'i  {k,)
4TT JsiP J uẑ

(B.6)

where Gl is given in (A .l). After evaluating the z' integral, the inner-product 

(B.5) reduces to

G U ' ^ \ =  IJ dxdy ^T^rnix, y) J dy' F^Hniy') (B.7)
dJ n̂
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by making the substitutions x — x’ = u and y — y' =  v, the following expression 
is obtained

' 9^ / ^  -  j j  dndvF;}' J  +  (B.8)

where x' = X{.

B.3 Evaluation of Gi * dz
This term contains integration and derivation with respect to and z', and the 
inner product is written as follows

A j ’ CP ^ =  J j  dzdy ■^T.miy^ z)

' I I - x ' ,  y -  y', z, z')-^^J.niy\ z )  (B.9)

At first, the spatial-domain Green’s function in ( B.9) is replaced with the spectral- 
domain Green’s function by using (2.57) and then the integrations with respect 
to r and z' are considered:

=  ^  dk, (k,p) JJ dz dz’ ^ T U z )^ ^ J U z ')G l  [k,)

(B.IO)

where G\ is given in (A .l). After evaluating the  ̂ and z' integrals, the inner- 
product (B.9) reduces to

d
T .„ , G] * I d,y FT-J,^{y') ( B . l l )dz'"“' ■ dz ,

by making the substitution y — y' =  o, the following expression is obtained

=  -  jdv T f  J dy T „ M X n  {y -  v) (B.12)

where x =  x' =  x̂ .

' 1  dz
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B.4 Evaluation of (Tzm, * J~n

This term contains integration with respect to ~ and z\ and the inner product is 
written as follows

Gj. *Jzn) = j j  dzdyT^niy, ~)

■ JJ dz'dy'G'^,{x - x\ y - y', z. z')J,n{y\ z') (B.13)

At first, the spatial-domain Green’s function in (B.13) is replaced with the 
spectral-domain Green’s function by using (2.57) and then the integrations with 
respect to and z' are considered:

j jd z d z 'T U ^ ) ^ j^ ^ /K k M \K p ) G t A k ,) J ,n { z )

= /  dk,k,H^^\k,p) fidzdz'T .^A ~A J-A =')G t{K)
4TT JsiP Jj

(B.14)

where G'Cl is given in (A.3). After evaluating the and z' integrals, the inner- 
product (B.13) reduces to

G'i», * Jzn) =  j  dy T U y )  j  dy' Jzn (x\ y') (B.15)

by making the substitution y — y' =  v, the following e.xpression is obtained

G i  * Jzn) =  - j d v F ^ ^ j  dy T,m{y)J.n (2/ -  v) (B.16)

where x =  x' =  Xi.

B.5 Evaluation of the other terms

Evaluation of (^f:T-m, (T.m, Gf^*Jxsp), (Tzm·, G'^^*Jio^, and
(^jzTzm, Gl * are similar with the ones discussed above, the only difference
is the basis functions used. Therefore, they will not be shown here.



Appendix C

Generalized Pencil of Function
Algorithm

As mentioned in Chapter 2, the generalized pencil of function algorithm is used to 
approximate the spectral domain Green’s functions with complex exponentials. 
Since the application of the algorithm is an important step in approximating the 
Green’s functions, it is given in this appendix for convenience.

It is well known that the Prony method and it variants can be used to extract 
the poles [79,80] of an EM system. The pencil of function (POP) method [23] is 
cin alternative method to the Prony method to find the system poles. In POP, the 
poles are found from the solution of a generalized eigenvalue problem, whereas 
the Prony method contains two-step process where the first step involves the 
solution of a matrix equation and the second step involves finding the roots of 
a polynomial. The generalized pencil of function method is a generalization to 
the POP method and it is used to estimate the poles of an EM system from its 
transient response [22]. Compared to the Prony method, the GPOF method is 
more robust and less noise sensitive.

.Now consider an EM transient signal which can be approximated as follows

M
Vk =  J2 ^

5 ,  6t k il· =  0,1, · · ■, A  -  1 ( C . l )
»=1

where 6, are the complex residues, s,· are the complex poles, and 6t is the sampling
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interval. In order to find the poles, one can use the following algorithm [22]: 

1. Construct the following matrices,

where

^1 =  [yo, y i ,  · · · ,  Yl - i ] 

ŷ 2 =  [y i ,  y2. · · · ,  y i ]

y i  =  [l/i'i I/i+l7 · · · 1 y t + i V - L - l ]

(C.2)

(C.3)

(CU)

and L is the pencil parameter, and its optimal choice is around L =  N/2
[22].

2. Find a Z matrix as follows.

VD~^U^ ^SYD {Yi)

^  -  [^].UxM

^  -  W lf.M  

^  WI mxM 

z =  D -K l^ Y W

(C.o)

(C.6)

where SVD(·) and superscript H  denote the singular value decomposition 
process and the complex conjugate transpose of a matrix, respectively. The 
number of exponentials, M , is selected according to the significant singular 
values of the matrix

3. The poles of the system are obtained as

log Zi
S i  =

St
( c .t :

where ¿̂’s are the eigenvalues of the Z matrix evaluated in step 2.
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4. The residues are found from the least-squares solution of the following 
system

1 1

Zi Z2

_,V-1 ^N-1
-1 ~2

1 bl <JQ
b2 ~ yi

b\f .i/.v-l

(C.8)

For the sake of completeness, the following MATLAB function, which implements 
the GPOF algorithm, is also given here.
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7.
y. This MATLAB script file approximates a given 
X function with complex exponentials by using 
y, the Generalized Pencil of Function (GPOF) 
y, method in the following form:
7.
7. f(t)=B(l)*exp(e(l)*Dt*t) + B(2)*exp(e(2)*Dt*t) + ... + B(M)*exp(e(M)*Dt*t) 
7.
7. Input arguments:
7.
y, f : Sainples of the function which is going 
X to be approximated.
X N: Number of sample points which is going 
X to be used in the approximation.
X M: Number of the exponentials.
X
X Output arguments:
X
X e: Array containing the complex poles.
X B: Array containing the complex residues.
X fapprx: Samples of the approximated function.
X error: Error in the approximation.
X apprxtime: CPU time consumed in the approximation process.
X
function [e,B,fapprox,error,approxtime]=gpof(f, N, M)
X
X
X
G=f(l:N);
L=N/2;
X
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start=cputime;
·/.
% Construct the information vectors.
7.
for i=l:L
Yl(: ,i)=G(i:i+N-L-l); 
end;
7.
for i=l:L
Y2(: ,i)=G(i+l:i+N-L); 
end;
7.
7. Apply singular value decomposition to Y1
7.
[U,D,V]=svd(Yl);
DD=diag(diag(D(: ;
UU=U(:,1:M);
VV=V(:,1:M);
7.
7· Find the complex poles.
7.
Z=inv(DD)*UU'*Y2*W; 
z=eig(Z); 
e=log(z);
7.
7.
7.
for i=l:N 
for k=l:M
ZZ(i, k)=z(k)‘(i-l); 
end;
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end;
t
y. Find the complex residues.
·/.
B=ZZ\G;

'/, Find the total CPU time.
y.
approxtime=cputime-start;
y.
y. Find the error in the approximation.
y.

for k=l:N 
f approx(k,1)=0.0; 
for i=l:M
fapprox(k, l)=f approx(k)+B(i) *exp(e(i)*(k-1));
end;
end;
y.

error=norm(G-fapprox);



Appendix D

Method of Moments

The basic idea of representing a linear operator equation with a linear matrix 
equation is relatively old. It was first developed by a Russian mechanical engineer, 
Galerkin, around 1915, before it had a rigorous mathematical basis. Later, 
Rumsey [81] applied the variational methods to electromagnetics which are called 
cis “reaction concept” . Method of Moments (MoM) is a general procedure which 
is used in solving linear equations [5,6], and in this appendix, the MoM is briefly 
described.

Consider a deterministic linear system in the following from:

C f ^ g (D .l)

where £  is a linear operator, and g is a. known function. Here, the aim is to find 
an approximation to /  when the exact or closed-form solution of Eq. (D .l) is 
not possible. For this purpose, /  is expanded in a series of linearly independent 
functions / i ,  / 2 , · · ·, / .V  as

N

f (D.2)
n=l

where a „ ’s are the constants which are going to be determined. The functions / „  
are selected such that analytical or robust numerical evaluation of Cfn is possible. 
By substituting (D.2) into (D .l). the following expression is obtained

i ; o „ £ / ,  = S (D.3)
n = l
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In order to find the unknown coefficients uniquely, it is necessary to have N 
linearly independent equations. To achieve this, a suitable inner product ( / ,  g) 
is defined and a series of linearly independent testing functions rwi, lo-y, ■ ■ ·, ic/v 
are used to have an e.xpression in the following form

N
an{wm, Cfn) = g m. =  l ,2 , .3 , - - - , /V  (D.4)n=l

Now, there are N  equations with N unknowns, hence the unknown coefficients 
can be found uniquely. This set of equations can be written also in matri.x form 
as follows

(u î, ^ / i )  (twi, £ / 2) 
{W2, C fi) {1U2, £ / 2)

1 Oil 9)
Oi2

—
(i«2 , g)

- OLN {w n , g)
-

(D.5)

One of the main tasks in solving a linear ecpiation through MoM, is the 
proper selection of basis and testing functions. The selected basis functions 
should approximate the function /  as close as possible and constitute a 
linearly independent set. The testing functions should also constitute a linearly 
independent set.

D .l Variational Interpretation

In this section, the link between the MoM and variational methods is going to 
be explained. In a variational method, a functional which has a stationary point 
at the exact solution of a physical problem is first derived. Then by using trial 
functions, an approximate solution is obtained by minimizing or maximizing the 
functional. This method is called as Rayleigh-Ritz procedure.

It can be shown that the following expression is a variational expression for
Eq. (D .l):

/ = { / - , £ / ) - ( r . s ) -{<,■,/) (D.6)
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where C is an self-adjoint operator which implies that

{/;, c f i )  =  i f ; ,  c h Y (D.7)

The meaning of the variational expression is that when a function /  with an 
error 6 f  is introduced into Eq. (D.6), a better estimate of /  with an higher error 
rate of [8 fY  is obtained. In order to show that Eq. (D.6) is really a variational 
expression, we let

f  =  fe + Sf (D.S)

and substitute Eq. (D.S) into Eq. (D.6). Then by equating the first order terms

SI =  ( / ; ,  CSJ) +  { S f ,  £ f , )  -  { S f ,  g) -  (<7-, Sf) (D.9)

Now, it can be shown that by using the self-adjoint property of the linear operator, 
right-hand side of Eq. (D.9) equals to zero. Therefore, 61 or the first variation 
of /  around the exact solution fg is zero implying a stationary behavior. After 
showing that Ecp (D.6) is an variational expression for Eq. (D .l). the remaining 
procedure is to use this property to find an approximate solution for / .  For this 
purpose, the function /  is expressed by using trial functions as follows which is 
again given here for convenience.

;V
/  =  (D-10)

n = l

Here, if fn is from a complete set. then there exist values which gives an 
increasingly good approximation as N  —>■ oo. Then by substituting (D.IO) into 
(D.6) the following expression is obtained.

I  =  E  E  « > « ( / ; ■  £ A ) - i ; “ » ( / ; .  i ) - i : « » « . / » )  (D.i i )
n = l  m = l n = l n = 1

= ■ L · a -  2Re a  ̂■ g]

where

(L)„„ =  ( / ; , £ / » )  

fei, =  ( / ; , 9 )

( a  12)

(D.13)

(D.14)
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In order to obtain the optimal value of a, we let a = cio + 6a. and find SI

61 — 6a'  ̂· L · ao + Sâ  ■ L ■ 6a — 2Re 6a^ · g = 0 (D.15)

Note that, in Eq. (D.15), 61 is assigned to zero since we know that the optimal 
value of a makes I  stationary. To satisfy Eq. (D.15), one requires

Re |̂ (5â  · L · ao

which results the following expression

= Re 6a^ · g

L · ao = g

(D.16)

(D.17)

Note that the above system is the same with system given in (D.5). Therefore, 
in the method of moments, choosing =  / „  is equivalent to the Rayleigh-Ritz 
Vciriational method and it is called as the Galerkin’s method.



Appendix E

Series Acceleration Methods 
Used in EM

Numerical techniques used in the solution of electromagnetic problems require, in 
general, either evaluating oscillatory integrals over infinite domain or calculating 
the sums of infinite complex series. For example, the method of moments 
(MoM) in the spectral domain for two-dimensional geometry rec[uires double
infinite integration of complex highly oscillatory functions; the MoM in the spatial 
domain employs the spatial domain Green’s functions, which are defined as the 
Hankel transform of the spectral domain Green’s function; in the analysis of a 
periodic structure one needs to employ a periodic Green’s function which has 
double infinite summations; or, in the analysis of a microstrip patch antenna via 
Ccivity model, the input impedance or field distribution are written in terms of 
an infinite sum of modes in the cavity.

If the summations and integrals given in the examples above are evaluated 
by “brute force” as they appear in the problems, the corresponding methods 
could be computationally very inefficient, rendering these problems impractical. 
To overcome this computational burden, special acceleration techniques, also 
called transformation techniques, for both integrals and summations have 
been proposed and successfully employed. Since these techniques have been 
studied for specific problems and compared to only a few other techniques.
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the potentials of these techniques with their advantages and disadvantciges 
have not been examined entirely for electromagnetic problems. Hence the 
contributions of this appendix are in /.) providing the complete set of acceleration 
techniques used in the electromagnetic problems, ii.) comparatively studying 
the acceleration techniques for integrals and series, and Hi.) introducing a new 
acceleration technique for integrals involving Bessel functions and sinusoidal 
functions. The transformations given and compared in this appendix are the 
Euler transformation [82], Shanks’ Transformation [83,84], Wynn’s í  algorithm, 
the method of averages [85], the Chebyshev-Toeplitz algorithm [86,87], the 0  
algorithm [88,89], the Poisson transformation [90], Ewald’s transformation [91], 
Kummer’s transformation, and the method of exponentials.

E.l The Transformation Methods
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The principle of a series acceleration method is to transform a slowly convergent 
sequence, by using a linear or nonlinear mapping, to a new, faster converging 
sequence. Since there is not any universal algorithm which could work for every 
type of sequence, one should try different algorithms to obtain the optimum result 
for the problem under investigation. Hence the acceleration methods used can be 
divided into two main groups: general methods and specific methods. .A. general 
transformation method can be applied to any sequence which can be obtained 
from an infinite series or an infinite oscillatory integral. Examples of such methods 
are the Euler transformation, Shanks’ transformation, Wynn’s 5 algorithm, the 
Chebyshev-Toeplitz algorithm, and the 0-algorithm. On the other hand, specific 
methods are derived by analytically working on the kernel of a series or of an 
integral. Therefore they can be applied only on their own types, but they usually 
work better than the general methods. The Method of averages, the Method of 
exponentials, the Poisson transformation, Ewald’s transformation, and Kummer’s 
transformation are the examples. Since the partial sums of an infinite series are 
used in most of the transformation methods, it would be instructive to define
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them for an infinite series as follows:

O-i — iZo + Cii +02 + 03 +  ···
z=0

Oq +  Oi +  O2  +  · · · +  Or n = 0 ,l ,2 ,· · ·

(E .l)

(E.2)

where denotes the partial sum of (E .l) for n terms.

E.1.1 Euler’s Transformation

Euler’s transformation can only be used for an alternating series and the ecjuation 
for the transformation can be given as

where

1 / 1 1  N
=  2  ( a  -  2 '^Zo + jA V o  +  ■ · ■ + ( - l ) '2 - 'A 7 o  ) (E.3)

f k  — f k + r I •̂̂ +'•-1 I h + r - 2

+ ( - irM   ̂ l/^+i + (-i)7. :e .4)

The convergence of Euler’s transformation can be improved by adding some of 
the initial terms directly before the transformation. Note that increasing the 
number of previously added terms could improve the convergence.

E .l .2 Shanks’ Transformation

The idea behind Shanks’ transformation is that the partial sums of a secpience 
can be treated as a mathematical transient, and it gives an approximation to the 
base of the transient which is the result of the infinite summation. The '̂th order
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Shanks’ transformation, ejt, is defined in the following form [83]:

Dk,n — (■'dn) —

A n —fc An_i

A A „ _ j t · ·  A A n - , A A n

AAn_fc+i · ·  A A n

A A n - i  ·

1 1 1

AAn-A: · ·  A A „ _ i A A n

A A n - f c + i  · ' ' ·  A A n A A n + i

A A n - 1  · · AAn+A-_i

(E.5)

where A „’s are defined in (E.2) and A /l„  =  A^+i -  An- For a special case, A: =  1, 
(E.5) becomes

Bl,n —

A n - i An

A A n - i A A n

1 1

A A n - i A A n

— ^n+iAn-i — A  ̂
^n+i +  An-i — 2/l„

n — 1 ,2 ,··· (E.6)

and it is known as Aitken’s process [92]. The iterated Shanks’ transformation 
performs the Shanks’ transformation repeatedly until another transformation 
becomes impossible and is given as

(E.7)

Bk,n — (An) 5 n ^ k 

Ck,n — k̂ (^A:,n) i  ̂ ^ 2A‘

Bk,n — k̂ n) 1  ̂ ^ ’̂ k

Shanks’ transformation (E.5) is usually applied by increasing the order k 
continuously until a predefined convergence criterion is satisfied. The evaluation 
of the determinant in (E.5) is time consuming for higher orders, and it can be
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avoided by using the following transformation, called Wynn’s £ algorithm [88]:

ek(A) = 4 ? (E.8)

where

-('0 _  J n + i)______
'"1+1 1—1 _(n+i)

^-1

1
AN

('») ^  Q -  A0̂ —

n, k =  0, c

n = 0 ,1 ,2 ,···

wliere n and k are the indices for the terms and the order of the transformation, 
respectively, and only the even order transformations are used; the odd order 
ones are intermediate values. The importance of Wynn’s e algorithm stems from 
the fact that the evaluation of the determinant is reduced to a simple iterative 
equation. On the other hand, the e algorithm given in (E.8), which is called 
“normal” form, has a disadvantage in that it may suffer from cancelation errors 
due to the computers arithmetic in the case of The cancelation
errors occur because there is a subtraction process in the denominator of (E.8), 
and they can be avoided to some e.xtent by using the progressive or particular 
rules of the algorithm [93].

E.1.3 Method of Averages

This technique is especially suitable in evaluating the integrals which have a 
special form of [8-5] roo

1 =  /(A)cos(Ap)dA (E.9)
Ja

where the function /(A ) is assumed to have the asymptotic form

lim /(A ) =  CA“
A—*· CO

In addition, the partial integrals are defined as

I L =  I  /(A)cos(Ap)dA
J a

m =  1 ,2 , · · · ,  M

(E.IO)

(E.11)



where A,„’s are the successive zeros of the oscillatory function cos(Xp). Then the 
transformation is given by

APPENDIX E. SERIES ACCELERATION METHODS USED IN EM 117

/'+1 = w: j l  +
+ ^m+l

/ =  1,2, ■ · · , .¥ -  1 
rn =  1 ,2 , - - - ,M -  /

where Ai a +  1 - í

= I \ \

(E.12)

(E.13)

The value is an approximation to the integral. This method can also be used 
in the integration of suitable Bessel functions whose asymptotic forms can be 
expressed as sinusoidal functions.

E.1,4 The 0  Algorithm

The 0  Algorithm has been derived from the Wynn’s d Algorithm, and it can be 
expressed as [88,89]

_L-̂̂ 2̂ +2 — “T

0

2k

—  J_________________________2k-\-l -  ^2k-l -r (n+1) ^(n)
^2k ~ ^2k

[^2k-\-l ~  * ^ ^ 2 ^ · + l  ' ^ 2 ^ ’ + l

(E.14)

1
n, k =  0,1,

=  0 ei,"  ̂ =  n = 0,1 · · ·

where A „ ’s are the partial sums as defined in (E.2).

E.1.5 The Chebyshev-Toeplitz Algorithm

The Chebyshev-Toeplitz algorithm requires, first, one to transfer the partial sums 

to an intermediate series, ¿(" ’̂s [86]:

t[%  =  +  n,/: =  0 ,l

=  0 AO _  4

Then the final transformed series is obtained through
An)

r C )^ _ L _  n,fc =  0 ,1 ,2 ,··· 
CTk

(E.15)

(E.16)



APPENDIX E. SERIES ACCELERATION METHODS USED IN EM 118

where

and

(Tt+l — 6cTyt — (Tk-l

ao =  I (Ti =  3

1 3 (E.17)

c-h

£k =  9

k = 0

k > 0

E.1.6 The Poisson Transformation

The main idea behind the Poisson transformation is the reciprocal spreading 
property of the Fourier transformation; that is, if a function has a narrower 
support in one domain, it would have a wider support in the other domain. The 
Poisson transformation can be expressed as [90]

CO I o o

E  H t + n T ) = -  E  e ™ 'r (r a » o )  <»o =  ^
n= — oo  ̂ n = —oo ^

(E.IS)

and can be applied to double series [94]. flere, the transformation of the following 
doubly infinite series, which appears as the Green’s function of two-dimensional 
periodic structure [95], is given as an e.xample:

m ,n = —CO

n
~j^0 'Pmn ,

Rn

where

ko —  k^x -J - kyy +  k:;Z 

pmn = rnDxX 4- {mDx tan -\- nDy) y 

Rmn =  +

(E.19)

(E.20)

(E.21)

(E.22)

The Poisson transformation of (E.19) can be found by tollowing the method 

described by [94] as

Gp -  m
m ,n = —CO ■Ijkf^DxDy

(E.23)
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where

r,mn

A·™

K i  +  *,” i
'Iirm 2xn.
Dx Dy cot{fl) *f kx
'X

27rn
+ ky

(E.2-1)

(E.25)

(E.26)

k T

=  \Tk2 _ Lmn“̂
0 0̂ ^ p̂

ran 2

-  kl ui < k'

and Dx and Dy are the periodicity, and D is the slant angle of the structure. 
Although (E.23) converges very fast for \z — z'\ >> 0, it converges rather slowly 
when \z — z'\ 0, as “on-plane” case. To achieve faster convergence in this case,
other transformation methods are applied [95,96]. and given in the next two 
sections.

E.1.7 Ewald’s Transformation

This is a very powerful transformation method utilizing the complementary error 
function [91,95] and expressing the series given in (E.19) as a summation of two 
different doubly infinite series:

Gp = G\ +  Ctj

where G\ and G'2 are given by

~̂ĵ Q'Pmn

m , n = - o o  ^ mn ±  \

jkp'
2E

Go —
1

4jT>xT> L
.kP

Lmny m ,n = —>D ±

(E.27)

(E.28)

and E is a constant which has to be selected to allow an approximately equal 
convergence rate for G'l and G2· Note that the complementary error function



in G't and Cr'2 makes these series converge rapidly, which is a consequence 
of the fact that the complementary error function behaves asymptotically like 
expi-z'^/zy/w) a.s z 00 for |argr| < 37t/4 . To compute the complementary 
error function efficiently, one can use the algorithm given by [97].
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E.1.8 Kiimmer’s Transformation

Kummer’s transformation makes use of the fact that the rate of convergence of 
a series is governed by the asymptotic form of that series. Assume that fa{n) is 
asymptotic to a function /(n ); then Rummer's transformation gives [94,98]

/( ”) = [/(") -  f M ]  +  f M
t =  — 00 n =  — 0 0  n =  — CO

=  G\ G2 (E.29)

Usually, fa{n) is chosen in such a way that the last series in (E.29) has a known 
closed-form expression. However, one can also use the Poisson transformation 
over the last series if the closed-form expression is not known. Note that the first 
series in (E.29) converges rapidly since the asymptotic form is subtracted out. .\s 
an example, if Kummer’s transformation is applied to the doubly infinite series 
given in (E.19), G\ and G2 are found in the following form:

1

77l,n =  -C O

Gt2 -  ^

o~ĵ O ’PT)
0 ~~ĵ 0 f̂ rr

R„ R'

where

R'mn =  \ / \ p - p ' ~  Pmn \ +  ( 1̂ -  -1 +  E f

(E.30)

(E.31,

(E.32)

and the constant E is chosen as in the Ewald’s transformation. Equation (E.31) 
can be thought of as the Poisson transformation for the off-plane case. It is also 
possible to perform additional acceleration on the first series by applying other 
transformation methods such as Wynn’s c algorithm [98].
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E.1.9 Method of Exponentials

This method is primarily used in evaluating the integrals which have the following 
form [15,25]:

X < ► F i x ) d x (E.33)

/ / f  (A^)
Jo (Aa;) 
sin (Ax) 
cos(Ax)

where F(x)  approximated with complex exponentials by using the generalized 
pencil of function method [22] or Prony’s method [21]. Once the function F{x)  is 
approximated by exponentials, the resultant integral will have the following form 
that can be evaluated analytically:

=  E - . /
¿=0

X <

/ / f ( A x )  
Jo (Ax) 
sin (Ax) 
cos (Ax)

e (E.34)

The integrals involving Bessel and sinusoidal functions arise in a variety of 
problems in electromagnetics such as the spatial and spectral domain analysis of 
planarly stratified media via MoM. Although the numerical integration is possible 
utilizing an appropriate acceleration technique discussed above, the end result will 
be independent of A, implying that for each A one needs to reintegrate (E.33). 
This results in relatively large computation time when compared to the analytical 
evaluation in the method of exponentials for which the parameter A appears 
explicitly in the resulting expression. As an example, consider the following
integral [25]

G = - r47T 7-0
H^o\Kp)G{kp)kpdk, (E.35)

where G and G are the Green’s functions in the spatial and spectral domain, 
respectively, and is the Hankel function of second kind. The above
integral cannot be evaluated analytically directly for the spectral domain Green’s 
functions that are obtained easily for planarly stratified media. Therefore one can
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take the integral analytically approximating the spectral domain Green's function 
by complex exponentials. Then the resultant integral can be evaluated using the 
Sommerfeld identity

^-jkr
=  - i  r

2J-OC
/ / f  * (k,p)

k.
-kpdkp (E.36)

E.2 Results and Discussion

In this section, some numerical examples are given and the transformations used 
here are summarized in Table E.l. For all kinds of transformations, relative error 
is defined as

c. =
S - S

s (E.37)

where S and S are the results obtained from direct summation calculated up 
to sufficient precision and transformation method, respectively. In addition, a 
convergence criterion is also used to terminate the iterative transformations and 
is defined as Ak

4̂ (E.38)convergence =

where represents the ¿’th level of any iterated transformation, and .4,v and 
.4,v/ are the last terms of the two consecutive iterations. The summation process 
is stopped when the convergence is less than a predefined number, Q. Note 
that the convergence checking must be performed several times to ensure proper 
convergence.

E.2.1 Integration Involving Bessel Functions

.Acceleration of an integral involving a Bessel function is considered here as an 
example for the application of the acceleration techniques discussed above. In 
the application of the series transformation methods to the integral (E.39), one 
has to convert the integral into a sequence, which can be achieved by integrating 
each cycle of (E.39) separately and assigning them to the terms of the series.

rooI xJ\{x)dx =  1 (E.39)
Jq
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Abbreviation Transformation Brief Explanation
(E.3) and (E.4) are usedEuler Euler transformation
The last term (depends on N) 
ot the sequence obtained from
(E.5)

Shanks 1 Arth-order
transformation

Shanks’

Shanks 2 ¿th-order iterated 
transformation

Shanks’ The first term of the last 
possible sequence (depends on 
-V) obtained from (E.7)

VVvnn Wynn’s £ algorithm Implemented by using (E.8)
Averages Method of averages Implemented by using (E.12) 

and (E.13)
Theta 0  algorithm Implemented by using (E.14)
CT Chebyshev-Toeplitz algorithm Implemented by using (E.15) 

and (E.16)
Poisson Poisson transformation (E.23) is used
Ewald Ewald’s transformation (E.27) and (E.28) are used
Kummer Kummer transformation (E.30) and (E.31) are used
Exponentials method of exponentials (E.33) and (E.34) are used.

Table E.l: Summary of the transformations used in the examples

For the purpose of comparison, the results, relative error versus number of terms, 
obtained from different acceleration methods are given in Figs. E.l and E.2, 
and it is observed that the method of averages works better than the other 
techniques. However, the method of averages requires the asymptotic behavior 
of the integrand to determine the optimum weights; if the a in (E.13) is chosen 
improperly, its convergence could be worse.

The next example is the calculation ot the spatial domain Green’s functions 
for the vector and the scalar potentials for a planarly layered medium whose 
parameters are Cr =  4.0 and t =  0.02032 cm (thickness of the substrate). For 
this problem the method of averages, found to be the best method tor the 
previous example, is compared to the method of exponentials and the results, the 
magnitude of the Green’s functions versus distance and the CPU time measured 
on a SUN SPARC-5G versus the number of evaluation points p, are given in 
Figs. E.3 and E.4, respectively. Since the Green’s functions are usually used to
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Figure E.l: Relative errors for the integral given in Eq. (E.39)

Figure E.2: Relative errors for the integral given in Eq. (E.39)



find the field components through a convolution integral for a current distribution, 
it is necessary to evaluate the Green’s functions for hundreds of p's. Moreover, 
the method of averages requires numerical integration over each cycle of the 
oscillatory function to compute the partial sums.
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Figure E.-3: Relative errors for the integral given in Eq. (E..35)

Consequently, the numerical integration over each cycle must be performed for 
every different p in the application of the method of averages. On the other hand, 
one needs to appro.ximate the function to be integrated, apart from the kernel, 
in terms of complex exponentials; then applying an integral identity results in 
a function as a function of p explicitly. Therefore for each p it is enough to 
evaluate the resulting function. Fig. E.4 shows that the method of exponentials 
is faster than the method of averages in case one needs to evaluate the Green’s 
functions over 30-40 points for this specific geometry, and the improvement in 
the computation time becomes significant as the number of evaluation points 
increases.
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Figure E.4: CPU times for different number of evaluation points for the integral 
given in Eq. (E.35)

E.2.2 Free-Space Periodic Green’s Functions

In this section, acceleration of the infinite summations that appear in the free- 
space Greens’ functions is demonstrated. Assuming a one-dimensional case first, 
the Green’s function for a one-dimensional periodic array of point sources located 
d units apart in the direction can be written as [85.98]

3 ~ĵ Rm

where

Rm —

1
G' = V

4 7 T

(or -  ar')̂  + {y -  y'Y + (2  -  mdy

The partial sums are obtained iov x = y =  O.lA, .r =  0.-3A. A =  1.0 m, and 
d =  0.6 m. Fig. E.5 demonstrates the results, relative error versus number of 
terms, obtained via some transformation techniques described in section 2.

.-Another example is the Green’s function for one-dimensional line sources

Rn

,>A 1 / 2

(E.40)

(E.41)
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Figure E.5: Relative errors for the summation given in Eq. (E.40) 

spaced d units apart along the x axis with the reference source located at {x\ y')

^-j(kx-\-2rriK/d)(x-x')

G=  E J2dk
-j^ym\y—<j’ \ (E.42)

yrn

where

ŷm = \JP  -  +  Tmirldf

kym =  j\/{kx + 2rmr/d)  ̂ -  k'̂

kx =  ¿•sin(0) cos($)

k̂  > (kx +  2mTrfd)  ̂

k̂  <C (̂ kx -|- 2ni7T/d)

and the chosen parameters involved in the series are: d =  0.5A, x =  O.lA, A =  1 
m, x' =■ y' =  y = z' — 0, and kx =  0. The results are shown in Figs. E.6 and E.7, 
and it can be concluded that Wynn’s c algorithm and Shanks’ transformation 
work better that the other algorithms.

Finally, the free-space periodic Green’s function for the two-dimensional case 
will be investigated. The transformations are performed for a nearly on-plane case 
for the summation given in (E.19) in order to have reasonable convergence times
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Figure E.6: Relative errors for the summation given in Eq. (E.42)

F’igure E.7: Relative errors for the summation given in Eq. (E.42)



for the Kummer and Poisson transformations, which are further accelerated by 
the Wynn’s £ algorithm. The results are given in F’ig. E.S for Ao =  1.0 rn, =  3, 
ky — 2, Dx =  Dy =  0.7A, and 2  =  0.004, and the numbers near the graphics show 
the relative errors at the corresponding convergence rate. .As a final comment, 
as c —+ 0, the time required for Ewald’s transformation for the same convergence 
rate does not change considerably, whereas the other two methods slow down 
significantly.
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Figure E.S: CPU times for different acceleration methods applied to Eq. (E.19)

E.2.3 Quasi-Dynamic Green’s Function

The c[uasi-dynamic Green’s function for an x directed electric dipole of unit 
strength located above a microstrip substrate can be written as follows [15];

G',,0 —
47T£o

g - j k o r o  Q - J k o r Q  00 -jkoTn

ro

where

+ + E  A·“-' (A" -  1) V
’ 0̂ n = i  '

-0 =  V7+(UUy

(E.43)
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\ / +  (2 +  r '  +  2 nh.y

and

A' = I - S r
1 + ip

For the evaluation of the summation in (E.43), the parameters chosen are: p =  
3 X 10  ̂ m,  ̂ =  2 ' =  0, /1 =  10 Sr =  12.9 and /i/Ao =  0.05. As pointed out 
by [15]. for this kind of geometry G,o needs approximately 80 terms to ensure 
the desired convergence. However, as shown in Fig. E.9, the application of the 
acceleration techniques makes the same series converge in nine terms, which is 
better than the direct summation corresponding to 80 terms.

Figure E.9: Relative errors for the summation given in Eq. (E.43)

E.3 Conclusion

Series transformation methods used in electromagnetic problems are studied 
and compared for some numerical examples in Electromagnetics. Among these
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transformations, the Euler transformation can only be applied to alternating 
sequences; even then, other transformation methods may work better than the 
Euler transformation.

Wynn’s c algorithm seems to be working better when overall performance is 
considered and it is prefered over the direct application of higher-order Shanks’ 
transformation because it eliminates the calculation of the determinants in 
Shanks’ transformation. Although there is an exception (see Fig. E.7), the 0  
algorithm also gives good results in most cases.

On the other hand, the user must be aware of cancelation errors which might 
occur in the iterative transformations such as Wynn’s ¿ algorithm. In the case of 
cancelation errors, the alternate forms of the algorithms should be used [93]. In 
addition, although the £ algorithm works well for oscillatory secjiiences, it does 
not work for monotonie sequences. For monotonie sequences, one can use the p 
algorithm [99].

For doubly infinite sums, Ewald’s transformation performs much better than 
the others, and its power stems from expre.ssing the summation in terms of the 
complementary error functions. There are also general transformation methods 
on double series, namely Streit’s transformation and Haccart's transformation 
[93].

For the integrals involving Bessel and sinusoidal functions, the weighted 
averages or the method of exponentials can be chosen depending on the 
application. The method of exponentials is preferable if one needs to evaluate 
the integral for different values of a parameter because it results in a closed-form 
expression as an explicit function of the parameter.
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