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ABSTRACT

PARTIAL QUERY EVALUATION
FOR VERTICALLY PARTITIONED SIGNATURE FILES
IN VERY LARGE UNFORMATTED DATABASES

Seyit KOCBERBER
Ph.D. in Computer Engineering and Information Science
Supervisor: Assoc. Prof. Dr. Fazli CAN
January 1996, 131 Pages

Signature file approach is a well-known indexing technique. The Bit Sliced
Signature File (BSSF) method provides an efficient retrieval environment by only
accessing on-bits of query signatures. However, its response time increases for
increasing number of query terms. For BSSF we define a stopping condition that
tries to avoid the processing of all on-bits of query signatures through partial
evaluation. The aim of the stopping condition is to reduce the expected number of
false drops to the level that also provides the lowest response time within the
framework of BSSF. We propose the Partially evaluated Bit-Sliced Signature File
(P-BSSF) method that employs the partial evaluation strategy and minimizes the
response time in a multi-term query environment by considering the submission
probabilities of the queries with different number of terms. Experiments show that P-
BSSF provides 85% improvement in response time over BSSF depending on space

overhead and the number of query terms.

To provide better optimization of the signature file parameters in multi-term
query environments, we propose Multi-Fragmented Signature File (MFSF) method
as an extension of P-BSSF. In MFSF, a signature file is divided into variable sized
vertical fragments with different on-bit densities to optimize the response time using

a similar query evaluation methodology. In query evaluation the query signature on-



bits of the lower on-bit density fragments are used first. As the number of query
terms increases, the number of query signature on-bits in the lower on-bit density
fragments increases and the query stopping condition is reached in fewer bit slice
evaluation steps. Therefore, in MFSF, the response time decreases for an increasing
number of query terms. The analysis shows that, with no space overhead, MFSF

outperforms the P-BSSF and generalized frame-sliced signature file organizations.

Due to hashing and superimposition operations used in obtaining signatures, the
signature of an irrelevant record may match the query signature, i.e., it is possible to
have false drops. In signature file processing the accurate estimation of the number
of false drops is essential to obtain system parameters that will yield a desirable
response time. We propose a more accurate false drop estimation method for
databases with varying record lengths instead of using an average number of distinct
terms per record. In this method, the records of a database are conceptually
partitioned according to the number of distinct terms they contain and the number of
false drops of each group is estimated separately. Experiments with real data show
that depending on the space overhead, the proposed method obtains up to 33%, 25%,
and 20% response time improvements for the sequential, generalized frame-sliced,

and MFSF methods, respectively.

For very large databases even one bit slice of MFSF may occupy several disk
blocks. We propose the Compressed Multi-Fragmented Signature File (C-MFSF)
method that stores the bit slices of MFSF in a compact form which provides a better
response time. To minimize the number of disk accesses, the signature size and the
disk block size can be adjusted such that most bit slices fit into a single disk block
after compression. In such environments, C-MFSF evaluates the queries with more
than two terms with only one disk access per query term rather than two disk
accesses of the inverted file method which are respectively for the pointer of the
query term posting list and the list itself. Our projection based on real data shows
that for a database of one million records C-MFSF provides a response time of 0.85

seconds.

Keywords: Information Retrieval, Signature Files, Vertically Partitioned Signature

Files, Compression.
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OZET

COK BUYUK KALIPSIZ VERITABANLARINDA
DIiKEY DILIMLENMIS IMZA KUTUKLERI iLE
KISMI SORGU HESABI

Seyit KOCBERBER
Bilgisayar ve Enformatik Miithendisligi Doktora
Tez Yoneticisi: Dogent Dr. Fazli CAN
Ocak 1996, 131 Sayfa

Imza kiitiikleri sorgulara uygun olmayan kayitlarin ¢ogunu eleyerek kalipli ve
kalipsiz bilgi kiitiiklerine randimanl bir sekilde erisimi saglar. ikil Dilimlenmis Imza
Kiitiikleri (IDIK) yontemi okunacak ve islenecek bilgi miktarini azaltarak randimani
daha da artirir. Fakat, artan sorgu sozciiklerinin daha fazla ikil dilim iglenmesini
gerektirmesi IDIK yonteminin sorguya yanit siiresini artirir. Tez kapsaminda, iDIK
yontemi i¢in sorgu hesabinin imza kutigu isleme sathasini sorgu imzasinin biitiin
“1” ikillerini kullanmadan tamamlamaya calisan bir durma kosulu tanimlandi.
Durma kogulunun amaci, beklenen yanliglikla uyan kayit sayisini ikil dilimlenmis
imza kiittikleri icin en dusiik yanit siiresini saglayacak diizeye indirmektir. Bu kismi
hesap stratejisini kullanan Kismi hesaplanan Ikil Dilimlenmis Imza Kiitiikleri (K-
IDIK) yontemi o6nerildi. K-IDIK durma kosulu ile birlikte ¢ok sozciiklii sorgu
ortamlarinda farkli sayida sbzcik igeren sorgularin sunulma olasiliklarint da
gozleyerek sorgu yanit siiresini enkiiciik diizeyine indirir. Deneyler K-IDIK’in
kullanilan disk alanm1 ve sorgu sozciik sayisina bagh olarak IDIK’e gére yanit
suresinde yuzde 85 iyilesme sagladigini gostermektedir.

Cok soOzcikkli sorgu ortamlarinda imza kitigi parametrelerinin daha da
eniyilestirilmesini saglamak i¢in, K-IDIK yénteminin gelistirilmisi olan, Cok Kisimli
Imza Kiitiigii (CKiK) yontemi 6nerildi. CKIK yoteminde kismi hesap stratejisini
kullanarak yanit siiresini eniyilestirmek amaciyla imza kiitiigii herbiri farkli “1”

yogunluguna sahip degisik biiyiiklikte dikey kisimlara ayrilmistir. Sorgu hesabinda
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diisiik “1” yogunluklu kisimlara ait sorgu imzasi “1” leri 6ncelikle kullanilir.
Sorgulardaki sozciik sayisi artarken disiik “1” yogunluguna sahip kisimlarda
bulunan sorgu imzasi “1” lerinin sayisi da artar. Boylece durma kosuluna daha az
hesaplama adimu ile erisilir ve dolayistyla artan sorgu sézciik sayisi i¢in CKIK’in
sorgu yanit siiresi azalir. Analizler ek bir disk alam gerektirmeden CKiK’in K-IDIK
ve genellenmis cerceve dilimli imza kitigi yontemlerinden daha iyi sonuglar
verdigini gostermektedir.

Imza iiretiminde kullanilan, sozciiklerden rasgele ikil konumu elde etme ve iist
uste bindirme iglemleri nedeniyle sorguya uygun olmayan bir kaydin imzasi sorgu
imzasina uygun olabilmektedir. Bu tirden kayitlara yanliglikla uyan kayit denir.
Istenir bir yanit siiresi elde edebilmek i¢in yanlslikla uyan kayitlarin sayisinin dogru
kestirimi gereklidir. Degisken sayida farkli sézciik iceren kayitlardan olusan
veritabanlarinda ortalama farkli sozciikk sayist kullanmak yerine yanliglikla uyan
kayitlarin sayisin1 daha dogru kestiren bir yontem &nerildi. Onerilen ydntemde
veritabanindaki kayitlar icerdikleri farkli sozciik sayilarina gore kavramsal kisimlara
ayrilir ve her kisimdaki yanlislikla uyan kayit sayist ayr1 ayri kestirilir. Gergek veri
ile yapilan deneylerde kullanilan disk alanina bagli olarak siradan erisimli,
genellenmis ¢erceve dilimli ve CKIK yéntemleri icin yiizde 33’e, yiizde 25’¢ ve
ylizde 20’ye kadar varan sorgu yanit stiresi iyilestirmeleri elde edilmistir.

Cok biiyiik veritabanlarinda CKIK’in bir ikil dilimi bile bir¢ok disk blogunu
kapsayabilmektedir. CKIK’in ikil dilimlerini daha yogun olarak saklayan
Sikistirilmis Cok Kisimli Imza Kiitiigii (S-CKIK) yontemi 6nerildi. CKIK in seyrek
“1” iceren ikil dilimlerinin sikistirilmasi daha diisiik sorgu yanit siireleri
saglamaktadir. Disk erigim sayisini eniyilestirmek icin disk blok buyuklugi ikil
dilimlerin ¢ogunun sikistirma isleminden sonra bir disk bloguna sigmasini
saglayacak bicimde ayarlanabilir. Boyle ortamlarda S-CKIK ikiden fazla terim
iceren sorgulari sozcik bagina bir disk erisimi ile hesaplayabilmektedir. Ayni
ortamlarda tersytiz edilmis kitiikler ise biri sorgu sdézcigiini aramak digeri de sorgu
sOzcugiine ait kayit listesine erismek i¢in olmak tizere iki disk erigsimine gereksinim

duymaktadir.

Acar Sozciikler: Bilgi Erisimi, Imza Kiitiikleri, Dikey Kistmlanmis Imza Kiitiikleri,

Sikistirma.
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1. INTRODUCTION

Relational database systems, by utilizing set theoretic operations, provide a theoretical
and practical storage and retrieval environment for formatted data [DAT90, ULL88].
In these systems, indexes on frequently used attributes provide efficient retrieval of
desired information. Similarly, unformatted data (image, voice, text, etc.) can be
stored in variable length data fields. (For smplicity, an instance of any kind of data,
i.e., data items stored in the database, will be referred to as record in the rest of this
thesis.) However, searching unformatted data in tables of a relational database system
is inefficient. Therefore, efficient file structures and search techniques must be
developed for purely or partialy unformatted database records [AKT93a, CANSS,
CAN93, FAL92, KOK79, SAL89, VANT79].

For search and retrieval purposes, unformatted data is described by a set of
descriptors (attributes) [DOU89, RAB91, SAL75, SAL88]. For example, a document
can be described by the words used in the text. These words or terms are obtained by
amanual or automatic indexing process and each record may have different number of
terms [SAL75, SAL83Db]. In this thesis "term" is used to mean a descriptor and the

method used to obtain the terms of arecord is not our concern.

Information retrieval (IR) methods for unformatted data can be classified into two

groups: logical information retrieval and physical information retrieval [BLA9Q].

The aim of logical information retrieval isto answer the following questions.
» Areadl of theretrieved records really relevant to the query ?
* Aretheretrieved records the only relevant records to the query ?
These questions are related to the meaning of the contents of the records and the

information need of the user submitting the query.

For logica information retrieval effectiveness of IR isimportant. The effectiveness

of an IR system can be measured by the degree at which the information needs of



users are satisfied. There are two common measures of effectiveness: recall and
precision. Recal is the ratio of the number of relevant and retrieved records to total
number of relevant records. Precision is the ratio of the number of relevant and
retrieved records to the total number of retrieved records. An effective IR system
must only retrieve relevant records, however, this is difficult if not impossible, since

there is no exact method to represent records and queries.

In IR the word relevance does not have a well defined meaning [BLA90]. The
users may determine the number of relevant records in the set of records retrieved by
the system. However, determining the total number of relevant records to a particular
query is a difficult task. Therefore, artificialy created environments and smdl

databases are used for measuring the effectiveness of the IR models.

In physical information retrieval, the terms used to describe a record are assumed
to be the exact representation of the record. Similarly, user queries consisting of terms
are also assumed to be the exact representation of the desired information. The aim of
physical information retrieval is to find the matching records to the user query by
using minimum system resources. Therefore, the physical information retrieval deals
with the efficiency of an IR system. The basic measures of efficiency are the response
time, i.e., time required to answer user queries, and the disk space used by the IR
system. The efficiency of the update operations is usually secondary, but aso
important. In this thesis only the physical meaning of retrieval and relevant is our

concern.
1.1 File Structuresfor Information Retrieval

IR systems show variations due to the nature of the records in their databases, the
frequency and types of the operations performed, and the properties of the auxiliary
storage devices used. For example, data written to a write once disk becomes
permanent. The retrieval method of an application that uses write once disks should
have appropriate file structures to overcome this difficulty for insertion operations.
Various file structures have been proposed in the literature that try to obtain a better
performance by considering the properties of IR environments. Some of them are
briefly introduced below.



Sequentia files: in this structure records are stored sequentially without using
any additional data structures. Therefore, insertion of records are easy and there is
no space overhead. However, to find the relevant records to a query, dl of the
records must be read and compared with the search query. Therefore, in sequential
files, the retrieval speed is proportional to the number of records. If the queries can
be processed in batches, one pass over the records will be sufficient to answer
many queries. Sequential files may be preferred for small databases or for the

environments where the prompt system responseis not crucial.

Inverted files: in this structure to find the relevant records to a term easly, a
pre-computed list of documents which contain the term is stored with each term
[SAL83b, WIT94, HAR92]. Usually, the pre-computed list of documents is called
the concordance or the posting list. To find the relevant records to aterm, first the
location of the posting list of the term is obtained, and then the posting list is read.
Usually, to access terms easily, an index structure is created on the terms. This pre-
computed structure provides fast retrieval, but, to keep the pre-computed structure

current, extra computation is required for insertion and updates of the records.

Signature files: in this structure to provide a space efficient fast search structure,
each term is hashed into a bit string which is caled term signature [AKT93a,
FAL85b, FAL92]. Record signatures are generaly obtained by superimposing, i.e.
bitwise ORing, the term signatures occurring in the record. These record signatures
are stored in a separate file, called the signature file. To find the relevant records to
a query, first the signatures of the terms occurring in the query are superimposed
to obtain a query signature, and then, this query signature is compared with the
record signatures in the signature file. The signature file acts as a filter and
eliminates most of the irrelevant records to a query without retrieving actual

records.

Clustered files: in this structure similar records are grouped into clusters and to
retrieve relevant records to a query, the query is compared with the representatives
of the clusters, known as cluster centroids [CAN9O, WIL88]. The clustering
hypothesis, which states that “ closely associated records tend to be relevant to the
same request,” is the justification of the clustering methods [VAN79]. This



application of clustering provides a logica IR system. Clustering Smilar records
and assigning the records in the same cluster to the same disk block or close to
each other also improves the performance of the physica retrieval methods
[OM190].

1.2 Signature Filesas a Physical Retrieval M ethod

In signature approach, each term is hashed into S positions among F positions where
F > S The result is caled a term signature. Usually, a signature with F positions is
represented with a bit string of length F and each term sets the bits to “1” (on-bit) in
the positions it has been hashed (compressed signatures may require less than F bits).
In thisthesis, unless otherwise stated, a signature with F positions will be represented
with a bit string of length F and we will use the signature size to define both the
number of bits used to represent the signature and the number of positions that can be
hashed.

Record signatures are obtained either by concatenating or superimposing the
signatures of the record terms. These record signatures are stored in a separate file,
the signature file, which reflects the contents of database records. In superimposed
signature files, the length of the record signature (F) and term signatures are the same
and F >> S In this thesis, we consider only vertically partitioned superimposed
signatures (will be defined later in this section) and conjunctive queries, i.e., ANDed

terms.

The query evaluation with signature files is conducted in two phases. To process a
query with signature files, first a query signature is produced using query terms. Then,
this query signature is compared with the record signatures. If arecord contains al of
the query terms, i.e., the record is relevant to the query, the record signature will have
on-bits in the corresponding bit positions of dl on-bits of the query signature.
Therefore, the records whose signatures contain at least one “0” bit (off-bit) in the
corresponding positions of on-bits of the query signature are definitely irrelevant to

the query. Thereby in the first phase most of the irrelevant records are eliminated.

Due to hashing and superimposition operations used in obtaining signatures, the

signature of an irrelevant record may match the query signature. These records are



caled false drops. The fase drop probability is minimized when the optimality
condition is satisfied, i.e., haf of a record signature bits are on-bits [CHR84,
ROB79]. In the second phase of the query processing, these possible false drop
records are resolved (if necessary) by accessing the actual records [AKT93a, FAL92,
KOGC95a LIN92, ROB79, SAC87]. The description of the query processing with
signaturefilesisdepicted in Figure 1.1.

record Sighature
signature File
g _ ]

Signature Signature False Drop
LY » Extraction =y File false and »| Resolution {—-ue
query Process | Signature | Processing | true matches Process | Matches

A F A

record Actual
Records

Figure 1.1. Description of query processing with signature files.
(Linesthat are active during query processing are boldfaced.)

For a database of N records, the signature file can be viewed as an N by F bit
matrix. Sequential Signature Files (SSF) require retrieval and processing of al N [F
bits in the signature file. However, off-bits of a query signature have no effect on the
result of the query processing, since only the on-bits of the query signature are
compared with the corresponding record signature bits. Therefore, the result of the
signature file processing can be obtained by processing only the record signature bits

corresponding to the on-bits of a query signature.

To retrieve the record signature bits corresponding to a bit position without
retrieving other bits, the signature file is vertically partitioned and the bits of a vertical
partition are stored sequentialy as in bit-diced signature files (BSSF) [ROB79] and
generaized frame-diced signature files (GFSSF) [LIN92]. Vertical partitioning a
signature file improves performance by reducing the amount of data to be read and
processed.



1.3 Scope of the Work and Contributions

In BSSF, to satisfy the optimality condition, the number of bits set by each term (S) is
adjusted according to the signature size (F) and the average number of terms in a

record (D) Without considering the number of query terms. For increasing number

of query terms the number of on-bitsin a query signature increases. Consequently, the
time required to complete the first phase of the query evaluation increases [ROB79].
The Generalized Frame Sliced Signature File method (GFSSF) proposed in [LIN92]
attacks this problem by adjusting the value of S such that the response time becomes
minimum for a given number of query terms, t. However, in a multi-term query
environment, queries containing less than t terms will obtain many false drops. Also,

the queries with more than t terms will unnecessarily process many bit dlices.

In multi-media environments, search conditions on various media are expressed in
a sngle query [ZEZ91] which cause an increase in the number of query terms.
Therefore, the access method of such an environment should provide acceptable
response times for high number of query terms. At the same time, a general purpose
access method should aso provide acceptable response times for queries containing a

few query terms. BSSF and GFSSF do not satisfy these requirements.

Bit-diced signature files and inverted files have some common properties but they
are different methods. However, the differences have not been defined clearly. First

we provide aclarification of this.

We propose a new signature file optimization method, Partialy evaluated Bit-
Sliced Signature File (P-BSSF), which combines optima selection of S value that
minimizes the response time with a partial evaluation strategy in a multi-term query
environment. The partial evaluation strategy uses a subset of the on-bits of a query
signature. During the selection of the optimal S value, we considered the submission
probabilities of the queries with various number of terms. Therefore, P-BSSF adjusts
the trade off between fewer dice processing and resolving more false drops properly

and increases the performance.

The stopping condition defined for P-BSSF improves the system performance by
processing a limited number of bit slices. To further improve the performance of P-

BSSF we propose a new signature file organization and query evaluation method,



Multi-Fragmented Signature File (MFSF). In MFSF, the signature file matrix is
divided into variable sized vertical fragments. Each fragment is a conceptual BSSF
with its own F and S parameters and each term sets bit(s) in each fragment.
Therefore, each fragment may have a different on-bit density (the ratio of the number
of on-bitsto total number of bits). For query evaluation, the bit dices from the lowest
on-bit density fragments are used first. Therefore, as the number of query terms
increases, the number of bit dices used from the fragments with lower on-bit density
increases. Lower on-bit density eliminates false drops more rapidly and the stopping
condition is reached in fewer bit dice evaluations. Therefore, MFSF provides

decreasing response time for increasing numbers of query terms.

Experiments with real data reveal that assuming the existence of the same average

number of terms per record, D, causes some error for the estimation of number of

false drop records (FD). We propose a more accurate false drop estimation method,
the Partitioned False Drop estimation method (PFD), for the databases with varying
number of distinct termsin the records. In PFD, we conceptually divide the records of
a database into digoint partitions according to the number of distinct terms in the
records. Each partition is considered as a separate signature file and average number
of distinct terms in a partition is used to estimate FD in this partition. The PFD
method decreases the differences among the numbers of distinct terms in the records
of apartition. Therefore, FD is estimated more accurately. FD affects the performance
of asignature file method since these false drop records must be resolved by accessing
actual records. Accurate estimation of FD enables better estimation of the signature

file parameters to obtain a better response time.

Lower on-bit density in a vertically partitioned signature file method provides
reaching the stopping condition in fewer evaluation steps. However, to obtain a lower
on-bit density the signature size (F) must be increased which resultsin increased space
overhead. To increase the performance without increasing the space overhead we
propose Compressed Multi-Fragmented Signature File (C-MFSF) method that
extends the MFSF method. In C-MFSF, we compress the sparse bit dices of MFSF
for large F values. Usually, reading a compressed bit dices of C-MFSF requires a few

disk block accesses even for very large databases. Additionaly, since the on-bit



density isreduced the stopping condition is reached by processing fewer number of bit

dices.
1.4 Organization of the Thesis
Therest of the thesisis organized as follows.

In Chapter 2 the previous work on inverted files and signature files is summarized.
After this we discuss the distinguishing features of the vertically partitioned signature
files and inverted files. Thereby we clarify the features that can be used for the

distinction of these two methods.

Chapter 3 provides the definition of the performance measures and the description
of our test environment, i.e., the test database, test queries, and relevant attributes of
the computer used in the experiments. Additiondly, to estimate the performance of
signature file methods, the operationsinvolved in query processing with signature files
are modeled.

In Chapter 4 and Chapter 5, we describe the P-BSSF and the MFSF methods,
respectively. Also, we provide the results obtained by simulations and experiments
with real data.

We present the Partitioned False drop Estimation method (PFD) in Chapter 6. The
use of PFD in SSF, GFSSF and MFSF are provided along with the results obtained
with real data.

In Chapter 7, the Compressed Multi-Fragmented Signature File method is
presented. The C-MFSF method is compared with the compressed inverted file
method.

Chapter 8 contains the conclusion and the contributions of the thesis and pointers

for future research.

We provide the definitions of frequently used acronyms and important symbols
used in the equations in Appendices A and B, respectively. Appendix C provides the
hashing algorithm used to map terms to their signature. This appendix is provided for
reproducibility of the results, since this algorithm dightly affects the results. Appendix
C providesthe list of stop words.



2. INVERTED FILESAND SIGNATURE FILES

An IR system stores records and provides search and retrieval of these records via
descriptors which we cal terms. The set of terms used to describe the records of a
databaseis called vocabulary or dictionary. The records may have different number of
terms [SAL75]. The terms may have different importance in describing different
records. Usudly, term importance, called term weight, is represented with a red
number [SAL83a, SALS88]. In this thesis, for easy association with signature files,
binary term weights are assumed. This corresponds to the existence or absence of a
term in the record description. An example text database is given in Figure 2.1. The

example database contains five records (R;, Ry, R3, R4, Rg) and the vocabulary

contains six terms (T, To, Ty, T4, Ts, Tg).

Vocabulary Records

T1 = access R1 = { computer, information }
T2 = computer R2 ={ access}

T3 = database R3 ={ information, retrieval }

R4 = { signature}
R5 ={ computer, database }

(N=5,V=6)

T4 = information
T5 = retrieval
T = signature

Figure 2.1. Example text database.
(N = no. of records, V = no. of terms.)

In the rest of this chapter, we describe Inverted Files (IF) and summarize previous
work on Signature Files (SF). Bit-dliced signature files and inverted files have some
common properties but they are different methods. However, what makes them
different has not been defined clearly in the literature. We provide the answer of this
guestion in Section 2.3.



2.1 Inverted Files

In the inverted file method each distinct term is associated with a list of identifiers,
caled posting list or concordance, of the records that contain the term [SAL83b].
Usualy, the record identifiers are the numbers of the records that contain the term.

The vocabulary is organized as alookup table to access the terms easily.

To obtain the records containing a particular term, first the term is found in the
lookup table and then corresponding posting list isread. Also, a Record Pointer Table
(RPT) must be stored to obtain the physical addresses of the records corresponding to
the record numbers in the posting lists. Inverted file representation of the example

database isgivenin Figure 2.2.

i
Sl

compe ——>|computer information |
database access |
|information | — —1—|information retrieval |

/ ——>|signature |

—T—>|computer database |
Record Pointer  Records
Table (RPT)
Lookup Tabl . .
0 ua © Posting Lists
(e.g. B™-tree)

Figure 2.2. Inverted file representation of example database shown in Figure 2.1.

In a dynamic environment there will be new records added to the database. (In our
discussion deletions, which are rare in IR systems, are ignored.) To insert a new
record to the database the posting lists of the terms occurring in the new record are
read, the record identifier is added to these posting lists, and the updated posting lists
are written back to the disk. Additiondly, the new record may contain new terms
which requires expanding the vocabulary by updating the lookup table. Therefore,

insertion of new records are costly in the inverted file method.

Another difficulty in a dynamic environment is the maintenance of the posting lists.
The posting lists will get longer as new records are added to the database. The space
required to add new record identifiers to posting lists can be supplied by either
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chaining the new record identifiers or allocating some free space at the end of the
posting lists. Usualy, the posting lists are stored on auxiliary storage and retrieving a
chained posting list will require many disk accesses. Therefore, chaining must be
avoided if possible. Reserving some free space at the end of the posting lists will
increase the space overhead since there will be many posting lists. Also, the reserved
free space may be insufficient for some posting lists and either a reorganization or

chaining additional free space may be required.

Our presentation so far describes the most conventional implementation of the
inverted file approach. However, the same logica structure can be implemented in
various ways. Therefore, in the thesis the phrase “inverted files’ covers different

implementations of the inverted file concept asillustrated in Figure 2.2.
2.1.1 Query Evaluation with Inverted Files

To evaluate a query with inverted files the posting lists of the query terms must be
retrieved. Usually, the lookup table is maintained using a B*-tree and one disk access
will be sufficient to obtain the address of a posting list if the interior nodes (non leaf
nodes) of the B*-tree held in memory. Since the branching factor is very large in a
B*-tree, the number of interior nodes will be smal and this assumption can be
satisfied [SALZ8S].

After obtaining the address of a posting list, it can be retrieved with one disk
access if the associated blocks are stored contiguously on the disk. These
requirements can be satisfied easily for static databases. However, as we mentioned
above, the posting lists of a dynamic database may contain chains. Therefore,

traversing these chains will require additional disk accesses.

For the conjunctive queries containing many terms, to decrease the query
evaluation time the posting lists of the query terms may be sorted in increasing (more
correctly non decreasing) posting list lengths and may be processed in this order
[MOF953]. Since the size of the result list will be less than or equal to the size of the
shortest posting list, the memory requirements will be minimized. Also, the number of
matching record identifiers in the intermediate steps will be minimized. Another

strategy for processing conjunctive queries which may decrease the query evaluation
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time is processing a subset of the query terms. After reducing the number of
candidates (possible answers) to a smal number, the query evauation with the
inverted file may be completed without processing remaining query terms. The
candidate records are checked to eliminate the possible false matches (i.e., the records

which do not contain some of the remaining unused query terms) [ZOB92].
2.1.2 Bit maps

The terms of arecord can be represented with a bit vector of size V (vocabulary size)
containing one bit for each entry in the vocabulary. A one-to-one mapping function
generates the bit position of a given term. The bit vector of R3 of Figure 2.1 is
“000110". The occurrence of terms in the records can be represented with a Binary
Record-Term Matrix (BRTM). The BRTM of a database with N records and V
distinct termsin the vocabulary will contain N rows and V columns. The BRTM of the
example text database given in Figure 2.1 is shown in Figure 2.3. One column of
BRTM is caled bit map. The bit map of the term “information,” T, is“10100” and

the “1”sin the first and third bit positions indicate that the records R; and Rz contain

the term “information.”

T1 T2 T3 T4 T5 Te

Rt ] 0oi1:0i1:i01i0
Ro [ 1:0:0:0:0:0
R3 o?o 0i1:1:0
Re|oioio 0 0 1
R5 051 1:0:0:0

Figure 2.3. Binary record-term matrix (BRTM) for the example database of Figure 2.1.

The size of a bit map depends on the number of records in the database. For
example, the size of a bit map for a database containing 106 records will be 122
Kbytes. If this database contains 100,000 distinct terms the BRTM of this database
will occupy 11.64 GByteswhich isvery high.

The posting lists of common terms may be longer than their bit map representation
since they will contain many record identifiers. Therefore, instead of these longer

posting lists the corresponding bit map representations may be stored. This will save
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space and processing time since bit maps can be merged efficiently by bitwise

operations.

The method proposed by Faloutsos and Jagadish uses the posting list storage for
rare terms and bit map storage for frequent terms [FAL91]. Faloutsos and Jagadish
proposed different organizations for using the bit map in different environments. The
proposed method maintains the lookup table for al terms. Therefore, the time
required to search the lookup table is the same as other inverson methods. Also, the

space overhead generated by the lookup table is not eliminated.
2.1.3 Compressed Inverted Files

Inverted files require an additional memory of 50%-300% of the original records
depending on the detail of the stored information [HAS81, FAL85a, MOF953g].
However, recent studies show that by compression this space overhead can be
reduced to less than 10% of the space used by the original records [ZOB92, WIT94].
This reduction can be obtained if only conjunctive queries or basic ranking are
supported. Basic ranking techniques require database level statistics about the terms
to estimate the term importance [SAL83b]. If better ranking and word sequence
gueries are supported the index (i.e., vocabulary and posting list) requires 25% of the
space used by the actual data[ZOB92].

If the posting lists are compressed, insertion of new records becomes complex and
database creation may be expensive. Also, there is some possibility of a bottleneck
during decoding the compressed posting lists [ZOB92]. Adding skips, an index on the
entries of a posting list, provides substantial time savings with a small overhead to the
compressed inverted file entries [MOF954].

2.2 Signature Files

One of the factors affecting the space overhead of an inverted file system is the
number of distinct terms in the database, i.e., the number of entries in the vocabulary.
Signature files eliminate the need for a vocabulary and save the space and time

required to search the lookup table.

The signature of aterm is obtained by hashing the term to a predetermined number
of locations (S) among a given set of hashing locations (F). We provide an algorithm
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to generate term signatures in Figure 2.4. In this agorithm, the random number
generator used in obtaining the bit positions from the term, may produce the same bit
positions more than once. Consequently, some term signatures may contain less than
S*1”s. This can be avoided by ignoring the bit positions that have been aready set to
“17.

A particular term is aways hashed to the same location(s). However, this is an
irreversible process, i.e., the term can not be obtained from the locations the term has
been hashed unless al terms in the dictionary are hashed and compared with these
locations. Sometimes, even this inefficient sequential search may be caught short to
obtain the term from the given hashing locations. Depending on the total number of
hashing locations, the number of locations a term is hashed, and the hashing function
that maps the term to a number, more than one term may be hashed to the same
locations with a non-zero probability. Therefore, aterm signature is an abstraction of
the term and may not contain all of the information about the term. In [FAL87b] the
relation between the false drop probability and the information loss is inspected.

Algorithm GenerateTermSignature
Set all bit positions of the term signature equal to “0”.
r « Map the term into a number using a hashing function.
i~ 1
whilei < S
{ BitPosition ~ max(1, F (fandom(r)) .
Set BitPosition of term signature equal to “1”.
i« i+ 1

}

The function random is a random number generator that returns
arandom number in the range [0,1] and resets the value of itsargument r.

Figure 2.4. Generation of aterm signature.

Although the definition of a signature has no restriction for the representation of a
term signature, usually a term signature with F locations is represented with a bit
string of length F, since the bit strings can be processed efficiently by available
computers. We distinguish the size of a signature from the value of F and we define
the signature size as the number of bits required to store a record signature. Also, we
define F as the upper bound for the hashing function used to determine the bit
positions set by the terms. Note that the signature size and the value of F may be
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different. However, in most of the signature file applications, the signature size and

the value of F are the same, i.e., they use uncompressed bit string representation.

Another point we want to clarify is that the values of S and F can be selected
fredly. In the definition of aterm signature there is no limit for the values of F and S
except S< F. However, the retrieval methods may limit the values of F and S because

of efficiency considerations.

The signature file approach contains some uncertainty due to the hashing operation
used in generating a term signature. Due to this uncertainty, the result of a query
evaluation may produce false matches (false drops), i.e. the record signature satisfies
the query although the actual record does not. The probability of occurrence of such
an event is called false drop probability, fd, which is defined as follows [FAL87a).

t = Number of false matches 2.1)
Number of recordswhich do not qualify the query '

2.2.1 Record Signature Generation M ethods

Record signatures are obtained from the signatures of terms they contain. There are
two basic record signature generation methods: word signature and superimposed

coding.
2.2.1.1 Word Signature

In word signatures (WS), a record signature is obtained by concatenating the
signatures of the non common words (terms) of the record (see Figure 2.5) [TSI83].
Generally, the length of the word signatures are the same for dl terms. This preserves

the positional information present in the original record.

Application of WS in unformatted databases produces variable length record
signatures. Therefore, arecord is divided into blocks that contain the same number of
distinct terms [FAL85b]. The false drop probability of WS for single term queries is
computed as follows [FAL85b].

1 D
fd=1-01-— 2.2
( Smax) (22)
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where D is the number of distinct terms in a block and S5 is maximum possible
number of distinct term signatures (i.e., Sy can be smaller than V). For large Sy«

and small D values the false drop probability can be computed as

fd=—2_ (2.3)
Shax
Terms  Term Signatures
computer 1100
signature 0010
retrieval 1011

R = ( computer, signature, retrieval )

Record signatureforR: 1100 0010 1011

Figure 2.5. Record signature generation using word signatures.

Ramamohanarao et al. used WS to generate record signatures for formatted
databases, i.e, for fixed length records. A block signature is obtained by
superimposing the signatures of the records stored in the disk block. The block
signatures are stored separately and the qualifying blocks are accessed during query
evaluation [RAMS83].

To the best of our knowledge, the only storage and search method proposed to use
WS in unformatted databases is the sequential storage and search method. Therefore,
since the query processing requires retrieval of the whole signature file for sequential

storage, known WS methods are unsuitable for large databases.

The record signature generation with WS encodes the content of a record into bit
patterns. As we mentioned before the terms may not be obtained uniquely from the
term signatures. In that sense the WS method acts as a lossy compression method that
do not require reconstruction of origina record for query processing. Considerable
space savings can be obtained by compressing the records of atext database [BEL93].
Therefore, the efficiency of WS must be compared with the text compression
methods.

2.2.1.2 Superimposed Coding

In superimposed coding (SC) arecord signature is obtained by superimposing, bitwise

ORIing, the term signatures of the record terms [KNU75]. A term signature can also
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be generated by superimposing the signatures of its overlapping n-grams [FAL85b].
However, thisisout of concern. In SC the number of hashing positions (Fg) is very
large compared to the number of hashing positionsin WS (Fyg). If ablock contains
b terms in WS, to obtain the same space overhead for SC, the value of Fg= must be
b Rys. Consequently, the number of possible term signatures is very large in SC

and the false drop probability incurred due to producing the same term signature for
more than one term is negligible.

To answer a query, first a query signature is produced using query terms. Then,
this query signature is compared with the record signatures. If a record contains all
of the query terms, i.e., if the record is relevant to the query, the record signature
will have on-bits in the corresponding bit positions of all on-bits of the query
signature. Therefore, the records whose signatures contain at least one “0” bit (off-
bit) in the corresponding positions of on-bits of the query signature are definitely

irrelevant to the query. Thisisthe first phase of query processing with superimposed

signature files.
Record Terms Term Signature
computer 0100010010
information 0000100101
Record Signature 0100110111
Query Query Signature Result
access 0100010001 FaseDrop
information 0000100101 TrueMatch
retrieval 1000101000 NoMatch

(F=10,S=3)

Figure 2.6. Signature generation and query processing with superimposed signatures.

To illustrate signature generation and query processing with superimposed
signatures an example is provided in Figure 2.6. Query signature on-bits shown in
bold font have a“0” bit at the corresponding record signature positions. Since the 1st
and 7th bits of the record signature are “0” while the signature of the query
“retrieval” has “1” at these positions, the record is irrelevant to this query. The
record signature matches the signatures of the queries “access’ and “information”.
The on-bit positions set by the query term “access’ (2nd, 6th, and 10th) are also set
by the record terms “ computer” and “information” (2nd, 5th, 6th, 8th, 9th, and 10th).

17



Therefore, although the record does not contain the term “access’, the record seems

to qualify the query (afalse drop).

In SC fase drops are mainly produced due to the superimposition operation used
to obtain record signatures. Although al terms may be assigned different signatures,
combination of term signatures may subsume the signatures of other terms. These
records may seem to qudify a query containing the subsumed term. Therefore, in the
second phase of a query evaluation with SC, the false drops which pass the filtering
process must be eiminated by accessing the actual records. This process is called the

false drop resolution.

The false drop probability for SC is examined in [CHR84a, ROB79] and the
authors show that to obtain minimum false drop probability haf of arecord signature
bits must be on-bit (the optimality condition). The optimality condition requires
selecting a specific Svalue for given F and D values. The false drop probability of SC

for single term queriesis computed as follows [ROB79].

fd = %—(1—2)5’@5 (2.4)

Equation (2.4) can be explained as follows. Since each term sets Shitsto “1” ina

bit string that is F bit long, the probability of a particular bit of a term signature being
“1" is % By negating this probability, we obtain (1—%), i.e., the probability of

leaving a particular bit of the term signature as “0”. There are D terms that set bitsin
arecord signature. Therefore, the probability of a particular bit of a record signature
being “0” is (1—%)[). By negating this probability, we obtain the probability of a
particular bit of a record signature being an on-bit (on-bit density). Note that this
probability is the probability of a particular bit position of the record signature set to
“1" accidentally. Therefore, Equation (2.4) gives the probability of finding “1"’sin S
randomly selected bit positions in the record signature. Since the signature of a single
term query contains S on-bits, Equation (2.4) gives the false drop probability, i.e., the
probability of matching the signature of an irrelevant record and a single-term query

signature accidentally.
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2.2.1.3 Considering Varying Number of Record Terms

The records of an unformatted database contain different number of distinct terms.
The signatures of the records containing many terms will contain more “1”s than the
optimality condition requires. This increases the false drop probability. Faloutsos and
Christodoulakis suggest dividing a record into blocks that contain equal number of
distinct terms and producing a separate signature for each block [FAL88a]. However,
the numbers of “1”s in record signatures expose a normal distribution and there may
be record signatures containing non-optimal number of “1”s. Leng and Lee cal this
method Fixed Size Block (FSB) method and they propose the Fixed Weight Block
(FWB) method as an aternative [LEN92]. In FWB, instead of controlling the number

of termsin ablock, the number of “1”sin ablock signatureis controlled [LEN92].

Dividing a long record into blocks obtains lower false drop probabilities [FAL88a,
LEN92]. However, record level search and retrieval operations become complex. For
example, the terms of arecord that is relevant to a multi-term conjunctive query may
be distributed to more than one block. Therefore, for a multi-term query, to determine
the relevance of arecord dl block signatures of a record must be compared with the

query signature and the matching query terms must be monitored.

Usualy, only single term queries and records containing fixed number of terms are
considered in false drop analysis and performance estimations for signature files. This
creates an artificia test environment since the records of an unformatted database
contain varying numbers of terms and user queries may contain more than one term in
real IR applications. As illustrated in Chapter 3 there is no such smplifying
assumptions in our test environment. Therefore, the results obtained in our test

environment can also be obtained in real applications.
2.2.1.4 Considering Term Occurrence and Query Frequencies

To reduce the false drop probability, there are various proposals that accounts the
importance of terms in the queries and frequencies of the terms in signature
generation [FAL85c, FAL87a, FAL88a, LEN92, AKT93b]. These methods let the
terms set different number of bits according to the importance of the term. The

importance of the terms are determined by inspecting the database occurrence
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frequencies and query frequencies of the terms. However, alookup table is needed to

find the number of bits set by a particular term.
2.2.2 Compressing Record Signatures

If the optimality condition is satisfied, the number of “1”s and “0’s are equa in a
record signature. The optimum storage method of such a bit vector is storing it as a
bit string. Each on-bit is represented with the expense of two bits. However, storing a
record signature with F hashing locations as a bit string of the same size is not a
requirement for al signature file methods. The record signatures containing

considerably less number of “1”sthan “0”s (or reverse) can be compressed [FAL85b].

The false drop probability can be reduced by increasing the value of F (see
Equation 2.4). Note that since the optimality condition is violated, the false drop
probability obtained by increasing F will be greater than the minimum false drop
probability that can be obtained if the optimality condition is satisfied using the
optimum S value for the larger F value. In [FAL85b] Faloutsos proposed the idea of
using a large F with S= 1 and compressing the resulting sparse record signature. In
the same work he inspects the Run Length encoding (RL), bit-Block Compression
(BC), and Variable bit-Block Compression (VBC) methods and shows that the RL
method obtains alower false drop probability than WS, SC, BC, and VBC methods.

2.2.3 Signature File Organization Methods

Sequentia storage of the signature file requires processing of al record signatures for
a query evaluation. The time required to retrieve and process al record signatures
increases as the number of records in the database increases. To obtain acceptable
response times for large databases, various signature file organization methods are
proposed. The basic motivation of these methods is processing not all but a part of the

signature file for query evaluation.
2.2.3.1 Vertically Partitioned Signature Files

Vertica partitioning methods utilize the fact that only on-bits of a query signature
affect the result of a query processing. These methods divide the signature file into

vertical partitions and retrieve only required partitions for query evauation. Vertical
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partitioning improves performance of query processing; however, insertion operations

become expensive.
2.2.3.1.1 Bit-Sliced Signature Files

In Bit-Sliced Signature Files (BSSF) the signature file is stored in column-wise order
[ROB79]. For query evaluation only the bit dices corresponding to the “1’s in the
query signature are retrieved. To evaluate a single term query, S bit dices (at most)
must be retrieved and processed, as opposed to retrieving only one posting list in the
inverted file. Without compression, the sizes of the bit dices will be equal to the
number of records in the database. In the inverted files, additional time is required to
determine the position of the posting list corresponding to the query term. This

requires alookup table search.
2.2.3.1.2 Frame Sliced Signature Files

In frame sliced signature files (FSSF) the record signature is divided into k equal sized
frames and the signatures are stored in a frame-wise fashion. Signature generation is
performed in two steps: first a hashing function is used to select one of the frames.
Then, a second hashing function determines the positions of the m bitsto be set to “1”
in this frame [LIN92]. Combining the bits of aterm in a frame and storing that frame
in consecutive disk blocks minimizes the number of seeks for dedicated storage
devices. Asaresult the insertion and update operations require less time. On the other
hand, corresponding bit dices to some of the “0” bits of the term signature are aso
transferred.

In the generalized version of FSSF, each word sets bits in n frames (GFSSF)
[LIN92]. When there is only one frame in the record signature, GFSSF is equivaent
to the sequential signature file method. When there are F frames with length one hit,
GFSSF converges to the BSSF method.

2.2.3.2Horizontally Partitioned Signature Files

Horizontal partitioning of signature files eiminates the processing of a part of the
signature file stored in row-wise order and thus improves performance. The proposed

horizontal partitioning methods can be divided into two classes: single level and
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multilevel. Generally there is some additional space overhead due to additional search

structures or unused space at the end of the partitions.
2.2.3.2.1 Single Level Methods

Single level methods use a part of the signature as a key. Three different methods
proposed by Lee and Leng use superimposed record signatures and identify a part of
them as the records keys [LEE89]. Record signatures are partitioned according to
their key value. The key of the query signatures are extracted in the same way, and

only those blocks which have the same key portion are accessed.

Linear Hashing with Superimposed Signatures (LHSS) is another single leve
method proposed by Zezula et al. [ZEZ91]. LHSS determines the number of bits in
the key portion of the signature dynamically. A split function converts each signature
into a page number between zero and n - 1 where n is the number of pages. Some of
the pages are hashed at level h, i.e., the key portion is h bits long, while some of the
pages are hashed at level h - 1. A split pointer is used to locate the first page hashed at
level h - 1. The pages beginning from the split pointer up to the page with index 2h-1
are hashed at level h -1 (2N-n pages). Performance of LHSS increases as the number
of 1sin the key of the query signature increases. For a query key with dl “0”s, dl of
the pages must be accessed. The effect of non uniform record and query frequencies
of the terms are investigated by Aktug and Can [AKT93b]. The results show that
letting high discriminatory terms (typically characterized by low document frequency
coupled with high query frequency) to set more bits than low discriminatory terms
increases the performance of LHSS. The effect of multi-term queries are inspected as
well.

2.2.3.2.2 Multi Level Methods

One typical implementation of the multi level methods, the signature tree approach,
divides the signature file into blocks. The signature of the block is then obtained by
superimposing the signatures in the group. This grouping operation continues until a
few signatures are left at the top [THAS88]. Since there is no pre computation to

group smilar signatures to the same block, for a query with more than a few relevant
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records, most of the blocks at leafs of the tree will contain at least one relevant record

to the query.

The same idea prevails in [PFA80] where upper levels of signatures (called the
block descriptors) are created by superimposing a group of the lower level signatures
that are assigned to a block. The number of signatures from level i that are
superimposed to form the block descriptor at level (i+1), where (i > 1), is caled the
packing factor p(i) which isadesign parameter and may vary for different levels of the

tree. The structure is called indexed descriptor files.

The S-tree method proposed by Deppish dynamically groups smilar signatures
during insertion [DEP86]. A new record is added to the leaf page which contains

similar signatures. The S-tree is kept balanced in away similar to B*-trees.

Unlike other multilevel methods, the method proposed in [SAC87] uses two
different term signatures: record signatures and block signatures. Block signatures are
larger than the record signatures. Signatures of the terms occurring in a record are
superimposed to obtain the record signature. Record signatures are grouped in equal
sized blocks such that each block occupies only one disk page. The block signature is
obtained by superimposing the block signatures of the terms occurring in the records
belonging to the block. Block signatures are stored in bit diced form, while record

signatures are stored in row-wise order.
2.3 The Differences Between Bit-Sliced Signature Filesand Inverted Files

Inverted files and signature files try to find the list of relevant records to a query
within a desirable response time. Especially the BSSF method has some common
conceptual properties with the inverted files. However, the properties which make
these two methods different are unclear in the IR literature. The rest of this chapter

provides the necessary explanation.

The BRTM of a database resembles a signature file. For smplicity, we will assume
that inverted file methods maintain a BRTM using bit maps. Since the posting lists
and bit maps are two different forms of storing one column of the BRTM, the

following discussion is aso true for the posting list storage method.

23



The basic characteristic of an IF method is storing the vocabulary in alookup table.
The lookup table is needed to obtain the address of the bit map corresponding to a
term during query processing. For insertion of a new record, the address of the bit
map will be used to set the bit corresponding to the new record in the BRTM. The
am of storing a lookup table is determining existence or absence of a term in the
vocabulary with 100% certainty and obtaining corresponding bit map address. If these
requirements (i.e., term lookup table and posting lists) are fulfilled the method used in
implementation of the lookup table will not be a distinguishing criteria for inverted file

and signature file approaches. For example, the lookup table may be implemented as a

hash table or aB™*-tree.

Using a hash table for the lookup table requires hashing each term to a table
position (bit string) which is conceptually smilar to a term signature. The hashing
function may produce the same hash table position (bit pattern) for different terms.
This condition is called collison. Various additional data structures and algorithms
may be used to resolve the collisons [KNU75]. These data structure may lead to
storing the original terms in a linked list or overflow buckets. Anyway, at the end of
the search process the hash table method will decide the existence or absence of a
term with 100% certainty and will obtain the address of the bit map associated to the
term if the term exist in the dictionary. Another possibility is the use of a perfect
hashing function with no collisions [FOX91].

In summary, the basic property of an inverted file method is that each term of a
record sets only one bit in a conceptual BRTM and the bit position set by a term is
never set by another term. (Note that we are using the phrase “conceptual BRTM”
since BRTM is never stored as is for large databases due to its excessive storage
requirement.) This one-to-one correspondence between a document term and the
corresponding bit in BRTM is guaranteed by the certainty in searching the lookup
table.

In signature file methods each term may be hashed to more than one bit position to
set bits as opposed to a single bit position of the IF methods. In the extreme case, a
signature file method may decide to set only one bit for each term like in the inverted

file method. Therefore, signature file methods are more general than IF methods in the
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selection of the Svaue. For example, in [FAL85b] Faloutsos uses alarge F value and
each term is hashed to only one position. Since the record signatures will be sparse, he
proposes compressing the record signatures. The proposed compression methods
provide efficient usage of the storage space and hence implies a lower false drop
probability for a given space overhead. However, the compression is an additional
operation over signature generation and neither the compression is a necessity for S=

1 nor the compression can only be used for large F and S= 1.

The difference between an inverted file method and a bit-diced signature file
method starts when more than one term is hashed to the same bit position (thisis the
synonym of a collision of the hash table implementation of the inverted file method).
Signature file methods try to minimize the collisions since they produce fase drops.
However, they use no vocabulary or additional data structures to resolve the collision.
Instead, conceptualy in signature files the posting lists of the terms that were hashed
to the same bit position are merged in the corresponding bit dice. Therefore, a bit
dice may contain the posting list of more than one term where a bit map corresponds

to exactly one posting list.

In summary, in signature files there is a non-zero probability of a bit position set by
a term is also set by other terms. Therefore, the bit dices of a BSSF are like the
posting lists of more than one term. The expected number of terms that were hashed
to the same bit position depends on the value of F and S As a result, the query
evaluation with signature files may produce false drops which are the most important
characteristic of SF methods. On the other hand, in the IF methods, each bit map

belongs to only one term hence there is no false drops.

The storage structure of posting lists and bit dices cannot be used to distinguish
inverted and signature file methods. The aim of both methods is to store the data in
the most convenient way. As we mentioned before, the posting lists are more compact
representations of sparse columns of the BRTM. However, the posting list
representation may not be feasible for al types of terms. For frequent terms, storing a
bit map may be more feasible than storing a posting list [FAL91] . Smilarly, if it is
more compact, a bit slice of a BSSF may be stored similar to posting lists of an IF.
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The methods proposed by Faloutsos and Chan demonstrate the distinction between
aBSSF and an IF [FAL88Db]. The Compressed Bit Slices (CBS) method proposed in
[FALS88] is a BSSF method. In CBS each term sets only one bit in alarge F and the

sparse hit slices are compressed.
2.4 Hybrid Methods

The horizontal and vertical signature partitioning methods can be combined to obtain
a hybrid method that exploits the desirable characteristics of both approaches
[GRA92]; however, in this section our concern is the combination of SF and IF
methods.

The hybrid access method proposed by Chang et a. stores the vocabulary in a
lookup table that uses an inverted index structure [CHA93]. A block posting file is
stored for the primary terms (they assume that about 20% of the terms will receive
about 80% of the user interest). For the secondary terms, remaining 80% of the terms,
a block signature fileis used to reduce the space overhead. The block posting file and
the block signature file point the blocks of a record signature file that contains record
signatures. In the record signature file, smilar record signatures are clustered to

improve the performance of the system.

The compressed bit dices of the CBS method are in variable lengths. To access the
bit dices a sparse pointer file is needed (note that some bit slices may contain al
zeros). If the value of F is decreased to avoid the sparcity, there will be many fase
drops. Therefore, Faloutsos and Chan propose the Doubly Compressed Bit Slices
(DCBS) method [FAL88Db]. In DCBS, to resolve false drops produced by hashing two
different terms into the same hash table location, a second hash function is used and
the resulting bit pattern (term signature) which is shorter than the term itself is stored
in a bucket which was chained if an overflow occurs. This additional data structure

resembles storing the terms mapping to the same location in a hash table.

The proposed structure, DCBS, is no longer a BSSF, instead it isin between an IF
method with a hash table and a BSSF. Practically, the gain in the space overhead
using the signature produced by the second hash function instead of actual term will
be smdl (note that terms may be compressed). To retrieve the bit dice of aterm, the
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term is hashed to alocation in the hash table and the first intermediate bucket pointed
by the hashing location is read. The address of the bit dice is obtained from the
intermediate buckets and the bit sliceis retrieved with a second disk access [FAL88b].
Note that the intermediate buckets may be chained and additiona disk accesses may
be required.

If a B*-tree is used to store the dictionary there will be two disk accesses.
Additionally, there are a non-zero false drop probability for DCBS. False drops may

be generated if both of the hashing functions produce the same signatures.

Faloutsos and Chan propose the No False Drop (NFD) method to solve the false
drop problem completely [FAL88b]. In NFD a pointer is added to each entry that
points the term in the origina record. The resulting data structure is no longer a
signature file. Instead it is an inverted file that use a term signature in addition to a
hash table to search the dictionary.
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3. PERFORMANCE MEASURE AND TEST ENVIRONMENT

To edstimate the performance of the proposed methods a simulation and test
environment is designed. The values of the parameters used in the smulation runs are
determined experimentally and reflect a real computing environment. This provides
validation of the results obtained by smulation runs in experiments with real data.
Figure 3.1 provides a pictorial description of our experimental environment. In short,
we use the traditional scientific experiment approach. However, this does not imply
that we repeat al experiments for both (smulation and real) cases. We reiterate the

experiments that are essential for the validation of the models.

) System Parameters
Simulation! [° _ Real Date?
Experiments | _Optimized Signature File Configuration Experiments
Expected Observed
Results Results

Comparison of
Expected and Observed
Results

|

Confirmation/Validation
Projection
Conclusions

1 Based on mathematical models of proposed methods,
2 Based on implementation using real data.

Figure 3.1. Description of test environment.

This chapter is organized as follows. In Section 3.1, the performance measure used

to compare the inspected methods is defined. The properties of the test database
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(BLISS-1) and the description of the computing (system) environment used in the
experiments are provided in Sections 3.2 and 3.3, respectively. In the following
section, the method used to model multi-term query environments is described and the
probability distributions of the test queries are described. Findly, Section 3.5 contains

the formulas used to model the query processing operations.
3.1 Performance Measure

Various performance measures are used in the literature. Some of them are the
number of seek operations [KEN90], the signature reduction ratio (the ratio of the
number of signatures searched to the total number of signatures in the signature file)
[LEES89], the computation reduction ratio [LEE9O, LEE95], and the response time
[LIN92, ROB79, SAL89]. Some of these measures are not applicable to al indexing
methods. For example, the signature reduction ratio is meaningless for the inverted
file method. Consequently, there may be difficulties in the performance comparisons
of different methods if a common performance measure is not used. Since the primary
goa of al physical information retrieval methods is to obtain a desirable response
time, we used the response time as the performance measure. In this way, we can
compare the performance of a new method with any other indexing method and

estimate its performance in redl life.

The number of false drop records or the false drop probability may be used as a
comparison criteria among the signature file methods [CHR84a]. However, usudly,
the false drop probability and the number of false drops are affected by the work done
in signature file processing phase. A method may obtain lower FD values by spending
more time in signature file processing phase. Consequently, unless al methods spend
the same processing time for the signature file processing phase, using FD as a

comparison criteriawill be mideading.

The response time is defined as the time required to process the signature file,
resolve all false drop records (if any), and find the first relevant record to the query as
defined in [LIN88, LIN92]. We use the same response time definition in this thess.
This definition of response time obtains a query instance independent performance
measure. If al relevant records to a query are accessed before responding to a query,

the response time become query instance dependent. Generally, information retrieval

29



systems display the first screen of the relevant records to a query. Remaining records
are retrieved in groups upon user requests. Therefore, the definition of response time

coincides with real applications.

We used the improvement percentage (IP) value in the comparison of the
performance of the methods we inspected. The improvement percentage provided by
method A with respect to method B, 1P(A,B), is defined as

IP(A, B) =100 [{TR(A) - TR(B))/ TR(A) (3.1)
where TR(A) and TR(B) are the response times obtained by A and B, respectively.

3.2 Test Database: BL1SS-1

We used MARC (MAchine Readable Cataloging) records of the Bilkent University
Library collection as the test database (BLISS-1). MARC records are widely used to
store and distribute the bibliographic information about various types of materials
such as books, films, dides, videotapes, etc. Also, MARC records are basic record
structure of many library systems such as Melvyl and OCLC [FOX93]. Additionaly,

other researchers can obtain MARC records easily for test and comparison purposes.
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Figure 3.2. Distribution of the numbers of unique terms
in the records of the test database BLISS-1.

BLISS-1 contains 152,850 MARC records with varying lengths. The largest record
contains 166 distinct terms while the average number of distinct terms per record is
25.7 (the stop words given in Appendix D are removed). We plotted the distribution
of number of terms in records of BLISS-1 in Figure 3.2. (The last bar represents the
number of records containing more than 62 terms.) The number of unique terms in the

records of the test database expose a normal distribution. One of the most widely used
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measure of dispersion for such distributions is the standard deviation and for BLISS-1

the standard deviation for the “ number of unique terms per record” is11.12.

In BLISS-1, MARC records are aligned according to disk block boundaries such
that reading of each record during false drop resolution requires only one disk block
access (RB = 1) unless the MARC record is larger than a disk block. This alignment
increases the size of the datafile by 4.34%. Record statistics of BLISS-1 are given in
Table 3.1.

Table 3.1. Record Statistics of the Test Database BLISS-1

N, number of records 152,850
Davg, average number of termsin arecord 25.7
STD, standard deviation of D values 11.12
Dmax, Maximum number of termsin arecord 166

V, number of distinct termsin the database 166,216
total number of terms (N Dy ) 3,916,856
average record length (bytes) 613
database size with 4.34% alignment overhead (MB) | 93.24

RB, average number of disk block accessesto

retrieve arecord 1

Table 3.2 provides the test database sizes of some other signature file studies.
Although BLISS-1 can be considered as a medium size database, it is relatively large
compared to other test databases. (According to our definition, a database with 106 or
more records is very large.) Furthermore, our test database size uses the BLISS
(Bilkent Library Information Services System) records. We prefer to use records of a
real application rather than artificialy generating large databases. In artificia
databases, the properties of rea applications, such as the smilarities between the
records and the distribution of the terms to records, may be established improperly.
To obtain the performance of the proposed methods for very large databases, usualy,
we assume 108 records in mathematical analysis. Also, we project the results obtained
with BLISS-1 for larger databasesin Section 7.5.

Table 3.2. Size of Some Test Databases Used so Far

No. of Records Artificial/Real Reference
10,000 Artificial ZEZ91
28,000 Semi Artificial”™ LIN92
98,732 Real Z0B95
100,000 Artificial LEES9
150,000 Rea SAC87, KEN90

* The same 2800 real records are repeated 10 times.
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3.3 Computing Environment

A 33 MHz, 486 DX personal computer with a hard disk of 360 Mbyte running under
DOS 5.0 is used to test the performance of the proposed method. We prefer to use
the DOS environment since it provides exclusive control of al resources. Non-
interrupting execution of user programs provides accurate measure of the response
time and produces consistent and reproducible results. Physical layout of a signature
file on the disk affects the time required to process the signature file and physica
layout of afile on the disk can be controlled in the DOS environment. We provide the
values of system parametersin Table 3.3. The values related with disk operations and

processor operations are determined experimentally.

Table 3.3. System Parameter Values of the Computing Environment

Bgze, Size of adisk block (bytes) 8192
Pz, Size of arecord pointer (bytes) 4
Thoyteop, time required to perform bit operations between two

bytes (milliseconds, ms) 0.00127
Tread» time required to read a disk block (ms) 5.77
Tan, average time required to match an actual record with a

query for false drop resolution (ms) 4.5

T sk, avErage time required to position the read head of disk to

the desired block (includes rotational latency time) (ms) 30
Twordop, time required to perform bit operations between two

memory words (ms) 0.00098
Wsze, Size of amemory word (bytes) 4

* we used long integers for bit operations

We expect that a multi-user system can offer computing power and 1/0 speed
equivalent to our experimental environment if not better. So the results of the
experiments can be achieved in multi-user environments without a performance

degradation.
3.4 Simulating Multi-Term Query Environmentsand Test Queries

We model a multi-term query environment with a bounded normal distribution from
left and right. In the ssimulation runs and in the experiments with real data we limited
the maximum number of query terms, t, 5y, to five. For the queries containing more
than five terms we assume the query contains only five terms. If required, the

performance of the proposed methods were inspected for other t,,;55 Values.
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To measure the performance of the methods by the experiments with real data we
considered three different query cases. Low Weight (LW), Uniform Distribution
(UD), and High Weight (HW) queries. The values of P; (1<t <5), where P; denotes
the probability of submitting at term query, for these query cases are given in Table
3.4.

Table 3.4. P; Valuesfor LW, UD, and HW Query Cases

Query Case P1 P2 P3 P4 Ps

Low Weight (LW) 030 | 025 | 0.20 | 015 | 0.10
Uniform Distribution (UD) 020 | 020 | 0.20 | 0.20 | 0.20
High Weight (HW) 0.10 | 015 | 020 | 0.25 | 0.30

To usein the experiments with real data, we generated a query set containing 1000
zero hit queries randomly by considering the occurrence probabilities of the number of
query terms for each query case. For example, since the occurrence probability of a
one term query is 0.10 in the HW query case, the HW query set contains 100
(0.101000) one term queries. The observed FD and response time vaues are
obtained by taking the average of the FD and response time values obtained by each
guery in the query sets. Since there is no relevant record to zero hit queries, dl fase
drop records must be accessed and; therefore, the effect of accessing these false drop
records on the response time is maximum. Section 5.6.1 contains an exclusve
experimental setting to further investigate the effect of number of query terms on the

retrieval performance.
3.5 Modeling Query Processing Oper ations

To estimate the performance of the proposed methods, we modeled the operations
involved in evaluating a query with signature files. The basic operation to be modeled
is reading a specified amount of data from the auxiliary storage. Data are written and
read in blocks and the physical layout of the data on the auxiliary storage affects the
I/O time. Therefore, we incorporate the sequentiality probability, SP, into the
estimation of the time required to read b logically consecutive disk blocks [LIN92].
P is the probability of reading the next logically consecutive disk block without a
seek operation. We estimate the time required to read b logicaly consecutive disk

blocks as follows.

Read(d) = (1+ (b -1) [l —SP)) Oseek *+d Mreaq (32)
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where Tgae aNd T, gqq are the average times required to position the read head of the
disk to the desired block (i.e., it contains the rotational latency time) and to transfer a
disk block to memory, respectively. The first disk block of each request will aways
require a seek operation.

To process a bit dlice, the bit dice must be read and ANDed with the result of the
processed bit dices. By assuming two bit dlices will be stored in main memory, the

time required to process a bit slice, Tgjce, IS computed as follows.

J N O

0 N
TSI' =Read( S+T d ?D (33)
e gEBsizeD nere Weze O
where Bq 40 iSthe size of adisk block and Wy, is the size of a memory word in bytes.

Twordop IS the time required to perform a bitwise AND operation between two

memory words and store the result in one of the words.

Usualy, data records are variable lengths and a lookup table is used to find the
record pointer of the actual record. Since MARC records are variable lengths, we
needed a lookup table (see RPT of Figure 2.2) and we modeled obtaining a record
pointer as follows. At the database initidlization stage PB record pointers, each
occupying Psize bytes, are read into a buffer of PB[Ry, bytes. Since this is a one
time cost, it is excluded from the response time calculations. The probability of
finding a requested record pointer in the buffer is approximately equal to PB/N. For
databases with fixed length records or when al record pointers (i.e., the RPT table)
are stored in main memory, PB is equal to N, i.e, the cost of finding the record

pointersis zero.

For fase drop resolution of a record, the record pointer is obtained, the record is
read, and the record is scanned to test whether it matches the query. Therefore, the

false drop resolution time for one record, T egoive 1S COMputed as follows.
Tresolve = (1~ PB/N) [Read([ =[] + Read(RB) +Tegan (3.4)
ze

where the first component of T;eqove 1S the time needed to read the necessary record

pointers, RB is the average number of disk blocks that must be accessed to read a
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record, and T4, IS the average time required to compare an actual record with a

query for false drop resolution.

Our moddl isversatile, i.e., it can be used in al operating system environments and
is applicable to both dedicated and multi-user IR systems. This is due to the
sequentiality probability (SP) concept incorporated into its development.
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4. PARTIAL EVALUATION OF QUERIESIN BSSF

For a database of N records, the signature file can be viewed as an N by F bit matrix.
For a given query Sequential Signature Files (SSF) require retrieval and processing of
adl N[F bitsin the signature file. However, off-bits of a query signature have no
effect on the result of the query processing, since only the on-bits of the query
signature are compared with the corresponding record signature bits. Therefore, the
result of the signature file processing can be obtained by processing only the record

signature bits corresponding to the on-bits of a query signature.

To retrieve the record signature bits corresponding to a bit position without
retrieving other bits, the signature file is vertically partitioned and the bits of a vertical
partition are stored sequentialy as in bit-diced signature files (BSSF) [ROB79] and
generaized frame-diced signature files (GFSSF) [LIN92]. Vertical partitioning a
signature file improves performance by reducing the amount of data to be read and
processed.

In BSSF, especialy for multi-term queries, the time required to complete the first
phase of the query evaluation increases as the query weight increases [ROB79]. In
this chapter we propose the Partially evaluated Bit-Sliced Signature File (P-BSSF)
method to solve this problem. In P-BSSF the response time is minimized in a multi-
term query environment by employing the partial evaluation strategy and considering
the submission probabilities of the queries with different number of terms [KOC95b,
KOC95¢]. The technique employs a stopping condition that tries to complete the first
phase of query evaluation without using al on-bits of the query signature, i.e., by
partial evaluation. The am of the stopping condition is to reduce the number of
expected false drops to an acceptable level that will also provide the lowest response
time within the framework of the bit-diced signature file environment [KOC95b,
KOG95¢].
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This chapter is organized as follows. The query processing with BSSF is explained
with an example in Section 4.1. In Section 4.2, we derive a formula that finds the
optimum signature size (space overhead) of BSSF for a given database instance. In
Section 4.3, previous works that improve the performance of BSSF are summarized.
In Section 4.4, the stopping condition that tries to complete the first phase of query
evaluation without using al on-bits of the query signature is defined. In Section 4.5,
the response time is minimized in a multi-term query environment by considering the
submission probabilities of the queries with different number of terms. The results of
the comparison of P-BSSF and BSSF with simulation runs are given in Section 4.6.

Finally, Section 4.7 contains the results of the experiments with real data.
4.1 Query Processing with BSSF

BSSF requires retrieval of W(Q); [N bits instead of F[N bits where W(Q)t is the

number of on-bits in the query signature (query weight) of at term query. Usudly,
W(Q)t << F; hence the amount of retrieved and processed data is reduced. Therefore,
the response time of BSSF is less than the response time of SSF except for very small
N values [ROB79].

We repeat the formulas to compute the number of on-bits in the query signature
(query weight) and the expected number of false drops given in [ROB79]. The false
drop probability (fdyyq) t) for at term query is computed as follows.

fow(q), =@ -1-5p)P)VQ (4.1)
W(Q) = FIL-(1-%4)) (4.2)

where D isthe average number of terms per record and W(Q); is the query weight of a

t term query [ROB79]. Sand F are design parameters. Previous works show that the
false drop probability becomes minimum when the optimality condition is satisfied,
i.e., half of the bitsin arecord signature are on-bits [CHR84a, ROB79]. The expected
number of false drops after processing W(Q); bit slices, FDwQ);, is proportiona to

the number of records in the database (N) and computed as follows.

FDw(Q) = N Hdw(q), (43)
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Query processing with BSSF is demonstrated in Figure 4.1. The term signatures,
the records with the record signatures, and sequential storage of these record
signatures are shown at the top of the figure. The bits in the horizontal boxes of SSF
are stored sequentially from the left to the right.

SSF
Term Term Signature Records _
access 0100010001 R1 ={ computer, information } 0100110111
computer 0100010010 R2 ={ access} 0100010001
database 0011000010 R3 ={ information, retrieval } 1000101101
e 001 abes e | e
retriev
) R5= ter, datab
sgnature 0100100010 { computer, database} | [0111010010
BSSF RPT Actual Records
of | [o] [o] [ [ [o] [1] [] @ | » computer information |
o| 12| |o] (o] |of |2] [o] |of |o| [z \l #access|
1| (o] |o] |o| [1| 9] (| |1] |o| [T \‘\ #informationretrieval|
o| (2f [of |o] |1| 9] o] |o] |1| [0 \\ » signature |
o & 1] L] o] laf [of [of [2] [o N> computer database |
010 00 100 0 1
1 1 1
1 1 1
0| bitwiseAND [0 [0
1 0 0
1 1 1
read dice 2 read dlice 6 and bitwise read dice 10 and bitwise AND
AND with dlice 2 with the result of the last step
(N=5,F=10,S=3)

Figure 4.1. SSF and BSSF organizations and BSSF query processing example.

BSSF storage of the signature file is shown in the middle of Figure 4.1. The bitsin
the vertical boxes are stored sequentially from the top to the bottom. A record pointer
table (RPT) is needed to store the addresses of the records. For SSF the associated

record pointers can be stored with the record signatures.

Evaluation of the query “access’ is illustrated at the bottom of Figure 4.1. To
evaluate the query three bit dices (2nd, 6th, and 10th), shown with dark gray
background color in BSSF, are read. The result of the signature file processing is also

a bit string of length five where an on-bit indicates that the corresponding record is
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found relevant to the query. Only the first and second bits of the result bit string are
on-hits. Therefore, the first and second record pointers are obtained by accessing RPT
and then the actual (corresponding) records are read and compared with the query for
false drop resolution. Since the first record does not contain the query term “access,”

itisafasedrop.
4.2 Space Optimization for BSSF

The query evaluation with BSSF requires processing all bit slices corresponding to the
on-bits of a query signature. Since the optimality condition is satisfied in BSSF the
on-bit density is dways 0.5 and the false drop probability for at term query can be

computed as follows (see Equation (4.1)).
Fln-(1-3)"
fow(or = (3) ) (4.9)

Since the value of S must satisfy the optimality condition for given F and D (the
number of distinct terms in a record) vaues, the value of S can be expressed in terms
of F and D asfollows [CHR844].

S:—F[g]2 (45)

By substituting Equation (4.5) in Equation (4.4) we obtain

fow(qyt = (%)F[(l_(l_m';) t). (4.6)

Equation (4.5) and (4.6) show that the query weight increases while the false drop
probability decreases for increasing F values. However, after reducing FD to a
negligible value, continuing to reduce the false drop probability by increasing F is
meaningless since it unnecessarily requires more disk space and more bit dice

processing.

To obtain the optimum space overhead (since the optimality condition is satisfied
we will obtain the optimum query weight at the same time), we express the response

time of BSSF for at term query as afunction of F asfollows.

[F
RT(F) =cF Myjce + N Eﬂ%)c T esolve (4.7)
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where c = 1—(1—”‘T2)t. To find the F value which provides the minimum response

time we take the derivative of Equation (4.7) with respect to F and we obtain

dRT(F)
dF

= Cgice * N Hresolve [€ [I]n% E(%)C[E: : (4.8)

To find the optimum F vaue that provides minimum response time, we let

Equation (4.8) equal to zero and we obtain
¢ {Tgice + N Tresoive I3 [(3)°7) =0 (4.9

Since D=1, cis aways greater than zero. Therefore, we drop it and we solve the

remaining part of Equation (4.9) for F.
Tresolve
INN+In-F +InIn2

F= . [?]III‘(]:eZ (4.10)

There are two important outcomes of Equation (4.10);

» The optimum F value decreases for increasing t values (for increasing t values c
increases and consequently F decreases).

» The optimum F value increases for increasing N values.

For single term queries (t = 1), ¢ becomes equal to '”TZ . By substituting this value

in Equation (4.10) we obtain a special case of Equation (4.11) for single term queries

asfollows.

.
F=_0D IN+IniWe+Inln2) 4.11
(In2)? [Qn Tdice (4.11)

4.3 Previous Proposals to | mprove the Perfor mance of BSSF

There are previous proposals to improve the performance of BSSF. Sacks-Davis et d.
[SACB87] proposed using S bit dices in the first phase of the query evaluation of a

multi-term query without providing aformal stopping condition.

For the extended bit-diced signature file (B’ SSF) and the generalized frame-diced
signature file (GFSSF) methods Lin and Faloutsos proposed adjusting the value of S

for a specific number of query terms, t, such that the response time is minimized
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[LIN88, LIN92]. However, in amulti-term query environment, queries containing less
than t terms will obtain many false drops. Also, since no stopping condition was
defined, the queries with more than t terms will unnecessarily process many bit dices.
Panagopoul os and Faloutsos defined a partia fetch policy with spooling the bit dices
on aparallel machine architecture [PAN94].

Ishikawa et a. [ISHI3] tried to find the optimum S vaue experimentaly by
measuring the response time for changing S values for a specific database instance
without providing any forma method. For the queries containing many terms, they
proposed using only randomly selected two query terms in the first phase of the query
evaluation. However, the records containing the selected terms but missing some of

the remaining query terms will be false drop records.

Our method, P-BSSF, combines optimal selection of S with a partial evaluation
strategy in a multi-term query environment. The partial evaluation strategy uses a
subset of the on-bits of a query signature and oversees the equal contribution of each
query term to the query evaluation process until it reaches the stopping condition.
During selection of the optimal S value, we consider the submission probabilities of

the queries with various number of terms.
4.3.1 B’ SSF: the Enhanced Version of BSSF

For BSSF, the optimality condition requires alarger Svalue for alarger signature size
(F) [ROB79] (see Equation 4.5). For small F vaues, the false drop probability is high
and many false drop records are obtained at the end of the signature file processing.
Therefore, an increase in F decreases FD while it increases the query weight and the
number of retrieved bit dices. In Section 4.2 we obtained a formula to compute the
optimum F value for a given number of query terms. Increasing F after reaching the

optimum value a so increases the response time in the BSSF method.

In the B’ SSF method, the optimality condition is relaxed and the response time is
minimized for single term queries instead of minimizing the false drop probability
[LIN88]. An optimized B’ SSF configuration may have a smaller S value than a BSSF

requires. The value of S decreases for increasing F value. Therefore, the response
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time of B’ SSF decreases for increasing F value. The formula to find the optimum S
value can be found in [LIN8S].

In the B’ SSF method, the response time is minimized for single term queries. In a
multi-term query environment, which is the case in real information processing
environments, the optimized configuration of a B’SSF unnecessarily requires

processing of additional bit slices for the queries with more than one term.
4.3.2 GFSSF: Generalized Frame-Sliced Signature Files

Current auxiliary storage seek time is much larger than the read time per disk block.
GFSSF providesimprovement over B’ SSF [LIN88] by minimizing the number of seek
operations [LIN92]. GFSSF optimizes the signature file parameters for a given

number of query terms.

In GFSSF, a signature is divided into k frames, each of size s bits (s = F/k). Each
term first randomly selects n (1 < n < k) frames, then randomly setsm (1 < m < s) hits
(not necessarily distinct) in each of the selected frames [LIN92]. In this method, the
sizeof aframeis s[N bits and each frame is stored separately as a SSF. The methods
SSF, BSSF, and B’ SSF are special cases of GFSSF [LIN92].

4.4 Partial Evaluation of Queriesin BSSF: P-BSSF

Our objective is to obtain the minimum response time for BSSF in a multi-term
query environment. In a multi-term query environment, high-weight queries may
require processing of the bit dices after reducing the expected number of false drops
to anegligible value if the value of Sis optimized for alower query weight. Therefore,
using a subset of the on-bits in the first phase of the query evaluation may further
reduce the response time. We find an exact stopping condition which provides the

minimum response timefor given F, D, N, and Svalues.

To estimate the false drop probability in partial evaluation of the first phase, we use
the on-bit density (op) which is the probability of aparticular bit of a bit dice being an
on-bit. Total number of on-bits in a signature file is N [F EQl—(l—%)D). Since

there are N[F bits in the signature file, by assuming the on-bits are uniformly
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distributed in a record signature and there are no interdependency among the records

and among the terms, the on-bit density becomes

op:1—§—§ﬁD. (4.12)

The value fd;, the false drop probability after processing i bit slices 0 < i < W(Q),,

is computed as follows.
fd = opi (4.13)

The stopping condition will minimize the query evaluation time. Therefore, for
given S t, F, D, and N vaues, we write the response time as a function of i, the

number of bit dices used in thefirst phase for at term query, asfollows.
RT(i) =i Tgjce + N OP' Myeqe  Where 0 <i <W(Q) (4.14)

To find the i value for the minimum response time we take the derivative of RT(i)

with respect toi. Theresult is:

dRT(i) _ [
T() =Tgijce * N Oresolve 0P Onop (4.15)

To find the optimum number of evaluation steps, i, we let Equation (4.15) equal to O
and solveit fori.

. Tqi
= Iy S5 ) /Inop (4.16)

If reaching the stopping condition requires more on-bits than the query signature
contains, i.e., i > W(Q),, i istaken as W(Q);. The on-bits used in the query evaluation
are selected from the query terms using a round robin approach (the first on-bit
comes from the first query term, the second on-bit comes from the second query
term, and so on). This ensures that each query term contributes to the query
evaluation.

To find an intuitive explanation of the stopping condition, we substitute

Inop Dop- 1*' in Equation (4.15) and we obtain (since the optimum number of

* Since 0 < 0op < 0.5 holds, by taking k = op —1 we can apply the linear approximation In(k +1) K.
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evaluation steps is an integer we relax the equality condition as “greater than or equal
to”):

Tgice2 N B3pi [{(1-0p) Myesolve (4.17)

In Equation (4.17), N E)pi [(1-op) gives the expected number of false drops which

will be eliminated if we process the i+1st bit dice after processing i bit dices. At the
stopping step the time required to process a bit dice becomes equa to the time

required to resolve these false drops by accessing the actual records.
4.5 Considering Multi-Term Query Environments

The stopping condition may leave unused on-bits in the query signatures. For such
configurations decreasing the S value while keeping the F value unchanged
decreases the on-bit density. Each step eliminates more false drops with lower on-bit
density. Consequently, the stopping condition is satisfied by processing less number
of bit slices and the response time decreases. On the other hand, the reduced S value

must provide enough on-bits in the query signatures to reach the stopping condition.

Optimizing the signature file parameters according to a specific number of query
terms may give poor performance in a multi-term query environment. Therefore, the
submission probabilities of queries with varying number of terms must be considered
in the optimization of signature file parameters. The expected response time, TR, in a

multi-term query environment can be computed as follows.

e
TR= Y R [RT(St) (4.18)
t=1

where P is the probability of submission of at term query, and t,5 is the maximum

number of terms that can be used in a query. RT(St) is the expected response time of

at term query expressed as afunction of Sand t as follows.

RT(St) =i My +(1-(1-5()°)' IN [T,

resolve

(4.19)
where i is computed with Equation (4.16) and 0<i <F @ -(1-5¢)") holds.

The derivative of TR with respect to S is very complicated. Since S must be an
integer between 1 and [ n2/ D (the upper bound corresponds to the S value



which satisfies the optimality condition), the domain of Sisfinite and very small (note
that S << F). Therefore, the value of S that minimizes the value of TR can be found
with a linear search in this range. The linear search algorithm outlined in Figure 4.2

finds the optimum Svalue for given values of F, D, N, and P distribution.

Algorithm FindOptimumsS
MinimumResponseTime — infinity
for NewS=1to [ n2/ D]
{ NewTime —~ Compute the expected response time with Equation (4.18) using NewS
if NewTime < MinimumResponseTime then
{ S < NewS
MinimumResponseTime — NewTime

}

}

Figure 4.2. Algorithm to find the optimum Svalue for P-BSSF.

The optimum S value for the queries containing only b terms can be obtained by
taking P, =1 and P, = 0 for t#b and 1<t <ty . Therefore, B'SSF and GFSSF

withs=1,i.e, each frameisabit dice, are special cases of P-BSSF.
4.6 BSSF vs. P-BSSF: Performance Comparison with Smulation Runs

Expected response time vaues of LW, UD, and HW query cases obtained hy
simulation runs for SP = 1.0, N = 106, and changing F values are plotted in Figure
4.3. In (d) the improvement percentage obtained by P-BSSF over BSSF is plotted.
For increasing F values, the response time of BSSF first decreases than starts to
increase. The minimum response times are obtained at the F values 570, 530, and 500
for LW, UD, and HW query cases, respectively. Therefore, in computing |P values,
we used the minimum response time values obtained at these F values instead of using

increased response time values of BSSF for larger F values.

In BSSF, Sincreases for increasing F since S is adjusted to satisfy the optimality
condition for each F value. At lower space overheads, the query signature contains
insufficient on-bits which produces many false drops. Since the weight of the query
signature increases for increasing F value, the response time decreases rapidly until
the expected number of false drops is reduced to an optimum value. Increasing the F
value after reaching the optimum point just increases the response time due to

processing additional bit dices without eiminating any fase drops. Therefore, there is
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an optimum space overhead for each N value that provides minimum response time
for BSSF. For smaller N values or higher t values minimum response time is obtained

at lower space overheads.

------ BSSF
P-BSSF
0 ——— 0 —
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(F) Signature Size (in bits) (F) Signature Size (in bits)
a LW query case. b. UD query case.
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c. HW query case. d. IP(BSSF, P-BSSF).

(SP=1,N=108)

Figure 4.3. Expected response time versus F for BSSF and P-BSSF and | P(BSSF, P-BSSF)
for LW, UD, and HW.

In P-BSSF, Sis adjusted for each F value to obtain minimum response time. At
lower space overheads, the weights of the queries are insufficient to reduce the
expected number of fase drops to the optimum vaue. Therefore, both methods
produce similar results until sufficient on-bits are obtained in the query signatures. For
P-BSSF, unlike the BSSF method, increasing the signature size after obtaining
sufficient on-bits in the query signature reduces op, that causes a decrease in the
response time. For N = 106, SP = 1, and F = 1200 the LW, UD, and HW query cases
yield expected response times of 1.12, 1.11, and 1.06 seconds, respectively.

Higher number of query terms provide more on-bits in the query signature.

Therefore, for P-BSSF, S can take smaller values that provide low op values.
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Consequently, the stopping condition is reached by processing fewer number of bit
dices and the response time of P-BSSF decreases for increasing number of query
terms. This property makes P-BSSF a promising method for the applications with
high number of query terms, such asimage databases [ZEZ91].

Since the response time of BSSF increases for the F values greater than the
optimum space overhead, the space overhead must be fixed at the optimum F vaue.
We can compute the performance improvement of P-BSSF over BSSF with respect to
additional space overhead incurred by selecting a higher F value for P-BSSF. For
example, for the UD query case P-BSSF with F = 1200 provides a query processing
time improvement of 84.30% over the optimum BSSF with F = 530 (for this case the
response time values are 1110 ms and 7072 msfor P-BSSF and BSSF, respectively).

The simulation runs for various SP values show that smilar performance
improvements are achieved for smaler SP values while the response times of both
methods increase for decreasing SP value. Also, for other N vaues smilar

performance improvement values are obtained.

The stopping condition usually requires processing of more than S bit-dices for the
queries containing more than one term in the optimized configurations of P-BSSF.
Therefore, the suggestion of Sacks Davis et a., using S bit dices for multi-term
gueries [SACB87], obtains a higher response time than the response time of P-BSSF
due to increased number of false drops. Optimizing signature file parameters by
considering only single term queries reduces expected false drops by increasing S.
Consequently, the number of bit dices used in the query evaluation increases which

yields higher response time.
4.7 Experimentswith Real Data

First, we inspect the distribution of the on-bits in the bit dices. Although the
computed op value is approximately equal to the average on-bit density value, there
are bit-slices with too low or too high op values. Since the partial evaluation approach
may use a subset of the on-bits of a query signature, the selection method of the on-

bits used in the query evauation affects the results of the experiments. Therefore,
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other query signature on-bit selection strategies may obtain better results without

providing equal contribution of each query term to the query evaluation.

For this reason, we tested three different query on-bit selection methods.
Sequential Selection (SS): on-bits are selected sequentialy starting from the leftmost
on-bit of the query signature to the right. Minimum op First (MF): dl on-bits in the
query signature are sorted in increasing on-bit density value and processed in this
order. Round Robin (RR): on-bits of each query term are ordered in increasing on-bit
density value and used in this order. The first on-bit is selected from the first term, the

second on-bit is selected from the second term, and so on.

For each query case and query signature on-bit selection method the expected
(denoted by Exp) and the observed (denoted by the on-bit selection method) average
false drop values are given in Table 4.1. Since dl query signature on-bit selection
methods process the same number of bit dlices, the number of observed fase drops
can be a decision criteriafor this case. However, to show the effect of the decrease in
the observed number of false drops on the response time, we plotted the response
time values obtained in these experiment for LW, UD, and HW query cases in Figure
4.4 (snce MF and RR obtain smilar results we omitted the results of MF). To
illustrate the effect of increasing query weight on the response time, we combined the
results of the RR bit selection method for LW, UD, and HW query casesin Figure 4.4

(d).

Table 4.1. Expected and Observed Average FD Values for the Query On-Bit Selection Methods
LW ubD HW

F |Exp| SS | MF| RR|Exp| SS | MF| RR | Exp| SS | MF | RR
1000 | 053] 6.55| 4.78 | 488 ]| 042 ] 549 | 3.34 | 341| 0.82]| 572 | 2.65 | 2.76
1200 ] 0.62 ]| 464 | 3.86 | 3.86| 047 ] 3.77| 279 | 282 | 0.32 ]| 265 | 1.56 | 1.59
14001 029 271|240 | 244]022] 1.83 | 1.42 | 143 | 0.63 ] 2.90 | 2.06 | 2.06
1600 ] 042]360| 222|222]|042]310|1.28| 1.31|0.22] 275 | 0.79 | 0.85
1800|024 246|172 | 176]|036] 1.74]| 092 | 097 | 0.22 | 1.34 | 0.46 | 0.49

Due to the non-uniform distribution of the number of distinct terms in the records,
the observed average fase drop values are greater than the expected vaues. The
difference between expected and observed fase drop values decreases dramatically

for increasing F values. For F <800, we obtain too many false drops. Consequently,
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the response time is very high and using a signature file with such a space overhead is
impractical.

The SS method obtains highest false drop values in dl experiments. Generally, MF
obtains dightly better results than RR for dl query cases. However, since RR selects
the bits from the query terms in a round robin approach, it maximizes the contribution
of dl terms to the query evaluation. For non zero hit queries, excluding some query
terms from the query evaluation may increase the number of false drops. Therefore,
we prefer the RR method.
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c. HW query case. d. RR for LW, UD, and HW.

Figure 4.4. Expected and observed response time values for SS and RR in P-BSSF
for LW, UD and HW (SP = 1).

The observed false drop vaues of the SS method should be similar to the expected
false drop values. Also, the observed false drop values of MF and RR methods should
be smdler than the estimated false drop values since they use the on-bits with
minimum op vaue first. However, the results of the experiments show that the
reduction in the observed number of the false dropsis less than the estimated ones. To

obtain fewer numbers of false drops, the distribution of the number of distinct termsin
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the records must be considered in the optimization of the signature file parameters.

Thisissue will be considered in detail in Chapter 6.

The observed response time decreases for increasing signature size. Also,
differences between the expected and the observed response time values decrease for
increasing F value. The experiments show that obtaining a response time around 0.6
seconds is possible for the test database with a signature size greater than or equal to
1200 hits (this corresponds to 24% or more space overhead) by using a persona
computer. We repeated the same experiments in the UNIX environment by using a
Sparc Server Model 10-51. About 55 other users were running SQL processes using
the library collection database of Bilkent University during the experiments. We
obtained very promising response times in such a multi-user environment where the
value of SP can be considered as zero. For example, for F = 1200 the LW, UD, and
HW query cases obtain the response times of 0.68, 0.51, and 0.45 seconds,
respectively. (All UNIX numbers are obtained using the “elapsed time” feature of
the system.)
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5. THE MULTI-FRAGMENTED SIGNATURE FILE METHOD

In vertical signature partitioning low on-bit density (the probability of a particular
bit of abit dice being on-bit) provides rapid reduction in the expected number of false
drops. Thus, the stopping condition defined for P-BSSF is reached by processing
fewer number of bit dices. For agiven D value, op can be reduced by either increasing
F or decreasing S (see Equation 4.12). For P-BSSF, the value of S is selected to
obtain the minimum response time in a multi-term query environment. Therefore,
decreasing S will produce insufficient on-bits in the query signature of low-weight
gueries and the number of false drops will increase for these queries. This will aso

increase the response time.

The performance of P-BSSF can be improved if the on-bit density can be reduced
while providing enough on-bits in the query signature of low weight queries. In this
chapter we propose a new signature generation and query evaluation method, Multi-
Fragmented Signature File (MFSF), which improves the performance of P-BSSF

without increasing the space overhead (F value).

MFSF decreases the response time in multi-term query environments by dividing
the signature file into variable sized sub-signature files, fragments. Each fragment is a
separate BSSF with its own F and S parameters and the optimality condition is
relaxed. Therefore, in MFSF each fragment may have a different on-bit density as
opposed to the uniform on-bit densities of the BSSF, B’ SSF, GFSSF, and P-BSSF
methods.

This Chapter is organized as follows. The proposed method, MFSF, is described in
Section 5.1. The false drop estimation formula for MFSF is derived in Section 5.2. In
Section 5.3, a stopping condition is defined which provides decreasing response time
for increasing numbers of query terms. A heuristic search agorithm to obtain the

optimized configuration of MFSF is given in Section 5.4. In Section 5.5, an example
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MFSF configuration with false drop computations is provided. In Section 5.6, the
performance of MFSF is compared with P-BSSF and GFSSF with simulation runs.
Finally, Section 5.7 contains the results of experiments with real data.

5.1 MFSF: Multi-Fragmented SignatureFile

A multi-fragmented signature file is a combination of f sub-signature files, fragments,

such that F=F; +Fy---+F; (1 < f < F). Since the bit dices of a BSSF are stored

separately, dividing the signature file into sub-signature files can be accomplished
conceptualy without changing the physical storage structure of the BSSF method.
Each term sets § bitsin the rth fragment such that S=§ +S---+S¢ (0<§ <F, 1

<r<f).
/record signature / bit dice [ bit slice
[
e
||
[
e
a. SSF b. BSSF c. B’ SSF/P-BSSF
Generated and processed differently
‘ shits of the ‘ " bit dice of
%—frame / ragmen / the fragment
/ [ |
i ==
== ==
= =
| |
d. GFSSF e. MFSF

Note: In MFSF different gray levelsindicate different on-bit densities.

Figure 5.1. Graphical representation of SSF and vertical partitioning methods.

Since each fragment is a BSSF, we use the same formulas used for BSSF and

compute the query weights of the fragments (W(Q)(r,t)) and total query weight (W)

for at term query asfollows.

W(Q)( = F -1~ ) for 1sr<i (5.1)
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f
W = > W(Q)r ) (5.2)
r=1
The on-bit density values of the fragments are
q%:1—a—%é)D for 1<r <f. (5.3)

Graphical representations of SSF, BSSF, B’ SSF, P-BSSF, GFSSF, and MFSF are
illustrated in Figure 5.1. A horizontal box represents the sequential storage of the bits
in the box. First are stored the bits of the first box, then the bits of the second box and
so on. A vertical box represents the sequential storage of the bits in the box from the
top to the bottom. The on-bit density values of the bit strings are represented with the
gray level of the box. A darker area has higher on-bit density than the lighter one.
Note that the highest on-bit density is 0.5 and the on-bit densities of SSF and BSSF
areaways 0.5. A summary of the vertical partitioning methodsis givenin Table 5.1.

Table 5.1. Properties of Vertical Signature File Partitioning Methods

Properties\ Signature File M ethods BSSF B’ SSF GFSSF | P-BSSF | MFSF
On-bit Density (op) <0.5isAllowed No Yes Yes Yes Yes
Exploits different bit ice densities No No No No Yes
Optimized in Multi-Term Query Env. No No No Yes Yes
Partial Evaluation Strategy Defined No No No Yes Yes
Obtaining the Optimum Configuration Exact Exact | Heuristic | Exact Heuristic

5.2 False Drop Computation for MFSF

In Section 4.4 we defined fd; as the false drop probability if i bit-slices (0<i<w;)
are used in the first phase of a query evauation. For MFSF, fd; is computed by

multiplying the on-bit densities of the bit dices used for the query evaluation as

follows.

m:h@ (5.4)
s=1

where bg = op; if the sth dice used for query evaluation is selected from the rth

fragment.

If the number of bit dices used for query evaluation, i, is less than total query
weight (i < w), which is usual in the partial evaluation approach, the selection order

of the bit dices used for the query evaluation may change the false drop probability
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(note that the fragments may have different on-bit densities). Therefore, the fragments

of MFSF are ordered in non-decreasing on-bit density value such that
opy <0pp4q for I<sr<f (5.5
holdsfor al fragments.

In the query evaluation the on-bits of the lower on-bit density fragments are used

first. Thisruleis specified as

bg<bgyq for 1<ss<w (5.6)

and ensures that the stopping condition is reached in fewest number of evaluation
steps. As the number of query terms increases, the number of query signature on-bits
in the lower on-bit density fragments increases. Therefore, the stopping condition will
be reached in a fewer number of evaluation steps and hence the query evaluation time
will decrease for increasing number of query terms (in Section 5.5 we provide a

numerical examplefor this).

If we consider only one fragment, say fragment r, and al query signature on-bits of
this fragment are used in the query evaluation, the fase drop probability of this
fragment becomes op@Y (note that W(Q).y is the query weight of the rth
fragment for at term query). If d on-bits are used from a fragment, say the h+1st
fragment, the inequalities (5.5) and (5.6) ensure that al of the query signature on-bits
of the lower numbered fragments (the first h fragments) were aready used in the
query evaluation. Therefore, the number of bit dices used in the query evaluation, i, is

computed by adding the query weights of these lower numbered fragments and d.

h
i=d+ Y W(Q) Whereh< f, 0<d<W(Q)(ns1y) (5.7)
r=1

Similarly, the false drop probability can be computed by multiplying the false drop

probabilities of the first h fragment and op,; since only d on-bits are used from the

h+1st fragment.

h
W(Q)(r
fd, = opﬁ'+l (77 opr Qe (5.8)
r=1



If there is only one fragment, i.e, f =1, then h =0, d =i, and fd; = opi. In this

case, a MFSF converges to a P-BSSF. Consequently, P-BSSF is a specia case of
MFSF.

5.3 Stopping Condition for MFSF

In P-BSSF, the first phase of the query evaluation with the signature file stops when
the stopping condition given in Equation 4.17 is satisfied. Thisisto say in P-BSSF the
query evauation stops when the P-BSSF hit dice processing time becomes equal or
greater than the time required to resolve the false drops which will be eiminated by

processing this bit dice by accessing the actual records.

To derive the stopping condition for MFSF, first we obtain a genera stopping
condition for vertically partitioned signature files and then we will apply this formula
to MFSF.

In P-BSSF, the expected number of false drops after processing i bit dices, FD;, is

computed as follows.
FD; = N (fdi = N [op' (5.9)

We define RFD; 4 1, the number of reduced false drops, as the number of false drops

which will be eliminated by processing an additiona bit dice after processing i bit

dices. We derive the formulafor RFD;, 1 asfollows.
RFD; 41 = FD; —FDj
=N E)pi [(1-op) (5.10)
We substitute RFD; . 1 in the stopping condition of P-BSSF (Equation (4.17)) and

we obtain

Tslice 2 RFDI +1 EI_rasolve- (5-11)

The above stopping condition is independent of the false drop computation method
and is explained as follows: at the stopping step the false drops which will be
eliminated by processing the next bit dice can be checked by accessing the actual

records in less time than eliminating these false drops by using the signature file.
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To obtain the stopping condition for MFSF we derive the formula to compute

RFD; . 1. Thefalse drop probability after processing i+ 1 bit dicesis

fdj g = fdj 41 (5.12)
where b, 1 is the false drop probability of the i+1st bit sice used in signature file

processing. All query signature on-bits of the first h fragments and d on-bits of the
h+1st fragment are used to process i bit dices (see Equations (5.8) and (5.9)).
Therefore, if there is an unused on-bit in the h+1st fragment, i.e., if d <W(Q)pn41y),

b;+1 will be equal to opy 1. If dl on-bits of the h+ 1st fragment are already used, i.e.,
d = W(Q)(h+1y) » the i+ 1st on-bit will be selected from the h+2nd fragment if the h+2nd
fragment exists (i.e., if h+2 < f). By considering this discussion the value of bj; 4 is

determined as follows.

_PPh+1 iFAd<WQ)h+11)

B+1= % Opy + o Otherwise (if h+2> f query evaluation is completed) (5.13)

h
whereh< f, 0 d<W(Q)ns1y), and i =d+ Y W(Q)y) -
r=1

RFD;. 1 for MFSF is computed as follows.
RFDi_,_l =N [fdi -N [fdi [ﬂ]_,.l
RFD; 1 = N d [1-b 1)
We obtain the following stopping condition for MFSF by substituting RFD;;q In
Equation (5.11).
Toice2 N [fd; L1~ Dbi+q) Hresolve (5.14)

To prove the stopping condition given in Equation (5.14) is valid in subsequent

steps we have to consider the following theorem.
Theorem. The number of false drops eliminated in successive evaluation steps, RFD

(the number of Reduced False Drops), decreases.

Proof. RFD;. 1 is the number of false drops that can be eliminated by processing
one more bit dice after processing i bit slices for 1<i <w;, where w; is

total query weight for at term query.
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Now show that RFD;+1 > RFD; +2

N Cfd; 1 -Dbj41) > N Odjq [ -0 42)
N fd; [1-Dbj4+1) > N Udj 4 [ -byj4p)

Since the value of on-bit dengity is a probability and signatures with op =

0 or op = 1 are meaningless, 0<bg <1 holds for 1<s<w;.
Consequently, fd; >0 holdsfor 1<i < w;. Wecancel fdy and N (N > 0).
Since bjyo =2b 41, we can replace by, with by +a such that

1>a =0 and weobtain

1-B1>b4 [@M-byy —a)

1-2 g +b% +a By >0

(1-bi4q)® +a B4y >0

Since a = 0and O < bj, 1 < 1 hold, the above inequality holds and RFD is

decreasing.]

Since the cost of processing a bit diceisthe same in al fragments, the above proof
guarantees that once the stopping condition given in Equation (5.14) is satisfied, it
will be valid in subsequent steps.

5.4 Sear ching the Optimum Configuration

To find the first relevant record, the first phase must be completed which requires
retrieval and processing of i bit dlices (i is determined by using the stopping condition
given in Equation (5.14)). Since P-BSSF and MFSF optimize the response time in
multi-term query environments, the response time computation formulas are the same.
However, for the sake of completeness we repeat these formulas in this section. The

response time for a t term query with i dice processing and FD; actual record

accesses is computed as follows.
RT; =1 Ogice + FDj Oresolve - (5.15)

Since MFSF optimizes the response time in a multi-term query environment, we
consider the submission probabilities of queries with different number of query terms

as follows in determining the (expected) response time, TR.
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tmax
TR= 3 R [RT; (5.16)

t=1
where RT;, given in Equation (5.15), is the time required to evaluate at term query, P;
is the probability of submission of at term query, and t, iS the maximum number of

terms that can be used in aquery.

The values of the parameters N and D involved in the response time computation
depend on the database instance. Therefore, minimizing the response time, TR, with
the stopping condition given in Equation (5.14) requires determination of parameters
f,F,and § (1 <r <f) for agiven F value. The heuristic search algorithm outlined in

Figure 5.2 is used to search the optimum configuration and to determine the TR value

for this case.

Algorithm SearchM FSFConfiguration
f — Select randomly the number of fragments (1< f<F).
Set F, valuesrandomly (1< r <f)where F = F +F, +.-+F; .

Set § valuesto 1 (1<r <f).

Mark all fragments and all operations in the fragments as not-tried.
minimum_response_time — infinity.
while there are not-tried fragments
{ r — Select randomly anot-tried fragment (L <r <f).
Select randomly a not-tried operation from the operations split, increase S, decrease S,
increase F, decrease F for fragment r.
if anot-tried operation exist
{ if the selected operation is applicable
{ Apply the operation and obtain candidate configuration.
if responsetime, TR, of the candidate configuration is less than
minimum_response_time
{ Accept the candidate as the new configuration, minimum_response time — TR.
Mark all fragments and all operations in the fragments as not-tried.

}
else
Mark the selected operation in fragment r astried.

}

else

Mark the selected operation in fragment r astried.
}
else

Mark fragment r astried.
}

Figure 5.2. Algorithm to search optimal fragmentation scheme.

The algorithm starts with a randomly determined initia fragmentation scheme. A

candidate configuration is obtained by changing the value of a randomly chosen
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parameter. Since the algorithm minimizes the response time for a given F value, Join

Fragments, Increase F, (add 1 to F,), and Decrease F, (subtract 1 from F,)

operations of the agorithm require random selection of another fragment, p, and
adjusting the Fp value of this fragment accordingly. In the algorithm, joining of two

fragments to form one fragment is initiated when decrease S is selected and the §

value in the selected fragment is one. The split operation divides the selected fragment
into two fragments of different sizes. Their sizes are selected randomly. Actually one

size is determined randomly, since their total size isthe same as the split fragment.

After obtaining the candidate configuration, the consistency of the parameters is

ensured such as 1< § <F holds for 1<r<f. To prevent trapping in a loca

minima, a sufficient number of initial configurations must be tried. The results given in
this study are obtained with 20 initia trials (Smilar results are obtained with higher

numbers of initial configurations).

The convergence time of the algorithm depends on the number of initia fragments
randomly selected at the beginning of the algorithm. To speed up the convergence
time we limit the maximum number of fragments in the initiad configuration to 20,
which gives smilar results with a higher number of initid fragments. The average
convergence time of the algorithm for one randomly selected initia configuration
measured by elapsed time on a 33 MHz 486 DX personal computer is 2.34 seconds.
Since we tried 20 randomly selected initial configurations, the average elapsed time

required to obtain the optimized configuration for agiven F value is 46.8 seconds.
5.5 Example MFSF Configuration

To illustrate the computation of TR values of P-BSSF and MFSF, we provide a
numerical example in Figure 5.3. The configurations are obtained using the values of
the experimental system parameters. The optimized configuration and the stopping
step, i, for P-BSSF is obtained as proposed in Chapter 4.

Except t = 1, the response time of P-BSSF remains unchanged for increasing

number of query terms. In MFSF, fragmenting a signature file reaches the stopping
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condition in fewer evaluation steps and the response time decreases for increasing

number of query terms.

N =108, SP= 1, F = 1200, Tgice = 153 MS, Treayive = 76 MS, tmax = 5, P, = 0.2 for 1<t <5

MFSF Configuration P-BSSF Configuration
f=4, F; =451, S, =1, op; = 0.055 S=6,0p=0.121,i =7
Fo=254,S, =1, opo = 0.096
F3 =137, S3=1, op3 = 0.172
F4 =358, S4 =4, Oopg = 0.251
i stands for the number of slices used to reach the stopping condition

Response Time Cal culation For MFSF
fdi FDi RTi(ms)
0.055[.096[M172M.251* =3600107¢ | 3.60 | 7[153+360(76 =1344.6
0.055% [0.096° [0172% =082510°° | 0.83 | 6[153+0825[76 =980.7

g | W NP~
gl o o O N|—

0.0553 .0962 =153010~° 153 | 5M153+153[76 =8813
0.055% 0.096 = 0.878 10~ 0.88 | 5153+ 0.878[76 =8317
0.055° = 050107° 0.50 | 50153+ 0.50[76 =803

TRfor MFSF = 0.2[1344.6 +0.2 [980.7 +0.2 [8813 +0.2 8317 +0.2 [B03 =968.3 ms

Response Time Calculation For P-BSSF

L] fdi FD; RTi(ms)
1| 6| 0121°=314107° 3.14 | 6[153+314[76 =1156.6
2 | 7| 0121"=038007° 0.38 | 70153+ 0.38[76 =1099.9
3| 7 |0121"=038007° 0.38 | 70153+ 03876 =1099.9
4 1 7| 0121 =038107° 0.38 | 70153+ 03876 =1099.9
5| 7] 0121"=038107° 0.38 | 70153+ 0.38[76 =1099.9

TRfor P-BSSF = 0.2[1156.6 + 0.21099.9 + 0.2 1099.9 +0.2 [1099.9 +0.2 1099.9 =11112 ms

(TR is obtained for query case UD)
Figure 5.3. Example response time cal culations for P-BSSF and MFSF.

5.6 Performance Comparison with Simulation Runs

We used the IP (improvement percentage) value in the comparison of the
performance of MFSF with GFSSF and P-BSSF. Note that BSSF and B’SSF are
special cases of both P-BSSF and GFSSF. Therefore, we exclude BSSF-MFSF and

B’ SSF-MFSF cases in the comparisons.

The same T, g)ve VAUe is used in response time calculations of GFSSF, P-BSSF,
and MFSF. The GFSSF approach uses a different storage structure. Therefore, Tgjce

for GFSSF is computed by considering the frames of GFSSF. The fase drop
probability estimation method proposed in [LIN92] requires extensive computations
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to optimize a configuration. Therefore, we computed the false drop probability of
GFSSF by using the approximation proposed in [KOC95a]. The false drop probability
computation method proposed in [KOC95a] converges to the false drop computation
method of B’ SSF for a frame size of one hit. B’ SSF is a specid case of both GFSSF
and MFSF and in most of the inspected cases, GFSSF converges to B’ SSF producing
aframe width of one bit. Therefore, this approximation works well for GFSSF.

The optimization method of GFSSF is defined for a given number of query terms
[LIN92]. Since there may be queries with different number of query terms in a multi-
term query environment, we obtained TR vaue for GFSSF as follows. First, we
obtained the optimized configuration of GFSSF t = 1 as proposed in [LIN92]. Then,
we computed TR value of this configuration by considering the probability distribution

of the number of query terms (P; values) in the inspected multi-term query

environment. We repeated the same computationsfort=2,t=3,t =4, andt =5 and
we obtained five different TR values. We selected the minimum TR value among these
five TR vaues as the TR value of the inspected case. In other words, in our
comparisons our treatment of GFSSF is more than fair. In most of the inspected
cases, the configuration optimized by taking t = 1 gives minimum response time in a

multi-term query environment.

The response times, and consequently the 1P values, of the inspected methods are
affected by the values of the parameters N, F, SP, t o and P; (1<t<5). We

measure the performance of the methods by allowing change in one parameter and
keeping others unchanged. The values of unchanged variables are selected such that,

if possible, the performance improvement near the selected valueis quite stable.

5.6.1 Effect of Number of Query Terms, Signature Size and Placement of Disk
Blocks

To smulate a multi-term query environment, P, values are determined by assuming a
bounded normal distribution from left and right. The change in P; values are modeled

by changing variance, V(t), and the expected number of query terms, E(t), vaues (1 <
t < 5). P; values for the inspected V(t) and E(t) values are given in Table 5.2. The

difference among P; values, hence the effect of changing E(t) values, decreases for
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V(t) values greater than or equal to 10. Consequently, P; values are approximately
equal for these distributions (V(t) = 10) and they are modeled by the uniform

distribution (UD) where al P; values are equal to 0.2 and invariant of the change in
E(t). Therefore, we consider only V(t) = 1 and V(t) = 5. The case V(t) = 0 implies an
environment with queries only with t number of terms, i.e, P, = 1. Since it is

unrealistic we omit this case.

Table5.2. Py Vauesfor V() =1and V(t) =5

Vit)=1 V(t)=5

P | E()=1| E(t)=2 | E(t)=3 | E(1)=4 | E(t)=5| E(t)=1 | E(t)=2 | E(1)=3 | E(t)=4 | E(t)=5
P, | 0553 | 0.258 | 0.061 | 0.006 | 0.000 | 0.311 | 0.231 | 0.161 | 0.105 | 0.064
P, | 0351 | 0412 | 0.246 | 0.066 | 0.009 | 0.284 | 0.257 | 0.218 | 0.173 | 0.129
P; | 0.088 | 0.259 | 0.388 | 0.260 | 0.089 | 0.211 | 0.233 | 0.241 | 0.233 | 0.211
P, | 0.008 | 0.065 | 0.244 | 0410 | 0.350 | 0.129 | 0.173 | 0.218 | 0.257 | 0.284
Ps | 0.000 | 0.006 | 0.061 | 0.258 | 0.552 | 0.065 | 0.106 | 0.162 | 0.232 | 0.312

IP values of GFSSF-MFSF and P-BSSF-MFSF for varying V(t) and E(t) vaues are
plotted in Figure 5.4. In general the effect of the fragmentation on the performance of
MFSF increases as the possibility of queries with various number of query terms
increases, i.e.,, asmore P; (1 <t < t,,) Cases assume non-zero probability values.
(Notice that the exclusive experimental setting of Table 5.2 gives us an opportunity to
further investigate the effects of the number of terms on query processing
performance.) For example, for V(t) = 1 and E(t) = 1 (P, = 0.553 and P, = 0.351 and
other P; values are negligible, see Table 5.2) the IP value for GFSSF-MFSF case is
35.37%. In the UD case dl P; vaues are equa to 0.2 and the IP vaue for the

GFSSF-MFSF case increases to 70%. Since the UD cases exhibit an average

performance, we will use only the UD casein the following comparisons.

Improvement percentage values for varying signature sizes (for S = 0.0 and 1.0)
are plotted in Figure 5.5. For large databases (N = 106), signature sizes less than 800
bits, corresponding to a space overhead less than 20%, produce many false drops and
the response time is relatively high. Therefore, for practical purpose, we consider F
values greater than 800 for such large databases. For F > 800, the IP vaue varies
between 11% and 12.7% for the P-BSSF-MFSF case and between 65% and 70% for
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the GFSSF-MFSF case. This shows that, except for smal F values (F < 800), the

performance improvement is quite invariant to changing F values.

) 5738 ----- S X
5 i ---;--- "“K;- = = =% ¥ = GrssWFrsF D
§ 60 x - \ - - X - - GFSSF-MFSF V()=5
E 50 :I: / X | —x— GFSSE-MFSF V(t)=1
= 40 % P-BSSF-MFSF UD
o 30 — - — - P-BSSF-MFSF V(t)=5
S 20 e, |——ressursEva
S 10 —T——= G
g 0 /| 1 ] ]

1 2 3 4 5

E(t)
(SP =1, F=1200, N = 106)

Figure 5.4. IP values of GFSSF-MFSF and P-BSSF-MFSF versus varying E(t) -and V(t)- values.

To inspect the effect of sequentiality probability (SP) on the IP values for changing
F vaues we included the extreme cases for SP in Figure 5.5. Except for smal F

values, the same relative performances were obtained for all SP values.

80 T

60 T+

GFSSF-MFSF SP=0.0
GFSSF-MFSF SP=1.0
P-BSSF-MFSF SP=0.0
------ P-BSSF-MFSF SP=1.0

40 +

20 T

Improvement Percentage

0

200 400 600 800 1000 1200 1400 1600 1800
(F) Signature Size (in bits)

(N = 105, UD Query Case)

Figure 5.5. IP values of GFSSF-MFSF and P-BSSF-MFSF versus varying F values.

We want to revisit the effect of the number of query terms on performance one
more time. As shown in Figure 5.4, the effect of fragmenting a signature file increases
if the posshbility of queries with different number of query terms increases. The

maximum number of query termsis limited by t,,55 in our optimization model.

We plot the IP values for increasing t,o, values in Figure 5.6. For t o = 1, i.e,

when there are only single term queries, al methods obtain the same response time

63



and IP values are zero. For increasing t., values, the number of queries with

different number of query terms increases. This increases the performance of MFSF
over P-BSSF and GFSSF. Note that t,, value used in other comparisons (tygx = 5)

is below the saturation point (tyzx = 10) where IP values of P-BSSF-MFSF and
GFSSF-MFSF cases are 16.9% and 84.78%, respectively.

100 GFSSF-MFSF

Improvement Percentage

1 3 5 7 9 11 13 15 17 19
tmax

(SP =1, F=1200, UD Query Case)

Figure 5.6. |P values of GFSSF-MFSF and P-BSSF-MFSF versus varying tay Values.
5.6.2 Effect of Database Size

The performance improvement values for changing N values are plotted in Figure 5.7.
For N vaues near 2000, IP values of P-BSSF-MFSF reach 10% and vary between
11% and 12.7% for increasing N values. | P values of GFSSF-MFSF rise to 65% for N
= 30,000 and vary between 65% and 70% for increasing N values. Therefore, except
for very small N values ( N < 2000), MFSF performs better than GFSSF.

In the P-BSSF-MFSF case, for N < 65,536, a bit dicefitsin a disk block, the same
IP values are obtained for changing SP values. For larger N vaues negligible
variations in IP values are observed for changing SP values. In the GFSSF-MFSF
case, smaler SP values cause IP values to increase more rapidly for increasng N
values. The reason of such a performance decrease for GFSSF is that the effect of
reducing seek operations decreases for lower SP values. As a result, except for very
smal database sizes (N < 30,000), the performance improvement of MFSF over P-
BSSF and GFSSF isinvariant to the changesin N and SP.



The simulation runs show that, excluding very small databases and signature sizes,
MFSF aways outperforms GFSSF and P-BSSF in al parameter domains. For small N

values, the difference between the response times of the methods becomes negligible.

80
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20

GFSSF-MFSF SP=0.0

-MFSF SP=1.0

P-BSSF-MFSF SP=1.0

=20 10,000 20,000 30,000 40,000 50,000
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-80

Improvement Percentage
o

(N) Number of Records

(F =1200, UD Query Case).

Figure 5.7. IP values of GFSSF-MFSF and P-BSSF-MFSF for varying N values.

There are two important findings of this analysis which verify our intuitive
expectations: i) the response time of MFSF decreases for an increasing number of
query terms, ii) the performance of MFSF increases for an increasing number of

queries with different number of terms (i.e., with more non-zero P; values).

5.7 Experiments with Real Data
5.7.1 Determining the Query Signature On-Bits Used in the Query Processing

In Section 4.7 we inspected SS, MF, and RR query signature on-bit selection methods
and we showed that RR is the best one. In RR, to maximize the number of query
terms that contribute to the first phase of the query evaluation, the first on-bit is
selected from the first query term, the second on-bit is selected from the second term,
and so on. In MFSF, generdly, each term sets only one bit in the lower numbered
fragments and the on-bits of a lower numbered fragment are used first. Therefore, in
MFSF, the RR method and random selection of the query signature on-bits for query

evaluation produce similar results.

For smal N and high t values, which is unlikely in real life, the stopping condition
may require using less number of bit dices than the number of query terms. For such

cases, to guarantee the contribution of each query term to the query evaluation,
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additional bit dices may be required after the stopping condition is reached. However,
since the size of a bit dices will be smdl for smal N values the increase in the

response time will be negligible.

Although the observed and estimated average on-bit density values of the bit dices
of MFSF agree, we observed higher op values than the estimated value at the bit
positions where a high frequency term (a term occurring in many records) sets bits.
When possible, to prevent using bit dices with high op value in the query evaluation,
we sorted the on-bits of a query term in non-decreasing op value. The RR hit
selection method uses on-bits of each query term in this order. Sometimes, this may
cause using an on-bit from a higher numbered fragment before using the on-bits of the
same term in the lower numbered fragments. Since this policy may prevent using the
bit dices with high op value, the number of observed false drops and the response

time decrease.
5.7.2 Resultsfor False Dropsand Query Processing Time

The expected (denoted by Exp) and the observed (denoted by Obs) average fase drop
values of MFSF for the query cases are given in Table 5.3. The expected and
observed response times of the query cases are plotted in Figure 5.8. To illustrate the
effect of increasing query weight on the response time, we combined the observed

response time values for LW, UD, and HW query casesin Figure 5.8 (d).

Table 5.3. Expected and Observed Average False Drop Values
for the Query Cases LW, UD, and HW

LW ubD HW

F Exp | Obs | Exp | Obs | Exp | Obs
1000 | 0.60 | 5.37 |1 0.64 | 482] 0.47 | 3.11
1200 | 0.54 | 2921043 | 257] 0.29 | .37
1400 | 043 | 2.15]0.30| 1.50] 0.35| 145
1600 | 043 | 1511 0.35| 1.26] 0.27 | 0.97
1800 | 0.37 | 1.31] 0.30 | 1.02 ] 0.21 | 0.60

The observed average false drop values, hence the observed response time values,
are greater than the expected vaues. For increasing F values the expected and
observed fase drop values come closer. For F <800, we obtain too many fase
drops. Consequently, the response time is very high and using a signature file of this

sizeisimpractical. Thisis consistent with our simulation results.
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A small fraction of the records in the test database are very large with respect to

the average record size (Dq); for example, there are 584 MARC records containing

more than 75 terms which constitute 0.38% of the test database and the maximum
number of distinct terms in the records is 166. These large records cause an increase

in the observed number of false drops. This also causes an increase in the observed

response time.
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Figure 5.8. Expected and observed response time of MFSF versus F for LW, UD and HW (SP = 1).

We tested the effect of these large records on the response time by removing them
from the test database. The signature file parameters for the reduced databases are
optimized by using new average number of distinct terms and taking F = 1200. The
results for the UD query case are given in Table 5.4. The percentage deviation from

the expected response time is computed as

% Deviation of TR=100 [{TRopserved — TRExpected) / TRExpected )

and Percentage Deviation of FD is computed similarly.
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The difference between the expected and observed response time values decreases
dramatically as the maximum number of distinct terms in the records (second column
of Table 5.4) decreases. Since these large records constitute a smal fraction of the
database, they can be stored in a separate file and searched separately to provide a

faster response time.

Table 5.4. Results of Limiting Maximum Number of Termsin the Records

Max | Avg. Standard Expected Observed % Deviation
N D D Deviationof D | FD |TRmg| FD |TRms| FD TR
152,850 | 166 | 25.70 11.12 043 | 303 | 257 | 541 | 498 79
152,686 | 100 | 25.60 10.72 042 | 302 | 146 | 440 | 248 46
152,266 75 | 25.44 10.24 040 | 301 | 1.34 | 402 | 235 34
149,408 50 | 24.82 9.26 035 | 296 | 093 | 342 | 166 16
140,901 | 40 | 23.64 8.12 047 | 284 | 0.86 | 308 83 8
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6. OPTIMIZATION OF SIGNATURE FILE PARAMETERS
FOR VARYING RECORD LENGTHS

Due to hashing and superimposition operations used in obtaining signatures, the
signature of an irrelevant record may match the query signature. Each false matching
record, false drop, must be accessed and compared with the query after processing
the signature file. Consequently, to estimate the response time properly, we need to
estimate FD accurately. Also, the signature file methods that use the accurately
estimated FD value in the optimization of the signature file parameters can achieve the

estimated performance in real applications.

The false match probability of arecord signature and a query signature increases as
the number of on-bits in the record signature increases. (Note that a record signature
with only on-bits matches al queries irrespective of the query terms.) Parameters
affecting the number of on-bits in a record signature are the length of the record
signature (F), the number of distinct terms in the record (D), and the number of bits
set to “1” by each term ().

Generally, signature file methods use the same F value for al records and optimize
the value of S as a function of F and D. For example, to minimize the false drop
probability, the optimality condition must be satisfied, i.e., half of a record signature
bits must be on-bit [CHR84a, ROB79]. To satisfy the optimality condition the
following relationship must hold among F, S, and D.

_FOn2
D

S

(6.1)

If the value of D of an individud record increases while S and F remain unchanged,
the number of on-bits in the record signature increases and the optimality condition is
violated, i.e., a false drop probability higher than the optimality condition can provide

isobtained. Thisimplies an increase in FD and response time.
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To provide a uniform D value in databases with varying record lengths (we will
use varying record length to mean that records may contain different number of
distinct terms), long records are divided into blocks containing fixed number of terms
[CHR84a]. However, the terms of a multi-term query may be in different blocks of
the same record and, especiadly for the vertica partitioning methods, record level
retrieval become complicated for multi-term queries. Another method is using average
number of terms in records, Davg: in FD estimation. In this chapter we experimentally
show that the use of Dg,q under estimates FD and this causes a performance
degradation.

We propose a more accurate false drop estimation method, the Partitioned False
Drop estimation method (PFD), for the databases with varying record lengths. In
PFD, we conceptually divide a database into digoint partitions according to the
number of distinct terms in the records. Each partition is considered as a separate
signature file and average number of distinct terms in a partition is used to estimate
FD in this partition. PFD decreases the differences among the number of distinct
termsin the records of a partition. Therefore, FD is estimated more accurately.

The FD value estimated by using Dg,q may be less than the FD value estimated by

PFD for the same database instance and signature file parameters (later in Section 6.2
we provide a numerical example for this). Therefore, anaytical comparisons of

signature file methods estimating FD by using D, and PFD will be misleading. For

this reason, we tested the performance of the inspected signature file methods by the
experiments performed with real data. We developed a test environment and
implemented the sequential, generalized frame-diced, and multi-fragmented signature
file methods in the C programming language. We extended these methods to use PFD
and tested their performances with real data. Experiments show that PFD increases
the performance of the inspected methods by reducing the observed FD and the
response time. Thisis achieved by better estimation of signature file design parameters
using PFD. Since the PFD approach estimates FD accurately, the number of records
which may be added to a dynamic database without any performance degradation can
be determined safely. The experiments of this chapter show that PFD obtains better

response times than using Dgyq in FD estimation if a necessary reorganization is

delayed.
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Minimizing FD is one of the objectives of signature file methods. Since using PFD
in a signature file method provides a lower FD and response time without increasing
the space overhead, it can be used in other signature file methods to obtain a better
performance. For example, PFD will increase the performance of the horizontal
partitioning methods that stores the signatures of records of a horizontal partition
sequentially [SAC83, SACB85].

The organization of the chapter is as follows. In Section 6.1, the traditional FD
estimation method used so far is given. The proposed FD estimation method, PFD, is
described in Section 6.2. In Section 6.3, we propose a new method to find the
optimum value of Sfor SSF by usng PFD and we compare the performance of the
proposed SSF optimization method with the SSF method optimized by using average
number of distinct terms. In Section 6.4 and 6.5, we apply PFD to the GFSSF and
MFSF methods, respectively. Also, the performance improvements obtained by PFD
is measured experimentally with real data. In Section 6.6, we inspect the effect of the
distribution of the number of termsin the records on the performance of PFD. Section
6.7 inspects the reorganization need for dynamic databases and measures the change

in response time experimentally for increasing database size.
6.1 Using Average Number of TermsPer Record in Estimating FD

A record signature qualifies a query accidentally if the record does not contain some
query terms and al on-bits of the query signature were also set by the terms of the
record. Since more bhits in the query signature will be on-bit for higher number of
query terms, the false drop probability will decrease for increasing number of query
terms. The following exact formula was derived in [ROB79] to compute the fase

drop probability of a particular record with D termsfor at (t > 0) term query.

F

fd(F,SD,1) =y P(F.St.i) P(F,SD,i) (6.2)
1=0
where P(F,Sn,i) isthe probability of setting i bit positions of a bit string that is F bits
long to “1” by n terms each setting S bit positions to “1”. P(F,Sn,i) is computed as
follows [ROB79].
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L i O [0F - kO /O
PF.SND)= 3 (-D* 5/ (63)
2V BEE s B
where é’?@ denotes a binomia coefficient and n is the number of term signatures

superimposed. Instead of the exact formula given in Equation (6.2), the following
approximate formula were used to estimate the false drop probability of a record with
D distinct terms due to its smplicity [ROB79]. (These formulas are given in Section
4.1. We repeat them here for easy reference.)

(6.4)

deSDﬁ:@_a_%PYW%

where W(Q); is the expected number of on-bits in the signature of at term query

(query weight) and it is computed as follows.

W(Q) =F ffi-@-9)) (65)

These approximations are valid for smal values of S D, and t and they give close
results to the exact formula [ROB79].

In [FALB88, LIN92] the false drop probability for the whole database is defined as

number of false matches (FD)
N - number of true matches -

false drop probability (fd) =

By assuming the number of true matches will be negligible with respect to N, FD is
computed by multiplying the false match probability of a record by the number of
records in the database (N) as follows [LIN92].

FD = N [1d (6.6)

Since fd is computed for a specific D value, Equation (6.6) can be used safely for
the databases whose individua records contains exactly D terms. In databases with
varying number of distinct terms, an average fd value is obtained by using the average
number of distinct terms per record, Dayg, instead of D in Equation (6.4) [KOC95a,
b, ¢, d; LIN88, LIN92, ROB79, SAC87]. We cdl this approach Average False Drop
computation method (AFD).
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6.2 Proposed False Drop Estimation Method

For the databases with records containing varying number of distinct terms, each
record may have a different D and consequently a different fd value. Therefore, the
expected number of false drops for a database with N records can be computed more

accurately by adding the individual false drop probabilities of the records as follows.

N N
FD= 3 fdofrecordr = 3 (1-(1-2)Pr )Mk (6.7)
r=1 r=1

where D, is the number of distinct terms in rth record. Since individual fd values of

the records are used in computing FD, we cal this method Individual False Drop
computation method (IFD). In Equation (6.7) we assume the same Sand F values are
used for dl records. If F and S can be adjusted according to the D, values of the

records, a lower false drop probability may be obtained. Later we will discuss these

aternatives.

AFD and IFD are extreme cases for FD estimation. IFD requires more information
about the database instance than AFD, but would provide a more accurate estimation
of FD than AFD. Example FD computations are provided in Figure 6.1 for an

intuitive explanation.

Casel: N=2,F =200, D; =25, Dy = 35, Davg = 30, S= 5, t = 1, Standard deviation of D = 5
Casell:N=2, F =200, D; = 20, Dy = 40, Davg = 30, S= 5, t = 1, Standard deviation of D = 10

AFD IFD: Casel IFD: Casell
FD=2[{1-(1-%)*°)°> | FD=(1-(1-%)?®)° + |FD=(1-(1-%g)>")° +
FD = 2[0.04266
FD - 00853 (L= (1% ™)° (L-(1-%00))°

' FD = 0.0227 +0.0701 FD = 0.0099 +0.1047
FD =0.0928 FD = 01146
_ — 1000092800853 _
Deviation for Casel =100 0.0853 8.79%
. — 100 01146-0.0853 _
Deviation for Casell =100 0.0853 34.35%

Figure 6.1. Example FD computations by using average D and individual D values.

In the example of Figure 6.1, the FD vaue computed by AFD is less than the FD
value computed by IFD. Although Davg values are the same for both cases, different
FD values are obtained for IFD. The difference between the FD vaues of AFD and
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IFD would increase if individual D values of the records show sharper deviations from

Davg value (i.e., for higher standard deviation for D values).

We propose a new method to estimate FD which covers AFD and IFD as specia
cases. In the proposed FD computation method, a database is conceptually divided

into p sub-databases, horizontal partitions, according to D, (1 < r < N) values of the

records. We cal the proposed FD estimation method Partitioned False Drop
estimation method (PFD). Graphical representations of estimating FD with AFD and
PFD for SSF are illustrated in Figure 6.2. A darker area indicates a record with a
higher D value (we assume that both methods use the same Svalue for al records). In
the rest of this section, we provide formal definition for conceptua partitioning of a
database and FD estimation with PFD.

Davg ]

i
T
il !

u
o

Actual record signatures AFD

A darker area represents a higher on-bit density (op) value

Figure 6.2. Graphical representations of estimating FD with AFD and PFD for SSF.

A database (DB) is a set of N records such that DB={R;,Ry,":-,R\} . The

domain of D vaues (Dom) of a database contains integers between 1 and the

maximum of D values, Dy5«. Since records with no term never accessed, we excluded

the case D = 0. Dom is divided into p digoint sub-domains and each sub-domain is

assigned to a partition. A sub-domain Dom is a subset of Dom and it is defined by a
lower (L;) and an upper bound (U;) specifying the members of the sub-domain as

follows.

Dom ={D|L <D<U} for 1<i<p (6.8)



The lower and upper bounds of the sub-domains satisfy the following conditions.

Ly =1 and Up = Dmax (6.9)
L <U; for 1<i<p (6.10)
L =U;j_1+1 for 1<i<p (6.11)

A partition P; isasubset of DB and it is defined as
R={R |R ODBO DJ Dom} forsi<i p. (6.12)

The rth record with D, distinct terms is assigned to the ith partition, P;, if Lj < D, <
U;. A record can be member of at most one partition, i.e., the partitions are mutualy

exclusive, and arecord is always assigned to a partition.

Each partition is considered as a separate signature file with its own average

number of distinct terms. The estimated number of false drops in ith partition, FD;, is

computed as follows.
FD; = Ny - (1-5¢)"PH)WQr for 1<i<p (6.13)
where N; and AD; are the number of records and the average number of distinct terms

in the ith partition, respectively. If Cy is the number of records containing d distinct

terms, then N; and AD; are computed as follows.

Ui
Ni = sz (6.14)
d:Li
Ui
Y Cqd
AD; =1 (6.15)

The estimated number of false drops for the whole database, FD, is computed by
adding the estimated fal se drop values of the partitions.

p

FD=Y FD (6.16)

If there is only one partition, i.e., p=1, N = N;, and Da\,g = AD4, then Equation
(6.16) reduces to Equation (6.6). Therefore, AFD is a specia case of PFD. If the

domain of each partition contains only one D value, i.e., p = Dy then L; = U; = AD;
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=i for 1<i < Dpg Consequently, Equations (6.14), (6.15), and (6.16) can be

combined and rewritten as follows.

Dm
FD = fx CqL-@1 —%)d)W(Q)t (6.17)
d=1

Note that, Equation (6.17) is a smpler and more efficient form of equation (6.7). It
considers the number of terms in each record individualy. Therefore, IFD is aso a
specia case of PFD. Since AFD and IFD are two extreme cases in estimating FD, to

show the performance increase obtained by PFD more clearly, we take p = Dy IN

the rest of this chapter, i.e., we used IFD for FD estimation.
6.3 Using PFD in Sequential Signature Files

The sequentia signature file (SSF) method requires retrieving the whole signature file
for each query [CHR84b]. Although the signature file occupies less space than the
origina records, except for smal databases, the response time of SSF is sill very
high. For example, without any seek requests, just reading a SSF for F = 1200 and N
= 106 requires 1.76 minutes ((5.77{1200010°)/ (8192[8))/ (100060) where 5.77 is the
time required to read a disk block in ms and 8192 is the size of a disk block in bytes).
However, small databases or small subsets of a database may be searched using SSF
efficiently. For example, the two level access method [SAC83, SAC85] partitions a
signature file horizontally such that the signatures of each partition fit into a disk
block and the signatures are stored sequentialy in the disk blocks. For query
evaluation each qualifying disk block is searched sequentially. Therefore, we inspected
the effect of using AFD and PFD with SSF on small databases.

To minimize the number of seek operations to access the actual records, the record
pointers are stored along with the signatures. Each record pointer holds the position
of the corresponding actual record and it occupies four bytes (Pg,). We are not
concerned margina improvements which will be vaid for both FD estimation
methods. For example, other alternatives to store the record pointers, such as storing
the offsets between the positions of the records (i.e., run lengths) instead of actual

positions of the records, are not considered.
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For a given F and D values, the value of Sthat satisfies the optimality condition is
computed by using Equation (6.1). For varying record lengths, the value of S is
determined by using Davg instead of D in Equation (6.1). Note that the signatures of
the records with D, > Davg (1< r < N) will contain more on-bits than off-bits, i.e., the
optimality condition may not hold for al record signatures. We will refer to this
method as AFD sequentia signature file (AFD-SSF) method.

For a given space overhead, since the whole signature file must be retrieved and
processed for query evauation, the time required to process the SSF will be
approximately the same for dl F and S values (note that F values will be adjusted to
match the byte boundaries and therefore total signature file sizes may be different).
Therefore, minimizing the observed FD will also minimize the response time for SSF.
The false drop probability and FD are minimized when the optimaity condition is
satisfied [CHR84a, ROB79]. However, for the databases with varying record lengths
the optimality condition will be violated by some records if the same F vaue is used
for al records. We list three signature generation aternatives for SSF to obtain a
lower FD with the same space overhead. To compare their performance, we adjusted

the F values to obtain the same space overhead, OV hits, for all methods.

1. Fixed F-Fixed S (FFFS): The same F (F =) value is used for dl records. A

single Svalueis used for al partitions that minimizes FD estimated with PFD. The
S value which provides the minimum FD is determined by a linear search in the
domain of S The lower bound of the search space is one. For given D and F

values, the optimality condition defines an upper bound for Sthat is

max(F [On2/ AD, for 1<i<p).
Since the value of S must be an integer, the number of possible S values will be

small.

2. Fixed F-Varying S (FFVS): The same F (F =) value is used for dl records. A

different § (1 <i < p) valueis used for each partition. Thevalueof § (1 <i < p)
for the ith partition is determined by using AD;, i.e., average number of terms in
per record in ith partition, in Equation (6.1). For large D5« Values a second level

partitioning may be defined for each first level partition and thevaluesof § (1<i <
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p) for the first level partitions may be determined by applying the FFFS method to
the second level partitions. If p = 1, i.e., there is only one partition, this method
converges to AFD-SSF. For query evauation a different query signature must be

generated for each partition.
3. Varying F-Varying S (VFVS): A different F; (1 <i < p) vaue is used for dl
partitions. The F values of the partitions are determined as follows.

F= ov [AD, for 1<i<p (6.18)

N g

where 9V isthe number of bits used to represent a term in the signature file. A
avg

different § (1 <i < p) valueis used for each partition. Thevalueof § (1 <i < p)
for the ith partition is determined by using AD;, i.e., average number of terms in
this partition, and F; determined with Equation (6.18) in Equation (6.1). For large
Dmax values the second level partitioning method explained above can be used to

obtain a lower FD. Note that there may be other strategies to determine F values

of the partitions that may provide alower FD than our method.

We exclude Varying F-Fixed S (VFFS) case since providing the same space
overhead with other methods is difficult. Also, VFVS case covers VFFS.

The expected response time values of FFFS, FFVS, and VFV'S methods obtained
by simulation runs are plotted in Figure 6.3. The test database contains randomly
selected 1000 records of the original test database and al methods estimate FD with
PFD. To show the maximum performance improvement that can be obtained by
VFV S we plotted the improvement percentage obtained by VFV S over FFFS in terms

of response timein Figure 6.3.d.

Time required to process the signature file is approximately the same for al
methods since signature file sizes are practically the same (i.e,, show negligible
variations due to byte boundary aignment for signatures). Therefore, the differences
among the response times are incurred due to the FD values. FFVS and VFVS
perform better than FFFS since they guarantee the optimality condition for al record
signatures and obtain lower false drop probability. VFVS outperforms FFV'S since it
uses the storage space more efficiently than FFVS by adjusting F according to the
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number of the terms in the records. FD values decrease for increasing signature size
while the time required to process the signature file increases. Therefore, the time
required to resolve these false drop records become insignificant compared to process

the signature file and hence the I P values decrease for increasing F values.
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(SP = 1.0, N = 1000).
Figure 6.3. Response time values of FFFS, FFV'S, and VFV S methods obtained by simulation runs
and IP(FFFS, VFVS) versus F.

The query evaluation with FFFS is smilar to AFD-SSF. The only difference is that
they determine the value of S differently and may use different S vaues in signature
generation. Both methods generate a single signature for each query and use the same
signature size for al records. Consequently, the implementation techniques of these
methods will have minimal effect on the response time. Also, FFFS is the worst one
among FFFS, FFVS, and VFVS. Therefore, we selected FFFS as the representative of
partitioned FD estimation methods for SSF and we compared the performance of it
with AFD-SSF. We will refer to FFFS as PFD-SSF. (Note that from the viewpoint
AFD-SSF this is a more-than-fair comparison, since we are using the worst case of
PFD as its representative.) We tested the performance of AFD-SSF and PFD-SSF on
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a database with 1000 records. The expected (denoted by Exp) and the observed

(denoted by Obs) average false drop values of both methods for varying F values are
givenin Table6.1.

Table 6.1. Expected (Exp) and Observed (Obs) Average False Drop Vaues
for AFD-SSF and PFD-SSF
LW Query Case UD Query Case HW Query Case

AFD-SSF PFD-SSF AFD-SSF PFD-SSF AFD-SSF PFD-SSF

F Exp | Obs | Exp | Obs | Exp | Obs | Exp | Obs | Exp | Obs | Exp | Obs
200| 8.10)|1276|12.49|11.98] 542 | 862 | 861 | 813 ]| 2.75| 476] 473 | 433
300| 129| 4.07| 338| 328] 086| 280| 231| 219] 043 | 162] 1.24| 118
400 021| 159] 111| 104] 024 | 1.13| 0.76 | 065| 0.07| 0.67] 040 | 034
500| 0.03| 0.96| 044 | 043] 0.02| 0.64]| 030| 0.28] 0.01| 043] 0.415| 0.13
600| 0.01| 054| 019| 0.18] 0.00| 0.38|] 0.13] 0.11] 0.00| 0.23] 0.07| 0.05
700| 0.00| 040| 0.09| 0.09] 0.00| 0.27| 0.06| 0.05]| 0.00| 0.16 ] 0.03| 0.03

Expected FD vaues of AFD is aways less than the observed FD vaues of this
method. Another important result is that the observed FD vaues of PFD-SSF is
always less than the observed FD vaues of AFD-SSF. Findly, the expected and
observed average FD values for PFD-SSF are very close for dl query cases. This
shows that PFD estimates FD more accurately than AFD.

The observed response time values versus F are plotted in Figure 6.4. In (d) the
improvement percentage obtained by PFD-SSF over AFD-SSF in terms of response
timeis plotted.

The observed FD values, hence the time required to resolve the false drop records,
decreases for increasing F value. Since the size of the signature file increases for
increasing F value, the time required to process the signature file also increases. The
decrease in FD becomes negligible after a certain F value while the increase in the
time required to process the signature file increases amost linearly. Therefore, the
response time decreases for increasing F vaue for small F values and starts to
increase after a certain F value (for example, F = 500 for LW query case). We cdl
this point optimum F (space overhead) for a database instance. Since the observed FD

diminishes more rapidly for increasing query weights, the optimum F vaue decreases

as the query weight increases.

Using SSF with an F value greater than the optimum F value is meaningless. Also,

the response time values for smal F values are very high. Therefore, we can assume
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the IP values around the optimum F values as the performance increase obtained by
using PFD for SSF. The IP values obtained at optimum F vaues are 33%, 32%, and
30% for LW, UD, and HW query cases, respectively.
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Figure 6.4. Observed response time versus F for AFD-SSF and PFD-SSF.

6.4 Using PFD in Generalized Frame-Sliced Signature Files

In the GFSSF method, a signature is divided into k (1 < k < F) equal sized frames. To
obtain aterm signature, n (1 < n < k) frames are selected among k framesand m (1 <
m < F/k) bits are set to “1” in each selected frame [LIN92]. A heuristic search
algorithm was provided in [LIN92] to obtain the values of parameters k, n, and m for
given t (number of terms in a query), N, Dayg, and F values. The objective of the
algorithm is to minimize the response time instead of the fase drop probability.
Therefore, the optimization algorithm adjust the signature file parameters such that
FD is reduced to an optimum value with minimum signature file processing.
Consequently, the expected response time can be achieved if the observed FD is close
to the expected FD value.
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A formula to estimate the false drop probability, fd, for single term queries for
given F, N, Dayg, N, k, and m values was provided in [LIN92Z]. The fase drop

probability was approximated as fd t for the queries containing more than one term
where t is the number of terms in the query. Since the average number of terms per
record, Dayg, was used in FD estimation, we call this method AFD-GFSSF.

To estimate FD by using PFD, we use the fd estimation formula of [LIN92] p
times asfollows.

p
FD = S N; [GFSSF_ fd(F,k,n,m,AD;) (6.19)
i=1

where GFSSF_fd(F,k,n,m,AD;) denotes the false drop estimation formula provided in
[LIN92]. The ith usage of GFSSF_fd computes the false drop probability for the ith
partition. Multiplying this false drop probability with the number of records in this
partition gives the expected number of false drops in the ith partition. We will refer to
this method as PFD-GFSSF.

The same heuristic search algorithm given in [LIN92] was used to obtain the
optimized configurations of AFD-GFSSF and PFD-GFSSF. The algorithm starts with
arandom configuration and tests al neighbor configurations obtained by increasing or
decreasing the values of the parametersn, s (F/k), m by one. Likein [LIN92], we aso
confined the values of s (F/k) to exact multiples of 8 for easy processing of the
resultant signature file. A GFSSF configuration with s = 1 (each frame is a bit-dlice)
becomes a B’ SSF [LIN92]. B’ SSF is a special case of MFSF [KOC95b] and we will
inspect the MFSF method in Section 6.5.

The optimization method defined for GFSSF expects a specific number of query
terms. Also, the false drop probabilities of the queries containing more than one term
is computed approximately. Therefore, for accuracy we used 1000 randomly
generated zero hit single term queries to test the performance of AFD-GFSSF and
PFD-GFSSF.

The expected (Exp) and the observed (Obs) FD vauesfor N = 20,000 are given in
Table 6.2 (In the experiments we used a part of our test database due to long time
requirements of the GFSSF file structure generation and query evaluation.

Furthermore, N = 20,000 provides us the necessary observations.). The optimized
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configurations of AFD-GFSSF and PFD-GFSSF may be different. Consequently, the
time required to process the signature file may be different for these methods. For this
reason the method that obtains a lower FD for a given database instance may obtain a
higher response time than other method. Therefore, we aso provide the

corresponding observed response time valuesin Figure 6.5.

Table 6.2. Expected (Exp) and Observed (Obs) Average False Drop (FD) Vaues
for AFD-GFSSF and PFD-GFSSF ( N = 20,000)
AFD-GFSSF | PFD-GFSSF
F Exp | Obs | Exp | Obs
512 | 6.12 | 32.54 | 31.56 | 26.66
768 | 061 | 6.61] 556 | 4.15
1024 | 040 | 1.70] 123| 128
1280 | 0.13| 114| 0.75| 084
1536 | 0.22| 0.86] 0.74| 0.82

The observed FD values of PFD-GFSSF are aways less than the observed FD
values of AFD-GFSSF. Since these lower FD va ues are obtained with less processing
time, PFD-GFSSF performs better than AFD-GFSSF. The differences between the
observed FD vaues of AFD-MFSF and PFD-MFSF for the same F value decrease for
increasing F and diminish for F = 1024. As aresult, the time required to resolve these
false drop records decreases for increasing F. This causes a decrease in improvement

percentage for increasing F.
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(SP =1, N=20,000)
Figure 6.5. Observed response time versus F for AFD-GFSSF and PFD-GFSSF.

For F < 768, the observed FD values and the response time values are very high.
Therefore, for N = 20,000, usng a signature file with F < 768 is impractical.
Depending on the space overhead, PFD-GFSSF obtains up to 25.73% response time
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improvements over AFD-GFSSF. Experiments with other N values show that FD
diminishes at higher F values for increasing N values. Therefore, we obtained better
IP values for the same F vaue for increasing N values. This shows that the space
overhead of GFSSF must be increased to obtain an acceptable response time for

increasing N.
6.5 Using PFD in Multi-Fragmented Signature Files

The MFSF method is defined in Chapter 5. The FD computation method proposed in
Chapter 5 corresponds the AFD method. Therefore, we call the origina method AFD-
MFSF. To use PFD in MFSF, we rewrite the stopping condition given in Equation
(5.14) asfollows.

Tgice = (TFD; —=TFD;41) Mresolve (6.20)

where Ty isthetime required to read and process a bit dice, TFD; is the number of

expected false drops after processing i bit dices (where TFD stands for Total number

of False Drops), and T,eg)ve IS the time required to resolve a false drop record by
accessing to the actual record. In Equation (6.20), TFD; — TFD;41 gives the number

of expected false drops which will be eliminated if we process the i+1st bit dice after
processing i bit dlices. At the stopping step the time required to process a bit dice
becomes greater than or equa to the time required to resolve these false drops by

accessing the actual records. Therefore, the signature file processing stops at this step.

Each partition can be considered as a separate MFSF file and the number of
expected false drops can be computed in each partition by using the formulas

provided in Chapter 5. We compute TFD; as follows.

p
TFD; = Y MFSF_FD(i, f,F,S N, AD;) (6.21)
r=1

where N, is the number of records in the kth partition and AD, is the average number
of terms in a record of the kth partition. MFSF_FD denotes the FD computation
method defined in Chapter 5 and it computes the number of expected false drops after
processing i bit dlices (see Equation 5.8). Note that, for p = 1, the proposed FD
computation method converges to the FD computation method of MFSF given in
Chapter 5.



We used the heuristic search agorithm given in Figure 5.2 to search the optimum
PFD-MFSF configuration by using Equation (6.21) for FD estimation.

The expected (Exp) and the observed (Obs) FD values for N = 152,850 are given
in Table 6.3. Since FD values are estimated differently, the stopping conditions of
AFD-MFSF and PFD-MFSF may require processing different number of bit dices for
each method. Consequently, signature file processing times may be different.
Therefore, we a so provide the corresponding observed response time values in Figure

6.6.
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Figure 6.6. Observed response time versus F for AFD-MFSF and PFD-MFSF.

Like PFD-SSF and PFD-GFSSF, the observed FD vaues of PFD-MFSF are
always less than the observed FD values of AFD-MFSF. Additionally, PFD-MFSF
estimates FD more precisely and obtains these smaller observed FD values with less
response times. Therefore, the PFD-MFSF method outperforms the AFD-MFSF
method. Depending on the space overhead, PFD-MFSF obtains up to 20.24%
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response time improvements over AFD-MFSF (since the observed FD values are very

high, we considered the space overheads with F < 1000 as practically unusable).

Table 6.3. Expected (Exp) and Observed (Obs) Average False Drop Vaues
for AFD-MFSF and PFD-MFSF

LW Query Case UD Query Case HW Query Case
AFD-MFSF | PFD-MFSF | AFD-MFSF | PFD-MFSF AFD- PFD-
MFSF MFSF

F Exp | Obs | Exp | Obs | Exp | Obs | Exp | Obs | Exp | Obs | Exp | Obs

800 | 0.80|1248| 890| 878| 089| 1045| 6.75| 6.25|0.61 | 7.53| 4.32 | 3.50
1000 | 0.60| 537| 343 | 340| 064 | 482| 279| 245|047 | 311|226 | 259
1200| 054 | 292| 200| 192| 043| 257| 164| 1711029 | 137|131 | 122
1400 | 043 | 215| 102| 119| 030| 150| 1.07| 1.03]035|1.45]0.72| 0.55
1600| 043| 151| 087| 117| 035| 126| 0.68| 0.75]0.27| 0.97 ]| 0.62 | 0.56
1800 | 037| 131| 066| 072| 030| 1.02| 0.64| 0.72]0.21| 0.60] 0.49 | 0.53

Mathematical model of GFSSF shows that the frame size of GFSSF decreases for
increasing database size and GFSSF converges to B’ SSF which is a specia case of
GFSSF. For increasing number of query terms, GFSSF converges to B’ SSF at smaller
database sizes. Since B’ SSF is also a specia case of MFSF and MFSF obtains better

response times in multi-term query environments, we will use only the MFSF method

in the following analysis.
6.6 The Effect of Distribution of Record L engths

The example FD computations given in Figure 6.1 show that the difference between
FD vaues estimated with AFD and IFD increases if the difference between the
number of termsincreases. This shows that the performance increase obtained by PFD
is affected by the distribution of the record lengths. Therefore, we inspected the effect
of record length distributions experimentally and analytically.

To test the effect of the distribution of the record lengths experimentaly, we
obtained four test databases with different record length distributions by selecting
100,000 records from the test database. (See Figure 3.1 for the record length
distribution of the original test database.) To obtain a lower STD value, we deleted
some long and some short records. Similarly, to obtain a higher STD vaue, we
deleted some records near the peak point of the normal distribution (we flattened the
peak point).
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The IP values for dl query cases are nearly equal at F = 1200 (see Figure 6.6.d).
Therefore, we optimized the test databases at F = 1200 and for the UD query case.
The results of the experiments with these test databases are given in Table 6.4. The
last column, IP, of Table 6.4 represents the improvement performance values,
IP(AFD-MFSF, PFD-MFSF), computed using the observed response time values.

Table 6.4. FD and Response Time Vaues for Changing STD Vaues
AFD-MFSF PFD-MFSF

FD RT (ms) FD RT (ms)
STD | Exp | Obs | Exp | Obs | Exp | Obs | Exp | Obs | IP

10931036 | 097 ] 250 | 274] 064 | 051 ] 289 | 243 | 11.31
11.33]1036| 191 | 250 | 430] 125|114 ] 344 | 359 | 16.51
12571030 | 2.35| 254 | 467] 1.33| 1.20] 368 | 380 | 18.63
12691030 | 240 | 255 | 473 ] 1.36 | 1.24 | 371 | 385 | 18.60

The optimization agorithm of AFD-MFSF expects smilar FD values for al cases.
This is the objective of the optimization algorithm that tries to reduce the estimated
FD vaue to the optimum value. However, the observed FD values increases for
increasing STD value. This shows that the error in the estimation of FD with AFD

increases for increasing STD values.

All of the expected and observed FD values for PFD-MFSF are very close. The
optimization agorithm adjusts the parameters of the MFSF file properly by using this
accurate FD estimation. This provides obtaining lower observed FD values with the
PFD-MFSF method than the AFD-MFSF method. This reduction in FD is obtained
without increasing the observed response time obtained with the PFD-MFSF method.
Also, the differences between the observed response time values of AFD-MFSF and
PFD-MFSF increase for increasing STD. Consequently, the 1P values increases for
increasing STD value. The above experiments performed with real data show that
PFD iseffective for normal distributions of record lengths.

To test the performance of the approach in another extreme we consider uniform
record length distributions. The parameters that affect the performance of PFD-MFSF
inauniform distribution of record lengths are the minimum and the maximum number
of terms in the records. We performed five experiments with smulation runs on
conceptual databases having different maximum D values. To make results
comparable, we adjusted the F value for each case to obtain the same space overhead
(1200/25.7 = 46.7 bits/'term, where 25.7 is the D44 Value for the test database). The
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results of these smulation runs are given in Table 6.5. We give the results obtained by
PFD-MFSF since PFD estimates FD accurately.

Table 6.5. Results of the Simulation Runs for PFD-MFSF with Uniform

Distributions of Record Lengths (N = 100,000, UD Query Case)

Minimum | Maximum | Average Expected | Expected
D D D STD F FD RT (ms)
1 10 5.50 2.87 257 0.75 316
1 25 13.00 7.21 607 0.83 321
1 50 25.50 14.43 1191 0.85 323
1 100 50.50 28.87 2358 0.74 324
1 200 100.50 57.73 4693 0.75 324

The estimated response time for increasing maximum D values increases dightly.
On the other hand, since the STD values increases as the number of possible D values
increases, the performance improvement obtained by the PFD-MFSF with respect to
AFD-MFSF aso increases.

A possible cause of a performance degradation may be storing records from
diverse sources in the same database. For example, storing the records that contain
only abstracts with the records that contain full text of a document in the same
database. In this case the distribution of the record lengths will have more than one
peak value. For such record length distributions, we propose dividing the record file
and the signature file physicaly with respect to the record lengths. This can be
considered as another implementation of the conceptual partitioning of records
proposed in PFD.

6.7 Dynamic Databases

In a dynamic environment N;, probably AD;, values ( 1 <i < p) will change as new

records are added to a database. Therefore, the performance of the system may
degrade and a reorganization for the signature file may become necessary. During
reorganization, if required, the signature size may be increased to obtain an acceptable
performance. For smplicity we only consider the addition of records and inspect the
reorganization frequency for PFD-MFSF and measure possible performance

degradation experimentally if a necessary reorganization is delayed.

An increase in the number of records will cause an increase in FD if no additional

bit dices are used during query evaluation. We store the number of records in the

88



partitions in main memory and we update them during record insertion with negligible
space and processing overheads (the number of partitions will be small). Therefore,
we always use the current database instance in determining the number of bit dicesto
be used for query processing. By this way the query processor may use additional bit

dlicesto keep FD near the optimum value for increasing N.

The optimization algorithm adjusts the parameters of MFSF such that the minimum
response time is obtained by alowing a smdl FD. Usng the same MFSF
configuration after adding a few records to the database, i.e., increasing N dightly,
will cause asmall increasein FD. Until thisincrease in FD causes a noticeable increase
in the response time, the optimization algorithm ill finds approximately the same
configuration as the optimum one. Therefore, using the same MFSF configuration for
increasing N will cause no performance degradation until the optimization algorithm
finds a different MFSF configuration. A reorganization becomes necessary to obtain
better response time when the optimization agorithm changes the signature file

configuration.

We always observed more FD than the estimated value with AFD. As a result of
this, the optimization algorithms that use AFD also estimate the response time less
accurately and find sub-optimal configurations. For this reason, deciding a
reorganization anayticaly will be mideading for AFD-MFSF. However, PFD-MFSF
estimates FD accurately and we can determine necessary reorganization points with

simulation runs as the database grows.

The value of N that requires a reorganization can be determined by using the
current instance. Usudly, the records added to a database expose smilar
characteristics with the records already in the database. Therefore, if the database is
sufficiently large, adding new records will cause insignificant variations in the percent

of records in the partitions and AD; values. As the difference between L; and U;
values of a partition decreases, the change in AD; value due to new records added to
that partition will also decrease. In the extreme case where L; = U;, the AD; vaue
never changes (L; = U; = AD;). We assume the percent of the records in the partitions

will not change as database grows and project the number of records in the partitions

for atarget instance by using current instance as follows.
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N/ = N'D% for1<i< p (6.22)

where N is the number of record in the current database instance and N’ is the

number of records in the target database instance.

Starting from N = 10,000, we inspected the configurations obtained for LW, UD,
and HW query cases for increasing N values up to N = 300,000. The target database
instances were obtained by projecting the database instance that contains the first
100,000 records (see Equation 6.22). For F = 1200, the values of N where a

reorganization is needed are given in Table 6.6.

Table 6.6. N Values that Requires a Reorganization
for LW, UD, and HW Query Cases

N Values (*1000)

Query Case | Wherea Reorganization is Needed
LW 10-20-40-50- 60 - 150 - 220
ub 10-30-80-110- 160
HW 10 - 60 - 150 - 280

The numbers in the second column of Table 6.6 indicates the N values where a
reorganization is needed. For example, “10 - 20" for LW query case should be
interpreted as the configuration obtained for N = 10,000 can be used with no
performance degradation until N reaches 20,000. When N becomes 20,000 a fresh
signature file must be created with new parameters. The frequency of a reorganization
increases for decreasing query weight. The reason of this is that FD increases more
rapidly for low weight queries as N increases. In dl query cases, for N > 100,000 a
reorganization is not needed at least for the next 50,000 records. The sameis true for
higher N values. Consequently, we can say that the reorganization need for PFD-
MFSFisrare.

To measure the performance degradation incurred due to a delayed reorganization
for AFD-MFSF and PFD-MFSF, we optimized the signature file parameters for F =
1200 and N = 100,000 and we continued to use the same configuration for increasing
N valuesfor UD query case. Note that, a reorganization is needed at N = 110,000 for
UD query case and this configuration stays optimum until N becomes 160,000.

To smulate a dynamic database environment, we used the first 100,000 records of

the test database as the current instance. For insertion of new records the remaining
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50,000 records were used in the order they were recorded to the origina record file.
For example, the database after 10,000 insertions, which corresponds a 10% increase
in the number of records, contains the first 110,000 records of the test database. Also,
we carried out the same experiments after reorganization. The observed response time
values are plotted in Figure 6.7.a. A “D” at the end of a method indicates that the
results are for the delayed reorganization of the method. In Figure 6.7.b the
performance degradation values for increasing N values are plotted. The performance
degradation of PFD-MFSF is computed as follows.

TR(PFD-MFSF-D) - TR(PFD-MFSF)
100G TR(PFD-MFS)

The performance degradation values of AFD-MFSF are computed similarly.
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Figure 6.7. Observed response time values for delayed reorganizations.

The results given in Figure 6.7 show that delaying a reorganization will cause smal
performance degradation for both AFD-MFSF and PFD-MFSF methods. The
performance degradation observed in PFD-MFSF are dightly less than the AFD-
MFSF methods.
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7. THE COMPRESSED MULTI-FRAGMENTED SIGNATURE FILE

In the record signatures of a BSSF the number of “1”sis equa to the number of “0’s
since the optimality condition is satisfied. By assuming the on-bits are randomly
distributed in the signature file, we can also assume that haf of the bitsin a bit dice of
BSSF are dso “1". In this case, storing a bit dice as a bit string is the optimum
storage method. However, usually, the number of “1”sin the bit dlices of MFSF is less
than the number of “0,”s since MFSF abtains better response times by allowing on-bit

densities less than 0.5.

Lower on-bit density provides rapid eimination of false drops and therefore the
optimal number of expected false drops is obtained in fewer bit dice processing.
Reducing on-bit density while providing sufficient on-bits in query signatures is
possible by increasing F (the number of hashing locations). However, increasing F
also increases the space overhead if the bit dices are stored as they are without
compression. We propose the Compressed Multi-Fragmented Signature File (C-
MFSF) method that stores the bit dices of MFSF in a compressed form. The space
overhead of C-MFSF with a larger F vaue is less than the space overhead of MFSF
with a smaler F value. For example, the signature file sizes are 17.11 MBytes and
32.80 MBytes for C-MFSF with F = 15,000 and MFSF with F = 1800, respectively.

Data compression can be used to compress the records of full text databases
[KLES89, BEL90, BEL93, MOF95b, ZOB95b]. Compressing the records in full text
databases reduces the disk space used to store records and provides retrieval of actual
records with fewer disk accesses. Therefore, record compression can aso be used in

addition to compressing the signature file to further improve the performance.

The organization of this chapter is as follows. Previous work that use compression
in indexing is summarized in Section 7.1. In Section 7.2, the compression methods

used in IR systems are given. We propose a new method to code the positions of “1”’s
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in the bit dices of MFSF in Section 7.3. Description of C-MFSF and the results
obtained with simulation runs are given in Section 7.4. In Section 7.5, the results of
the experiments with real data are given. Section 7.6 contains the projection results
obtained for very large databases. Findly, Section 7.6 contains a theoretica
comparison of C-MFSF and the inverted file method.

7.1 Related Work

Data compression involves with transforming a string of bits in some representation
into a new string that contains the same information (we are not concerned with lossy
compression) but whose length is as smdl as possble [LEL87]. Using data
compression in IR systems increases the performance by reducing the space overhead
and the amount of data to be retrieved. However, additional processing time may be

required to decode the encoded data.

Compressing the record signatures of sequential signature files is inspected in
[FAL85b]. In this study, to obtain alower false drop probability, record signatures are
produced using large F and small Svalues. The resulting sparse record signatures are
compressed. To compress record signatures the Run Length encoding (RL), bit-Block
Compression (BC), and Variable bit-Block Compression (VBC) methods are used. It
is observed that RL obtains the lowest fase drop probability followed by BC
[FAL85b]. However, Faloutsos prefers BC since it has good features of al the other
methods.

Moffat and Zobel inspect a variety of index compresson methods [MOF92].
Posting lists are compressed to reduce the space overhead and improve the
performance of the inverted file method [MOF92, ZOB92]. It is shown that the space
overhead of inverted files can be reduced to less than 10% of the space used by the
origina records [ZOB92]. Decoding long posting list may cause a bottleneck
[Z20B92]. To solve this problem skips, an index on the entries of a posting list, are
added to the compressed posting lists [MOF95]. Skips provide substantia time
savings in searching a specific record number in the compressed inverted file entries
with an additional small space overhead [MOF95].

93



In [MOF953a] the y (gamma) code[EL175], & (delta) code [EL175], and Golomb
code [GOL66] are considered and their performances are compared. In [MOF95g],
the authors reported that the improvement provided by other methods is relatively
small and they prefer to use the Golomb code to compress posting lists of the inverted
files. Since the on-bit densties of the bit dices of MFSF are higher than the on-bit
densities of the posting lists of IF, the performances of these methods may change.
Therefore, we tested the performances of these methods with the bit dices of MFSF.
In the following section we briefly summarize these methods and in Section 7.3

propose a new coding method.
7.2 Compression Methods

In the following presentation we assume that record numbers are represented with
positive integers and they are stored in ascending order. The positions of the on-bits
in bit-dices of MFSF can be considered as record numbers and they are also kept in
ascending order. Therefore, we use “record number” without limiting its use in the
posting list of the inverted file method.

A record number for a database containing N records can be represented with
[fpg N[ bits where log denotes the base 2 logarithm ( x indicates the smallest
integer greater than or equal to x). Generdly, the differences (gap or run length
encoding) between the record numbers are smaller than the record numbers and they
may be represented with fewer number of bitsthan [tpg N[]bits. Therefore, instead of
the record numbers the gaps are compressed [GAL75]. For example, the ascending
sequence of record numbers*“1, 7, 15, 23, 27" isrepresented as“1, 6, 8, 8, 4.”

Elias defines a sequence of coding schemes that maps positive integers to binary
codewords (compressed representation) [ELI75]. The y code represents integer X in
two parts. The first part contains [tpgx ] ( x(] indicates the greatest integer less than

or equal to x) “0"s followed by a“1” which represents 20°9*0 (the number obtained
by setting al bits except the higher order bit of x to “0”). For example, the first part
for x = 19 is “00001” since [lpgl9=4. The second part contains the binary

representation of x — 2(°9*0 (the remaining part of x obtained by setting the high
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order bit of x to “0”). The second part for x = 19 is “0011” (note that binary
representation of 19 is “10011"). Therefore, y code represents integer x with

2 [ftpgX 1+1 hits.

The & code represents the number of bits in the first part of an y code, [ipgx1+1,

with an y code, i.e., the number of bits in the first part of y code is compressed. For
example, there are five bitsin thefirst part of the y code of x = 19. Therefore, the first
part of x = 19 for the & code is “00101” (see Table 7.1). The second part of the &

code is the same with the second part of y code. Therefore, the d code represents

integer x iswith [tpg X1+ 2 [(Jipg(1 H1og x])]+1 bits.

Golomb [GOLG66] divides an integer x into two parts, q and r, by using a

parameter, b, asfollows.

X—10
= — :—[ﬂ)—l 71
CBpg T (7D

The first part, q, is represented with g “0”s followed by a“1”. The second part, r, is
represented with either [tpgh] or [fpgl] bits depending on r. The parameter b is

determined according to the on-bit density in the bit map representation of the posting
listsasfollows [WIT94].

b:Dlog(z—op) O (7.2)
-log(1 - op)

where op is the probability of a particular bit in the bit string being an on-bit. Some

sample values of they, 6, and Golomb codes are given in Table 7.1 (the first and the

second parts of the codewords are separated with space).

Table 7.1. Exampley, &, and Golomb Codes

Gap y 0 Golomb (b= 6)
1 1 1 100
2 010 010 0 101
3 011 010 1 1 100
4 001 00 011 00 1101
5 001 01 011 01 1110
15 0001 111 00100 111 001 100
19 00001 0011 00101 0011 0001 00
47 000001 01111 00110 01111 00000001 110
257 | 000000001 00000001 | 0001001 00000001 (420"s)1 110
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The performances of the aforementioned compression methods are affected by the
distribution of the gaps and the value of b for the Golomb code. For example, the
compressed representation of 257 with a Golomb code that use b = 6 requires 46 hits.
Therefore, for a better compression a higher b value must be used if such gap values
are possible. The distributions of gaps in the bit dices of MFSF generated with
BLISS-1 for op = 0.011 and op = 0.042 are plotted in Figure 7.1. They axis, “% of
Covered Gaps,” represents the percent of the gaps that have a gap length less than or
equal to the maximum gap value plotted in the x axis. For example, 95.1% and 76.1%
of the gaps have alength of 96 or lessfor op = 0.042 and op = 0.011, respectively.
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Figure 7.1. Distribution of the gapsin the bit slices of MFSF for on-bit densities 0.011 and 0.042.

The bitwise ANDing of bit dicesis one of the fundamental operations in the BSSF
query evaluation method. It requires obtaining the record numbers (or positions of on-
bits) in the processed bit dice, i.e., decoding a compressed bit dice. The gaps, hence
the record numbers, can be reconstructed from the compressed representation by
scanning the compressed bit string from the left to the right. If codewords are in
varying lengths, many shift and housekeeping operations may be required to decode a
codeword. Therefore, in the framework of query processing with bit diced signature
file method, the best compression method may obtain a higher response time than

other compression methods if decompression requires complex operations.
7.3 Fixed Code Compression M ethod

To perform efficient bitwise AND operation between two bit dlices we propose a new
coding method, fixed code (FC), that uses fixed number of bits (k) for each codeword.
However, in this approach representing a long gap may require more than one
codeword. The value of the parameter k is determined according to the average gap

length asfollows.
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_ N O
k= gog&a (7.3)

where N is the number of records (number of bits in a uncompressed bit dice) in the

database and OB is the average number of on-bits in a dice. Since op:%, we
rewrite Equation (7.3) by using op asfollows.
k= aogiD (7.4)
op
In FC, a codeword with k bits can represent 2K different codes. Among these
codes, O (al bitsare “0”) is used to represent 2K —1 consecutive “0’s either after the

last “1" or from the start of the bit string. A code valuev (1<v< ok 1) represents
v—1 consecutive “0” followed by a“1” either after the last “1” or from the start of
the bit string. Note that a FC with k = 1 corresponds to the bit string representation

for the ascending record numbers.
FC can be explained with gaps as follows. A gap is represented with k bits if the

gap is less than or equal 2K —1. Otherwise, a codeword of length k with dl “0” is

used and 2% -1 is subtracted from the gap value. The remaining part is coded with
FC. Thus, a gap may be represented with more than one codeword. For example, the
bitmap of the term T4, “10100,” given in Figure 2.3 isrepresented in FC with k = 4 as
“0001 0010 (the gapsfor this bitmap are 1 and 2). Some sample gap values coded in
FC with k = 4 and k = 8 are given in Table 7.2 (the codewords are divided with

spaces).

Table 7.2. Example FC Codeswithk =4 and k = 8

Gap k=4 k=8

1 0001 00000001

4 0100 00000100

5 0101 00000101

15 1111 00001111

16 0000 0001 00010000

47" | 0000 0000 0000 0010 00101111
255° | (16*0000") 1111 11111111
257" | (17*0000") 0010 00000000 00000010

" 47=305+2, 255=16[15+15, 257=17 [15+2
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In the best case, each gap value (on-bit) is represented with one codeword (k bits)
and the signature file contains N[F [oplk bits. In the worst case, the first

N [(1-op) bitsof all bit dicesare“0” while theremaining N [op bits are on-bits. For

each bit dice, leading “0”s are represented with ENZk—_ip)% codewords and remaining

on-bits are represented with N [0p codewords. Therefore, in the worst case the

compressed signature file will contain

F ok (E 2 E N op) (7.5)

bits. Since there are F [N [bp on-bits in the signature file, on the average, each on-bit

is represented with

Kk [[-op) []

B2 B (7.6)

bitsin the worst case.

We compare the performance of y, &, Golomb, and FC on the bit dices of MFSF
produced with BLISS-1. We prefer to use actual signature files rather than using
artificially generated bit strings since the distribution of the on-bits in the signature file
affects the result. The number of bits required to represent each on-bit for various op
valuesfor y, 8, Golomb, and FC (“ Obs “ denotes the observed, “Best” denotes the best
case, and “Worst” denotes the worst case behavior of FC) are given Table 7.3. For
the Golomb code, an appropriate b value is computed for each bit dice by using the
on-bit density of the dice in Equation (7.2). Similarly, for FC, a different k vaue is
determined using Equation (7.4) for each dice. FC outperforms y and & codes and
uses approximately one bit more than the Golomb code for small op values. Note that
the observed number of bits required per on-bit for FC is approximately equal to the

average of the best and the worst cases of FC.

Table 7.3. Average Number of Bits Required to Represent an On-Bit
fory, 8, Golomb and FC for Various op Vauesfor BLISS-1

op ' L) Golomb FC (Obs) FC (Best) | FC (Worst)
0.011 8.84 8.34 6.96 8.15 5.85 10.06
0.014 8.42 8.02 6.70 7.79 5.63 9.63
0.028 7.33 7.17 6.00 6.85 4,98 8.47
0.042 6.63 6.62 5.54 6.26 4,55 7.72
0.069 5.76 5.94 4.94 5.51 4.00 6.78
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For low op values (such as the ones used in Table 7.3), the number of bits required
to represent an on-bit in FC isvery close to the number of bitsin a byte. Using a fixed
size codeword that fits a byte provides very efficient processing of compressed bit
dices since one byte is used to represent a character and the computers contain
operations to manipulate them efficiently. The percent of the gaps that are less than or
equal to 255 are given in Table 7.4. Note that these gaps can be represented with only

one 8 bit long codeword and the majority of gaps can be represented with one byte.

Table 7.4. Percent of the Gaps that are Less than or Equal to 255

Total Number Number of % of
op of Gaps Gaps< 255 Gaps< 255
0.011 3,904,897 3,524,697 90.3
0.014 3,893,434 3,633,099 93.3
0.028 7,728,445 7,609,289 98.5
0.042 11,476,059 11,430,734 99.6
0.069 18,866,579 18,861,873 [1100.0

If the space overhead is the most important criteria for the performance, the
Golomb code must be used to compress the bit slices of MFSF. However, if obtaining
a better response time is the primary objective, FC may be preferred since it requires
less CPU operations to decode a codeword while providing a satisfactory
compression. In the following analysis and experiments with real data we compressed
bit slices of MFSF using FC with k = 8.

7.4 Description and Analysisof C-MFSF for Very Large Signature Sizes

The PFD-MFSF method is inspected for LW, UD, and HW query cases in Section
6.5. The results of the experiments show that the observed false drop values diminish
as the signature size increases and they are very close to the expected values. Since
the space overhead without compression is relatively high for F > 1800 (8.75 bytes
per distinct term in each record for F = 1800), we stop the analysis at F = 1800.
However, we show that approximately one byte will be sufficient to represent each

on-bit if the sparse bit dlices are compressed.

Since the compressed bit dices are in varying lengths, a Slice Pointer Table (SPT)
with F locations is used. SPT is stored in memory and to read a bit dice first the
address of the bit dice is obtained by accessing SPT. To illustrate the difference
between C-MFSF and the inverted file method the storage structures of these
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methods are shown in Figure 7.2. Since the values of F will be about 30,000, the
memory required to store SPT will be smdl. Also, a high percent of this additional
memory requirement will be compensated by the decrease in the buffer sizes since the

compressed bit slices require less memory.

Terms Pointers  Posting Lists SPT -
11 I 11 Compressed Bit Slices
| 1 — E—
T |
- (I
— L 1
Look
up
Jable
[
I ] |
I —F ——
L v [ 1
a. Inverted File method. b. C-MFSF method.
V: Number of unique termsin the vocabulary, F: Number of hashing positions (signature size)

Usually F <<V
Figure 7.2. Storage structures of C-MFSF and the inverted file methods.

Equation (3.3) that is used to estimate the time required to process a bit dice of
MFSF assumes each bit dice is N bits long. In MFSF each fragment may have a
different op value and hence the numbers of on-bits in the bit dices of MFSF may
vary. The observed number of bits required to store an on-bit with FC is
approximately equal to the average of the best and the worst case (see Table 7.3), i.e,,
each on-bit is represented with (k + WC;) / 2 bits. Therefore, we estimate the number

of disk block accesses to retrieve a bit dice of C-MFSF, d, as follows.

s = %w op, E@%%/(SEBWG,)E for 1<i < f (7.7)

bits where op; is the expected on bit density in ith fragment, k; is the codeword length
used in this fragment, and Wy, is the number of bits required to store an on-bit of the
ith fragment in the worst case (see Equation 7.6). Since a whole disk block is
retrieved to access a part of it, a possible under estimation of the dice lengths can be

tolerated. We estimate the time required to process a compressed hit dice of ith

partition as follows.
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— kl +\chi 0
Taice—i = Read(sh) * Thyteop E%v op L5 B (7.7)

where Ty 1eqp is the time required to process a byte and d; is the average number of

disk blocks required to store adice of the ith partition.

We plot the estimated response time values of C-MFSF for increasing F values in
Figure 7.3. In this analysis we estimate FD with PFD. (In Chapter 6 we show that
PFD estimates FD accurately for MFSF.) The estimated FD values with the expected
response time values for LW, UD, and HW query cases are given in Table 7.5. To
show the relation between the value of F and S (total number of bits set by each term

in al fragments) we also include Svaluesin Table 7.5.

The total number of bits set by each term (S) decreases for increasing signature
size and becomes equa to two for F > 35,000. At the same time, the number of bit
dice evaluations required to reach the stopping condition decreases for increasing F.
To provide the contribution of each query term to the query evauation we forced to

use at least one on-bit from each term.

300 T

250 -

200 "

150 +

Response Time (ms)

100 T L} L} L} L} L} 1
2,000 6,000 10,000 14,000 18,000 22,000 26,000 30,000

(F) Signature Size (in bits)

(SP=1.0, N =152,850)
Figure 7.3. Expected response time versus very large F values for C-MFSF for LW, UD, HW.

Increasing F values provides lower on-bit densities and the stopping condition is
reached in fewer dice evaluations. Therefore, the optimization agorithm of C-MFSF
selects smaler Svalues for increasing signature size. This also decreases the response
time. However, there is a lower bound for the value of Sthat is one. If a sufficiently
large F value is used, S will become equa to one and single term queries can be

evaluated with only one seek operation. This idea is inspected by Faloutsos and Chan
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in [FAL88b]. Since storing SPT will require enormous amount of memory they use
smaler F values and propose additional data structures to reduce the fase drop
probability. We included F = 100,000 to show that Sis still equal to two for such a

large F value.

Table 7.5. Expected FD and TR Values for N = 152,850 with Total Number of Bits Set
by Each Term (S) for LW, UD, and HW Query Cases

LW ub HW
F S | FD | TR S | FD | TR S | FD | TR
1000 6 | 430|795 6 | 369 | 687 6 | 244|555
2000] 5 |041]| 268 5 1068 | 252 5 1046 | 227
5000] 4 |0.04] 163 4 1019 161 4 10141 160
7500] 3 |016] 137 3 012144 3 | 007|148
30,000 3 | 0.08]| 118 3 1006 | 127 3 | 007|136
35000 3 | 019|115 3 1003|125 2 1008|135
100,000 | 2 | 0.02 | 102 2 (002|116 2 | 001|130

7.5 Experimentswith Real Data

The analysis given in the previous section shows that a response time less than 150
milliseconds is possible if large F values are used. We tested the optimized C-MFSF
configurations with BLISS-1. The expected (denoted by Exp) and the observed
(denoted by Obs) response time values are plotted in Figure 7.4 (for easy comparison
the observed response time values for LW, UD, and HW repeated in Figure 7.4.d).
The expected (denoted by Exp) and the observed (denoted by Obs) average fase drop
values of these experiments for LW, UD, and HW are givenin Table 7.6.

Table 7.6. Expected and Observed Average False Drop Values
of C-MFSF for LW, UD, and HW

LW ubD HW

F Exp | Obs | Exp | Obs | Exp | Obs
10,000 | 0.06 | 0.46 ] 0.05| 0.32] 0.03 | 0.14
15,000 | 0.02 | 0.60 ] 0.01| 0.32] 0.01 | 0.14
20,000 | 0.01 | 0.37 | 0.01 | 0.28 ] 0.00 | 0.13
25,000 | 0.09 | 0.38 | 0.07 | 0.35] 0.05 | 0.14
30,000 | 0.07 | 0.40 | 0.05| 0.41 | 0.03 | 0.22

The queries with more than two terms obtain almost no false drops and the query
evaluation is completed by accessing only the signature file without any actual record
accesses for false drop resolution. Since the compressed signature files are relatively
smaller than the uncompressed signature files and the record file, the average seek

time for compressed signature files are smaller than the average seek time used in the
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anaysis (30 ms). Therefore, the observed response time for UD and HW query cases
are less than the estimated values. The observed response time values for LW query
case are greater than the estimated values since LW obtains more false drops than UD
and HW.

- 150 S Obs 150+ —X— Obs
E 140 Exp £ 140 - —X—Bxp
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10,000 15,000 20,000 25,000 30,000 10,000 15,000 20,000 25,000 30,000
(F) Signature Size (in bits) (F) Signature Size (in bits)
a LW query case. b. UD query case.
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100 . . . . 100 T T T |

10,000 15000 20,000 25,000 30,000 10,000 15,000 20,000 25,000 30,000
(F) Signature Size (in bits) (F) Signature Size (in bits)
c. HW query case. d. Observed response time for LW, UD, and HW.

Figure 7.4. Expected and observed response time of C-MFSF versus F for LW, UD and HW (SP = 1).

For dl query cases, the observed response time increases for F > 20,000. Most
inspected C-MFSF configurations require setting three bits for each term.
Consequently, the number of on-bits in the signature files are approximately the same
for dl configurations. Therefore, gap sizes, and hence the size of the compressed
signature file, increase for increasing signature size. This causes a small increase in the

response time (approximately 3 ms per processed bit dlice).

The difference between estimated and observed fase drops decreases for
increasing number of query terms. Most false drops are generated by single term
gueries. Single term queries have only three (or two) on-bits in their query signature

and if one of them shares the same bit dice with a high frequency term, more false
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drops are produced than the expected number. To obtain better performance with low
weight queries with S = 2, the frequency of the terms must be considered in the
signature file optimization [AKT93b].

7.6 Projection for Large Databases

We performed a series of experiments to test the change in the observed response
time for increasing database sizes (N value). The results of the experiments are plotted
in Figure 7.5. The test databases for the experiments were obtained by considering

only the first N records of the origina database. The signature file parameters f, F,,
and § (1 <r <f) were optimized for each run by considering the tested N value for
S =1and F = 15,000.

4 —X—LW
——UuD
3 —X—HW

\

14

Response Time/N
microseconds
N

¢

0 t t t t i
25,000 50,000 75,000 100,000 125,000 150,000

(N) Number of Records

(SP =1, F =15,000)

Figure 7.5. Response time per record versus N for LW, UD and HW.

Simulation runs show that approximately the same number of bit dices will be
processed for N = 106 and N = 150,000. Consequently, the number of seek operations
will be the same for increasing N and the number of seek requests per record will
decrease for increasing N. Therefore, in the first phase of a query evaluation the time

spend for each record of the database decreases for increasing N value.

We can project the result of this experiment to predict the observed response time
for larger databases by assuming TR/N ratio will not be greater than 0.85 micro
seconds for larger databases. Note that this value is the maximum TR/N figure
observed for LW, UD, and HW query cases for N = 150,000. By assuming TR/N =

0.85 micro seconds, we project the observed response time for N = 106 as 0.85

104



seconds. Note that this is a pessmistic assumption since the TR/N ratio (response

time/record) decreases for increasing N.

For increasing N values the size of a disk block can be increased such that most of
the compressed hit dlices il fits a disk block. In that case, retrieving a bit dlice will
require only one seek operation for al SP values. Therefore, the response time will be
the same for al SP values and the results obtained for C-MFSF with SP = 1 can be
generalized for other SP values.

7.7 Theoretical Comparison of C-MFSF and the Inverted Files

Inverted file (IF) methods and signature file methods are efficient search indices.
There are theoretical [ZOB92] and experimental comparisons [COU94, ZOB95a] of
these methods. However, the performance of |F and signature file methods in terms of
efficiency depend on many parameters such as the database instance, the computer
used in the experiments, disk space alocation methods, and the amount of available
main memory. Due to the absence of well defined fair comparison environments the
results of the comparisons become questionable. Another difficulty is that both
methods have configuration parameters providing fine tuning of the performance of
the methods. Especially signature files have many configuration parameters which

provide adaptation of the method to various environments.

In the rest of this section, we provide a brief theoretical comparison of IF and C-
MFSF in terms of space overhead and the number of disk accesses required to
respond a query. Our am is to show that C-MFSF opens new promising research
directions rather than proving that C-MFSF performs better than IF. In the following
discussion, we assume that RPT (record pointer table, see Figure 2.2 and Figure 4.1)
is stored in main memory and both methods apply the best compression method for

them.

In the IF method at least one disk access is required per query term to read the
posting list of the term (we ignore chained long posting lists and compressed bit
dices). Also, to obtain the locations of the posting lists, a lookup table must be
maintained and it should be searched for query processing. If we assume only one disk

access will be required to obtain the location of the posting list of a query term, each
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query term will require two disk accesses [ZOB95a]. Therefore, in IF, at term query
will require 2@ disk accesses. (Since both methods may trade query evauation with

false drop resolution we ignore this possibility.)

In C-MFSF no lookup table is needed. For F = 30,000, reaching the stopping
condition requires processing only three bit dices even for very large databases (N >
106). For the queries containing one or two terms C-MFSF requires three disk
accesses plus fase drop resolution. Therefore, even without any false drops IF
outperforms C-MFSF for single term queries. Both methods will obtain smilar results
for queries with two terms. IF will require one more disk access but C-MFSF may
obtain false drops for t = 2. Therefore, the number of false drop records determines

the result of the comparison.

For t > 2, since the contribution of each query term to the query evaluation is a
must, C-MFSF will processt bit dices for at term query. Experiments with BLISS-1
show that amost no fase drop is obtained for queries with more than two terms.
Therefore, we can assume that for F = 30,000 C-MFSF will require only t disk
accesses for queries with t > 2, i.e., one disk access for each query term contrary to

two disk accesses of |IF.

Since each term sets more than one bit in C-MFSF, the number of on-bits in a
MFSF will be greater than the number of on-bits in the posting lists of an IF
constructed for the same database instance. The number of bits required to store each
on-bit of a bit string in a compressed form decreases as the number of on-bits in the
bit string increases (see Table 7.3). Since, on the average, a posting list of an IF is
more sparse than a bit dice of a C-MFSF, an on-bit of C-MFSF requires less space
than an on-bit of IF. Additionaly, IF requires storing a lookup table containing an
entry for each term of the vocabulary. Therefore, the space overhead comparison of
C-MFSF and IF depends on the number of terms in the vocabulary. Usually, records
contain unique terms such as names, id numbers, or dates. Consequently, the number
of terms in the vocabulary will increase as the number of records in the database

increases. Note that thiswill also increase the space overhead of IF.

The performance of IF can be increased if the lookup table can be stored in main

memory [ZOB92]. In this case, still one disk access for each query term isrequired to
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read the posting list of the query term. If such a large memory will be available, we
can store the compressed form of a C-MFSF fragment (or a part of it) in man
memory. For example, a fragment of MFSF for BLISS-1 with op = 0.011 (S= 1 and
F = 2400) will require 3.31 MBytes (7.07 [25.7 152850 bits) of memory (see Table
7.3). The value of op can be adjusted to fit the fragment to the available memory.
Since the bit dices with many on-bits are seldom used in query evaluation, to reduce

the memory requirement we can store only short bit licesin memory.

Since one bit dice for each query term will be available without any disk accesses,
amost no disk accesses will be required for the queries containing more than two
terms. For single term queries one of the bit dices will be in memory and only two
seek requests will be needed to complete the first phase of the query processing.
Similarly, for the queries with two terms since two bit dices will be in memory only

one seek request will be needed to complete the first phase of the query processing.
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8. SUMMARY AND CONTRIBUTIONSOF THE THESISAND
DIRECTIONS FOR FUTURE RESEARCH

8.1 Summary

The thesis, firstly presents basic file structures for information retrieva and
summarizes the previous work on inverted files and signature files. We also discuss
the distinguishing features of the vertically partitioned signature files and inverted files
and clarify the features that can be used for the distinction of these two methods.

To estimate and test the performance of the proposed methods, a smulation and
test environment is designed. The experimental environment used in the thesis reflects
areal computing environment and uses records of areal application. This provides the
validation of our mathematical models with the observed results of the real data

experiments and robust projections for very large databases.

The objective of a physical information retrieval method is to provide prompt
response to user queries. Therefore, the performance of the inspected signature file
methods are measured in terms of response time. To estimate the response time of the
inspected signature file methods, the operations involved in query processing with
signature files are modeled. Our model is versdtile, i.e., it can be used in al operating
system environments and is applicable to both dedicated and multi-user IR systems.
This is due to the sequentiality probability (SP) concept incorporated into its

development.

Generally, search queries of real information retrieval applications contain variable
number of terms. Therefore, the access method of such environments should provide
acceptable response times for queries ranging from one to several number of terms at
the same time. In BSSF the time required to complete the first phase of the query
evaluation increases for increasing number of query terms. We propose the Partially
evaluated Bit-Sliced Signature File (P-BSSF) method that solves this problem. P-
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BSSF employs a stopping condition that tries to complete the first phase of query
evaluation without using al on-bits of the query signature, i.e., by partial evaluation.
The am of the stopping condition is to reduce the number of expected false drops to
the optimum level that will also provide the lowest response time within the

framework of the bit-sliced signature file environment.

The parameters of P-BSSF are optimized in a multi-term query environment by
considering the submission probabilities of the queries with different number of terms.
Therefore, P-BSSF obtains desirable response times for a wide range of number of

query terms.

The response time of P-BSSF decreases for increasing signature size. However,
the response time of BSSF first decreases for increasing signature size and then starts
to increase. To provide a fair comparison between BSSF and P-BSSF we derive a
formula that finds the optimum signature size by minimizing the response time of
BSSF. In the comparison of BSSF and P-BSSF, the signature size of BSSF is fixed at
the optimum value and the best response time obtained at this optimum signature size
is assumed for larger signature sizes. The experiments show that P-BSSF with F =
1200 provides a 85% improvement in response time over BSSF with F = 530 for the

UD query case.

Low on-bit density (the probability of a particular bit of a bit dice being on-bit)
provides rapid reduction in the expected number of false drops. Thus, the stopping
condition defined for P-BSSF is reached by processing fewer number of bit slices with
low on-bit density. We propose a new signature generation and query evaluation
method, Multi-Fragmented Signature File (MFSF), which improves the performance
of P-BSSF without increasing the space overhead (F value). MFSF decreases the
response time in multi-term query environments by dividing the signature file into
variable sized sub-signature files, fragments. Each fragment is a separate BSSF with
its own F and S (the number of bits set to “1” by each term) parameters and the
optimaity condition is relaxed. Therefore, in MFSF each fragment may have a
different on-bit density as opposed to the uniform on-bit densities of the BSSF,
B'SSF, GFSSF, and P-BSSF methods.
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In MFSF for queries containing more than one term, the bit dlices of the fragments
with lower on-bit density are used first. The number of bit dices used from the
fragments with lower on-bit density increases for increasing number of terms.
Therefore, the false drop records are eliminated more rapidly and the performance of
MFSF increases for increasing number of query terms. The analysis shows that MFSF
obtains up to 17% and 85% performance improvement in response time over P-BSSF
and GFSSF, respectively.

We propose a more accurate false drop estimation method, the partitioned fase
drop estimation method (PFD), for the databases with varying record lengths. In PFD,
the records of a database are conceptually divided into digoint partitions according to
the number of distinct terms in the records. Each conceptual partition is considered as
a separate signature file and average number of distinct terms in a partition is used to
estimate FD in this partition. PFD decreases the differences among the numbers of
distinct terms in the records of a partition. Therefore, FD is estimated more

accurately.

The sequential, generalized frame-sliced, and multi-fragmented signature file
methods are extended to use PFD in FD estimation. The PFD approach provides up
to 33%, 25%, and 20% improvements in response time for the sequential, generalized
frame-dliced, and MFSF methods, respectively. The experimentally observed FD
values and response time values with PFD are very close to the expected values with
PFD. Therefore, the signature file methods that use PFD can be compared
andyticaly. Also, the results obtained in the experiments can be safely projected for
larger databases.

In MFSF, the results of a single term query can be obtained by processing a few bit
dices. However, for very large databases even a bit dice may be too large to obtain a
desirable response time. Especialy for multi-user environments reading each disk
block may require a seek operation that also increases the response time. Fragments
of MFSF have varying on-bit densities and the bit dices of a MFSF are sparse.
Therefore we propose the Compressed Multi-Fragmented Signature File (C-MFSF)
method that extends MFSF by compressing the sparse bit dices of MFSF.
Compressing the bit dices of MFSF reduces both the space overhead and the time
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required to retrieve a bit dice while it requires extra time to decode a compressed bit
dice. To reduce the decoding time we propose a smple compression method, Fixed
Code (FC), that also provides merging compressed bit dices without decompressing
it. Also, in dynamic databases, where record additions are frequent, compressed bit

slices can be extended incrementally without completely decompressing them.

Experiments with C-MFSF show that retrieving only two bit dices is sufficient to
answer asingle term query. For queries containing more than one term at most one bit
diceisretrieved for each query term. Inverted file methods require at least two disk
accesses (one disk access for searching the term in the lookup table and one disk
access for retrieving the posting list of the term) for each query term. Most of the
compressed bit dlices of a C-MFSF with N = 106 fit an 8KBytes disk block (the
effective block size of disks can be increased using the bucket concept [SALZ88] if
required) and usudly retrieving a bit dice of C-MFSF from the disk requires only one
disk access. Therefore, for single term queries both methods require two disk
accesses. For the queries containing more than one term, C-MFSF requires fewer

number of disk accesses than the inverted file method.
8.2 Contributions of the Thesis

The major contributions of the thesis can be summarized as follows.

a. The storage structures of bit-diced signature files and inverted files have some
common properties but they are different methods. However, the differences have

not been defined clearly. We provide a clarification of this.

b. The response time of BSSF depends on the signature size. Using an improper
signature size for BSSF may unnecessarily result in increased response time and
higher space overhead. We derive an exact formula that finds the optimum

signature size for a given database instance by minimizing the response time.

c. For BSSF, high weight queries unnecessarily require processing many bit dices in
multi-term query environments. We define a partial evaluation strategy and derive
an exact formula to find the optimum number of bit dice evaluations. The partia

evaluation strategy uses a subset of the on-bits of a query signature.
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d. We propose a new signature file optimization method, Partially evaluated Bit-
Sliced Signature File (P-BSSF). P-BSSF combines optimal selection of S value for
a given signature size with the partial evaluation strategy in a multi-term query
environment. During the selection of the optimal S value, we consider the
submission probabilities of the queries with various number of terms. Therefore, P-
BSSF balances the trade off between fewer dice processing and resolving more

false drops; therefore, increases the performance.

e. In experiments with real data we observe hit-dices with too low or too high on-bit
densities. Since the partial evaluation approach may use a subset of the on-bits of a
query signature, the selection method of the on-bits used in the query evaluation
affects the results of the experiments. Therefore, we tested three different query
on-bit selection methods (SS, MF, and RR) in experiments with rea data and we
show that the RR method obtains smilar results with the MF method. Since RR
maximizes equal contribution of each query term to the query evaluation we prefer

to useit.

f. The stopping condition defined for P-BSSF improves the system performance by
processing alimited number of bit slices. To further improve the performance of P-
BSSF we propose a new signature file organization and query evaluation method,
Multi-Fragmented Signature File (MFSF). A MFSF contains vertical fragments
(sub hit-diced signature files) with variable on-bit densities that provides better
optimization of multi-term queries. MFSF provides decreasing response time for

increasing number of query terms.

g. Usually, records of unformatted databases contain varying number of terms. False
drop estimation formulas used so far assume the existence of the same (average,
Davg) Number of terms per record and this causes some error in the estimation of
the number of false drop records (FD). We propose a more accurate false drop
estimation method, the Partitioned False Drop estimation method (PFD), for the
databases with varying number of distinct termsin the records. In PFD, the records
of a database are conceptually divided into digoint partitions according to the

number of distinct terms in the records. The conceptual partitioning of records
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decreases the differences among the numbers of distinct terms in the records of a

partition and FD is estimated more accurately.

h. For the databases with varying number of terms adjusting the value of S according
to the optimality condition may produce poor performance for the sequential
signature file method. We list other optimization methods for the sequential

signature file method and compared them.

i. PFD is applied to GFSSF, P-BSSF, and MFSF methods. The performance increase
obtained by estimating FD with PFD is measured in experiments with real data.

j. Most of the bit dices of a MFSF are sparse. We propose the Compressed Multi-
Fragmented Signature File (C-MFSF) method that extends MFSF by compressing
the sparse bit dices of MFSF. The C-MFSF approach increases the performance of
MFSF in terms of response time and space overhead. We also propose a smple

compression method that provides efficient merging of compressed bit slices.
8.3 Directionsfor Future Research

C-MFSF provides efficient processing of conjunctive queries with many terms while it
also provides desirable response times for the queries containing a few terms. The
performance of MFSF increases for increasing number of query terms. Therefore, C-

MFSF opens new research directions. We list some of them below.

a. In the vertica partitioning methods the same signature size (fixed F) is used for dl
records irrespective of the number of terms in the records. The signature file
optimization algorithms that use the partitioned fase drop estimation method
(PFD) adjust the value of S such that minimum response time is obtained with the
fixed F constraint. However, In Section 6.3 we show that adjusting the value of F
and S with respect to the distinct number of terms of records obtains up to 35%
performance improvement in terms of response time for BLISS-1. Similar
performance improvements can be obtained with alternative file organization
methods for vertical partitioned signature files. One such method for SP = 0, is
dividing the record file and the signature file physicaly with respect to the record
lengths. This can be considered as the physical counterpart of the conceptual

partitioning of records proposed by the PFD approach.
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b. Searching with partialy specified query terms, (i.e., using a wildcard character, *,

that matches any sequence of letters) may require accessng many vocabulary
entries in the IF method. To provide searching with wildcard character each term
may be decomposed into n-grams and each n-gram is indexed [WIT94]. Faloutsos
proposes to divide a term into successive overlapping triplets. A term signature is
obtained by superimposing the signatures of the triplets extracted from that term
[FAL85b]. Since the partial query evaluation is an inexact match method, C-MFSF

can be used to evaluate queries containing wildcard characters efficiently.

c. Ishikawa et al. use BSSF as set access facilities in object oriented database systems

[ISH93]. An instance of a multi-valued (or set valued) attribute of relationa
database systems can be considered as an unformatted record. Since C-MFSF
provides desirable response times for the queries with many terms, it can be used

to search amulti-valued attribute efficiently.

Usudly, IR systems are accessed simultaneoudy by many users [COU9Y4].
Therefore, an IR system serves many users in a time sharing approach and
evaluates hundreds of queries at the same time. Since the partial evauation
approach of C-MFSF uses a subset of the query signature on-bits, selecting a bit
dice for query evaluation that can also be used for other queries decreases the
number of disk accesses and improves the performance of the IR system. This
needs further investigation for C-MFSF.

e. The superimposed signature file approach represents each record with a fixed size

f.

bit string which facilitates parallel processing of search requests [COU94,
GRA92, POG87]. Paralel processing of vertically partitioned signature files is
also studied in the literature [GRA92, PAN94]. C-MFSF can be adapted for

parallel processing environments.

In C-MFSF, most fase drops are generated by single term queries. Single term
queries have only S on-bits in their query signature and if one of them shares the
same bit dice with a high frequency term, more fase drops are produced than the
expected number. The effect of high frequency terms increases for decreasing S
values. To obtain better performance with low weight queries, the frequency of the

terms must be considered in the signature file optimization [AKT93b].
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APPENDICES



A. Definition of More Frequently Used Acronyms

Defined in
Acronym Full Name Section
AFD-GFSSF Average False Drop estimated Generalized Frame
Sliced Signature File 6.4
AFD-MFSF  Average False Drop estimated Multi Fragmented
Signature File 6.5

AFD-SSF Average False Drop estimated Sequential Signature File 6.3

BC bit Block Compression 222
BRTM Binary Record Term Matrix 212
BSSF Bit-Sliced Signature File 1.2

B’ SSF extended Bit-Sliced Signature File 4.3
CBS Compressed Bit Slices 2.3
C-MFSF Compressed Multi-Fragmented Signature File 1.3
DCBS Doubly Compressed Bit Slices 24

FC Fixed Code 7.2

FD number of False Drop records 1.3
FFFS Fixed F Fixed S 6.3
FFFS Fixed F Varying S 6.3
FSB Fixed Size Block 2213
FSSF Frame-Sliced Signature File 22312
FWB Fixed Weight Block 2213
GFSSF Generalized Frame-Sliced Signature File 1.2
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HW High Weight (query case) 34

IF Inverted File 2.
IFD Individual False Drop estimation method 6.2
IR Information Retrieval 1.
IP Improvement Percentage 31
LHSS Linear Hashing with Superimposed Signatures 22321
LW Low Weight (query case) 34
MARC MA chine Readable Catal oging 3.2
MF Minimum op First query signature on-bit Selection 4.7
MFSF Multi-Fragmented Signature File 13
NFD No False Drop 24
P-BSSF Partialy evaluated Bit-Sliced Signature File 1.3
PFD Partitioned False Drop estimation method 1.3

PFD-GFSSF Partitioned False Drop estimated Generalized Frame
Sliced Signature File 6.4
PFD-MFSF  Partitioned False Drop estimated Multi Fragmented
Signature File 6.5

PFD-SSF Partitioned False Drop estimated Sequential Signature

File 6.3
RL Run Length encoding 222
RPT Record Pointer Table 21
RR Round Robin query signature on-bit Selection 4.7
SC Superimposed Coding 2212
SF Signature File 2.
SS Sequential query signature on-bit Selection 4.7
SPT Slice Pointer Table 74
SSF Sequential Signature File 1.2
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TFD
ub
VBC
VFVS

WS

Standard Deviation of D

Total number of False Drops
Uniform Distribution (query case)
Variable bit-Block Compression
Varying F Varying S

Word Signature
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3.2
6.5
34
222
6.3

2211



B. Definition of More Frequently Used Symbols (used in calculations)

Defined in

Symbol  Definition Section
bs on-bit density of sth bit slice used in query evaluation 5.2
f number of fragments 51
fd false drop probability 2.2
fdj false drop probability after processing i bit dices 4.4
fdw(Q);  falsedrop probability for at term query 4.1
k number of framesin a GFSSF 4.3.2
m number of bits to be set by each term in aframe 4.3.2
n number of frames selected to set bits 4.3.2
op average on-bit density 4.4
opr average on-bit density in rth fragment 51
S size of aframe 4.3.2
t number of query terms 1.3
tmax maximum number of termsin a query 34
Wit total number of on-bitsin all fragments of at term

query signature 51
ADj average number of distinct termsinith partition 6.2
Bgze size of adisk block (bytes) 35
D number of distinct termsin ablock 2211
Davg average number of distinct termsin arecord 1.3
Dmax maximum number of distinct termsin arecord 3.2
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DOM

DOM;

FD

FDj

FDw(Q)t

Psize
PB

RB

RFDj+1

RT()

RT(F)
RT(St)
RTt

S

domain of D values

sub domain

size of asignature (bits)

size of rth fragment of F (bits)

expected number of false drops

expected number of false drops after processing i bit dices

expected number of false drops after processing all on-bits

of at term query

improvement percentage

lower bound of domain i

number of records in database

number of records in ith partition

partition i

probability of submission of at term query

size of arecord pointer (bytes)

number of record pointers in record pointer buffer
average number of disk block accesses required to
retrieve arecord

number of reduced false drops

response time as a function of number of bit slices used
in the query evaluation

response time as a function of F

response time as afunction of Sand t
response time for at term query

total umber of bits set by each term
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6.2
6.2

1.2

5.1

6.1
5.9

4.1
3.1
6.2

1.2

6.2

6.2

34

35

35

3.2
5.3

4.4
4.2
4.5

5.4

1.2



Smax
SP
Thyteop
Tread
Tresolve
Tscan
Tseek
Tdice

Tdicei

Twordop

TR

Ui

Vv

V(1)
W(Q)t
W(Q)(r.t)

Wgize

number of bits set by each termin rth fragment

maximum number of distinct term signatures

sequentiality probability of logically consecutive disk blocks

time required to perform bit operations between two bytes

time required to read a disk block

false drop resolution time for one record

time required to scan arecord to test it with query
time required to position read head of disk

time required to process a bit slice

time required to process a compressed bit slice of ith
partition

time required to perform abitwise AND operation
between two memory words and store the result in one
of the words

expected response time

upper bound of domaini

number of distinct termsin the database

variance of t

query weight for at term query

number of on-bitsin rth fragment for at term query

size of amemory word (in bytes)
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5.1

2211

35

3.3

35

35

3.5

35

35

7.3

35
4.5

6.2

212

4.1

35



C. Hashing Function and On-Bit Position Generator

/* Basic functions for signature generation.
FindRandSeed : Obtains random number seeds for a given term
FillRandom : Obtains bit positions to be set to “1” using the
random number seed generated by FindRandSeed

Compatibility: Borland C & gcc

*/

#include <string.h>
#include <stdlib.h>
#include <values.h>

/* Size of a local array. The array can be dynamic. However,
frequent calls to obtain on-bit positions may fragment available
memory .

*/

#define MAX RAND 500

/* FindRandSeed

Borland C uses unsigned int seeds which are too small. Therefore,
two different seeds are generated for each term.

Input Parameters:
kw : pointer to the term
kw_len: number of characters in the term

Output Parameters:
seedl : first random number seed
seed2 : second random number seed
*
/
void FindRandSeed(char *kw, int kw_len, unsigned *seedl, unsigned
*geed2)
{ unsigned rand seed, temp;
int i;
char *ptr;

rand_seed = 0U;
for ( i = kw_len, ptr = kw; i >= sizeof (unsigned) ;
i -= gizeof (unsigned), ptr += sizeof (unsigned))
{ memcpy (&temp, ptr, sizeof (unsigned)) ;
rand_seed += temp;
rand_seed >>= 1;
}
for ( ; i; --1i, ++ptr)
rand seed += (((unsigned) *ptr) << i );

*seedl = rand_ seed;

rand seed = (unsigned) *kw;

128



for (i = kw len - 1, ptr = kw + 1; i >= sizeof (unsigned);
i -= sizeof (unsigned), ptr += sizeof (unsigned))
{ memcpy (&temp, ptr, sizeof (unsigned)) ;
rand_seed += temp;
rand_seed >>= 1;
}
for ( ; i; --1i, ++ptr)
rand seed += (unsigned) *ptr;

/* If the seeds are equal, make them different */
*seed2 = rand_ seed;
if ( *gseedl == *geed2 )
*geed2 += (int) *kw;
return;

} /* end FindRandSeed */

/* FillRandom

Borland C uses unsigned int seeds which are too small. Therefore,
two different seeds are used for each term. A random number The
random numbers obtained

Input Parameters:
rand seedl : the first random number seed
rand seed2 : the second random number seed

max_val : random number (s) are generated between 0 and
max val - 1
set num : number of bit positions to be generated
distinct : TRUE --> generate set num distinct bit positions

FALSE --> generate not necesarily distinct bit
positiong (number of generated bit
positions may be less than set num)

Output Parameters:

set_pos : pointer to an integer array. At least set num
locations should be allocated before calling
FillRandom.

Returns: number of bit positions generated or error

*/

int FillRandom(unsigned *rand seedl, unsigned *rand seed2,
int max val, int set num, int *set pos, int distinct)
{ int try cnt, pos, i, k, set_cnt, rand pos;
unsigned randl [MAX RAND], rand2 [MAX RAND] ;
unsigned long randval;

if ( distinct && set num >= max val + 1)
return -1; /* Error: not enough bit positions */

try cnt = 0;

set_cnt = 0;

rand pos = set_num + 1;

randl [set num] = *rand seedl;
rand2 [set num] = *rand seed2;

for ( try cnt = 0; try cnt < set num; ++rand pos )
{ /* If all random numbers are used produce new numbers */
if ( rand pos > set num )
{ rand pos = 0;
#ifdef  TURBOC
srand (randl [set num]) ;
#else
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srandom(randl [set_num]) ;
#endif

for (i = 0; 1 <= set num; ++1i)
#ifdef  TURBOC _

randl[i] = random (MAXINT) ;
#else

randl[i] = random() ;
#endif

#ifdef _ TURBOC
srand (rand2 [set _num]) ;

#else

srandom(rand2 [set num]) ;
#endif

for (i = 0; 1 <= set _num; ++1i)

#ifdef  TURBOC
rand2[i] = random (MAXINT) ;

#else
rand2 [i] = random() ;
#endif
}
randval = (unsigned long) randl[rand pos] + (unsigned long)
rand2 [rand pos] ;
pos = randval % max val;

for ( k = 0; k < set_cnt; ++k)
if ( *(set_pos +k) == pos )
break;

/* if produced position is already in the list */
if ( k < set_cnt )

{ if ( ! distinct )

++try cnt;
continue;

}
* (set_pos + set _cnt) = pos;
++set_cnt;
++try cnt;

*rand seedl = randl[set num];
*rand_ seed2 rand2 [set num] ;

return set_cnt;
} /* FillRandom */
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D. List of Stop Words

The terms listed in decreasing word length are articles of different languages. In
MARC recordsthe Library of Congress subject headings are used. Therefore, most of
them do not contain noisy words. Title and other fields are indexed without any
stemming.

HENAS HENOS HINAR HINIR
EENE EINE EYNE FROM HEISHENA KATA SINA UPON VEYA

AND ANJBIR BUT DAS DEI DEN DER DET DIE EEN EGY EIN EIT ELSETT
EYN FOR GLI

HAI HEN HET HIN HOI ILE ISA LASLES LOS MIA NJE NJ NOT THE UNA
UNE UNO UNS

AL AM AN ASAT AZBY DEDI EI EL EN ET GL HA HE HI HO IN KA LA LE
HI'ISLO

LUNANY OFONOROSSI TATOUM UNUSVEYEYN YR

All single letters (A-Z)
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