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ABSTRACT

PHYSICALLY-BASED ANIMATION OF 
ELASTICALLY DEFORMABLE MODELS

Uğur Güdükbay
Ph.D. in Computer Engineering and Information Science 

Supervisor: Prof. Bülent Özgüç 
February 1994

Although kinematic modeling methods are adequate for describing the shapes 
of static objects, they are insufficient when it comes to producing realistic an
imation. Physically-based modeling remedies this problem by including forces, 
masses, strain energies, and other physical quantities. The behavior of physically- 
based models is governed by the laws of rigid and nonrigid dynamics expressed 
through a set of equations of motion. In this thesis, we describe a system for 
the animation of deformable models. A spring force formulation for animating 
deformable models is also presented. The animation system uses the physically- 
based modeling methods and the approaches from elasticity theory for animating 
the models. Three different formulations, namely the primal, hrjhrid, and the 
spring force formulations, are implemented so that the user could select the suit

able one for an animation, considering the advantages and disadvantages of each 
formulation. Collision of the models with impenetrable obstacles and constrain
ing model points to fixed positions iii space are implemented.

Keywords: Physically-based modeling, deformable models, animation, 
simulation, constraints, collision detection, collision response, 
partial differential equations, linear system solver.



ÖZET

ELASTİK OLARAK DEFORME EDİLEBİLEN MODELLERİN 
FİZİĞE DAYALI ANİMASYONU

Uğur Güdükbay
Bilgisayar Mühendisliği ve Enformatik Bilimleri Bölümü

Doktora
Tez Yöneticisi: Prof. Dr. Bülent Özgüç 

Şubat 1994

Kinematik modelleme yöntemleri nesnelerin şekillerini tanımlamakta yeterli ol
makla beraber gerçeğe uygun animasyon üretmek sözkonusu olduğunda yetersiz 
kalmaktadır. Fiziğe dayalı modelleme yöntemleri bu sorunu kuvvet, kütle, en
erji, v.b. büyüklükleri kullanarak çözmektedir. Fiziğe dayalı modellerin hareketi 
rijit ve rijit olmayan dinamik yasaları ile belirlenmiştir. Hareket denklemleri bu 
modellerin dinamik hareketini tanımlar. Bu çalışmada rijit olmayan (deforme 
edilebilen) modellerin animasyonu için geliştirilmiş bir sistem anlatılmaktadır. 
Bu sistem, modellerin animasyonu için fiziğe ve elastisite kuramına dayanan 
yaklaşımları kullanmaktadır. Aynı zamanda, deforme edilebilen nesnelerin ani
masyonu için yeni bir yöntem (“yay kuvvet yöntemi”) geliştirilmiştir. Animasyon 
sisteminde “primal”, “hibrid”, ve “yay kuvvet” yöntemleri kullanılarak modeller 
hareket ettirilmektedir. Bu yolla kullanıcı yöntemlerin avantaj ve dezavanta
jlarına göre modele uygun olan yöntemi seçebilmektedir. Modellerin sabit en
gellerle çarpışması ve modeller üzerindeki bazı noktaların hareketinin kısıtlanması 
gibi seçenekler animasyonlarda kullanılabilmektedir.

A n ah ta r sözcükler: Fiziğe dayalı modelleme, deforme olabilen modeller,
animasyon, benzetim, kısıtlamalar, çarpışma tespiti, 
çarpışma sonrası hareket, kısmi türevsel denklemler, 
doğrusal denklem sistemi çözücüsü.
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Chapter 1

Introduction

The use of computer graphics and numerical methods for three-dimensional de
sign and modeling provides an interactive environment in which designers can 
formulate and represent shapes of objects. Modeling the shapes as a compo
sition of geometrically and algebraically defined primitives, simulating scenes 
with shading and texture, and producing usable design images are the most im
portant requirements for application areas such as Computer-Aided Design and 
Computer-Aided Manufacturing.

Currently, most of the methods used for modeling are kinematic. This be
comes a major drawback when we want to create realistic animation since these 
methods are passive; they do not interact with each other or with external forces. 
The behavior and form of many objects are determined by the objects’ gross 
physical properties. For example, how a cloth drapes over objects is determined 
by the surface friction, the weave, and the internal stresses and strains generated 
by forces from the objects. As another example, a chain suspended between two 
poles hangs in an arc determined by the force of gravity and the forces between 
adjacent links that keep the links from separating.

To achieve realism in animation a model should be able to follow pre-defined 
paths while still moving in an interesting manner and interacting with other 
models as real physical objects would do. To build and animate active mod
els, physically-based techniques should be used. These techniques facilitate the

1



CHAPTER 1. INTRODUCTION

creation of models capable of automatically synthesizing complex shapes and re
alistic motions that are attainable only by skilled animators. Physically-based 
■modeling achieves this by adding physical properties to the models [23]. Such 
properties may be forces, torques, velocities, accelerations, kinetic and potential 
energies, and heat. Physical simulation is then used to produce animation based 
on these properties. To this end, solution of the initial value problems is required 
so that the course of a simulation is determined by objects’ initial positions and 
velocities, and by the forces and torques applied to the object along the way.

Physical simulation alone is not enough since the animator also wants to 
“control” the motion of objects so that he can specify the goals of motion, the way 
motion should be performed, and so on. Physical simulation produces impressive 
results, but is difficult to control since an animator cannot easily establish an 
intuitive link between the parameters of a simulation and the resulting motion. 
Besides, physiciil simulation is computationally expensive. Due to these reasons, 
it is not in wide use. However, researchers continue to present faster and simpler 
formulations to build and control the motion of models [3, 12, 45, 47]. Some of 
the proposed methods are related to the animation* of models composed of parts 
which are connected by joints, namely articulated bodies (such as humans and 
robots) [2, 4, 15, 18, 29, 31, 43].

Constraints provide a unified method to build objects and animate them [26]. 
The models assemble themselves as the elements move to satisfy the constraints. 
Geometric constraints, namely attachment constraints, are used to create com
plex models from primitive bodies. In other words, they model the joints between 
the links of a complex model. There are other constraints, such as “point-to- 
path” constraints, which can be used to control the motion of the models. Such 
constraints are also called “kinematic constraints.”

*A useful bibliography of computer animation can be found in [39].



1.1 A pplication Areas for A nim ation

Animation covers all changes that have a visual effect, which are time-varying po
sition {motion dynamics)^ shape, color, transparency, structure, and texture of cin 
object {update dynamics), and changes in lighting, camera position, orientation, 
and focus, and even changes of rendering technique.

The most important application areas of animation are the entertainment 
industry, education, industrial applications such as control systems and flight 
simulators for aircraft, and scientific research. The animations in scientific visu
alization (scientific applications of computer graphics) are generated from simu
lations of scientific phenomena. The results of the simulations may be large data 
sets representing 2D or 3D data (e.g., in the case of fluid-flow simulations); these 
data are converted into images that then constitute the animation. At the other 
extreme, the simulation may generate positions and locations of physical objects, 
which must then be rendered in some form to generate animation. This hap
pens, for example, in chemical simulations where the position and orientation of 

the various atoms in a reaction may be generated by simulation, but the anima
tion may show a ball-and-stick view of each molecule, or may show overlapping 
smoothly shaded spheres representing each atom. In some cases, the simulation 
program will contain an embedded animation language so that the simulation 

and the animation proceed simultaneously.

1.2 D eform able M odels

CHAPTER 1. INTRODUCTION 3

An important aspect in realistic animation is modeling the behavior of deformable 
objects. To simulate the behavior of deformable objects, we should approximate 
a continuous model by using discretization methods, such as finite difference and 
finite element methods. For finite difference discretization, a deformable object 
could be approximated by using a grid of control points where the points are 
allowed to move in relation to one another. The manner in which the points are 
allowed to move determines the properties of the deformable object. Simulating
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the physical properties (such as tension and rigidity), static shapes exhibited 
by a wide range of deformable objects (including string, rubber, cloth, paper, 
and flexible metals) can be modeled. For example, to obtain the effect of an 
elastic surface, the grid points are connected by springs. The physical quantities 
cited earlier should be used to simulate the dynamics of these objects. Various 
researchers [11, 16, 32, 30, 37, 36, 44] presented discrete models which are based 
on elasticity and plasticity theory and use energy fields to define and enforce 
constraints for modeling and animating deformable objects.

This thesis presents a new formulation for the animation of deformable mod
els, called the spring force formulation. In other formulations based on elasticity 
theory [primal and hybrid formulations), the elastic properties of the materials 
are stored in the stiffness matrix. However, the formation of the stiffness ma
trix automatically is very difficult and sometimes it becomes impossible to solve 
the differential equations for animating the models because of the numerical ill- 
conditioning problems. In this formulation, instead of forming the stiffness matrix 
automatically, elastic forces are represented as external spring forces. Although 
handling the elasticities using the stiffness matrix approach is elegant and the 
most suitable way, our approach is more effective and very fast.

An animation system which is implemented for the animation of nonrigid 
(deformable) models is also discussed. The system is built on top of a modeling 
system for representing 3D free-form objects, that uses superquadrics [6] and 
Bezier surfaces [9] as modeling techniques, and regular deformations [7] and Free- 
Form Deformations [34] for deforming these models to obtain irregular, free-form 
objects [25, 21]. The static models obtained by these methods can be animated 
using the techniques discussed in this thesis. The system is implemented using 
the C language [19] on a Unix^ workstation (Sun-3 or Sparc). The implementation 
uses the facilities provided by Sun View^ system such as windows, panels, and 
menus [24, 22].

tUnix is a registered trademark of AT&T Bell Laboratories.
tSun View [17] is a registered trademark of Sun Microsystems, Inc.
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1.3 T he Organization of the Thesis

In Chapter 2, constraint-based methods for animation are discussed. Different 
uses of constraints are also given.

In Chapter 3, the collision detection and response problem is explained. Dif
ferent algorithms to solve this problem are discussed together with their applica
bility to rigid, flexible, and articulated bodies.

In Chapter 4, a short description of the methods proposed by Terzopoulos et 
al. [37, 36, 38] for elastically deformable models is presented. Then, the imple
mentation details of these methods in the context of our system, and algorithmic 
solution of the problems, such as collision of flexible models with impenetrable 
obstacles, are explained. A spring force formulation for animating deformable 
models is also presented together with its implementation details. Different for
mulations are compared to each other in terms of their processing times and their 
ability to model elastic properties.

In Chapter 5, some simulation results representing the features of our system 

are presented.
Chapter 6 gives conclusions and suggestions for further research.



Chapter 2

Constraint-Based M ethods for 
Anim ation

A good deal of research has been done towards the use of constraint methods to 
create realistic animation [45, 46, 47, 32]. Many constraint-based modeling sys
tems have been developed, including constraint-based models for human skeleton 
[4] (in which the connectivity of segments and limits of angular motion on joints 
are specified), the dynamic constraints [8], and the energy constraints [44].

Constraints provide a way to specify the behavior of physical objects in ad
vance without specifying their exact positions, velocities, etc. In other words, 
constraints are partial descriptions of the objects’ desired behavior. So given a 
constraint, we must determine the forces to meet the constraint and then find 
forces to maintain the constraint. For example, consider a bead sliding freely on 
a rigid wire (Fig. 2.1). The behavior of the bead can be described by the fact 
that it will stay on the wire during its motion no matter what forces act on it. To 
keep the bead on wire during its motion, a constraint force fc must be applied. 
If fa is the force applied to the bead at any time and fc is the constraint force 
then the total force f  = f^ + f^ = kt where t is the tangent vector to the wire. 
In other words, fc is the force to be added to the applied force to make the bead 
accelerate in a manner consistent with the constraint.

Constraint-based modeling systems allow the user to specify a collection of
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Figure 2.1: A bead sliding freely on a rigid wire.

constraints that the parts of a model are supposed to satisfy. A model may be 
underconstrained, in which case there are additional degrees of freedom that the 
modeler can adjust (e.g., the location of the point of contact of a sphere and 
a cube), or overconstrained, in which case some of the constraints may not be 
satisfied (which could happen if both the top and bottom of the sphere were 
constrained to lie on the top face of the cube). In constraint-based modeling, the 
constraints must be assigned a priority, to satisfy the most important constraints 
first.

In energy-constraint systems, constraints are represented by functions that are 
nonnegative everywhere, and are zero exactly when the constraints are satisfied. 
(These are functions on the set of all possible states of the objects being modeled.) 
These are summed to give a single function E. A solution to the constraint 
problem occurs at a state for which E  is zero. Since zero is minimum for E  (its 
component terms are all nonnegative), such states can be located by starting at 
any configuration and altering it so as to reduce the value of E. The minimum 
is found by way of numerical methods.

The specification of constraints is complex. Certain constraints can be given 
by sets of mathematical equalities (e.g., two objects that are constrained to touch 
at specific points), or by sets of inequalities (e.g., when one object is constrained 
to lie inside another). Other constraints are more difficult to specify. For example, 
constraining the motion of an object to be governed by the laws of physics re
quires the specification of a collection of differential equations. Such constrained 
systems, however, lie at the heart of physically-based modeling.
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2.1 The U ses o f Constraints

Constraints can be used for different purposes in animation (cf. Fig. 2.2) [8]:

• Point-to-nail constraint: This is used to fix a point on a model to a user- 
specified location in space. The body can make a pendulum motion about 
the constrained point, but the constrained point may not move.

• Point-to-point (attachment) constraint: This is used to attach two points on 
different bodies to create complex models from simpler ones. In other words, 
attachment constraints model the joints between bodies. The bodies may 
move around freely, as long as the two constrained points stay in contact.

• Point-to-path constraint: This type of constraint requires some points on 
a model to follow an arbitrary user-specified path (a trajectory which is 
specified as a function of time). Here, the rest of the body is allowed to 
move according to the forces and torques acting on the body.

• Orientation constraint: This type of constraint is used to align objects by 
rotating them. •

• Other constraints, such as point-on-line which restricts a point to move 
on a given line, sphere-to-sphere which requires two spheres to touch while 

sliding along each other, etc.
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nail nail

Point-to-nail Point-to-point

Figure 2.2: Examples of constraints.



Chapter 3

Collision D etection and Response

When several objects are involved in a computer animation at once, the prob
lem of detecting and controlling object interactions is encountered. In such an 
animation, we may have more than one object moving around, or we may have 
impenetrable obstacles (such as walls) that do not move. When no special atten
tion is paid to object interactions, the objects will sail through each other; this 
is usually not physically reasonable and produces a disconcerting visual effect. 
Whenever two objects attempt to interpenetrate each other (i.e., the surface of 
one object comes into contact with the surface of a second object), a collision is 
said to occur [5, 28].

The general requirement that arises then is an ability to detect collisions. Most 
animation systems at present do not provide even minimal collision detection, but 
require the animator to visually inspect the scene for object interactions and re
spond accordingly. This is time consuming and difficult even for keyframe or 
parameter systems where the user explicitly defines the motion; it is even worse 
for procedural and dynamical animation systems where the motion is generated 
by functions and laws defining their behavior. Although automatic collision de
tection is expensive to code and to run, it is a considerable convenience for an
imators, particularly when more automated methods of motion control, such as 
dynamics or behavioral control, are used.

The other related issue is the response to a collision once it is detected. Even 
keyframe systems could benefit from automatic suggestions about the motion

10



CHAPTER 3. COLLISION DETECTION AND RESPONSE 11

of objects immediately following a collision; animation systems using dynamic 
simulation inherently must respond to collisions automatically and realistically. 
Linear and angular momentum must be preserved, and surface friction and elas
ticity must be reasonable. Collision response algorithms can be classified into 
two groups:

• Analytical methods^ which are limited to rigid and articulated objects, are 
typically faster. Analytical algorithms could be used within a kinematic 
animation system.

• Penalty, or spring methods, which introduce restoring spring forces when 
objects inter-penetrate each other. These methods are more general, work
ing equally well for flexible, rigid, and articulated bodies. They could not 
be used within a kinematic animation system since they assume the ability 
to use the dynamics equations of motion to predict the motion immediately 

after impact.

In the following, collision detection and response algorithms are explained in 
detail.

3.1 Collision D etection  A lgorithm s

Collision detection involves determining when objects penetrate each other. It is 
clearly an expensive operation, particularly when large numbers of objects with 
complex shapes are involved. Another issue is the ability to detect simultane
ous collisions (multiple contacts at the same time). Furthermore, two objects 
may collide in such a way that a region, rather than a set of isolated points, 
may contact. Collision detection has been extensively pursued in the fields of 
CAD/CAM and robotics [1]. Some of the proposed algorithms solve the problem 
in more generality (and at higher cost), and some others do not easily produce 
the collision points and the normal directions necessary if collision response is 
to be calculated. Finally, many collision detection algorithms are quite intricate 
and must deal with assorted special cases.
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3.1.1 C ollision D etection  for F lexib le Surfaces

Flexible surfaces are generally modeled as a grid of points which are connected 
to form quadrilaterals or triangles. Collisions between surfaces are detected by 
testing for penetration of each vertex point through the planes of any triangle, 
or quadrilateral, not including that vertex (thus, self-intersection of surfaces is 
detected). Initially, the surfaces should be assumed disjoint. For each time step of 
animation, the positions of points at the beginning and at the end of the time step 
must be compared to see if any point went through a triangle, or quadrilateral, 
during that time step. If so, a collision has occurred. Consequently, the time 
complexity of such an algorithm is 0{nm) for n triangles, or quadrilaterals, and 
m points. A correct test must consider edges and triangles, as polyhedral objects 
can collide edge-on without any vertices being directly involved. However, in 
many cases merely testing points versus triangles produces acceptable results.

3.1.2 C ollision D etection  for Convex Polyhedra

The detection of collisions between solids (or closed surfaces) that have a distin
guishable inside and outside could be treated somewhat differently. The objects’ 
implicit (inside-outside) functions can be used for detecting collisions. We have 
used this approach in our animation system to detect the collisions of deformable 

models with impenetrable obstacles.
A very important problem with collision detection algorithms is that they 

may fail to detect a collision if one object moved entirely through another during 
a single time step. To minimize the frequency of occurrence of such a failure, 
time steps should be reduced; this is the case in dynamic animations.

3.2 C ollision R esponse A lgorithm s

After detecting collisions between two objects, the objects should move in a 
physically correct manner. Collision response algorithms are developed to achieve 
this goal.



CHAPTER 3. COLLISION DETECTION AND RESPONSE 13

3.2.1 A n alytica l Collision R esponse A lgorithm s

An analytical solution for the collision of two arbitrary objects depends on the 
conservation of momentum during a collision, and results in a new angular and 
linear velocity for each body [5]. Thus, such a solution bypasses the question 
of collision forces and can be used independent of dynamic simulation, assuming 
information concerning the body’s mass and mass distribution is provided. Ana
lytical solutions are typically faster for strong collisions, because the solution need 
only be found once. However, for gentle collisions, such as a body resting quietly 
on top of another, spring solutions may be desirable. An important deficiency of 
analytical methods is that they are not suitable for flexible bodies.

3.2.2 P en alty  (Spring) M ethods for C ollision R esponse

Penalty methods introduce restoring forces when objects inter-penetrate each 
other [37, 44]. These methods do not generate any contact surface between in
teracting objects but instead use the amount of local interpenetration to find 
a force that pushes the objects apart. They are computationally expensive for 
rigid bodies, give only approximate results, and may require different simulation 
conditions. These undesirable behaviors arise from the attempt to model infinite 
quantities (such as rigidity) with finite values. In particular, the differential equa
tions that arise using penalty methods may be “stiff” and require an excessive 
number of time-steps during simulation to obtain accurate results. The advan
tages of penalty methods are that they are easy to implement, and are easily 
extensible to non-rigid bodies. We have used this approach in our animation 

system.



Chapter 4

Nonrigid M odels

To animate nonrigid objects in a simulated physical environment, we should use 
the methods of elasticity theory. Elasticity theory provides methods to construct 
the differential equations that model the behavior of nonrigid curves, surfaces, 
and solids as a function of time. Real materials exhibit both elastic and inelastic 
behavior. Some materials undergo perfectly elastic deformations so that when 
the forces acting on the materials are removed, objects restore themselves to their 
natural shapes completely. However, there are other materials, such as cloth and 
paper, that restore themselves to their initial shapes slowly (or partially) upon 
removal of the forces that cause deformations.

To model elastic materials, physical properties such as tension and rigidity 
should be simulated. In this way, static shapes of a wide range of deformable ob
jects, including string, rubber, cloth, paper, and flexible metals, can be modeled. 
Dynamics of these materials can be simulated by including physical properties, 
such as mass and damping. The simulation involves numerical solution of the 
partial differential equations that govern the evolving shape of the deformable 
object and its motion through space.

14
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4,1 Form ulation of Deform able M odels

To simulate the dynamics of elastically deformable models, we use two existing 
formulations: the primal formulation [37] and the hybrid formulation [38].

4.1.1 Prim al Form ulation

Here, a deformable model is formulated by using the material coordinates of 
points in the body (denoted by fî). For a solid body u = (ui,?i2,U3) (for a sur
face u = («1 ,^2) and for a curve u = (̂ î)) denotes the material coordinates. 
The Euclidean 3-space positions of points in the body are given by time-varying 
vector-valued function x(u, t) =  [xi(u,/), X2(u, i), xs(u, i)]. The body in its nat
ural rest state is given by x°(u) = [ a ; i ( u ) , . ^^ ( u ) ]  (Fig. 4.1). The equations 
of motion for a deformable model can be written in Lagrange’s form as follows 
(this should hold for all u in the material domain H):

d , dx. dx 6e(x) (4.1)

where yu(u) is the mass density of the body at u, 7 (u) is the damping density of 
the body at u, f(x, i) is the net externally applied force, and £(x) is the energy 
functional which measures the net instantaneous potential energy of the elastic 
deformation of the body.

The shape of a body is determined by the Euclidean distances between nearby 
points. As the body deforms, these distances change. Let u and u -f du denote 
the material coordinates of two nearby points in the body. The distance between 
these points in the deformed body is given by

dl =  Gjjdujduj, (4.2)
h3

(4.3)

where the symmetric matrix 
^  . dx dx

is the metric tensor, which is a measure of deformations. (The dot indicates the 
scalar product of two vectors.)
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Figure 4.1: Geometric representation of a deformable body for primal formula
tion.

Two 3D solids have the same shape (differ only by a rigid body motion) if 
their 3 X 3 metric tensors are identical forms of u =  [u\^U2,u^^ for all u in the 
material domain fl. Two surfaces have the same shape if their metric tensors G 
as well as their curvature tensors B are identical forms of u =  [^1 ,^ 2], for all u 
in the material domain Ll. The components of the curvature tensor are

d'^xBij{x{u)) =  n · (4.4)
duiduj ’

where n = [ni,ri2,n 3] is the unit surface normal. Two space curves have the 
same shape if their arc length s(x(u)), curvature k{x {u)), and torsion r(x(u))



CHAPTER 4. NONRIGID MODELS 17

are identical forms of u = [ui]. (See [13] for a detailed discussion of these formu
lations.)

Using the above differential quantities, potential energies of deformation for 
use in Lagrange equations can be defined as the norm of the difference between 
the fundamental forms of the deformed body and those of the undeformed body. 
This norm measures the amount of deformation away from the natural shape 
so that the potential energy is zero when the body is in its natural shape and 
increases as the model gets increasingly deformed away from its natural shape.

If the fundamental forms associated with the natural shape are denoted by 
the superscript 0, then the strain energy for a curve can be defined as

e(x) =  [  w^(s — + w^{k — + w^{t — T°)^du ,
JQ

(4.5)

where w^, and xiP are the coefficients for the curve, showing the amount of 
resistance to stretching, bending, and twisting, respectively. The strain energy 
for a surface can be defined in a similar way:

Kx) = iJ Çl
G -  G °||L  -b ||B -  B0||2 (4.6)

where the weighted matrix norms || · ||wi and || · ||w2 involve the weighting functions 

• ■(ui,U2) and w'fj{ui^U2). Analogously, a strain energy for a deformable solid is

yj2du\du2·, 

llw) and II · I

w t

'(x) =  /  ||G — G°\\lfiduidu2du3
Jq

(4.7)

involves the weighting function tyl (ui, ti2,where the weighted matrix norm || ·

U3)·
These energies denote the amount of energy to restore the deformed objects 

to their natural shapes. The net external force in Lagrange’s equations is the 
sum of various types of external forces, such as gravitational force, spring forces, 

viscous forces, etc.
The weighting functions in the above energies (wjj(ui, U2) and wfj(ui,U2) for 

an elastic surface) determine the properties of the simulated deformable mate
rial. The weighting function wfj(ui,U2) determines surface tensions and sheer 
strengths which minimize the deviation of the surface’s actual metric coefficients
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Gij from its natural coefficients G^j. As wjj is increased, the material becomes 
more resistant to length deformation, with w\^ and 1̂ 22 determining this resis
tance along «1 and «2, and w\2 = determining the resistance to shear defor
mation. The functions control surface rigidities which act to minimize
the deviation of the surface’s actual curvature coefficients Bij from its natural 
coefficients Bfj. As wfj is increased, the material becomes more resistant to bend
ing deformation, with wj-i and w 2̂ determining this resistance along U\ and U2, 
and WI2 =  determining the resistance to twist deformation. To simulate a 
strechy rubber sheet, for example, we make w]j relatively small and set wfj = 0. 
To simulate relatively stretch-resistant cloth, we increase the value of lajj. To 
simulate paper, we make wjj relatively large and we introduce a modest value for 
lu'fj. Springy metal can be simulated by increasing the value of wjj [37].

To create animation with deformable models, the differential equations of mo
tion should be discretized and the system of linked ordinary differential equations 
obtained from the discretization process should be solved. For the discretization 
process, there are two basic ways. One way is to choose a finite number of points 
for a continuous model, and to replace derivatives by differences; this is called the 
finite difference method. The other way is to choose a finite number of functions, 
and to approximate the exact solution by a combination of those trial functions. 
If the functions are piecewise polynomials, then the pieces can be chosen to fit 
the geometry of the problem and a program can generate the polynomials. This 
method is called the finite element method. It allows a program to assemble 
the discrete problem and solve it. In our implementation, the finite difference 
method is chosen for discretization process since difference equations are easier 
to program and faster to run than a full finite element code.

4.1.2 H ybrid Form ulation

In this formulation, a deformable body is represented as the sum of a reference 
component r(u, t) and a deformation component e(u, t) (Fig. 4.2). The positions 
of mass elements in the body relative to a body frame (j) (whose origin coincides
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Deforming body

tion.

with the body’s center of mass and which should be evolved over time according 
to the rigid body dynamics to have a rigid body motion besides its elastic motion) 
are given by

q(u ,f) =  r(u, ¿) + e(u ,i). (4.8)

In this formulation, deformations are measured with respect to the reference 
shape r. Elastic deformations are represented by an energy e(e) that depends 
on the position of the reference (body) frame (j). The potential energy functional
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for the hybrid formulation can be written by using simple, linear restoring forces 
resulting from controlled continuity spline energies [35] as follows:

m=0\j\rzm ----J'i·
(4.9)

where j  = ( i i , . . .  Jd)  is a multi-index with \ j  |=  ji  -|---- -|- jd, and

Qm ^  9rn
 ̂ du^ . . .  d-iPd

(4.10)

(d = 1 for curves, d = 2 for surfaces, and d =  3 for solids). The energy density 
under the integral is a weighted sum of the magnitude of the deformation e and 
its partial derivatives with respect to material coordinates. The order p of the 
highest partial derivative included in the sum determines the order of smoothness 
of the deformation.

The weighting functions Wj(u) in 4.9 control the properties of the deformable 
model over the body coordinates as in the primal formulation. In the case of sur
faces (d = 2), the function wqo penalizes the total magnitude of the deformation; 
Wio and woi penalize the magnitude of its first partial derivatives; 1020, u>n and 
W02 penalize the magnitude of its second partial derivatives [38].

4.2 Im plem entation of the Prim al Form ulation

To simulate the dynamics of a deformable surface, we should discretize the follow
ing expression for the elastic force, which is the approximation of the variational 
derivative of the expression in 4.6.

e(x) = ^
9ui
d (  d x '

+ duiUj A
d^x '

duiUj ̂ (4.U)

where the functions aij(u,x)  and /3ij{u,x) determine the elastic properties of the 
material. The expressions for Qij{u,x) and /3ij(u,x) are as follows:
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a i j ( w , x )  =  wl̂ {u){Gij -  Gl) 

Aj(w,x) =  wl{u){Bij -  B^)

(4.12)

(4.13)

The discretization is achieved by applying finite difference approximation 
method.

Since the body coordinates of the models are in the unit square domain, 
ii =  0 < ui,U2 < 1, we discretize this domain as a regular {M +  1) x (Af + 1) 
discrete grid of nodes. Here, the inter-node spacings are h\ = 1/M and /i2 =  1/Â  
in the «1 and U2 directions, respectively. The nodes on the discrete model are 
indexed by integers [m,n] where 0 < m < M  and 0 < n < Thus, if x (which 
is a continuous vector function x(u,t)) is the 3D coordinates of the positions of 
points, then we discretize it by arrays of continuous time vector-valued nodal 
variables Xt[m,n] = x{mhi ,nh2,t).

Since the elastic force requires the approximations to the first and second 
derivatives of the nodal variables, we should first define them for the vector
valued position function X.

The forward difference operators

D fx [ m ,  n] =  (x[m +  1, n] — x[m, n])/hi  

D2 x[m, n] =  (x[m, n -f-1] — x[m, n])/h2

and the backward difference operators

Dj"x[m,n] =  (x[m,n] — x[m — l,n])//ii 

D^'x[m,n] = (x[m,nj — x[m ,n — l])//i2

can be used to define the forward and backward cross difference operators

Dj'jxfm, n] =  D^jx[m, n] =  D 2 x[m^ n] =

(x[m -f- l ,n  -f- 1] -  x[m -|- l,n] -  x[m,n -|- 1] -|- x[m, n])/Ai/i2

Z)f2x[m,n] =  D^ix[m,n] =  Z)fD^x[m,n] =

(x[m,nj — x[m,n — 1] — x[m — l,n] -|- x[m — l,n  — l])/Ai/i2

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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and the central difference operators

Diix[m,n] = Dj D^x[m,n] = (x[m + l,n] — 2x[m,n] + x[m — l,n ])//ii (4.20)

D22^[i'n,n] = D2 D2 X.[m,n] = (x[m,n + 1] — 2x[m,n] + x[m,n — l])/hl (4.21)

Now, using the grid functions x[m, n], u;h[m,n], u;? [m,n] to represent their con

tinuous counterparts, we can discretize 4.12 and 4.13 as follows:

n] =  w]j[m, n]{Dfx[m, n] ■ Dfx[m, n] — G° [m, n]) (4.22)

bij[m, n] = w^j[m, ra](n[m, n] · DfjX[m, n] -  [m, n]), (4.23)

where the superscript (+) indicates that the forward cross difference operator is 

used when i ^  j ,  and

. i)ji'‘x[m, ra] X D^x[m, n]
^ I Z)/'x[m,n] X i)Jx[m ,n]

(4.24)

is the surface normal grid function. The elastic force in 4.11 can be approximated 
as

2
i[m,n]= ^  - D i  {aijDfx[m,n]) + Dij{bijDfjx[m,n]). 

i,j=l
(4.25)

To introduce free boundary conditions on the free edges of a surface, where the 
inner difference operators in 4.25 attempt to access nodal variables outside the 
discrete domain, we set the value of the inner difference operators to zero.

Expressing the grid functions x[m,n] and e[m,n] as x and e in grid vector 
notation, which denote the 3D positions of model points and elastic force for 
each model point stored in (M + 1) x {N + 1) vector for an {M + 1) x {N + 1) 
discrete grid of a deformable model, elastic force can be written in vector form
as

i  = K(x) . X, (4.26)

where K is an (M +  1)(A  ̂+ 1) x (M + l)(iV + l) matrix. K is a sparse and banded 
matrix. This becomes a major advantage when we solve the simultaneous system
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Figure 4.3: The band structure of the stiffness matrix K.

of second-order ordinary differential equations. The band structure of K is shown 
in Fig. 4.3.

Then, we should calculate the total external force for each point of the model. 
In order to achieve this, we should add the forces effecting a point, which are 
gravitational, viscous, collision, and constraint forces. The constraint forces are 
taken into account in the following way. When a constrained point tends to 
move, an opposite force for bringing it back to its original position is calculated 
and added to the total external force for that point. Each constrained point has 
an effect on the total external force for all points in the model depending on 
the difference between the body coordinates of the points. This coupling effect is 
taken into account automatically according to the elastic properties of the models. 
This method for calculating constraint forces gives good results for small time 
steps. For larger time steps, the model points make small oscillations since this 
approach corresponds to a corrective action.

The constrained points are specified by the user interactively. The system 
displays a grid specifying the body coordinates of each point existing in the 
model to be animated and the user selects the points to be constrained during 
the animation (that is, the points that will not move during the animation) 
using mouse buttons (Fig. 4.3). In other words, any point on a model could 
be constrained to a fixed location in space so that when the model is animated, 
the constrained points remain in their initial positions. The constraint force that 
connects a material point uq on a deformable model to a point po in space by a
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D E FO R M A B L E  M O D ELİ
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Figure 4.4: Screen dump during the specification of the parameters for an ani
mation.

spring IS

f^(u, t) = k{po -  x(uo, t))6{u -  Uq), (4.27)

where k is the spring constant and 8 is the unit delta function.
The forces due to the collision of deformable models with impenetrable ob

stacles are calculated using the obstacle’s implicit (inside-outside) function. The 
obstacle exerts a repulsive force on the deformable model which can be calculated 
as a function of the obstacle’s implicit function such that the force grows quickly 
if the model attempts to penetrate the obstacle. This is achieved by creating 
a potential energy function c exp{f(x)/^)  around each obstacle, where /  is the
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obstacle’s implicit function, and c and ^ are constants determining the properties 
of the obstacle. In our system, the user can select different obstacles to exist in 
an animation sequence by the help of a menu. Ellipsoids, toroids, hyperboloids 
are possible choices for an obstacle. The repulsive force due to an impenetrable 
obstacle (expressed using the gradient V of the potential energy function) is

f^(u, t) = - c  ( (V /(x ) /0  e x p (- /(x ) /0  · n) n, (4.28)

where n(u, ¿) is the unit surface normal vector of the deformable body’s surface. 
The implicit functions for different obstacles are given in Appendix A.

The mass density fi{u\,U2) and the damping density 7 (^ 1 ,« 2) are discretized 
as grid functions and 7 [m,n]. Let M be the mass matrix^ an (M +
!) ( //  + !) X (M + 1)(A  ̂+ 1) diagonal matrix with the /i[m,n] variables as diagonal 
elements, and C be the damping matrix constructed similarly from 7 [m,n].

Then the Lagrange equations can be expressed in grid vector form by the 
simultaneous system of second-order ordinary differential equations

(4.29)

where the net external force on the surface f(ui,U2) has been discretized into the 
grid vector f  which represents the grid function f[m,nj.

We integrate this system through time using a step-by-step procedure. Eval

uating K(x) at time t + At  and f at t, and substituting the discrete time approx

imations

^  «  (xt+Ai -X t-A i)/2A i

into 4.29, we obtain the semi-implicit integration procedure

A-iX(4.Ai =  g ,̂

where the (M + 1){N -|-1) x {M -|- 1){N + 1) matrix

A,(x,) =  K ( x , ) + ( — M + ,
2At

(4.30)

(4.31)

(4.32)

(4.33)
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and the effective force vector 

= it +

with

±t = Ut -  Xî- aî)/A î .

(4.34)

(4.35)

Applying the above semi-implicit procedure, we can obtain the dynamic solu
tion from given initial conditions Xq -̂nd ^  at i =  0. During each time step, we 
solve the sparse linear algebraic system in 4.32 for the instantaneous configuration 

using the preceding solution Xt ^ud [37].
Implementation of the hybrid formulation follows the same steps described 

for the primal formulation. The elastic force for the hybrid formulation can be 
written as the variational derivative of the expression in 4.9 as follows:

î(e) -  luooe -  (u ;io |j) -  { w o i § ^ )  + ^  +

(4.36)
9̂  (,,, d^e \

duid2 \ duidu2 /
, 92 / „ d^e\

+ 97f

Here, u = (wi,U2) are the surface’s material coordinates.
The only difference between the primal formulation and the hybrid formula

tion is that the sparse, banded stiffness matrix K is constant in hybrid formula
tion. The equations of motion can be expressed in semidiscrete form by a system 
of coupled ordinary differential equations. The system contains two ordinary dif
ferential equations for the translational and rotational motion of the model as 
if all of its mass is concentrated at its center of mass, and a system of ordinary 
differential equations whose size is proportional to the size of the discrete model. 
These equations are solved in tandem for each time step with respect to the initial 
conditions given [38].
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Figure 4.5: Numbering of the grid.

4.3 Spring Force Form ulation for Deform able 

M odels

In the previous sections, the primal and the hybrid formulations were presented 
and their implementation details were given. However, the formation of the stiff
ness matrix automatically is very difficult and sometimes it becomes impossible 
to solve the differential equations for animating the models because of the nu
merical ill-conditioning problems. In this section, a new formulation is presented. 
In this formulation, instead of forming the stiffness matrix automatically, elastic 
properties are represented as external spring forces. Although handling the elas
ticities using the stiffness matrix approach is elegant and the most suitable way, 

our approach is more effective and very fast.
The inter-node spacings on the grid are hi = LhfN, h2 =  Ly/M  in the 

horizontal and vertical directions, respectively. Initially, we take hi = h2 = h, 
for simplicity.
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We can apply external forces to many of the grid points at the same time. 
One type of such external force can be the gravitational force. These external 
forces are known. Besides, if some of the grid points are constrained to the fixed 
positions in space, then there will be some unknown spring (constraint) forces at 
these points.

The line segments in the grid (Fig. 4.5) will correspond to the spring elements. 
According to the initial positions of the grid points, there will be some spring 
forces on the model.

The equations of motion for a deformable model (this should hold for all grid 
points) are

M ^ x  + C ^ x  + K(x)x = f(x)dt^ dt
(4.37)

We can take the elastic force expression as an external force Îk = K( x) x  , and 
take f/c to the right hand side of the equation (4.37). This new form of the 
equation will simplify the formulation procedure.

The position vector x for the model points is as follows (T denotes the trans

pose of a matrix):

= [ x j  x f  . . .  x j , ]  (4.38)

where x,· represents all the position vectors of the grid points on the ¿-th row, 

and

x r  = [x io x i. • • • < « 1

where x*j is the position vector of the grid point {i,j) (*' = 0, 1, · · · , M ; j  =

0, i , - - - , i v ) .
In 4.37, M is the mass matrix^ an [M + 1)(A  ̂+ 1) x {M + L){N + 1) diagonal 

matrix which contains masses of the grid points as diagonal elements, and C is 
the damping matrix^ an (M + 1){N -j-1) x {M + 1){N + 1) diagonal matrix which 
contains dampers of the grid points as diagonal elements.

Note that 4.37 can be rewritten as

(4.40)
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In this way, there will be no need for calculating the entries of the stiffness matrix. 
Instead of this, it is necessary to find the expressions for the column matrix 
(external spring forces representing elasticities). The spring force vector can also 
be partitioned as

f-r _  fT . . .  fi  1Ia' — [Iq II Im J (4.41)

where the entries in the vector ] correspond to the spring
forces acting at the grid points.

Using the discussion in [41] (pp. 359-362), the terminal equation of a two- 
terminal spring component of free length i  in three-dimensional space is given 
as

fA' = k ( X i  -  X2 )  -  i
X l -  X 2 (4.42)
Xl -  X2 II

where Xi and X2 are the position vectors of its terminal points. Note that calcu
lation of the vector (xi — X2) is essential; it also appears in the second term of 
this expression. Equation 4.42 can be used to obtain expressions for the entries 
of fft' in 4.41.

For the grid points not on the boundaries, the elastic force is calculated by 
adding the spring forces applied to the grid point by its four neighbors.
If i = 1,2,··· , M  — 1 and j  = 1,2,·

fq = ^ ( X i j - X i j - l )

+ k [{Xi,j Xi-i,j)

+ k [ ( X i j - X i j + l ) - ^ ^

+ k (Xi,i -  X.+1 j)  -  ^ -X'+i,h

(4.43)

For the grid points on the boundaries, three neighbors have an effect on the 
elastic force (Fig. 4.7). For the grid points on the corners, only two neighbors 
have an effect on the elastic force (Fig. 4.8). The elastic force expressions for the 
grid points on the boundaries and corners are given in Appendix B.
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Figure 4.6: Interactions (couplings) between grid points (general case).

4.3.1 Im plem entation  o f the Spring Force Form ulation

• Since the initial position vectors of the grid points are known, the vector 
Îk can be calculated from the external spring force equations. •

• Then by solving the differential equation in 4.40 at the first step, next values 
of the position vectors of the grid points are determined.

• The next value of the vector £k is calculated and the process is repeated.

As initial positions, we have h ^  £ in general. Therefore f/i ^  0. In other 
words, there will be some internal stresses in the system. U h = £, then =  0. 
On the other hand, if hi ^  /12 , then Îk ^  0 initially (assuming that all the 
springs have the same lengths). We may select the lengths of the horizontal 
springs as li = hi and the lengths of the vertical springs as 2̂ = /̂ 2 · In this case, 
f/v =  0 initially, and some of the £ factors will change to £1 and the remaining 
ones to £2 in the external spring force equations. Other modifications are also 
possible; e.g., on the spring coefficients [k).
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Figure 4.7: Interactions (couplings) between grid points (boundaries).
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Primal Formulation
Number of 

Model Points
Preprocessing

Time
(millisec.)

Processing Time 
of One Frame 

(millisec.)
3 X 3 0 67
5 X 5 1017 83

10 X 10 2400 283
15 X 15 3950 600
20 X 20 6250 1183
25 X 25 9500 2000
30 X 30 14216 3883
35 X 35 21749 26182

Table 4.1: Preprocessing and processing times using the primal formulation.

4.4 Com parison of the Formulations

We have compared the processing times for generating an animation frame us
ing different formulations. To compute processing times, simple Bezier surfaces, 
having similar elastic properties, are animated using different formulations. Ta
bles 4.1, 4.2, and 4.3 give the processing times of the animations of the Bezier 
surfaces of different sizes, for the primal, hybrid, and spring force formulations, 
respectively. The processing times for each frame given in the tables include

• the time for calculating the external forces for each model point,

• the time for calculating the entries of the stiffness matrix*,

• the time for calculating the 3D positions of model points, and

• wireframe rendering time of the calculated frame.

The same information in the tables is also plotted as two graphs (Figs. 4.9, 
and 4.10) to compare the formulations in terms of the preprocessing times and

‘This is for the primal formulation; for the hybrid formulation it is included in the prepro
cessing time. For the spring force formulation stiffness matrix is not formed; external spring 
forces between model points are calculated for each frame.
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Hybrid Formulation
Number of 

Model Points
Preprocessing

Time
(millisec.)

Processing Time 
of One Frame 

(millisec.)
3 X 3 1483 67
5 x 5 2483 83

10 X 10 3700 233
15 X 15 5500 400
20 X 20 8200 650
25 X 25 12233 1050
30 X 30 18749 2017
35 X 35 31932 20166

Table 4.2: Preprocessing and processing times using the hybrid formulation.

Spring Force Formulation
Number of 

Model Points
Preprocessing

Time
(millisec.)

Processing Time 
of One Frame 

(millisec.)
3 x 3 0 67
5 x 5 950 83

10 X 10 2067 200
15 X 15 3500 433
20 X 20 5533 817
25 X 25 8383 1417
30 X 30 12350 2317
35 X 35 17766 3867

Table 4.3: Preprocessing and processing times using the spring force formulation.



Number of Model Points

Figure 4.9: Preprocessing times using different formulations.
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processing times. Although it seems from the graphs that the hybrid formula
tion is superior to the primal formulation, they are complementing each other 
for different elasticity properties. The nonquadric energy functional in primal 
formulation causes a nonlinear elastic force associated with the deformable body 

to appear in the partial differential equations of motion. Nonlinearity results 
because the elastic force attempts to restore the shape of the deformed body to a 
rest shape. The advantage of nonlinear elasticity is that it is in principle the most 
accurate way to characterize the behavior of certain elastic phenomena. How
ever, it can lead to serious practical difficulties in the numerical implementation 
of deformable models for animation. The hybrid formulation offers a practical ad
vantage for fairly rigid models, whereas primal formulation becomes unpractical 
due to the nonquadric energy functional with increasing rigidity and complexity 
of the models.

The spring force formulation generates animation frames faster than the pri
mal formulation. The hybrid formulation is superior to the spring force formu
lation for models having small size (less than 1000 model points). For larger 
models, spring force formulation is faster. The primal formulation is the most 
suitable formulation for highly rigid models. However, it is very difficult to form 
the stiffness matrix automatically. Spring force formulation bypasses this problem 
by modeling elasticities using external spring forces between model points.

An important advantage of the primal formulation over other formulations 
is that it is easier to establish an intuitive link between the weighting functions 
of the deformable models and the resulting elastic behavior. This is due to the 
nature of the weighting functions as explained in section 4.1.

4.5 Other M ethods for the A nim ation of Non- 

rigid M odels

The formulations that we have used employ continuous elasticity theory to model 
the shapes and motions of deformable models. There are other approaches to
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model and animate deformable models. In this section, some of these approaches 
are explained.

Within et al. formulate a model for nonrigid dynamics based on global defor
mations with relatively few degrees of freedom [45]. This model is restricted to 
simple linear deformations that can be formulated by affine transformations. The 
use of deformations that are linear in the state of the system causes the constraint 
matrices in equations of motion to be constant. So, pre-inverting these matrices 
yields an enormous benefit in performance. In [30], Pentland and Williams de
scribe the use of modal analysis to create simplified dynamic models of nonrigid 
objects. This approach breaks nonrigid dynamics down into the sum of indepen
dent vibration modes. This allows Pentland and Williams to achieve a level of 
control not possible with the massed equations normally used in dynamic simu
lation. This approach reduces the dimensionality and stiffness of the models by 
discarding high-frequency modes. High-frequency modes have no effect on lin
ear deformations and rigid body dynamics. Both of these methods achieve large 
computational savings at the expense of limited deformations.

Another method, based on physics and optimization theory, uses mathemati
cal constraint methods to create realistic animation of flexible models [32]. This 
method of Platt and Barr uses reaction constraints for fast computation of colli
sions of flexible models with polygonal models, and augmented Lagrangian con
straints for creating animation effects, such as volume preserving squashing, and 
the molding of taffy-like substances. To model the flexible objects, the finite 
element method is used in Platt and Barr’s work.

Thingvold and Cohen [40] define a model of elastic and plastic B-spline sur
faces which supports both animation and design operations. They develope “re
finement” operations for spring and hinge B-spline models which are compatible 
with the physics and the mathematics of B-spline models. Their model can be 
viewed as a continuous physical representation of a physical model rather than 
the more standard discretized geometry point mass models. The motion of their 
models is controlled by assigning different physical properties and kinematic con
straints on various portions of the surface.
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In [44], an approach to imposing and solving geometric constraints on parame
terized models is given. This approach is applicable to animation as well as model 
construction. Constraints are expressed as energy functions, and constraint sat
isfaction is achieved by solving energy minimization problems. Although this 
approach is not as realistic as the above three approaches because of the lack of 
physics, it is simple and general.

Metaxas and Terzopoulos [27] propose an approach for creating dynamic solid 
models capable of realistic physical behaviors starting from common solid prim
itives such as spheres, cylinders, cones, and super quadrics. Such primitives can 
“deform” kinematically in simple ways. For example, a cylinder deforms as its 
radius (or height) is changed. To gain additional modeling power they allow the 
primitives to undergo parameterized global deformations (bends, tapers, twists, 
shears, etc.). Even though their models’ kinematic behavior is stylized by the 
particular solid primitives used, the models behave in a physically correct way 
with prescribed mass distributions and elasticities. Metaxas and Terzopoulos 
also proposed efficient constraint methods for connecting the dynamic primitives 

together to make articulated models.
Breen et al. [10] propose a physically-based model and a simulation method

ology, which when used together are able to reproduce many of the attributes 
of the characteristic behavior of cloth. Their model utilizes a microscopic par
ticle representation that directly treats the mechanical constraints between the 
threads in a woven material rather than a macroscopic continuum approximation. 
Their simulation technique is hybrid, employing force methods for gross move
ment of the cloth and energy methods to enforce constraints within the material. 
Although limited only to cloth object behavior in scope, their approach is very 
realistic since a microscopic particle representation is utilized.

There are other physically-based models of flexible objects which are con
cerned only with the static shape. Weil [42] propose a geometric approach for 
interpolating surfaces to produce draped “cloth” effects. The cloths synthesized 
with his model contain folds and appear very realistic. The cloth is assumed 
to be rectangular, and is represented as a grid of three-dimensional coordinates.
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He uses the catenary curves to define the positioning of the points along a given 
thread.

Feynman [14] described a technique for modeling the appearance of cloth. 
His computational framework minimizes energy functions defined over a grid of 
points. Feynman derives his functions from the theory of elasticity and from the 
assumption that cloth is a flexible shell.



Chapter 5

Simulation Examples

This chapter gives some simulation examples produced by our animation system. 
The examples show the salient features that are present in the animation system.

5.1 Sim ulation Exam ples U sing Prim al and H y

brid Formulations

We have implemented both primal and hybrid formulation in our system so that 
the user can interactively select between them. In this way, the primal formulation 
can be employed for highly nonrigid models, and the hybrid formulation can be 
employed for highly rigid models.

In Fig. 5.1, we have used the primal formulation. The material properties 
are adjusted to simulate a membrane not resistant to elongation or contraction, 
and not resistant to bending. In this example, a discrete model of size 30 x 30 is 
constrained from its four corners and falls by the effect of the gravitational force.

In Fig. 5.2, a flat surface which has the same material properties as the 
surface in Fig. 5.1 and constrained from its center of mass falls by the effect of 
the gravitational force.

In Fig. 5.3, we have used the hybrid formulation and set the material prop
erties to simulate a paper. The model is constrained from three corners and a

41



CHAPTER 5. SIMULATION EXAMPLES 42

downward force is exerted on it.
In Fig. 5.4, an elastic model not resistant to elongation or contraction and 

not resistant to bending falls on an impenetrable obstacle which is an ellipsoid. 
The deformable model takes the shape of the obstacle when it collides with it. 
To get better results in collision simulations, we should either take a very small 
time step or use adaptive time stepping. Otherwise, we may detect collisions very 
late, namely after the model points penetrate the obstacle.

In Fig. 5.5, a flat surface not resistant to elongation or contraction and not 
resistant to bending falls on an impenetrable obstacle which is a toroid. The 
surface takes the shape of the toroid when it collides with it.

Shaded versions of these simulation are given in Figs. 5.6, . . .  , 5.10.

5.2 Sim ulation Exam ples U sing Spring Force 

Form ulation

In the spring force formulation, by setting the stifl"ness constants to different 
values it is possible to obtain different elastic properties. In Figs. 5.11, 5.12, 
and 5.13, a surface is assigned different elastic properties and constrained from 
different points. Each part of the figures shows the form of the surface after a 
specific number of animation frames. Initially, all the surfaces are flat.

In Fig. 5.14, a strechy sheet constrained from its three corners falls with the 
effect of gravity. In Fig. 5.15, a strechy sheet constrained from its four corners 
falls. In Fig. 5.16, a strechy sheet constrained from its center of mass falls. In 
Fig. 5.17, a piece of cloth collides with an impenetrable obstacle, which is an 
ellipsoid. In Fig. 5.18, a strechy sheet drops over a toroid. In Fig. 5.19, an 
elastic surface drops over a toroid with a very small hole. In Fig. 5.20, an elastic 

surface passes through a toroid.
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(a) (b)

(c) (d)

Figure 5.1: A highly nonrigid surface, constrained from its four corners, falls.



CHAPTER 5. SIMULATION EXAMPLES 44

CCTOk

vV'SSVvWs.:^\V\VVVW
i \ \ \ \ \ \ Vi \ \ \̂

(a) (b)

(c) (d)

Figure 5.2: A highly nonrigid surface, constrained from its center of mass, falls.



CHAPTER 5. SIMULATION EXAMPLES 45

(a)

(b)

Figure 5.3: A piece of paper, constrained from three corners, applied a downward 
force.
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(a) (b)
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(c) (d)

Figure 5.4: A highly nonrigid surface collides with an ellipsoid.
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(a) (b)

(c) (d)

Figure 5.5: A highly nonrigid surface collides with a toroid.
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Figure 5.6: Shaded version of the simulation in Fig. 5.1.
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Figure 5.7: Shaded version of the simulation in Fig. 5.2.
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Figure 5.8: Shaded version of the simulation in Fig. 5.3.
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Figure 5.9: Shaded version of the simulation in Fig. 5.4.
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Figure 5.10: Shaded version of the simulation in Fig. 5.5.
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(a) k= l (b) k=5

(c) k= 10 (d) k=20

(e) k=30

Figure 5.11: Different elastic surfaces, constrained from three corners, fall.
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(a) k= l (b) k=5

(c) k= 10 (d) k=20

(e) k=30

Figure 5.12: Different elastic surfaces, constrained from four corners, fall.
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(a) k= l (b) k=5

(c) k= 10 (d) k=20

(e) k=30

Figure 5.13: Different elastic surfaces, constrained from the center of mass, fall.
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Figure 5.14: A strechy sheet, constrained from its three corners, falls.
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Figure 5.15: A strechy sheet, constrained from its four corners, falls.
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Figure 5.16: A strechy sheet, constrained from its center of mass, falls.
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Figure 5.17: A piece a cloth collides with an impenetrable ellipsoid.
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Figure 5.18: A strechy sheet drops over a toroid.
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Figux’e 5.19: An elastic surface drops over a toroid with a small hole.
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Figure 5.20: A small elastic surface passes through a toroid.



Chapter 6

Conclusions and Further 
Research Areas

In creating good computer animation, the focus is not on the problem of complet
ing a given motion task, but more importantly on how this task is to be performed 
by the animated character. All the elements involved in an animated character 
must cooperate in synchronized harmony. Most of the animation systems built so 
far leave the burden of generating realistic animation to the animator. To rem
edy this problem, fundamental principles of traditional animation, such as squash 
and stretch, exaggeration, follow through, and overlapping action [20], should be 
formalized as high level constructs.

Physically-based modeling has emerged as a means of creating realistic aninui- 
tion. It proposes methods to create active models which react to applied forces, 
constraints, ambient media, or impenetrable obstacles, as one would expect from 
real physical objects. In this way, computer animators are unconcerned with the 
kinematic details of animations, knowing that physics will take care the low-level 
motions.

Physically-based modeling adds new levels of representation to object descrip
tion in addition to geometry. Forces, torques, velocities, kinetic and potential 
energies, heat, and other physical quantities are used to control the creation and 
evolution of models. To construct the differential equations of the motion of the
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models, different techniques (such as Lagrange equations, constraint-based meth
ods) could be used. Constraint-based methods, which are highly suitable for this 
purpose, unify the creation of complex models with the control of the motion 
of the models. After constructing the equations of motion for the models, the 
equations should be solved using fast numerical methods.

In this thesis, we introduced a system for animating deformable models. Also 
a new formulation for animating deformable models, called the spring force for
mulation, was presented. The animation system uses three different formulations, 
namely the primal, hybrid, and spring force formulations, for animating the mod
els so that the user could decide which one to use in an animation after considering 
the advantages and disadvantages of each formulation.

6.1 C ontributions of the Thesis
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The salient contributions of the thesis can be summarized as follows:

• In the spring force formulation that is presented, the elastic properties of 
the materials are represented as external spring forces, instead of using 
the stiffness matrix approach. In this way, the problem of automatically 
constructing the stiffness matrix is avoided.

• Since the stiffness matrix is not formed, models could be animated faster 
than the other approaches. The linear system of equations that should 
be solved to compute animation frames contains only mass and damping 
values which are the diagonal entries. This allows us to use simple linear 

system solving methods.

• The elastic properties of the materials could be given by setting the spring 
constants to proper values.

• Since the formulation models a deformable object using a finite number 
of grid points, it is possible to give different elastic properties to different 

parts of a model.



CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH AREAS 65

6.2 Future Research D irections

Future extensions to the research in this thesis could be summarized as follows:

• The equations of motion proposed for deformable models could be modified 
in such a way that new types of constraints will be taken into account 
by using external forces. This approach allows modeling and animating 
articulated bodies consisting of rigid and nonrigid parts by creating complex 
models from simpler primitives using point-to-point constraint. Also, other 
constraints, such as point-to-path and orientation, could be used to control 
the motion of the models.

• The animation system presented could be improved in rendering aspects. 
Animated frames could be rendered using sophisticated ray tracers, and 
texture mapping could be applied on deformable models.

• Aliasing artifacts (jaggies) noticeable in the animated frames could be elim

inated by high-level visual processing.
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Appendix A

The Implicit Functions for 
the Obstacles

Ellipsoid:

The implicit function for an ellipsoid is 

f ( x , y , z )  = (x/aiY + {y/a2f  + {z/a-iY, 

where Oj, 02, and 0,3 are the scaling factors.

H yperboloid o f one piece:

(A.l)

The implicit function for an hyperboloid of one piece is 

f ( x , y , z )  =  {x/aiY  +  {y/a2Y -  {zlaYf ,  

where Oi, 02, and «3 are the scaling factors.

(A.2)
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Toroid:

The implicit function for a toroid is

/ ( x ,  D, x) = (({x/a,Y + + (г/«з)^ (A.3)

where ai, «2, and a.3 are the scaling factors, and = al\J\a\ + a^). Here, a is 
the torus radius.

f{xo,yo,~o) — 1 , (xo,yo,zo) is on the surface, 
if S /(a;ojyO)~o) > 1 , (xo,yo,zo) lies outside the surface. 

/(a;o,2/o,-̂ o) < 1 , (xo,yo,^o) lies inside the surface.
(A.4)

These inside-outside functions are given for the surfaces in standard positions 
and orientations (e.g., centered at origin). To describe obstacles in desired con
figurations, it is necessary to translate and rotate these objects. The rigid body 
transformations are invertible; thus, the original inside-outside function can be 
used after a function inversion. If the original surface is denoted by x, and trans
lated and rotated surface is denoted by x then the new surface is given by.

x=y ix  + b, (A.5)

where M is a rotation matrix, and 6 is a displacement vector.
The new inside-outside function is calculated by inverting the transformation 

and substituting into the old inside-outside function; i.e..

f {x ,y , z )  = f {x ,y , z ) ,  

where

(A.6)

X ' x - b i '

y = y - b 2

z £ -  63 _
(A.7)

Note that M  ̂ since the rotation matrices are orthogonal.



Appendix B

The External Spring Force 
Expressions

In this part, the external spring force expressions for the grid points that are on 
the boundaries and corners are given.

B .l  The External Spring Force Expressions for 

the Boundaries

If f =  0 and j  = 1,2, · · · , iV -  1, then (see Fig. 4.7 (a))

fop =  ^ [ (^OJ -  X o j-l) -  i ||xo,'^-Xo,j_i|

^ ( x o , , - x o . , + i ) - ^ iig ;; :g ;; ; ; i

li i = M  and j  = 1,2, · · · , iV -  1, then (see Fig. 4.7 (b))

+
+

k

k

w j  = 
+ 
+

k
k
k

(x m j  -  XM.J+1) -  i

(B.l)

(B.2)
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If i = 1,2,··· , M  — I and j  = 0, then (see Fig. 4.7 (c))

( X t . O -  X t - i , o )
p Xt,0” Xt—1,0
^ ||Xi,o-x.-i,oll J 
p Xt',0-Xi-f-l,0 y( x i . o X i + i , o ) ^  ||xi,o-x.+i,o|| .

( X i . o -  X i , i )  -
p Xi.o-X.M ]

 ̂ ||x<,o-Xi,i|| J J

it,0 = ^
+ k
+ k

If i = 1,2,··· , Af — 1 and j  = N ,  then (see Fig. 4.7 (d))

(B.3)

fj'.iV = k
+ k
+ k

(x . ' , /V — X t - l , A r ) _  P ^ i , N  “ Xt —1,7V
| | X i , N - X i - i , w l l  .

— X i ' + 1,A^) - i
X t .N -X t - f  1,7V

l lX i . j v -X i+ i .w l l  .

(X i .A f -  X i , A / - l ) - 1 Xt,7V“ X t ,N - l
l |X i , N - X i , w - i l l  J J

(B.4)

B .2 The External Spring Force Expressions for 

the Corners

If i = 0 and j  = 0, then (see Fig. 4.8 (a)) 

fo,0 =  k (Xo,0 -  Xo,l) -   ̂ ||xô o-Xo,'lll ,

If ?' = 0 and j  = N, then (see Fig. 4.8 (b)) 

fo,/v

(B.5)

(Xo.Af “  Xo,AT-lj | |X o , w - X o , N - i  
/ \ n Xo,N-Xl,N(xo.;v-Xi.;v)-^l|x„'^_x,;^ll

If i = IVI and j  = 0, then (see Fig. 4.8 (c))

= k

+ k
(B.6)

fA,A/,0
+

k

k
(B.7)

U i = M  and j  = N^ then (see Fig. 4.8 (d))

lM,N = k

+ k
(xM.;v-XM-i.N)-^TiSiEiSfl||xm,n - xm- i,at|| 

\ p XM.AT-XM.jV-l 
( M,N M,N-l) | | X M , M - X M , i M - i  II

(B.8)


