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Abstract
T H R E E -D IM E N SIO N A L FACIAL M O TIO N  A N D  ST R U C T U R E  

E STIM A TIO N  IN VIDEO CODING

Gözde Bozdağı

Ph. D. in Electrical and Electronics Engineering

Supervisor:

Assoc. Prof. Dr.Levent Onural 
21 January 1994

We propose a novel formulation where 3-D global and local motion estimation and 

the adaptation of a generic wire-frame model to a particular speaker are considered 

simultaneously within an optical flow based framework including the photometric effects 

of the motion. We use a flexible wire-frame model whose local structure is characterized 

by the normal vectors of the patches which are related to the coordinates of the nodes. 

Geometric constraints that describe the propagation of the movement of the nodes are 

introduced, which are then efficiently utilized to reduce the number of independent 

structure parameters. A stochastic relaxation algorithm has been used to determine 

optimum global motion estimates and the parameters describing the structure of the 

wire-frame model. For the initialization of the motion and structure parameters, a 

modified feature based algorithm is used whose performance has also been compared 

with the existing methods. Results with both simulated and real facial image sequences 

are provided.

K eyw ords: Image sequence coding, object-based coding methods, 3-D motion and 

structure estimation, stochastic relaxation, videophone, very low bit rate 

coding, object shape analysis, object motion analysis.
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G O R U N T U  d i z i s i  K O D L A M A D A  Y Ü ZE  A İT  UÇ B O YU TLU  
H A R E K E T  V E  Y A P I KESTİRİM İ

Gözde Bozdağı

Elektrik ve Elektronik Mühendisliği Doktora

Tez Yöneticisi:
Doç. Dr. Levent Onural 

21 Ocak 1994

Tipik bir konuşmacı için geliştirilmiş bir tel çerçeve modeline dayalı ûç boyutlu hareket 

kestirimi ve yüzdeki derinlik bilgisinin eldeki konuşmacıya uyarlanımı için yeni bir metod 

önerilmiştir. Kullanılan algoritma optik akı metoduna dayanmakta ve harekete bağlı 

fotometrik etkileri de kullanmaktadır. Kullanılan tel çerçeve modeli birbirine bağlı 

üçgenlerden oluşmakta ve bu üçgenlerin konumları normal vektörleri ile gösterilmektedir. 

Üçgenlerin birbirine bağlı olma özelliği algoritmada kullanılan bağımsız değişken sayısını 

azaltmaktadır. Bilinmeyen hareket ve yapı bilgilerinin bulunması için bir olasılıklı 

gevşeme metodu, başlangıç noktasının bulunrntisi için de bir nokta eşleştirilme metodu 

gerçekleştirilmiştir. Hem gerçek hem de benzetilmiş yüz görüntü dizileri kullanılarak 

elde edilen sonuçlar sunulmuştur.

A nahtar Görüntü dizisi kodlama, cisim modeline dayalı kodlama, 3-boyutlu 

Sözcükler: hareket ve yapı kestirimi, olasılıklı gevşeme, görüntülü telefon, çok düşük 

hızlarda iletim için kodlama, nesne şekli analizi, nesne hareketi analizi.
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Chapter 1

INTRODUCTION

Recent years have brought forward significant progress in the research and development 

activities in the field of digital image processing. Image processing is closely related 

to human vision which is probably the most important means of perception. As a 

result, image processing has a large number of applications such as remote sensing via 

satellites, image transmission and storage, medical image processing, robotic vision, 

automated inspection of industrial parts, etc., that play important roles in our daily 

life [l]-[6]. In most of these applications, we deal with image sequences instead of single 

images. These sequences are obtained by sampling and quantizing analog scenes into 

brightness levels which are represented by integer values. The amount of data represented 

by these sequences are extremely large so that without a substantial reduction, their 

transmission, storage and processing can be very expensive. For example, let us consider 

the transmission of 512x512x8 bits/pixel x 3-color video image over the telephone lines. 

Using a 9600 baud modem, the transmission would take approximately 11 minutes for 

just a single frame, which is unacceptable for most applications. Similarly, single color 

component of one frame of a Super 35 format motion picture may be digitized to a 3112 

lines by 4096 pels, 10 bits/pel. Assuming three color components, 1 sec. of the movie 

takes approximately 1 GBytes [6]. If we consider long distance transmission of this movie, 

the cost is non-trivial. Therefore, image coding (or compression) is necessary to more
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efficiently and economically utilize the channel bandwidth and storage space. Although 

bandwidth is becoming larger and storage is becoming cheaper in many applications, 

compression still remains of interest. The reason is that, people will continue to use 

relatively low capacity links such as low cost low rate modems, satellite communication 

links, and mobile communication. In addition, although there are high capacity links 

such as fiber optic links, the capacity of them may not be enough due to the growing 

amount of information that users wish to communicate. Also, in applications such as 

multichannel HDTV, these links may not be sufficient. Since the net bit rate generated 

by uncompressed HDTV is approximately iGbit/s, the transmission of several such 

information will exceed the available capacity of fiber optic links. In the case of storage, 

we again need good compression algorithms since usually we have a bulk of information 

that is needed to be stored and quickly accessed like in medical data archiving.

In the following section, we will summarize various techniques which reduces the 

information content of an image. This reduction is possible since the data represented 

by an image is often highly redundant. The fundamental goal of image coding is to 

minimize the number of bits to represent an image using this redundancy and ideally 

not to introduce visual quality degradation. In most practical cases, slight degradation 

in the output may be allowed to achieve a lower bit-rate. To what extent the data can be 

compressed without significant degradation depends upon the redundancy in the data,

i.e., higher redundancy results in larger compression. In general, we speak of two kinds 

of redundancy: Statistical redundancy which can be both spatial and temporal, and 

subjective redundancy [5]. Subjective redundancy has to do with data characteristics 

that can be removed without noticeable degradation by a human observer. On the other 

hand, statistical redundancy is due to the similarities, correlation and predictability of 

the data. For example, within an image frame, it is very likely that the neighboring 

pixels are statistically dependent to each other. If this dependency can be exploited, 

we can represent a picture element in terms of M  previous elements where M  depends 

on the degree of dependency. This formulation can be extended to video since the 

statistical dependency also exists in the temporal domain. All of these redundancies can 

be eliminated without significant loss of information and therefore picture quality.
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1.1 Review of Video Coding Techniques

The information-theoretic foundations of image compression date back to the work of 

Shannon [7]. He stated that the ultimate limit to lossless compression is determined by 

the source entropy, i.e. the source can be coded with zero error if the encoder uses a 

transmission rate equal or greater than the entropy defined

L - l
Entropy =  — Pilog^Pi bits/symbol, 

1=0
( 1.1)

for a source with L possible independent symbols with probabilities p,. A similar kind 

of argument can also be carried out for lossy coding where the original pixel intensities 

cannot be perfectly recovered. In this case, Shannon’s Rate Distortion Theorem [7] 

states that for a given distortion D the least rate in bits per source outcome that any 

coder can achieve is given by the rate-distortion function. Although lossless codes are 

required for legal reasons in many applications such as medical image compression, for 

image transmission, lossy coding is much more suitable. For lossy video compression, 

several techniques are found in the literature that treat image frames either pixel by pixel 

or blocks of pixels or high level structural forms [1]-[10]. These techniques can also be 

explained in terms of a source model where the simplest source model is the pel (picture 

element) itself. The aim is to describe the image signal by parameters of the model and 

to encode the model parameters instead of the image signal. The efficiency of a source 

model can be meeisured with the data rate required for encoding the model parameters 

and how good the model represents the input image.

The simplest coding algorithm uses the pel itself as the source model and encodes 

only the amplitude of the pels. This coding algorithm is called pulse code modulation 

(PCM). Using PCM, acceptable quality pictures can be obtained with 3 bits/pel. Higher 

compression ratios cannot be achieved since in this technique, each pixel is processed 

independently, ignoring the inter pixel dependencies, i.e., the correlation among pixel 

intensities is not exploited.

One way to exploit some of the correlation is Differential Pulse Code Modulation
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(DPCM) where the source model is statistically dependent pels. The concept is bcised on 

the fact that the current pel can be predicted from the neighboring pels. The difference 

between the current and predicted pel values is then quantized and coded. DPCM 

is relatively simple to implement, however its redundancy reduction capability is not as 

good cis other techniques such as transform coding which also uses statistically dependent 

pels as the source model. The fundamental concept of transform coding is to convert a 

sequence of statistically dependent pixels into an array of less dependent and information- 

compacted transform coefficients via an orthogonal transform. Because of the positive 

correlation existing in most video frame pixels, their transform coefficients almost always 

have a higher energy in the low frequency region but very low energy in the high frequency 

region. Therefore, those coefficients can be efficiently quantized and relatively easily 

coded, i.e the image can be represented by fewer bits. Many orthogonal transforms 

such as Fourier Transform (FT), Discrete Cosine Transform (DCT), Karhuenen-Loeve 

Transform (KLT), Hadamard Transform have been applied to compress video images

[4]. Among these, the KLT decorrelates the pixels, and therefore it has the best energy 

compaction and optimal for a given stationary model among the other pixel-wise linear 

transforms. But if one considers non-stationarity which is indeed the nature of the image 

signal then the wavelet transform which is also well localized in the frequency and time 

domains, becomes optimal. Although there exists optimal transforms, DCT is the most 

widely used transform in image coding. The advantages of DCT,are that, it is close 

to the optimal transform KLT, does not depend on signal statistics and does not suffer 

from computational complexity. Due to these advantages, DCT has been incorporated 

in standardized video coding algorithms which will be discussed in Section 1.2.

Another coding method that is used for low-bit-rate applications is the vector 

quantization (VQ) [11, 12] where the source model is again statistically dependent pels. 

VQ can be used instead of the scalar quantization in both pixel based and transform 

based coding algorithms. VQ treats a small block of images as a vector and finds the 

best match from a present codebook according to some distance measure. The index of 

the best match is then sent to the receiver, where the reconstruction is simply a table 

look-up process.
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These coding techniques can be applied to moving pictures as well as single images, 

by incorporating motion detection techniques [6]. In this case, the source model becomes 

statistically dependent moving pels. To estimate the motion, relative displacement 

(motion vector) is computed so that the data in the current frame best matches the 

data in the previous frame. Then the best match motion vector and the difference 

between the current and the motion compensated previous frame, i.e. the prediction 

error, are sent to the decoder. To code the prediction error, one of the methods that 

are described above can be used. Among them, DCT has been widely used as a world 

standard.

The processing described in the previous paragraphs has been on a pixel-by-pixel 

or block-by-block basis. When the source model becomes more complicated, higher 

compression and improved picture quality can be achieved. Efforts in this direction lead 

to new coding methods which are entitled as “second generation coding techniques” 

[14]. These techniques are based on the fact that the destination of almost every 

image processing system is the human eye so if we can understand the structure of 

human visual system model and incorporate it into image coding, high compression 

is inevitable. The human visual system is first used in the field of image coding in 

quantization of the transform coefficients. For example, in case of DCT coefficients, 

since human eye is more sensitive to the lower spatial frequencies, finer quantization 

must be done for the DCT coefficients corresponding to these lower spatial frequencies. 

Later, the structure of the human visual system is incorporated into image coding. The 

human visual system consists of the eyes that transform light to brain signals, and 

the brain cortex that processes these neural signals. The lens of the eye focuses the 

light on the photo-receptive cells of the retina, and the retina transforms the incoming 

light into electrical signals that are transmitted to the visual cortex through the optical 

nerve. The retina consists of several types of cells with different sensitivity to shapes 

and luminance. Similarly, the cells in the visual cortex introduce different processing for 

different orientations. So, in general the human visual system can be represented as a 

bank of directional filters which forms the basis for second generation coding techniques. 

Second-generation coding techniques can be grouped into two classes. The first class
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consists of the local operator based techniques such as pyramidal coding. The other class 

contains the contour-texture oriented techniques which attempt to describe an image 

in terms of contour and texture. The methods in the first group can be classified as 

hybrid methods since they also make use of predictive and transform coding techniques. 

They are classified as ‘second-generation’ methods because they use functions close to 

those of the human visual system. For example, in pyramidal image coding the image 

is represented as a series of bandpass images each sampled at successively lower rates 

[14]. If instead of pyramidal structure, we use parallel bandpass filters, the algorithm 

is called subband coding [15]. The reason behind using subband techniques for coding 

is that subsignals are more easily encoded than the original signal. Also, they resemble 

the direction sensitive cells in the human visual system. The contour-texture oriented 

techniques attempt to segment the image into textured regions surrounded by contours 

such that the contours correspond, as much as possible, to those of the objects in the 

image, contour and texture informations are coded separately [13, 14].

At this point it is worthwhile to mention the fractal coding. The basic idea behind 

fractal image coding is to represent an image scene by a number of transformations 

that generate it. The complexity of the description of the transformations should be 

lower than that of the original image to achieve compression. The main problems with 

fractal coding are the difficulty of finding suitable transformations and the computational 

complexity.

Although the above-mentioned techniques yield higher compression than transform 

and predictive coding techniques, in some cases such as very low bit-rate coding we must 

exploit much more of the redundancy in an image sequence than what is being exploited 

at present. Recently a new coding technique which is related to both image analysis 

and computer graphics, called object based coding (OBC), has been developed [16]. An 

essential difference between conventional coding methods and these new approaches is 

the image model they assume and the major advantage is that they describe image 

content in a structural way. In this approach, each object is described by three sets of 

parameters, namely, the shape, the motion and the color (luminance and chrominance)
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Source Model

Rigid 2-D object, 3-D motion

Flexible 2-D object, 2-D motion

Rigid 3-D object, 3-D motion

Motion
Information

600

1100

200

Shape
Information

1300

900

1640

Color
Information

15000

4000

4000

Table 1.1: Expected bit rates in bits/(386x288 image) for different source models [28].

parameters. The goal is to omit the transmission of color parameters in an image area 

which is as large as possible and to do the synthesis by using only shape and motion 

parameters. Object based coding algorithms can also be thought of as an extension to 

contour-texture oriented techniques by incorporating the motion information into the 

source model. If we restrict the source model to be known objects, we can increase the 

compression ratio further. This coding algorithm which we named as 3-D object based 

coding, uses an explicit model of the object beforehand. By this way, we can further 

decrease the information to be coded by limiting the information needed to code the 

shape parameter. When there is no explicit object model, the unknown objects can be 

treated as [17]-[19]: 1) 2 D objects (rigid or flexible) with 2-D motion, 2) 2-D objects 

with 3-D motion, 3) 3-D objects (rigid or flexible) with 3-D motion. The average bit 

rates in bit/CIF(386x288) frame is given in Table 1.1 for these object models [27, 28].

Using explicit models for the object has also been addressed by many researchers 

[20]-[26]. Since dealing with unknown objects is an extremely difficult problem, mostly 

head and shoulders type scenes are used for application of 3-D object based coding 

algorithms. These schemes are expected to open up new applications in image coding 

techniques which cannot be obtained by conventional waveform coding. For instance.



1.2 Video Coding Standards

Various organizations have been involved in the development or promotion of the 

standardization of data compression algorithms. Among these organizations, mainly 

ITU-TS (International Telecommunications Union-Telecommunication Standardization 

Sector) which is formed after the reorganization of CCITT (International Telegraph 

and Telephone Consultive Committee) and CCIR (International Consultive Committee 

of Broadcasting), and ISO (International Organization for Standardization) deal with 

the standardization of video coding algorithms. To develop the standards ITU-TS and 

ISO committees solicit algorithm recommendations from a large number of companies, 

universities and research laboratories. The best of those submitted are selected on the 

basis of image quality and compression performance. Among the standards developed 

by these committees, we will mostly concentrate on H.261 and MPEG because of their 

relation to videotelephony.

1.2.1 CCITT H.261 standard
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CCITT Study Group XV formed a Specialist Group in 1984 toward a coding standard 

for visual telephony. Efforts from this group has resulted in a standard CCITT 

Recommendation H.261 [30] approved in December 1990 [30]. H.261 represents the 

state of the art in picture coding for low and medium bit rates. It is primarily intended 

for videophone and teleconferencing using ISDN channels at p x 64 kbps, p =  1,2,..., 30 

for combined video and audio. CCITT H.261 has been demonstrated to be effective 

in providing videoconferencing application where the backgrounds rarely change. The 

quality depends on the value of p and it has been shown that for p =  6 the quality is 

satisfactory.

CCITT H.261 uses a CIF (Common Intermediate Format) or QCIF (Quarter CIF) 

image format, a DCT based coding algorithm and a selectible frame rate ranging from 

30 frames/s to 7.5 franies/s.
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1.2.2 MPEG phases

MPEG is a acronym for Moving Picture Expert Group which is under ISO- 

IEC/JTCI/SC29/WG11 and started its activity in 1988 [31]. It conducts liaison 

exchanges with ITU-TS and other relevant standards agencies. The first phcise of 

MPEG, MPEG-1, is a standardization of coding for storage . Its activities are based 

on the premise that video and its associated audio can be stored and retrieved at 

about l.hM bitsfs at satisfactory quality. It has also been shown that when MPEG- 

1 algorithm is applied to GIF (Common Intermediate Format) image sequences at 

SOframes/s, we can get a quality similar to that of VHS tape at about l.2Mbits/$ 

video rate. The draft of MPEG-1 has been finalized in June 1992. Its envisioned areas 

of application include electronic publishing, video games, entertainment, videophone, 

videomail, videoconferencing and education.

The second phase of audiovisual standardization, MPEG-2 is intended for higher data 

rates than MPEG-1. It is also a generic standard which is intended to serve a wide range 

of applications. The image quality is optimized in ranges from about 2 to 15Mbits/s over 

cable, satellite, and other broadcast channels, as well as for Digital Storage Media (DSM) 

and other communications applications and various video formats (both progressive and 

interlaced) can be supported. The development of MPEG-2 was begun in November 1991 

and aimed to be completed by the end of November 1993. MPEG is working jointly with 

the CCITT SGXV “Experts Group on ATM Video Coding” in this new phase of work.

In 1992, work is directed towards coding at very low bit rates, several tens of Kbits/s. 

The first studies on very low bit rate video coding concentrated on modification such 

as reducing the image size, frame rate etc., to existing standards. After completion of 

this short term objective, several groups moved towards more novel coding approaches 

within MPEG-4 which is initiated by ISO (MPEG-3 is incorporated in MPEG-2). This 

work has begun officially in 1993 and scheduled to result in a draft specification in 1997. 

This work mainly requires the development of fundamentally new algorithmic techniques 

such as object beised approach in the very low bit rate coding area.
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1.2.3 COST211

It is worthwhile to mention about the COST211 project at this point because of its 

contributions to the existing coding standards [32]. C0ST211 is one of the projects 

within the telecommunication activities of COST (European Cooperation in the Field of 

Scientific and Technical Research), where the major research concern is the redundancy 

reduction techniques for coding of video signals. It was initiated in 1977 with the 

participation of seven European countries. The first phase of the project was completed 

in 1982 resulting in a specification of a 2Mbit/s codec for videoconference signals which 

was indeed the basis of CCITT Recommendation H.221. After the completion of the 

first phase COST211bis was initiated in the same year with the objective of examining 

the possibility of applying redundancy reduction techniques to the digital transmission 

of visual teleconferencing signals and of broadcaist quality TV signals. The most notable 

achievement of this project was the contributions made to the CCITT Recommendation

H.261 for p X 6ikbps video coding. The bulk of this video telephony standard resulted 

directly from the work undertaken by C0ST211bis. The last activity of COST211bis, 

before being completed in 1990, was the first studies of videocoding for Broadband-ISDN 

(B-ISDN) using an Asynchronous Transfer Mode (ATM), allowing variable bit rates. 

This item was further studied in the project COST211ter which was initiated in 1990 and 

dealt with redundancy reduction techniques for coding of video signals· in multimedia 

services. In 1991, due to the growing interest in the developments in digital mobile 

networks, COST211ter members extended the scope of the project to cover the field of 

very low bit rate (8-32 kbps) coding of moving images. Together with modifications to 

existing standards such as H.261, COST211ter also considers novel techniques such as 

object bcised coding, with the aim of very low bit rate video coding [33]. If not extended, 

this project will be completed in 1995 with a proposal for a new standard for very low 

bit rate video coding.
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1.2.4 Hardware implementation

Once the coding standards have been established several companies deal with the VLSI 

implementation of them. For H.261, we can mention GEC Plassey, LSI Logic, SGS- 

Thompson, GPT CLI. C^ has developed an MPEG-1 decoder chip under the name CL 

450 and in the near future they will produce a JPEG/H.261/MPEG1 codec.

It is worth mentioning some of the available videophones which can operate over 

the existing telephone lines, at this point although they do not yet use the novel 

techniques considered in MPEG4 [34]. Up to now, AT&T, British Telecom/Marconi, 

COMTECH Labs and ShareVision produced videophones. AT&T Videophone 2500 

is working with 16.8 and 19.2 Kbit/sec modems. It uses motion compensated DCT 

for video compression. British Telecom/Marconi Rel 2000 Videophone is working with 

9.6 and 14.4 Kbit/sec modem. It uses H.261 flavor motion compensated DCT video 

compression. COMTECH Labs STU-3 Secure Videophone’s data rate is 9.6 Kbit/sec 

and it uses motion compensated DCT video compression as ShareVision does.

1.3 Scope and Outline of the Thesis

Due to growing interest in very low bit rate digital video (about 10 kbps), a significant 

amount of research focused on object based video compression [16]-[28] as stated in 

the previous sections. Engineers became interested in object based coding because the 

quality of digital video obtained by hybrid coding techniques, such as CCITT Rec. H.261 

[30], is deemed unsatisfactory at these very low bit rates. Studies in object based coding 

employ object models ranging from general purpose 2-D or 3-D models [17, 19, 27] 

to application specific wire-frame models [20]-[26]. One of the main applications of 

object based coding has been the videophone, where scenes are generally restricted to 

head and shoulder type images. In many proposed videophone applications, the head 

and shoulders of the speaker are represented by a specific wire-frame model which is 

present at both the receiver and the transmitter. Then, 3-D motion and structure
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estimation techniques are employed at the transmitter to track the motion of the wire

frame model and the changes in its structure from frame to frame. The estimated motion 

and structure (depth) parameters along with changing texture information are sent and 

used to synthesize the next frame in the receiver side.

Traditionally, the adaptation (fitting) of a generic wire-frame model to the actual 

speaker and motion estimation have been handled separately. Many of the existing 

methods consider fitting a generic wire-frame to the actual speaker using only the initial 

frame of the sequence [20, 35]. Thus, the modification in the z-direction (depth) is 

necessarily approximate. For subsequent frames, first the 3-D global motion of the head 

is estimated under rigid body assumption, using either point correspondences [20, 24, 36] 

or optical flow based formulations [25, 29]. Then, local motion (due to facial expressions) 

is estimated making use of Action Units (AU) described by Facial Action Coding System 

(FACS) [25]. Recently, Li et al. [26] proposed a method, to estimate both the local and 

global motion parameters from the spatio-temporal derivatives of the image. However, 

his method also requires a priori knowledge of the AU’s and initial fitting of the wire

frame to the actual speaker.

In this dissertation, we propose a novel formulation where 3-D global and local motion 

estimation and the adaptation of the wire-frame model are considered simultaneously 

within an optical flow based framework including the photometric effects (changes in the 

shading due to 3-D rotations) of motion. Although, the utility of photometric cues in 

3-D motion and structure estimation has recently been discussed [37]-[38], photometric 

information was not used in the context of motion estimation for videophone applications 

beforehand. The main contributions of this study are: (i) a flexible 3-D wire-frame model 

has been used where the X , Y  and Z coordinates of the nodes of the wire-frame model 

are allowed to vary from frame to frame so as to minimize the error in the optical 

flow equation, and (ii) photometric effects are included in the optical flow equation. 

The proposed adaptation of the wire-frame model serves for two purposes that cannot 

be separated: to reduce the misfit of the wire frame model to the speaker in frame 

k -  I, and to account for the local motion deformations from frame -  1 to frame k
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without using any a priori information about the AU’s. The simultaneous estimation 

formulation is motivated by the fact that estimation of the global motion, local motion 

and adaptation of the wire-frame model including the depth values are mutually related; 

thus a combined optimization approach is necessary to obtain the best results. Because 

an optical flow based criterion function is utilized, computation of the synthesis error is 

not necessary from iteration to iteration; thus, resulting in an efficient implementation. 

The synthesis error at the conclusion of the iterations is used to validate the estimated 

parameters, and to decide whether a texture update is necessary.

In Chapter 2, we review the 3-D object based coding scheme together with the 

problems encountered at each step. In Chapter 3, we give an overview of the 3-D 

motion estimation methods in the field of object based image coding. In addition we 

propose a new feature based motion estimation algorithm and make comparison with the 

existing ones. In Chapter 4 the formulation of simultaneous motion estimation and wire

frame adaptation problem including the photometric effects of motion are given. In that 

chapter, we also discuss the problem of the illumination direction estimation and give 

an efficient algorithm for the proposed simultaneous estimation method. Experimental 

results on simulated and real video sequences are presented in Chapter 4 to demonstrate 

the effectiveness of the proposed methods. Finally future directions and conclusions are 

given in Chapter 5.



Chapter 2

3-D OBJECT BASED CODING

As stated in Chapter 1, coding schemes based on modeling the 3-D scene yield higher 

compression ratios compared to other techniques. Due to this advantage, 3-D object 

beised coding methods have received much attention and could well form the basis of the 

next generation visual communication services. Research on 3-D object based coding has 

been going on since the early 1980’s. Several similar projects are currently being pursued 

by various image coding groups [16]-[28]. In 3-D object based coding, both the encoder 

and decoder contain either a special 3-D model or special knowledge of the object to be 

coded. In general, describing a scene is a complicated task which is widely investigated 

in the field of computer vision. Therefore most research on 3-D object based coding has 

concentrated on restricted scenes such as head-and-shoulder scenes which are typical to 

video-phone applications.

A block diagram of a 3-D object based coding scheme for facial images is shown in 

Fig. 2.1. At the transmitting side, images are analyzed under the assumption that they 

show the head and shoulders of a person. Basic properties such as geometric properties 

of the head, surface color and texture are extracted and transmitted initially. As the 

head moves, motion parameters described by the global motion of the head and the local 

motion due to the facial expressions are detected and transmitted. At the receiving side, 

the image is synthesized using these estimated motion parameters assuming that both

15
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ENCODER DECODER

Figure 2.1: Main blocks in 3-D object based coding

the transmitter and the receiver possess the same 3-D facial model at the beginning. The 

system is indeed composed of three stages: construction and adaptation of a 3-D model 

of the face, analysis of the input image to extract the motion and structure parameters, 

and a synthesis of the image at the receiving side.

2.1 Model Construction and Adaptation

2.1.1 3-D model construction

The 3D modeling is first used in computer graphics for facial animation. The majority 

of the work in this field involved modeling the surface of a face with polygons and 

then rendering the surface with continuous shading. Parke [39] was the first to propose 

that a parameterized model of a face could be used for a form of videotelephony. He 

models the face by using connected networks of polygons where the vertex position



Chapter 2. 3-D OBJECT BASED CODING 17

values of the polygons are determined by photogrammetrically measuring the surfaces 

of real faces. The depth map of a face can also be obtained by scanning the head using 

collimated laser light [40] or sound captors [41]. After obtaining the depth map, the 3-D 

polygonal representation is obtained mostly through a triangulization procedure where 

small triangles are put in high curvature areas and larger ones at low curvature areas. 

This triangular mesh, which is called the wire-frame, is put into computer memory as 

a set of linked arrays. One set of arrays give the X, Y, Z coordinates of each triangle 

vertex and another set gives the addresses of the vertices forming each triangle. There are 

several wire-frame models used by different research groups [23], [42]-[53]. For example, 

Terzopoulos uses a non-uniform mesh of polyhedral elements whose size depend on the 

curvature of the neutral face and muscular contractions [44, 45]. Adaptive division of the 

wire-frame such as division according to luminance deviations [48] or according to the 

semantic characteristics of a specific speaker’s face [49], is also possible. In this study, 

we use the modified CANDIDE model [53] developed by Welsh (Fig. 2.2). This model 

contains a full description of the face with enough number of triangles [23].

2.1.2 Wire-frame adaptation

As stated previously, in 3-D object based coding, both the transmitter and the receiver 

have the 3-D wire-frame model of a generic face as a common knowledge. The image is 

synthesized at the receiver by modifying the wire-frame using the transmitted parameters 

obtained by analysis and recognition procedures carried out at the transmitting side. 

The main parameters that are transmitted are the motion vectors due to global and 

local changes of the head and face. The accuracy of tracking motion of the wire-frame 

model from frame to frame strongly depends on how well the wire frame model matches 

the actual speaker in the scene. Since size and shape of the head and position of the 

eyes, mouth, nose vary from person to person, it is necessary to modify the 3D model 

according to the particular features of a person’s face in an input image sequence. Thus, 

one of the challenging problems in 3-D object based coding of facial image sequences is 

to adapt a generic wire-frame model developed for an average speaker to fit the actual
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Figure 2.2: Wire-frame model of a typical head-and-shoulder scene where the gray 
region refers to the face.

speaker.

Initial studies on 3-D object based coding have fit the wire-frame model to the actual 

speaker manually. Aizawa et al. [20, 50] use 3-D affine transformation to match the 

frontal view of a particular face and its four feature points (tip of the chin, temples, 

a point midway between the left and right eyebrows) to the model. The four feature 

points are interactively specified (Fig. 2.3). Then the position of each vertex of the wire

frame model forming a contour along the cheek to chin is adjusted precisely to match 

the frontal view of the face to the wire-frame model. The positions of other vertices are 

adjusted proportionally to the shift of vertices on the contours. The depth of the feature 

points are estimated using the scale parameters (in x and y directions) of the wire-frame 

model and the depth of other vertices are adjusted proportionally in the direction of the 

center of the head.

Kaneko et al. [24] also use an interactive marking of the feature points. They

use seven points; top of the head, tip of the chin, left and right cheeks-upper and lower
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Figure 2.3: Feature points to adjust the wire-frame

positions, and a point midway between the right and left eyes, in modifying size and shape 

of the model. The affine transform, x' =  ax-\-by + c,y'  =  dx +  e y + / ,  transforms the point 

(x,j/) to the point {x',y'). After finding the unknown coefficients by using the feature 

points, the affine transform is applied to the coordinates of each vertex constituting the 

model. The depth is modified by using the scaling factor +  e^)/2. Huang et al. [21] 

use spatial and temporal gradients of the image to estimate the length and width of the 

face and scale the wire-frame approximately. Then an interactive procedure specifies the 

location of the feature points on the face and translates the wire-frame vertices according 

to these points. Recently, Huang et al. [54] propose an automatic feature point extractor 

using some assumptions about the input image such as the user’s face must appear at 

about the center of the input image and must be at least one-sixteenth the size of the 

input image. This method has not been applied to 3-D object based coding yet.

Another way of adaptation of the wire-frame is to use snakes or ellipses to find 

the face borders. Recently, Reinders et al. [35] consider automated global and local 

modification of the 2-D projection of the wire frame model in the x and y directions. They 

segment the image into background-foreground, face, eyes and mouth, and approximate 

the contours of the face, eyes and mouth with ellipses in order to get an estimate 

for control features necessary for global transformation of 3-D wire frame. Then local
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transformations are performed using elastic matching techniques. However, they have 

applied an approximate scaling in the z-direction (depth) since they use only a single 

frame. Waite and Welsh use snakes to find the boundary of the head which is found to 

be a fairly robust method [55]. However, they do not consider the modification of the 

depth values, either.

2.2 Image Sequence Analysis

Once the estimation of the pose of the face has been achieved, an analysis of the facial 

image can take place. In the analysis of facial image sequences both the head motion 

parameters (global motion) and the facial expression parameters (local motion) must be 

estimated. The head motion parameters are due to 3-D motion of the whole head or 

change in viewpoint (global motion), and facial expression parameters are due to the 

motion of elements such as mouth, eyebrows, eyes caused by the changes in their shapes 

(local deformations).

A general overview of 3-D rigid body motion and structure estimation methods 

can be found in [56]. In Chapter 3, we will further concentrate on global motion 

estimation techniques in the context of 3-D object based coding. For facial expression 

parameter estimation (local motion), there heis been extensive research based on Facial 

Action Coding system (FACS) [57]. FACS starts out from visual changes in the facial 

expressions which are specified in terms of Action Units (AUs) being single muscles 

or clusters of muscles. According to FACS, a human facial expression can be divided 

into approximately 44 basic AUs and all facial expressions can be produced by the 

combination of these AUs. In 3-D object based coding AUs are also widely used [25, 46]. 

Once the displacements of control points related to each AU are detected, the wire

frame model can be deformed according to this knowledge. Several algorithms have been 

proposed to do this facial analysis. Aizawa [47] used a tree structure for the efficient 

classification of AUs. The characteristic changes for each AU are investigated and the 

most characteristic AU is classified from the detected displacements of the positions of
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the feature points. Displacements of the classified AU are removed from the detected 

ones and the secondary characteristic AU is classified. This process is continued until 

all the detected displacements vanish. Forchheimer [16, 58] used the residual error field 

after correcting the global motion, ais the displacement vector. He uses an estimate of 

AUs through the relationship

Ad = Aa

where a is a vector of AU parameters. Ad is the set of displacement vectors and A is 

the matrix describing the effect of AUs. Kaneko [24, 59] extracted the shape of the 

mouth, the eyes etc. using a thresholding operation within a rectangular area. From 

this result, he marked several distinctive points to represent the changes in the shape 

of characteristic features. Choi [60] formulate an AU as a vector whose components are 

the deforming velocities of the wire-frame nodes. He again used the constraint between 

the velocity and spatio-temporal gradient of the brightness of two consecutive frames to 

estimate the AU intensities.

Deformable contour models are also used in the field of 3-D object based coding to 

track the non-rigid motions of facial features in the imáge. The most significant work is 

done by Terzopoulos [61]-[63]. His model parameters use three layered deformable lattice 

structures for facial tissue. The three layers correspond to the skin, the subcutaneous 

fatty tissue, and the muscles. His method is only capable of tracking features when the 

motion is very small. Sferedis [64] uses an unsupervised tracking of the facial features. His 

method is a combination of morphological edge detector and a matching technique. The 

method is strongly dependent on the quality of the edge detection algorithm. Huang et al. 

[21] use splines to track features, i.e. eyes, eyebrows, nose and the lips. When the features 

are not visible, they use a database of vectors, called action vectors, each corresponding 

to the maximum possible motion of one of the control points. The feature and hence 

the control points are tracked across the image sequence by using the information in 

the databeise. Yuille et al. use deformable templates for detecting and describing 

features of faces [65]. The template consists of a collection of parameterized curves 

which, taken together, describe the expected shape of the feature to be detected in the
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Figure 2.4: Texture mapping before and after processing. The background is 
partitioned into squares in order to show how the nodes of the triangle change after 
processing.

image. The template interacts dynamically with the image by altering its parametric 

values to minimize the energy function. Later, Welsh [66] modified this method by 

considering the geometric configuration. He normalized the image before tracking the 

feature in such a way that the feature in the image attains a standard shape.

In all the methods described above, global and local motion estimation problems 

are treated separately, which in reality cannot be separated. Recently, Li et al. [26] 

proposed a method to recover both the local and global motion parameters together 

from the spatio-temporal derivatives of the image. However, his method also requires a 

priori knowledge of the AU’s.

2.3 Image Sequence Synthesis

Procedures of synthesizing the facial images at the receiving side consist of deforming 

the wire-frame model through the global and local motion parameters and mapping the
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texture o f the first frame onto the surface of the deformed wire-frame model. Texture 

mapping is an important task in order to get natural and realistic facial images [67]-[69]. 

This topic is widely investigated in the field of computer graphics since it is an easier 

way to create the appearance of complex surface details without having to go through 

modeling and rendering every 3-D detail of a surface. In the context of 3-D object 

based coding texture mapping involves the projection of the 2-D facial image onto the 

triangles forming the 3-D wire-frame model, i.e. the values of pixels inside a triangular 

area are taken from the original image and assigned to the corresponding triangle in 

the 3-D shape model. Fig. 2.4.a shows one of the triangles constituting the wire-frame 

model superimposed on the array of pixels in the initial frame and Fig. 2.4.b shows the 

corresponding triangle and pixels in the output image after being processed by rotation, 

translation and deformation. In order for texture mapping to be independent of the size 

and position of the triangles, each side of a triangle is first divided into equal segments 

and the position of a pixel inside a triangle is represented in terms of its relative position 

inside the triangle.

2.4 Problems of 3-D Object Based Coding

Although 3-D object based coding opens up the possibility of image transmission at 

extremely low bit-rates, several problems such as generality and analysis errors limit its 

practical usage.

Modeling objects is one of the important issues in 3-D object based coding. The 

assumption that the input images always consist of a moving head and shoulder is not 

appropriate for practical use. However, dealing with unknown objects is an extremely 

difficult problem. The second problem is the presence of analysis and synthesis errors. 

These errors are due to mismatch of the wire-frame, inaccurate motion estimation and 

rapidly changing texture information and can cause serious artifacts in the decoded 

images.
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To cope with these problems a practical solution is to use a hybrid coding system 

which is a combination of 3-D object beised coding and conventional waveform coding. 

A general description of a hybrid coding system is given in Fig. 2.5 [46]. The transmitter 

includes a local decoder which enables the system to detect the regions where the 

model does not fit. At the transmitter, image synthesis is performed using the analysis 

parameters extracted at the analysis part. The differences between the synthesized 

images and the input images are coded by the conventional waveform coder. The 

information extracted at the analysis part can also be used to control the waveform coder 

to avoid unnecessary waveform information being transmitted. If there is a complete 

misfit between the model and the input image, then one can again use the conventional 

waveform coding to code the entire image instead of 3-D object based coding. It is shown 

in [46] that incorporation of 3-D object based coding into conventional waveform coding 

improves the signal to noise ratio (SNR) at very low transmission rates such as 16 kbps, 

especially when the face of the person in the input image sequence widely moves.

Another way to cope with the analysis and synthesis errors is to improve the 

algorithms of image analysis so that the motion and structure estimations can be done 

with the highest possible accuracy. In Chapter 4, we will give a new formulation to 

achieve this goal. The formulation proposed takes into account the errors due to misfit 

of the wire-frame to the actual speaker, global and local motion estimaition errors.
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T R A N S M I T T E R R E C E I V E R

Input Output

Figure 2.5: Block diagram of a hybrid coding system.



Chapter 3

GLOBAL MOTION ESTIMATION

Estimating the motion of objects in the field of view from the image sequences captured 

by a television camera is one of the important problems in computer vision and image 

processing. An understanding of the three dimensional (3-D) motion makes it possible 

to predict the future locations and configurations of the moving objects which can be of 

great importance in image coding, remote sensing and military applications. Although 

the objects around us are 3-D and perform 3-D motion, TV cameras can only capture 

their two dimensional (2-D) projections. Therefore, the nature and parameters of 3-D 

motion must be estimated from these 2-D projections. In this Chapter, we will review the 

3-D motion estimation methods in the field of 3-D object based image coding, propose 

an improved feature based motion estimation algorithm and make comparison with the 

existing ones.

3.1 Motion in the Image Plane

In the literature, two projection models of image formation have been widely used: 

perspective projection and orthographic projection [70]. Perspective projection is the 

most familiar projection technique, since the images formed by eyes and by lenses on

26
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3-D motion

PĈ (t),Ŷ  (t).Z (t))

Figure 3.1: Camera model for perspective projection.

intensity sensitive media are perspective projections. The perspective projection conveys 

depth information by making distant objects smaller than the near ones. On the other 

hand, orthographic projection shows only the correct or true x and y sizes of an object.

The motion estimation problem has been investigated mainly for perspective 

projection [71]-[73] with some work on orthographic projection [74]. However, the 

effect of perspective projection decreases when the object size or the variation of the 

surface depth is small with respect to the distance to the camera. In 3-D object based 

coding, the imaging process can also be considered as orthographic projection assuming 

that the camera is far enough away that perspective effects should not make any great 

contributions. Throughout this work we will also concentrate on orthographic projection 

because of the above reason and the ease of formulations.

Fig. 3.1 shows how the changes in 3-D appear in 2-D (image plane) due to the 

projection of the object point onto the image plane. This is a commonly used version
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of projection where the camera is oriented along the positive z-axis, i.e. the normal of 

the image plane is parallel to the z-axis. In the figure, the image plane is at the focal 

plane of the camera, / .  X,(<), Z,(<) are the coordinates of a point s on the 3-D

object and a:,(i),j/5 (t) are the coordinates of its projection onto the image plane. For 

perspective projection,

x , ( 0
^5 ( 0  =  /  

VÁÍ) = f

f  + ^4(0
Vsit) (3.1)f  + z.{t)

and for orthographic projection where /  is assumed to be large with respect to the depth

x ,(0  =  X,{t)

s .(0  =  n (i)· (3.2)

3.2 Three Dimensional Rotation and Translation

In order to estimate the motion in 3-D we have to identify how motion changes the 

structure of the scene. Let [X 4 (<) 5^(0 Zs{t)]^ be the vector of the coordinates of a

particular point s of a moving object at time t and S refers to the object which is the 

set of all such points. If we assume that the object is rigid and subject to small rotation, 

we can express the position of s at time t +  At  given its position at time t as.

' Xs{t  +  At)

n ( i  +  A 0

Z,{t  -t- At)

e u}x, ojy, and LÜZ a

■ X.(t) ' ' T x ■

Y.{‘ ) + TV

. . Tz

Vs € 5  (3.3)
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where and ijJz are the rotational displacements around the X , Y  and Z axes,

respectively, and T^, 7y, and Tz are the translational displacements along the A”, Y 

and Z  axes, respectively. Under orthographic projection along the z-direction, Eq. 3.3
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becomes,

+ A<) — Xaii) T <^zys(t) ~  Zflt) + Tx 

y,{t +  At)  =  -(^Z^ait) +ys{t )  +OJxZs{t) + TY,

Vs e  S.

(3.4)

As the only information we can obtain from the 2-D images are the projections of the 

3-D objects around us, we have to estimate the rotational and translational displacements 

from Eq. 3.4.

3.3 Methodologies for Motion Estimation

A general overview of 3-D motion and structure estimation methods can be found in 

[56]. In the context of 3-D object based coding, we can divide the methods developed 

for the computation of motion from image sequences into two categories: feature based 

and optical flow based motion estimation. The first of these is bcised on extracting a set 

of 2-D features in the images, establishing inter-frame correspondences between these 

features and computing the 3-D motion parameters from the displacements of these 2-D 

image features. Aizawa and Harashima [20, 25] estimate the 3-D motion parameters and 

depth information of the head by this approach which will be given in the next section in 

detail. In order to extract the 3-D motion they use the rigid body assumption, i.e. they 

do not take into account the local deformations. Welsh also gives a least-squares method 

to estimate only the global motion parameters [22]. The drawback of these methods is 

that, extracting and establishing feature correspondences is a difficult task due to hidden 

and false features. However, feature-based methods are widely used in 3-D object based 

coding due to their low computational complexity.

The other approach is based on computing the optical flow [75], the 2-D field of 

instantaneous velocities of gray levels in the image plane. In this approach, there is no 

need to define correspondences between features of successive images. However, most
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of the methods reported in the literature for 3-D motion estimation based on optical 

flow consider only rigid body motion where no deformation of the body is allowed as a 

function of time [29]. Recently, Li et al. [26] proposed a method, to recover both the 

local and global motion parameters from the spatio-temporal derivatives of the image. In 

the following sections we will review the abovementioned methods together with various 

improvements.

3.4 Feature Based Motion Estimation

Among the methods in the literature about feature based motion estimation, MBASIC, 

recently proposed by Aizawa et al. [20], is a simple and effective iterative algorithm 

for 3-D motion and depth estimation under the orthographic projection. MBASIC 

algorithm, reviewed in the following section, requires a set of initial depth estimates 

which are usually obtained from a generic wire-frame model. Although the performance 

of MBASIC is very good when the initial depth parameters contain about 10% error or 

less, it degrades with the increasing amount of error in the initial depth estimates. But 

in practical applications the initial depth estimates may contain 30% or more error due 

to problems in scaling the generic wire-frame model to a particular speaker. Thus, 

in Section 3.4.1 we propose a modification to the MBASIC algorithm which makes 

it more robust to errors in the initial depth estimates with a small increase in its 

computational load, thus making it more useful in practical applications. We also discuss 

the computational complexity of the improved algorithm; compare the performance of 

the MBASIC algorithm and the improved algorithm in the presence of various degrees 

of inaccuracy in the initial depth estimates, and show that the improved algorithm 

converges to the true motion and depth parameters even in the presence of 50% error in 

the initial depth estimates.
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3.4.1 M BASIC algorithm for motion estimation

Each iteration of the algorithm is composed of two steps: 1) Determination of motion 

parameters given the depth estimates from the previous iteration, and 2) update of depth 

estimates using the new motion parameters.

In Eq. 3.4, there are five unknown global motion parameters wx, wy, wz, Tx and 

TV, and an unknown depth parameter Zs{t) per given point correspondence {xs{t),ys{t)) 

and {xs{t +  At),ys{t + At)).  The equation has a bilinear nature, since Zs{t) multiplies 

the motion parameters. It is thus proposed to solve for the unknowns in two steps:

Step 1. Given at lecist three corresponding coordinate pairs {xs(t),ys{t)) and {xs{t + 

At), ya(t +  At)  and their depth parameters Za(t), s =  1 , . . . ,  N, N > 3 , we can rearrange 

Eq. 3.4 to lead to 2N equations in 5 unknowns:

Xa{t +  At) -  Xa{t)

ya{t +  At) -  ya{t)

0 -Za{t) ys{t) 1 0

Za{t) 0 -Xs{t) 0 1

COx

U>Y

UJZ

Tx

Ty

(3.5)

Xa(t -f At) -  X,(i) -  U>zy,{t) -  Tx —COy

y,{t A At)  -  ys{t) +  ojzXs{t) -  Ty U>x

Hence, the motion parameters can be solved from Eq. 3.5 using the least squares 

method.

Step 2. Once the motion parameters are found, we can estimate the new Zi values 

using

[ z,(i) ] . (3.6)

which is again obtained from Eq. 3.4. Here, we have one equation pair, per given point 

correspondence, which can be solved for Za(t) in the least squares sense.

The procedure consists of repeating steps 1 and 2 until the estimates no longer change 

from iteration to iteration. However, it has been observed that unless we have reasonably 

good initial estimates for Za(t), s =  1,. . .  ,N, the two-step iteration may converge to a 

local but not global minimum. In the next section, we propose a solution to this problem.



Chapter 3. GLOBAL MOTION ESTIMATION 32

3.4.2 Improved motion and depth estimation by random 
perturbation

In the MBASIC algorithm there is a strong correlation between the error in the motion 

parameters and the error in the depth parameters. This can be seen from Eqs. 3.5 and 

3.6, cis the errors in the depth parameters are fed back on the motion parameters and 

vice versa, iteratively. To circumvent this problem, we define an error criterion (see 

Eq. 3.7 below), and update Z,{t) in the direction of the gradient of the error with a 

proper step size (instead of computing them from Eq. 3.6) at each iteration. To facilitate 

convergence of the estimates to their correct values, we also perturb the depth estimates 

in some random fashion after each update. The motion parameters are still computed 

from Eq. 3.5 after each update/perturbation of the depth estimates. The principle 

used here to update the depth parameters is similar to stochastic relaxation, where 

each iteration consists of perturbing the state of the system in some random fashion 

before computing the next state, with the ultimate goal of convergence to the global 

optimum [76]. The update in the gradient direction increases the rate of convergence as 

compared with totally random perturbations of Z ,(i). In our experiments, the random 

perturbations are generated as samples of uniform or Gaussian distributed numbers. The 

magnitude of perturbations decreases with the number of iterations, so that convergence 

should result. The proposed algorithm with improved convergence characteristics is as 

follows:

1. Set the iteration counter m =  0.

2. Given at least three corresponding coordinate pairs (x,(t),y ,(t)) and (x ,(t +

A<),j/j(t +  At))  and their depth parameters Z j(i), s =  1 , . . . ,  Â , >  3, determine

the motion parameters from Eq. 3.5.

3. Compute (x,(„)(< + At),ys^^^it + At)), the coordinates of the matching points that 

are predicted by the present estimates of the motion and depth parameters, using
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Eq. 3.4. Compute the model prediction error

1 N

-  yv 
5̂=0

(3.7)

where

e, = (x,(t + At) -  + At))  ̂+ (y,(t + At) -  + At))^ (3.8)

Here (a;,(t +  A t),y,(t + A t)) are the actual coordinates of the matching points 

which are given.

4. If Em < c, stop the iteration,

Else, set m =  m +  1, and perturb the depth parameters as

■ î(m)(0 ^  + û”*A „ (3.9)

where y(Z ,(t)) is the gradient of e, with respect to Z,(t) (which can be analytically 

computed from Eq. 3.4), and, a and ^ are constants.

For Gaussian distributed perturbations. A , =  A ,̂(0,o·^^^), i.e., zero mean Gaussian 

with variance cr̂ , . where  ̂ =  e,.

For uniformly distributed perturbations. A , = i/,(Z,^^_,j(i)±aa^^j), i.e., uniformly 

distributed in an interval of length 2â ’"̂  about where I/3  denotes

uniforml}' distributed random numbers. To make reasonable comparisons with 

the case of Gaussian perturbations, is chosen such that

„7
m)

»(m )
=  . =  e,. (3.10)

5. Go to step (2).

The difference in computational complexity between the two algorithms originates 

from the estimation of the depth (Z)  parameters. The MBASIC algorithm treats this as 

another least squares estimation problem which requires seven multiplications and eight 

additions per point pair, per iteration. Our method is based on perturbation of the depth
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parameters and requires sixteen multiplications and twelve additions per point pair, per 

iteration. Experimental results presented in the next section show that the MBASIC 

algorithm usually converges to a result in about 5-10 iterations. Our algorithm generally 

provides superior results after about 15-20 iterations (see Figures). Considering that we 

work with 5-10 point pairs, the computational complexity of the improved algorithm is 
just slightly higher.

3.4.3 Comparisons

In this section, we compare the performance of the proposed improved algorithm with 

that of the MBASIC algorithm in the presence of various degrees of inaccuracy in 

the initial depth estimates, and for different number of point correspondences. The 

comparative analysis has been performed by means of a number of numerical simulations 

as well as an experiment with a typical videophone scene, Claire. The wire-frame model 

(CANDIDE) [53] consisting of 100 triangles was used in the experiment with the Claire 

sequence.

The simulations were carried out by using 5, 7 and 10 point correspondences, 

respectively, with 10%, 30% and 50% error in the initial depth estimates in each case. The 

data for the simulations were generated cis follows: A set of 5 to 10 points, {xs{t)',ys{l’)) 

with the respective depth parameters Z,{t), in the range 0 and 1, were arbitrarily chosen. 

The coordinates (xj(t +  -f At)) of the matching points in the next frame were

generated from (Xi(0>yi(0) using the transformation (3.3) with the “true” 3-D motion 

parameters listed in Table 3.1 . The computed coordinates (x,(t +  A t),y ,(i -f At))  are 

then truncated to the nearest integer. This truncation approximately corresponds to 

adding 40 dB noise to the matching point coordinates. Then, ±10%, ±30% or ±50% 

error is added to each depth parameter Zs{t), for the respective simulations. The signs 

of the error (±  or —) were chosen randomly. At each iteration of the algorithm, first 

the motion parameters are estimated as the least squares solution of Eq. 3.5 using the 

present depth parameters. (This step is the same as in the MBASIC algorithm.) Then,
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the depth parameters are updated as given by Eq.3.9. We set a =  0.95 and /? =  0.3 

to obtain the reported results. We iterate between Eqs. 3.5 and 3.9 until E,n given 

by Eq. 3.7 is less than an acceptable level. In order to minimize the effect of random 

choices in the evaluation of the results, the results are repeated three times using three 

different seed values for the random number generator. The results shown in Table 3.1 

and Figures 3.2, 3.3 and 3.4 are the average of these three sets.

Table 3.1 provides a comparison of the motion parameter estimates obtained by the 
MBASIC algorithm and the proposed method using uniform and Gaussian distributed 

random perturbations at the conclusion of the iterations (in this case after 500 iterations). 

Table 3.1 shows the results only for the 10-point correspondence case. The 5-point and 7- 

point results are similar. The comparison of the results of the depth parameter estimation 

is shown in Figures 3.2-3.4. In these figures the average estimation error in the depth 
parameters vs. iteration number is plotted, where the average error is defined as

Error =
i

1 f  (Z.jt) -  z , ( t ) y  
N t i  m  ■

(3.11)

where N is the number of point correspondences; and are the “true” and

estimated depth parameters, respectively. Note that the scale of the vertical axis is not 

the same in each case.

In the MBASIC algorithm, the errors in the depth estimation directly affect the 

accuracy of the motion estimation and vice versa, since the algorithm iterates between 

Eqs. 3.5 and 3.6. This can be seen from Tables 3.1 and 3.2, where the error in the initial 

depth estimates mainly affects the accuracy of u>x and lOy which are directly multiplied by 

Z  in both equations. Thus, in the MBASIC algorithm, the error in coj; and LOy estimates 

increases as we increase the error in the initial depth estimates (see Table 3.1). Further, 

in the MBASIC algorithm, the error in the depth estimates (at convergence) increases 

with increasing error in the initial depth parameters (see, e.g.. Figs. 3.2.c, 3.3.c and 

3.4.c). However, in the proposed algorithm, an update scheme given by Eq. 3.9 that is 

indirectly tied to the current estimates of the motion parameters is used. As a result, a 

smaller average error is obtained for depth parameter estimation in all cases. As can be
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True motion MBASIC Uniform Gaussian
u}x{rad.) 0.01 0.009951 0.010181 0.010141
LOy{rad.) 0.02 0.0199901 0.020351 0.020255
u}i[rad.) -0.01 -0.009994 -0.009998 -0.009995
Tx{pixel) 0.02 0.019933 0.020067 0.019939
Ty{pixel) 0.05 0.05004 0.049967 0.050031

(a)

True motion MBASIC Uniform Gaussian
iûj;(rad.) 0.01 0.07856 0.010241 0.010779
u}y(rad.) 0.02 0.015712 0.020504 0.021464
ojz(rad.) - 0.01 -0.009994 -0.009996 -0.009984
Tx(pixel) 0.02 0.018079 0.019966 0.021038
Ty(pixel) 0.05 0.050961 0.050018 0.049481

(b)

True motion MBASIC Uniform Gaussian
tjOx{rad.) 0.01 0.005040 0.010768 0.010441
u>y(rad.) 0.02 0.010084 0.021548 0.020982
u>z{rad.) -0.01 -0.009545 -0.010002 -0.010018
Tx(pixel) 0.02 0.015438 0.020363 0.019958
Ty{pixel) 0.05 0.052281 0.049818 0.050018

(c)

Table 3.1: The true and estimated motion parameters for 10 point correspondences 
with (a) 10%, (b) 30% and (c) 50% initial error in the depth estimates.

seen from Figs. 3.2 -3.4, the depth estimates, using the proposed method, converge closer 

to the correct parameters even in the case of 50% error in the initial depth estimates. 

For example, in the case of estimation using 10 point correspondences with 50% error 

in the initial depth estimates, the proposed method results in about 10% error after 500 

iterations whereas the MBASIC algorithm results in 45% error. In the 10% initial error 

case, the error at the end of the iterations is 3% in MBASIC algorithm and 0.5% in our 

algorithm.

The proposed method with uniform perturbations has also been applied to a typical
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MBASIC Uniform Gaussian
u>x{rad.) 2.4010e-09 3.2761e-08 1.9881e-08
ujy{rad.) 9.8010e-ll 1.2320e-07 6.5025e-08
u>x{rad.) З.бОООе-11 4.0000e-12 2.5000e-ll
Tx{pixel) 4.4890e-09 4.4890e-09 3.7210e-09
Ty(pixel) 1.6000e-09 1.0890e-09 9.6100e-10

(a)

MBASIC Uniform Gaussian
ujx{rad.) 4.7005e-03 5.8081e-08 6.0684e-07
u>y{rad.) 1.8387e-05 2.5402e-07 2.1433e-06
0Jz{rad.) 3.6000e-ll 1.6000e-ll 2.5600e-10
Tx{pixel) 3.6902e-06 1.1560e-09 1.0774e-06
Ty{pixel) 9.2352e-07 3.2400e-10 2.6936e-07

(

MBASIC Uniform Gaussian
ujx{rad.) 2.4602e-05 5.8982e-07 1.9448e-07
u)y{rad.) 9.8327e-05 2.3963e-06 9.6432e-07
u>x(rad.) 2.0703e-07 4.0000e-12 3.2400e-10
Tx{pixel) 2.0812e-05 1.3177e-07 1.7640e-09
Ty{pixel) 5.2030e-06 3.3124e-08 3.2400e-10

(c)

Table 3.2: The mean square error in the estimated motion parameters for 10 point 
correspondences with (a) 10%, (b) 30% and (c) 50% initial error in the depth estimates.

videophone scene, Claire. Here, seven point pairs which are interactively specified, are 

used. The coordinates of the corresponding points are determined by the block matching 

technique where the block size is 8 x 8 and the search window is 10x10. Fig. 3.5.a depicts 

the original wire-frame model manually fitted to the first frame of the Claire sequence 

as in Aizawa et al. [20]. Fig. 3.5.b and Fig. 3.5.c show the projection of the modified 

wire-frame model onto the image plane for the seventh frame using the estimated depth 

and motion parameters with the MBASIC and the proposed algorithms, respectively. 

Inspection of the results indicates a much better fit in the case of the proposed algorithm.
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3.5 Optical Flow Based 3-D Motion Estimation

In this section, we will review the equation describing the relation between the 3-D 

motion and structure and the corresponding 2-D velocity field (optical flow), which 

is related to the projection of the 3-D motion onto the image plane under certain 

assumptions [37]. By using additional constraints regarding the 3-D structure of the 

scene, it is possible to recover the parameters of the 3-D motion from the associated 

optical flow field [56].

Let I {x , y , t )  represent the intensity at points on a path defined by {x =  x ( t ) ,y  =  

y{t),t) ,  in the 2-D image plane where t is the time. If we wish to know the rate at which 

the intensity changes with respect to < as we travel along the path, we have to evaluate 

the total derivative of I  along that path with respect to t, assuming that I (x ,y , t )  has 

continuous partial derivatives Ix, ly and L and x — x{t), y — y{t) are differentiable 

functions of t (Eq. 3.12).

(3.12)
^  _  dx{t) dy{t) 
dt  ̂ dt ^   ̂ dt

We can interpret Eq. 3.12 as the rate at which I  changes with respect to i as we move 

on any arbitrary path defined by (x{t ) ,y{t)it)  with a velocity (^ ^ ,  ^ ^ ,1 ). Therefore, 

it is the directional derivative of I  along the direction (^^^, 1)·

Now, let us define an object S in the 3-D object space. The intensity of a point s 

on S at time t can be represented by 7 (x ,(i), y,(t), t). Vs G 5  and Vt. If the object is 

subject to motion we can find the change of the intensity of the point s with respect to t 

using Eq. 3.12, along its motion trajectory (x ,(t ),y ,(i),t ). Assuming that the intensity 

of the point s does not change in time, i.e. it is constant as the point moves along its 

trajectory, we can write the directional derivative of /  as

dl{x,y , t )
dt X = X ,(< )

y=yj(0
- 0 . (3.13)

Eq. 3.12 and 3.13 give us information about the 2-D velocity vectors between a 

discrete set of images. Since our aim is to compute the 3-D motion, we need to know
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the relation between the 2-D and 3-D velocity vectors. Let us assume that the object S  

is under small rotation. Therefore, we can approximate the 3-D velocity of a particular 
point s of a moving object using Eq. 3.3 as

m

Zs{t)

0 u>z — 

—uiz 0 ux

U>Y —iOX 0

' X M ' ' Tx ■

Y.(i) + Ty

Z,(l) Tz

(3.14)

where X,(t) = A’.(i +A i)-X ,((), Y,(t) = Y,(t + At)-Y,{t), Z,(t) = Z,(i + Ai) -  Z,((). 
Under orthographic projection along the z-direction, we can represent the 2-D velocity 

field associated with the projection of the point s as

= ^ z y A ^ ) -> ^ Z , { t )A T x  

ys{t) =  -i^zXs{t) +  ojxZs{t) -I- TV

where x ,(i) =  y,{t) =  V;(t).

Combining Eq.3.15, 3.12 and 3.13, we get

Ix{^zy — ^ y Z -f Tx) +  Iy{—u}zx + ^ x Z  -f TV) + /j =  0.

(3.15)

(3.16)

Eq. 3.16 is a constraint that relates the spatio-temporal image gradients to the 3-D 

motion tUj;, o7y, oJj, TV, Ty and the structure (Z ) parameters under the assumption that 

the variation in image intensity pattern is solely due to the 3-D motion of the underlying 

scene. Eq. 3.16 alone is not sufficient to determine the 3-D motion and the structure 

parameters if they are allowed to change freely and independently at every point. Several 

approaches exist in the literature to compute the motion and structure parameters from 

Eq. 3.16 under piecewise rigid scene assumption (constraining the variation of the 3-D 

motion parameters) and with certain surface structure models (constraining the variation 

of Z  with (X , F )) [56, 74]. Another approach is to compute the 2-D velocity vectors using 

Eq. 3.12 under the assumption of smoothness of optical flow, and then to compute the 

3-D motion parameters from Eq. 3.15.

In order to compare the results of feature based methods with that of optical flow

based methods, we give the results obtained by one of the first methods that uses optical
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flow based formulation for 3-D motion and structure estimation in the context of image 

coding ([29]). The method is based on the assumption that the moving objects exhibit a 

smooth motion due to inertia and elasticity. The 3-D motion and structure parameters 

are found by minimizing the energy function given by Eq. 3.17 using Newton-Raphson 
method.

£(Aa,,A3’,A2) = O K - S ; ) “ + (“;-il)")+o||A‘.-lP+^l|Ar||>+(5;(Azf. (3.17)
i=l t=l

In Eq. 3.17 o r ,  C and /? are scale parameters, n is the number of points considered in the 

computation, and Uy are the image plane motions found by Eq. 3.15 using Horn and 

Schunk’s method, u\. and Uy are the motions found by Eq. 3.16.

Using the smoothness assumption (Horn and Schunk’s method), the computed optical 

flow from the second and the fifth frames of the Claire sequence is shown in Fig. 3.6. 

The 3-D motion estimated by using Eq. 3.17 is shown in Fig. 3.7. In this simulation, 

10 iterations have been done in minimization of the energy function which is enough to 

drop the energy below a certain limit with the given parameters ( 3.17). In addition, a 

block matching algorithm is used to find the image plane motions at the beginning of 

the iteration, o r ,   ̂ and ^ are chosen as 100, 3 and 1 respectively. The number of points 

used to compute optical flow is 251 which corresponds to the number of points on the 

edges.

Comparing the results, we see that in spite of the high computation cost, optical flow 

based methods give a more accurate estimation than the feature-based methods. So, 

there is a trade-off between accuracy and computational load. Another drawback of the 

methods based on optical flow is that, they do not consider the non-rigid objects, i.e., 

they assume that only a rigid body is under 3-D motion for the ease of computation. 

Also, these methods neglect the effects of changing shading due to the 3-D motion of 

the scene in order to simplify the optical flow equation. For example, in the case of 

rotational motion because the surface normals change, the shading of the objects varies 

even if the external illumination remains constant.
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Iteration number

(a)

(b)

Figure 3.2: Average estimation error in the depth parameters with 10% error in the
initial depth estimates for (a) 5, (b) 7, (c) 10 point correspondences.
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Iteration number

(a)

(b)

I
------------ MBASIC
--------- Uniform
---------Q ausalan

0.0  100.0 200.0 300.0 400.0
Iteration number

(c)

Figure 3.3: Average estimation error in the depth parameters with 30% error in the
initial depth estimates for (a) 5, (b) 7, (c) 10 point correspondences.
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(a)

------------ MBASIC
.......—  Uniform
------------Oausslan

100.0 200.0 300.0
Iteration number

(b)

Iteration number

(c)

Figure 3.4: Average estimation error in the depth parameters with 50% error in the
initial depth estimates for (a) 5, (b) 7, (c) 10 point correspondences.
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Figure 3.5: Wire-frame model fitting for a typical video-phone sequence Claire, (a) 
Wire-frame model fitted to the first frame, (b) Modified wire-frame model for the seventh 
frame using the depth and motion parameters estimated by Aizawa’s algorithm, (c) 
Modified wire-frame model for the seventh frame using the proposed algorithm with 
uniform perturbations.
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Figure 3.6; Optical flow computed using the smoothness of motion constraint from the 
first and fifth frames of Claire sequence.

Figure 3.7: The modified wire-frame using the parameters estimated by optical flow 
based formulation.
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ESTIMATION INCLUDING 
PHOTOMETRIC EFFECTS

In this section, we propose a novel formulation for adaptation of a generic wire-frame 

model to a particular speaker in a scene and for estimation of the 3-D global and local 

motion. The estimation and adaptation is done within an optical flow based framework 

including the photometric effects of the motion. In the formulation, 3-D global motion 

refers to the 3-D rotation and translation of the head as a whole, and local motion 

refers to the motion of the individual points on the face corresponding to the wire-frame 

nodes. We use a flexible wire-frame model whose local structure is characterized by 

the normal vectors of the patches which are related to the coordinates of the nodes. 

Geometric constraints that describe the propagation of the movement of the nodes are 

introduced, which are then efficiently utilized to reduce the number of independent 

structure parameters. A global random search algorithm has been used to determine 

optimum global motion estimates and the parameters describing the structure of the 

wire-frame model (local motion).

Results with both simulated and real facial image sequences are provided.

46
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4.1 Photometric Model of Image Formation

The utility of photometric cues in 3-D motion and structure estimation has recently 

been discussed [38, 77], but photometric information was not used in the context of 

knowledge-based coding before. Recently, Pentland [77] has shown that photometric 

effects (changes in image intensity due to object motion) can be more important than the 

geometric effects (distortion of the projected surface shape due to motion) in structure 

estimation. Similar discussions can be found in [37, 38]. Here we briefly discuss a 

photometric model of image formation with the aim of incorporating photometric effects 

into the aforementioned optical flow based formulation.

Let us define an object 5  as a set of labeled points s forming a surface in 3-D space. 

Suppose that we observe the object 5  at a fixed time t. Since 5  is a surface, we can 

represent it as a depth function Z(x,y).  Now, let us represent the partial derivative o f 

depth Z {x ,y )  with respect to the image coordinates x and y by p =  || and q =  

respectively. Denoting Pa{t) and qs{t) as the partial derivatives p and q at point s at 

time t, respectively, where s is a particular point of the object S, we can represent the 

image intensity associated with the point s through a reflectance map

=  '^iPs{t),qa{t)) (4.1)

where TZ denotes the reflectance map function. Under the assumptions of orthographic 

projection onto the image plane and a Lambertian surface with constant albedo, p, we 

can express the reflectance map as [70]

n{pa{t),qs{t)) =  pN X t) -L  (4.2)
—4

where L ~  {Lx, Ly, Lz) is the unit vector in the mean illuminant direction and is the 

unit surface normal of the object at point s given by

m )  =  ( -p .( i ) .  i ) / ( r f ( o + ? ? ( ' ) + 1 ) ’ '"· (4.3)

Note that the illuminant direction can also be expressed in terms of tilt and slant 

angles as
L =  {Lx, Ly, Lz) =  (cos r sin a, sin r sin cr, cos cr) (4.4)
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where r, the tilt angle of the illuminant, is the angle between L and the X  — Z  plane, 

and <T, the slant angle, is the angle between L and the positive Z axis.

The model (4.2) is widely used in the computer vision literature for estimating 

the object shape and the illuminant direction from shading [77]-[81]. Note that the 

Lambertian reflection model used here is appropriate for diffuse reflection and will be 

sufficient to incorporate the photometric effects of rotational motion. There are models 

developed for specular reflection, too [38].

4.1.1 Estimation of illumination direction

In order to incorporate the photometric effects of motion into 3-D motion estimation 

and wire-frame adaptation, the illuminant direction L must be known or estimated from 

the available frames. In this study, we use the method proposed by Zheng et al. [81] to 

estimate the illuminant direction.

The method to estimate the tilt angle is based on the assumption that the surface 

points are umbilical points. An umbilical point is a point at which the surface is 

approximately spherical. An estimate of the tilt angle is given by

' E { L j ^ L i  +  Li)'
T — arctan (4.5)

where E { . }  denotes the averages over the spatial variables. These values are computed 

by averaging the results obtained over 3 x 3  moving windows in our implementation. 

Lx and Ly are the x and y components of the local estimate of the tilt of the illuminant, 

respectively, computed as (using the notation in [81])

’ Sh ■ 6x 1 6yi

SI2 ¿X2 ^ 2

•

, and B —
•

SIn Sxn



Chapter 4. ESTIMATION INCLUDING PHOTOMETRIC EFFECTS 49

Here, 6Ii is the difference in image intensity of two neighboring pixels along a particular 

direction {Sxi,6yi), and N is the number of directions (in our implementation we have 

set N= 8  for each 4 x 4  window).

The slant angle a can be uniquely estimated from

E {P ] =  f M (4.6)

since / 3 ( 0 ·) (defined in [81]) is a monotonically decreasing function of cr, where E {I )  and 

E { P }  are the averages of the image intensities and the square of the image intensities, 

respectively, over all pixels in the image area where the wire-frame model is fitted.

Finally, the surface albedo can be estimated from

P =
E {I )  ■ ¡ M  + \!e [ P }  ■ h (o )

/?(< ') +

where f\{cr) and / 2 (0 ·) are seventh order polynomials in cos a as defined in [81].

4.2 Problem Formulation

In this section we present the proposed formulation for simultaneous estimation of 

3 -D global motion parameters and adaptation of the wire-frame model that also takes 

the presence of local motion into account where global and local motions are as defined 

at the beginning of this chapter.

4.2.1 Incorporation of the photometric effects

We represent the 3 -D structure of the speaker by a wire-frame model where the surface 

of the wire-frame model is composed of planar patches. So, the variation in the intensity 

of a pixel due to photometric effects of motion will be related to a change in the normal 

vector of the patch that this pixel belongs to. This variation in the intensity can be 

found by using the image formation model, (see Eq. 4.1.) From Eq. 4.3 and Eq. 3.3, we
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can write the change in the normal vector associated with the point s due to the 3-D 

motion as

where,

dN,{t) =  yV(X,(t +  A < ),y ;(t-f +
-f At), q,{t +  At), 1)^ _  ( -p ^ (0 , - ? , (0 , l )^

(p,(i +  Ai)^ +  qs{t +  A ty  +  iy/2 (p,(i)2 +  ç,(<)2 + 1)1/2 >

-i^Y+Ps{t)

(4.8)

Pi{t +  At) — 

Çs{t +  ^ 0  ~

1 +OYp,(i)
<̂X +  Çs(t) (4.9)1 — o ;x9 ,(i)’

using orthographic projection. Assuming that the mean illuminant direction L =  

{Lx, Ly, Lz) remains constant, we can represent the change in intensity due to 

photometric effects of motion using Eq. 4.2 as
d l{x ,{t),yz {t),t)

dt
=  pL · dNs{t)·, (4.10)

where the derivative is taken along the path the point s travels. Following the discussion 

given in section 3.5, we can relate the spatio-temporal image gradients to the 3-D motion 

and structure parameters with the inclusion of photometric effects as

I x { < ^ z y +  Tx) + Iy {—(x>z^+i^xZ+ Ty ) +It =  pL- (  ̂ ( P> )
v̂ p'2 + q'‘̂  + l  y/p̂  +  -1-1

(4.11)

where p' =  p{t -f At), q' =  q{i -f At), p = p{t) and q = q{t). The term on the right hand 

side of Eq. (4.11) may be significant especially if the change in the surface normal has 

components either toward or away from the illuminant direction [77].

4.2.2 Structure of the wire-frame model and problem 

statement

The wire-frame model is composed of triangular patches which are characterized by the

{X , Y, Z) coordinates of their respective vertices. Given the {X, Y, Z) coordinates of the
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vertices of a patch, we can write the equation of the plane containing this patch. Let 

i>;" =  P¡‘> = and Pi‘> =  {Xİ■\γ|‘\Z¡·') denote the

vertices of the patch, and Ẑ '̂ ) be any point within this patch.
Then,

·-#

gives the equation of the plane containing Pj'\ pj'^ and ^3 '^ where P['^P^'\

and are the vectors from the former point to the latter, respectively. We can
express this equation in the form

where

Pi

<li =

Zi — piX{ + qiYi +  c,,

(yti) _  -  z P )  -

(xp -  - y}'̂ ) -  {yI'̂  -  Yhixi'^ -  xi’Y
(zi‘̂  -  z¡‘)(x¡‘̂  - xl’)  - (xP - x!’)(z^’  ̂- zl') 
(x(’> -  xl^W^ - y/·) - (Y,('̂  -  -  xl’Y

(4.12)

and

c, = „(.) , yt.i (n “ * -  r / ‘>)(4'> -  z l·') -  ( z p  -  zi'i)(n<'> -  r,<'>)
' ‘ (x f ' -  xj‘)(Ŷ '' -  y/·’) -  (y,·'’’ -  y,''’)(A:i‘’ -  xl’>)

(i,( 4 ' i - z!")(xj" - X }·')- (X2 ' - Xi'Kzr- z}·')
* '"A*) v(')^ iv(') _  vU)\( y (‘) „  vh)

(̂')\/ v(«) d'·)̂ dO ddx/vi') dÔ

(A -f -  A:r)(y,'·' -  y."’) -  (n"' -  y."’)(A-i'' -  A T )

Using Eq. 4 . 1 2 , the Z  coordinate of any point on the patch can be expressed 

in terms of the parameters p,, and c,· and the X  and Y  coordinates of the point. 

Then, we can eliminate Z  from Eq. 4.11 by substituting Eq. 4.12 into Eq. 4.11 with 

Xi  =  X , ,  Yi =  yi, where the patch index i is determined for each {x ,y ) according to the 

orthographic projection.

The problem of simultaneously estimating the 3 -D global motion parameters 

Tx, Ty, describing the global motion of the head, and the parameters 

Pi, qi, Ci, that describe the structure of the wire-frame model, can then be formulated
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as to minimize the squared error in the optical flow equation (4.11) over all pixels in a 
frame given by

^  =  1 ]  E  (4.13)
• patch

where

e,(a:, y) =  I:c{<^zy ~ ^ {P iX  +  g.y +  c.) +  Tx) + Iy{-LOzx +  ix>x{piX +  qiy +  c,-) +  TV) + 7, -

p{Txi L^)
/ -u;y+p, u/x+g, i\
 ̂ l+u;ŷ p,̂  / 1) )

P? + «? +  1)'/V ’
(4.14)

, ( ( i S ^ ) ’ + ( r i S - ) ’ + i) ''"  (P?

with respect to the variables lox, u^, ivz, Tx, Ty, pi, qi, Ci and i =  1, · · ·, number of patches.

It is important to note that the surface normals p,·, qi and the translation (in the 

Z  direction) parameters c, of each planar patch of the wire-frame are not completely 

independent of each other. An efficient algorithm to reduce the number of independent 

unknowns is given in Section 4.3.

4.3 Optimization Method

In this section a global random search algorithm [82] to estimate the global motion 

parameters ujy, 2V, Ty, and the structure parameters p,, qi, Ci is proposed. 

There is a variety of global optimization methods where each of them is suitable for 

different classes of problems. Among them, global random search methods occupy a 

peculiar place as sometimes they offer the unique way of solving complicated problems. 

The main popularity reasons of global random search methods among users are that 

they are rather insensitive to irregularity of the cost function behaviour as well as to the 

presence of noise in the cost function evaluations and also to the growth of dimensionality. 

Besides, it is easy to construct simple methods that guarantee global convergence. Due 

to these reasons, we also use a global random search algorithm to find the unknown 

parameters in our problem.
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The simplest of the random search methods is to evaluate the cost function at points 

obtained by sampling from a uniform distribution on the search space. To generalize 

this algorithm, one can use a random independent sampling of points in the search 

space with some given nonuniform distribution which is a Gaussian distribution in our 

case. The usage of the previously obtained information through the search also improves 

the efficiency of the algorithm. A simpler manner of including adaptive elements into 

the global random search techniques consists of determining a distribution for the new 

solution as depending on the previous point and the cost function value at this point. 

In our experiments, the independent unknowns are perturbed at each iteration, where 

the perturbations are generated cis samples of Gaussian distributed numbers with the 

variance of the distribution adjusted according to the value of the cost function E  (given 

by Eq. 4.13). Further, the magnitude of perturbations is reduced with the number of 

iterations, so that convergence should result.

As stated in Section 4.2.2, not all of the parameters p,, ç,·, c,· are independent due 

to the geometrical constraints defining the structure of the wire-frame model. The 

dependent structure parameters are determined as follows: At the beginning, the x ,y  

coordinates of the nodes of the wire-frame at the boundary of the facial region shown in 

Fig. 2.2 are fixed whereas the Z coordinates are allowed to move. This means that only 

the projections of the boundary nodes are kept fixed during the iterations. All three 

coordinates of a non-boundary node are free to change. At each iteration cycle, we visit 

the patches of the wire-frame model belonging to facial region in a sequential order. If, 

at the present iteration cycle, none of the neighboring patches of patch i has yet been 

visited for updating their structure parameters (e.g., the initial patch), then p,·, ç,·, c,· 

are all independent and are perturbed. If only one of the neighboring patches, say patch 

j ,  has been visited {pj, qj, cj have already been updated), then two of the parameters, 

say p, and ç, are independent and perturbed. The dependent variable c, is computed as

c,· — Pj^ij  T  ÇjVij "b Pi^ij Çiî/i}} (4.15)

using the line equation between the patches where {xij,yij) is one of the nodes common

to both patches i and j  and is known before the present iteration cycle: it is either on the
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boundary or has been already updated. If two of the neighboring patches, say patches 

j  and k, have already been visited, i.e., the variables Pj,qj,cj and Pk,qk,Ck have been 

updated, then only one variable, say p,, is independent and perturbed. Then, c,· is found 

from Eq. 4.15, and is evaluated as

Pk îk T qjVik T' k̂ Pi îk f̂ k
Vik

(4.16)

where {xik,yik) is one of the nodes common to both patches i and k and is known before 

the present iteration cycle, that is either on the boundary or has been already updated.

The perturbation of the structure parameters p,, ç,· and c, for each patch i results in a 

change in the coordinates of the nodes of the updated wire-frame. The new coordinates 

{Xni yni Zn) of the node n can be computed given the updated structure parameters of 

three patches that intersect at node n. Let the patches ¿, j  and k intersect at node n. 

Then, the relations

PiXn T qi^n T — pjXn T qj^n T Oj

PiXji T qi^n T PkXyi T qk^n T k̂ (4.17)

specify Xn and Yn. Thus, the new X  and Y  coordinates of the nodes are given by

1 -1
X

Y

Pi -  Pi Pi -  Pk

qi ~ qj qj ~ qk

Cj -  Ci

Cj T Ck
(4.18)

The new Z coordinate can be computed from Eq. 4.12 given the X  and Y  coordinates 

and the p,·, qi, C{ for any patch passing through that node. It is this updating of the 

coordinates of the nodes that allows the adaptation of the wire-frame model to lower the 

misfit error and accommodate the presence of local motion, such as the motion of the 

eyes and the mouth.

We summarize the proposed algorithm as:

1. Estimate the illumination direction using Eq. 4.5 and Eq. 4.6, and the surface 

albedo using Eq. 4.7.
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2. Initialize the coordinates of the nodes {Xn, Vn, Zn), for all n, using an approximately 

scaled initial wire-frame model, where the scaling is done by positioning four 

extreme points, interactively, according to the location and the size of the face. 

Three coordinates of a non-boundary node are free to change. Fix the x, y 

coordinates of the nodes at the boundary of the facial region (Fig. 2.2) and leave 

the Z  coordinate free to move. Leave the coordinates of a non-boundary node free 

to change, too. Set the iteration counter m = 0.

3. Determine the initial motion parameters using the stochastic relaxation method 

described in Chapter 3 (or any other point correspondence method to compute the 

motion parameters using a set of selected nodes given their depth values).

4. Compute the value of the cost function E given by Eq. 4.13.

5. li E < e, stop.

Else, set m =  m -f 1, and

perturb the motion parameters co = [uJi;,LOy,u}z,Tx,Ty]  ̂ as

< (̂m) *-----^ ( m - l )  +  o ' ” A ,  ( 4-19)

where A  =  A'̂ (0,<T(̂ „,j), i.e., zero mean Gaussian with variance where

af^) =  E, and

the structure parameters p,, y,· and C{ cis

Define count_i as the number of neighboring patches to patch i whose 
structure parameters have been perturbed. Set count_i=0, for all patches i 
belonging to the facial region.

Perturb p_l,

P {̂m) ^ — Phm-i) + Q ; ” * A i ,

i l ( m )  ^ —  9l ( m - l )  + « ' ” A i ,

^ l ( m )  ^ (4.20)
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where A, =  A ,̂(0, <7,̂ ^̂ ), i.e., zero mean Gaussian with variance where
' (m)  ’

Xv(l,y)epa<cA« (^) y)·

increment count_j, for all j denoting neighbors of patch 1.

for( i=2 to number of patches)
{
if(count_i==l) {

perturb p_i emd q_i
increment count_m, for all m denoting neighbors of patch i 
Compute c_i using Eq. 4.15 where the x and y coordinates are that 
of a fixed or a precomputed node on the intersection line 
between patch i and j 
}

if(count_i==2) { 
perturb p_i
increment count.m, for all m denoting neighbors of patch i 
Compute c_i using Eq. 4.15 euid q_i using Eq. 4.16 where x_ij,y_ij 
and x_ik,y_ik are coordinates of a fixed or a precomputed node 
on the intersection line between patches i,j and i,k 
respectively.
}

If p_i, q_i, and c_i for at least three patches intersecting at a node are 
updated, then update the coordinates of the node by using Eq. 28.
}

6. Go to step (4).

Experimental results will be presented in the next section to demonstrate the

performance of the proposed method.
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4.4 Simulation Results

VVe have demonstrated the proposed method with both real and synthetic image 

sequences [83], [84]. The real image sequences are “Miss America” and “Claire” where 

each frame consists of 256 x 256 and 352 x 288 pixels, respectively. The synthetic sequence 

is generated by moving and shading the wire-frame (Fig.2.2) which is an extension of 

the CANDIDE wire-frame [53] and composed of 217 triangles and 144 nodes [22]. The 

experimental results are summarized in the following subsections.

According to our model, the synthesis error in knowledge-beised image synthesis 

originates from: (i) misfit of the wire-frame, (ii) error in global motion estimation, (iii) 

error in local motion estimation, and (iv) omission of the photometric effects of the 

motion. The following set of simulation experiments is intended to test each of these 

causes in a controlled manner. In all the experiments, the global motion refers to the 3-D 

rotation and translation of the wire-frame as a whole which is composed of 144 nodes, 

and local motion refers to the individual motions of the 83 nodes of the wire-frame 

corresponding to the facial region (Fig. 2.2).

4.4.1 Results with synthetic image sequences

Simulations with an artificially generated image sequence

The first simulation tests the accuracy of the proposed method for global motion 

estimation by eliminating all other sources of error. To this effect, we generate an image 

frame by taking the orthographic projection of the wire-frame in Fig.2.2, and painting 

its patches by black and white, alternatingly. Since the image is obtained directly from 

the wire-frame itself, there is no fitting problem, and therefore, no misfit. The next 

frame is obtained by rotating and translating the wire-frame using a given set of motion 

parameters and computing the projection of the wire frame in this new position. No 

local motion or shading effects are simulated. Table 4.1 shows the true and estimated 

motion parameters. “Initial point” indicates the motion parameters at the beginning
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of the iterations, and “Result” shows the estimated parameters at convergence. The 

“Error” gives the absolute deviation of our results from the true values. The first and 

the second frames are shown in Fig. 4.2.a and 4.2.b. The initial wire-frame, and, the 

rotated wire-frame with the estimated motion parameters, put on the first and the second 

frames, are shown in Fig. 4.2.c and 4.2.d, respectively. The mean square synthesis error 

between the actual second frame /„(x ,^ ) and the synthesized second frame / , (x ,y )  is 

computed according to

M SE = (4.21)

where N  and M  show the x and y extents of the image, respectively. The MSE in this 

case is 5.06 with N  =  M  =  256. In case of “Miss America” sequence N =  M  =  256 and 

in case of “Claire” sequence N =  352, M  =  288.

The next simulation tests the ability of our method to track the local motion 

deformations. For this purpose, in addition to the above global motion, the action units 

(AU) 17 and 46, corresponding to “chin raiser” and “winking” , are also synthesized. 

Table 4.2 shows the true and estimated global motion parameters. The first and the 

second frames are shown in Fig. 4.3.a and 4.3.b. The initial wire-frame, and, the rotated 

wire-frame with the estimated motion parameters, put on the first and the second frames, 

are shown in Fig. 4.3.c and 4.3.d, respectively. The MSE is computed to be 5.58.

Simulations with the “Miss America” sequence

With no photometric effects

After getting successful results from the previous experiments we tested our 

algorithm, again for global and local motion tracking performance, using a textured 

3-D model instead of the previous bare wire-frame model. The textured model is 

obtained by mapping a single frame from the “Miss America” sequence to the initial 

wire-frame model. The mapping is accomplished after scaling the wire-frame model 

approximately to the location and the size of the face by positioning four extreme points.
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interactively. A second frame is obtained from the first one by rotating and translating 

it. Then we applied our algorithm to check its performance in finding these already 

known motion parameters. The results of global motion estimation with no local motion 

and no photometric effects are presented in Table 4.3. In addition, we have synthesized 

a new frame from the first frame using the estimated motion parameters and computed 

the difference between this synthesized frame and the second frame. The MSE is found 

to be 6.39.

We repeat the above experiment by including local motion specified by the AU2, 

AU17 and AU46 which correspond to “outer brow raiser” , “chin raiser” and “winking” . 

By this way, we are able to test how local deformations affect the 3-D global motion and 

structure parameter estimation and whether we can track these deformations. Table 4.4 

shows the true and estimated global motion parameters. The first, second, and the 

synthesized frame in this case are shown in Fig. 4.4. The MSE between the second and 

the synthesized frames is now equal to 7.55.

With photometric effects

The purpose of this set of simulations is to see whether there is an improvement 

or not when the illumination effects are also considered. To simulate the photometric 

effects, we estimate the direction of the illuminant from the first frame. The estimated 

tilt and slant angles are 141.13 and 72.51 which correspond to L =  (—0.74,0.60,0.33). 

The 3-D object of the first frame is again rotated and translated (with or without local 

motion) as done in the previous experiment, but this time the object is shaded using 

Eq. 4.1 according to the change in the surface normal vectors due to rotation (assuming 

the direction of the illuminant remains the same). Tables 4.6 and 4.5 show the results of 

global motion estimation with and without local motion. In the case of local motion, we 

again use the AU 2, 17 and 46 which correspond to “outer brow raiser” , “chin raiser” and 

“winking” , respectively. The second and synthesized frames using estimated parameters 

are shown in Fig. 4.5 in the case with local motion. The MSE are found to be 7.10 and 

5.84, for the experiments with and without local motion, respectively.
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For the above two cases we also tested the performance of AU tracking, i.e. local 

motion estimation. Table 4.7 shows the original displacements of the nodes due to AU 

2, 17, 46 and the estimated displacements with and without considering the photometric 
effects.

To see how the algorithm behaves in case of large motion, we increase u>x and plot 

the percentage estimation error in versus ujx with considering the photometric effects. 

We carried out the same test for LOy and u)z, too. The results are given in Fig. 4.1.

4.4.2 Results with real image sequences

Experiments with two frames of the “Miss A merica” sequence

Now, we test our algorithm using the first and the tenth frames from the“Miss America” 

sequence as the first and second frames in our algorithm. Here, there exists both global 

and local motion. Further, since the second frame is not artificially synthesized, there 

is also additional wire-frame misfit error. To see the importance of incorporating the 

photometric effects into the optical flow equation, we repeat the experiment once ignoring 

the photometric effects and once taking them into account. Tables 4.8 and 4.9 show 

the estimated global motion parameters with and without considering the photometric 

effects, respectively. The synthesized images using the estimated motion and structure 

parameters are depicted in Fig. 4.6 and Fig. 4.7, and the MSE are 5.82 and 6.23, for 

the experiments with and without the photometric effects, respectively. The MSB’s are 

calculated only using the region of the image pasted on the wire-frame.

Motion tracking experiments with the “Claire” sequence

Finally, we test our method on a longer sequence using the first 16 frames of the “Claire” 

sequence where we omit every other frame. The resulting 8 frames are shown in Fig. 4.8. 

In the beginning Claire looks straight into the camera. Later, she turns her head to 

the left. There are also some facial movements such as blinking and opening of the
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mouth. A frame consists of 352 x 288 pixels (which is the GIF picture format). Only the 

luminance component is used in the experiments. Our task is to track the motion of the 

head and extract the facial expressions. Fig. 4.9 shows the synthesized image sequence 

using the estimated parameters. The MSE for the frames used in the experiment are 

6.98,7.17,8.06,8.27,8.21,8.77,9.48. Upon viewing the two sequences, the difference is 

hardly noticeable. From the results, we also see that the small motion assumption given 

in Chapter 2 is valid for the real image sequences, too.

4.5 Comparisons

As stated in Chapter 2, there are different algorithms for object based coding of head-and- 

shoulder type images. In most of these methods, only the analysis parameters and the 

color information of the first frame is transmitted to the receiver side. The comparison of 

the proposed algorithm with other existing methods on object based coding can be done 

in two steps: 1) The accuracy of the analysis parameters such as global and local motion 

should be compared since these are the only parameters that are transmitted during a 

session. 2) The mean bit-rate achieved by different methods should be compared and 

guaranteed to stay within the limits of very low bit rate coding (8-32 kbps).

The local and global motion estimation results based on the proposed algorithm are 

given in Section 4.4. We can compare these results with the work of Li [26] since this 

work also estimates global and local motion simultaneously within an optical flow based 

formulation. Although they use a simple linear transformation for the unknows, the 

algorithm needs some control points (AUs) to be known beforehand. Problems occur 

when AUs are tracked that have similar effects on the same feature points. Also the 

algorithm does not consider the illumination effects. Since our algorithm estimates the 

surface normals of the wire-frame instead of the control points, no preknown information 

is necessary. Also the proposed method combines motion and shape estimation with 

illumination estimation. Results given in Section 4.4 (Tables 4.3-4.6, Figs. 4.3-4.6) 

show that incorporation of the photometric effects to the formulation improves the
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estimation results by a considerable amount. When we compare the global and local 

motion estimation results with that of Li [26] for the Claire sequence we see that we stay 

within the same limits for the synthesis error without the burden of the AUs.

We can also compare our method with other object based coding algorithms like 

the one developed within COST211 project. However, since these techniques are based 

on 2-D models, the transmitted analysis parameters are different. So, we can make 

the comparison in terms of bit-rate and signal-to-noise ratio (SNR). For the proposed 

algorithm, we compute the bit rate for the worst case where all the nodes (except for 

the boundary nodes) of the wire-frame move from frame to frame, i.e. the structure 

parameters of all the patches are due to change within the same limits. Indeed this is 

never the case due to the fact that although the nodes on the facial regions such as eyes, 

mouth, etc. heavily move from frame to frame, the relative motions of the nodes on 

the regions such as forehead and cheeks are extremely low. If we let the nodes of the 

wire-frame move within the ranges of the frame size by integer values, we can represent 

the displacement values by 9 bits since the frame size is 352 x 288. As we do not let the 

nodes move out of the frame, the displacement values can be represented by 9 bits with 

1 pel accuracy. Since only the facial region (Fig. 2.2) of the wire-frame is used to do 

motion estimation, the displacement values corresponding to 83 nodes of the wire-frame 

must be transmitted. Assuming a picture frequency of 25/3/f^, we will get a bit rate of 

Y x 9 x (5-|-3x 83) without any entropy coding. If we introduce entropy coding, we can 

further decrease the bit rate. Also we must notice that representing the displacement 

values by less number of bits (less than 5) will cause the iterations converge to a wrong 

result due to the limitation in the perturbations. If we consider the SNR which is given

by
SNR = 20log-

255
RM SE

where R M SE  is the root-mean-square-error between the original and the synthesized 

images, the results are again encouraging. For the Claire sequence, peak SNR is 31.25d5. 

In case of C0ST211 results, the bit rate is about 56kbps for a GIF size Claire sequence 

resulting in a peak SNR of Z4dB. As a result, we obtained the same quality images
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without increasing the bit rate. This is also shown by the subjective tests permormed 

using the Claire sequence coded by COST211 method and the proposed algorithm.

Up to now, we only discussed the coding of the analysis parameters. However, to get 

the decoder properly working, a first frame of the sequence has to be sent to the decoder. 

How this frame is coded, i.e. either lossy or lossless, is a point of discussion. Assuming 

no coding of the first frame, the number of data for a 4:1:1 GIF size picture with 8 bit 

quantization is given by

Number o f  bits /  fram e =  12 x 352 x 288. (4.23)

So, transmitting the first frame at 16kbps which is a reasonable number for very low bir 

rate coding requires a compression ratio of 1:76. This ratio can be achieved with the 

coding techniques given in Chapter 1, i.e. either transform coding techniques or second 

generation coding techniques. In this work, we assumed no coding of the first frame 

since our aim is to check the efficiency of the motion estimation algorithm.
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True motion Initial point Our method Error
tOx{rad) -0.1 -0.08894 -0.1046 0.0046
u}y{rad) 0.35 0.3368 0.3526 0.0026
uJi(rad) -0.03 -0.0113 -0.030641 0.000641

Tx(pixel) 6 4.962 5.9860 0.014
Ty{pixel) -3 -2.8999 -2.9791 0.0209

Table 4.1: Global motion estimation with the synthetic sequence.

True motion Initial point Our method Error
LOx{ra(i) -0.1 -0.08894 -0.1072 0.0072
u}y(rad) 0.35 0.3368 0.3461 0.0039
u}z{rad) -0.03 -0.0113 -0.02724 0.00276

Tx{pixel) 6 4.962 5.8697 0.1303
Tyipixel) -3 -2.8999 -2.9737 0.0263

Table 4.2: Global and local motion estimation with the synthetic sequence.
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True motion Initial point Our method Error
iOx(rad) -0.1 -0.08894 -0.1054 0.0054
iVy{rad) 0.35 0.3368 0.3369 0.0131
u>x{rad) -0.03 -0.0113 -0.02717 0.00283

Tx{pixel) 6 4.962 5.7126 0.2874
T y{pixel) -3 -2.8999 -3.0796 0.0796

Table 4.3: Global motion estimation with the simulated Miss America sequence without 
the photometric effects.

True motion Initial point Our method Error
u^x(rad) -0.1 -0.08894 -0.1083 0.0083
iVy{rad) 0.35 0.3368 0.33446 0.01554
u)^{rad) -0.03 -0.0113 -0.02683 0.00317

Tx{pixel) 6 4.962 5.4719 0.5281
Ty (p ixel) -3 -2.8999 -2.7853 0.2147

Table 4.4: Global and local motion estimation with the simulated Miss America
sequence without the photometric effects.
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True motion Initial point Our method Error
(Vx{rad) -0.1 -0.08894 -0.1052 0.0052
iOy(rad) 0.35 0.3368 0.3482 0.0018
(jJzirad) -0.03 -0.0113 -0.02801 0.00199

Tx{pixel) 6 4.962 6.2038 0.2038
Ty{pixel) -3 -2.8999 -3.0702 0.0702

Table 4.5: Global motion estimation with the simulated Miss America sequence 
including the photometric effects.

True motion Initial point Our method Error
u)x{rad) -0.1 -0.08894 -0.1079 0.0079
u}y{rad) 0.35 0.3368 0.34001 0.00999
u);^(rad) -0.03 -0.0113 -0.0272 0.0028

Tx{pixel) 6 4.962 6.4660 0.466
Ty{pixel) -3 -2.8999 -2.8852 0.01148

Table 4.6: Global and local motion estimation with the simulated Miss America
sequence including the photometric effects.
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AU Vertex True displacements Estimated displacements 
without photometric effects

Estimated displacements 
with photometric effects

X Y X Y X Y
2 16 0 14 0 15 1 16

49 0 14 0 16 0 16
18 0 14 0 12 0 13
51 0 14 0 13 0 13
15 2 7 2 6 2 5
48 -2 7 -1 6 -3 7
17 0 2 0 2 0 2
50 0 2 0 3 0 2

17 9 0 -2 1 -1 0 -1
8 0 -1 0 -2 0 -1
7 0 -1 0 -2 0 -2

40 0 -1 0 -2 0 -2
46 21 0 -5 2 -3 1 -5

22 0 2 0 2 0 2
54 0 -5 2 -4 2 -5
55 0 2 -1 2 0 2

Table 4.7: Real and estimated displacements for the Alls corresponding to “outer brow 
raiser” , “chin raiser” and “winking” .
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Figure 4.1: The behaviour of the estimated motion parameters with increasing motion.
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Initial point Our method
u}x(rad) -0.053 -0.095
u}y{rad) 0.114 0.235
ojz(rad) 0.035 0.024

Tx{pixel) 0.908 0.857
T y{pixel) 1.4827 2.1505

Table 4.8: The estimated global motion parameters with the real Miss America sequence 
including the photometric effects.

Initial point Our method
u>x{rad) -0.053 -0.1098
ujy{rad) 0.114 0.204
ijjz{rad) 0.035 0.0226

T x{pixel) 0.908 0.7648
Ty{pixel) 1.4827 2.6744

T able 4.9: The estimated global motion parameters with the real Miss America sequence 
without the photometric effects.
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Figure 4.2: (a) The first and (b) the second frames of the synthetic image sequence 
with global motion; (c) the initial wire-frame and (d) the rotated wire-frame through the 
estimated motion parameters pasted on the first and the second frames, respectively.
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Figure 4.3: (a) The first and (b) the second frames of the synthetic image sequence 
with global and local motion; (c) The initial wire frame and (d) the rotated wire frame 
through the estimated motion parameters pasted on the first and the second frames, 
respectively.
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Figure 4.4: (a) The first frame of “Miss America” , (b) simulated second frame with 
global and local motion (without photometric effects); (c) synthesized second frame 
using the estimated motion and structure parameters; (d) absolute difference between 
the simulated and the synthesized second frames.
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Figure 4.5: (a) The first frame of "Miss Arnericci” , (b) simulated second frame with 
global cind local motion,and the photometric effects; (c) synthesized second frame using 
the estimated motion and structure parameters; (d) absolute difference between the 
simulated and the synthesized second frames.
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Figure 4.6: (a)Tlie first, (b)tenth, and the (c)synthesized tenth frame of the real “Miss 
America" seciuence including the photometric effects; (d) absolute difference between the 
real and the synthesized tenth frames.
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Figure 4.7: (a)The first, (b)tenth, and the (c)synthesized tenth frame of the real “Miss 
America” sequence without the photometric effects; (d) absolute difference between the 
real and the synthesized tenth frames.
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Figure 4.8: The 8 frames obtained by omitting every other frame of the first 16 frames 
of the original “Claire” image sequence.
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Figure 4.9: The synthesized “Claire” sequence using the estimated motion and structure 
parameters.



Chapter 5

CONCLUSION AND FUTURE 
W O R K

In this dissertation, we address the problem of 3-D motion estimation in the context 

o f 3-D object based coding of facial image sequences. The main contribution of our 

approach is that, it handles the global and local motion estimation and the adaptation of 

a generic wire-frame to a particular speaker simultaneously within an optical flow based 

framework including the photometric effects of motion. In addition, the algorithm tracks 

the motion without having to perform a synthesis step in each iteration and without using 

any preknown 3-D control points. The simultaneous estimation formulation is motivated 

by the fact that estimation of the global motion, local motion and adaptation of the wire

frame model are mutually related; thus a combined optimization approach is necessary. 

The estimation is done by minimizing the squared error in the optical flow equation

(4.13) over all pixels in a frame corresponding to the facial region. The validity of the 

estimated 3-D motion and structure parameters are tested by controlled experiments 

in terms of the synthesis error at convergence where the synthesis error is due to (i) 

misfit of the wire-frame model to the actual speaker, (ii) 3-D global motion estimation 

error, (iii) 3-D local motion estimation error, (iv) error in the estimation of photometric 

effects o f the motion. Our experiments show that the simultaneous estimation gives

78
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more accurate results than the ones found in the literature [20],[26]-[28] as expected 

due to the mutuality of the estimated parameters. We also see that the small motion 

assumption given in Chapter 2 is justified in the experiments we have conducted using 

real sequences as seen from the results. The incorporation of the photometric effects to 

the formulation also improves the estimation results by a considerable amount (Tables 

4.3-4.6, Figs. 4.3-4.6). When we compare the MSEs obtained from the simulated and 

real Miss America sequences, we see that the error decreases by about 7% when we 

incorporate the photometric effects (see Sec. 4.4.1 and 4.4.2).

We also consider the efficiency of the algorithm in terms of bit rate and the signal- 

to-noise ratio (SNR). Assuming a picture frequency of 25/ZHz, and using floating point 

representation for the transmission of rotation and translation parameters, we will get a 

bit rate of approximately 20kbps without any entropy coding. If we introduce entropy 

coding, we can further decrease the bit rate. If we consider the SNR, the results are 

again encouraging. For the Claire sequence, peak SNR is 31.25dJ5. If we compare these 

results with that of proposed object based methods in the context of C0ST211, we see 

that we get similar results. In case of C0ST211 results, the bit rate is about 56kbps for 

a CIF size Claire sequence resulting in a peak SNR of MdB. As a result, we obtained 

the same quality images without increasing the bit rate.

Future work at this point will include analysis of the quantization effects to the 

performance of the algorithm and implementation of the parameter coding. Also, to 

decrease the synthesis error further, the proposed method is aimed to be modified to 

take care of the change in texture as a result of motion. In the proposed algorithm, 

the frame has to be updated when the estimated motion parameters are incapable of 

synthesizing the actual frame. However, the error may also increase due to the change 

in texture, i.e. when the new frame cannot be synthesized using the texture information 

of the previous frame. This can be incorporated into the formulation by also minimizing 

the synthesis error between the actual second frame and its 3-D object based synthesis 

which would require a synthesis step after each perturbation. Another point that can 

be investigated is the representation of the global motion also in terms of the structure
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parameters. This decreases the number of parameters that is perturbed during the 

iterations, but the bit-rate is expected to increase since the projections of the global 

motion should also be transmitted in this case.

In this study, we have also shown that since the 3-D motion equation is a nonlinear 

equation in terms of the motion and the depth parameters, finding a least-squares 

solution iteratively does not always give the correct results. The iteration may converge 

to a local minimum unless we have a good initial guess solution as shown in Chapter 3. 

To avoid this we use a random perturbation in one of the parameters (in our case depth) 

that causes the nonlinearity. It has been shown that the improved algorithm converges 

to the true motion and depth parameters even in the presence of 50% error in the initial 

depth estimates.

As a future research, another point that can be investigated is the application of this 

scheme to Asynchronous Transfer Mode (ATM) environment since ATM can provide a 

high degree of flexibility in video communications and take advantage of the inherent 

burstiness of video information [87]. Since no major studies of diverse traffic in ATM 

networks have been performed so far, the area of video traffic characterization is still 

open to further research.

As *ci result, in this thesis we have shown how to improve the accuracy of motion 

estimation in the context of 3-D object based coding. Since the bit rates achieved by 

3-D object based coding are low enough, with the improved quality, this method has a 

chance to be the basis of the future videophones. Also this kind of approach is expected 

to open up new applications in image processing techniques such as graphical animation 

and automatic answering machines using video.
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