
SIHGI E MA GI I f E - S C l E D D l l i i G P E O M E M S :
Y - I A I B Y . P E I A I I I E S

A THESIS
SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING

AND THE INSTITUTS OF ENGINEERING AND SCIENCE
OF SiLKENT UNIVERSITY

m PARTIAL FULFILLMENT OF THE REOUmEIVlENTS
FOR THE.DEGREE OF

DOCTOR Or PHILOSOPHY

s y

■weyoa Oguz
I V is a r i 'h I Q Q J ?d <S ii Uw(S i ’f S w j|.r ’̂ uai

SINGLE MACHINE SCHEDULING PROBLEMS:
EARLY-TARDY PENALTIES

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Ceyda Oguz
March 1993

tcrcfi.-iL'c.T L."".;Isnnii5t|r.

ASIS
.0 3 g
Ï 0 3 3
C 'f

ß i s a

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Cemal Dinçer (Supervisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Prof, alim Doğrusöz

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

C D

Assoc. Prof. Dr. Ömer Benli

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

C\7^
Assoc. Prof. Dr. Suna Kondakçı

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baidy,
Director of Institute of Engineering and Science

Abstract

SINGLE MACHINE SCHEDULING PROBLEMS:
EARLY-TARDY PENALTIES

Ceyda Oğuz
Ph. D. in Industrial Engineering

Supervisor: Assoc. Prof. Dr. Cemal Dinçer
March 1993

The primary concern of this dissertation is to analyze single machine total earli
ness and tardiness scheduling problems with different due dates and to develop
both a dynamic programming formulation for its exact solution and heuristic
algorithms for its approximate solution within acceptable limits. The analyses of
previous works on the single machine earliness and tardiness scheduling problems
reveal that the research mainly focused on a restricted problem type in which
no idle time insertion is allowed in the schedule. This study deals with the
general case where idle time insertion is allowed whenever necessary. Even
though this problem is known to be A'P-hard in the ordinary sense, there is
still a need to develop an optimizing algorithm through dynamic programming
formulation. Development of such an algorithm is necessary for further identifying
an approximation scheme for the problem which is an untouched issue in the
earliness and tardiness scheduling theory. Furthermore, the developed dynamic
programming formulation is extended to an incomplete dynamic programming
which forms the core of one of the heuristic procedure proposed.

A second aspect of this study is to investigate two special structures for the
different due dates, namely Equal-Slack and Total-Work-Content rules, and to
discuss computational complexity of the problem with these special structures.
Consequently, solution procedures which bear on the characteristics of the special
due date structures are proposed. This research shows that the total earliness
and tardiness scheduling problem with Equal-Slack rule is A/’P-hard but can be
solvable in polynomial time in certain cases. Moreover, a very efficient heuristic
algorithm is proposed for the problem with the other due date structure and the
results of this part leads to another heuristic algorithm for the general due date
structure.

Finally, a lower bound procedure is presented which is motivated from the
structure of the optimal solution of the problem. This lower bound is compared
with another lower bound from the literature and it is shown that it performs
well on randomly generated problems.

K eyw ords: Deterministic Single Machine Scheduling, Minimizing Total
Earliness and Tardiness, Computational Complexity Theory,
Dynamic Programming, Heuristic Algorithms, Lower Bounds.

11

özet

ТЕК M AKİNA ÇİZELGELEME PROBLEMLERİ:
ERKEN-GEÇ PENALTILARI

Ceyda Oğuz
Endüstri Mühendisliği Doktora

Tez Yöneticisi: Doç. Dr. Cemal Dinçer
Mart 1993

Tek makinalı farklı teslim tarihli toplam erken-geç çizelgeleme problemlerini
analiz etmek ve problemin hem kesin çözümü için bir dinamik programlama
formülasyonu hem de yaklaşık çözümü için kabul edilebilir sınırlar içinde sezgisel
yordamlar geliştirmek bu çalışmanın ana içeriğini oluşturmaktadır. Tek makinalı
erken-geç çizelgeleme problemleri üzerine daha önce yapılmış çalışmaların
incelenmesi, araştırmaların başlıca, çizelgede boş zaman ilave edilmesine izin
verilmeyen, kısıtlı bir problem üzerine yoğunlaştığını göstermektedir. Bu çalışma,
gerekli olduğu zamanlarda boş zaman ilavesine izin veren genel modelle
ilgilenmektedir. Tek makinalı erken-geç çizelgeleme problemleri için, MV-zov
olmalarına rağmen, dinamik programlama formülasyonu yoluyla eniyi çözüm
veren algoritmalara ihtiyaç vardır. Böyle bir algoritma, problem için bir yaklaşık
yöntem tanımlayabilmek için gereklidir ki bu erken-geç çizelgeleme kuramında
hemen hiç dokunulmamış bir alandır. Bundan başka, geliştirilen dinamik pro
gramlama formülasyonu, önerilen sezgisel yöntemlerden birinin özünü oluşturan
kısıtlandırılmış durum uzaylı bir dinamik programlama şekline dönüştürülmüştür.

111

Bu çalışmanın ikinci bir safhası farklı teslim tarihleri için iki özel yapının,
Eşit-Boşluk ve Toplam-Iş-Içeriği kurallarının, incelenmesi ve bu özel yapılarla
problemin hesap karmaşıklığının tartışılmasıdır. Bu problemler için, özel teslim
tarih yapılarının özelliklerine dayanan çözüm yöntemleri önerilmiştir. Eşit-Boşluk
kurallı toplam erken-geç çizelgeleme probleminin MV-zor olduğu ispatlanırken,
problemin belirli durumlarda polinom zamanda çözülebildiği de gösterilmiştir.
Bundan başka, ikinci teslim tarihi yapısı ile problem için çok etkin bir sezgisel
yordam önerilmiş ve bu problemden elde edilen sonuçlar, genel teslim tarihli
problem için bir başka sezgisel yordamın geliştirilmesine öncülük etmiştir.

Son olarak, problemin eniyi çözümünün yapısından kaynaklanan bir alt sınır
yöntemi sunulmuştur. Bu alt sınır, literatürden bir başka alt sınır ile kıyaslanmış
ve geliştirilen bu alt sınırın rassal yaratılan problemler üzerinde iyi performans
gösterdiği gözlemlenmiştir.

Anahtar

Sözcükler: Deterministik Tek Makina Çizelgelemesi, Toplam Erken-Geç
Enazlanması, Hesap Karmaşıklığı Teorisi, Kesin Çözüm Al
goritmaları, Dinamik Programlama, Sezgisel Yordamlar, Alt
Sınırlar.

IV

Acknowledgement

I would like to express my appreciation to all those who have contributed directly
or indirectly to this dissertation. I am grateful to Assoc. Prof. Cemal Dinçer for
his invaluable supervision and encouragement throughout the development of this
thesis. I am indebted to him for his interest and belief in my work. Above all,
I gained the experience of conducting independent research and I thank him for
his contribution to that.

I debt special thanks to Prof. Halim Doğrusöz, Assoc. Prof. Mustafa Akgül,
Assoc. Prof. Ömer Benli, Assoc. Prof. Suna Kondakçı for their valuable remarks
and discussions on the subject.

I would like to thank Prof. Thomas L. Morin for his contribution to the incomplete
dynamic programming part of the thesis. His valuable discussions and comments
were particularly helpful and led my research in new directions. I would like
to express my thanks to referees, who have provided valuable comments on the
papers to be published from this dissertation, for investing their time carefully
reading the papers.

I owe substantial thanks to Dr. Cemal Akyel who acquainted me with the
fascinating world of scheduling theory. I much appreciate the discussions with
him at the various stages of this study. His morale support and encouragement
throughout this study is greatly acknowledged.

Last but not the least, my sincere thanks are due to my family for their continuous
morale support.

V

Contents

Abstract i

Özet iii

Acknowledgement v

Contents vi

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Problem D efin ition .. 4

1.2 Classification of Machine Scheduling Problem s............................... 8

1.3 Combinatorial Optim ization... 9

1.3.1 Computational Complexity... 10

1.3.2 O ptim ization ... 11

VI

1.3.3 A pproxim ation... 12

1.4 Outline of this Thesis... 13

2 Review of Single Machine Earliness and Tardiness Problems 15

2.1 Problem Characteristics... 16

2.2 Classification of Earliness and Tardiness Problems............................. 18

2.3 Mathematical Formulation of the Problem, l|dj| Y^{wj Ej + Vj Tj) 20

2.4 Special C a s e s ... 23

2.5 Well Solvable C ases.. 25

2.5.1 \\d\Z{wjEj + V j T j) .. 25

2.5.1.1 l\ d > P \ ^ {w E j + v T j) ... 25

2.5.1.2 l\d\J2wj{Ej + T j) ... 28

2.5.2 l\d > 5\Z{Ej + T j) ... 30

2.5.3 l\ \ j:g j{E / T) ... 32

2.6 A/’P-hard Problem s.. 34

2.6.1 1 |d < <̂| J2{wj Ej + V jT j) .. 34

2.6.2 l\ d < S \ Z {E ji -T j) ... 35

2.6.3 l\dj\J2{wj Ej + V jT j) 36

2.6.4 l\dj\Z{Ej + T j) .. 38

2.6.4.1 Scheduling of a Fixed Job Ordering for l\dj\Y^{Ej +

T ,) .. 39

2.6.4.2 Optimizing A lgorith m s.. 42

Vll

2.6.4.3 Heuristic Algorithms.. 46

3 Solution Procedures for \\dj\Y [̂Ej -\-Tj) 52

3.1 A Dynamic Programming A lgorith m ... 54

3.2 An Incomplete Dynamic Programming A lgorithm 58

3.3 A Heuristic A lgorith m ... 60

3.4 Computational Experience... 63

3.5 Concluding R em arks... 71

4 + Tj) with Special Structures for Distinct Due Dates 73

4.1 Problem l|djl + Tj) with Equal-Slack R u le 75

4.1.1 Analysis of l\dj = pj -f q\ Y,{Ej T j) 75

4.1.2 Analysis of l|aj = <j' > — aj|..................................... 77

4.1.3 Analysis of l|aj = ̂ < |S'j — O jl...................................... 81

4.1.4 vVP-Hardness of l|aj = ̂ < i?| |5j — aj\ 85

4.1.5 Concluding R em arks... 89

4.2 Problem l\dj\Y^{Ej + Tj) with Total-Work-Content R u le 89

4.2.1 Analysis of l\dj = kpj\Y^{Ej + Tj) 90

4.2.2 A Heuristic Procedure for \\dj = kpj \ + ' ^ j) 95

4.2.3 Computational Experience for l|dj = A: Pj I -f Tj) . . 96

4.2.4 Concluding R em arks... 98

5 Further Results for l|dj I X^(E'j-f Tj) 100

Vlll

5.1 An Alternative Heuristic Algorithm for l|c?j| ^ {E j + Tj)101

5.2 A Lower Bound for \\dj \ Y^{Ej + T j) ...105

6 Conclusions and Future Research 111

List of Notations

References

Vita

116

120

127

IX

List of Figures

1.1 Data of each example... 6

1.2 Schedule of a for the exam ple ... 6

2.1 Job pair for the counter e x a m p le ... 50

4.1 Schedule of a for Proposition 4.4.. 78

4.2 Schedule of cr for Proposition 4.5... 79

4.3 Schedule for Proposition 4.9... 83

4.4 Schedule for Lemma 4.1.. 87

4.5 The schedules a and cr'. 93

5.1 The schedules a and a'... 102

5.2 Possible overlaps for two conflicting j o b s ...107

List of Tables

3.1 Average (AVG) and maximum (MAX) relative errors together with
percentage of optimal solutions found by different rules for different
n values.. 65

3.2 Frequency distribution of solution of different rules for n = 8 and
n = 10... 66

3.3 Frequency distribution of solution of different rules for n — 12 and
n = 14... 67

3.4 Frequency distribution of solution of different rules for n = 16 and
n = 18... 67

3.5 Average relative errors of 5 problems for every pair of R and T

values for every n value for HEUR .. 68

3.6 CPU times (in seconds) of the problems for different n values. . . 69

3.7 Computational Experience of Part II.. 70

4.1 Average and maximum relative errors together with number of
optimal solutions found by different rules for different n values. . . 98

5.1 Average and maximum relative errors together with percentage of
optimal solutions found by different rules for different n values. . . 104

XI

5.2 Average and maximum relative errors for LB and LBky and
number of problems LB > LBky for diflFerent n values....................110

Xll

Chapter 1

Introduction

Scheduling finds its application in a wide range of area whenever the problem of
“the allocation of resources over time to perform a collection of tasks” (Baker,
1974) arises. For example, it is possible to make an assignment of classes to the
classrooms in academic institutions. As a classic problem, we may encounter with
outpatient visits to doctors in the hospitals. Another example can be given from
the computer systems as the processing of the independent jobs on the processors.
In all these examples, the first items (classes, outpatient visits, independent jobs)
are the collection of tasks and the second items (classrooms, doctors, processors)
are the resources and we can extend these examples to encompass a larger variety
of activities of everyday life.

We can easily argue that the tremendous research since the early 1950’s on the
theory of scheduling is induced by this obvious practical importance and hence, it
is not surprising that an impressive and enormous amount of literature has been
evolving. But a careful investigation of the literature manifests that the main
motivation and stimulation behind the existence of the scheduling theory as an
important area in the operations research is its practical relevance to production
planning and computer scheduling problems.

In this study we confine ourselves to scheduling problems which arise in the

Chapter 1. Introduction

manufacturing systems so that each task, called job, requires at most one
resource, called machine, at a time. The problem of concern is to schedule
jobs on machines of limited capacity and availability which is called machine
scheduling problem. The result of solving this problem is a schedule which
specifies for each job when and by which machine it is to be processed. The
aim is to find a schedule that optimizes some performance measures. The rich
assortment of machine environments, job characteristics, and optimality criteria
give rise to multitudinous machine scheduling problems. Over the spectrum of
these scheduling problems, this thesis is concentrated on the area of deterministic
machine scheduling.

Although, the scheduling models addressed by researchers have become more and
more complex in order to better reflect the real situations through the years, they
still have certain restrictive assumptions. The crucial assumption that is common
in these models is related with the optimality criteria to measure the quality of
the feasible schedules. The vast majority of the literature on machine scheduling
pertain to regular performance measures which are non-decreasing in each of
the job completion times. However, this type of performance measures may not
interpret the practice and there are many important occasions when non-regular
performance measures apply. For example, if the aim is the conformance to the
due dates of the jobs, then the common practice is to penalize only the jobs which
are finished after their due dates, called tardy jobs, ignoring the consequences of
the jobs that complete before their due dates, called early jobs. In order to reach
an acceptable optimality criterion, one has to measure the quality of a schedule
on a criterion that incorporates the penalties arise from both early and tardy jobs
which leads to a non-regular performance measure.

An important drawback of considering scheduling problems with non-regular
performance measures lies in the difficulty of finding an optimal solution. The
difficulty arises because in some cases the insertion of idle time between jobs
will be beneficial which enlarges the set of feasible schedules. Regarding these
two classes of the performance measures, this thesis is restricted to non-regular

Chapter 1. Introduction

performance measures. Considering the hardness of these models, we further
restrict ourselves to the single machine environments. Indeed, this last restriction
is not so meaningless from both practical and theoretical point of view. First of
all, because of its structural simplicity, it is easy to visualize the interactions in
the model. It is also possible to explain the nature of the differences among
different solutions and their relationships to different performance measures.
Furthermore, the solutions of the single machine scheduling models can be used
in more complex scheduling models by either being a basis for their solution
procedures or supplying approximate but practical solutions. From a practical
point of view, in addition to the existence of many shops which are actually a
single machine, there are cases in which large and complex shops behave as if
they are single machine environments. Examples of the latter can be seen in the
chemical industries. Besides, there are many shops with more than one machine
but either there is a single machine dominating all other machines in terms of job
density or there exists a bottleneck machine, hence, viewing the shop as a single
machine environment is an acceptable approximation.

More specifically, this thesis focuses on the deterministic single machine
scheduling problems with the optimality criterion that aggregates the tardiness
and earliness into a single objective function. In this introductory chapter,
we present an overall view of single machine scheduling earliness and tardiness
problem. We define the single machine earliness and tardiness problem formally
in Section 1.1 and then elaborate on the reasons for involving both earliness and
tardiness penalties in the objective function. In Section 1.2, we give the notation
used throughout this thesis to represent scheduling problems which is based on the
classification of machine scheduling problems introduced by Lawlerei al. (1989).
In Section 1.3, we point out how machine scheduling problems fit into the broader
framework of combinatorial optimization and give an informal introduction to the
theory of computational complexity. With the help of this theory, it is possible
to classify problems as easy or probably hard to solve.

Introductions to these fields necessarily have to be selective and concise: only

those concepts that are relevant for the subsequent chapters are discussed; others
are merely touched upon. For more elaborate introductions to the respective
areas, we refer to Conway et al. (1967), Baker (1974), Lawler et al. (1989)
for machine scheduling and to Garey and Johnson (1979) for computational
complexity.

Chapter 1. Introduction 4

1.1 Problem Definition

In the single machine total earliness and tardiness problem, we are given a set
J = (J i, J2, · · ·) of n independent jobs to be processed on a single machine
that can handle at most one job at a time without preemption. In an instance
of this problem, a processing time pj G a ready time Vj G Z~̂ on which job
Jj becomes available for processing, a due date dj G Z^ by which job Jj should
ideally be completed, and weights wj G Z~̂ and Vj G Z^ indicating the relative
importance of job Jy as being early and tardy, respectively, can be specified
for each job Jp We can also determine for every job Jy a target starting time
ay = dy — Pj by which job Jy should ideally be started. Given a processing order
on the single machine, the starting time 5y, the completion time Cy = Sj +py,
the tardiness Ty = max{0,Cy — dy), the earliness Ej = max{0,dy — Cy} and the
lateness Lj = Cy — dy for each job Jy can be computed such that the capacity
and availability constraints of the machine are not violated. In an instance of
this problem, we will use <5 and C for the set of starting times and the set of
completion times, respectively. The penalties will be given in the set V where,
in this representation, the negative and the positive values denote the earliness
and the tardiness of a job Jy, respectively. The quality of a schedule is measured
in terms of the optimality criterion which is the scheduling cost incurred as a
function of the earliness and the tardiness of each job Jy, stated as gj{E^ T). The
optimality criteria covered in this study involve the minimization of

maxi max Ei, max TAi<j<n i<j<n ·'■'

or of

E f t 6 (E (i^ i + T,),Y :(w iE j + VjTi)}

where E ft' = Jl]=iSi{EIT) with gj(EIT) = (£,■ + Tj), and (wjEj + VjTj),
respectively.

In the analysis of the given scheduling problem, we will use the following
additional notation:

• 7T and cr denote sequences of jobs. Furthermore, and denote the set
of jobs that form the sequences tt and cr, respectively.

• 7t(z) and cr(z) denote the z-th job in the sequence. Hence, i is the position
index and i — 1, 2, . . . , n.

• z{a) denotes the value of the optimality criterion for the schedule of cr and
unless otherwise stated.

• S {£s) represents the set of jobs that complete before the due date (target
starting time), where \E\ (li’sl) denotes the cardinality of E (Es).

• E' (E^) represents the set of jobs that complete exactly on or before the due
date (target starting time), where \E'\ denotes the cardinality of E'

№)■

• T {Ts) represents the set of jobs that start exactly on or after the due date
(target starting time), where |T| (IT̂ I) denotes the cardinality of T {Ts).

• T' {Tg) represents the set of jobs that complete after the due date (target
starting time), where \T'\ (I'T ĵ) denotes the cardinality of T' {Tg).

Chapter 1. Introduction 5

We illustrate these notions by two 5-job examples for different due date structures.
In the first example, all jobs have the same due date which is called as a common
due date, d. In the second example, all jobs have a different due date but all
have a common target starting time, q. The data are given in Figure 1.1. An

Chapter 1. Introduction

a) j 1 2 3 4 5 b) j 1 2 3 4 5
Pj 3 4 5 6 7 Pi 3 4 5 6 7
dj 17 17 17 17 17 di 18 19 20 21 22

a)

h)

Figure 1.1: Data of each example

----i L
E _____ ^

-----------►-
T

Js Jl J2 J4

14 17 21 27

Ja Jl J3 Js

11 15 18 23
11
9

t
30

Figure 1.2: Schedule of cr for the example

arbitrary schedule of a is represented in the Gantt Chart in Figure 1.2 for each
example.

Scheduling problems consisting earliness and tardiness penalties in their objective
function may have many applications in industry where both early and late
completion of jobs from their due dates are costly and hence undesirable. For
example, both earliness and tardiness penalties are in the nature of production
environments such as having perishable products or applying Just-In-Time
concept, since the deliveries should be coordinated with the manufacturing
process steps due to the less adjustable delivery times than process steps.

Chapter 1. Introduction

The inclusion of an earliness cost in the objective function may represent the
cost of completing a project early in PERT-CPM analyses, as suggested by
Sidney (1977). Apart from these, we can give the example of scheduling a
sequence of experiments that depend on predetermined external events such as
the position of the sun as a natural application of earliness and tardiness penalties.

If we consider the completion of a job after its due date, it is common to incur
costs due to the loss of the order and loss of customer goodwill. The cost of
tardiness also includes customer dissatisfaction, contract penalties and potential
loss of reputation. On the other hand, completion before the due date may lead
to higher inventory costs, increases the danger of over-stocking in the event of
order cancellation, and if goods are perishable, causes potential loss of usable
production due to their deterioration. If it is assumed that once a job completes
its processing, it is free to leave the system, then earliness will not be a problem.
But in many cases, customers do not want to receive orders early since they will
hold unnecessary inventory. This can cause the cash commitment to resources in
a time frame earlier than needed.

Indeed, earliness costs have a different nature from tardiness costs because they
are of an indirect nature. Early jobs tie up capital, take up scarce floor space,
and generally indicate that resource allocation and utilization may have been
less than optimal. In essence, the cost of earliness is a cost of inefficiency and
represents an unproductive investment which implicitly incurs an opportunity
cost. Since minimizing the earliness and tardiness penalties has important
practical applications, the research on scheduling problems with earliness and
tardiness penalties are growing rapidly.

1.2 Classification of Machine Scheduling
Problems

Since there exists multifarious machine scheduling problems, we need a
classification scheme to make them rapidly accessible and easy to refer to. We
follow the notation and terminology of the classification scheme for deterministic
machine scheduling problems as suggested by Lawler et al. (1989). In this
notation each scheduling problem is represented by means of three parameters
a, ^ ,7 , where:

Chapter 1. Introduction 8

• cc identifies the machine environment, such as single machine (1). We
do not deliberate on the multi-machine environments, for which a has
many different expressions, since our research deals with single machine
environment.

• /3 C {^ i , . . . , / ?4} identifies the job characteristics, which are defined as
follows:

- 1̂ e {pm in ,0}.
= pmtn\ Preemption is allowed: the processing of any operation

may be interrupted and resumed at a later time.
/?i = 0: No preemption is allowed.

- 2̂ G 0}·
= T'y Release dates that may differ per job Jj are specified.

/32 = 0: All r,· = 0.

~ ^3 € {pj = 1, 0}.
Ps = Pj = Each job Jj has a unit processing requirement.
3̂ = 0: All Pj are arbitrary nonnegative integers.

- ^4 G {d, dj, 0).
/?4 = d: A common due date is specified for each job Jj.
^ 4 = dj·. Distinct due dates are specified arbitrarily for each job Jj.

/?4 = 0: Due dates are variables, the values of which have to be
determined.

• 7 identifies the optimality criterion of the scheduling problem, such as the
total unweighted earliness and tardiness penalties + Tj).

A three-field-notation scheme a\/3\'f will be used to describe a machine scheduling
problem. Hence, the problem of determining an optimal single machine
schedule with minimum total earliness and tardiness penalties is denoted by
\\dj\ Yigj{E/T), following the above terminology.

Chapter 1. Introduction 9

1.3 Combinatorial Optimization

Machine scheduling problems belong to the area of combinatorial optimization.
Combinatorial optimization involves problems in which we have to choose the
best from a finite number of relevant (feasible) solutions over a combinatorial
(discrete) set. For the total earliness and tardiness scheduling problems that are
of concern, for instance, we can restrict ourselves to the n! permutations of the
n jobs. Indeed, the solution space is larger than this, since for each permutation
(or sequence) there is more than one feasible schedule due to the inserted idle
times before or between the execution of jobs. But the optimal schedule can be
obtained easily once a sequence is specified (see Section 2.6.4).

The finiteness of the solution set by implying the effectiveness of the brute-force
approach of explicit enumeration may be misleading. Since the optimal solution
can be obtained by a straightforward method that generates all feasible solutions
and select the best one with respect to its objective function. Unfortunately,
however, the efficiency of this type of enumeration methods is far from being
satisfactory for solving large scale problems of practical importance since the
required effort to examine all schedules grows exponentially with the number of
jobs.

Chapter 1. Introduction 10

We have therefore good reasons to search for faster algorithms. At this point
a fundamental question is whether a problem is ‘well solved’ (‘easy’) or ‘hard’ .
The distinction between easy and hard problems apparently involves the effort
required to solve them to optimality. Since the effort grows with the size of the
problem instance, it makes sense to express the effort as some function of this
size. The size of an instance is defined as the number of symbols required to
represent an instance and this depends on encoding that is the representation
system we employ. Integers may be represented by an arithmetic system to some
fixed base jB > 2, in which case [log^ n] symbols are required to represent an
integer n. If jB = 2, then we have a binary encoding. Another system is a unary
encoding. Under a unary encoding, integers are represented by a series of I ’s, the
length of which is equal to the value of the integer: to represent an integer n, we
need n symbols.

The time complexity of an algorithm for a given problem is measured by an upper
bound on the number of computation steps that the algorithm performs on any
valid input, expressed as a function of the size of the input. If the size of the
instance is measured by n, then the running time of an algorithm is expressed
as O {f {n)) if there are constants c and no such that the number of steps for
any problem instance with n > no is bounded from above by c /(n) , for some
function / .

An optimization problem is said to be easy if there exists an algorithm that solves
the problem in time poiynomiaily bounded in the input size. On the other hand,
if any algorithm for the problem requires a complexity not bounded above by a
polynomial in n, it is considered to be hard.

1.3.1 Computational Complexity

In discussing the complexity of a problem, it is sometimes more convenient to use
the decision problem rather than the optimization problem. The decision variant
of a scheduling problem is defined as the following question: given an instance

Chapter 1. Introduction 11

of the problem and a threshold value y, does there exist a schedule with value
no more than y? All easy decision problems constitute the class V. This class
is a subset of the class AfP, which, in the present context, contains all decision
problems for which it is possible to check in polynomial time if the answer is ‘yes’
for a given schedule. A decision problem is said to be complete if it belongs
to AiP and if every problem in AfP is polynomially reducible to it. A problem
n is said to be polynomially reducible to a problem II' if and only if an arbitrary
instance of II can be solved by solving a corresponding instance of II' that is
constructed in time polynomially bounded in the size of II. The optimization
variant of an A/^7^-complete problem is called AfP-hard; these problems are at
least as hard as all problems in AiP.

Coming to the diiferent encoding schemes, the distinction between binary and
unary encoding of the input is relevant for those problems that are A/”'P-complete
under a binary encoding, but solvable in polynomial time under a unary encoding.
An algorithm which is polynomial under a unary encoding, but not polynomial
under a binary encoding, is called a pseudo-polynomial time algorithm. Problems
that are A/P-complete under both encodings are called strongly AiP-complete.
Problems are said to be ordinarily AfP-complete if they are A/’T’-complete under
a binary encoding. For details concerning computational complexity, refer to
Garey and Johnson (1979).

1.3.2 Optimization

Although optimization algorithms for hard combinatorial optimization algorithms
are unavoidably enumerativo in nature, the aim is still to develop algorithms
that perform satisfactorily well on the average for instances of reasonable
size. Dynamic programming and branch-and-bound are two major enumerativo
methods to solve hard combinatorial optimization problems.

Both dynamic programming and branch-and-bound aim at implicit enumeration
of the solution space. For the application of dynamic programming, we need to

Chapter 1. Introduction 12

identify some underlying principle of optimality. Application of the optimality
principle may require both time and space that is not bounded by a polynomial
in the length of the input. Nonetheless, dynamic programming based pseudo
polynomial algorithms may be very efficient.

Branch-and-bound algorithm mainly consists of a branching structure of the
problem which generates feasible set of solutions for smaller subsets of the original
set, and lower and upper bounding functions as well as a dominance relation
that together constitute a bounding operation which is used to discard some
subsets from further consideration. The performance of a branch-and bound
algorithm is affected firstly by the strength of the lower bounds which restrict
the growth of the feasible sets. Furthermore, the quality of the upper bounds, the
dominance relations, and also the branching structure directly affect the efficiency
of a branch-and-bound algorithm.

1.3.3 Approximation

It is obvious that an optimization algorithm for a hard combinatorial optimization
problem will take exponential amount of time in the worst case. This leads to
deal with a good approximate solution which can be obtained in a reasonable
time and with less effort instead of finding an optimal solution. For this case, the
main question is the trade-off between the quality of the approximate solution
and the time spent to find it.

There are a number of popular techniques for designing approximation algorithms
for the machine scheduling problems. For example applying dispatching rules
which make use of priority functions that associate an urgency measure for each
job is one of the simplest and widely used technique. The second class contains the
approximation algorithms based upon the dynamic programming and rounding
which is known as incomplete dynamic programming. The main idea is to
consider a specific part of the state space instead of the entire state space. The
last class of techniques that we point out contains the local-search algorithms.

Chapter 1. Introduction 13

These type of algorithms first generate an initial schedule and then adjust it
somewhat in order to improve the objective function value. One of the most
widely used procedure is to define for a given schedule of a a neighborhood Na

as the set of schedules that can be obtained from a by carrying out a prespecified
type of changing operations, such as adjacent pairwise interchange.

Globally, we can say that local-search algorithms are easy to develop and
implement, and are known to produce excellent results.

1.4 Outline of this Thesis

The main aim of this thesis is to analyze the single machine total unweighted
earliness and tardiness scheduling problems. Although there exists considerable
research for the case where all the due dates are same, the literature is limited
on the problems where all the jobs have distinct due dates. There is a lack
of both optimizing and heuristic algorithms for total earliness and tardiness
scheduling problems with distinct due dates. The purpose of this study is to
develop computationally efficient optimizing algorithms and heuristic algorithms
that solve the addressed problem effectively. Another purpose of this research
is to investigate some special structures for the due dates and then either to
show that the problem is A/ '̂P-hard or to provide polynomial algorithms for the
problem.

This thesis is organized as follows. In Chapter 2, the characteristics of the
total earliness and tardiness problems are analyzed and previous work on these
problems are reviewed concentrating on the problem l\dj\Yj{Ej + Tj). The
discussion on the approaches of the problem l\dj\J2{Ej+Tj) concludes that there
is a lack of both an exact algorithm and a heuristic procedure which solve this
problem efficiently and effectively. One of the main chapters. Chapter 3, presents
a detailed development of a dynamic programming formulation for the problem
l\dj\Y2{hij + Tj), including the extension of this formulation as an incomplete

Chapter 1. Introduction 14

dynamic programming. This approach forms also the basis for the heuristic
procedure developed and this heuristic procedure is given in Chapter 3, together
with the computational results. Chapter 4 analyzes two special structures for
the distinct due dates of the problem l\dj\Yi,{Ej + Tj). In this chapter, it is
shown that there exists two cases for the first structure. Chapter 4 first presents
the equivalence of one of the cases to a polynomially solvable problem and then
proves that the other one is AfV-hard. Chapter 4 also investigates the effect of
a second special structure for the due dates on the problem l\dj\Yi,{Ej + Tj).
After providing some properties regarding to this special structure, Chapter 4
concludes with an efficient heuristic algorithm. The first part of Chapter 5
extends the results obtained in Section 4.2 and develops an alternative heuristic
algorithm for problem \ \dj \ Yi{Ej + Tj). In the second part of Chapter 5, a lower
bound procedure for problem \\dj \ Y^{Ej -\-Tj) is presented and its effectiveness is
tested on randomly generated problems. In Chapter 6, the significance and the
importance of the results of this study and possible directions for future research
are discussed.

Chapter 2

Review of Single Machine
Earliness and Tardiness
Problems

The subject of this thesis is to analyze the single machine total unweighted
earliness and tardiness problems with distinct due dates. In this chapter, some
of the early work on single machine total earliness and tardiness problems that
is relevant to this research are briefly reviewed and analyzed. In the last section,
Section 2.6.4, the main problem that we deal with is reviewed in detail which
shows the deficiencies of the approaches on this problem.

In the following section, the characteristics and the basic definitions in the single
machine earliness and tardiness problems are presented. Then, in Section 2.2 a
classification of the earliness and tardiness problems is given. After giving the
mathematical formulation of the problem in its most general form in Section 2.3,
two special cases are stated in Section 2.4. Then, the problems that are
categorized according to the classification given in Section 2.2 are reviewed
considering their complexity results in Section 2.5 and Section 2.6.

15

2.1 Problem Characteristics

The objective function of the scheduling problems can be analyzed in two different
classes. The first class consists of the one dimensional performance measures
which are called regular performance measures. The second class is called as the
non-regular performance measures. A schedule for the sequence a is defined as a
vector of job completion times [(7i, (72, , (7„j. Then the performance measure
can be denoted as:

z{a) = z{C ^ ,C ,,...,C n)

Definition 2.1 [Baker, 1974] A performance measure z{cr) is regular if

(a) the scheduling objective is to minimize z[a), and

(b) z(a) is non-decreasing in each of the completion times, Cj, in the schedule.

This definition is important because it is usually desirable to restrict attention
to a limited set of schedules called a dominant set. For example, in the single
machine scheduling problem, the set of permutation schedules is a dominant set
for any regular performance measures. That is, preemption and inserted idle time
will never lead to a better schedule than the best permutation schedule for any
regular performance measure.

Most popular performance measures, such as mean flowtime, mean lateness, mean
tardiness, and number of tardy jobs, are all regular performance measures. There
are, however, many applications in which non-regular performance measures are
more appropriate.

D efinition 2.2 A performance measure z{a) is non-regular if the property (b)
does not hold in Definition 2.1.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 16

For example, the mean tardiness criterion has been a standard way of measuring
conformance to due dates, although it ignores consequences of jobs completing

early. Hence, if it is desirable to meet all due dates exactly, it is necessary
to consider non-regular performance measures. In spite of the importance of
non-regular performance measures, very little analytical work has been done in
this area probably due to the difficulty of solving these type of problems. The
difficulty arises because in some cases the insertion of idle time between jobs will
be beneficial which may prevent the set of permutation or non-delay schedules
to be a dominant set. In this case, delay schedules should be considered which
increase the solution space due to the inserted idle time in the optimal solution.

Definition 2.3 [Fry, Armstrong and Blackstone, 1987] A delay schedule is
any schedule where the machine is intentionally held idle when it could begin
processing a job.

Theoretically, there are infinite number of delay schedules because arbitrary
amounts of idle time can be inserted. However, this is not useful for a given
sequence and a non-regular performance measure and we should restrict the
feasible solution set to a finite number of schedules.

D efinition 2.4 A local shift is changing the completion time of a job in a feasible
schedule while keeping feasibility without changing the sequence.

Definition 2.5 [Davis and Kanet, 1992] A semi-active schedule for a non-regular
performance measure is one in which no local shift of a job will provide a schedule
with an improved value of objective function.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 17

It is obvious from the above definition that semi-active schedules dominate the
set of all schedules. Since it is possible to insert some idle time between the jobs
in a schedule, we can talk about a group of jobs such that there exists some idle
time before the first job and after the last job of the group, but not between any
two of the jobs in this group. We can state this concept formally as follows:

D efinition 2.6 The blocks of the schedule are the maximal sets of jobs
Jjo, ■ ■ ·, Jji that are scheduled without any idle time between any two of
these jobs, i.e., Sj-\-pj = V jo < j < ji, Sj^_i + Pj,-i < (or jo = 1),
and Sĵ + pj, < ¿jj+ i (or ji = n, the last position to be considered).

2.2 Classification of Earliness and Tardiness
Problems

Diversity in the total earliness and tardiness literature stem from the generality
of assumptions made about the due dates and the optimality criteria. The single
machine total earliness and tardiness problems can be classified according to

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 18

A. the condition on the due date:

1. problems having a fixed common due date d for all jobs Jj
y = i , 2. . . . , n) m ^ s A E I T))

2. problems having an individual due date dj for each Jj {j = 1, 2, . . . , n)
m \ E s i (E / T))

3. problems having the common due date d as a variable for all Jj
[j = 1, 2, . . . ,n) (optimal due date assignment) (1|| Yfgj[E ¡T))

B. its criterion that has usually been the minimization of total penalty cost as
objective function, where the penalties can be measured in different ways:

1. total unweighted earliness and tardiness (sum of absolute deviations
of the job completion times from due date) {gj^E/T) = [Ej + Tj))

2. total weighted earliness and tardiness (weighted sum of absolute
deviations of the job completion times from due date)
{gj{EfT) = {wjEj + VjTj))

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 19

Apart from these classifications, it is possible to talk about the objective function
which is a function of the squared earliness and tardiness penalties. Such a
problem, l|d| Yl,{Ej+T^), has been studied by Bagchi, Sullivan and Chang (1987).
They define this problem as unrestricted if an increase in the due date does not
result in any further decrease in the objective function value. That is, the due
date does not constrain the minimization of mean squared deviation in any way.
They have presented a general purpose branching procedure to solve this problem.

Later, De et al. (1989) have demonstrated that for the restricted version
of this problem, the branching procedure proposed by Bagchi, Sullivan and
Chang (1987) does not always produce the optimal schedule. They have suggested
an alternative approach that ensures optimality under all circumstances. They
have also analyzed the derivation of bounds which are very useful in determining
whether the problem is restricted or unrestricted. Furthermore, they have
presented a solution procedure for the restricted problem.

Another criterion that has been studied in the literature is the minimization
of maximum penalty of earliness and tardiness with different due dates.
Sidney (1977) has considered this problem with penalties that are monotonically
nondecreasing continuous functions of earliness (measured, in this case, as the
deviation of the starting time from a given target starting time) and tardiness.
Under restrictive assumptions on the starting times and the due dates, an
Ö (n^) algorithm for minimizing the maximum penalty has been presented in
the paper. For the same problem an О (n log n) algorithm has been later given
by Lakshminarayan et al. (1978).

Baker and Scudder (1990) review the literature on the total earliness and tardiness
scheduling problems providing a framework to show how results have been
generalized starting with a basic model of a single machine common due date
total unweighted earliness and tardiness problem. They also investigate more
general models which are obtained by adding some features to the basic model
such as parallel machines, complex optimality criteria and distinct due dates.
Apart from this review, there has been a number of review studies about total

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 20

earliness and tardiness problems with different emphases.

Sen and Gupta (1984) survey scheduling models involving due dates. After
classifying the scheduling problems according to their optimality criteria, they
provide the theoretical developments and computational experiences within
each category. The optimality criteria considered in this review include the
minimization of a criterion related to the flow time of jobs, the set-up cost of
machines, a criterion related to job lateness or tardiness, in-process inventories,
and a combination of two or more of the above criteria.

Cheng and Gupta (1989) survey models in which the due dates are decision
variables for both static and dynamic job shop situations. They analyze the
static job shop for the case where the due date is constrained to be greater than
or equal to the total processing times. For these type problems, the optimal due
date and the optimal sequence are to be determined when the method of assigning
due dates is specified. They discuss the identification of the most desirable due
date assignment method for the dynamic job shops together with the literature
dealing with determination of optimal due dates.

2.3 Mathematical Formulation of the

Problem, l\dj\ E { w j E j + Vj T j)

This problem is the most general form of the total earliness and tardiness
problems since it includes distinct due dates and weights for every job. This
problem can be reduced to all other problems by defining the due dates and the
weights appropriately.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 21

NLTETP:

s.t.

Min Y ,{w jE j + VjTj)
j=i

j=i j=l

+ Ej — Tj = dj Vi (2.1)
71

i=i
> 0 Wi (2.2)

71
= 1 Vi (2.3)

71

1=1
= 1 V; (2.4)

Xij G { 0, 1} V i,i (2.5)

Cj, Ej, Tj > 0 Vi (2.6)

where Xij is defined as

Xij
1 if Jj is assigned to position i
0 otherwise

In this model, the objective function is to minimize the weighted total earliness
and tardiness of all jobs. Constraint 2.1 describes the earliness or tardiness of
each job. From this constraint a job can only be either early or tardy, if it
is not an on-time job. Constraint 2.2 prevents jobs to be overlapped. While
constraint 2.3 denotes that exactly one job can be processed at every position,
constraint 2.4 denotes that each job can be processed exactly at one position, that
is no preemption is allowed. It can be seen that the model is nonlinear due to
the constraint 2.2. Due to this nonlinearity, the computational difficulty of total
earliness and tardiness problems increases. Fry, Leong and Rakes (1987) have

provided another formulation for l\dj\Y^{wj Ej +V jT j) problem. Since, their
formulation does not contain any nonlinearities, it is easier to handle. Their
model, called MITETP, is provided below:

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 22

MITETP:
Min 5^(u;,· Ei + Vi Ti)

i-l

s.t.

k=l A;=l j= l
n

— dj Xij
J=1

Vi (2.7)

1 Vi (2.8)

n

t=l
= 1 Vi (2.9)

X{j G { 0, 1} V i,i (2.10)

Ei,Ti,Yi > 0 Vi (2.11)

where denotes the idle time to be inserted before the job at the ¿-th position.
Hence, constraint 2.7 describes both the position of a job in the schedule, and
its condition, that is being early, tardy, or on-time. Constraints 2.8, 2.9 and 2.10
are same as constraints 2.3, 2.4 and 2.5, respectively.

These models are important because the mathematical formulation of the
problems is used in finding the optimal solution in our study. Hence,
computationally tractable and efficient models are essential. Although the later
model is a mixed-integer formulation and it is not efficient for large n values, it
is notable in the sense that it overcomes the difficulties regarding the non-linear
constraints of the former model. Furthermore, the former model is important
because this type of formulation can easily be used in finding the optimal schedule

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 23

when a sequence is given. Because, once a sequence is determined, we can
eliminate all the decision variables of Xij. In other words, since the technical
constraints (or the precedence relationships) are all given, the NLTETP model
turns out to be a linear programming model. In a formal way, we can state the
linear programming model as follows:

LPTETP(<t):

t=l

s.t.

“l· <̂̂ (0 — 4(.) Vi (2.12)

> 0 Wi (2.13)

> 0 Vi (2.14)

Note that, Cc{i) denotes the completion time where Ct̂ ô) — 0 a,nd pcr(i) denotes the
processing time of the z-th job in the sequence cr, respectively. In this case, since
a sequence is given, disjunctive constraints 2.3 and 2.4 of the NLTETP model are
not necessary in LPTETP model. In this linear programming formulation, we
have 3n variables and 2n constraints. Although this model can be solved easily,
there exists more efficient algorithms in the literature for finding the optimal
schedule when a sequence is given (see Section 2.6.4).

2.4 Special Cases

In this section, we present some more definitions which are used throughout the
rest of this study. Some of these definitions are also required for stating the
special cases for the problem.

Definition 2.7 In a Weighted Shortest Processing Time (WSPT) sequence jobs
are ordered according to non-decreasing ratios of processing times to the weight
of tardiness, i.e.,

P i/vi< P2IV2 < . . . < Pnhn·

This sequence is called as Shortest Processing Time (SPT) sequence if the weight
of tardiness is equal to one for all jobs, that is if:
Vj = 1 V i = 1,2,

D efinition 2.8 In a Weighted Longest Processing Time (WLPT) sequence jobs
are ordered according to non-increasing ratios of processing times to the weight
of earliness, i.e.,

Pi/wi > P2 IW2 > . . . > PnlWj,.

This sequence is called as Longest Processing Time (LPT) sequence if the weight
of earliness is equal to one for all jobs, that is if:
Wj = 1 V i = 1,2, . . . ,n.

For total earliness and tardiness problems there exist two special cases which
are true for all objective functions and restrictions about due dates (Ow and
Morton, 1989).

1. If WSPT sequence results in a schedule with no early jobs, then this is
optimal schedule.

2. If WLPT sequence results in a schedule with no tardy jobs, then this is
optimal schedule.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 24

Apart from these special cases, since the due dates are involved in the optimality
criterion of the earliness and tardiness scheduling problems, it seems natural to
have some sequencing rules that incorporates the information of due dates. One
of such sequencing rules is the following:

Definition 2.9 In an Earliest Due Date (EDD) sequence jobs are ordered
according to non-decreasing values of the due dates, i.e.,

d\ ^ ¿2 ^ · · · ^ n̂·

A second sequencing rule that uses due date information is to consider target
starting times (or equivalently the slack times) of the jobs as follows:

Definition 2.10 In an Earliest Starting Time (EST) sequence jobs are ordered
according to non-decreasing values of the target starting times, i.e.,

«1 < «2 < . . . < Un.

Informally, the slack time of a job is the amount of time remaining before this
job must be started if it is to be completed on time. This quantity is important
because it shows the urgency of the jobs: smaller the slack time of a job, higher
the chance of being tardy for that job.

2.5 Well Solvable Cases

2.5.1 lldlEiwjEj + VjTj)

This problem is considered for two special cases according to the different weight
assignments. In the first one all early jobs have the same weight w and all tardy
jobs have the same weight v. In the second case, each job Jj has a weight luj
which is independent of whether the job is early or tardy.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 25

2.5.1.1 l\d>P\J2{w Ej-i-vTj)

The problem l|d| Elj + vTj) is referred as the weighted sum of absolute
deviation (WSAD) problem in the literature. This problem has been discussed

firstly by Bagchi, Chang and Sullivan (1987). The problem l|d > +
vTj) is called as the unrestricted version of l\d\J2{' ̂Ej + vTj) problem since
the due date is loose. The other case in which due date is tight is called as the
restricted version. This distinction is important because while the unrestricted
version can be solved in polynomial time, the restricted version has been shown
to be j\7P-hard. To be more precise, l\d\'^(Ej + Tj) problem is defined as
unrestricted ii d > P and restricted ii d < P, where P is the total processing
time of the jobs in a schedule, i.e.,

n

p = Eft-
The difference between two problems can be described qualitatively and in a
simplified form. When the problem is unrestricted, since the due date is loose,
there is more flexibility to construct the schedule such that d is in the middle of
the schedule. In the restricted problem, however, this may not be possible since
no job can start before time zero.

Bagchi, Chang and Sullivan (1987) have stated some propositions for the
unrestricted version of the problem. These propositions restrict the search for
an optimal solution to a limited set of schedules.

P roposition 2.1 There is no inserted idle time between any jobs in the optimal
schedule (If job Jj immediately follows job Jk in the schedule, then Cj = Ckd-pj)·

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 26

P roof: Assume the contrary. It is easy to see that the value of the objective
function can be improved by eliminating the idle time between jobs. ■

Definition 2.11 A schedule is called V-shaped if the jobs completed on or before
the common due date are in the WLPT order and the jobs completed after the
common due date are in the WSPT order.

P roposition 2.2 The optimal schedule is V-shaped.

P roof: The proof follows from a simple job-interchange argument. ■

P roposition 2.3 One job completes precisely at the common due date (Cj — d
for some job Jj).

P roof: The proof follows from a shifting argument of the schedule. ■

P roposition 2.4 For d < Pi, the WSPT sequence is optimal. Furthermore, if
w < V, then the WSPT sequence is optimal for d < (pi p2)/2.

P roof: For d < pi, Proposition 2.4 is a well-known result. For w < v and
d < (pi +P 2) / 2, the proposition can be established by job-interchange argument.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 27

P roposition 2.5 In an optimal schedule the longest job is processed first.

P roof: Consider a schedule of a that satisfies Proposition 2.2 but violates
Proposition 2.5. In such a schedule the longest job must be the last job in
sequence. It is easily shown that the interchange of the first and the last jobs in
a improves the schedule. ■

P roposition 2.6 For an optimal schedule of the form {£'){T) one can write

\n{vlvf\ for n{vIv) non-integer

where u — w + v.

n{v/u) or n(v/i/)-j-l forn iyju) integer

P roof: Similar to the proof of Proposition 2.7 in Section 2.5.2. ■

For this problem an O (nlogn) algorithm is offered by Bagchi, Chang and
Sullivan (1987) which is an alternative algorithm to the one given by Panwalkar
et al. (1982). The algorithm of Bagchi, Chang and Sullivan (1987) yields a unique

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 28

sequence with, optimal due date equal to d* where d* is the minimum due date
for the optimal objective function. Jobs are scheduled by the algorithm one at a
time, starting with the largest job and ending with the shortest job.

Panwalkar et al. (1982) have considered the problem of finding the best common
due date for all jobs to minimize the total penalty which is the summation of
weighted earliness and tardiness cost together with the due date assignment cost.
A two-phased algorithm is given for solving this problem. In the first phase, the
number of tardy jobs is found. Positional penalties, the optimal sequence and
the optimal due date are found in the second phase. The algorithm subsumes
the algorithm given by Kanet (1981) for minimizing sum of absolute deviation of
completion times about a common due date as a special case.

2.5 .1.2 l\d\^Wj{Ej + Tj)

Hall and Posner (1991) have shown that Propositions 2.1, 2.2 and 2.3 hold for
the problem l\d\J2'' ĵ + Tj) and presented four special cases for which the
problem l\d\'^Wj{Ej -H Tj) is polynomially solvable. Hoogeveen and van de
Velde (1992) has given one more special case for the problem l|(i| Wj (Ej J- Tj)
which is polynomially solvable:

W eights and Processing Times are Equal In this special case,
= Pji j = 1,2, . . . ,n. The algorithm proposed for this problem by Hall

and Posner (1991) is in O (n) and takes jobs in non-increasing order of their
processing times and schedules them to finish early, until the total processing
time of jobs scheduled is at least half of the overall total processing time. All
other jobs are scheduled late. Since Wjlpj = 1, V ji = 1, 2, . . . ,n, the order of
the jobs in S' or T does not affect the objective function value. This result has
also been obtained independently by Hoogeveen and van de Velde (1992).

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 29

Jobs Have Unit Processing Tim es For this class of problems, it is assumed
that pj = 1, V j = 1, 2, . . . , n. From Propositions 2.2 and 2.3, the completion
times of the jobs are d — fn/2] -f 1, d — [n/2] + 2 , . . . , d — |”n/2] + n. With some
simple algebraic manipulations, it is obvious that an optimal schedule cr* has an
objective function value of

Wj-
j = i

N o Job is Late For this class of problems. Hall and Posner (1991) have given
sufficient conditions for all jobs to be in S'.

T heorem 2.1 [Hall and Posner, 1991] If pk > 2Yfl~l pi and Wk > 2 EiLfc+i ^f
V A: = 1, 2, . . . , n, then the schedule of a = (n, n — 1, · · ·, 2,1), where job J\ is
the on-time job, is optimal.

P roof: Suppose that for some job Jk G T . Let A denote the change in cost from
inserting job Jk in its appropriate position in S'. Then

(n \ Jt-l
Y , WJi P k + W k Y Pi - Wk Pk

i=k-\-l J 1=1
< WkPkl‘̂ + WkPkl2-WkPk = 0.

li t > 1, the same operation can be repeated until T is empty. ■

First Job is Large For this class of problems. Hall and Posner (1991) have
shown that if pi > YJi=2 Pi-> there exists one very large and important
job that dominates processing, then the schedule of cr = (1, 2, · · ·, n — 1, n), where
job J\ is the on-time job, is optimal.

Identical Jobs Hoogeveen and van de Velde (1992) have shown that if the jobs
are identical, that is, \i pj = p, V ̂ = 1, 2, . . . , n, then an optimal schedule can
be obtained by applying the matching procedure of Emmons (1987).

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 30

2.5.2 l\d> + Tj)

For the problem l|<i| E (^ j + ^j) again, restricted and unrestricted versions occur
according to the constraints on the common due date d. This problem is
called as the unrestricted version of l|d| E i^ j + Tj) problem since the due date
is loose. Similar to the weighted case, the problem l|d > + ' ĵ) is
polynomially solvable whereas the restricted version is A/’’P-hard. To be more
precise, l\d\E{Ej + Tj) problem is defined as unrestricted \i d > 8, where 8 is
defined as

8 ^ Pi + P3 + · ·. + Pn if n is odd
P2 + P4 + · · · + Pn if n is even

Otherwise, i.e. if d < 5, the problem is defined as restricted. This special case
has been studied by Kanet (1981), Hall (1986), and Bagchi et al. (1986) under
different restrictions on the common due date.

Kanet (1981) has addressed the unrestricted problem and presented an O (n^)
algorithm for minimizing the total cost when costs increase linearly as a job’s
completion time. More specifically, the objective function is to minimize the sum
of absolute lateness for the unrestricted problem. Also, the restriction on the
common due date is looser than the one given above. The problem is defined as
unrestricted if d > P.

Hall (1986) has also examined the problem analyzed by Kanet (1981).
Considering an equivalent problem, the proof of optimality of Kanet’s algorithm is
discussed and it is shown that the conditions are not necessary. A new algorithm
which finds alternative optimal solutions for the problem is also stated.

Bagchi et al. (1986) have also considered the problem l\d\E{^j + ^i) but with
different restrictions on common due date d. An O (nlogn) algorithm is
suggested for the problem under the restriction that d > 8 . It is proposed

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 31

that ii d > 0̂ where

d — Pn~l·
P2+PA + ··■+ Pn-i if n is odd
Pid-P3 + ■■■+ Pn-i if n is even

the algorithm produces multiple optima including Kanet’s schedule. The number
of optimal schedules, assuming all pj are different, is 2"/^ if n is even, and
if n is odd. li 6 < d < 0 then the algorithm yields at least one optimal schedule.
Since the bound for this problem is determined by the ordering step of complexity
O (n log n) and any optimal algorithm for this problem would have to perform
this step, the order of computation for this problem cannot be improved any
further unless the order of computation for sorting problem is improved.

For the problem l|d > ^\Yi{Ej + T/), the properties that the optimal solution
should possess can be given by Propositions 2.1, 2.2 and 2.3. Proposition 2.1
implies that once a sequence of jobs and a starting time for that sequence are
given, it is easy to determine the schedule. So, it is enough to search n! different
sequences for an optimum. Proposition 2.2 implies that once the membership in
two sets is known, the sequence of the jobs within each set can be determined
immediately. This limits the search for an optimum to 2” sequences instead
of all n! sequences. Although the optimal job sequence is determined, without
knowing the starting time, there exists an infinite number of schedules to evaluate.
Proposition 2.3 says that there exists two sets of jobs, an early set (which includes
one job precisely on-time) and a tardy set. By using Proposition 2.3, once the
membership in the early set is known, the starting time for that sequence can
easily be determined. There are thus 2" schedules to evaluate in the search for
an optimum.

P roposition 2.7 In an optimal schedule, the \S'\-th job in sequence completes
at time d, where \S'\ is as follows:

|5'| =
[n /2] if n is odd

n/2 or (n /2) -b 1 if n is even

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 32

P roof: Considering the Propositions 2.1, 2.2 and 2.3, the value of the objective
function for a schedule can be determined. Let £'i denote the index of the ¿-th
job in S' and let T i denote the index of the ¿-th job in T . The penalty due
to the deviation of completion time from its due date for job S'i is the sum of
the processing times of all jobs in S' that complete later. With some algebraic
manipulation, the total penalty for the jobs in S' can be written

C s ' — IpS' l + ^PS'2 + · · · + { W \ — f)P£'(|f'|-l) + \^'\PS'\S>\· (2.15)

Similarly, the penalty for job Ti is the sum of the processing times of all jobs
in T that start before plus the processing time of job Ti. With some algebraic
manipulation, the total penalty for the jobs in T can be written

Cr = {\P'\ — l)p n + (|T'| - 2)p r2 -I------- l· lpr(|T|-i) + Opr|T|· (2.16)

The objective function is the sum of Cet and Cr and the processing times are
given. If |T| and \S'\ are known, this sum would be minimized by matching
the smallest coefficient in the sum with the largest processing time, the next
smallest coefficient with the next largest processing time, and so on, with ties
broken arbitrarily. Hence, if n is even, then \S'\ = |T|, and if n is odd, then
|T| = |5'| + 1. ■

2.5.3 l\\T.gj(EIT)

Optimal due date assignment problem has been examined by Seidmann
et al. (1981), Panwalkar et al. (1982), Quaddus (1987), Cheng (1987), Hector
et al. (1988), Cheng (1988a), Cheng (1988b), Baker and Scudder (1989) and
Cheng (1990a) with the objective of minimizing the sum of absolute deviation of
the job completion times from the optimal common due date.

Seidmann et al. (1981) have considered a total aggregate penalty function to be
minimized to find the optimal due date for each job and the corresponding optimal

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 33

sequence. Their penalty function is based on the unweighted per unit lead time
penalty dependent upon the specific due date assigned to each individual job,
together with the earliness, and tardiness cost of the job represented by Pi, Pa,
and P3, respectively. It is shown that if Pi < P3, then dj = pj, V ̂ = 1, 2, . . . , n,
otherwise dj = min{ A, Yh<j<i Pj}, j = 1,2, . . . , n, where A represents the lead
time that customers consider to be reasonable and expected. It is also proved
that the SPT sequence will be optimal for this type of problems.

Panwalkar et al. (1982) have also considered the same type of objective function
with Seidmann et al. (1981) with a slight variation. In this case. Pi is the per
unit time cost of due date. An algorithm is provided to determine an optimal
sequence and the corresponding optimal common due date. It is proved that for
any specified sequence <t, there exists an optimal common due date equal to Ca{i)·,
where

i=\n(Pз-P ^)|{P г-\-P ,)\ .

Quaddus (1987) has presented a linear programming analysis for assigning an
optimal due date to n independent jobs. The criterion for this problem is the
minimization of total unweighted earliness and tardiness penalties together with
the penalty assessed on due date allowance.

Cheng (1987) has considered the problem of finding the optimal common due date
and the optimal job sequence to minimize the weighted average of missed due
dates. He has proposed an exponential algorithm to search the optimal solution
which is efficient for small to medium values of n.

Sector et al. (1988) have considered to find the optimal common due date and
a corresponding optimal sequence such that the total unweighted earliness and
tardiness penalties are minimized. A generalized linear goal program is considered
to prove some basic results. Then, an algorithm is developed using these results
and the idea of sensitivity analysis in linear programming which determines the
optimal common due date and the corresponding optimal sequence.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 34

Cheng (1988a) has proved the same result of Panwalkar et al. (1982), using the
duality property of linear programming for this type of performance measure.
Cheng (1988b) has considered the problem of determining optimal common due
date and optimal sequence of jobs for minimizing unweighted total earliness and
tardiness penalties. The main difference of this work is that a deviation parameter
is considered in the due date assignment problem which attempts to model the
real life situation of no penalty for jobs marginally missing the common due date.

Baker and Scudder (1989) have given an alternative proof of the result of
Quaddus (1987), without relying on duality theory, and have shown how
Quaddus’ examples fall short of optimizing the total penalty. This is due
to neglecting the sequencing aspect of the problem while considering the job
dependent penalties, thereby generalizing models addressed by other authors.

Cheng (1990a) has provided a new algorithm for the same problem of
Cheng (1987) which is significantly more efficient than the former one due to
a partial search algorithm incorporated into algorithm of Cheng (1987).

2.6 M V - h ^ a r d Problems

2 .6.1 l \ d < 6 \ Z { w j E j - \ - V j T j)

Hall and Posner (1991) have shown that this problem with wj = vj,
V _; = 1, 2, . . . , n, is J^V-hai'd in the ordinary sense by providing a reduction
from the EVEN-ODD PARTITION problem (see Section 2.6.4) which is already
known to be A^'P-complete in the ordinary sense (Carey et al. 1988). After
describing optimality conditions for the problem, a computationally efficient
dynamic programming algorithm is developed. A fully polynomial approximation
scheme is given when the weights are bounded by a polynomial function of the
number of jobs.

Hoogeveen and van de Velde (1992) have also provided an alternative proof of
showing that l|d < <5| ^jd-vj Tj) is A/”7 -̂hard in the ordinary sense even if all
job weights are equal (that is Wj = Vj = 1) by a reduction from the EVEN-ODD
PARTITION problem. They have presented a pseudo-polynomial algorithm that
requires O [n?d) time and O {nd) space.

For l|d < d\Y {̂wj Ej VjTj) with wj = w and vj = v, V j = 1,2, . . . ,n
Propositions 2.1 and 2.2 hold but Proposition 2.3 does not. For solving this
problem, Bagchi, Chang and Sullivan (1987) have proposed a branching procedure
based on Proposition 2.2 and Proposition 2.4.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 35

2.6.2 l\d<S\E(Ej-pTj)

Hall et al. (1991) have shown that the problem l|d < d\Yf̂ {Ej Tj) is M V-
hard by transforming the EVEN-ODD PARTITION problem to the recognition
question of the problem l|d < Yi{Ej + Tj). It is demonstrated that the problem
l|d < 1̂ Yi{Ej -{■ Tj) is not A/’T’-hard in the strong sense by describing a pseudo
polynomial time algorithm.

Bagchi et al. (1986) have developed a branching procedure for the problem
l|d < <i| Y^{Ej + Tj). For d = 6, there exists an optimal schedule in which jobs
are processed continuously from t = 0 t o t = P. When d < 6, again in an optimal
schedule jobs are processed in the interval of [0, P]. However there exists now
no guarantee that an optimal schedule will contain no job Jj with Sj < d and
Cj > d. In the proposed procedure to determine an optimal schedule for this
problem which is based on implicit enumeration, some dominance properties are
utilized to curtail the search of all feasible V-shaped schedules.

Bagchi et al. (1986) have reported that the assumption of processing the jobs
in the interval [0,P], i.e. Ca{n) = P, is unnecessary when d < 6. However, it
becomes a constraint when d > 6.

For the restricted version of the problem, Propositions 2.1 and 2.2 still hold but

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 36

Propositions 2.3 and 2.7 do not. As a special case, it should be noted that if
d = 0, then the problem is solved optimally by the SPT rule.

Raghavachari (1986) has proved the V-shape property of optimal schedule of jobs
about a common due date. It is shown that for the problem of minimizing the
sum of absolute deviation of the job completion times about a common due date,
the optimal sequence is always V-shaped and this property is not affected by the
restrictions on the due date.

Sundararaghavan and Ahmed (1984) have investigated the problem
l\d < S\Yi , {EjTj) in which the job in the first position in the schedule is
assumed to start at time zero. A heuristic is proposed for this problem and its
performance is reported on several randomly generated problems. The algorithm
finds the optimal solution in most of the cases and it usually fails only by a small
margin. Szwarc (1989) has also considered this problem and developed a branch-
and-bound algorithm which incorporates a lower bound and utilizes the heuristic
procedure of Sundararaghavan and Ahmed (1984) for finding the initial upper
bound.

2.6.3 l\djI E{wj Ej + Vj Tj)

l\dj \ hlj + Vj Tj) is .AAP-hard, since its special case l\dj \ Y^{Ej-\-Tj) is so (see
Section 2.6.4). This problem has been studied by Tahboub (1987), Fry, Arm
strong and Blackstone (1987), Ow and Morton (1988), Ow and Morton (1989),
Yano and Kim (1989), Azizoglu et al. (1991) and Hoogeveen (1992).

Tahboub (1987) has investigated the use of a surrogate problem in solving
this problem. This approach exploits the relationship of the problem to a
transportation problem that may be used to decompose the original problem
into subproblems for which optimal solutions may be easily obtained and then
re-composed to determine the solution of the problem.

Fry, Armstrong and Blackstone (1987) have presented a heuristic solution for

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 37

the problem since the problem has a non-transitive penalty function and hence
requires an enumeration procedure to guarantee a global optimum. In this study,
insertion of idle time to obtain an optimal delay schedule is performed by solving
a linear program with the objective of minimizing weighted sum of absolute
deviations. The second aspect of the heuristic is to sequence the jobs. The
best results are obtained by using a sequencing rule such as EDD to sequence the
jobs and then by applying adjacent pairwise interchange.

Ow and Morton (1988) have considered this problem as one of the problems in
their experimental study for a new search method they have developed. Later,
Ow and Morton (1989) have analyzed this problem individually proposing two
dispatch priority rules together with the new search method.

Yano and Kim (1989) have studied this problem and have presented a dynamic
programming algorithm to find the optimal schedule given a fixed sequence
for the jobs. They have developed optimal and heuristic procedures when the
weights are proportional to the processing times of the jobs. They have also
derived dominance criteria which are used both in the optimal branch-and-bound
procedure to reduce the number of sequences that must be considered, and in the
heuristic procedure to construct an initial sequence and to evaluate potential
improvements. This heuristic procedure combines a simple sorting procedure
and a simple pairwise interchange procedure. Both the optimal and the heuristic
procedures are variations of the procedures presented in Sections 2.6.4.2 and

2.6.4.3.

Azizoglu et al. (1991) have examined the problem where jobs have the same
earliness and tardiness penalties which are penalized at different rates. They
have assumed that no inserted idle time exists in the schedule. For this problem,
they have presented a branch-and-bound algorithm together with powerful lower
and upper bounds.

Hoogeveen (1992) has considered the problem l|dj| + ̂ i) +^i ^j) where
Wj = w and Vj = V, V ji = 1 ,2 , . . . , n. This problem is equivalent to the

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 38

problem since Cj = Tj — Ej + dj V j = 1 , 2 , , n. He
proposed a branch-and-bound algorithm for this problem by determining some
lower bounds and upper bounds (see Section 2.6.4.2).

2.6.4 l\dj\j:{Ej -hTj)

Garey et al. (1988) have shown that the problem l\dj\Y^[Ej + Tj) is TV'P-hard
by a reduction from the EVEN-ODD PARTITION problem.

EVEN-ODD PARTITION:

INSTANCE: An integer n, a finite set A of 2n elements, a “size” aj G for
each Aj G A, such that aj < aj+i for each Aj ^ A , 1 < j < 2n.

QUESTION: Does there exist a partition of A into subsets Ai and A 2 , such that

YIajeAi — J2 AjEA2 each j , 1 < j < n, A\ and A 2 each
contains exactly one of { A 2j - i , A 2j } I

TOTAL EARLINESS-TARDINESS:

INSTANCE: Integers y and n, a finite set J o in independent jobs, a “processing
time” pj G and a “due date” dj G Z~̂ for each job Jj G JT”, 1 < i < ri-

QUESTION: Does there exist a non-preemptive schedule of these n jobs in the
set N on one machine such that the total earliness and tardiness is no longer than

y?

This complexity result indicates that the existence of a polynomially bounded
algorithm to determine an optimal solution for the problem is unlikely, so either
an implicit enumeration algorithm is required or some heuristic procedures can
be used for approximate solutions to the problem. Although there exist a vast
amount of literature on the total earliness and tardiness scheduling problems,
most of these deal with either the common due date models or the models where
due dates are decision variables of the problem. To the best of our knowledge.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 39

there exists two branch-and-bound algorithms as optimizing algorithms and two
heuristic procedures for l\dj\Y^[Ej + Tj). Since the problem l\dj\Y^{Ej + Tj)
is more realistic regarding the problems l|d| Yi{Ej + Tj) and 1|| + T)̂, we
concentrate on this problem during this study. For the problem l\dj\TS{Ej-{· Tj),
we present a special case of the problem from the literature where we are given a
sequence of jobs and it is required to find the optimal schedule for this fixed job
ordering in Section 2.6.4.1. In Section 2.6.4.2, we review two branch-and-bound
algorithms for the problem l|dy| '^{Ej -f- Tj). Two heuristic procedures are given
in Section 2.6.4.3.

2.6.4.1 S c h e d u l in g o f a F ix e d Jo b O r d e r in g f o r l\dj\Y;(Ej + Tj)

The words ‘sequence’ and ‘schedule’ are different for the problem l|dy| J2{^jd-Tj).
A sequence defines the order of the jobs without determining the exact place
of the jobs in the time horizon. In other words, a sequence only defines the
precedence relations between jobs. But a schedule defines the place of the jobs
in the time horizon, that is once a schedule is given, the completion times of
the jobs are known for sure. For a regular performance measure, a sequence
exactly corresponds to the desired schedule. But for a non-regular performance
measure such as minimizing the total earliness and tardiness, since insertion of
idle time is possible, a sequence does not determine the corresponding schedule.
The important point is not to confuse with the ‘optimal schedule for a fixed job
ordering’ and the ‘optimal schedule’. Optimal schedule is what we understand
from a conventional optimal schedule and it finds the optimal schedule for the
given problem instance. In this case, the sequence of the jobs is not our concern
and all of the sequences are evaluated in one way or another during the process
of finding the optimal schedule. But the optimal schedule for a fixed job ordering
considers only the given sequence and finds the optimal timing of the jobs for the
given precedence relations. So, in this case, we cannot talk about the optimal
schedule for the problem without these precedence relations. Hence, the optimal
schedule for a fixed job ordering may not match with the optimal schedule of the

Chapter 2. Review o f Single Machine Earliness and Tardiness Problems 40

problem without any given job ordering. So, for the problem l\dj\TS{Ej + 7y),
determining the optimal schedule for a fixed job ordering is an additional aspect
that has to be considered separately. An algorithm that effectively and efficiently
determines the optimal schedule when a sequence is given, is important and
worthwhile, since it can be used both in optimizing algorithms such as in a
branch-and-bound algorithm, and in heuristic procedures.

Kim and Yano (1987) presented a polynomial algorithm for finding the optimal
schedule, when a sequence is given. The procedure is essentially a dynamic
programming algorithm. Let fa(i){^) be minimum tardiness plus earliness of jobs
'̂ cr{i), ■ ■ ■ ■) if job starts at time s, that is Scr(i) = 5, the recursion
equations are:

= nun {|s + - 4 (,)| + niin /^(,+i)(t)}, V ̂ = 1, 2, . . . , n - 1,
I Pir(i)

fa{n){s) = min |s +

where the subscript refers to the ¿-th job in the given sequence cr. The
internal minimization over t in /<r(,)(>s) allows idle time between jobs and

In this algorithm, called OPTSCH\<jk y , the jobs are considered in reverse order
of the given sequence. OPTSCH\<jky starts with the last job in the
given sequence and schedules it to be completed at its due date. Job Ja{n-i)
can also be scheduled to be completed at its due date unless doing so would
cause a conflict with job Jo-(n)· If there is a conflict, the two jobs form a partial
sequence with no inserted idle time, which can be scheduled to minimize the
corresponding convex function. OPTSCH\ctky proceeds in this fashion, with
jobs Jo-(n-2); J(x(n-z)·, · · · 5 clustering jobs as conflicts occur, until all jobs are
scheduled. If the starting time of job J\ is before time zero, beginning with the
initial jobs, partial sequences with no idle time are delayed as little as possible to
achieve feasibility by eliminating some or all of the idle time between groups of
jobs. The algorithm OPTSCH\(jky has a computational complexity of O (n^).

Another algorithm for finding optimal schedule when a sequence is given, is
presented by Garey et al. (1988). In their algorithm, they assume that job J<7(,·),
V г = 1, 2, . . . , n , must be completed by the time job is started. Their
scheduling algorithm schedules jobs one at a time, shifting previously scheduled
jobs earlier when scheduling a new job, if necessary. For this scheduling algorithm,
called OPT SC H\ctgtw·, let a,· be the schedule computed for the first i jobs.
OPTSCH\croTW uses the concept of blocks. Now, assume that there are £ blocks,
B i , B 2 , . . . ,Вг in СГ,·. In OPTSCH\aoTW·, each block Bi is partitioned into two
subsets, Decrease(l) and Increase(l), as follows:

Decrease(l) = ^ Bi У Ŝ ^̂ i) > cLa(i)} withT>ec(/) = \Decrease{l)\,

Increase(l) = {J(τ(,·)| Jcr(t) ^ BiW Ŝ î) < a (̂,·)} with/nc(/) = |/ncrease(/)|.

We can decrease the penalty of job by reducing if € Decrease(l),
whereas we can increase the penalty of job /<,.(,·) by reducing Scr(i) if
Ja(i) € Increase{l). Furthermore, define the followings:

firs t(l) : the smallest index of jobs in the block Bi

last(l) : the largest index of jobs in the block Bi.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 41

The initial schedule ai simply schedules joh such that 5o-(i) = a<r(i)· lu
general, given cr,·, job J,r(i+i) is scheduled as:

ĉr(i+l)
Ucr(t+i) il̂ *̂ <̂(0 P̂ (̂) — <̂̂ (*+1)
*5'cr(i) T P<r(i) î T P<̂ b) ^

In the first case, job Jc(i+i) has no penalty, and cr,· and cr,+i have the same
objective function value. In the second case, job J<r(i+i) has a positive penalty
and both the last block Bt and the corresponding set Decrease{£) have gained job

as a member. A key property that OPTSCH\aoTW will maintain is that,
for each block Bi in cr,·, either Dec{l) < Inc(l) or Sfirst(i) = 0 (in which case I = 1).
Hence, after scheduling job we have either Dec{£) < Inc{£) or Sjirsgt) = 0·

If Sfirst(i) = 0 or Dec{£) < Inc{£), we take no further action; the current schedule
is cr,+i. On the other hand, if now Dec{£) = Inc(£) and Sprstp) 7̂ 0> we can shift
the entire block Bi earlier without affecting the objective function value of the
schedule. We shift block Bi earlier until one of three things happens:

(i) Sjirst{i) becomes zero,

(ii) for some job G Bi ̂ Sj becomes equal to aj, or

(iii) becomes equal to Siastp—'y) “b Piastp—i)·

The resulting schedule is cr,q.i.

OPTSCH\aQTw consists of beginning with the schedule and applying the
above construction to form schedules (T2,cr3, · · ·, OPTSCH\ctgtw can be
implemented easily to run in O [v?) time. But Garey et al. (1988) proposed an
efficient implementation of OPTSCH\craTW to run in O (nlogn) time.

2 .6 .4 .2 O p t im iz in g A l g o r it h m s

A quick review of the scheduling literature suggests that there is a lack of efficient
optimizing algorithms for problem \ \dj \ Y^{Ej + Tj). In the following section, we
will analyze the algorithms based on branch-and-bound approach.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 42

A B ranch-and-B ound A lgorithm [Kim and Yano, 1987] As an enurner-
ative algorithm, Kim and Yano (1987) presented a branch-and-bound algorithm
which can handle up to 30 jobs. In this branch-and-bound algorithm, they used a
lower bound which conceptually says that jobs must be shifted far enough forward
or backward in time from their respective due dates to satisfy the constraint of
at most one job can be processed on the machine at a given time. The lower
bound on the total earliness and tardiness gives the minimal amount of shifting
to accomplish this on the assumption that each subset of jobs can be considered

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 43

separately. In general, shifting in one subset will affect other subsets, so that the
given bound may not be achievable.

The following proposition is used for pruning some subproblems in the branch-
and-bound algorithm.

P rop osition 2.8 [Kim and Yano, 1987] If there is a constraint such that

min { } + min , py,} > max { , dy,},

then job Jĵ should precede job when pĵ < pj ,̂ and job Jĵ should precede job
Jji pyi > py .̂

P roof: Let ETj ĵ ̂ denote the minimum total earliness and tardiness of jobs Jŷ
and Jj2 when Jĵ precedes and ETj ĵ ̂ denotes the earliness and tardiness of
jobs Jyj and Jĵ when Jĵ precedes Jj .̂ Further, let Стах = max {Cyj, Cyj}. Then

~ m̂ax T Pji djj -f- Pĵ -f- РУ2 dj’j ,

~ m̂ax d" Pj2 d" Pji ~ d" Pji ,

^'^jl32 '̂̂ 3231 Р31 ~ Р32 ·

Hence, the results follow. ■

Each node of the branching tree is associated with a partial sequence which will be
placed at the end of the complete sequence. That is, a node at the k-ih level of the

tree corresponds to a partial schedule of cr' = *̂ <̂ '(*̂ -1) ’ · · · ’
where d^qi) represents ¿-th job from the end, and one of the remaining n — к jobs
is to be selected for the position ¿ + 1. Let f f be the set of all jobs, a' be a partial
sequence being placed at the end of the sequence, and be the set of jobs in
a'. Then the algorithm is as follows:

1. Branching

• Select a node with the least lower bound in branching tree for
branching.

2. Bounding

• Bound Boundi for jobs in Jcr'·
Boundi is the optimal solution obtained from OPT SC H\<Jky for the
sequence a' under the constraint that the earliest possible start time
of the first job in is Pj instead of 0.

• Bound Bounds for jobs in JT” \ J^i.

Then the lower bound of the node associated with the partial sequence cr'
will be LB = Boundi + Bound2 .

3. Pruning

• For pruning, Proposition 2.8 is applied to the partial sequence a'.

The lower bound used in this branch-and-bound algorithm is not very tight,
and furthermore, only one dominance property is used for pruning the partial
sequences. The computational results of Kim and Yano (1987) have shown that
this branch-and-bound algorithm can solve problems only up to 30 jobs.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 44

A B ranch-and-B ound A lgorithm [Hoogeveen, 1992] Hoogeveen (1992)
has presented a branch-and-bound algorithm for the problem
l\dj\'^{{wj Vj) Ej + Vj Cj) where wj — w and Vj = u, V j> = 1, 2, . . . , n.
This problem is equivalent to the problem l\dj\Y^{Ej -f Tj) if ti; = u = 1 since
Cj = Tj — Ej + dj, V y = 1, 2, . . . , n. So the proposed branch-and-bound
algorithm can be used for the problem l\dj\Yf,[Ej + T,·) by defining the weights
appropriately.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 45

The branch-and-bound algorithm of Hoogeveen (1992) can be summarized as
follows:

1. Upper Bound

• Before entering the search tree, determine an upper bound (UB) on
the optimal solution value. Use the optimal schedule corresponding to
the EST sequence as an initial solution, and try to reduce its cost by
adjacent pairwise interchange.

2. Branching

• Adopt a backward sequencing. A node at level k of the search tree
corresponds to a partial sequence a' with k jobs fixed in the last k
positions with the assumption that the first job in a partial schedule
of a' is not started before time Pj-

• Employ a depth-first strategy to explore the tree: at each level,
generate the descendant nodes for only one node at a time. At level k,
there are n — k descendant nodes: one for each unscheduled job. The
completion times for the jobs in a' are only temporary. Branching from
a node that corresponds to cr', add some job Jj leading to the sequence
Jja'. Subsequently, determine the associated optimal schedule for
Jj cr', and possibly shift to the right some jobs in a'. Branch from
the nodes in order of non-increasing due dates of the associated jobs.

3. Bounding

• Use five lower bounds:

— relax the objective function (not applicable in problem

— relax the machine capacity (not applicable in problem
iK im +r,))

— relax the due dates

* The common due date problem

* The common slack time problem

— relax the processing times

— Lagrangian relaxation

4. Pruning

• Discard a node if its associated partial schedule of a' cannot lead to a
complete schedule with cost less than UB; UB denotes the currently
best solution value. Let L B {J \ Jc') be some lower bound on the
minimal cost of scheduling the jobs in the set J \ J„i. Obviously,
discard a node if z{a'') + LB[fT \ fJa') '>UB.

• Use dominance properties to discard or not to discard partial sequence
ct'.

The efficiency of this branch-and-bound algorithm was tested on problems with
n = 8,10,12,15,20. The computational results have shown that problems up to
10 jobs are easy, but others require considerable computational times.

2 .6 .4 .3 H e u r is t ic A l g o r it h m s

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 46

A H euristic A lgorithm [Kim and Yano, 1987] Kim and Yano (1987)
also gave a heuristic algorithm and stated that in the problems where an
optimal solution was found by the branch-and-bound algorithm presented in
Section 2.6.4.2, over 80 percent of the solutions from their heuristic algorithm
were optimal solutions. But their computational experiment contains only 46
random problems in which the maximum job number is 40. Their heuristic
algorithm called as HEURky makes use of the following lemma to construct
a good sequence, and to compare all pairs of jobs.

Lem m a 2.1 [Kim and Yano, 1987] If there is a conflict between two and only
two jobs when the jobs are placed as Cj = dj for both jobs, and if pĵ < pj^, then
the following statements are true.

Case 1 . I f dj, > dj.̂ , then job Jj.̂ should precede job Jj,.

Case 2 . I f dj, < dj ,̂ then

Subcase 2 .1 . I f Pj, + {dĵ — dj,) > pj.̂ , then job Jj, should precede job

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 47

J.01 '

Subcase 2 .2 . I f pj, + [dĵ - dj,) < pj ,̂ let A = pĵ - Pj, - {dĵ - dj,).
If A < dj.̂ — dj,, then job Jj, should precede job Jj ,̂ otherwise job Jĵ
should precede job Jj,.

P roof:

.Case 1. ETj,j.2 —Pji (̂ oi 0̂1)1 —Poi (^ii ^h)· Sincepjj

^'^hoi ^'^hh·

Case 2. ETj,j 2̂ Pji {^ji ^'^0101 Ph {dj.̂ ^ii)·

Subcase 2.1. Since pj, < pj ,̂ and dj, < dj ,̂ ETj^j, > Pĵ > ETj,j. .̂

Subcase 2.2. When A < dj.̂ — dj, ,

'̂̂ hoi — " b Pji ^ Pji + {dj2 dj,) — ETj.oui ■

When A > dĵ — dj,,

'̂d̂ jiji ~ "bPji — Pji "b {dj2 dj,) — ETj^j,.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 48

H EU R ky can be given as follows, where labelj denotes the label of job Jy.

1. Compare jobs Jy and J y , for all possible combinations of two jobs, using
the simple rule in Lemma 2.1. If Jy precedes Jy, let labely = l a b e l — 1,
labely = labely + 1, if Jy precedes Jy, let labely = l a b e l + 1,
labely = labely — 1. Else, no change in labely,labely.

2. Sort the jobs in non-decreasing order of labelj's. This will be the initial
sequence cr.

3. Obtain the optimal timing for the sequence cr resulted from Step 2 using

OPTSCH\aKY.

4. Check the conditions for dominance in Propositions 2.8 for adjacent pairs
of jobs, and change the order if needed. Apply an adjacent pairwise
interchange to the sequence.

5. For the sequence resulting from Step 4, obtain optimal timing using
OPTSCH\ctky· Terminate.

The computational complexity of HEURky is O (n^). This algorithm is used to
test the performance of the heuristic proposed in Section 3.3 and the results are
discussed in that section.

A H euristic A lgorithm [Fry et al. 1990] Fry et al. (1990) also presented a
heuristic algorithm to minimize mean absolute lateness which is indeed equivalent
to minimize total unweighted earliness and tardiness penalties. This heuristic
algorithm, called as HEURfar , evaluates nine different local optima and chooses
the best one as its solution. HEURfar utilizes Propositions 3.1, 3.2 and 3.3
which are known in the literature widely. In addition, Fry et al. (1990) proposed
the following two propositions to be utilized in HEURfar·

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 49

P rop osition 2.9 [Fry et al. , 1990] Consider a sequence with adjacent jobs Jĵ
and Jĵ such that job is tardy regardless of sequence and job Jĵ is tardy only
if job Jĵ precedes job Jj .̂ Ifpj^ <pj^ and > {pĵ - P h) l 2 ,
then job Jĵ precedes job Jĵ always.

P roo f: The difference between the objective function values between the
sequences with job Jjj precedes job and job Jĵ precedes job Jĵ is
(dy, - min {Sj, , Sj, }) > {pj, - pj,) / 2. ■

P rop osition 2.10 [Fry et al. , 1990] Consider a sequence with adjacent jobs
and Jj^. I f the job sequenced first in the job pair is early and the job sequenced
second is tardy, and dĵ — pĵ > dj,̂ — pj^, then job Jĵ precedes job Jĵ always.

But Proposition 2.10 is not a correct statement as shown by the following counter
example.

E xam ple: Consider two jobs such that pĵ = 11, pĵ = 8, dĵ — 20, and
dĵ = 18. We assume that jobs Jĵ and Jj.̂ ^̂ e adjacent jobs in any sequence
and the interchanging argument does not affect the other jobs in the sequence.
Hence, min {5̂ ·̂ , Sj }̂ and max {Cj ,̂ Cj }̂ remain unchanged after the interchange
argument. Now, it is obvious that dyj — pj.̂ = 18 — 8 = 10 which is greater than
djj — Pj, = 2 0 — 11 = 9. Now consider the case where min , Sj.̂ } = 6. In this
case, whichever the job sequenced first in the job pair will be early and the other
job will be tardy as shown in the Figure 2.1.

= (20 - 17) + (25 - 18) = 3 + 7 = 10,

ETj^j, = (18 - 14) + (25 - 20) = 4 + 5 = 9

Hence, ETĵ ĵ̂ — ETĵ ĵi = 10 — 9 = 1 > 0. So, the sequence where job precedes
job Jjj is better than the sequence where job Jĵ precedes job Jj .̂

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 50

dĵ djĵ

18 20
II II

dĵ dĵ

schedule before

interchange

schedule after

interchange

Figure 2.1: Job pair for the counter example

The algorithm H EU R f a r can be given as follows:

1. Initialize system.

2. Set bestsolution = somelargenumber.

3. Let sequencecounter = 0.

4. Let sequencecounter = sequencecounter 1.

5. If {sequencecounter = 1), then let initialsequence = EDDse^uence
Elseif {sequencecounter = 2), then let initialsequence = ESTsequence
Otherwise, let initialsequence = randomsequence.

6. Let switchcounter = 0.

7. Let switchcounter = switchcounter + 1.

8. If {switchcounter = 1), then begin adjacent pairwise interchange (API) at
the first position starting with the initialsequence. For each pair considered
for switching, idle time is inserted using the LPTETP' model.

Elseif {switchcounter — 2), then begin API at the last position starting
with the initialsequence. For each pair considered for switching, idle time
is inserted using the LPTETP' model.

Otherwise, use API at the most beneficial job pair starting with the
initialsequence. For each pair considered for switching, idle time is inserted
using the LPTETP' model.

9. If {A P I solution < bestsolution), then let bestsolution = A P I solution.

10. If {switchcounter < 3), go to Step 7.

11. If {sequencecounter < 3), go to Step 4.

12. Print, bestsolution.

Chapter 2. Review of Single Machine Earliness and Tardiness Problems 51

The model LPTETP' is the modified version of LPTETP model where the
objective function is the summation of the unweighted earliness and tardiness
penalties. Fry et al. (1990) stated that H E U R f a r found the optimal solution
in 64 percent of the 192 random problems where the maximum number of jobs
is 16. They did not give the computational complexity of H E U R f a r , but it is
obvious that H E U R f a r is .̂n exponential algorithm due to the adjacent pairwise
interchange argument at Step 8.

Chapter 3

Solution Procedures for
l \ d A ^ { E , + T A

The vast majority of the total earliness and tardiness literature deals with the
common due date case where all jobs have the same due date. This may be
realistic for the production systems where jobs are processed as batches and
every batch has an identical due date which is the common due date of the
jobs in this batch. But when we consider production systems where jobs arrive
independently and each has a predetermined due date, then models with distinct
due dates become more realistic and applicable. Unfortunately, total earliness and
tardiness problem with distinct due dates, even on a single machine, is shown to
be A/’P-hard. Hence, it is most unlikely that a polynomial algorithm will ever
be developed for this problem. Due to its difficult nature, there is not much
work about this problem in the literature. There exists two heuristics and two
branch-and-bound algorithms in the literature with a few dominance properties
and some lower bounding schemes.

The difficulty of the total earliness and tardiness problems with distinct due dates
arises due to the possibility of idle time insertion between jobs. If it is known that
the idle time insertion cannot improve objective function value, then we can limit

52

Chapter 3. Solution Procedures for \ \dj \ 53

our search only to the permutation schedules. This, in the worst case, results with
n! feasible solutions. But if inserted idle time becomes beneficial for a scheduling
problem, then we have a larger feasible solution set. Furthermore, the non-regular
performance measure of the problem l\dj\Yi{Ej + Tj) prevents the application
of many important theorems on job ordering, particularly Emmons’ (1969) and
Lawler’s (1977), in order to make optimization techniques such as branch-and-
bound and dynamic programming more efficient. Hence, besides an optimizing
algorithm, we also look for heuristics to obtain good solutions to this problem.

One of the purposes of this study is to develop both an optimizing algorithm and
a heuristic algorithm for the problem l|dj| Yi{Ej + Tj) and test the results on a
large set of random problems. The rest of this chapter is organized as followsL
In the next section, we introduce a dynamic programming formulation for the
problem l\dj\ Yi{Ej + Tj) as an optimizing algorithm. This formulation is the first
dynamic programming formulation developed for the problem l\dj\Y^[Ej + Tj)
which allows idle time insertion in the schedule to the best of our knowledge.
Unfortunately, this formulation leads to an exponential algorithm in the worst
case. Considering this fact, we developed an incomplete dynamic programming
algorithm by approximating the original dynamic programming formulation in
Section 3.2. This incomplete dynamic programming algorithm forms the core
of the heuristic we developed for the problem. In Section 3.3, the details of
the heuristic algorithm are given including some basic dispatching rules and
dominance properties. Section 3.4 reports on computational experience with the
heuristic algorithm which is followed by some concluding remarks in Section 3.5.

tThis chapter draws heavily on Oğuz, Morin and Dinçer (1992)

Chapter 3. Solution Procedures for l|c?j| Y^{Ej + Tj) 54

3.1 A Dynamic Programming Algorithm

Since problem \ \dj \ Yi{Ej + Tj) is MV-haxd, it is most unlikely that any polyno
mial algorithm will ever be developed for this problem. Considering this result,
we develop a dynamic programming algorithm for problem 1 \dj | Yi{Ej + Tj). This
dynamic programming algorithm later forms the basis for the heuristic developed
for the problem l\dj\Y^{Ej + Tj).

Dynamic programming has long been known to be a particular approach to
optimization for scheduling problems. Dynamic programming is a away of looking
at a problem which may contain a large number of interrelated decision variables
so that the problem is regarded as if it consisted of a sequence of problems, each
of which requires the determination of only one (or a few) variables. The basis
of transforming a large problem with n variables to a set of smaller problems
with a much smaller number of variables than n is known as the principle of
optimality. It was originally proposed by Bellman (1957) and a simpler rendition
of this principle can be stated as: Every optimal policy consists only of optimal
sub-policies. An important advantage of dynamic programming is not being
affected by the integrality constraints imposed on the variables of a problem.
On the contrary, the requirement of having all of the variables as integers
greatly simplifies the computational process in dynamic programming. There are,
however, certain limitations to the use of dynamic programming. The principal
one is the ‘curse of dimensionality’ , i.e., the extremely fast growth of storage (and
time) requirements, as the problem size increases. The numerical computation
and storage requirements increase further in problems with two or more state
variables rather than a single-state variable or in problems in which the number
of states grows exponentially as the sequential decision process progresses.

Dynamic programming is applied to different sequencing problems by Lawler
and Moore (1969). The underlying assumption for the single machine sequencing
problems Lawler and Moore (1969) considered is that a set of n jobs are to be
processed without any idle time in the schedule. Furthermore, their dynamic

Chapter 3. Solution Procedures for l|(ij| Y^{Ej + Tj) 55

programming formulation carries out a search over all subsets of the states,
that is, the time complexity of this dynamic programming is in O (2^̂ T)
where T is described as a sufficiently large number. Later, Cheng (1990b) has
presented a dynamic programming approach for the problem l\dj\J2{Ej + Tj)
with the restriction of no idle time insertion in the schedule. The computational
requirements of this dynamic programming solution method is in the order of
n 2"·“ ,̂ hence it is an exponential algorithm. Later, Ibaraki and Nakamura (1990)
have developed an alternative dynamic programming formulation for the same
problem with the same restriction. The main advantage of their formulation is
to use successive sublimation dynamic programming for state-space relaxations.
The basics of successive sublimation dynamic programming is to execute a series
of dynamic programming recursions, such that the underlying state-space is
progressively refined at each iteration, until an exact optimal sequence of jobs is
computed. Their computational experiences have shown that problem instances
of up to n = 35 can be successfully solved with this method.

In this study again the development of an dynamic programming formulation is
considered for the problem l|dj| J2{Ej + Tj). The main contribution of this work
is the elimination of the underlying assumption of the previous research. That
is, we do not prohibit the insertion of idle time in the schedule. Relaxation of
this assumption makes the problem harder because the completion times of the
jobs can no longer be determined easily as the sum of the processing times of
the jobs scheduled so far. In order to capture the true nature of the problem,
we have to include a new variable denoting the idle time between any two jobs
in the dynamic programming formulation. In spite of increasing the number of
decision variables in the formulation, we expand the state-space in order to handle
the insertion of idle times in the following dynamic programming formulation we
developed. We ponder a job assigned to a position as a state rather than simply
considering jobs. The main logic behind the dynamic programming formulation
we developed is to look at the value of the performance measure by assigning
every job to each position separately at every time point. Hence, the formulation

Chapter 3. Solution Procedures for l|c?j| + ' ĵ) 56

takes into account all possible outcomes of the solution space.

In the functional equations of the dynamic programming, we will use the following
notation in addition to those given in the previous chapters:

f{i^ j,t) : the minimum attainable value of the penalty function for the
partial schedule of crj U {Jj} when job Jj € \Sc'· is scheduled at position
i and Cj being less than or equal to time t.

J : the set of jobs that form a complete schedule.

J^i. : the set of jobs scheduled before job that form a partial schedule
for positions from 1 to z — 1. These jobs will be referred as the leading jobs
of job Jy

i : position index, z = 1, 2, . . . , n.

j : job index, ; = 1, 2, . . . , n.

t : time index, i = 1, 2, . . . ,tmax·

Then following functional equations of dynamic programming solve problem
lid j\ E {E j+ T j):

f (i , j , t) = min { min { / (t - l , k , t - p j)] + \dj - 1)}

for z > 0, i > 0, i > 0
with the boundary condition

/ (0 , j , () = 0 V j , i > 0

and
/{i^jit) = CO if 3 z < 0, or 3 y < 0, or 3 i < 0.

Furthermore, the optimal value of the objective function for problem

i K I E № + r,·) is

= ?>!“ { / (' · ? J-i ¿max)}·

Chapter 3. Solution Procedures for l|i/j| Yl{Ej + Tj) 57

In this formulation, job Jj at position i constitutes a state, and each time point
i is a stage. Hence, we have a problem with states and tmax stages where

tmax — maxnax{d,·} + Pi — min{p,·,·}·

tmax gives the maximum possible time to be considered for any problem instance.
This says that if the job with the maximum due date completes at its due date,
then the time needed for this job should be equal to its due date and this is
included as the maximum of the due dates. Then, all the other jobs will be
tardy, and we need to include the summation of the processing times of the
remaining jobs. This is achieved by adding the total processing times minus the
minimum processing time to the maximum due date. We subtract the minimum
processing time because of the on-time job. It is obvious that this schedule gives
the longest time period to be considered for the problem and it is not meaningful
to extend tmax beyond what is specified.

When scheduling job Jj, the minimization of the recursive function over jobs other
than job Jj is required in order to prevent an infeasible schedule. Indeed, this is
not enough to prevent an infeasible schedule because job Jk in position i — 1 does
not store the information about the jobs scheduled before job Jk- Hence, during
this minimization, after finding job Jk that minimizes the recursive function, it
must be checked whether all of the jobs scheduled before job Jk are different than
job Jj. In fact, while searching for job Jk, the following must hold in order to
schedule job Jj in position i:

Jj 7̂ Jh V J; G Ja'.·

Suppose the job Jj appears in the partial schedule of cr'j.. Then, another partial
schedule will be formed for job Jk by replacing job Jj in a'k with job Jp where
p G cr — crjj. for which job Jp gives the minimum value of the functional equation
for job Jk at position i — I among all jobs in JT” \ Now, the above condition
holds. After calculating the value of the recursive function for job Jk with this

Chapter 3. Solution Procedures for + Tj) 58

new partial schedule, it should be compared with the next minimum value of the
functional equation and the minimum one selected.

From the above discussion, it is obvious that the partial schedules must be
stored for each job scheduled to a position and this leads to excessive space
requirements as n increases. Furthermore, the time complexity of the algorithm
grows exponentially as n increases due to the step at which the feasibility of
scheduling a job is checked and if any infeasibility exists, then attaining the
feasibility again.

3.2 An Incomplete Dynamic Programming
Algorithm

One of the most natural approaches to reduce problem dimension is to use some
form of (usually lower-dimension) approximation. Typically, the ‘larger’ original
dynamic program is approximated by a ‘smaller’ dynamic program, in which the
state and/or decision spaces are subsets of those of the original dynamic program.
One approach from approximation theory which has been used to reduce problem
dimension in dynamic programming is to deal with a smaller set of states by
discarding some of the states as mentioned in Morin (1979).

In our problem, we also look for a way to avoid the curse of dimensionality
of the original dynamic programming formulation given in Section 3.1. The
simplest way of doing so for our problem is to delete some of the states from
our consideration and restrict the problem to a smaller set of states. Instead of
the check and replacement mentioned in Section 3.1, we just form the leading
jobs of each job at each stage. Then if we encounter with the newly scheduled
job among these leading jobs at the checking step, we do not consider that job
for that position by setting the value of the functional equation at that stage
to infinity. This means that the newly scheduled job will never be considered
for scheduling at that position and at that time. Since this will never lead to

Chapter 3. Solution Procedures for l|c?j| Y^{Ej + Tj) 59

a schedule with a job assigned to more than one position, it is obvious that we
can obtain a feasible schedule at the end. It is obvious that this approximation
truncates the solution space and decreases the order of the running time of the
algorithm since it eliminates the consideration of all subsets of the job set.

Such an approximation of a dynamic programming algorithm is called incomplete
dynamic programming (IDP) in the literature (Erlenkotter 1975 and Morin 1979),
since it consists of an approximation to the checking and replacement procedure.
The time complexity function of this incomplete dynamic programming is
О T) since i and j are both in О (n), i is in О (T) and the inside minimization
step over all jobs is in О (n^). Hence, this is a pseudo-polynomial time algorithm
(Garey and Johnson 1979).

For problems with small n, this approximation gives results very near to
optimum. But as n increases, the deviation from the optimum solution by this
approximation increases, as well. To overcome this difficulty, we incorporated
some other procedures into the heuristic which are explained in the next section in
detail. In order to exemplify above discussions, consider the following scheduling
problem:

E xam ple: The problem instance is given as follows for n = 7.

j 1 2 3 4 5 6 7

Pi 40 63 68 79 88 90 151

di 160 252 272 316 352 360 604

Let cr denotes the sequence of 7-jobs whereas 0 ̂ and Vcr be the set of the
completion times and the set of the penalties of jobs (negative for earliness and
positive for tardiness) corresponding to the sequence cr, respectively.

The optimal solution of the above problem instance has an objective func
tion value of z* = 380 where = {120,160,223,302,390,480,631} and

= {-1 5 2 ,0 ,-2 9 ,-1 4 ,3 8 ,1 2 0 ,2 7 } for cr = (3 ,1 ,2 ,4 ,5 ,6,7).

In order to obtain this optimal solution, IDP should find the leading job of job

Chapter 3. Solution Procedures for l\dj \ Yi{Ej + Tj) 60

J\ at position ̂ = 2 at time t = 160 as the job J3. But when the corresponding
functional equation is evaluated, we have:

/(2 ,1 ,160) = min{ min { /(1 , 120)} + jlOO - 160|,/(2 ,1 ,159)}A:€{2,3,4,5,6,7}
= min{132 + 0,

min{ min { / (l , i , 119)}+1159 - 1601,/(2.1.158)}}«€{2,3,4,5,6,7)
= min {132, min {133 + 1,136}}

= min {132,134} = 132

with k — 2 .

If the functional equation was evaluated at the previous position at time i = 120
for job J2 and job J3 , we see that /(1 ,2,120) = 132 and /(1 ,3,120) = 152.
Hence, IDP will select job J2 as the leading job of job J\ at position z = 2 at time
t = 160. At the next state, while computing the value of /(3 ,2,223), IDP will find
out that k = I minimizes the functional equation. That is, the leading job of job
J2 at position i = 3 at time t = 223 is job J\. At the checking step of the leading
jobs of job Ji, IDP will encounter with job J2 and will set f (3,2,223) = 00. So
IDP will construct the feasible schedules on the partial schedule of a) = (2 ,1) for
j = 3 ,4 ,5 ,6, 7 at positions later than the position i = 2. Hence, it will never find
the optimal solution for this problem instance.

3.3 A Heuristic Algorithm

In the heuristic that we developed for problem l|dj| + Tj) (HEUR), we
start with the incomplete dynamic programming algorithm mentioned in previous
section to obtain an initial solution. Further, we try three simple rules for the
problem to obtain other initial sequences. These are EDD, EST and SPT rules.
After obtaining the optimal schedules for these three initial sequences by utilizing
the polynomial time algorithm of Garey et al. (1988) OPTSCH\aGTW, we apply
an interchange procedure to all four schedules. In this procedure, first we select

Chapter 3. Solution Procedures for Yf,{Ej + Tj) 61

the job with the highest tardiness penalty and swap it with the job which is
adjacent to it from left, if it is beneficial. Then, in the same way, we select the
job with the highest earliness penalty and swap it with its adjacent job from the
right, if it is beneficial. If a new sequence is obtained, that is if any two jobs
are interchanged, we have to find the optimal schedule for this new sequence.
Consequently, we select the schedule with the minimum total penalty among
these four schedules. At the next step, we apply five dominance properties to the
selected schedule. These dominance properties are well known for the problem
l|dj| Y^{Ej + Tj) (Kim and Yano 1987, Fry et al. 1990, Hoogeveen 1992) and they
are applied to each pair of adjacent jobs in the schedule. The formal description
of four dominance properties are given below. The fifth dominance property is
the same with Proposition 2.8 in Section 2.6.4.2.

P rop osition 3.1 Suppose job Jĵ and job Jĵ are adjacent pair of jobs in a
sequence. If

max {Cj ,̂ Cj }̂ < min {dj ,̂

that is if both jobs are early jobs, then a sequence in which,

• ^fPh > Ph> Jji should precede job Jj.̂ ,

• Pii < P32) Jh should precede job Jj .̂

is better.

P roof: Let ETj,j. ,̂ m̂ax be as defined in Section 2.6.4.2. Then,

îi d" ̂ ^max) T Phi

^'^hh ~ ^h ~ d” Pii d" 2 (djj — Cmax\

^'^jih ~ ^'^hji Ph Ph ·

Hence the result follows.

Chapter 3. Solution Procedures for \\dj \ Yi{Ej + Tj) 62

P rop osition 3.2 Suppose job Jĵ and job are adjacent pair of jobs in a
sequence. If

min { Sj ,̂ 5 2̂} > max { dj ,̂ dj }̂,

that is if both jobs are tardy jobs, then a sequence in which,

• ^fPji < Pj2 > should precede job Jj ,̂

• Pji > Ph> '^32 should precede job Jj .̂

is better.

P roof:

■ '̂̂ 3132 ^ {Omax ^3 2 ') "i” ‘̂ Pii i.̂ 32 ^3\) ”1” P321

'̂̂ 3231 ~ ^ {o-max ~ dj^) + 2pj2 4" (^J2 ~) 'I' Ph 1

'̂̂ 3132 '̂̂ 3231 Pjl Ph'

Hence the result follows.

P rop osition 3.3 Suppose job Jĵ and job Jĵ are adjacent pair of jobs in a
sequence. If

min{Sj,,Sj^} +Pj, > dĵ

and

min { 6'jj, 5'j2 } + Ph + Ph < d.32

then a sequence in which job Jĵ should precede job J^, regardless o f the size of
their processing times, is better.

P roof: If the conditions given in the proposition hold, then job is tardy and
job Jj2 is early in that sequence. If an interchange of these two jobs takes place,
it is obvious that the tardiness of job and the earliness of job will increase
which will not improve the objective function value. ■

Chapter 3. Solution Procedures for l\dj \ '^{Ej + Tj) 63

P rop osition 3.4 Suppose job Jĵ and job Jĵ are adjacent pair of jobs in a
sequence. If Pĵ — Р32 then job Jĵ should precede job Jj.̂ .

P roof: Trivial. ■

The following is a brief statement of our heuristic, HEUR.

1. Find the first initial schedule by applying IDP algorithm.

2. Obtain three additional initial sequences by using EDD, EST and SPT rules
and determine their optimal schedules by applying O PTSCН\стат\У·

3. Apply interchange procedure to these four schedules obtained from step 1
and step 2. If any of the sequences changes, find the optimal schedule for
the new sequence by applying ОPTSCH\aaTW·

4. Choose the schedule with the minimum total penalty among the schedules
obtained in step 3.

5. Apply the five dominance properties to the selected schedule and stop.

3.4 Computational Experience

For our experiment, 1375 problems have been generated randomly with the
method used in Fisher (1976). In this method, for each job Jj an integer
processing time pj was generated from the uniform distribution [1,100]. Due
date generation is based on the sum of the processing times of all jobs
(P = J2]=i Pj) 9-nd two parameters that determine the problem ‘hardness’ . These
two parameters are the relative range of due dates [R) and the average tardiness
factor (T). The average tardiness factor, T, is a coarse measure of the proportion
of jobs that might be expected to be tardy in an arbitrary sequence. The relative
range of due dates, R, determines the priority of jobs. When the relative range
of due dates is tight, the priority of all jobs would tend to rise at about the

Chapter 3. Solution Procedures for \ \dj \ + Tj) 64

same time, making it difficult to discriminate between urgent and not-so-urgent
jobs. So, R controls the range of the due date distribution. Having computed
P and chosen R and T, an integer due date dj was generated from the uniform
distribution [P (l — Г —i? /2), P [l —T + i? /2)] for each job Jj. In our computational
experiment, we choose R and T to start from 0.2 and increase to 1.0 with 0.2
increments. Furthermore, we truncate the due date dj to zero if it comes out to
be a negative value. We select eleven values to determine the problem size where
n = 8,10,12,14,16,18,20,25,30,35,40.

As a result each problem set is defined with three parameters, namely R, T, and
n. For each value of n, five problems were generated for each of the 25 pairs of
values of R and Г, yielding 125 problems for each value of n and a total of 1375
problems.

The algorithm was coded in C and run on Sun Microsystems’ Sun-4(SPARC)
workstations. The optimal solutions for the test problems obtained from the
package program CP LEX Mixed Integer Optimizer which runs on the same
computer systems. But CPLEX can not find optimum, even incumbent solutions
for the problems where n is greater than 18. Hence, the results are given in
two parts. The first part includes the problems with n = 8,10,12,14,16,18
where the performance of HEUR is compared with the optimal solution. The
performance of HEUR for the problems with n = 20,25,30,35,40 is compared
with that of Kim and Yano (1987) (HEURk y) and Fry et al. (1990) [HEURfar)
in the second part. It should be noted here that due to the discussion in
Section 2.6.4.3, we used a modified version of HEURfar described in that
section in the sense that the incorrect dominance property that Fry et al. (1990)
considered is eliminated in the heuristic used in our experiment.

Part I:
The results for n = 8,10,12,14,16,18 are summarized in the following tables.
In Table 3.1, we present the average and maximum relative errors of HEUR
together with the percentage of those 125 random problems that HEUR finds
out the optimal solution for every value of n in the last column. The other

Chapter 3. Solution Procedures for \ \dj \ 65

columns show the performance of IDP, EDD, EST and SPT for the same criteria.
The relative error for any rule is given as (zhule — z*)!z* and the average and
maximum relative errors are found over 125 random problems for every n value.

Table 3.1: Average (AVG) and maximum (MAX) relative errors together with
percentage of optimal solutions found by different rules for different n values.

n IDP EDD EST SPT HEUR
AVG 0.151 0.289 0.577 1.421 0.043

8 MAX 1.283 0.963 1.810 9.914 0.620
% OPT 34.4 6.4 1.6 2.4 57.6

AVG 0.278 0.336 0.590 1.581 0.067
10 MAX 3.378 1.329 1.884 11.162 0.383

% OPT 16.8 1.6 0.8 0.8 35.2
AVG 0.253 0.387 0.615 1.769 0.083

12 MAX 1.550 1.165 1.483 17.225 0.619
% OPT 13.6 0 0 0.8 28.8

AVG 0.372 0.424 0.589 1.916 0.100
14 MAX 6.525 1.263 1.533 12.789 0.689

% OPT 10.4 0.8 0 0 16.8
AVG 0.375 0.441 0.617 2.110 0.104

16 MAX 6.144 1.129 1.444 16.456 0.363
% OPT 3.2 0 0 0 10.4

AVG 0.360 0.445 0.609 1.504 0.118
18 MAX 1.213 0.958 1.256 9.546 0.444

% OPT 4 0 0 0 6.4
AVG(over 750 problems) 0.298 0.387 0.560 1.717 0.086

% OPT(over 750 problems) 0.137 0.015 0.004 0.007 0.259

The solution of HEUR is on average 8.6 % over the optimal solution which is
much better than any of the other rules. In addition, HEUR finds the optimal
solution in more than 25 % of the time. As a result, our heuristic outperforms
any of the other rules both in terms of the average and the maximum relative
errors as well as the percentage of optimal solutions found. Also, IDP itself
performs better than other three rules on the average. It is interesting to note

Chapter 3. Solution Procedures for l|cij| + Tj) 66

that IDP has lower average relative error compared to that of EDD, EST, and
SPT rules, although it has higher maximum relative error. This indicates that
IDP is much better than any of the other rules in most of the problems. This
conclusion is manifested by tables 3.2, 3.3 and 3.4. The frequencies given in
these tables indicate the distribution of the relative errors for different rules. In
summary, these tables show that HEUR and IDP finds optimal solution in more
cases than other rules. Another point in the computational study to stress is that
the relative errors increase for any of the rules as well as for our heuristic as the
number of jobs increases.

Table 3.2: Frequency distribution of solution of different rules for n = S and
n = 10.

n = 8 n = 10
interval IDP EDD EST SPT HEUR IDP EDD EST SPT HEUR

0 43 8 2 3 72 21 2 1 1 44
0.1 27 20 4 8 31 37 15 5 13 51
0.2 23 23 7 7 13 13 20 10 8 15
0.3 7 23“ 14 11 8 12 30 14 5 11
0.4 10 19 19 6 0 9 20 12 8 4
0.5 8 9 20 5 0 16 13 15 3 0
0.6 2 8 10 9 0 4 10 18̂ 5 0
0.7 2 8 11 2 1 4 5 16 6 0
0.8 1 2 5 7 0 3 5 6 6 0
0.9 0 4 12 10 0 0 2 6 3 0

1 0 1 6 4 0 0 1 3 9 0
2 0 15 53 0 6 2 19 58 0

“In 23 of 125 problems, the solution found by EDD rule lies between 21-30 % of the
optimal solution.
**In 18 of 125 problems, the solution found by EST rule lies between 51-60 % of the
optimal solution.

Chapter 3. Solution Procedures for Yi{Ej + Tj) 67

Table 3.3: Frequency distribution of solution of different rules for n = 12 and
n = 14.

n = 12 n = 14
interval IDP EDD EST SPT HEUR IDP EDD EST SPT HEUR

0 17 0 0 1 36 13 1 0 0 21
0.1 42 9 1 9 51 35 8 1 10 59
0.2 15 17 1 8 23 17 9 6 6 22
0.3 10 23 15 6 9 7 19 13 9 15
0.4 9 22 18 11 4 12 24 10 4 6
0.5 6 21 23 9 0 10 23 25 4 0
0.6 9 14 14 3 1 6 14 18 3 1
0.7 10 11 10 4 1 6 12 14 10 1
0.8 3 1 8 4 0 5 10 9 4 0
0.9 0 2 11 2 0 4 3 11 5 0

1 0 1 10 5 0 1 0 9 5 0
4 4 14 63 0 J 9 2 9 65 0

Table 3.4: Frequency distribution of solution of different rules for n = 16 and
n — 18.

n = 16 n = 18
interval IDP EDD EST SPT HEUR IDP EDD EST SPT HEUR

0 4 0 0 0 13 5 0 0 0 8
0.1 38 7 1 9 63 28 4 0 10 37
0.2 15 8 2 6 25 7 9 3 4 28
0.3 17 20 13 8 16 8 8 5 10 11
0.4 12 27 20 7 8 6 14 11 2 6
0.5 12 15 17 2 0 7 19 7 5 1
0.6 6 20 14 4 0 8 17 20 2 0
0.7 6 12 17 5 0 4 12 13 4 0
0.8 2 9 13 7 0 6 6 12 0 0
0.9 2 1 7 8 0 2 1 11 5 0

1 3 5 5 3 0 4 1 5 4 0
8 1 16 66 0 6 0 4 45 0

Chapter 3. Solution Procedures for l|cij| Yi{Ej + Tj) 68

In Table 3.5, we give the average relative errors of HEUR for five problems
generated for each combination of R and T values for different values of n. From
Table 3.5, it is seen that the easiest problems belong to T = 1.0 for every value
of R. As T decreases the relative error of the heuristic increases. But the worst

Table 3.5: Average relative errors of 5 problems for every pair of R and T values
for every n value for HEUR.

n
R T 8 10 12 14 16 18

0.2 0.2 0.096 0.254 0.183 0.152 0.140 0.202
0.2 0.4 0.134 0.187 0.108 0.184 0.147 0.219
0.2 0.6 0.077 0.118 0.088 0.237 0.205 0.176
0.2 0.8 0.023 0.027 0.015 0.020 0.028 0.037
0.2 1.0 0.000 0.000 0.001 0.000 0.002 0.001
0.4 0.2 0.070 0.110 0.141 0.088 0.150 0.163
0.4 0.4 0.182 0.170 0.181 0.252 0.263 0.182
0.4 0.6 0.012 0.036 0.052 0.105 0.097 0.112
0.4 0.8 0.015 0.027 0.042 0.011 0.031 0.040
0.4 1.0 0.000 0.002 0.000 0.009 0.006 0.004
0.6 0.2 0.104 0.039 0.174 0.100 0.123 0.179
0.6 0.4 0.027 0.113 0.149 0.175 0.112 0.208
0.6 0.6 0.075 0.028 0.078 0.105 0.160 0.191
0.6 0.8 0.012 0.063 0.031 0.125 0.071 0.048
0.6 1.0 0.007 0.010 0.003 0.033 0.037 0.004
0.8 0.2 0.044 0.047 0.118 0.179 0.193 0.185
0.8 0.4 0.031 0.031 0.126 0.076 0.064 0.560
0.8 0.6 0.021 0.050 0.091 0.116 0.103 0.109
0.8 0.8 0.041 0.024 0.101 0.065 0.055 0.047
0.8 1.0 0.008 0.058 0.066 0.013 0.024 0.023
1.0 0.2 0.072 0.000 0.107 0.087 0.073 0.081
1.0 0.4 0.000 0.091 0.002 0.158 0.123 0.154
1.0 0.6 0.003 0.044 0.082 0.093 0.125 0.106
1.0 0.8 0.010 0.097 0.014 0.084 0.185 0.163
1.0 1.0 0.007 0.058 0.131 0.035 0.079 0.056

Chapter 3. Solution Procedures for l\dj\'^{Ej + Tj) 69

performance is obtained when T = 0.4. It should be noted that as T decreases,
the number of the early jobs increases. So, our algorithm works better in the
situations where the majority of the jobs are tardy. This is because of the
dominance properties used in the algorithm which are Emmons’ like properties
so they are powerful on tardy jobs. Furthermore, the computational experiences
show that IDP fall short of scheduling early jobs correctly. On the contrary, IDP
is successful in scheduling tardy jobs.

The solution time of HEUR is also compared with the solution time of CPLEX
and the results are presented in Table 3.6. When we compare the average CPU
time spent for solution, it is clear that CPLEX takes considerably longer time
than HEUR when n > 10. The average CPU time of CPLEX is even greater
than the maximum CPU time spent by HEUR. Solution time is an important
factor in real-time applications when job numbers increase and in such a case
our computational experience suggests that HEUR can be preferred instead of
finding the optimal solutions.

Table 3.6: CPU times (in seconds) of the problems for different n values.

n
8 10 12 14 16 18

CPLEX Avg.CPU 0.775 6.107 46.654 904.849 2668.036 15949.593
HEUR Avg.CPU

Max.CPU
2.928
6.016

7.934
14.983

18.533
36.065

36.849
68.664

71.756
130.861

119.383
217.358

Chapter 3. Solution Procedures for l\dj \ + Tj) 70

Part II:

Since we could not obtain the optimal solutions for n = 20,25,30,35,40 we
compare the performance of HEUR for these problems with the heuristics from
the literature. Thus, after coding the heuristics of Kim and Yano (1987) and Fry
et al. (1990), we compare the performance of HEUR with these two heuristics.
For this part of the computational experiment, we use the average ratio of the
solution generated by the heuristic of Fry et al. (1990) to the solution generated
by H EU R (H EU Rfar/HEUR) over 125 random problems for different n values,
the percentage of those 125 random problems that HEURfar outperforms
HEUR (% HEURfar), and similarly the average ratio of the solution generated
by the heuristic of Kim and Yano (1987) to the solution generated by HEUR
{H EU R k y /HEUR) over 125 random problems for different n values and the
percentage of those 125 random problems that HEURky outperforms HEUR
(% HEURk y)· Table 3.7 reports our computational experience. The average

Table 3.7: Computational Experience of Part II.

n HEURky HEURfar
20 AVG. ratio to HEUR 2.241 0.903

% 0 88.8
25 AVG. ratio to HEUR 2.524 0.885

% 0 96
30 AVG. ratio to HEUR 2.511 0.876

% 0 92.8
35 AVG. ratio to HEUR 2.499 0.860

% 0.8 95.2
40 AVG. ratio to HEUR 2.522 0.823

% 3.2 100
Avg. of AVG(over 625 problems) 2.459 0.869
Avg. of % (over 625 problems) 0.8 94.56

ratio of HEURk y ! HEUR is 2.459 and the average value of % HEURky is 0.8
which suggests that HEUR outperforms the heuristic of Kim and Yano (1987).

Chapter 3. Solution Procedures for l|c?j| Yi{Ej + Tj) 71

But the average ratio of HEURfarIH EUR is 0.870 and the average value
of % H EU R far is 94.56, which suggests that HEUR is not as good as the
heuristic of Fry et al. (1990). However it should be noted that the heuristic of
Fry et al. (1990) is an exponential time algorithm due to the adjacent pairwise
interchange procedure which forms the basis of this algorithm. Hence for the
problems with large n, it may be advantageous to utilize HEUR if the solution
time is one of the concerns.

3.5 Concluding Remarks

In this chapter, first a dynamic programming formulation to minimize total
unweighted earliness and tardiness penalties on a single machine is developed.
This formulation leads to an incomplete dynamic programming and a heuristic
based on the incomplete dynamic programming is presented in the following
sections. The heuristic also involves a simple interchange procedure and five well
known dominance properties.

The heuristic was tested in two parts. In the first part, there are 750 randomly
generated problems for problem sizes n = 8,10,12,14,16,18. For this set of
problems, the optimal solutions are obtained from the solution of the mixed-
integer program for the problem l|dj| ^ ^ (jE'j + Tj). The average relative error
of our heuristic is 8.6% and it outperforms all other dispatching rules used in
the study. Furthermore, the percentage of time the optimal solutions found by
the heuristic is over 25%. For these problems, two problem parameters, namely
relative range of due dates and average tardiness factor, are also changed from
0.2 to 1.0 with 0.2 increments. It is seen that our heuristic performs well when
the value of average tardiness factor is large for any value of the relative range of
due dates.

In the second part of the study, we generated 625 random problems for
n = 20,25,30,35,40 for which we could not obtain the optimal solutions. These

Chapter 3. Solution Procedures for l|c?j| Yi{Ej + Tj) 72

set of problems are evaluated with respect to two well known heuristics from the
literature. The computational experience shows that our heuristic outperforms
the heuristic of Kim and Yano (1987) in all respects. However, the performance
of our heuristic is not better than that of Fry et al. (1990) considering the relative
errors. But since the latter one is an exponential time algorithm, this is what we
expect from the computational experiments.

The development of an exact dynamic programming which is still pseudo
polynomial for this class of scheduling problems remains as a further research
topic. Since this class of problems are known to be MV-hard in the ordinary sense,
the development of such a dynamic programming may lead to fully-polynomial
approximation schemes.

Chapter 4

l \ d j \ T . { E j - \ - T j) with Special
Structures for Distinct Due
Dates

Since the problem \\dj\Y [̂Ej + Tj) is A/’P-hard in its general form, it may be
beneficial to deal with some special cases which will lead to efficient solution
procedures for the general case. Considering this fact, we deal with the problems
in which we can restrict the structure of the due dates by applying special due
date assignment rules. These different due date structures can be viewed as the
priority rules for the jobs since they determine the jobs’ urgency in the shop.

Indeed, these rules are studied in the literature but as the due date assignment
rules in the multi-machine environments (see for example Baker (1984)). In recent
years, some research have been evolved that analyze different due date assignment
rules for the single machine scheduling problems in which one of the aims is to
determine the optimal due dates, such as Cheng (1984) and Quaddus (1987).
Since the optimality criteria like earliness and tardiness depend on due dates, the
assignment rule of the due dates affects the efficiency of the solution procedures
developed. Conway et al. (1967) reported four rules to assign due dates in a job

73

shop environment where as Baker (1984) extended these rules to more complex
ones.

The importance of the due date assignment rules for the problem that we deal
with is that, as Baker and Scudder (1990) states, these type of models may be
structurally less complicated than the general model with distinct due dates.
Furthermore, the solution procedures provided for these restricted models may
be helpful in the analysis of the general model. Baker and Scudder (1990) have
given the following two rules for determining the distinct due dates which relate
to the processing times:

• Equal-Slack(SLK): dj = Pj + q

• Total-Work-Content(TWC): dj = kpj

Chapter 4. l\dj\ + Tj) with Special Structures for Distinct Due Dates 74

As its name implies, the SLK rule gives an equal slack for every job, hence their
risk to be tardy and early is equal whereas their due dates differ according to
their processing times. As it will be seen in Section 4.1, this rule provides a nice
structure of the problem in certain cases. The second rule, TWC rule, gives to a
job an allowance which is a multiple of its processing time. Hence, a job can wait
(k — l)pj time units before it is processed and to be completed on-time. These
rules result in reasonable and attainable due dates since they provide a greater
allowance for a job with larger processing time among all the jobs.

In the rest of this chapter, we consider these two rules and the results are
presented in the following sections. In Section 4.H , we study the structure
of the problem l\dj\Y^[Ej -}- Tj) when due dates are given according to SLK
rule. The problem is analyzed in Section 4.1.1. We discuss that this problem
can be classified as restricted and unrestricted according to a constraint on
q. In Section 4.1.2, the equivalence of the unrestricted case to a polynomially
solvable problem is given. We further analyze the restricted case of the problem

tThis section draws heavily on Oğuz and Dinçer (1992)

Chapter 4. \\dj\ Y^{Ej + Tj) with Special Structures for Distinct Due Dates 75

in section 4.1.3 and identify some optimality conditions. Finally, in Section 4.1.4
we state that the restricted case is A/ '̂P-hard.

In Section 4.2, we consider the second rule. Hence our problem is 1 \dj \
where due dates are given according to the Total-Work-Content rule. In
Section 4.2.1, we analyze the problem of l\dj\Yi{Ej Tj) under TWC rule and
we present several properties of this problem. In Section 4.2.2, we develop
a polynomial time heuristic algorithm with a very good performance. The
computational experience regarding this heuristic is given in Section 4.2.3.

4.1 Problem l\dj\T,[Ej + T j) with Equal-Slack
Rule

The slack time of a job is its remaining allowance to finish its processing. Equal-
Slack rule assigns an equal amount of slack time to every job Jj for processing.
The intuitive justification for Equal-Slack rule is that all jobs have to start at
a prespecified time in order to be completed at their due dates and they have
the same urgency for being on-time. We will determine some properties of this
special case in the following section where the problem is splitted to two cases
as unrestricted and restricted. After showing the equivalence of the unrestricted
case to a polynomially solvable problem, the WP-hardness for the restricted case
is presented.

4.1.1 Analysis of l\dj — Pj + 1̂ + Tj)

We consider the problems in which distinct due dates are related to processing
times according to Equal-Slack rule. This means that distinct due dates are given
as dj = Pj q, q > 0 V j = 1, 2, . . . , n. Hence our problem can be stated as
l\dj = Pj -j- 1̂ J2{Tj + Tj) using our notation. Since this problem permits distinct
due dates that relate to processing times, it allows a nice structure for the optimal

Chapter 4. \\dj\ J2{^j + ^ i) with Special Structures for Distinct Due Dates 76

solution in a special case where the problem is unrestricted.

For further analysis, the notation \Cj — dj\ will be used instead of
J2]=i(Ej + Tj) since minimizing the sum of unweighted earliness and tardiness
penalties is equivalent to minimizing the sum of absolute deviation of completion
times from respective distinct due dates. Furthermore, it is easy to observe the
followings:

P rop osition 4.1 Minimizing \Cj — dj\ is equivalent to minimizing |5j — aj\.

P roof: From definition we know that dj = aj+Pj- Substituting this into \Cj — dj\
yields the following:

\Cj dj\ = \Gj — (otj + Pj)| = \Cj — pj cty|.

But from definition Sj = Cj — pj. So by substituting this one obtains,

\Cj - d,\ = \S, - a il

Hence, minimizing \Cj — dj\ is equivalent to minimizing IS'j — aj\. ■

P rop osition 4.2 I f dj = Pj q then aj = q V j = 1, 2, . . . , n.

P roo f: This result is obtained easily after substituting dj = Pj+q into aj = dj—pj
as follows:

Qj = dj — Pj = Pj <1 Pj — 9·

Proposition 4.2 means that each job with dj = Pj -{■ q have a common target
starting time, namely q.

T heorem 4.1 \\dj = pj + q\Yi{Ej + Tj) is equivalent to l|ay = ?| ¡¿'j — aj\.

P roof: This follows directly from Proposition 4.1 and Proposition 4.2.

From above observations, it is seen that we are trying to minimize the sum
of absolute deviation of starting times from a common target starting time.
This problem is analogous to the one in which the sum of absolute deviation
of completion times from a common due date is minimized. Hence, following the
research for the second problem, we analyzed the common target starting time
to determine the point where problem becomes unrestricted. We can say that a
problem is unrestricted if the common target starting time is loose such that we
can schedule enough jobs before q. That is, we have freedom to schedule some
jobs before q. If common target starting time is tight, then we will not be able
to schedule some of the jobs before q since the starting time of any schedule can
not be less than zero. Thus, for a given set of jobs, if q is too tight, we encounter
with the restricted version of the problem.

Formally, we define a problem unrestricted if g > i? where is defined as below
assuming that the processing times are indexed in non-decreasing order:

Pi+P3-1------- f- Pn-i if n is even

Chapter 4. \\dj\ J2(^j + '^j) viith Special Structures for Distinct Due Dates 77

P2 +P4-\------- l· Pn- 1 if n is odd

Before going further, it is necessary to give the following notations which are
similar to those given in Section 1.1 and modified for the common target starting
time problem:

4.1.2 Analysis of l\aj = q ><5|Ei5,-a,|

It is possible to show that an optimal solution to the problem
l\aj = ? > Z) \Sj — ay I possesses the following properties:

P rop osition 4.3 There is no idle time between any two jobs in the optimal
schedule.

P roof: Assume to the contrary that there is an idle time in an optimal schedule
of cr. This idle time can be either before q or after q. In the former case, it is

obvious that the idle time occurs between two early jobs, say job Jj, and Jj .̂
Now, we can decrease the earliness of the jobs before job Jy, and the job
itself by moving them till the starting time of the job Jj .̂ Thus, we improve the
value of the objective function. Contradiction. In the later case, similar to the
first one, the idle time occurs between two tardy jobs, say again jobs Jĵ and Jĵ .
Now, we can decrease the tardiness of the jobs after job and job Jĵ itself by
moving them till the completion time of the job Jj .̂ Thus, we improve the value
of the objective function. Again contradiction. ■

P roposition 4.4 One job will start exactly on the target starting time q.

P roof: Assume the contrary and consider a schedule of cr which has a job Jjj
which is in process at time q. That is in cr, there exists a job Jĵ such that Sĵ < q
and Cjj > q as shown in Figure 4.1. Let Pji{b) be the amount of processing time

Chapter 4. Y^{Ej + Tj) with Special Structures for Distinct Due Dates 78

Figure 4.1: Schedule of cr for Proposition 4.4.

of job Jjj before q and let pĵ (a) be the amount of processing time of job Jĵ after
q. Clearly, either |£̂5| < \Ts\ or |£’5| > \Ts\. First suppose that |£'5| < \Ts\. Then
all jobs can be shifted to the left such that Cĵ = q. The change in z(cr) due to
this shift is

\ ŝ\Ph («) - l̂ 5| Ph («) + Ph («) < 0.

If ^ \'̂ s\i then all jobs can be shifted to the right such that Sĵ — q. The
change in ^(cr) due to this shift is

Ŷ s\Ph (b) - \Ss\Ph (b) - Ph(b) < 0.

In either case the value of the objective function of the schedule of cr will be
improved. Contradiction. ■

P rop osition 4.5 The optimal schedule is V-shaped around the job that starts at
time q.

Chapter 4. l\dj\ J2{Ej + Tj) with Special Structures for Distinct Due Dates 79

P roof: Suppose the schedule of cr is not V-shaped but optimal. That is either
S'g is not in LPT order or Ts is not in SPT order. Assume the former one is true
(the proof of the latter is similar). If Sg is not in LPT order then there exists
two adjacent jobs Jĵ and such that pĵ < pĵ and job Jĵ precedes job Jĵ as
shown in Figure 4.2. Let cr' is obtained from a by interchanging jobs Jĵ and Jĵ .

F'

Jjl

S. n

s'-3̂2

^__________________ E'. _______________^

3̂2 3̂1

S'-3̂1

T's
I

Figure 4.2: Schedule of a for Proposition 4.5.

Clearly, such an interchange does not affect the penalty for any job other than
jobs Jjj and Jj .̂ Then

z{cr') - z{a) = { q - - {q - Sj,)-h {q ~ - {q - Sj^).

Since Sĵ — Sj ,̂ Sĵ = Sĵ pĵ and Sĵ = Sĵ + pj ,̂ we have

z{a') - z{a) = pĵ - pĵ < 0.

Thus z{cr') < ^(cr), contrary to the assumption that cr is optimal. ■

With these optimality conditions, we can show that the problem
l|aj = Ç > |5'j — üj\ is equivalent to the problem l\dj = d > \Cj — dj\.

It is clear that the objective function values of both problems are independent
of the absolute values of q and d, since they are non-restrictive. Instead, the
objective values are functions of the sequence of jobs and the order of the job
which starts (or completes) at q (or d). Hence, let fs{e,7r) = Yi^-i |*S'7r(t·) — ?| and
fc{T , cr) = — d\ where e and r are such that 5,r(e) = Ç and = d.

T heorem 4.2 Let a and tt he two sequences with cr(i) = 7r(n — г’ + 1). Arrange a
and 7T so that Cc{t) = d and S^^) = Ç; where n — r = e. Then / 5(5, tt) = fc{T^a).

Chapter 4. l|Jj| Yj{Ej + Tj) with Special Structures for Distinct Due Dates 80

P roof: Let cr and w be sequences of n jobs. If we let cr(r) be the job with
completion time equal to d, then

fc{r ,cr) = Pa(2) +2p<r(3) + --- + (t - l)p<r(r)

4- (n - r)p^(^r+l) + { n - T - l)p<r(T+2) + ··· + P<T(n)· (4.1)

Similarly, if we let 7r(e) be the job with starting time equal to q, then

fs{s,'^) = P7t(1) + 2p (̂2) + · · · + £Pjr(£)

+ (n — e — l)p,r(£:+l) + {n — e — 2)p,r(e+2) + · · · + P;r(n-1)· (4-2)

When we let n — r = £ and cr{i) = 7r(n — 2 + 1), the claim follows. ■

Theorem 4.2 shows that if a is an optimal solution to l|dj = d > S\J2 \Cj — dj|,
then 7T, as defined in the theorem, is an optimal solution to l\aj = q
Therefore, any algorithm which solves the problem \\dj = d > d| X) \Cj — dj\̂ such
as the algorithm proposed by Kanet (1981a) or by Bagchi et al. (1986), can be
used to solve the problem l\aj = 9 > Z) \Sj — aj\.

Considering the equivalence of the problem l|aj = q > — aj\ to the
problem l\dj — d > S\Y^\Cj — dj|, we can state the following:

P rop osition 4.6 In an optimal schedule, the {\Sg\ + \)th job in sequence starts
at its target starting time, where \S'g\ is the smallest integer greater than or equal
to {n — l) / 2.

P roo f: Proof follows from the equivalence of the problem l|ay = q > |*Sy—ayl
to the problem \ \dj = d > ^ \Cj — dj\ and Proposition 2.7 in Section 2.5.2. ■

Chapter 4. l\dj\ Y^{Ej + Tj) with Special Structures for Distinct Due Dates 81

4 .1 .3 A n a l y s i s o f \\aj = g E \Sj — aj\

When we consider the restricted version of the problem, we see that only the
Proposition 4.3 holds, but others do not. Also, although a polynomial time
algorithm exists for the unrestricted problem, this will not be the case for the
restricted problem. Following the work of Hall et al. (1991), we describe several
necessary optimality conditions for the problem l\aj = q

We define a unique job Ja in a sequence such that it starts processing before q
and completes at or after q. Hence, only for job J„, Sa+Pa = ? if a job completes
at <7, and 5« +pa > 9 if no job does so. It is obvious that if ̂ < m inj{pj}, then
an SPT sequence of the jobs specifies a solution.

For the problem l|nj = ̂ E 1‘5'j — Ojl Proposition 4.4 may not hold as shown
by the instance n = 3, pi = 5,p2 = 6,p3 --- 10 where q = 4 with a unique
optimal schedule of <S = {0 ,5 ,11}. If we let t* denote the starting time of the
first job processed in an optimal schedule, then i* = 0 in some instances as
shown in the previous example, and C > 0 in others, as shown by the instance
n = 3, Pi = 3,p2 = 7,p3 = 15 where ̂ = 5 with a unique optimal schedule of
S — (2 ,5 ,12}. We summarize these results as follows:

P rop osition 4.7 For every instance of the problem l\aj = q < — Uj\,

there exists at least one o f the following:

a. an optimal schedule with i* = 0

b. an optimal schedule with Sa + Pa = ?·

P roo f: Assume that i* > 0 in an optimal solution. If a job completes at q,
the proof is complete. Assuming that no job completes at let 0 < e <
min{5 —¿"a, Sa+Pa — <l}, «ind A f (respectively, A 7-) denote the change in cost from
starting all jobs e units of time earlier (respectively, later). Clearly, A f = — A 7-,
therefore min{A^, A r) < 0, and since by assumption the solution is optimal,
min{Ai:, A p } > 0, thus As = Ap = 0. It is easy to see that all jobs can be
moved earlier until either t* = 0 or Sa + Pa = Q- ■

Proposition 4.7 greatly simplifies the solution of problem instances for which
i* > 0 because we need consider only schedules in which Sa -l· Pa = <7· Given £'̂
and Ts, Proposition 4.8 states that an optimal schedule can easily be found.

Chapter 4. l\dj \ Y^(Ej + Tj) with Special Structures for Distinct Due Dates 82

P rop osition 4.8 For every instance of the problem l\aj = q < — aj

in each optimal schedule the jobs in S'g are ordered by non-increasing processing
times, and the jobs in Ts are ordered by non-decreasing processing times.

P roof: The proof follows from a job interchange argument. ■

Proposition 4.8 is different than Proposition 4.5 because the definitions of S'g
and Ts exclude the job if Sa -h Pa > 9· Let emin = min {Jj € £'s},
tmin = min{Jj E Ts}, where emin — +00 if = 0 and tmin = +00 if 7^ = 0.
Thus emin is the index of the last job completed by time q, and tmin is the index
of the first job started at or after q. Now, we need the following definitions;

D efinition 4.1 [Hall et al. , 1991] A schedule is strongly V-shaped if

Pa < min{pemin, Ptrain} '

Fact 4.1 There exist instances of the problem \\aj — q < d\J2 15̂ · — o,j\ for which
no optimal solution is strongly V-shaped.

P roof: By example. Consider the instance n = 5, = 5,p2 = 8,
P3 = 15, p4 = 20, ps = 21 where q = 7. The unique optimal solution is
S = {8 ,0 ,13,28,48), thus = 8 > 5 = ptmin- ■

D efinition 4.2 [Hall et al. , 1991] A schedule is weakly V-shaped if

Pa < max(pemm) Ptmin)■»

P rop osition 4.9 For every instance o f the problem l\aj = q <
each optimal schedule has the weakly V-shaped property.

Chapter 4. l\dj\ J2{Ej + Tj) with Special Structures for Distinct Due Dates 83

P roof: Let Ss and Ts define an optimal schedule in which, contrary to
Proposition 4.9, Pa > niax{pemt'n,Ptmm}· The following three cases are shown
in Figure 4.3.

L

Jemin j Qi

_________________ 1___________

Jtmin

t

Figure 4.3: Schedule for Proposition 4.9.

1. Sa -k Рос = q- Then a £ S'g and, from Proposition 4.8, Pa < Pemin in each
optimal schedule, a contradiction.

2. Sa -{■ Pa q A L, where p„ > 2L.

Chapter 4. l\dj \ Y^{Ej + Tj) with Special Structures for Distinct Due Dates 84

3. So, + Pa = q + where pa < 2L.

The significance of the relative values of pa and 2L is that ii Pa > 2L we will
interchange jobs Ja and Jemin·, but if pa < 2L we will interchange jobs and
Jtrain ·

Let S'j denote the starting time of job Jj after an interchange of jobs has taken
place. For Case 2, let A denote the change in cost from interchanging jobs Ja
and Jemin· Clearly the starting time of job in the new schedule equals that of
Jemin in Figure 4.3, so we only compute A with respect to the cost of scheduling
the later of the two jobs. The relative values of and q after the interchange
provide three subcases. In each case, A < 0 provides the necessary contradiction.

2A. <C q. Then A = {jpemin L) {jpa E) ~ Pemin Pa 0·

2B. Si^i^ = q. Then A = 0 - {pa - L) = L - Pa < 0.

2C. > q. Then A = (L Pemin) {.Pa L) = 2L Pa Pemin ^ Pemin 3.

Consider a schedule in Case 3. Let A denote the change in cost from interchanging
jobs Ja and Jtmin- Again, we need compute only the cost of scheduling the later
of the two jobs. There are three subcases.

3A. S ̂ q. Then A = \ptmin {Pa -L)] L = Ptmin Pa 0·

3B. S'̂ = q. Then A = 0 — L < 0.

3C. Soi q· Then A -- [(Pa L) Ptmin] L = Pa Ptmin 2L <C 0.

This completes the proof of Proposition 4.9. Thus, we know that there exists an

optimal schedule with pa < Pemin·, or Pa ^ Ptmin, or both. ■

In the proofs of Propositions 4.10 and 4.11, we let A denote the change in
the objective function value resulting from various possible adjustments to the
optimal schedule.

Chapter 4. \\dj\ J2{Ej + Tj) with Special Structures for Distinct Due Dates 85

P rop osition 4.10 Ift* > 0, then |£̂5| > \Ts\ — 3.

P roo f: If > 0, then 5'« + Pa = d. Start all jobs earlier by 0 < e < 1 units of
time. Then

A ^e{\Ss\ + 1 + 1 - (|Ts| - 1)) > 0 \Ss\ > \Ts\ - 3.

P rop osition 4.11 \Ss\ < \Ts\ — 1.

P roo f: Start all jobs 0 < e < 1 units of time later. Then

A < e(|T5| - 1 - |̂ 5|) > 0 |£:5| < \Ts\ - 1.

4.1.4 A/'P-Hardness of l|aj = g < E \Sj — aj\

We can state the problem l|aj = 9 < E \̂ j ~ <̂j\ -̂s follows:

TOTAL EARLINESS-TARDINESS WITH EQUAL-SLACK RULE:

INSTANCE: Integers y, q and n, a finite set J oi n independent jobs, a
“processing time” pj G 2'^ and a “due date” dj G 2'^ defined as dj = Pj + q for
each Jj ^ J 1 1 < i < n.

QUESTION: Does there exist a non-preemptive schedule of these n jobs in the
set N on one machine such that the total earliness and tardiness is no longer than

!/?

We use the EVEN-ODD PARTITION problem for the problem
l|aj = gr < E 1‘5'i — in a similar way to Hall et al. (1991). In particular,
we prove that answering the EVEN-ODD PARTITION problem, with data
«1 < «2 < · · · < « 2n, is equivalent to answering the recognition question for the

problem l\aj = 9 < \Sj — aj| for the instance P i which has 4n + 5 jobs. The
proofs of our lemmas use techniques similar to those used by Hall et al. (1991).
We define P I as follows:

Instance P I
P2j-i = a2j-i + i = 1, · · ·, n
P2j = a2j + B\ ;■ = l , - - - , n
P2n+1 = B^+^
P2n-\-j 2 ,̂ j 2,3, · · ·, 2n T 5

d = B + f2 B ^

Chapter 4. l\dj \ Y^{Ej + Tj) with Special Structures for Distinct Due Dates 86

and

n 2n-f 1
y — “ i + l)(P2j - i + P2j) + (2n + 4) ^ pj + (2n + 4)(2n + 2)q

i=l 3=1

where B = ay/2 and B ̂ denotes B raised to the power j . Observe that for
this definition pi < · · · < p^n+s, provided that B >Z and integer. We make these
assumptions without loss of generality.

Lem m a 4.1 If there exists an even-odd partition, then there exists a schedule of
a for P i with z{a) = y.

P roof: By assumption, an even-odd partition exists. Define 6y,V j — 1,2, •••,2n,

so that {b2j - i ,h 2j } = {a2y_i,a2y} and ¿»2y-i = Yfjz=\ 2̂i· The schedule of a
is illustrated in Figure 4.4. Now,

z (a) = 0 (p 2 n + l) + 1 (P 2n + P 2 n - l) + · · · + ?^ (P 2 + P i)
2n-t-l 2n-f-l 2n-|-l

+ (Pi - ^) + (pj - ̂ + 1 1 2 pj - ̂ ^ y-
3=1 3=1 3=1

Chapter 4. Y^{Ej + Tj) with Special Structures for Distinct Due Dates 87

J 2 n J 2 n - 2 Ja J2 J x J3 J2n-X J 2 n + X J2T1+2 J ‘ln4-3

Figure 4.4: Schedule for Lemma 4.1.

Lemma 4.2 z(cr) < ?/ for an optimal schedule o f a only if jobs
J2n+2 , J2n+3 i · · ·) «̂471+5 processed consecutively at the end of a schedule which
starts at time 0.

Proof: From Propositions 4.7 and 4.8, any optimal schedule of cr, with i* = 0
in which jobs J2n+2) «72n+3, · · ·, J4n+ 5 are not scheduled last must process exactly
one such job before jobs Ji, · · ·, J2n+i· Then,

2n4-l 2n
z((j) = (4t7- ~l· 5) (/ -|- (2tz -f- 2)(2t2 ”l· 3) 9 -f· (2t2 -(- 3) L Pi + 1^(2« + 1 - j) P i

i=l i=l
for such a schedule of a. Thus, the difference

2n-f 1 71
z{cr) - y = (2n + 3) 9 - Pi + ^ [(n - i + I)p2i-1 + (n - j)p2j\

j=l j=l

is positive. Finally, \Ts\ > 2n + 4 and \Ss\ < 2n for each schedule in which jobs
J2n+2 ,J2n+3 r · ·) J^n+s are scheduled last and t* > 0. Thus, by Proposition 4.9,
no such schedule can be optimal. ■

From Lemma 4.2, it is obvious that it is enough to consider only the cost of the
scheduling jobs Ti, · · ·, J2n+i consecutively, starting at time 0.

Lemma 4.3 z{cr) < y for an optimal schedule of cr only if |£̂5| = n — 1,

Sa + Pa = <1 o-T̂d job J2n+i *5 Scheduled last in a.

P roof: The first term in the cost of y, i.e., 0(p2n+i) + l(p2n +P2n-i)4------ \-n{jp2 +
Pi), equals the optimal cost of scheduling jobs J i , - - - , / 2n+i in an unrestricted
scheduling problem.

Since both \S's\ = \Tg\ + 1 (from Proposition 4.6) and the longest job is scheduled
last (from the equivalence of the problems l|aj = q > i?| IT [«Sj — Oj| and
\\dj = d > \Cj — dj\) in any optimal schedule for the unrestricted scheduling
problem with an odd number of jobs, we have 5 ̂+Pa = ? in cr, and a ends with

job J2n+1· ■

From Lemma 4.3, we know that the first n jobs scheduled must complete
processing exactly at q.

Lem m a 4.4 z[a) < y for an optimal schedule of cr only ifYfj^s'^
and exactly one o f jobs J2j-\ and J2j is in Eg (and the other is inTf), j = 1, · · ·, n.

Chapter 4. \\dj \ Y^{Ej + Tj) with Special Structures for Distinct Due Dates 88

P roof: From Lemma 4.3, job J2n+i must be scheduled last, and \Es\ = n — 1.
Moreover, Ca = 9· Then, since the first n jobs complete processing exactly at
time 9,

2n 2n

J=1
From the definitions in P i , this is possible only if Eg (and thus Tg) contains
exactly one of jobs J2J-1 3,nd J2j, j = 1, · · ·, n. Thus,

2n 2n

aj = B = ^ aj,
jes's iGTi

and an even-odd partition exists. ■

T heorem 4.3 The decision problem ofl\aj = 9 < X) 1*5̂ — Ojl is ffV-complete
in the ordinary sense.

P roo f: It is obvious that the decision problem of l|aj = 9 < i?| X) l*Sj — aj\ is in
AiV, and that it is possible to construct P i from an instance of the EVEN-ODD
PARTITION problem in polynomial time. The equivalence of the two problems
follows from Lemmas 4.1 - 4.4. ■

4.1.5 Concluding Remarks

When we consider Theorem 4.2, it is straightforward that we can use any
algorithm developed for the problem l\dj — d > 8\Yf,\Cj — dj\ as a solution
procedure to the problem l\aj = q > — aj\. Since the former is analyzed
widely in the literature, it is not fruitful to exert more effort on developing solution
procedures for the latter.

The result obtained for the problem l|ay = q < — o,j\ which is stated
as Theorem 4.3, states that it is most unlikely to ever develop any polynomial
time algorithm for the problem l\aj = 9 < t?l X) |<5’j — aj\· For further research, it
is open to develop efficient optimizing algorithms for this problem which will be
similar to those developed for the problem l\dj = d < [̂ X; \Cj — dj\.

4.2 Problem l\ d j\ lz {E j + T j) with
Total-Work-Content Rule

Chapter 4. \\dj \ Y^{Ej + Tj) with Special Structures for Distinct Due Dates 89

In this part, we consider the problems in which distinct due dates are related to
processing times according to Total-Work-Content rule. This means that distinct
due dates are given as dj = kpj, k > 1 V j = 1,2, . . . , n . Scheduling
problems in which the due dates are assigned according to TWC rule drew
attention of researchers who were concerned with studying the optimal due date
determination. For example, Cheng (1984) examined the problem of finding the
optimal processing time multiple k* for the TWC due date assignment method
and the optimal sequence to minimize the total missed due dates by minimizing
the total squared value of lateness. It has been shown that k* is a constant for a
given job set and that optimal sequence should be in SPT sequence.

The intuitive explanation of TWC rule is that each job has an allowance which is
directly proportional to its processing time. Hence, if it requires a larger amount
of processing then it has larger time to wait in the shop to be completed on

Chapter 4. \\dj \ Ŷ {Ej + Tj) with Special Structures for Distinct Due Dates 90

its due date. Furthermore, the target starting time of each job is also directly
proportional to its processing time under TWC rule. Therefore, a job ’s urgency
increases if its processing time is large.

In the following section, we analyze the problem of l\dj\Y^[Ej + Tj) under TWC
rule and we present several properties of this problem. In Section 4.2.2, we
develop a polynomial time heuristic algorithm with a very good performance.

4.2.1 Analysis of l\dj = kpj\Y,[Ej + Tj)

Our problem can be stated as l\dj = kpj\J2{Ej + Tj) in our notation. Since
this problem permits distinct due dates that are directly proportional to the
processing times, we can state several conditions under which optimal schedules
are attainable easily. First of all it should be noted that all of the FDD, EST
and SPT rules result in the same sequence under TWC rule. Hence, in further
analyzes of the problem l\dj = kpj\E{Ej + Tj), we will consider only EDD
sequencing whenever necessary.

Throughout the analyses of the problem l\dj = kpj\E{Ej + Tj), we could
neither show that this problem is MV-hard nor develop a polynomially bounded
exact algorithm for the problem. Hence, the complexity result of the problem
\\dj = k p j\ E {E j-{■ Tj) is still open and it is a further research topic. None
the less it is possible to derive some general elimination criteria in the form
of dominance properties. These elimination criteria do not necessarily produce
an optimal schedule straightaway. Thus, we incorporated them into a heuristic
algorithm which will be explained in Section 4.2.2. Now, we will discuss the
elimination criteria in more detail. Before going further, we need the following
result from the literature:

Chapter 4. l\dj \ Y^{Ej + Tj) with Special Structures for Distinct Due Dates 91

C orollary 4.1 (Rinnooy Kan, 1976) If z = Yf,WjTj and if for two jobs Jĵ and
Jĵ we have

(i) dĵ < dj ,̂

(ii) Wĵ < Wj ,̂ and

(in) <pj^,

then we only have to consider schedules in which job precedes job Jj .̂

P roof: It is obvious that the conditions (i) and (ii) imply that Tĵ — is non-
decreasing on the interval [0,P]. The result follows. ■

We can use Corollary 4.1 for a scheduling problem where z = Y^Tj because we
have Wj = I V j = 1 ,2 , . . . , n, hence condition (ii) holds for this problem also.
Now, we can state the following obvious result:

T heorem 4.4 In an optimal schedule of a for the problem l\dj = hpj\Y[Ej + Tj),
tardy jobs should be in EDD order.

P roof: Since TW C rule is applied, for two jobs and Jj ,̂ if pji < pĵ then
dji < dj2· Also lüjj = Wĵ = 1. Hence, all conditions of Corollary 4.1 hold. The
result follows. ■

Before giving the other dominance properties formally, we state the intuitive
reasoning of these dominance properties. Considering the result of Theorem 4.4,
we analyze the solution of the problem \\dj = kpj\Y[Ej 4- Tf) obtained from
EDD sequencing. When we examine the structure of such a solution to the
problem l\dj = kpj\Y[E j + Tj), we see that the solution can be described by
several blocks, jB;, / = 1,2, . . . ,£. Furthermore, it is easy to see that each block
consists of three sets of jobs: the early jobs, the on-time jobs, and the tardy jobs.
This can be given with our notation as Bi = Si D {Jj\Cj = dj} \J T(. We can
improve the objective function of a schedule of a by sequencing the tardy jobs

in EDD order in every block due to the Theorem 4.4. So we concentrate on the
early jobs. When we further examine the structure of a solution to the problem
\\dj = kpj \ Yi{Ej + Tj) obtained from EDD sequencing, we see that the objective
function value of a schedule of a can be improved by certain interchanges of
the jobs that are early. We use the above concepts in the following dominance
properties. Let job Jg G a defines the sequence of a schedule and a' defines
the sequence of this schedule after interchanging some of the jobs in Bi \ T/.

T heorem 4.5 If job Jg is the last job in Bi\T/ and Cg < dj, V Jj G Bi\T/ in a
which is obtained from EDD sequencing, then a' can be obtained by re-sequencing
jobs in Bi \ T/ in LPT order and z[cr) > z(a').

P roof: If Jg is the last job in Bi \ T{ and Cg < dj, V Jj £ Bi\'T{ in a which
is obtained from EDD sequencing, this means that all jobs Jj G Bi\T/ are early
regardless of their sequencing among themselves. Plence their total earliness will
be minimized by an LPT order from a discussion similar to that of the problem
l\di = d > + Tj). m

T heorem 4.6 I f job Jg succeeds a set of jobs Bg = {Jj £ Bi \ T/} and
Pj ^Pe ^ Ej, 'iJj £ Bg, then move job Jg before jobs in Bg.

Chapter 4. l\dj\ Y^{Ej + Tj) with Special Structures for Distinct Due Dates 92

P roof: Suppose job Jg succeeds a set of jobs Bg = {Jj £ B\ \ T{] and pg < Ej,
y j j £ Bg in the schedule of <r. Furthermore, let a' is the sequence of the schedule
obtained after moving job Jg before jobs in Bg. In a' the earliness of all jobs in
Bg will be decreased by an amount of pg (since pg < Ej 'JJj £ Bg) whereas the
earliness of job Jg increases by an amount of J^JjeBgPj· Hence

z{cr) - z(a') = \Bg\pg - P j> 0.

Since z(cr) — z(cr') > 0, it is beneficial to move job Jg to the ahead of jobs in Bg.

It should be noted that in Theorems 4.5 and 4.6, after an interchange or a move
takes place, that is in cr', the place of jobs other than Jg and Jj G Bg will be
the same as in a. So it is not necessary to consider those jobs in the calculation
of the change of the value of the objective function. Nevertheless, it is still
possible to obtain a better schedule for a' which does not affect the results given
in Theorems 4.5 and 4.6. The following theorem is a more general one and after
applying this theorem, if a move takes place then a new schedule must be obtained
for a' before going further.

T heorem 4.7 If job Jg succeeds a set of jobs Bg = {Jj G Bi\ T f] and pj < pg,
y j j G Bg, then move job Jg before jobs in Bg if

E (Ei-Pi)- E |i;i-p.l>o.
Jĵ t>Q JjĜ Q

Chapter 4. l|c?j| + ' ĵ) with Special Structures for Distinct Due Dates 93

P roof: It is easy to see from Figure 4.5 that the penalties of the jobs which will
be affected from such a move are as follows: In the schedule of cr, job Jg has an

B.

Bl

E„

J o T/

J o

Cb a v

B^

Bo V

dg

Figure 4.5: The schedules a and <r'.

earliness of Eg and all other jobs in Bg has an earliness of Ej. After a move of
job Jg ahead of jobs in Bg, job Jg will have an earliness of

K = T , Pi,

and the jobs in Bg will have the earliness of

E'i = \Ei - p j , V Jj e B,.

Since no other job is affected from this move, we can write that:

= E e , + e , - (Y : + E Pi)

= T , E i - j : \ E i Pi)
Jj^Bg JjE.Bg

= T , (Ei - Pi) - T , \Ei - p,\.
JjE^g JjEBg

If z{a) — z(a') > 0, then this move should take place. ■

Before concluding this section, we want to give an additional property which is
a special case for problem \\dj = kpj\ Yi{Ej + Tj).

T heorem 4.8 If all jobs are indexed according to the EDD rule and
V j = 1 ,2 ,... ,n, then an EDD sequence gives the optimal schedule.

P roof: The ‘ if’ part of the theorem says that any two adjacent jobs in the EDD
sequence do not overlap because the target starting time of job is greater
than the due date of job Jj as follows:

Chapter 4. l\dj \ Y^{Ej + Tj) with Special Structures for Distinct Due Dates 94

dj <

dj < ^i+i “ Pi+1

kpj < ^Pj+\ — Pi+i

kpj <

k/{k — 1) < Pj+JPj

Since no two adjacent jobs overlap in EDD sequence, we can schedule all the jobs
such that Cj = dj V j = 1 ,2 ,... ,n which leads to an objective function value
of zero which is the minimum. Hence, EDD sequence is optimal. ■

4.2.2 A Heuristic Procedure for l\dj — kpj\ J2{Ej + Tj)

As it is mentioned before, since we could not be able to show neither the
A/”'P-hardness of problem l\dj = kpj\J2{Ej + Tj) nor provide a polynomially
bounded exact algorithm, we developed a very efficient heuristic procedure which
incorporates the above dominance properties for l\dj = kpj\J2{Ej + Tj). This
heuristic is very simple. It starts with an EDD sequence due to the Theorem 4.4
and obtain the optimal schedule for this sequence by using OPTSCH\(Tgtw· It
then applies three other dominance properties given by Theorems 4.5, 4.6 and 4.7
in order to improve this initial schedule. A formal description of this heuristic,
H E U R -TW C , is as follows:

HEURJTWC:

1. Sequence the jobs in EDD order and find its optimal schedule by applying

OPTSCH\aGTW.

2. Apply Theorem 4.5 and 4.6 to this initial schedule. If any interchange or
move takes place, obtain the new penalties by applying 0 PTSCH\(tgtw·

3. Apply Theorem 4.7 to every block in the last schedule obtained in the
previous step. As a move takes place in a block apply OPTSCH\ctgtw to
obtain the new schedule and new penalties.

4. Stop when all blocks are considered in step 3.

Chapter 4. l\dj \ Yl{Ej + Tj) with Special Structures for Distinct Due Dates 95

The first step of the algorithm is in O (nlogn) due to the sorting procedure
and due to the order of the OPTSCH\aGTW algorithm. Step 2 and Step 3 have
to be applied to every block, hence the order of these steps are bounded with

the number of blocks and the number of jobs, since a single application of these
steps is in the order of n. That is the order of Step 3 and Step 4 is O {in)
which is dominated by O {n^)· Therefore, the overall complexity of the heuristic
procedure H E U R -TW C is O (n^)·

In order to see the effect of the dominance properties used for the general problem
in Section 3.3 on this problem, we incorporate these dominance properties into
our algorithm later and tested their effectiveness.

4.2.3 Computational Experience for
l\dj = kpj\ J2{Ej + Tj)

Chapter 4. \\dj\ J2{^j + with Special Structures for Distinct Due Dates 96

To test the performance of HEURJTWC, we perform an experiment by
generating random problems following the same method in Section 3.4. In brief,
for each job Jj an integer processing time pj was generated from the uniform
distribution [1,100]. Since due dates are determined according to the TWC
rule, that is each dj = kpj, it is enough to generate k values for due date
generation. The value of k is based on the sum of the processing times of all
jobs {P = py), the maximum and the minimum value of the processing
times, and one of the parameters that determine the problem ‘hardness’ . This
parameter is the relative range of due dates (R). We select the parameter i?,
because R determines the priority of the jobs. Having computed P, Pmax, Pmin
and chosen R, an integer value of k is obtained from the following equation (Ow
and Morton, 1989):

f:
R P

rl·{Pmax Pmin)
Then, due dates dj was determined from the rule that dj = kpj. In our
computational experiment, we choose R to start from 0.2 and increase to 1.0 with
0.2 increments as in Section 3.4. We select six values to determine the problem
size where n = 8,10,12,14,16,18. The reason for not having greater n values is
the capability of the package program CPLEX Mixed Integer Optimizer that we

Chapter 4. l\dj\ J2{Ej + Tj) with Special Structures for Distinct Due Dates 97

used for finding the optimal solution of the problems. From our experiences in
Section 3.4, we know that CPLEX can not solve problems with n > 18.

As a result each problem set is defined with two parameters, namely R and n. For
each value of n, five problems were generated for each of the 5 values of i?, yielding
25 problems for each value of n and a total of 150 problems. The algorithm
was coded in C and run on Sun Microsystems’ Sun-4(SPARC) workstations.
The optimal solutions for the test problems obtained from the package program
CPLEX Mixed Integer Optimizer which runs on the same computer systems.

As it is stated in the previous section, we have an initial schedule obtained
directly from EDD sequence and later some general dominance properties are
added to the heuristic developed, HEURJTWC. In testing the performance
of HEURJTWC, we want to see its improvement over the initial schedule.
The results corresponding to the initial schedule are represented by EDD.
Moreover, in order to differentiate the performance of HEURJTWC alone
and the performance of HEURJTWC with general dominance properties, we
present their results separately, denoted by HEURJTWC and HEURJTWCdPi
respectively.

The results are summarized in Table 4.1. In this table we present both the
average and maximum relative errors (re and rtmax·, respectively) together with
the number of problems in which optimal solution found among those 25 random
problems for every value of n by EDD, HEURJTWC and HEURJTWCdp
(denoted by ^ opt). The relative error for any rule is given as {zrule — z*)/z*
and the average and maximum relative errors are found out over 25 random
problems for every n value.

When we examine the results, it is obvious that the performance of HEURJTWC
even without general dominance properties are excellent. On the maximum
relative error, HEURJTWC and HEURJTWCdp have the same value for
every n value. Besides, over all 150 problems, the average relative error of
H E U R -TW C dp is only 3% better than that of HEURJTWC. The average

Chapter 4. l|c?j| J2{Ej + Tj) with Special Structures for Distinct Due Dates 98

Table 4.1: Average and maximum relative errors together with number of
optimal solutions found by different rules for different n values.

n
EDD

re rtr # opt
HEURJTWC

re re. # opt
HEUR-TW Cdp

re re. # opt
0.011 0.086 17 0.000 0.000 25 0.000 0.000 25

10 0.015 0.092 11 0.003 0.046 21 0.003 0.046 22
12 0.008 0.069 0.003 0.049 19 0.003 0.049 19
14 0.021 0.075 0.004 0.037 18 0.004 0.037 19
16 0.020 0.070 0.007 0.050 18 0.007 0.050 18
18 0.020 0.100 0.004 0.061 18 0.004 0.061 18

over 150
problems 0.016 0.100 56 0.0035 0.061 119 0.0034 0.061 121

relative error of HEURJTWC is approximately 5 times better than that of
EDD. Furthermore, H EU R-TW C finds the optimal solution 79.3 % over all
150 problems which is a very good result. When we incorporate the general
dominance properties this increases only up to 80.7 % which is a very slight
improvement. When we consider the percentage of optimal solutions found by
ED D which is 37.3 %, the superiority of the performance of HEURCTWC
becomes clearer. As a result, HEURJTWC has a very good performance and
can be used for the problem l\dj = kpj \ '^{Ej + Tj) as an approximate solution.

4.2.4 Concluding Remarks

As it can be seen from the computational experiments, a simple heuristic
procedure performs very well on a special due date structure of the earliness
and tardiness problems. These results seem encouraging for developing similar
dominance properties for the general due dates and for applying those to the
problem l\dj \ Yi,{Ej + Tj) to obtain an approximate solution. Such an extension
is given in Chapter 5 for the problem l\dj\ Y^{Ej4-Tj). Moreover, it is worthwhile

Chapter 4. l|c?j| J2i^j + ' ĵ) with Special Structures for Distinct Due Dates 99

to show whether the problem l\dj = kpj \ Yi{Ej + Tj) is polynomially solvable or
it is MV-hax6. which is a further research question.

Chapter 5

Further Results for l \ d j \ z { E ^ + T j)
J 3

In this chapter, we deal with a heuristic algorithm for problem l|dj| Y^{Ej + Tj)
which is an alternative to the heuristic algorithm presented in Section 3.3.
The motivation behind this algorithm is the encouraging results obtained in
Section 4.2 for problem \\dj = k'pj\Y^{Ej + Tj). In Section 5.1, we present a new
dominance property for problem \\dj\Y [̂Ej + Tj) and the developed heuristic
algorithm is based mainly on this simple dominance property. We also compare
the performance of this simple heuristic algorithm with that of the one given in
Section 3.3.

In Section 5.2, we focus on the lower bound development for l\dj\'^(Ej + Tj)
problem. We present a lower bound procedure and compare its effectiveness with
one of the lower bounds from the literature on the problems that are solved to
the optimality in Section 3.4.

1 0 0

Chapter 5. Further Results for \\dj \ Y^{Ej + Tj) 101

5.1 An Alternative Heuristic Algorithm for

iM ,·! T .{E j + T j)

Considering the results of the analysis of problem \\dj = kpj\Y^{Ej + Tj) in
Section 4.2.1, we examine the applicability of dominance properties developed
for problem \\dj = kpj\ J2{Ej + Tj), for problem l|dj| Y^{Ej + Tj). It is easy to
see that the concept of blocks can also be used for problem l|dj|^(£^y + Tj).
Furthermore, since the most general dominance property given in Theorem 4.7
does not contain any restriction due do the structure of the due dates, we can
use it for problem l\dj\Y^[Ej + Tj) as well. But it should be noted that this
dominance property deals with only early jobs in a block. So, we develop another
dominance property for problem \ \dj\ J2{Ej + Tj) similar to Theorem 4.7 for the
tardy jobs in a block as follows:

T heorem 5.1 If job Jg precedes a set of jobs Ag = {Jj € T/} and pj <Pg,
y j j € Ag, then move job Jg after jobs in Ag if

E E K-p,l>o.

P roo f: This is the mirror image of Theorem 4.7 and it is easy to see from Figure
5.1 that the penalties of the jobs which will be affected from such a move are as
follows: In the schedule of a, job Jg has a tardiness of Tg and all other jobs in
Ag has a tardiness of Tj. After a move of job Jg behind jobs in Ag, job Jg will
have a tardiness of

r; = T, + E ft·.
JjeAg

and the jobs in Ag will have the tardiness of

T'i = \Tj-p,\, 'i J , e A , .

Chapter 5. Further Results for l\dj \ Yl{Ej + Tj) 1 0 2

B,

I L

J. A .

a

Bl

I L

A . Jo

Figure 5.1: The schedules cr and a'.

Since no other job is affected from this move, we can write that:

z{cr) - z(a') = iZ '-P ei + ^ e+ Z) Pj)

= E í’í - E E ft)
= E № - «) - E ir,-ft|.

Jĵ irAg JjGAq

If z{a) — z{a') > 0, then this move should take place. ■

We further considered the dominance properties used in the previous heuristic,
HEUR. Since they improved the performance of HEUR, we incorporate those
into this new heuristic, called HEUR-ALT, also. Hence, HEUR-ALT comes
out to be the application of seven very simple dominance properties for problem
i-Mil L {B j + Tj). The following is the brief statement of HEUR-ALT:

Chapter 5. Further Results for \ \dj\ + Tj) 103

H EUR-ALT:

1. Sequence the jobs in EDD order and find its optimal schedule by applying
OPTSCH\aGTW.

2. Apply Theorem 4.7 and 5.1 to every block in this initial schedule. As a move
takes place in a block, apply OPTSCH\crGTW to obtain the new schedule
and new penalties.

3. Apply Proposition 2.8, 3.1, 3.2, 3.3, and 3.4 to the schedule obtained in the
previous step and stop.

The complexity of H EUR-ALT is dominated with the complexity of step 2 which
is in O (n^). Hence, the overall time complexity of HEUR-ALT is O (n^).

To test the performance of H EUR-ALT, we use the random problems generated
in Section 3.4 but only those with n = 8,10,12,14,16,18 since only their
optimal values can be obtained. The algorithm was coded in C and run on Sun
Microsystems’ Sun-4(SPARC) workstations. The optimal solutions for the test
problems obtained from the package program CPLEX Mixed Integer Optimizer
which runs on the same computer systems.

Since we apply some dominance properties on an initial schedule which is
obtained from application of EDD rule, we want to see the improvements over the
initial sequence, also. Hence, we first compare the performance of HEUR-ALT
with that of only applying EDD rule. Then we compare the performance of
H EU R-ALT with that of HEUR presented in Section 3.3.

The results of the experiment on the performance of HEUR-ALT is given in
Table 5.1. In this table we present both the average and maximum relative
errors (re and remax·, respectively) together with the number of problems in which
optimal solution found among those 125 random problems for every value of n by
ED D , H EU R-ALT and HEUR (denoted by opt). The relative error for any

Chapter 5. Further Results for l\dj \ Yl{Ej + Tj) 104

rule is given as { z r u l e — z *) I z * and the average and maximum relative errors are
found for over 125 random problems for every n value.

Table 5.1: Average and maximum relative errors together with percentage of
optimal solutions found by different rules for different n values.

EDD HEURJiLT HEUR
n re ̂̂ max # opt re '̂ m̂ax # opt re ^̂ max # opt
8 0.289 0.963 8 0.090 0.902 36 0.043 0.620 72

10 0.336 1.329 2 0.109 0.850 20 0.067 0.383 44
12 0.388 1.165 0 0.156 1.005 14 0.083 0.619 36
14 0.425 1.263 1 0.183 1.028 6 0.100 0.689 21
16 0.441 1.129 0 0.209 1.129 4 0.104 0.363 13
18 0.470 1.571 0 0.223 1.386 0 0.118 0.444 8

over 750
problems 0.392 1.571 11 0.162 1.386 80 0.086 0.689 194

When we examine the results, it is obvious that the performance of HEUR-ALT
is superior to ED D because the average relative error of HEUR-ALT is
0.162 which is approximately 2.5 times better than that of EDD^ 0.392.
Moreover, while HEUR^ALT finds the optimal solution in 80 problems, EDD
finds the optimal solution in only 11 problems over 750 problems. Hence,
we can say that the simple dominance properties behave well for problem
l|dj| Yl{Ej + Tj). Further analyses of the results reveal that the performance of
HEUR is approximately 2 times better than that of HEUR-ALT when average
relative errors are considered. In addition, HEUR finds the optimal solution
in 194 problems over 750 problems. We can conclude that although simple
dominance properties behave well on problem l\dj\J2{Ej + Tj), the heuristic
algorithm which is based on the incomplete dynamic programming outperforms
them and application of simple rules alone leads to poorer results for problem
l\dj\J2{Ej + Tj). If the efficiency is the main concern in the solution, then a
more complex heuristic algorithm like HEUR should be considered although it

Chapter 5. Further Results for \ \dj \ Yl{Ej + Tj) 105

is a pseudo-polynomial algorithm.

5.2 A Lower Bound for l\dj \ T .{Ej + T j)

In this section, we present a lower bound procedure for problem l|dj| Y^{Ej -\-Tj).
In obtaining a tight lower bound, we partition the job set J into subsets. The
success of this strategy depends on the partitioning of the jobs. The jobs in a
subset should be conflicting, that is they should overlap when completed at their
due date. If they are not, then we get a lower bound zero. In this sense, we
prefer subsets such that the executions of the jobs in the same subset interfere
with each other, but not with the execution of the jobs in the other subsets. We
propose a partitioning strategy that pursue this effect. This partitioning strategy
uses the concepts of blocks (see Section 2.1) and is motivated by the structure
of any optimal schedule. The jobs that are consecutively processed between two
periods of idle time interfere with each other, but not with the other jobs. Such a
partitioning is hard to obtain. To mimic such a partitioning, we identify blocks.
To remind this concept, a block is a set of jobs such that for each job J,·̂ in the
block there is another job Jĵ in the block such that the intervals [aji^dj]̂ and
[dj îdj-i] overlap; hence, for each job in the block there exists a conflict with at
least one other job in the block. However, these blocks may interfere with each
other in any optimal schedule.

Let overlapj^j^ denotes the length of time period that jobs Jĵ and Jĵ overlap
when both jobs are scheduled at their due dates. Let (tedd and cest denote
sequences for J obtained by applying EDD and EST rules, respectively. We can
obtain the blocks for these two sequences from the definition of block concept
and assume we have I blocks. From now on we talk about a single block, B\.

All of the following discussions apply to all blocks and the overall lower bound is
obtained by simply summing the lower bounds of the all blocks.

Let us have the job Jcr̂ (i)·, x = EDD or EST in block Bi. So, we determine

Chapter 5. Further Results for l|c?j| '^{Ej + Tj) 106

next job that it will overlap among JcEsrli+i) .̂gain in the block
Bi, by applying the following:

min{oi;er/ap<, (̂i)<,^3, (̂v+a), V i = 1 ,2 , . . . , n. (5.1)

So, for job X = EDD or EST and V f = 1,2 , . . . , n, we should determine
the overlap with Jay(i+i)·, y = EDD or EST as follows:

(5.2)

We state the procedure for calculating the lower bound as in the following
theorem.

T heorem 5.2 Let \Bi\ denote the number of jobs that belongs to block Bi and let
Xi — \B<;\· The lower bound for block B\ is obtained as:

X i - 1
T B b , = ouer/ap<,^(,yj,(i+i),

i=Xi-i +1

and the lower bound for the overall problem can be obtained as:

(5.3)

LB = Y ,L B b,.
/=1

(5.4)

P roo f: Equation 5.1 finds the job that has the minimum overlap of job
J<rx[i)i ̂ — EDD or EST since two jobs can be closer either as to their
target starting times or as to their due dates. The reasoning behind the choice of
closest job to job J<r̂ [i)·, x = EDD or EST is to find the minimum conflicting
job with job Jax(i)i ̂ = EDD or EST. The logic behind this choice is as
follows: If two jobs overlap, one of the jobs should be shifted either to the left or
to the right of the other job to have a feasible schedule. The minimal penalty is
obtained by shifting the left most job to the left (that is the job with the least
target starting time is shifted to the left) or the right most job to the right (that is
the job with the largest due date is shifted to the right). Once a job is considered

Chapter 5. Further Results for l|c?j| J2{Ej + Tj) 107

as overlapping with another job and chosen to be shifted, it is not taken into
account in further steps. That is for every job, we determine the least overlap
with all other jobs.

Equation 5.2 exactly finds the overlap of two conflicting jobs. It chooses from
the minimum of two periods and says that the overlap between two jobs can be
the period from the due date of one job to the target starting time of the other
job. The two cases are shown in Figure 5.2. It is obvious that overlapj^j^ is the

a) overlapj^j^ = dĵ — a32

J.3 \ J.32

3̂2

dj2 Ujj

b) dj2 Uji
overlapj^j^ = dĵ -

Jh r ' ^ r "]

3̂2 *32 Vl

dji Uj2

Figure 5.2: Possible overlaps for two conflicting jobs

minimal penalty that should be incurred in the objective function for any pair of
jobs Jjj and Jjj. So a trivial lower bound for l\dj\'^{Ej + Tj) is the summation
of overlaps between the job pairs in a sequence. But the overlaps differ from
one sequence to another. An apparent precedence relations between jobs can be
obtained by choosing the closest job for every job as given in Equation 5.1.

After obtaining the minimum overlaps between job pairs in a block, we just simply

Chapter 5. Further Results for l\dj \ + Tj) 108

take their summation to obtain a lower bound for that block as in Equation 5.3.
It is straightforward to obtain a lower bound from the summation of the lower
bounds of the blocks as in Equation 5.4 from the definition of blocks. ■

In further analysis of this lower bound, we test its performance on the problems
generated in Section 3.4. We obtain the lower bounds on the problems for
n = 8,10,12,14,16,18 and determine the relative error of the lower bound on
the optimal solution. We then test the performance of our lower bound with
another lower bound from the literature. This lower bound is due to Kim and
Yano (1987) and is given as follows:

T heorem 5.3 [Kim and Yano, 1987] If there are conflicts among two or more
jobs when a set o f jobs is placed as Cj = dj for all jobs Jj in the set, the total
earliness and tardiness is not less than Y2 k>2 {^ ~ where tk is the length of
time during which k jobs overlap.

P roof: It is obvious that the optimal objective function value for a set of jobs
is not less than the sum of the objective value of the subsets of jobs which make
the set itself. We can divide a set of jobs into several subsets which are separated
at times when there are no overlapping jobs. From the above statement, we only
have to prove that

j S c ' k > 2

in an arbitrary subset of jobs, a' = {Ji, J 2 , . ■ ■ , J r } · , divided as mentioned above.
We first prove that for any sequence of jobs in cr'

min ^ (E j + T j) > P2 + P3 + · · · + Pr — {dr — d\).

Consider jobs J2 ,J z ,---,J r as one job Ja with processing time pA = Yfj=2 P3 i
and due date dr- Then Yflj^flEj + Tj) is not less than E\ F T\ Ea -\· Ta -
This is because Ej F Tj, V j = 2 ,3 , . . . , r - 1, are all non-negative and
Er FTr = Ea F Ta - It is obvious that for two adjacent jobs J\ and Ja , a schedule

Chapter 5. Further Results for l\dj\J2{Ej + Tj) 109

where either C\ = d\ or Ca — dr is optimal. In both cases Ei +T\ + Ea + Ta is
not less than ~ {dr — d\). Next we prove that

r

ET = p2-h Ps + ■ ■ ■ Pt — {dr — d\) > ^ (A ; — 1) tk-
k=2

Since there is no idle time,

Then

5 3 Afc ^ P i + {dr — d i) ·
k=i

since

ET -- Pk - Pi - {dr - di)
k=l

r

= 53 “Pi “ “ ̂ i)
k=l

T

- Y^{k-l)tk + Y^t k- pi - { dr - di)
kr=2 Jk=l

k=2

5 3 — P i + {̂ T — di).
k=l

The above is true for every sequence of r jobs considered. This completes the
proof. ■

We test the efficiency of the proposed lower bound procedure on the random
problems generated in Section 3.4 but only those with n = 8,10,12,14,16,18
since only their optimal values can be obtained. The algorithm was coded in
C and run on Sun Microsystems’ Sun-4(SPARC) workstations. The optimal
solutions for the test problems obtained from the package program CPLEX Mixed
Integer Optimizer which runs on the same computer systems.

We also compare the proposed lower bound procedure, LB, with one of the lower
bounds from the literature, namely with that of Kim and Yano (1987), LBk y -

Chapter 5. Further Results for l|c?j| Yl{Ej + Tj) n o

The results of the experiment on the performance of LB is given in Table 5.2.
In this table we present both the average and maximum relative errors (fe and
rtmaxi respectively) together with the number of problems in which LB > LBky
(# >). The relative error for any lower bound is given as (z* — z r u l e) / and the
average and maximum relative errors are found out over 125 random problems
for every n value.

Table 5.2: Average and maximum relative errors for LB and LBky and number
of problems LB > LBky or different n values.

LB LBky
n re '̂ m̂ax re # >
8 0.442 0.834 0.508 0.699 90

10 0.495 0.756 0.577 0.765 92
12 0.499 0.816 0.622 0.795 no
14 0.547 0.767 0.664 0.832 111
16 0.554 0.818 0.693 0.845 113
18 0.563 0.816 0.718 0.856 116

over 750
problems 0.517 0.834 0.630 0.856 632

When we examine the results, it is obvious that the performance of LB is superior
to LBky because the average relative error of LB is always smaller than that
of LBky for every value of n. Moreover, LB finds a tighter lower bound than
LBky in 632 problems over 750 problems which means that in 84.3% of the
problems LB outperforms LBky ■ This is an important aspect when such a lower
bound procedure is incorporated in an implicit enumeration procedure. Hence,
we can conclude that the proposed lower bound is superior to that of Kim and
Yano (1987) for problem l\dj\Y^{Ej + Tj).

Chapter 6

Conclusions and Future
Research

The main purpose of this study is to analyze single machine total earliness and
tardiness scheduling problems with distinct due dates, namely l|dj| + Tj),
and to develop a dynamic programming formulation as an optimizing algorithm
for its exact solution and efficient and effective heuristic solution procedures for
an approximate solution. A second aspect of this study is to investigate two
special structures for distinct due dates and either to show that the problem is
MV-h.aià even with the special structure or to propose solution procedures which
bear on the characteristics of the special due date structures.

This chapter describes the contents of this study and discusses the significance
and the importance of the results of this study together with possible directions
for future research.

Chapter 1 defines the problem considered in this study and presents the notation
used. The problem is l\dj \ Y^{Ej +T j), in which n independent jobs, each having
a different due date, have to be scheduled on a single machine to minimize the
total earliness and tardiness penalties. Chapter 2 identifies the characteristics
of the problem \\dj\Y {̂Ej + Tj) together with the different mathematical

111

Chapter 6. Conclusions and Future Research 112

formulations. These are crucial in developing solution procedures for the problem
d-Tj). The literature related with the single machine earliness and

tardiness scheduling problems is reviewed in Chapter 2 in a broader sense as to
give an understanding of the current research on different problems related with
this research. The analyses of the previous studies on the single machine earliness
and tardiness scheduling problems reveal that the research on the problem

+ Tj) is very scarce although it constitutes an important class of
problems. The research on single machine total earliness and tardiness scheduling
problems mainly focused on problems with common due date structure. But,
unfortunately, single machine total earliness and tardiness scheduling problem has
very different characteristics regarding the different due date structures. Hence,
the results obtained for problems with a common due date have a very limited
applicability on problems with different due dates.

The discussion on the approaches of the problem \ \dj \ Y^{Ej + Tj) concludes that
there is a lack of both an exact algorithm and a heuristic procedure which solves
this problem efficiently and effectively. Furthermore, the work in the literature
on the problem l\dj \ Y^[Ej has generally a very restrictive assumption: they
do not allow idle time insertion in the schedule. Although the problem becomes
easier to handle from theoretical point of view with this assumption, it does not
reflect the true nature of the problem. The incorporation of earliness aspect into
the objective function means to accept the possibility of idle time insertion into
the schedule so long as it decreases the cost incurred. One of the contributions
of this thesis is to consider the problem l|dj| Y^{Ej + Tj) without any restrictive
assumptions by allowing idle time insertion whenever necessary.

One of the main chapters. Chapter 3, presents a dynamic programming
formulation for the problem l\dj\Y^{Ej + Tj). This dynamic programming
formulation is the first in the literature that incorporates idle time insertion
in such a solution procedure. This is crucial because the incorporation of idle
time into such a formulation is not so easy, since the completion times of the
jobs cannot be represented simply as the sum of processing times of the jobs

Chapter 6. Conclusions and Future Research 113

scheduled so far as in scheduling problems with regular performance measures.
This dynamic programming formulation is extended to an incomplete dynamic
programming formulation in Chapter 3.

Moreover, simple sequencing rules which are well known for classical scheduling
problems are not applicable to the problem l|dj| + Tj) due to their different
nature. Hence, a heuristic algorithm is developedfor the problem l\dj\J2{^jd-Tj)
which is based on this incomplete dynamic programming formulation and this
heuristic procedure is given in Chapter 3, together with the computational results.
The heuristic is pseudo-polynomial and it outperforms the heuristic given in the
literature which is based on dominance properties and interchanging arguments.

Since it is difficult to obtain general and strong rules that specifies the precedence
relations between jobs, two special due date structures are examined for the
problem l\dj\Yi{Ej + Tj) in Chapter 4. The first structure gives an equal slack
to every job and it is shown that there exist two cases for this structure in that
chapter. In the first case, the optimal schedule has a nice structure and Chapter 4
first presents the equivalence of this case to a polynomially solvable problem and
then proves that the other case is ATP-hard. Chapter 4 also investigates the effect
of a second special structure for the due dates on the problem l\dj\ Y {̂Ej + Tj).
That structure assigns a due date to every job as a multiple of its processing
time. After giving some properties regarding to that special structure, a number
of dominance properties for this problem are developed in order to obtain a
sequence for the jobs. Chapter 4 concludes with an efficient heuristic algorithm.

The author know of no other work on these special due date structures in the
context of the problem l|dj| Ŷ {Ej -f Tj) although they are well studied in the job
shop environments with regular performance measures. So, the results obtained
in Chapter 4 contribute to the theory of scheduling.

Moreover, these results lead to a better understanding of the general problem
and the first part of Chapter 5 extends the results obtained in Chapter 4 for
problem l\dj\Yl[Ej + Tj) and develops an alternative heuristic algorithm for

Chapter 6. Conclusions and Future Research 1 1 4

problem l\dj\Y^{Ej + Tj).

The analysis of the literature shows that there is a lack of good lower bound
procedures for the problem l|dj|^(jBj + Tj). The second part of Chapter 5
concentrates on this issue and presents a lower bound procedure for problem

\̂dj \ Yl{ ^ 3 + Tj). This lower bound procedure is motivated from the structure of
an optimal schedule. The effectiveness of this lower bound is tested on randomly
generated problems and it is shown that the developed bound is better than that
of the one given in the literature.

To sum up, the four significant aspects of this study are:

(i) development of an exact dynamic programming formulation for the problem
iMil 12{Tlj + Tj) which incorporates idle time insertion into the schedule.

(ii) development of two heuristic algorithms which behave well on the average
for the problem \ \dj \ Y^{Ej + Tj).

(iii) analysis of two special due date structures for the problem l|dj| Y^{Ej +T j)
and to describe solution procedures for these special structures.

(iv) development of a lower bound for the problem \\dj\Yl[Ej + Tj) which
behaves well compared to a lower bound from the literature.

Considering the little work on the earliness and tardiness scheduling problems
on the literature, there still remains some open research questions after
the contributions of this dissertation research. First, there does not exist
any time-wise feasible and efficient exact algorithms specific for the problem
\\dj \ Y^{Ej -1- Tj) and the availability of such algorithms is essential for a number
of reasons. To state one, it is important to have a benchmark to empirically
compare the heuristic algorithms being developed, considering the capability of
the current commercial package programs for mixed-integer programming models.

Considering again the exact algorithms, it will be worthwhile to develop a
dynamic programming formulation which is pseudo-polynomial. Our dynamic

Chapter 6. Conclusions and Future Research 115

programming formulation and the insights gained in developing the incomplete
dynamic programming formulation will be a good basis for such a development.
The development of a pseudo-polynomial dynamic programming formulation is
important from the theory of machine scheduling point of view because this
may lead to a fully-polynomial approximation scheme for earliness and tardiness
scheduling problems.

Another possible research direction is to develop more efficient and effective
heuristic algorithms for the problem l\dj\Yi{Ej -f Tj) and to test their
performance. If the exact algorithms are not time-wise feasible for large scale
problems, good approximate algorithms with acceptable mean or worst case
behaviors that run in real time will be meaningful for practical purposes.

In addition, the analysis of special due date structures are important in order to
better understand the problem l|dj| Yi{Ej + Tj). For this reason, it is worthwhile
to show whether the problem l\dj\J2{^j + Tj) with Total-Work-Content rule is
polynomially solvable or it is jV'P-hard.

Finally, the results obtained in this research can be used for total earliness and
tardiness scheduling problems in multi-machine environments by either being a
basis for their solution procedures or supplying approximate solutions.

We can conclude that this dissertation research will serve as a basis for answering
the above further research questions.

List of Notations

j

J3

n

Pj
rj

di

Wj

Vj

V
aj

Sj
Cj
Ej

Tj

Lj
S
c

V

9 A E I T)

set of jobs
j o b j

number of jobs
processing time of job Jj
ready time of job Jj
due date of job Jj
earliness weight of job Jj
tardiness weight of job Jj
ly + u
target starting time of job J j , Oj = dj — pj
starting time of job Jj
completion time of job Jj
earliness of job Jj
tardiness of job Jj
lateness of job Jj
set of starting times
set of completion times
set of penalties, negative and positive values show earliness and

tardiness, respectively
optimality criterion which is a function of earliness and tardiness

116

List of Notations 117

a'

Ja
cr(i)
i

j
z{a)

z*{a)
S

1̂ 1
^5

S'
|£'|

T

m
Ts

\'Ts\
T

\T'\

n)

\ n
d

q
V

M V

Yi

of each job Jj
sequences of jobs
partial sequence of jobs
set of jobs that form the sequence cr
¿-th job in the sequence cr
position index, e = 1 ,2 , . . . , n
job index, j = 1,2 , . . . , n
value of the optimality criterion for the schedule of a
optimal value of the optimality criterion for the schedule of a
set of jobs that complete before the due date
the cardinality of S
set of jobs that complete before the target starting time
the cardinality of Ss

set of jobs that complete exactly on or before the due date
the cardinality of S'
set of jobs that complete exactly on or before the target starting time
the cardinality of S'g

set of jobs that start exactly on or after the due date
the cardinality of T
set of jobs that start exactly on or after the target starting time
the cardinality of Ts
set of jobs that complete after the due date
the cardinality of T'

set of jobs that complete after the target starting time
the cardinality of 7^
common due date for jobs in J
common target starting time for jobs in J
class of problems for which a polynomial-bounded algorithm exists
class of problems solvable by backtrack search of polynomial-bounded
depth
idle time to be inserted before job Jj

List of Notations 118

EDD
EST
LPT
SPT
P
A

Pn +

A
Uj

Bi
Decrease{l)

Dec(l)
Increase{l)

Inc{l)

firs t{l)

last[l)

tmax
LB

UB

f i hJA)

earliest due date
earliest starting time
longest processing time
shortest processing time
total processing time of jobs in an instance
the change in cost

Pi + P3 + ■■■+ Pn if n is odd
P2 + P 4 + ■■■+Pn if n is even

P2 + P 4 + ■■■+ Pn-i if n is odd
P1 + P 3 + ■■· + Pn-i if n is even

finite set of 2n elements, A = {Ai, A2 , .. ■, A 2n}
“size” for every element in A
/-th block in the schedule

{Jc{i)\'̂ cr(i) ^ Bl V Scr{{) ^
|£)ecrease(/)|

{ ‘ ĉr(l) |‘̂ 0'(t) € Bl V ^ <̂7(1)}
|/ncrease(/)|
the smallest index of jobs in the block Bi
the largest index of jobs in the block Bi
minimum total earliness and tardiness of jobs Jĵ and Jĵ when
Jjj precedes Jĵ

max {C jj, }
lower bound
upper bound
minimum attainable value of the penalty function for the partial
schedule of crj U {Jj} when job Jj £ J \ Ja·. is scheduled at
position i and Cj being less than or equal to time t
set of jobs scheduled before job Jj that form a partial schedule
for positions from 1 to i — 1 (leading jobs of job Jj)

time index, t — 1,2, · · ·, ¿tnax
m axjj^ j{d j} + - minj^gj{pj}

List of Notations 119

IDP
R
T

-d

P h i»
Ph («)
SLK

Ja
r

A r
emin

tmin
B

TWC
k

Pmax

Pmin

re

'^^m ax

opt

overlap^

A/
LBb,
tk

JU2

incomplete dynamic programming
relative range of due dates
average tardiness factor

Pi + P3 H------- l· Pn-i if n is even
P2 + P4 H------- l· Pn-i if n is odd

the amount of processing time of job Jĵ before q
the amount of processing time of job Jĵ after q
Equal-Slack
job that starts processing before q and completes at or after q
the starting time of the first job processed in an optimal schedule
change in cost from starting all jobs e units of time earlier
change in cost from starting all jobs e units of time later
min {Jj £ S's)
min {Jj G Ts}

« y / 2
B raised to the power j
Total-Work-Content
processing time multiple in Total-Work-Content rule
{J, e B, \ r/}
maximum of processing times
minimum of processing times
average relative errors
maximum relative errors
number of problems in which optimal solution found among
generated random problems by a heuristic procedure

{Ji € T,'}
length of time period that jobs Jĵ and Jĵ overlap when both
jobs are scheduled at their due dates

T.U \B,\
lower bound for block Bi

length of time during which k jobs overlap

References

1. Azizoğlu, M., S. Kondakçı and Ö. Kırca (1991), “Bicriteria Scheduling
Problem Involving Total Tardiness and Total Earliness Penalties” , Interna

tional J. Production Economics^ 23, 17-24.

2. Bagchi, U., R.S. Sullivan and Y-L. Chang (1986), “Minimizing Mean
Absolute Deviation of Completion Times About a Common Due Date” ,
Naval Research Logistics Quarterly ̂ 33, 227-240.

3. Bagchi, U., Y-L. Chang and R.S. Sullivan (1987), “Minimizing Absolute
and Squared Deviations of Completion Times with Different Earliness and
Tardiness Penalties and a Common Due Date” , Naval Research Logistics
Quarterly, 34, 739-751.

4. Bagchi, U., R.S. Sullivan and Y-L. Chang (1987), “Minimizing Mean
Squared Deviation of Completion Times About a Common Due Date” ,
Management Science, 33, 894-906.

5. Baker, K.S. (1974), Introduction to Sequencing and Scheduling, .John Wiley,
New York.

6. Baker, K.S. (1984), “Sequencing Rules and Due-Date Assignments in a Job
Shop” , Management Science, 30, 1093-1104.

120

References 121

7. Baker, K.S. and G.D. Scudder (1990), “Sequencing with Earliness and
Tardiness Penalties: A Review” , Operations Research ̂ 38, 22-36.

8. Bector, C.R., Y.P. Gupta and M.C. Gupta (1988), “Determination of an
Optimal Common Due Date and Optimal Sequence in a Single Machine
Job Shop” , International J. Production Research, 26, 613-628.

9. Bellman, R.E. (1957), Dynamic Programming, Princeton University Press,
Princeton.

10. Chambers, R.J., R.L. Carraway, T.J. Lowe and T.L. Morin (1991)
“Dominance and Decomposition Heuristics for Single Machine Sequencing” ,
Operations Research, 39, 639-647.

11. Cheng, T.C.E. (1984), “Optimal Due-Date Determination and Sequencing
of n Jobs on a Single Machine” , J. Operational Research Society, 35, 433-
437.

12. Cheng, T.C.E. (1987), “An Algorithm for the CON Due-Date Determina
tion and Sequencing Problem” , Computers and Operations Research, 14,
537-542.

13. Cheng, T.C.E. (1988a), “An Alternative Proof of Optimality for the Com
mon Due-Date Assignment Problem” , European J. Operational Research,
37, 250-253.

14. Cheng, T.C.E. (1988b), “Optimal Common Due-Date with Limited
Completion Time Deviation” , Computers and Operations Research, 15, 91-
96.

15. Cheng, T.C.E. (1990a), “A Note on a Partial Search Algorithm for the
Single-Machine Optimal Common Due-Date Assignment and Sequencing
Problem” , Computers and Operations Research, 17, 321-324.

References 122

16. Cheng, T.C.E. (1990b), “Dynamic Programming Approach to the Single-
Machine Sequencing Problem with Different Due-Dates” , Computers and
Mathematical Applications, 19, 1-7.

17. Cheng, T.C.E. and. M.C. Gupta (1989), “Survey of Scheduling Research
Involving Due Date Determination Decisions” , European J. Operational
Research, 38, 156-166.

18. Conway, R.W., W.L. Maxwell, and L.W. Miller (1967), Theory of
Scheduling, Addison-Wesley, Reading, Mass.

19. Davis, J.S. and J.J. Kanet (1992), “Single-Machine Scheduling with Early
and Tardy Completion Costs” , Naval Research Logistics, to appear.

20. De, P., J.B. Ghosh and C.E. Wells (1989), “A Note on the Minimization
of Mean Squared Deviation of Completion Times About a Common Due
Date” , Management Science, 35, 1143-1147.

21. Emmons, H. (1969), “One-Machine Sequencing to Minimize Certain
Functions of Job Tardiness” , Operations Research, 17, 701-715.

22. Emmons, H. (1987), “Scheduling to a Common Due Date on Parallel
Uniform Processors” , Naval Research Logistics, 34, 803-810.

23. Erlenkotter, D. (1975), “Capacity Planning for Large Multilocation Sys
tems: Approximate and Incomplete Dynamic Programming Approaches” ,
Management Science, 22, 274-285.

24. Fisher, M.L. (1976), “A Dual Algorithm for the One-Machine Scheduling
Problem” , Mathematical Programming, 11, 229-251.

25. Fry, T.D., R.D. Armstrong and J.H. Blackstone (1987), “Minimizing
Weighted Absolute Deviation in Single Machine Scheduling” , HE Trans

actions, 19, 445-450.

References 123

26. Fry, T.D., G.K. Leong and T.R. Rakes (1987), “Single Machine Scheduling:
A Comparison of Two Solution Procedures” , OMEGA, 15, 277-282.

27. Fry, T.D., R.D. Armstrong and L.D. Rosen (1990), “Single Machine
Scheduling to Minimize Mean Absolute Lateness: A Heuristic Solution” ,
Computers and Operations Research, 17, 105-112.

28. Carey, M.R. and D.S. Johnson (1979) Computers and Intractability: A
Guide to the Theory o f NP-Completeness, W.H. Freeman, New York.

29. Carey, M.R., R.E. Tarjan and C.T. Wilfong (1988), “One-Processor
Scheduling with Symmetric Earliness and Tardiness Penalties” , Mathemat
ics o f Operations Research, 13, 330-348.

30. Hall, N.C. (1986), “Single- and Multiple-Processor Models for Minimizing
Completion Time Variance” , Naval Research Logistics Quarterly, 33, 49-54.

31. Hall, N.C., W. Kubiak and S.P. Sethi (1991), “Earliness-Tardiness Schedul
ing Problems, ILDeviation of Completion Times About a Restrictive
Common Due Date” , Operations Research, 39, 847-856.

32. Hall, N.C. and M.E. Posner (1991), “Earliness-Tardiness Scheduling
Problems, LWeighted Deviation of Completion Times About a Common
Due Date” , Operations Research, 39, 836-846.

33. Hoogeveen, J.A. (1992), Single-Machine Bicriteria Scheduling, Unpublished
Ph.D. Thesis, CWI, Amsterdam.

34. Hoogeveen, J.A. and S.L. van de Velde (1992), “Scheduling Around a
Small Common Due Date” , Report BS-R8914, Centre for Mathematics and
Computer Science, Amsterdam.

35. Ibaraki, T. and Y. Nakamura (1990), “A Dynamic Programming Method for
Single Machine Scheduling” , Technical Report 7^90004, Kyoto University,
Kyoto, Japan.

References 124

36. Kanet, J.J. (1981), “Minimizing the Average Deviation of Job Completion
Times About a Common Due Date” , Naval Research Logistics Quarterly,
28, 64.3-651.

37. Kim, Y-D. and C.A. Yano (1987), “Algorithms for Single Machine
Scheduling Problems Minimizing Mean Tardiness and Earliness” , Technical
Report 87-27, The University of Michigan, Ann Arbor, Michigan.

38. Lakshminarayan, S., R. Lakshmanan, R.L. Papineau and R. Rochette
(1978), “Optimal Single-Machine Scheduling with Earliness and Tardiness
Penalties” , Operations Research, 26, 1079-1082.

39. Lawler, E.L. (1977), “A Pseudopolynomial Algorithm for Sequencing Jobs
to Minimize Total Tardiness” , Annals of Discrete Mathematics, 1, 331-342.

40. Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (1989),
“Sequencing and Scheduling: Algorithms and Complexity” , Report BS-
R8909, Centre for Mathematics and Computer Science, Amsterdam, The
Netherlands.

41. Lawler, E.L. and J.M. Moore (1969), “A Functional Equation and its Ap
plication to Resource Allocation and Sequencing Problems” , Management
Science, 16, 77-84.

42. Morin, T.L. (1979) “Computational Advances in Dynamic Programming” ,
Dynamic Programming and Its Applications, 53-90. Academic Press, New
York.

43. Oğuz, C. and C. Dinçer (1992), “Single Machine Earliness-Tardiness
Scheduling with Equal-Slack Rule” , Research Report No.IEOR9203,
Department of Industrial Engineering, Bilkent University (submitted to the
J. Operational Research Society).

44. Oğuz, C. T.L. Morin and C. Dinçer (1992), “Incomplete Dynamic
Programming for Single Machine Scheduling with both Earliness and

References 125

Tardiness Penalties” , Research Report No.IEOR9210, Department of
Industrial Engineering, Bilkent University.

45. Ow, P.S. and T.E. Morton (1988), “Filtered Beam Search in Scheduling” ,
International J. Production Research, 26, 35-62.

46. Ow, P.S. and T.E. Morton (1989), “The Single Machine Early/Tardy
Problem” , Management Science, 35, 177-191.

47. Panwalkar, S.S., M.L. Smith and A. Seidmann (1982), “Common Due Date
Assignment to Minimize Total Penalty for the One Machine Scheduling
Problem” , Operations Research, 30, 391-399.

48. Potts, C.N. and L.N. Van Wassenhove (1982) “A Decomposition Algorithm
for the Single Machine Total Tardiness Problem” , Operations Research
Letters, 1, 177-181.

49. Quaddus, M. (1987), “A Generalized Model of Optimal Due-Date
Assignment by Linear Programming” , J. Operational Research Society, 38,
353-359.

50. Raghavachari, M. (1986), “A V-Shape Property of Optimal Schedule of
Jobs About a Common Due Date” , European J. Operational Research, 23,
401-402.

51. Rinnooy Kan, A.H.G. (1976), Machine Scheduling Problems, Martinus
Nijhoff, The Hague, The Netherlands.

52. Seidmann, A., S.S. Panwalkar and M.L. Smith (1981), “Optimal As
signment of Due-Dates for a Single Processor Scheduling Problem” ,
International J. Production Research, 19, 393-399.

53. Sen, T. and S.K. Gupta (1984), “A State-of-Art Survey of Static Scheduling
Research Involving Due Dates” , Omega, 12, 63-76.

References 126

54. Sidney, J.B. (1977), “Optimal Single-Machine Scheduling with Earliness
and Tardiness Penalties” , Operations Research ̂ 25, 62-69.

55. Sundararaghavan, P.S. and M.U. Ahmed (1984), “Minimizing the Sum of
Absolute Lateness in Single-Machine and Multimachine Scheduling” , Naval
Research Logistics Quarterly, 31, 325-333.

56. Szwarc, W. (1989), “Single-Machine Scheduling to Minimize Absolute
Deviation of Completion Times from a Common Due date” , Naval Research
Logistics, 36, 663-673.

57. Tahboub, Z-A. A-M. and W.E. Wilhelm (1987), “Use of a Surrogate
Problem to Minimize Total Earliness-Tardiness Penalties on a Single-
Machine” , Working Paper No 1986-010, Dept, of Industrial and Systems
Engineering, The Ohio State University.

58. Yano, C.A. and Y-D. Kim (1989), “Algorithms for a Class of Single-
Machine Weighted Tardiness and Earliness Problems” , Technical Report,
The University of Michigan, Ann Arbor, Michigan.

Vita

Ceyda Oğuz was born in Elazığ, on 3 May 1964. She attended the Department
of Industrial Engineering, Middle East Technical University in September 1982
and graduated with honors in July 1986. In September 1986, she joined to the
Department of Industrial Engineering, Bilkent University as a research assistant.
From that time to the present, she worked with Dr. Cemal Dinçer for her
graduate study at the same department. She got her M.S. degree in October
1988 with the thesis titled as “Design and Analysis o f Just-In-Time Production
Systems”. During her Ph.D. study with Dr. Cemal Dinçer, she worked on the
Single Machine Early-Tardy Scheduling Problems. Currently, she is a research
assistant at the Department of Industrial Engineering, Bilkent University.

127

