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Abstract

MOTION ARTIFACT REDUCTION TECHNIQUES IN 
MAGNETIC RESONANCE IMAGING

Elgin Atalar
Ph. D. in Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Levent Oniiral 
July 1991

It is shown that the expansion/shrinkage and rotational motions of the body cause phase 

and amplitude distortions and non-rectangular sampling over the A:-domain. If these distortions 

are not compensated then the reconstructed image will suffer from ''the motion artifact'. 

The mathematical relation between motion and motion artifact is given. If the motion of the 

body is known, it is possible to obtain motion artifact free images. The motion is estimated 

either by using the information in the acquired data or by direct measurement. These estimates 

and the relation between motion and artifact are used to compensate the pha.se and amplitude 

distortions. Using the non-rectangular samples over the ¿-domain the rectangular samples are 

obtain by the aid of the singular value decomposition method. And finally, the inverse Fourier 

transform of these calculated samples gives the motion artifact free image. The proposed 

method is tested by simulations. For the estimation of the motion, two methods are proposed 

and tested. The first method is an iterative image reconstruction method. The second one uses 

the navigator echoes to obtain the amount of motion.

Keywords: Magnetic Resonance Imaging, Motion Artifact Reduction in MRI, 

Respiratory Motion Artifact,



özet

MANYETİK REZONANS GÖRÜNTÜLEMEDE KIPIRTI 
BOZUKLUKLARININ GİDERİLME YÖNTEMLERİ

Ergin Atalar
Elektrik ve Elektronik Mühendisliğinde Doktora 

Tez Yöneticisi: Doç. Dr. Levent Onural 
Temmuz 1991

Manyetik rezonans görüntülemede, görüntülenen cismin dönme ve genişleyip daralma 

hareketlerinin toplanan verilerin evre ve genliklerinde bozukluklara ve Fourier dönüşüm 

düzlemindeki örneklerin istenenden farklı yerlede alınmasına neden olduğu gösterilmiştir. 

Gerekli düzeltmeler yapılmazsa görüntülerde ^'kıpırtı bozuklukları^^ oluşur. Hareket ile 

bozukluklar arasındaki matematiksel ilişkiler verilmiştir. Cismin nasıl kıpırdadığı tam olarak 

biliniyorsa, net görüntülerin elde edilmesi mümkündür. Önerilen yöntemde, elde edilen 

verilerden ya da doğrudan ölçümlerden cismin hareketi kestirilir. Bu kestirim sonuçlarını ve 

bilinen hareket-bozulma ilişkisini kullanarak evre ve genliklerdeki hatalar düzeltilir. Fourier 

düzleminde ölçümlerle elde edilmiş örnekler kullanılarak tekil değer ayrışımı yöntemi ile düzgün 

aralıklı yerleşik yeni örnekler hesaplanır. Son olarak da bu hesaplanan değerlerin ters Fourier 

dönüşümü alınarak bozukluğu giderilmiş görüntü elde edilir. Önerilen yöntem benzetim ile elde 

edilmiş veriler kullanılarak denenmiştir. Yukarıda belirtilen hareket kestirimi için de iki yöntem 

önerilmiş ve denemiştir. Bunlardan ilki bir tekrarlamalı görüntü onarım yöntemidir. İkincisi 

ise yönlendirici yankı (navigator echo) kullanılarak kıpırdama miktarının bulunması ilkesine 

dayanmaktadır.

Anahtar sözcükler: Manyetik Rezonans Görüntüleme, Manyetik Rezonans Görüntüleme­

de Kıpırtı Etkilerinin Giderilmesi, Görüntü Bozuldukları
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Chapter 1

INTRODUCTION

In the last decade magnetic resonance imaging (MRI) became one of the major 

imaging methods used for the diagnosis of various kinds of illnesses. Although 
the cost of a magnetic resonance imaging instrument is very high, the capability 

of showing the cross-sectional image of the human body with very high soft 
tissue contrast makes it very useful. The MRI is based on the nuclear magnetic 
resonance (NMR) phenomenon which was discovered by Bloch [1] and Purcell
[2] in 1946 independently. They both shared the 1952 Nobel prize for their 

invention. After the invention of -NMR, it took a long period to get the first 
magnetic resonance image. In 1973, Paul Lauterbur [3] obtained the first MRI 
images. Until now, thousands of works were carried out to get higher quality 

magnetic resonance images. Impressive image quality improvement is achieved. 
But still there are many studies on getting higher and higher quality images.

One of the important problems of MRI is that the data acquisition process 

takes a long time (in the order of 10 minutes). In this interval, the patient must 
lie in an uncomfortable and noisy bore without any movement. In the standard 

magnetic resonance imaging methods any movement of the body during the data 

acquisition period causes image degradation which is called the motion artifact. 
To reduce the severity of this motion artifact problem usually the patients are 

fastened to the bed. But there are some physiological motions that can not be 

stopped such as the motion of the heart, blood flow and breathing. The motion

1



Chapter 1. INTRODUCTION

artifact due to these types of motions appear on the image as ghost-like replicas 
of the moving structure. In addition, the blurring of the moving structure is 
observed. These tj'^pes of artifacts on the image may cause faulty diagnosis.

The studies on the solution of this problem can be divided into two main 

categories. The scientists working on the first category try to decrease the data 
acquisition time. To get a motion artifact free image, the data acquisition time 
must be much less than the one heart beat period (For a normal human, this 
period is in the order of 700 msec). Although there is a tremendous decrease 
in the data acquisition time, there is still a long way to go b Other scientists 
are trying to find MR imaging methods which minimize the effect of the motion 

to the acquired magnetic resonance signal. In these methods, the images are 
obtained by the standard image reconstruction method. The magnetic resonance 
signal is sampled as if there is no motion, and two-dimensional inverse Fourier 

transform of the collected data is evaluated to obtain the image.

In this dissertation, the motion artifact problem in MR imaging is analyzed 
and some artifact reduction methods are proposed. In these new methods, 
the MR signal is acquired using the standard Fourier transform imaging pulse 

sequence. The effect of motion is eliminated by signal processing methods. The 
image is obtained by calculating the inverse Fourier transform of the processed 
data.

In the next chapter a brief introduction to the nuclear magnetic resonance 
and magnetic resonance imaging are given. This introduction will be helpful for 

those who are not familiar with the magnetic resonance imaging. For those who 

already know the magnetic resonance imaging, the next chapter may be a review 

and an introduction to the notation that will be used in the later chapters. The 
third chapter is a literature survey. It is very difficult to cover all the methods 

which are used on the motion artifact reduction, but the author has selected 
the artifact reduction methods which are related to the approaches used in this 

dissertation. In the fourth chapter the effect of the motion to the MR signal

tin some very recent studies subsecond MR imaging methods are announced [4]. But the 

images suffer from very poor resolution and very poor SNR.
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will be formulated. This formulation will cover various forms of motion of the 

bodjc In the fifth chapter, the image reconstruction methods will be exphiined 
and the simulation results will be demonstrated. The last chapter is devoted to 
concluding remarks.



Chapter 2

BASICS OF M R IMAGING

As the title implies, the basic principles of the Magnetic Resonance Imaging 
(MRI) will be discussed in this chapter. Very well written tutorials on this subject 
can be found elsewhere [5]-[15]. The aims of this chapter are to introduce the 

basic principles to those who have no or little knowledge on MRI and to show the 
derivation of the basic imaging equation. In the next chapters this basic imaging 
equation will be modified to include the effects of the motion.

In the first section of this chapter, the nuclear magnetic resonance (NMR) 
phenomenon is shortly discussed, the equipment necessary for the observation 
of the phenomenon is introduced, and the famous spin echo pulse sequence is 

explained. In the second section of this chapter, the principles of the magnetic 
resonance imaging is mentioned and the imaging equation is constructed.

2.1 N uclear M agnetic R esonance

If a sample is placed in a uniform time invariant magnetic field and is subject to 

radiofrequency (RF) radiation at the appropriate frequency, nuclei in the sample 
can absorb energy. This phenomenon is called nuclear magnetic resonance” or 

^^NMR” [16]. When the RF radiation is stopped, the energy absorbed by nuclei 

is emitted. The NMR phenomenon can be detected by the measuring either the 
absorbed or the emitted energy.
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J

Figure  2.1: A spinning positively charged sphere has an angular momentum 
and a magnetic dipole moment which are in the same direction

Because of some special properties of the hydrogen, detection the NMR 
phenomenon for hydrogen nucleus (i.e. proton) is relatively easy. First, hydrogen 
is naturally abundant. Second, in the NMR experiments, it is shown that the 
level of energy absorption by hydrogen is higher than all the other elements [7]. 

For these reasons, in magnetic resonance imaging, the NMR for proton is used.
In this section, first the proton energy emission process is explained. The 

energy emission can be observed in a uniform magnetic field. For this reason, the 

behavior of protons in a uniform magnetic field is given. Second, a method for 

measuring the emitted energy is illustrated. Later, the proton energy absorption 
process is explained. And finally, the spin echo pulse sequence is introduced.

2.1.1 Protons in a Uniform Magnetic Field

The nuclear magnetic resonance of proton is a quantum mechanical phenomenon. 

But it is possible to visualize it in terms of classical electrodynamics by modeling
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F igure  2 .2: A rapidly spinning top. The gravitational force, / ,  acting to the 
top, and the spin of the top causes precession. The precession axis is parallel to

/ ·

the proton as a spinning positively charged sphere (See Figure 2.1). The spinning 
sphere has both a magnetic dipole moment and an angular momentum. The 
rotating charges outside the sphere behave like a current passing through a 

circular wire. As a result of this current, a magnetic dipole moment, p, will 

be produced [17]. The angular momentum of the sphere, y , will be in the same 
direction with the magnetic moment (See Figure 2.1). Thus

Ai = 7J (2.1)

Quantum mechanically, a proton has an intrinsic angular momentum, called 

The spin, in turn, gives rise to a magnetic dipole moment. As in the 

spinning sphere case, the spin and the magnetic dipole moment of a proton are 

in the same direction. And therefore, Eq. 2.1 is also valid for a proton. In that 
equation, the scalar constant, 7 , is called “t/ie gyromagnetic ratio” (sometimes it 

is called the magnetogyric ratio).
The behavior of a spin under a uniform magnetic field is similar to the motion 

of a spinning top. The spin of the top causes rotation around the vertical axis 

(see Figure 2.2). This rotation is called the gyroscopic precession [18]. If the spin
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is under a uniform magnetic field, h, a torque acts on it as (See [17, page 15.1]);

T = fi X h

This torque causes a change in the angular momentum of the proton, i.e.:

(2.2)

r =
(it

(2,3)

Using equations 2.1, 2.2, and 2.3 one may derive the following equation:

dpL
dt

~  7/i X h (2.4)

The above explanation is tricky because a quantum mechanical phenomenon 
is explained using the classical physics. However, the macroscopic behavior of 

the protons obeys the results obtained by this derivation. A quantum mechanical 
explanation exists and the same macroscopic results can be obtained [16].

The macroscopic form of Eq. 2.4 is in the same form. But in this form, 
we will not have spins and individual protons instead we will have spin density 
and proton density. Another name of the spin density is “magnetization^ and its 
symbol is m . Therefore, the macroscopic equation for NMR is

dm
dt

= 7m  X h (2.5)

In NMR, the motion of the magnetization under time invariant magnetic field 
is very important. Let the magnetic field be

h  = HqZ (2.6)

where z  is the unit vector along the /-direction. Here, the direction of the 
magnetic field is arbitrarily selected. For the case of time invariant magnetic 

field (Eq. 2.6), the solution of Eq. 2.5 is

rrix{t) = Tnx{0) cos {ix>ot) + iriy sm {u>ot) 

m y { t )  = —ma:(0) sin {uot) + ruy cos (woi) 

mz{t) =  m^(0)

(2.7)

(2.8) 
. (2.9)



where vix, my, and are the x, y, and z components of the magnetization 
vector m , respectively, and

0)0 = (2.10)

In general, it can be said that in a static magnetic field, the magnetization 
vector rotates around the axis of the magnetic field with, so called, the Larmor 
frecjiiency u>q. This motion of the magnetization is called the precessional motion 
because the spins of the protons axes cause rotation around the axis of the 

magnetic field.
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2.1.2 The R otating Frame

The analysis of the magnetization vector is much more easier if a rotating frame 
is introduced. This is frequently used in the explanation of the NMR related 

phenemona.
In the previous subsection, it is derived that in a uniform time invariant 

magnetic field, the magnetization vector rotates around the axis of the field. For 
the field, Hq, in the 2: direction, the rotation axis was the z-axis and the frequency 
was (jJq (see Eq. 2.10). Let x', y', and z' be the coordinates of the rotating frame 
which rotates around the z-axis with the frequency in the same direction with 
the precessional motion.

.Since the rotation frequency of the frame and the magnetization are the same, 
the magnetization vector stays still in the rotatiaig frame (see Figure 2.3).

From the behavior of the magnetization vector on the rotating frame one can 

deduce that there is no effective magnetic field [9]. In the theoretical analysis of 
this fact, one can find the same result: the rotating frame cancels the effect o f 
the main magnetic field. The basic NMR equation for the rotating frame can be 

written as:
dm '
dt

=  7 m '  X heff (2.U)

where
heff = h' — HqZ.

The above equation is proved in Appendix A.
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F igure  2.3: The rotating frame. In the rotating frame the magnetization vector 
seems to have no motion.

2.1.3 The Steady State M agnetization

The magnetization vector aligns with the applied magnetic field at the steady 
state although the previous formulation does not say anything about it. In the 
previous formulation the protons are assumed to have no interaction with their 
lattice and the other protons. As a result of these interactions, the protons 

give energy to the environment and the magnetization vector tends to stop its 
precession. This is similar to the effect of the friction to the motion of the spinning 
top. The motion of the magnetization vector toward its steady state position is 

called the relaxation.

Whatever the initial position is, the magnetization vector reaches a unique 
steady state value. This value. Mo, is proportional with the amplitude of the 
applied magnetic field and the proton density (See [16, page 2]):

Mo =  XqHo (2.12)

where the variable Xo is called the static nuclear susceptibility. The susceptibility 

is proportional with the proton density, p, and inversely proportional with the



Cha-pter 2. BASICS OF MR IMAGING 10
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Figure  2.4: The relaxation of the magnetization vector. The magnetization 
vector has a spiral like motion. It rotates around 2: axis while moving towards its 
steady state value.

temperature when the temperature is given in Kelvins.

In magnetic resonance imaging (MRI), the aim is to obtain the image of the 
proton densit}'  ̂ distribution in the bod}c This is achieved by imaging the steady 
state magnetization, M q, assuming the temperature and the main magnetic field 
intensity are space and time invariant.

2.1.4 The Relaxation Time Constants

Due to the relaxation, the magnetization vector moves in a spiral trajectory as 

shown in Figure 2.4. This motion can also be observed in the rotating frame (see 
Figure 2.5). This relaxation can be formulated by the aid of two time constants: 

Ti, the longitudinal (spin-lattice), and T2 , the transverse (spin-to-spin) relaxation 

time constants.
The longitudinal component of the magnetization vector, m^, moves toward
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Figure  2.5: The relaxation of the magnetization vector in the rotating frame. 

The rotational motion of the magnetization vector can not be observed in the 
rotating frame. Only the motion due to the relaxation of the vector can be 
observed.

the steady state magnetization with the time constant Ti.

m^{t) = exp(-i/T i)?n^(0) +  (1 -  ex p (-i/T i)) Mq (2.13)

The transverse components of the magnetization vector, [rrix and my) decays 

exponentially while rotating around the г-axis. The decay time constant is T2. 
In the rotating frame only the exponential decay can be observed:

m(,(i) = exp(-i/T2)mi(0)

">',(1) =  e-’< P ( - l/Í2)™!,(0)

(2.14)

(2.15)

The transverse component of the magnetization vector may be shown in the 

complex number form^ as:
m = m'^A jTn'y (2.16)

Un this text, the components of the magnetization vector will be shown in various forms. 

The magnetization vector is shown as a three dimensional vector with a symbol, m . The
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where j  = a/ —1. The complex plane is defined as the rotating frame. In other 
words, if m is time invariant, it means the magnetization vector rotates around 
the 2-axis with frequency loq. Using this complex notation, the equations 2.14 
and 2.15 can be written as:

m (t) = miO)exp{-t/T2) (2.17;

Since the Ti and T2 time constants depend on the structure of the material, 

they are also space variant. In magnetic resonance imaging, not only the proton 

density distribution image, but also the Ti and T2 images can be obtained. 
Medical doctors usually prefer T2 weighted proton density images because of 
their high contrast between the normal and the abnormal tissues.

Ti is alwa}''s longer then T2 : and the longest time constants are in the order 
of 1 second for the human body.

2.1.5 Receiving the NM R Signal

Observation of the motion of the magnetization vector is one of the key issues in 
the nuclear magnetic resonance. This can be achieved by measuring the emitted 

energy by the protons.
It is derived in the previous sections that, the transverse component of the 

magnetization vector has a rotational motion and the longitudinal motion of the 
magnetization vector is very slow. But on the other hand, with a simple RF 
(radio frequency) coil it is possible to observe the rapid rotational motion of the 

magnetization.

For example, a saddle-type RF coil (see Figure 2.6) which is placed along the 
2-direction is sensitive to the change of the magnetic field in the transverse plane. 

Examples of RF coil designs can be found in [19] - [21]. The RF coil which is

irix̂  rriy and rriz are the a?, y, and z components of it. The transverse components of the 
magnetization are mx and rriy. And the longitudinal component of the vector is . Symbols 

with prime in their notation are defined in the rotating frame (for example, m ' and m '). Note 

that m' = . And finally, m stands for the complex form representation of the transverse
component of the magnetization.
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X

F igure  2.6: A sample RF coil: Saddle-t5̂ pe. This coil is sensitive to change of 
the total magnetization in the transverse plane.

placed around the object is stationary. So only the change of magnetic field may 
generate voltage across the coil.

In Figure 2.7, the block diagram the data acquisition unit is shown. Using 
this unit, the total magnetization in the volume of interest can be obtained. For 
this system, the relation between the magnetization and the received signal can 

be written as:

s(t) =  J w{x)m{t] x)dx  (2.18)

where s{t) is the complex form of the NMR signal which is given as:

s{t) = Sr{t) -I jSi{t)

and X and dx are the position vector and differential volume element, respective­

ly:
X =  [ x , y , z f  

dx =  dxdydz
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RF Coil

F igu re  2.7: The block diagram of the data acquisition unit. The electrical signal 
at the output of the RF coil is a bandlimited signal which has a center frequency 
coq. The data acquisition unit changes the center frequency to 0. and digitize the 

data in the complex form.

In Eq. 2.18, w stands for the weighting function which is related to the design of 
the RF coil. In the RF coil design, the designer tries to make w space independent. 
The design is approximately valid for the volume of interest (VOI). Assuming a 

good RF coil design and no object outside the volume of interest, the above 

equation may be modified as:

s{t) = W  i  m{t)dv 
Jvo i

(2.19)

where W , which may be complex number, is the value of the weighting function 
in the volume of interest.

w{x) =  kF for ® G V O I (2.20)

As a result, the received signal for the system shown in Figure 2.7 is equal 

to a constant times the transverse component of the total magnetization of the
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body. Since the total magnetization is time dependent, the received signal is also 

time dependent. In magnetic resonance imaging, the steady state magnetization 
distribution will be found using the measurement of the transverse component of 
the total magnetization.

2.1.6 The Effects of RF Magnetic Field

In the steady state, the energy of the protons will vanish, the transverse 

component of the magnetization will be zero, and therefore the NMR signal 
cannot be observed. To observe the signal, the transverse component of the 
magnetization must be made non-zero. This can be achieved by tilting the 

magnetization vector. For this purpose a time limited additional radio frequency 

(RF) magnetic field is used:

0 i < 0
h{t) = Hqz +   ̂ HilZ,{ujot)y for 0 < i < Trp

0 t >  Trp

(2.21)

where Hi and Trp are the amplitude and the duration of the RF magnetic field, 

respectively, y  stands for the unit vector along the y-direction and is the
rotation matrix which is defined as:

n , { 0 )

cos(6>) sin(0) 0 
— sin(^) cos(0) 0 

0 0 1

(2.22)

As it can be seen in the above equation, this magnetic field is composed of 
two parts: A static magnetic field along z direction and a time limited radio 
frequency (RF) magnetic field which rotates around the z-axis with a frequency 

of Wo· Because of the short duration of the RF magnetic field, it is called an RF  

pulse.
Assume TpF is selected so that

liiF  Ti and T2
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It means there is no relaxation during the RF pulse period.
It is interesting to observe that in the rotating frame the analysis of this 

complicated magnetic field becomes very simple. In section 2.1.2. it is shown 
that the rotating frame cancels the effect of the main magnetic field. Therefore

0 i < 0
= <1 H iy' for 0 < t< T R F  

0 t >  Trp

(2.23)

During the RF pulse period (0 < t < Tr f ), the effective field appears as if 
it is a stationary field. It means the magnetization vector will rotate around the 
field axis (y') with frequency loi (See Figure 2.8) where

LOi =  -yHi. (2.24)

Therefore at the end of the RF pulse, the magnetization vector will be tilted a  
radians in the x' — z' plane (See Figure 2.9) where

Oi =  -^Hi Trf (2,25)

■Assume that the magnetization vector was at the steady state before the RF 
pulse:

m (0) =  [0, 0,M o r  (2.26)

Just after the RF pulse, the magnetization vector will be:

^ ( T r f) =  [Mosin(a),0,Mocos(a;)]·' (2.27)

The maximum NMR signal can be obtained if the magnetization vector aligns 

with the i'-axis. This can be achieve by the aid of an RF pulse whose Hi and 
Trf  are arranged so that a = j .  In this case, the amplitude of the transverse 
component of the magnetization will be equal to M q (steady state magnetization) 

just after the RF pulse. This type of pulse is called a 90° RF pulse.

As a result, in a uniform time invariant magnetic field, the magnetization 
vector is aligned with the magnetic field. The position of this magnetization
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Figure  2.8 : The effective magnetic field of the RF field in the rotating frame. 
If there is an RF magnetic field in the transverse direction with a frequency 
iOo in addition to a constant magnetic field, in the z direction, then the 

effective magnetic field in the rotating frame will be a constant magnetic field in 
the transverse plane. The magnetization vector rotates around the axis of this 
effective magnetic field.

vector can be changed by the aid of a RF magnetic field applied in the transverse 

plane, if the frequency of the RF field is exactly the same as the Larmor frequency 

of the protons which are in that field. In this way, energy can be transferred to 
the protons.

The analysis for the RF magnetic field which have a frequency other than cuq 

is not carried out here. But it can be shown that the RF pulse frequency is very 
critical. A slight change in the frequency causes no change in the magnetization 

vectors and therefore no energy transfer can be observed. The magnetization 

vectors resonate at the frequency cuq· This phenomenon is called “ihe nuclear 
magnetic resonance”.



Chapter 2. BASICS OF MR IMAGING 18

iz

K

/ a

*-'X

Figure 2.9: The. effect of an RF pulse which has a tilt angle of a. A short 
RF pulse rotates the magnetization vector around its axis during the RF pulse 
application period. At the end of this period, the magnetization vector will be 
tilted towards the transverse plane. The tilt angle depends on the strength and 
the duration of the RF pulse.

2.1.7 The Spin Echo

As it is stated in the previous subsection, the angle of the RF pulse can be set 

to any value by controlling the duration and the amplitude of the RF pulse. The 
angles 90° and 180° have very special usage.

As it is stated in the previous subsection, the 90° RF pulse which is applied 

when the magnetization vector is at the steady state maximizes the transverse 
component of the vector. The maximization of the transverse component is 

very important because only this component of the magnetization vector can be 

measured. The 180° RF pulse which we are talking about is an RF pulse which is 
in phase with the rc'-axis and and its amplitude and duration are arranged so that 
a 180° rotation of the magnetization vector around the a;'-axis is obtained. If the
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180° RF pulse is applied when all the magnetization vectors are in the transverse 
plane, their amplitudes will remain the same, but their angle with resi^ect to the 
rr'-axis will be the negative of their previous angles. In the complex notation:

?77.4. = m (2.28)

where in_, and are the magnetizations before and after the 180° RF pulse, 
and * indicates the complex conjugation.

Unfortunately, there are some measurement problems. The first one is that 
the transverse component of the magnetization can not be observed while the RF 
pulse is applied. Since the NMR signal and the RF pulse have the exactly same 

frequencies (Larmor frequency), in the acquisition of the NMR signal the effect 
of the RF magnetic field is unavoidable.

The second problem is the main magnetic field inhomogenity. In practice, it is 

impossible to obtain a uniform magnetic field. Under an inhomogeneous magnetic 
field, all the spins will have close but different Larmor frequencies. Usually the 
mean value of all of these Larmor frequencies is selected as the global Larmor 

frequency, and the angular velocity of the rotating frame, and the frequency of the 
RF field is equal to this global Larmor frequency. The spins which have different 
frequencies than the global Larmor frequency, move in the rotating frame with a 
frequency Au> where

■ (2-29)

In the above equation, and are the spin and the global Larmor

frequencies. Note that Ao) is a function of space. In most systems, the maximum 
value of A lu is in the order of 500 radians/seconds. The typical Larmor frequencies 

are in the range of 25 to 500 megaradians/second.

All the magnetization vectors are in the x direction just after the RF pulse, 
but they start moving with different angular velocities. After a short time interval 

all the vectors will be dispersed in the transverse plane. Since the NMR signal is 

the integration of the magnetization vectors, no signal can be obtained.
A useful signal can be obtained if and only if the magnetization directions are 

close to each other. Therefore a method for collecting the dispersed vectors in
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Figure 2.10: The spin echo RF pulse sequence

one direction is necessaiy.
The spin echo is the solution to this problem. Some time after the application 

of a 90° RF pulse, another RF pulse which has a tilt angle 180° is applied (See 
Figure 2.10). Assume that many spins are concentrated at a point and they all 
have close but diiferent Larmor frequencies. Just after the 90° RF pulse, all of 
them are aligned in the transverse plane (See Figure 2.11). As the time goes on 
the spins are dispersed (Figure 2.12). At time T e / ' 2  a 180° RF pulse is applied. 
With this RF pulse the spins rotate around the ar-axis (Figure 2.13). The spins 

which were moving in the positive direction now have negative angles. On the 
other hand, the spins which were moving in the negative direction now have 
positive angles. The faster moving spins have larger angles. After the 180° RF 
pulse the spins which have negative angles move in the positive direction, and 

the spins which have positive angles move in the negative direction. As the time 
goes the spins move towards the a-axis. At the echo time, Te, all the spins are 

aligned and the NMR signal is obtained (Figure 2.14).

2.2 M agnetic R esonance Im aging

The ultimate aim of the magnetic resonance imaging (MRI) is to obtain a proton 
density image of a slice of the body. In addition to the proton density images, Ti 
and T2 weighted proton density images can be obtained. The meaning of the Ti, 

and T2 weighted images will be clarified at the end of this section.
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F igu re  2.11; The positions of the magnetization vectors just after a 90° RF 

pulse.

In all MR imaging methods (there are many of them), the main idea is to 
make the Larmor frequency space and time variant. It is possible to have a 
one to one correspondence between the angular frequency of the rotation of the 

magnetization vector and the position if the field is designed properly. In the 

image reconstruction step, the amplitudes of the frequency components of the 
measured total magnetization are found using the Fourier transformation. And 
using the one to one relation between the frequency and the position, the MR 

image will be obtained.
For this purpose an expensive high precision instrument is needed. This 

instrument generates a very high uniform magnetic field. In addition to the 

this uniform field, a computer controlled time and space dependent perturbation 
magnetic is generated. With the proper adjustment of the perturbation magnetic 
field, the NMR signal is acquired and processed.

This section is a short introduction to MRI. In the first subsection, the 
MRI instrument will be explained. The space and time variant magnetic field 

generation method will be introduced. Then the basic imaging equation will be
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Figure  2.12: The magnetization vector dispersion due to the field inhomogenity. 
The positions of the magnetization vectors just before the 180° RF pulse are 

dispersed in the transverse plane. The vector a  has a negative Acu, so it rotates 
in the clockwise direction and it has a large negative angle, b has also negative 
but smaller Acu, so the angle between the x axis and the magnetization vector 
b is smaller. On the other hand, the magnetization vectors c and d both have 

positive Aoj values.

derived. Using this imaging equation of the MRI, the Fourier transform imaging 
method will be explained.

2.2.1 The Instrument

The block diagram of the instrument is given in Figure 2.15. The instrument can 
be divided into four main categories: The magnet, the control block, the data 

acquisition unit, and the image generation unit. The control block generates five 
signals which control the magnetic field inside the magnet. The data acquisition 

unit was explained in Section 2.1.5. The signal digitized by the data acquisition 

unit is processed to obtain the magnetic resonance image in the image generation
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F igure  2.13: The positions of the magnetization vectors just after the 1S0° RF 
pulse. All the magnetization vectors are rotated around the x axis. All the spins 
are in the transverse plane, but the angles of the magnetization vector with x 
axis is negative of the angles just before the 180° RF pulse.

unit. The image generation algorithm will be explained later in this section. In 
this subsection, the magnet, which is the most important part of the instrument, 
will be explained.

The magnet has five or six coils: The main magnet coil, the :;r.,y,z gradient 
coils, and the receive and transmit RF coils. In most systems, the receive and 

transmit coils are unified.
The main magnet generates a magnetic field along the ^-direction (See Figure 

2.16). Ideally, it is time and space invariant but because of the design difficulties 
the perfect time and space invariance cannot be achieved, but sufficiently good 

results can be obtained. Therefore the field generated by the main magnet can 
be written as a sum of a uniform field and the a perturbation position dependent 
magnetic field which is called field inhomogenity.

{H o A H i{x ) ) z
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F igure  2.14: All the magnetization vectors align at the echo time, Tg, on the x 
axis.

■where Hi stands for the field inhomogenity and x  is the position vector, [x, y, z]' .̂ 
The field inhomogenity is measured in parts per million by Comparing the 

maximum value of the inhomogeneous field to Hq. As the field inhomogenity 
increases the quality of the magnet decreases. Even for the highest quality 
magnets, the field inhomogenity can not be neglected.

The RF coil generates the RF field in the transverse plane. It has no 

component along the ¿r-direction and the field is not space dependent but it 
is time variant. A typical RF coil was given in Figure 2.6. The RF coils can be 

used as a receiver or a transmitter. If an RF coil is used as an RF field generator, 

its field can be written as:

where q{t) =  [?r(i)5 9«(0) and g,· are the real and the imaginary parts
of the RF field envelope.

The gradient coils generate both space and time variant magnetic field along 

the z-direction. Ideally, there is no generated field in the other directions. The
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Figure  2.15: The block diagram of the magnetic resonance imaging instrument.

c

t r  t r  t r  t r  

t r  t r  t r  

12- cr iy XT

c
Figure  2.16: Typical main magnet coil. The coil generates uniform time 
invariant magnetic field in the z direction.

z-gradient is a magnetic field whose amplitude linearly varies with respect to 2 

coordinate and there is no change along the x and y-directions. By controlling 

the current of the z gradient coil (See Figure 2.17), a time and space variant 

magnetic field may be obtained as:

9z{t)zz (2.30)
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F igu re  2.17: A typical z gradient coil. The coil generates magnetic field in the 
z direction. The field strength is linearly proportional with z and it can be any 
function of time.

In the above equation, g. is the amplitude of the z-gradient. Similarly, x and 
y gradients are the fields in the z-direction whose amplitudes vary linearl}' with 
respect to a; and y coordinates, respectively. Including all the gradients the 

following relation may be written:

{gz{t)^ T 9yifyy T ^ (2.31)

where px and gy are the amplitudes of the x and y gradients, respectively. Using 
vector notation, the above expression can be rewritten as:

g^{t)xz (2.32)

where

9{t) = [9x{i),gy{t),9z{t)f·

The Larmor frequency in the magnet becomes time and space dependent as a 
consequence of the gradients. This time and space dependence can be controlled 
hy 9r, 9ii 9 x1 9y, and g  ̂ inputs of the magnet. In general, the field generated by 

the magnet can be written as:

h{t) -  (ifo + Hi{x) + g'^{t)x) z  + 'R.x{u>ot)q{t) (2.33)

In the rotating frame, the effective magnetic field generated by the magnet is:

^e//(t) = + g^(t)x) z  + q{t) (2.34)
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In summary, in a magnetic resonance imaging instrument a uniform space 
and time invariant high magnetic field is perturbed by a small but space and 
time variant magnetic field. The perturbation is in the 2: direction and it is linear 

with respect to the space variables a;, y, or 2 (if one ignores the effect of the field 
inhomogenity). In addition to these, there is a small RF field in the x-y plane. 
The RF field is time variant but space invariant. These small magnetic fields are 

controlled by the five signals; cp. qi·, Qx, gy, and g^.

2.2.2 The Slice Selection Method

In this subsection, the slice selection method will be explained. The MR 
signal was equivalent to the total magnetization. But our aim is to find the 
magnetization at one point. As a first step to achieve this result, first, the 

magnetization vectors in a slice is excited and the magnetization vectors in the 
other slices are made stationary.

In Section 2.1.6, it is stated that the magnetization vectors can be tilted by an 

RF pulse if the RF frequency and the Larmor frequency exactly matches. If there 
is no gradient, all the points in the space will have the same Larmor frequency, 
therefore, an RF pulse in this frequency will tilt all of them.

Assume there is a non-zero 2 gradient when the RF pulse is applied. In 
this case, the Larmor frequenc}' at each point will be different. If the Larmor 
frequency is ujq in the 2 =  0 plane, it will be either larger or smaller than cuq at 

other 2 values. So the magnetization vectors in the 2 =  0 plane will be tilted 
but all the vectors will remain in their steady state positions. Therefore, the 
transverse components of the total magnetization will be from the magnetization 

in the 2 =  0 plane. There will be no contribution from the other planes.
In this description of the slice selection, the slice thickness is infinitely small. 

The slice thickness can be controlled by applying an RF pulse which have a sine 

envelope. Such an RF pulse and its frequency spectrum are shown in Figure 2.18. 

For such an RF pulse, the magnetization vectors which have Larmor frequencies 
between u>o — Aw/2 and ujq +  Aw/2, will be tilted. If there is a z-gradient with
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F igure  2.18: An RF pulse which has a sine envelope and its Fourier transform

amplitude Q̂ ·, the Larmor frequency distribution in space can be written as:

LO = LOo-\- iQzZ (2.35)

The Larmor frequencies between u>q — Acu/2 and u>o +  A lo/2 are in the slice 
—D/2 < z < D/2 where D is the slice thickness which can be found as:

Aw
D =

1 Q2
(2.36)

As a result, the magnetization vector in a slice which has a finite thickness can 

be excited. The slice thickness can be controlled by controlling the time between 

the zero crossing points of the sine envelope.
For the slice selective RF pulse, the weight function, which is explained in 

Section 2.1.5, will be as:
w{x) — Wrect{z ID) (2.37)

where
'  1 it - 1 /2  < “ < 1/2 , ,

n 7 7 (2.3bj0 elsewhere

It is common to assume that the proton density distribution is uniform 

along the z direction. The relation between the MR signal and the transverse

rect(u) =
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component of the magnetization (Eq. 2.19) ma}' be modified for the signal 
generated by the selected slice:

I-DI2
s{t) — W  / / / 7n(x]t)dx

J-D/2 J JrOI
[2.39)

where ROI  stands for region of interest. The region of interest is the .selected 

slice in the volume of interest.

2.2.3 The Imaging Equation

The imaging equation that will be derived in this subsection is a relation between 
the proton density and the acquired signal. The subject covered until now is 
enough to derive the equation. Initially, the imaging equation for a special case 

will be derived, then the result will gradually be generalized. To get the simplest 
form of the imaging equation, assume that:

a. A 90° RF pulse is a^Dplied when all the magnetization vectors are in the 

steady state.

b. The 90° RF pulse is a slice selective one, and it selects a slice with a thickness

OÍD.

c. There is only one 90° RF pulse which is applied at time 0, and the duration 

of the RF pulse {Trf is negligibly small. This corresponds to q(t) = 0 if 

tylO.

d. There is no field inhomogenity.

e. There is no gradient.

Under these assumptions, hgff =  0, and therefore magnetization vectors will have 

the relaxation motion.

/ N Í  ^OZ for Í < 0 /o ,nNm(i) = < (2.40)
] Mo (1 — exp(—i/Ti)) z + Mo exp(—i/Ta)« for i > 0
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And the transverse component of the magnetization vector will be:

7n{t) =
0 for t < 0
Mo exp(—¿/T'2) for t > 0

(2.41)

Now we may discard the assumptions (d) and (e), therefore, the gradients and 
the field inhomogenity are allowed. For this case,

h,ff{t) = h{t)z (2.42)

where

h(t) = + Hi{x).

To find the effect of h^ff to the magnetization vector, the basic NMR imaging 
for the rotating frame (Eq. 2.11) must be solved:

dm'
dt =  7 m '  X h e f j . (2.43)

Finding the exact solution of Eq. 2.11 for the above hgfj is possible but it is 

not useful for the later discussion. But if one assumes that the variation in h  is 
much less then the variation in m '  then a simple solution for the motion of the 
magnetization vector can be obtained. The solution is based on the assumption 
that the first derivative of heff{t) is zero:

when

m{t) = M q exp [j(f){t)) for t > 0

(¡){t) =  f  u){t')dt'
Jo

u}{t) =  'yh{t).

(2.44)

(2.43)

The derivation of the above equation is not included in the text but it can be 

found in the literature (See, for example [16]). In the above solution, the effect of 

the relaxation is not shown. If the relaxation of the spins were also considered, 
the following result would be obtained:

m ( t )  — Mo exp(—i/T 2) exp for i > 0 (2.46)
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When writing the above equation the phase of the iricignetization at time 0 is 
assumed to be zero. In fact, this is true if time origin coincides with the moment 
when the RF pulse is applied (Note that after the 90° RF pulse, the magnetization 
vectors are in the x  direction).

Until now only one 90° RF pulse is allowed [see assumption (c)]. From now 
on, the restriction on the RF pulse will be gradually released.

As a first step assume that there is one 180° RF pulse at time Te/2 as in 
the spin echo pulse sequence. For this new case, the equation for the phase (Eq. 
2.45) must be modified. Equation 2.45 is true until time Te/2. Just after the RF 
pulse, the phase must be negated, i.e.:

^  . Jo co(f)df for 0 < i < Te/2
— u ( f ) d f  + Jj^^^u(t')dt' for t > Te/2

(2.47)

If there are more then one 180° RF pulses after the 90° RF pulse then the 

above equation must be divided into more sections because after each 180° RF 
pulse the phase must be negated. Let us define a function which has a
value 1 if the number of 180° RF pulses between time t' and t is even; else its 

value is —1. Using this function, the equation for phase may be simplified as:

=  i  u>{t')r]{t.t')dt' for t > 0 
Jo

(2.48)

In magnetic resonance imaging usually one 90° RF pulse is not enough to 

obtain the data for the image reconstruction. Application of a train of 90° RF 
pulses is necessary. Each RF pulse may be numbered from —N/2  to N/2  — 1 

where is a positive even number. The time interval between the nth and 

n + 1st 90° RF pulses is called the nth repetition interval and it is symbolized as 
Tr\n]. Although the repetition interval does not depend on n in most magnetic 

resonance imaging methods, the following formulations will be n dependent and 

it will cover all the special cases.
Let us define a relative time, r ,  which is zero after each 90° RF pulse and 

increases until the next 90° RF pulse. Just after the new pulse the relative 
time becomes zero again. The actual time is defined with two parameters, [r, n],
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F igure  2.19: The description of the relative time concept. The absolute time 
is defined with respect to the 0th 90° RF pulse. On the other hand, the origin 
of the relative time is the starting point of the each repetition interval. In the 
figure, the nth repetition interval is shown in enlarged form.

where n is the RF pulse number, and r  is the relative time. Using this new time 

definition, one can write (See Figure 2.19):

+  Er=ô 2">-[f] for n > 0
T for n = 0 (2.49)

^ -  T.i=n'^r\i] f o r n < 0

t = [r, n]

The trajectory of the magnetization vector will be the same as before if one 

assumes that

m injTrW l >  max{Ti} (2.50)
n

For this case, the 90° RF pulses will tilt the magnetization vectors when applied 

in the steady state as before, so Eq. 2.46 will be valid with a little modification:

m([r, n]) =  Moexp(—r/T 2)exp (i< (̂[T, n])) for 0 < r  < T r[n \ (2.51)

where

=  /  t^([r',n])dr'
Jo
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uj{t) = jh{t)

The combination of the above equation with Eq. 2.39 will give the relation 
between the steady state magnetization and the received MR signal:

f-ur  ̂ j-
s([r, ?r]) = IT / / Mo exp(—r/T 2) exp (j<^([r, ?r])) da; for 0 < r  < T,.

J-D/2 J roi
(2.52)

The useful MR signal comes out in a very short intervM. There will be no 
useful data outside this interval. This data is called echo or FID (Free Induction 
Decay). Assume the center of the echo is obtained at time Tg. Since t is very 
close to Tg, one may assume exp (—(r — Te)lT2 ) is equal to unity.

e x p (-r /T 2) =  exp(-Tg/T2) exp ( - ( r  -  Tg)/T2) «  exp(-Tg/T2) (2.53)

pD/2 p
/  /  / (̂®) 6xp (i<?(['T, n])) da; for r  «  Tg (2.54)

J - D / 2  Jroi

With this assumption, the following relation can be written:

i'D/2 

-D/2

where
p{x) =  Mo{x) exp{-Te/T 2 {x)) (2.55)

The above equation is valid for a specific case. Here it is necessary to restate the 
assumptions which are used in the derivation of this equation:

a. A train of 90° and 180° RF pulses is applied.

b. All the RF pulses are slice selective, and they select the same slice which 
has a thickness of D.

c. All the magnetization vectors are at the steady state before the application 

of each 90° RF pulse.

Getting rid of the assumption (c) is also possible. The discussion will not be 

included here because it is pretty long and it is not necessary to know it to 
understand the rest of this dissertation. It must be stated that even if 90° RF 
pulses are applied when the magnetization vectors are not in the steady state.
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the imaging equation (Eq. 2.54) will not change if the repetition rate of the 
pulses is constant but only the equation for p (Eq. 2.55) will be di-fl'erent. One 

should know that p is space dependent. And it is time invariant if the object is 
stationary during the data acquisition period.

The assumption (b) imposes a restriction on the shape of the RE pulses and 

the values of the gradients during the RE pulse application period. Since almost 
all pulse sequences which are used in the literature obe5̂ s this assumption, the 
restriction is not severe. In the 3-D imaging or some special applications, non 
selective RF pulses can be used. But this is a special case of the selective RE 
pulses because if one selects the slice thickness D as big as the size of the object, 
the selective RF pulse becomes a non-selective RF pulse, anyway.

The severe restriction of Eq. 2.54 is the assumption (a). Some new methods 
based on steady state free precession (SSFP) use RF pulses which have small 
tilt angles [22]. For such cases, it is not possible to explain the behavior of the 
magnetization vectors using Eq. 2.54. However the methods based on SSFP are 

not widely used in commercial MRI instruments. So, one can say that Eq. 2.54 
is valid for almost all imaging methods.

2.2.4 Fourier Transform Imaging

The two-dimensional (2-D) Fourier Transform (FT) imaging is the most widely 

used MRI method. In this dissertation, only this imaging method will be 
considered. However, the extension to the other methods is possible.

In the FT method, the gradient and the RF pulses are arranged so that 

the uniform samples of s{t) are the rectangular samples of the two dimensional 
Fourier transform of p. Therefore the imaging algorithm is very simple, after 
obtaining the rectangular samples from s(i), the two dimensional (2-D) inverse 

FT will produce the p image.
In the FT imaging, the waveform shown in Figure 2.20 is repeated without any 

change except the y gradient. The shape of the waveform for the y gradient will 

be the same in each repetition but its amplitude will change. In the diagrams, 

usually the waveform of the gradients for a repetition interval is given. The
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F igure 2.20: The standard FT MR imaging pulse sequence.

amplitude change in the y gradient is shown by an arrow as in Figure 2.20.

2.2.4.i Cancellation of the field inhomogenity

The pulse sequence shown in Figure 2.20 generates the spin echo at time r  =  T«. 
In this sequence, there is a 90° RF pulse at time 0 and there is a 180° RF pulse 
at time Te/2. With this pulse sequence the effect of the field inhomogenity is 

canceled at time r = Tg and an echo appears.
Although the effect of the spin echo sequence is discussed verbally, it is possible 

to explain the phenomenon using the imaging equation. Let us combine the 

equations 2.2.3, and 2.48 and rewrite the expression for the phase in the imaging 

equation:

(j){[T, n]) = 7  /  n \ ) x  + H i { x ) )  7]{t , T' )dT'  (2.56)
Jo

Since the field inhomogenity is time independent, the equation reduces to the



Chapter 2. BASICS OF MR IMACING 36

?7(t , t ') =

following form;

^  1' f  { [ T \ n ] ) r ] { T , T ' ) d T ' x + ' ) ' H i { x )  [  r / ( r , 7 > / r '  ( 2 .5 7 )
Jo Jo

If r  > Te/2. will be;

'  - 1  for t ' e (0,TJ2)
 ̂ ’ (2.58)

1 for r ' e  (Te/2, r)

Using this information, the second integral of Eq. 2.57 can be evaluated as;

o{[t , ?r]) =  7 /  g ^ iW ,  n])7/(r, t ')(It 'x -f ^Hi{x){T -  Te) (2.59)
do

For t K Tg (around the echo), the effect of the field inhomogenit}· will be canceled, 

and an approximate equation for the phase may be written as;

= G^{t)x  (2.60)

where G  is the phase gradient and it is defined as;

G ([r,7z])= 7  f  g{[T',7i])Tj{T,T')dF (2.61)
Jo

2.2.4.ii Slice selection

In the pulse sequence, the gradient gz{t) is designed so that there exists a non-zero 
gradient value when the RF pulses are applied, and

(?2([r, ?r]) =  0 for T ^  Tg 

Therefore, the equation for (p can be simplified to get.

=  Go:{t)x +  Gy{t)7J

(2.62)

(2.63)

where Gj,, Gy and Gz are x, y and 2: components of the phase gradient G. As it 

is seen in Eq. 2.63, the phase is independent form the space variable 2. Therefore 
the imaging equation Eq. 2.54 can be modified as; 

r fD/2

= /  /  p{x)dzexp{j(f){[T,n]))dxdy for r « Tg (2.64)
Jroi J-D/2
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In the 2-D MR imaging methods, it is common to assume that the proton 

density is uniform along the 2: direction in the selected slice:

p{xo) ^  p{x) for 2 € {-D/2 ,  D/2) (2.65)

where aJo = [•'i··, 2/, 0]^. This assumption is reasonable if the slice thickness is small 
enough. In the 2-D MR imaging, the slice thickness is usually in the range of 
1cm to 0.5mm. In the microscopic MR imaging, the slice thickness reduces to 
the level of microns. So transhitional uniformit}'  ̂of the selected slice is not a bad 

assumption. In that case, the imaging equation becomes even simpler:

s{[ r ,n ] )= W D  Í p{xo)exp{jGxX + jGyy)dxcly for t  Tg. (2.66) 
JROI

To reduce the complexity of the notation, two dimensional vectors must be 

defined. Let G{2 ) and »(2) be [Gx^Gy] and [x^y]·, respectively. And the proton 
density distribution at the z — 0 plane is defined as /9(2). Using this notation the 

above imaging equation can be written as:

5([r,n]) =  WD J j  /9(iC(2))exp [jGf^^X(2)) dxdy for r «  Te- (2.67)

2.2.4.iii The Fourier transform relation between M R signal and p

It is interesting to observe that there is a FT relation between the MR signal and 
the proton density image for any MRI pulse sequence.

Let the continuous 2-D FT of p{xY  be P(w) where is [uxyLOy]' .̂ The relation 
can be written as:

P{u>) =  :^(2){p(æ)}

p{x) exp{—ju}^x)dxdy. (2.68)

Using the similarities of the equation 2.68 and 2.67 one can write the following 

important result.

s([r,n]) = WD P{-G{[T,n])) for r «  Tg. (2.69)

^Here p and x are actually />(2) and xpiy From now on the subscript (2) can be omitted 

when there is no possibility of confusion.
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The above equation is the FT relation between the MR signal and the proton 
density, p.

2.2.4.iv A cquisition of th e  rec tan g u lar sam ples of P

As it can be seen in Eq. 2.69, if r  Te then the MR signal (s) will be equal to a 
point in P. The position of the point depends on the phase gradients G x  and G y .  

As the time goes on, this point moves in the P  space. While the point moves in 
the P  domain, the samples of the MR signal can be acquired. In this way, the 
necessary samples of the P  space can be obtained. Later these samples will be 
used to reconstruct the image.

In literature, there are many P  space scanning methods. For example in the 
spiral scan, the P  domain is scanned b}̂  a spiral trajectory of the P  domain [23],. 
However, the most widely used scanning method is the raster scanning. In each 

repetition interval, only one horizontal line is scanned. By this way, it is very 
easy to obtain the rectangular samples on the P  domain. And using the discrete 
FT of these samples the image of the proton density can be obtained.

Using the pulse sequence shown in Figure 2.20, the raster scan of P  domain 
can be achieved. The characteristics of the x gradient waveform are:

• The waveform is the same in each repetition interval. In this way the lines 

are scanned exactly in the same manner.

• The amplitude of the gradient, Qx, is constant during the data acquisition 

period. This property of the gradient makes the speed of the scan point 

constant.

• The waveform is arranged so that the phase gradient, Gj, is zero at the 
echo time. In this way, the center of the scan line is sampled at the echo 
time. Remember at the echo time the effect of the field inhomogenity is 

zero.

Using these rules, the phase gradient, Gx, can be calculated for r Tg:

Gx{[P‘iT']) =  7 /  9r{T')v{pT')d^'
JO
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= Go..([Te,?7.]) + 7  /  g^{T')r}{T,T')dT'
JTc

= 7('T -  Te)Qj; (2.70)

On the other hand, some other rules for the y gradient are necessary. These 
can be stated as follows:

• The y gradient must be zero in during the data acquisition period

• In each repetition interval the value of Gy at the relative time Tg is an 
integer multiple of a constant number. In this way, the distance between 
each scan line will be constant.

Using these statements one can judge that the y gradient defines the vertical 
position of the horizontal lines. In most of the standard imaging methods the 
vertical position of each scan line increases in the y direction depending on the 

view number. The order of the position of the scan lines is not important if 
the object is stationary. In this chapter, the motion of the object during the 
data acquisition period is not considered. Because of this reason, the position 

of the scan lines is arbitrarily selected in the increasing order. In some other 
application which considers the motion of the object during the data acquisition 
period, the order of the position of the scan lines are different [24]. Assume that 

the amplitude of the y gradient waveform is increasing in each repetition interval 
as shown in Figure 2.20. For this special case, the phase gradient Gy can be 
calculated as:

<^y([u?^]) =  7  /  9y{r')r){T,r')dr'

n
— '1 pj^yQy (2.71)

where Qy/2 and ty are the maximum amplitude and the period of the y gradient 
pulse, respectively, and N  is the number of the repetition intervals in the total 
imaging period. It is important to note that Gy is r  independent but n dependent, 

for r  «  Tg.
As it can be seen from the above equations, the time parameter allows the 

scan of P  in the horizontal direction. And in each repetition a new horizontal line
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will be scanned. Therefore, the uniform samples of s[t) correspond to rectangular 
samples of F.

2.2.4.V T he M R  im age and  the  field of view

In the image reconstruction, the MR signal will be sampled and the discrete FT 
of the data will produce the desired discrete p image.

Let s([r, n]) be sampled at

~ ~Ñ*’‘ {2.72)

where m  is an integer between —N¡2 and N/2 — 1, and is the sampling 
period. Therefore, the total sampling time in each repetition interval is tx and 
the center of the sampling period is at the echo time. Thus the effect of the field 
inhomogenity is minimized.

An MR signal sample is defined with the numbers, n and m. When the sample 
(m, n) is acquired, the time will be + Te, n], and the phase gradients at that 
time will be:

rTn m
Ga;([—ix + Te, n]) =  T̂T —

777 77
G y ( [ ^ t x  +  Z , n ] )  =  2 7 T -

(2.73)

where

L· =

fv =

2kN
^l^xQx
27tN

i^yQy
(2.74)

The parameters fx and fy are called the field of view.
Hence the relation between the MR signal samples and the P  can be written 

as follows:

+  =  W 'P p (^ -G (^ [^ t .  +  r . . y ) )

=  WD P(Vk)  (2.75)
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where

and

V
^  0Jx
0 2 T T

(2.76)

(2.77)

Here the matrix V is called the sampling matrix. Let A:̂ ] be the san pies of 
the P{ux,Uy):

P[k] = WDP{Vk)  (2.78)

The inverse discrete Fourier transform (IDFT) of P[k] is a discrete image. 
The relation between the image and p can be found after some straightforward 
calculations:

IDFT{P[k])[n] =

1 / 9 ^  \
E  E  i ’W e x p L ^ « ’·*)

k x = - N / 2 k y = - N / 2  ^  ^

T t / n  N¡2  /  o  \= 1? E E (̂V̂ )exp(;̂ «'F
_  WD  
-

kx=-N/2 ky--N/2

(2.79)

where n  =  [nj;,ny]^ and

■̂/2-1
r ( t .)=  x ;  exp {2njkv) 

k=-N/2

Further simplification of the F function is possible:

N-l
r(u) =  cos -  i  sin(Tr^)

it=0

=  cotan (ttu) sin(TruiV) — j  sm{-n-vN)

(2.80)

(2.81)

The r  function is very similar to an impulse train (See Figure 2,21). The peaks 

can be observed at the integer values. For the large N  values the I' function may
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Gammn Function

Figure 2.21: The plot of the F function for N  = 256.

be approximated by:

r ( t ’) «  E  -  ') (2.82)

where 6 is the impulse function. Using the sifting property of the impulse 
function, Eq. 2.79 may be simplified:

IDFT{P[k])[n] = (2.83)
lx ly

If the p distribution is bounded in space, i.e.:

p{x) =  0 for - / i / 2  > X or X > / r /2  or - f y / 2  > y or y < fy/2 (2.84)

then, the summation will have only one non-zero entry for = ly = 0. So, 
the desired solution can be obtained by letting lx and ly zero and killing the 
summations as:

/DfT(i>lfc])|n] = ^ / - ( ^ / . .  ^ A )  (2.85)

If the object dimensions do not fit the bound given in Eq. 2.84, there will be 
aliasing.



Chapter 3

MOTION ARTIFACT 
SUPPRESSION METHODS: A  
LITERATURE SURVEY

In magnetic resonance imaging, the image degradation due to the motion of the 
body during the data acquisition period is an important problem. The data 
acquisition period is in the order of 10 minutes for the standard MR imaging 

methods. In this period there may be many kinds of physiological motion of 
the body: Heart beat, flow of the blood, and respiration are some of these. In 
addition to these types of motion, the leg, arm, eye, head and body may move. 

Although this is the case, it is common to assume that the object is stationary 
during the data acquisition period. Because of this reason the effect of the motion 
can be observed on the image. The image degradation due to motion of the body 

is called the motion artifact. The motion artifact usually appears as the ghost like 

replicas of the moving structure. In addition, the blurring effect of the motion can 
be observed. The motion artifact decreases the utility of the magnetic resonance 

images as a diagnostic tool.

There are various studies on the diagnostic quality of the images. In this 
chapter, a literature survey on the motion artifact reduction methods will be 

carried out. Since the number of the studies on the motion artifact suppression

43
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methods is very high, all the magnetic resonance imaging motion artifact 
suppression methods can not be covered here. Instead, the ones that are most 
commonly used and related to the studies carried out in this dissertation will be 
summarized.

3.1 M otion  A rtifact Suppression using  

M otion  C om pensated P u lse Sequences

The studies on the motion artifact suppression methods are usuall}  ̂ on finding 
specific imaging pulse sequences so that the effect of the motion on the acquired 
MR signal is minimized. By this way, the discrete FT of the MR signal samples 
will give motion artifact free (or reduced) images.

If the motion of the body is slow, it is acceptable to assume that the bod}  ̂

stays still between the 90° RF pulse and the echo timeb If this is the case, the 

body motion can be observed from one 90° RF pulse to another^. This type of 
motion is called the view-to-view motion.

In all the view-to-view motion artifact suppression methods in the literature, 
the RF pulse application time is modified according to the motion. Some of these 
methods are presented below.

3.1.1 Gating

Gating is a very frequently used method [25]. Although it is based on a very 

simple idea, the motion suppression capability is very high [26],[27]. If a sinusoidal 
waveform is sampled at with the same frequency of the oscillation then the 
samples will be identical, and the fluctuation in the function can not be observed. 

In a similar way, when the heart image is required, if the data is sampled at the

iThis time interval can take different values depending on the used pulse sequence. It may 
be in the range of 5msec to 100msec.

fThe typical repetition time in the conventional imaging methods ranges from 300msec to 

2.5sec
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F igure  3.1: A typical EGG waveform. This EGG signal is supplied by the 
medical center of Middle East Technical University.

same phase of the heart (for example at the diastole), then the heart will seem 

to have no motion. The image obtained in this way belongs to this phase of 
the heart. Therefore, in the gating method, the Tr is selected so that it exactly 
matches with the period of the motion. In the case of quasi periodic motion, the 

repetition interval can be changed with the change of the period of the motion. 
There are two main gating methods: the electrocardiogram (EGG) gating, the 
respiratory gating.

The EGG gating is used in obtaining the image of the heart and the vessels. 
The EGG signal has a one-to-one relation with the heart motion and the motion 
of the blood in the vessels. A typical EGG signal is shown in Figure 3.1. At the 

peak of this waveform (R wave) the heart contracts (the systole). If one acquires 
the data at the same time with the occurrence of the R wave, then the image will 

belong the contracted heart.

The respiratory gating is used to suppress the motion artifact due to the 
respiratory motion of the body. The chest wall and liver as well as many other 
organs move with the effect of respiration. In the inspiration period, the motion 

is minimum. If one acquires the data in this period and suspends the data 
acquisition during the expiration, the motion of the chest will not be observed.

Although the method is very effective in the suppression of the motion artifact.
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it has several disadvantages. First the data acquisition period increases. Longer 
data acquisition period means higher cost. The second disadvantage is that it 
restricts the RF pulse repetition interval. Howe\'er, the duration of the repetition 
intervals may be changed to obtain different tissue contrast.

3.1.2 Respiratory Ordered Phase Encoding: ROPE

There are various ways of eliminating the ghost artifact by changing the 

acquisition order [28],[29]. Here, only the respiratory ordered phase encoding 
(ROPE) [24] will be explained.

It is known that the main reason of getting the image which has ghost artifact 
is the periodicity of the motion. If the motion were a non-periodic one, the ghost 

effect would not be observed. ROPE is a method which converts the periodic 
motion to a non periodic one.

In the standard FT imaging method, the amplitude of the y gradient increases 
one step after each repetition interval. Because of this reason, the data acquired 
in each repetition interval belongs to a different row. And the position of the 
row in the k-space moves towards to the positive direction as the time increases. 
But to get the rectangular samples on the ¿-domain it is not necessary to obtain 
the samples in the increasing order, instead the samples can be acquired in the 
mixed order. In the respirator}' ordered phase encoding method, the acquisition 

order of the rows is arranged according to the motion of the body. Assume an 
object is moving sinusoidally as shown in Figure 3.2. If one gets the MR signal 
in the increasing order, the phase distortion in the ¿-domain will be sinusoidal. 

On the other hand, if one gets the ¿-domain rows in the mixed order as shown in 
Figure 3.2, and sort them, the periodic motion appears as a non-periodic motion. 
The phase distortion due to non-periodic motion cause blurring, but the ghost 

artifact on the image is removed.
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3.2 Suppression o f the Signals G enerated by  

the M oving Structures

Another simple solution to the motion problem is the suppression of the outgoing 
signals from the moving structures [30]. This Ccin be used in the imaging of 
the non-moving parts. In this method, firstly, the moving part of the body 
is selected by a highly selective RF pulse. This RF pulse does not select the 
stationary ¡Dart of the body. The magnetization vectors of the moving structures 
fall in the transverse plane, while the others sta}'· in their steady state condition. 
The gradient which is applied just after this selective RF pulse disperses the 
magnetization vectors in the transverse plane. By this wa}'̂ , the MR signal 
coming from the moving structures is suppressed. Using another 90° RF pulse, 
the standard imaging sequence starts. But the acquired signal will belong to only 
the stationary parts of the object.

Since there is no signal coming out from the moving structure, the motion 
artifact can not be observed. This simple and excellent idea finds its application 

if the position of the moving parts are known. To get this information, first an 
image which has the motion artifact must be acquired. Then after finding the 

place of the moving structure, this pulse sequence may be applied. This long 
procedure makes this method impractical.

3.3 T he G radient M om ent N ulling: G M N

The gradient moment nulling [31] is a very effective method in suppression of 
the artifact due to the motion in the MR signal preparation period (i.e. the 

period between the 90° RF pulse and the echo time.) The motion in this period 
is called intraview motion. As opposed to gating and ROPE, GMN assumes that 

there is no motion between 90° RF pulses but there is motion in the MR signal 

preparation period. At first glance, this assumption seems to be an unrealistic 

one, but if one uses this method with the gating and ROPE at time same time, 
the artifact due to all kinds of motions (view-to-view and intraview motions) will
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be suppressed.
In the gradient moment nulling, the protons are assumed to have constant 

velocity during the MR signal preparation period. It is a very good approximation 
because usually the acceleration of the i^rotons is not enough to change their 
speeds considerably in this period. Under this assumption, it can be shown that 
if the first moments of the gradient waveforms are zero, the velocity of the protons 

will have no contribution to the MR signal. This fact is explained in the next 
section.

There are man}'̂  studies on the comparison of GMN with the other methods 

[32],[33]. In their study, it is shown that GMN is very effective in the suppression 
of the intraview motion but it has no effect on the view-to-view motion.

3.4 P ost P rocessing  M ethods

The motion artifact reduction studies explained above are concentrated on finding 
a new imaging pulse sequence. There is not much effort on the reduction of the 
artifact after the acquisition of the data. The main reason of this is the difficulty 
of the problem.

The motion artifact suppression' technicpies which are proposed in this 
dissertation are post-processing methods. Two new post-processing methods 
which are proposed by Haacke et. al. [34] and Mitsa et. al. [35] are closeh' 

related with the proposed methods. In all of these techniques, the MR data is 

assumed to be acquired using the standard MR imaging method. And then the 
data is processed to obtain the image of a static object. These methods will be 

discussed in Chapter 5.
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2

a) The data acquisition order for the standard imaging method.

'2

b) The data acquisition order for ROPE.

Figure  3.2: The data acquisition methods for the standard imaging and ROPE 
methods. The sinusoidal waveforms are the displacement functions of the chest 

wall during the data acquisition periods.



Chapter 4

THE EFFECT OF MOTION  
ON THE MR IMAGES

In the second chapter the basics of the magnetic resonance imaging are discussed 
assuming that the object is stationar}'^ during the data acc[uisition time. However, 
this assumption fails for in vivo magnetic resonance imaging. Many different 
kinds of motion may be observed. Therefore, the relation between the moving 
proton density distribution and the MR signal (the imaging equation) should be 
derived.

In this chapter, the effect of the motion of the body to the MR signal will be 
analyzed. The imaging equation for the moving body will be derived. Various 

motion types will be analyzed, and the effect of the translational, rotational and 
expansion/shrinkage motion will be formulated. And in the last section of the 
chapter, the appearance of the ghost artifact on the image will be interpreted.

4.1 T he Im aging Equation for th e M oving  

B ody

Let the proton density be a function of both space and time:

p =  p{x] t ) (4.1)

50
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where x  is the space coordinate [x^y^zY· In the static imaging of a moving 

object a slice of the proton density distribution at an arbitrary time, say t =  0, 
will be monitored. Hence

Ps{^,y) = p{xo\^) (d.2)

where p¡ is the static proton density distribution that we want to image, and Xq 

is [.T,î/,0]^.
The ID rotons may move from one place to another but they can not be 

destroyed or generated. This very important conservation property will be 
the basis of all the following formulations. The proton motion can be shown 
by a trajectory vector. Every proton may have different trajectories. Since 
we are talking about the proton density distribution instead of the individual 
protons, the trajectory vector must be defined for an infinitesimal volume element. 
Consider an infinitesimal volume element at the position x  at time to and let r 

be its trajectory vector. At time i, the new position of the protons in this volume 
element can be found as:

r = r(i;æ,io) (4.3)

r  is the three dimensional trajectory vector whose components are r^, and 
This may be treated as a time varying coordinate transformation. A rectangular 
grid shown in Figure 4.1 is transformed to a curve-linear coordinate sз^stem at 
time t.

Three important properties of this trajectory function will be used in the 
following paragraphs. The first one is the identity property of the function:

X =  r(f; æ, t) (4.4)

The above relation means that the position of a volume element does not change 

if time does not change, too. The second property of the function r  is the 

transitivity: If

x ' — r{t ' \x , t)  (4.5)

and,
x" ^r(t"-x 'N ') (4.6)
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F igure  4.1: A time-varying proton density distribution, (a) The proton density 

distribution at time i =  0, p(®;0). (b) The proton density distribution at time 

t, p{x;t). The shaded region shown in (a) lies at position x. The protons in 

this region move to another position r(i; a?, 0) at time t. The new region covering 

these protons is the shaded region shown in (b ) .
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then

x" = (4-7)

The verbal explanation of the above relation is: If the protons inside a, volume 
element moves from x  to x '  and continue their movemeirt by altering the |,osition 

to x", then one may forget about the intermediate position and say the uotons 
inside the volume element moved from x  to x". As a last property, if the e'sition 
of the proton volume at the present time is known, its position at a previvnis and 
at a future time can be found using the trajectory vector. In other words r {il; x , t) 
is defined for t' > t and t' < t.

Let us fiiad the phase of the magnetization of the protons which a.re at position 
X at time [r, nj. If the protons were stationary, then the phase would 1k> found 
as (See Eq. 2.48):

(f>{[T,n]-,x)='y f  (4.8)
Jo

where g are the magnetic field inhomogenit}'^ and magnetic field gradient
vectors, respectively; and x)  is the phase of the magnetization at the same 

place and time. But the protons are moving. In this case, Eq. 4.8 will be invalid. 
To find out the magnetic field that influences the phase of the magnetization, 
one should move with the proton volume and observe the effective field. Let us 
analyze the proton volume which is at position x  at time [r, n]. At an earlier 
time, say the position of the same volume was r{[T',n\] x, [r,n]). At that
time the magnetic field that effects the protons in this volume element was:

Hi (r([r ', n]; X, [r, n])) + g{tfr{[T',  n], x, [r, n]) (4.9)

and the angular velocity of these protons was:

7 {Hi {r{[r', n]; X, [r, n])) +  g { t f r { [T \  n], x,  [r, n])) (4.10)

In addition, it is known that at time [0, n] the phase of the magnetization is zero. 
Therefore, the phase at point x at time [r, n] will not be as it is stated in Eq. 4.8 

but:

n]; x) =  7 /  {Hi (r([r ', n]; x, [r, n])) +  g{tfr{[r',  n], x, [r, n])) r}{r, T')dr' 
Jo

(4.11)
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The last step before writing the imaging equation of the moving body is to 
find the RF weight function. In the previous chapter, it is shown that oiily the 

protons which are effected by the 90° RF pulses will have the contribution to the 
magnetic resonance signal. With this purpose a weight function w is defined (See 
Eq. 2.37). For the slice selective RF pulses, the function iv has the value IF in 
the selected slice and 0 elsewhere. In the case of moving body, the protons which 
were in the slice —D /2 < z < Df2  when the 90° RF pulse was applied may move 
to another position afterwards. In this new position (the position may be out of 
the selected slice), these protons will still have a contribution to the MR signal. 
Therefore, to check if there is any contribution of a proton to the MR signal, 
the position of the proton when the RF pulse is applied must be found. If at 
that time, the proton is in the —D/2 < z < D¡2 slice it will have contribution, 

otherwise there will be no contribution from this proton to s{t). So the weight 
function of the moving body is both time and space dependent. Using the above 
discussion, we may write the weight function, w, as:

w(x·, (r,n)) =  VFrect(r^((0,n];ic, [T,n])/D) (4.12)

where r([0, n]; x, [r, nj) is the position of the proton when the RF pulse is applied.
Using all the above information, one can immediately write the imaging 

equation of the moving object as:

s{t) = J p{x]t) exp (j(f){t]x))w{x]t)dx (4-13)

One can get rid of the function lu by a change of variable. Let us replace x  
with r(i; X,  [0, n]):

= J
exp (i<;̂  (U r{t; x,  [0, n]))) w{r {t: x, [0, n]); x,  [0, n])dx(4.14)

where is the Jacobian of r  with respect to x:

O' =  det

drx dvx drx
dx dy dz

dry dry
dx dy dz
dvz dvz dvz
dx dy dz

(4.15)
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See [36] for further information on the Jacobian operator. To simplify the new 
form of the imaging equation, the terms in the integral will be analyzed term by 
term. Using the transitivity and the identity properties of r  function one may 
simplify the weight function as:

'r 4 [0,n ] ;r ( i;a :,[0,n ] ) , t ) \ic(r (U aj, [0, ?r]); i) =  Wvect

- hUrect

D
V,([0,n ];x ,[0,?r])'

D
= WrectizID) (4.16)

In the imaging equation 4.14, the pTi product is equal to p(a;. [0, nj). This 
equality can be proved as follows:

Assume an infinitesimal cubic volume element, which has a width of drc, a 

depth of dy and a height of dz^ located at point x. At time t ' , the protons inside 
this volume element is (See the shaded region in Figure 4.1.a):

p[x\ t')dx (4.17)

where
dx  =  dxdydz.

As the time goes these protons may move. The region which contains these 

protons ma}7 not be cubic. At time t. the position and the volume of this 
differential region will be r  (i; x ,  t') and ¿T(i; x ,T )dx ,  respectively (See the shaded 

region in Figure 4.l.b).Therefore, the total number of the protons inside this new 

volume will be:

p (r (t; x , t ' ) ; t) I7'(t; x , t ' )d x  (4-18)

Since the number of protons is preserved, Eq. 4.17 and 4.18 must be equal. This 

equality gives the desired relation:

p (x; t') = p{r  (f; x, t ' ) ; t) J (f; x , i') 

Using these simplifications, Eq. 4.14 can be written as:
f>D/2

(4.19)

[t) =  w  / /  p { x, [0 , n] )  exp { j ( j ) { t ]r{ t ]X, [0,n] ) ) )  dxdydz  (4.20)
J-D/2 J J
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As it is done in obtaining the imaging equation of the stationary body, assume 
the proton density is uniform in the ¿r-direction. This assumption will not cause 
any important problem if the slice thickness D is small enough. In other words,

p{x·, [0,n]) p{xo; [0,n]) for - D / 2  < z < Dl2  (4-21)

where X q =  { x , y , 0 ) .  In this case p in Eq. 4.20 will be independent of z,  so

s{t) = W  J J p { x , [ 0 , n ] )  ! ^ J   ̂ exp{j(l){t;r{t-,x,[0,n])))dz^ dxdy (4.22)

The above equation is a relation between the proton density distribution and 
the MR signal. But the distribution is time varying. Our final aim is to find a 
relation between the static proton density distribution and the MR signal. This 
result can not be obtained if the motion has no restrictions.

4.1.1 In-plane M otion of the Protons

Until now, there is no major assumption on the motion. Further simplification 

of the above equation for all kinds of motion is not possible. In this subsection, 
the motion in the selected plane, that is called in-plane motion^ will be analyzed. 
In this type of motion, the excited protons (the protons whose magnetization, 
vectors are tilted by the 90° RF pulses) are allowed to move within the selected 
slice, but they can never leave that slice. In other words, there is no motion along 
the 2T direction. Mathematically speaking,

r^{t\x,tl) = z (4.23)

Remember x  = [x, j/, z]' .̂ The in-plane motion can be observed in the respiratory 

motion (expansion/ shrinkage) of the chest, and the whole body motions (the 
translational and rotational motion). Uirder this restriction, the imaging equation 
(the relation between the static proton density distribution and the MR signal) 

can be found.

Let us return to Eq. 4.13:

s{t) = I p{x\ t) exp {j<p{t·, aj)) w[x\t)dx  (4.24)
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Changing the variable x  with г(^;ж,0), the following equation can be obtained:

•s(0 J P •'*̂>0))) i'l'l 0); 0  ‘̂ (^i x,0)dx  (4.25)

Бог the body which has onl}'̂  the in-plane motion w can be simplified as:

w(r (i; X, 0); i) = fKrect

= fKrect

D
?ч([0,п];а:,0)'

D
= Wxecl{zlD) (4.26)

In the above simplification the transitivity property of r  and Eq. 4.23 are used. 
With the same arguments used in the simplification of Eq. 4.13, the product p j '  
term in Eq. 4.25 can be replaced by p(a;,0). And after same straight forward 
manipulations, the following result can be written:

s{t) = W  f  i f  p{x]0)exp(j(f){t]r(t]x,0)))dx.  (4.27)
J-DI2 J J

As in the previous cases, assume that the proton density distribution is 
independent of z within the selected slice. Therefore,

p{x\0) p{xq: 0) = ps{x, y) for —D/2 < 2: < T>/2. (4.28)

Using the above equation and Eq. 4.27, the imaging equation which describes 
the in-plane motion case can be written as:

s{t) =  w  J J (̂ > y') ! / : :  exp {j(j){t·, r{t] a;, 0))) dz I dxdy. (4.29)

4.1.2 Three Dimensional Motion of the Protons

The imaging equation for the moving object (See Eq. 4.29) has some restrictions: 
There must be no motion in the 2: direction and, the object must stay in the region 

of interest during its motion.

If there is motion in the z  direction, after each 90° RF pulse a different set of 
protons will be selected. So, data in every data acquisition period will belong to
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a diiferent proton density distribution. Although this is the case, it is possible to 
write an imaging equation which is similar to Eq. 4.29 for a special case.

If we go back to the derivation of Eq. 4.29, the equation is obtained using the 
relation

r;¡([0, n]; a:, 0) = 2; (4.30)

This statement is less restrictive then Eq. 4.23. Therefore the same imaging 
equation can be obtained if one allows the 2: motion at any time e.xcept t ^  [0, n\. 
It means the z motion is allowed only if the protons returns back to the selected 
slice before the next 90° RE pulse is applied. This funny motion becomes reality 
when the gated imaging technique is used [25]. In that technique, the RF jDulses 
are applied when all the protons return back their original positions.

Using a simple argument, the imaging equation 4.29 can be made true for even 
less restrictive three dimensional motion. In this assumption, the main idea is 
that the MR signal need not be originated from the same protons. But the protons 
may be replaced by the others. This special motion case can be explained with 
an example. Assume that there is a constant blood flow along the z-direction, 
and there is no other kinds of motion. In this case, the proton density at a z 
plane will be stationary although there is a motion, because the outgoing blood 

from the selected slice is equal to the incoming blood (See Figure 4.2). Therefore, 
at any time the amount of blood in the selected plane will be the same. In the 
derivation of the imaging equation, Eq. 4.30 is used. But this equation is not 

true for the motion described here. To make it true, before the application of 

the 90° RF pulse the trajectory vector must point the replaced proton. And the 
new trajectory will be defined with respect to this new proton. As a result, if 

outgoing protons are replaced by the incoming protons, a new trajectory concept 
may be defined and Eq. 4.29 can be used as the imaging equation.

This pseudo three dimensional motion defined in this subsection is a special 

case of the true three dimensional motion, but still it is more general than the 
in-plane motion. And it is useful because it may be used in the formulation of 
the blood flow.

An important point should be clarified. The imaging equations for the moving
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6  6

6  6  

6

6  6
Figure  4.2: Protons moving along the ^-direction. The outgoing protons must 
be replaced by the incoming ones.

object will not be correct if the motion is not bounded in the volume of interest 
(VOI). In the MRI instrument design, the RF coils generate uniform RF magnetic 
field in the VOI. The gradient coils generate linearly varying magnetic field in the 
same volume. But outside this volume, the linearity of the gradient field and the 
uniformity of the RF field are not guaranteed. Therefore, all the above discussion 

will fail if the object moves outside the volume of interest.

4.1.3 The Displacem ent Vector and the Undesired  

Component of the Imaging Equation

The imaging equation for the moving object can be converted into a very useful 
form using the displacement vector. This vector shows the amount of displacement
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F igure  4.3: The trajectory of the moving protons at time (a) 0, (b) ti, and (c) 
¿2. The trajectory vector of the moving protons shows the position of the protons 
as long as it stays in the selected plane (See (a) and (b)). But the protons leave 

the selected plane the trajectory vector points the position of the incoming proton 

[See (c)]
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of the protons from their positions at time 0.

d{t] x) = r(t; x,0) — X (4.31)

For a stationary object the displacement vector is 0. Using this new vector the 
integral term of the imaging equation 4.29 can be decomposed into the desired 
and undesired parts. Let us recall the definition of n], a?):

(j){\T,n]\x) = 7 /  { H i { r { [ T \ i i ] \ x , [ T , n ] ) )  4- g{ t ) ' ^ r { [T\ n] , x , [T , n] ) ) r ] { ' i  , r ' )clT‘
Jo

(4.32)

In Eq. 4.29, the phase appears as cj) x , 0 ) ) .  Using the transitivity property
of r  and above equation the following relation can be obtained:

(^([r,n];r([r,n];a3,0)) =  7 /  (if,· (r([r ',n ];a ;,0))+ i^ (t)^ r([r ',n ],a ;,0)) ? /(r,r ')d r'
Jo

(4.33)
The above equation can be decomposed into two parts as:

(j) X, 0)) = x) -b pn{t\x) (4.34)

where (f)̂  and (f)̂  are the desired and the undesired phases which are given as:

</̂ d([uw];,®) = flf (̂["',» ]̂)7/(r,r')dr'| ic (4.35)

<j>u{[r,n]\x) =  7 /  {[T\n])d{[T',n]]x)r){T,T')dr'
Jo

+ 7 /  Hi{x + d{[T'.n]]x))r]{T,T')dT'' (4.36)
Jo

If there were no motion, d would be zero and therefore the undesired phase would 
be zero. The desired phase is independent of the motion. As it is in the analysis 

of the imaging equation for the stationary body (See Eq. 2.67), the desired phase 

is equal to:
(f>d{l·, a;) =  Gx{t)x +  Gy{t)y for r  Te (4-37)

Note that, (f>d is independent of /. Using this decomposition method one can 
rewrite the imaging equation of the moving object as:

s{t )  =  W D  J J p{x( 2)) exp ( j g ^ x )  A(i; x) dxdy ,  (4.38)
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where
1

= 7T /  ®)) dz.
J-DI2

(4.39)

If there were no motion A would be equal to unity.
If one samples the MR signal s(t) as in the case of MR imaging of the 

stationary object, the relation between the MR. samples and the proton densit}' 
distribution will be as follows:

P[k] = W D  J j p{x)exp (̂—jk '^Vx)  A{k-,x)dxdy. (4.40)

where

A(fc; x) =  A {[kJa:/N + Tg, ky],x) (4-41)

The above equation will be the basis of the artifact analysis due to the 
expansion/shrinkage, rotation and translation type of motions.

4.2 Intraview and View-to-view Motion

In the magnetic resonance imaging, usually data are acquired in bursts. The 
Fourier domain of the image (¿-domain) is sampled on a line b}'̂  line basis. After 
each 90° RF pulse, a line of the ¿-domain is sampled. The data acquisition time 

is very short compared to the 90° RF pulse repetition time.
The motion of the protons between the 90° RF pulse and the data acquisition 

is called the intraview motion. On the other hand the motion of the protons 
between the 90° RF pulses are called the view-to-view motion. In the view-to- 
view motion, the motion of the protons between the 90° RF pulse and the data 
acquisition period is ignored.

»■ „([T,nj;a:,0) =  r([0,n];a:,0) (4.42)

where is the trajectory vector for the view-to-view motion. On the other hand, 

for the intraview motion, the proton distribution of the body is assumed to be 

the same after each 90° RF pulse, but the protons move in the data acquisition 

period:
ri((r,n ] ; x , 0) = r(|T,n]; x\ [0,n]) (4.43)
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These two kinds of motion have ver}· different characteristics. But they usually 

appear at the same time. In a few special cases one of them ma}' be ignoi'ed. At 
a first glance, one may think that the intraview motion can be ignored for slow 
motions. But the magnetic resonance imaging method is very sensitive to these 

type of motions. So one must be careful before ignoring it. On the other hand, 
if the respiratory and/or EGG gating is used, the view-to-view motion may be 
ignored. In the following subsections, these motions will be analyzed separately.

4.2.1 The View-to-view Motion

In this subsection, the intraview motion of the protons will be ignored ;md the 
imaging equation for the view-to-view motion will be derived.

The undesired phase was found in the previous section (See Eq. 4.36) as:

Jo

+-y f  Hi{x + d{[T',n]-,x))rj{T,T')dT' (4.44)
Jo

Since there is only view-to-view motion, then

r  „([r,n];a;,0) = r^([0, n]; a;, 0) 

d{[T,n]]x) = (i([0,n];a;) (4.45)

Using these equations one may convert the undesired phase into the following 

form:

(¡>u{[r,n]\x) =  i?^([r',n])7?(T,r')dr'| d([0,n];a;)

-fi7, (r([0,n];aj,0)) f  7)( r ,r ')d r ' (4.46)
Jo

As it is discussed for the no motion case, if i w Tg, the above equation can be 

simplified as:

=  <i»([0,n];ic)G*(lT,n]) + <i,([0,n];x)G,([T,n]) (4.47)
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(See Eq. 2.61 for the definition of G x  and G y . )  It is assumed that the proton 
density distribution along the ^-direction is independent of z. This assumption 
is valid if the slice thickness is small enough. This argument may be extended to 
the displacement vector. So let us assume that dx and dy are independent of 2:. 
As a direct consequence of this assumption, <j) is also independent of 2:

(j){[T,n\,x) =  dx ([0,n];ico) Gx{[T,n\) +  dy ([0,?r];a;o) Gy{[T,n]) (4.48)

Remember x  = [.r,y,2]^ and Xq = [x,y,0]^. This is a very important result 
because the 2 integral in Eq. 4.39 can be evaluated, and the undesired component 
for a body which has view-to-view motion becomes:

=  exp x)) (4,49)

Actually, we do not need to be surprised with the above result. By the definition, 
there is no view-to-view 2 motion and for this analysis the intraview motion is 

ignored. Therefore, we do not have any 2 motion and the result is independent 

of 2.

4.2.2 The Intraview Motion

In the previous subsection, the intraview motion is ignored and the imaging 
equation for view-to-view motion is formulated. In this subsection, the view-to- 

view motion will be ignored and the imaging equation for the intraview motion 

will be derived.
The basic assumption of the intraview motion is:

7*i([0,n];a;;0) = x (4.50)

Here, Ti shows the trajectory of the motion of the protons between the time [0, ?i] 

(the time when nth 90° RF pulse is applied) and [r, nj. The data will be collected 

around the echo time, Tg. Usually, the echo time is less than 200 milliseconds. 
Since the motion of the protons after collecting the data is not important, the 

effect of the intraview motion is seen in the interval of 200 milliseconds.
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In most intraview motion artifact reduction methods [31], the velocity of the 
protons is assumed to be a constant between the time of the application of the 
90° RF pulse and the echo. Actually, this is a realistic assumption. Surely, 
the protons have acceleration, and even time dependent acceleration. But this 
acceleration never reaches to a point that it can considerably change the speed 
of the protons in this short interval. Note that even though the velocities of the 
protons are not time independent, they may be space dependent. The protons in 
different places may have different velocities in different directions. The Taylor 
expansion of r with respect to the relative time r  can be written as:

= X + Tv{x,n)  +  Higher Order Terms (4.51) 

where v is the velocity of the protons:

v { x ,n ) =  — r,-([r,n];ic,[0,n])
T=0

Here, the velocit}'  ̂ of the protons are both space and n dependent, but it is 

independent of the relative time, t . Here the higher order terms represent the 
acceleration, the velocity of the acceleration etc. of the protons.

Equation 4.51 can be written using the displacement vector as:

d ([r ,n]-,x) = Tv{x,n) + Higher Order Terms (4.52)

If the higher order terms in Eq. 4.52 are ignored, the undesired phase term of 

the imaging equation 4.40 can be written as:

=5'fi)(0^(ic»»0 + 7 f  Hi{x + Tv{[T\n];x))7]{r,T')dT' (4.53)

where
9(i)i[Tn]) = -f flr([r,n])r’7;(r,r')dr. (4.54)

Jo
Here (?(,·) is the ¿th moment of the gradient vector. Since the field inhomogenity 

is a smooth function of space, Hi will not vary on the path of the protons:

Hi {x-\-v{x, n)t) w Hi{x) (4.55)
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Using this approximation, Hi is made independent of time, and the integral term 
of Eq. 4.53 will vanish ss t ~  T"e, so;

{x,n) (4 ,5 6)

The undesired phase, can be eliminated by just arranging gradients so 
that their first moments are zero around the echo time. In the literature, this 
undesired phase elimination method is called the gradient moment nulling ( GMN) 
[31]. In the intraview motion studies it is shown that GMN is a very <:'i)'ective 
way of eliminating the motion artifact [32],[33].

If Tg is long so that the constant velocity assumption for the proton movement 
fails, the acceleration term may be added to the formulation. In this case, the 
second moments of the gradients must be nulled as well as their first moments.

4.3 Space D om ain A nalysis o f th e  M otion

In the previous section, the motion of the body is categorized with respect to 
time. In that analysis the space dependence of the motion is arbitrary. In this 
section, the whole body (rotational and block) and expansion/shrinkage motions 

will be analyzed. Imaging equation for each specific case will be derived.
Before going into the details of the space domain analysis of the motion, let 

us summarize one important result of the previous section. In both view to view 
and intraview motion cases, the field inhomogenity has (almost) no contribution. 

If the field inhomogenity with respect to the space parameter a; is a smooth 
function, then it is reasonable to assume that:

if> (»'([T,n];a;;0)) fs /fj (’■([O.nJ; * ;0)) (4.57)

After this assumption, the contribution of the field inhomogenity to the undesired 
phase can be neglected for T ^  Tq*·

(f)̂ {[T,n]]x) = 7 /  g' {̂[Hn])d{[r',n]]x)r]{T,T')dT'
Jo

+ 7  f  Hi{x 4-d{[H,n]]x))r){T,H)dH 
Jo
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= 7 /  g'^{[T'n])d{[r',n]]x)Ti{T,T')dT'
Jo

+'yHi{x + d{[0,n];x)) f 7]{T,T')dT'
'0

^ 1 9  {Wn])d{[r\n]]x)ri{T,T')dT' 
Jo

(4.58)

If the function d (proton displacement function) is a smooth function of 
space, then the Taylor expansion with respect to space variables will ojjen a 
new direction for the analysis of the effect of the motion.

d[t\x)  =  d{t\ 0) + Jo{t)x  +  dho{t\x) (4.59)

where jTo is the Jacobian matrix of d with resj^ect to space variable x  which is 
evaluated at the origin (0):

Jo{t)  = dx
= det

x=o

ddr ddx ddx
dx dy dz
ddy ddy ddy
dx dy dz
ddr dd. ddz
dx dy dz

(4.60)

(E,v,i)=(0,0,0)

and dho represents the higher order terms.
Ignoring the higher order terms in the Taylor expansion of the displacement 

corresponds to assuming that there are only block, linear expansion/shrinkage 
or rotational motions. In practice, pure block, expansion/shrinkage or rotational 
motions can not bb observed. And in most cases it is impossible to ignore the 

higher order motion types. Although this is a fact, higher order motion types 
will be ignored. In the next chapter, the image reconstruction methods based on 
the following analysis will be derived, and, the effect of the higher order terms of 

the motion will be analyzed.
After assuming that the higher order terms are equal to zero, the undesired 

phase 4.58 can be modified as:

<f>u{t; x ) = 7  I  n]) {d{[r\ n]; 0 ) J  o([r', n])®) 7/(r, r ')d r ' (4.61)
Jo

Arranging the x  dependent and independent terms yields the following result:

(j)u{t·, ®) =  (f>o{t) -f A G { tY 'x  (4.62)
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where (j)o is the x  independent phase, and ZiG is the coefficient vector.

i^o([r,n]) =  7 /  it([T ',n])^d([r',n];0)7;(r,r>/r'
Jo

ZiG([r,n]) =  7 /  Jo{[T\n]fg{[T\n])r}{T,T')dT' (4.63)
Jo

For this simple form of the undesired phase, (jiu, the integral of Eq. 4.39 can 
be ecisily evaluated. Let AGx, AGy, and ACC be the first, second, and third 
elements of the vector A G ,  then

I rD/2
= — exp{jcj)o)exp{jAGxXTjAG,pj) /  exp{jAGzz)dz  

^  J - D / 2

sin{AG,Dl2)
= exp(j(?i»o) exp{jAGxX + j A G y X j ) · (4.64)

AG.DI2
With these new variables, the imaging equation can be written as:

5(0 = C(0 JI Ps{x,y) ·
exp {j (Gx{t) +  AGx{t)) x + j  {Gy{t) + AGy{t)) y) dxdy (4.65)

(4.66)

where ^{t) represents the phase and amplitude distortion:

. . / · , / \\ siniAGz{t)D¡2)
m  = W D e x f U M t ) )  ^ g J ) D I 2  "

If the MR signal is sampled using the conventional sampling method then the 

imaging equation turns into the following form:

P[fc] =  J j ps{x) exp {J{k — Ak) '^Vx) dxdy (4-67)

where

A k  =  - ^ A G x { [ k x t x l N T T , , k y ] ) - ^ A G y { % t x l N T T , , k y \ ) { 4 M )
Z 7 T  Z 7 T

^[k] = C{[kJx/N + Te,ky]) (4.69)

The above form of the imaging equation can be used in the reconstruction of 

the static image of a moving object. To obtain the above equation, the motion 
is linearized with respect to space variables. Note that in the above equation, 

the time dependence of the motion is arbitrar}c In the following subsections, 

some special cases of the above formulation will be explained. In this way, the 
importance of the above formulation will be clarified.
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4.3.1 Block M otion

If a body moves as a whole block along an arbitrary direction with any velocity, 
the motion of the body is called “i/ie block motion”. The block motion inay be 
any function of time, the velocity and the direction of the motion may be time 
varying. The rotation of the block is not allowed. The rotational motion will 
be analyzed in another subsection. This type of motion may be observed as the 
conscious body motion. The leg, arm and head motions may be some e.xaraples 

of the block motions. The motion of the gradient coils can be treated as a block 
motion. The gradient coils are affected by the high magnetic field changes, they 
may vibrate or displace during the data acquisition period. Since the iniage of 
the body is acquired with respect to the frame defined b}'̂  these coils, the motion 
of these coils is equivalent to the motion of the body in the reverse direction.

To visualize the effect of the block motion to the acquired MR signal a short 

discussion will be carried out (See Appendix B for an example). After this 
discussion, the mathematical background will be given.

In the static imaging of a moving object, our final aim is to find the proton 
density distribution at the t = 0. The sample of the MR signal at this time 
corresponds to a sample on the ¿-domain. However, at time t, there may be a 
shift in the position of the protons. From the properties of the FT it is known that 
if there is a shift in the space domain, then there will be a linear phase change 
in the ¿-domain. Therefore, the sample of the MR signal at time t corresponds 
to a phase distorted sample on the ¿-domain. The amount of phase distortion 

depends on the amount of shift.

In the above discussion, the effect of the block motion to the acquired MR 
signal during the MR signal preparation period (the intraview motion) is ignored. 
If this effect is included, a very similar result will be obtained. In the following 

formulation of the block motion both the intraview and view-to-view motions are 

considered.
For the block motion, the displacement vector d  is independent from x:

d{t\x) — h{t) (4.70)
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And therefore, the Jacobian matrix, jT'o, is equal to zero. Since A k  is a linear 
function of ¿To·, it will be zero, too. On the other hand, will have a 
contribution to the imaging equation:

P| fc)=f[fc] J j  p,{x)exp ( j k ^ V x )  duly (4,71)

where

( ( [ ’■ ,")) = WDexp g({T',n]fb({r',n])i){T,T')dC

{[fc| = ( ( [ k A / N  + T„k,]) (4.72)

The integral in Eq. 4.71 gives the rectangular samples of the proton density 
distribution of the object:

P[k] = e[fc]P,(Vfe) (4.73)

Therefore, the block motion causes phase distortion on the imaging equation. 
The motion of the block may be along any direction, and there is almost no 
restriction on the trajectory of the motion (Only restriction is that the object 
must stay in the volume of interest).

The above formulation of the block motion includes the motion of the body 
along the ^-direction. But one should be careful in using the equation along the 
^-direction, because the basic assumption of the z-motion: The outgoing protons 

must be filled by the incoming ones. For the block motion case, if there is a motion 
along the .sr-direction then the outgoing part of the block must be equal to the 
incoming part of the block. This corresponds to the uniformity of the body along 

the z direction. If the amplitude of the motion along the ^-direction is low, then 
the assumption may be correct, but if the motion amplitude is high, the basic 
assumption will fail, and the imaging equation for the moving object must be in 
a completely different form.

4.3.2 In-plane Expansion/Shrinkage Motion

The subject of this subsection is the expansion/shrinkage motion of the body in 
the selected plane. This type of motion can be observed in the respiratory motion
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of the chest. There are many studies on the respiratory motion [26],[27], but in 

most of them the motion is analyzed in the time domain and almost none of them 
utilizes the expansion/shrinkage behavior of the motion.

As in the previous subsection, first, the effect of the expansion/shrinkage will 
be discussed and after that the mathematical formulation of the motion will be

given.
Again the FT relation between the MRI data and the proton densit}'  ̂

distribution will be used to explain the effect of this kind of motion. An 
expansion on the space domain corresponds to a shrinkage on the ¿-domain 
(Fourier transform domain), and similarly a shrinkage on the space domain 
corresponds to an expansion on the ¿-domain. Therefore if the object is expanded 

(or shrunk) then a sample will be acquired from the shrunk (or expanded) ¿- 
domain (See Figure 4.4). The position of a sample on the shrunk ¿-domain 
corresponds to another position in the ¿-domain of the static object. Because of 
these sample position shifts, the ¿-domain of the static object will be sampled 
non-rectangularly (See Appendix B for an example).

If the center of the expansion is not the origin, then the expansion/shrinkage 

motion may be decomposed to an expansion/shrinkage motion at the center and 
a block motion. Therefore, if the expansion/shrinkage motion is off-centered then 
there will be a phase distortion on the MRJ sample as well as the sample position 

change.
The expansion/shrinkage motion will be formulated in the following para­

graphs. The expansion of the body can be easily described using the displacement 

vector:
d(t; x) = A{t) {x — c) (4-74)

where c is the center of expansion, and A  is the expansion/shrinkage percentage 

matrix:

A t )  =

Ax{t) 0 0

0 Ay{t) 0

0 0 Az{t)
(4.75)

Here, Ax, Ay, and Â  are the percentage expansion/shrinkage factors along the
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(a)

(b)

F igure  4.4: An expansion over the space domain corresponds to a shrinkage over 
the ¿-domain, (a) An elliptic object and its 2-dimensional Fourier transform, (b) 

The expanded version of the object and its Fourier transform.
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a;, y and z directions. For e.vample, if Ax is equal to 0.10 then there is an 

expansion of 10% along the .r-direction. To show the amount of shrinkage minus 
values of Ax must be used. For example, if Ay is equal to —0.05, a decrease of 
5% will be observed in the height of the object. Since this discussion is on the 
in-plane expansion/shrinkage motion, the expansion/shrinkage factor along the 
z-direction (Az) will be assumed to be equal to zero. The non-zero Az case w’ill 
be discussed in another subsection.

Comparing the expansion equation for the in-plane motion (Eq. 4,74) and 

Eq. 4.59 gives the following relations:

d{t]0) = —A{t)c  

Jo{t) = A{t) (4.76)

Therefore, the imaging equation of a body which has the in-plane expan­

sion/shrinkage motion will be in the form of Eq. 4.65 but since there is no motion 
along the z direction, the z motion related parts of the expansion/shrinkage 

motion will disappear:

^(0 =  C(0 J J  ps{x)exp (j {g(t) + A G { t ) f  dxdy (4.77)

where

AG{[T,n\) = 7 /  A{[t',n])g{[T',n])ri{r,r')dT'
Jo

((t) = W D e x p ( - j A G ( t f c )

Using the FT sampling method (See Section 2.2.4), the relation between the 
MR signal samples and the continuous Fourier transform of the proton density 

distribution (¿-domain) can be written as:

where

P[k] =  exp {jAhTVc) Pz{V{k -  Ak))  

A k  = V~^AG

(4.78)

(4.79)
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The above formulation assumes that there is no motion along the z direction. 

The body has only the expansion/shrinkage type of motion, the amount of 
exparision/shrinkage and the center of the expansion can be any function of time.

As a conclusion, in the standard Fourier transform magnetic resonance 
imaging the acquired MR signal samples do not correspond to the rectangular 
samples over the ¿-domain, but to the non-rectangular ones. In addition, the 
samples will be phase distorted. If the center of expansion is at the center of the 
image, the non-rectangular samples will have no phase distortion.

4.3.3 Rotation of the Body

The rotational motion of a body in three dimension during the data acquisition 

period can be formulated. But here a very important point must be emphasized. 
When we are dealing with the three-dimensional motion, we should remember 
the basic assumption for the motion along the z-direction: The incoming protons 
must be filled with the outgoing protons. For the rotation around the x or y 
axes, if the rotating object has no circular symmetry around the rotation axis, 
the assumption will fail, and the discussion on the rotation will be wrong. The 
formulation may be a good approximation if the angle of the rotation is low 
enough. However, if the rotation axis is parallel to z then the motion will be 
an in-plane motion. Since there are no protons going out of or coming into 
the plane, the basic assumption will be true and the imaging equation for the 
rotation will be correct. Because of these facts, it is believed that the formulation 
for the rotational motion around the x and y axes are not useful. Although the 

formulation for the rotation around any axis can be done easily, only the rotation 

around the z axis will be considered.
In this analysis, the center of the rotation need not be the origin but it may be 

anywhere and even the position of this center may be time varying. In addition, 

the angular velocity of the rotation may also be time varying.
For the in-plane rotation, the trajectory vector can be written as:

r(i; æ, 0) = H z  ifi{t)) (æ -  c) -h c (4.80)
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Here, 'R-zi/I) is the three-dimensional rotation matrix which cause ,3 radians 
rotation around the 2-axis, and c is the center of the rotation. After some simple 
manipulations one can get the relation:

•5(f) = C(0 J j  ps{^)^'>^p{jGr{tYx) dxdy (4.81)

where

G,([r,??.]) = 7 /  ,n]))g{[T\n])ri{r,T')dT'
Jo

C(t) = WDexp{j iGi t ) -G, .{ t ) f c)

Therefore, the samples of the MR signal of a rotating object which has time 
varying angular velocity are the phase distorted non-rectangular sample of Ps as 
in the case of the expansion/shrinkage motion:

where

where

P[k] =  ([k]Ps (Vkr) dxdy

^[k] =  W D e x p { j { k - k r f V c )

(4.82)

(4.83)

kr[kx,ky] = V  ^Gr{[kxtxlN + Tetky\) (4.84)

If the center of rotation coincides with the center of the image, then there will be 
no phase distortion but the samples will still be acquired non-rectangularly. To 
visualize the effect of rotational motion see the example given in Appendix B.

4.3.4 The Expansion/Shrinkage Motion Along the 

z-direction

The expansion/shrinkage motion along the 2-direction has a completely different 
effect on the imaging equation. The basic imaging equation which is derived for 
the moving object fails to explain the expansion/shrinkage motion along the 2- 

direction, because in this equation it is assumed that the number of the protons 
which are entering to the slice is equal to the number of the protons which are
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going out. But if there is expansion, the protons in the slice will be decreased 

and there will be some outgoing protons, but no incoming ones.
The effect of the z expansion/shrinkage motion is complex. To simplify 

the analysis, the intraview and view-to-view expansion/shrinkage motions are 
examined separate!}'. In both cases, assume that there is expansion/shrinkage 
motion along the ^-direction but there are no other kinds of motions, and the 
proton density is uniform along the ^-direction.

4.3.4.i The intraview expansion/shrinkage motion along the 
z-direction

As a first step of the analysis of the z expansion/shrinkage motion, assume 
there is an expansion/shrinkage motion along the z-direction after a 90° RF 
pulse, but before the next 90° RF pulse all the protons return to their original 
positions. This strange motion can be observed in the respiratory gated data 
acquisition. In this method, the 90° RF pulse application time is synchronized 
with the respiratory motion. Therefore, at the time of application of each RF 
pulse, the protons are at the same positions. For this type of motion (intraview 
expansion/shrinkage motion along the z-direction), the imaging equation 4.65 is 

valid. The displacement vector can be written as follows:

d{t ,x)  = [0, 0, -  c.)Y (4.85)

where and are the percentage expansion factor and the center of expansion, 

respectively. From the definition of the intraview expansion/shrinkage motion, 
all the protons must return to their original positions after each 90° RF pulse, 
therefore:

^z([0,n]) =  0 for all n. (4.86)

For this condition, using the relation between Eq. 4.85 and Eq. 4.59, the 
imaging equation can be written as follows:

s{t) =  C{t) J j ps{x,y)exp{jGx{t)x +  jGy{t)y)dxdy (4.87)
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where ((i) represents the phase and amplitude distortion,

C(i) =  WD sin{AG^{t)d/2)
AG,{t)dl2

AG^([r,n]) =  0' /  9zi[r',n])Az{[T\n])r]{T,T')dT' (4.88)
Jo

The above equation explains only the intraview part of the 2 expan- 
sion/shrinkage motion.

4.3.4.Ü The view-to-view expansion/shi'inkage motion along the 
z-direction

If there is a view-to-view expansion/shrinkage motion, the protons in the selected 
plane will be decreased/increased.

Assume a strip which has an infinitesimal volume in the selected plane whose 
height, width and length are D, dx, dy. If uniformity along the 2 direction is 
assumed then the protons inside this volume at time 0 (Remember ps{x, y) is the 
proton density on the 2 =  0 plane at time 0, at any other time the proton density 

may change) is:
p{x,y)Ddxdy (4.89)

If· the object expands along the 2-direction, then the number of the protons 
inside the volume decreases. If the displacement vector is given as:

4([r, n], x) = Â ([0, n]) (2 -  ĉ ) (4.90)

then, at time t the height of the volume containing the same number of protons 
increases by A 2 percent. Therefore, in the strip whose dimensions are dx x d y x D ,  
the total number of the protons will be

Therefore, the imaging equation for the expanding object along the 2 direction 

will be the same with the imaging equation for the static object except replacing 

psDdxdy by P s j + j ^ ^ d x d y :

= J j p^{x,y)exp{jG^{t)x + jGy{t)y)dxdy (4.92)
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where

C([r,n]) = D W
(4.93)1 + ^ - ( [0, ?rj)

Note that in the above explanation of the expan.sion/shrinkage motion, the 
uniformity along the 2; direction is assumed. This assumption will be valid for a 
reasonable amount of expansion/shrinkage motion.

4.3.4.iii The view-to-view and intraview expansion/shrinkage 
motion along the z-direction

The imaging equation under both the intraview and the view-to-view expan­

sion/shrinkage motion of the object can be formulated. The effect of the view- 
to-view motion is the change in the number of protons in the selected slice. The 
intraview motion is the motion of the protons after the 90° RF pulse is applied. 
Since there is also view-to-view motion, some amount of expansion when the 90° 

RF pulse is applied, (at time [0,n]), must be observed. For the intraview effect, 
the amount of expansion with respect to the original ¡sositions of the protons is 
not important but the amount of expansion after the application of the RF pulse 

must be considered.
Assume a strip which has a height of a unit length. At time [0,n], its length 

will be 1 -t-A^([0, ?r]). At another time in the same repetition interval, say at time 

[r, n] its length will be 1 -b A.z([t, n]). Therefore the relative expansion of the strip 
between time [0, n] and [r, n] is:

1 + A:,{[T,n]
1 -b Ar([0, n]) 
Az{[T,ri\) -  A^([0,?i])

1 -b A2([0, n])
(4.94)

Using the new definition of the displacement along the 2: direction, the imaging 
equation can be written as:

s[t) = ({t) J J  ps{x,y)exp (jg{t)'^x) dxdy (4.95)
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where ({t) represents the phase and amplitude distortion,

CW =
WD sin{AGz{t)D/2)

l + ^ ([0 ,n ]) AG4t)D/2

AGz{[T,n]) = 7 /  g,{[T\n])A!^{[T\n])'q{T,T')dT'
Jo

(4.96)

If the standard FT MR imaging pulse sequence is used, the relation between 
the ¿’-domain of the proton densitj^ distribution and the samples of the MR signal 
will be the amplitude distorted samples of the ¿-domain:

where

p[k] = a m  ( v k )

WD

A¿г =  — AGz{[kxtx/N Tg,ky])

(4.97)

(4.98)

(4.99)

4.4 The Effect o f the Periodic M otion: T he  

Ghost A rtifact

Until now, the effect of the motion to the imaging equation is analyzed. Here, 
the effect of motion to the reconstructed images will be discussed.

In the standard imaging methods, the motion of the body is ignored and 
the image of moving body is reconstructed as if there is no motion. Because 

of this reason, the motion artifact on the reconstructed images appears These 
artifacts can be seen as the ghost-like replicas of the moving object. Mostly, the 
physiological motion of the body is quasi-periodich And it is known that the 

periodicity of the motion is the actual source of the ghosts on the image.
Wood and Henkelman [37] gave a very good analysis of the problem. In their 

work, an impulse proton density distribution is considered. And they assumed 

that the impulse proton density distribution moves in a;, y and г directions with

tThe quasi-periodicity means the periodicity of the motion may be violated for a short time, 
but in most of the time, the periodicity rule is satisfied.
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a sinusoidal time function. They obtained the image of the moving object using 
the standard data acquisition method. And they showed that the ghost artifact 
on the image is related to the periodicity of the motion. In addition to the ghost 
artifact, there is blurring. The amount of blurring depends on the amplitude, 
and the direction of the motion. On the other hand the position of the ghost 
depends on the frequency of the oscillation.

In the following paragraphs, the effect of the motion for any periodic signal 
will be derived and the effect of the quasi-periodicity to the image will be shown.

4.4.1 The Effect of Motion to the Image

Since the motion of the protons is space dependent, the effect of the motion 
appears as a space dependent artifact. Because of this reason the analysis will 

be carried out assuming that there is a block motion. In other kinds of motions, 
the appearance of the motion artifact on the image is almost the same.

For the block motion, the relation between the MR signal samples and the 
proton density distribution was derived in a previous section as (See Eq. 4.73):

p[k] =  m P s i v k ) (4.100)

and Ps is the continuous FT of ps- As it is stated previously, using the 
conventional methods the image is obtained by taking the ID FT of these samples.

I[n] = IDFT (̂ [*=1) (4.101)

where /  is the image which will have the motion artifact. The relation given in 
Eq. 4.100 can be used in the calculation of the IDFT.

iV/2- l  N/2-1 , .
i[n] = WD Y  i l f c J P X V i;) e x p i ;^ F n j  (4.102)

k^=-N/2ky=-N/2  ̂ ^

Since P is the continuous FT of />s, one can rewrite the above equation in the 

following form:

l\n] = WD j j  p.(x)
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N/2-1 N/2-1

X  (-̂  7̂ ^^  ̂^  ) ®̂ P (-i^^V .x )  ̂ dxdy (4.103)
k^^-N/2 ky=-N/2 ^

Let us define a new two dimensional continuous function:

(4.104)((u>̂ .,COy) — (^{iOxtx/N + Te +  iOyTr)

This function is the continuous version of the discrete function, (f[/s].

(̂ [¿1·, A:j,j =  (,{[^x^xlhl +  2e, ky])

= ({kxtx/N +  Tg + kyTr)

~  {̂̂ x-> ^y)

Let ^ [14] be the continuous FT of <̂ (w):

j j  S(w)exp {ju;^u) du^duy

where u  is equal to [ux, u^]. One can substitute the above equation into Eq. 4.103 
and after some manipulation the following result can be obtained:

/ /  / /  ~ T ^  " "7 " ^  Uy)duxduydxdy
 ̂ (4.107)

where T is defined in Eq. 2.81. The above equation is basically the convolution 
of three functions. F function is related to the sampling method. It appears in 
the imaging equation of the stationary object, too. While N  goes to infinity T 
can be approximated by an impulse train (See Figure 2.21):

(4.105)

(4.106)

F(«) ~ X % - 0 (4.108)

where ¿(u) is the Dirac delta function. For large N  values the above assumption 
is acceptable, if one substitutes the above equation to Eq. 4.107, the two integrals 
can be evaluated and finally the following result is obtained:

I[n] = WD dxdy (4.109)
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where I is equal to The right hand side of the above equation is a
convolution integral. The function 3  becomes an impulse function in the case of 
MR imaging of a static object and therefore the summation turns out to be an 
impulse train function. The convolution integral will be killed by these impulses, 
and the relation between the proton density distribution and the image of the 
static object can be obtained. On the other hand, if the object is moving S may 
be any arbitrary function. It is impossible to say something more on the behavior 
of the summation. However the motion of the human body is usually periodic. 
Therefore analysis of the periodic motions has a special imi^ortance.

4.4.2 The Artifact due to Periodic Motion

In the previous subsection, the effect of the block motion to the imaging equation 
is derived. In the following lines a special case of the motion: the periodic motion 
will be analyzed.

Since the complete derivation for the effect the periodic motion artifact is 
already done in [37], only the results will be discussed here.

Wood and Henkelman formulated a sinusoidal motion along the x direction:

bx{t) = Asin{27rtlTp + Ox) (4.110)

where A, Tp, and Ox are the amplitude, the period and the phase of the sinusoidal 
motion. After some calculations (all of the steps are shown in [37]), it can be 
shown that:

Ei(a;) = ^exp(;m^a,) 8
NT.

*x Bm{x)> 8{y+ mya) (4.111)

where

Bm{x) =

T-‘■ r  r

yo rn JyIp

5rAT(A2-i2)l/2
0

|a:| < A 

b j > A

Here Tm represents the mth-order Chebyshev polynomial [38] and *x is the 
convolution operator with respect to the space variable x. The above complicated
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equation is a very important result. First it shows that the moving object has 
ghost artifact in both x and y directions. The separation between the object and 
its first replica is ya cdong the y direction and along the x direction. The
replica ot the image along the x direction can not be seen because the sampling 
period, tx/N,  is very short compared to the period of the motion. The replicas 
along the x direction overlaps and it appears as a blurring artifact. Another 
source of the blurring is the Bm function. The moving protons have an effect on 
their image which is very similar to the blurring effect of a moving light source 
to its photograph. The blurring effect of the protons can be seen only in the 
region of the movement. The intensit}'  ̂ increases in the places where the protons 
stay more. The most important property of this type of motion is the ghost like 
replicas in the y-direction. The repetition time and the period of the motion are 
in the same order. So the separation between the image and its first replica is 
not a short distance. Actually, the ghost like replicas in the y-direction is the 
characteristic of the periodic motion.

If one analyses the MR images of the moving objects, some ghosts whose 

separations from the original image are not multiples of yg can be seen. These 
ghost images appear as a result of the overlapping effect of the summation of 
E. As it is already derived, the image of the movipg object is the convolution 
of the static image with the summation of shifted E functions (See Eq. 4.109). 
The intensity of the ghost decreases as the separation between the ghost and the 
object increases. The overlapping occurs for these low intensity ghosts.

The motion in the y and 2: directions has almost the same characteristic. The 

difference of the ghost artifact due to the motion in these directions can be seen 
in the blurring function. Since the path which protons are moving is different the 

effect is also different. In the x-motion, the blurring function, Bm, is non-zero 

only in a limited range in the x-direction. Although the derivation is not given 
here, the motion along the y-direction causes blurring along the y-direction.
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MOTION ARTIFACT FREE 
IMAGE RECONSTRUCTION  
ALGORITHMS

In the previous chapter the effect of the motion to the imaging equation is 
analyzed. The aim of this chapter is to explain some motion artifact reduction 
methods which are based on the space domain analysis.

5.1 The B lock M otion

Reconstruction of an artifact free image of an object which has the block motion 
is relatively easy. Before taking the inverse discrete Fourier transform phase 
correction of the acquired MR signal samples is enough to obtain a good quality 

image.
To explain the way of evaluating the amount of phase distortion, let us rewrite 

4.73:
P[fe] = e[fc]P,(Vfc) (5.1)

This is the relation between FT of the static proton density distribution and the 

acquired MR data when there is block motion. Here P[k] represents the acquired 
MR data set, Pa(<̂ ) is the FT of the static proton density distribution and V

84
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is the sampling matrix which is defined in Section 2.2.4.V (See Eq. 2.77). In 

the above equation, stands for the phase distortion. Remember the phase 
distortion, is given as (See Eq. 4.72):

pkxtx / N-\-Te
([fc] = WDexp ( j-f g{[T\n\f  h{[T\n])ri{Te,T')dT' (5.2)

In the above relation, t^, N,  T'e, ?/, D, and W  are the parameters related 

to the applied pulse sequence. Since the applied pulse sequence is known, all 
these parameters are known. b(t) represents the block motion (See Eq. 4.70). 
Therefore, if the function b{t) is known, the phase distortion, can be found 
by evaluating the above integral.

Using the calculated phase distortion and the acquired MR signal data set, 
the rectangular samples of the /j-domain can be evaluated as:

p ,(Vk)  = Pifcji -If (5.3)

And the motion artifact free image can be obtained by the calculating the inverse 
discrete Fourier transform of this calculated data.

There is no approximation in the reconstruction algorithm. So if the object 
motion exactly fits to the block motion model and if b{t) is exactly known 
then a perfect image reconstruction is possible. The above image reconstruction 
technique is applicable to the block motion with any function of time. A constant 
velocity block motion version of this reconstruction technique was previously 

proposed by Korin et al [39].

5.2 The In-plane E xpansion/Shrinkage  

M otion

The in-plane expansion/shrinkage motion is observed in the transaxial chest 

imaging as a consequence of the respiratory motion. Although the motion of 

the chest is a non-linear function with respect to space, the expansion/shrinkage 
model for the motion is quite a good approximation.
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There are some studies on the suppression of the resiDiratory motion artifact. 
Two of them are closel)  ̂ related to the reconstruction algorithm that will be 
explained in this section. Both of these works are carried out by the same group 
at the Case Western Reserve University ([40] and [34]).

In the first stud}' [40], the in-plane expansion/shrinkage (they call the 
“(h'/flUon”) motion artifact is reduced by changing the amplitudes of the x and y 
gradients depending on the amount of expansion. By this way, they obtained the 
rectangular samples of P,, directly. This method is based on two assumptions: the 
expansion/shrinkage motion is a view-to-view motion, and the center of expansion 

is also the center of the image. Although the first assumption is a reasonable 
assumption, they could not suppress the motion artifact completely because of 
the misregistration of the center of expansion. Because of the difference between 
the center of expansion and the center of the image, the block motion artifact is 

observed. This will be explained in Section 5.2.3.ii.
In the second study [34], the in-plane expansion/shrinkage motion is reduced 

by an iterative post-processing method. Their method is based on the 
projection onto convex sets (POCS). This reconstruction method requires many 
iterations before converging to a motion artifact reduced image. Because of the 
computational cost of the method, it has no practical usage. However, their 

method can be used in any kind of non-linear motion although their sample 
solution is based on an expansion/shrinkage model.

The reconstruction algorithm which is developed in this dissertation is 

also a post-processing technique [41]. Since the method is not iterative the 

computational cost is much less than the POCS method.

5.2.1 The Reconstruction Algorithm

As it is shown in Eq. 4.78, the samples of the MR signal are the non-rectangular 
samples of the continuous Fourier transform of p. Furthermore, the phases of 
the samples are also distorted. The phase error of the samples are compensated 

using the equation
P[A;] = P[ k] e x p { —j A k ' ^ V c )  (5.4)
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Here the entries of P[fe] are the phase compensated versions of the samples of 
the MR signal, P[k], A k  is defined as (See Eq. 4.79):

pk̂ tx/N-\-Tc
A/: = 7V - · /  A([T\k,])g{lT',k,MZ,r')dr' (5.5)

where ^  stands for the expansion/shrinkage percentage matrix and c is the center 
of expansion. Referring to Eq. 4.78 and 5.4, it is possible to write:

P[k] = P , { V { k - A k ) ) (5.6)

Here the entries of H[A;] correspond to the non-rectangular samples of the Fourier 
transform of p. To reconstruct the image, it is necessary to recover the rectangular 
samples of from its non-rectangular samples. The 2-dimensional discrete 
inverse Fourier transform of the recovered rectangular samples will be the motion 
artifact free image.

In the reconstruction method, the most difficult and the most important part 
is the I'ecovery of the rectangular samples of the continuous Fourier transform 
of the image, P¡ from its non-rectangular samples. This can be achieved by the 
some interpolation methods. In the following section, the interpolation methods 
will be explained.

5.2.2 The Interpolation Methods

The positions of the rectangular samples are not arbitrary. In almost all the 
imaging pulse sequences the ?/-gradient [py) is zero during each data acquisition 
period. In this period the x-gradient has a non-zero value. For the no motion 
case, the acquired data in each acquisition period correspond to the samples of 

Ps on a straight line (wy = cuyo). Similarly if there is motion, the samples are 
taken on a straight line located at a different position and the samples on this 
line are taken non-uniformly.

This can be shown ea.sily. The equation Eq. 4.68 can be written as:

Ak^ = - r -  /  ,ky])gx{[T',ky])rj{ry)dr' (5.7)
Jx Jo
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A k,  =  /
j y  Jo

kxtx/N+Tc
í'í DsíÍIt'. Klhi'T· ■')Лт' (5.8)

Since there is no y-gradient and no 180° RF pulse during the data acquisition 
period, the above equation for Aky ma)'̂  be modified as:

ky])9yiŴ  ky])T]{T, T')dr'A K  =  /
Jy Jo

As a result /S.ky is independent.

^kx  — 

/\ky —

(5.9)

(5.10)

(5.11)

Therefore the sample positions on P ¡ will look like as in Figure 5.1. Using 
this propertjq the recovery of the rectangular samples from the non-rectangular 

samples is reduced to tw'o one dimensional problems. First, for each ky, a one­
dimensional signal is defined as:

Pi‘»>(u.,) = P . U., j ( k ,  + A k , ) (5.12)

This new signal is the FT of the proton density distribution at line Uy — ^{ky  -f 
A k y ) .  At the ^j,’th repetition interval, the samples are acquired on this line 

non-uniformly:

Plk. ,k ,]  = P i‘»> + A k , ) )  (5.13)

where P [ k ]  stands for the acquired MR data set. Note that, if the above two 

equations are combined Eq. 5.6 can be obtained.
The first one-dimensional problem is the recovery of the rectangular samples 

of Px^’̂\(jk>x) from its non-uniform samples. The non-uniform samples are located 

at
2тг

“t” ^kx^
Jx

The uniform samples at the positions

( x̂ — p kx
Jx
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F igure  5.1: A sample distribution of the non-rectangular sample positions in 
the Ps{u>x,u)y) plane. In this example there are 10 repetition intervals and in each 
repetition 10 samples are acquired. The positions of the samples are marked by 
cross signs. The positions of samples acquired in each repetition interval lie on a 
horizontal line. This type of sampling is the result of the respiratory motion.

can be calculated using one dimensional interpolation methods. After the interpo­
lation, P x ^ ^ \ ^ k x )  are evaluated. These values correspond to P s  ( ^ ^ k x ,  ^ { k y  + A k y  

After this step, the second one-dimensional problem must be solved. For each 
kx, another one-dimensional signal is defined.

= P. ( (5.14)

pih) [tOy) corresponds to a vertical line on the ¿-domain. After the previous 

interpolation, some non-uniform samples of are evaluated. These samples 
are at the positions ^{ky  +  Aky). Using the interpolation, the uniform samples 
at ^ k y  can be calculated. These uniform samples of Pl;'̂ '‘\u y )  correspond to
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the rectangular samples of P¡. Therefore the two-dimensional non-rectangular 
to rectangular sample conversion problem can be solved b}' solving two one­
dimensional interpolation problems.

There are many studies on one-dimensional non-uniform sampling. In 1956, 
Yen proved that the recovery of a bandlimited signal form its non-uniform samples 
is possible if there are sufficient number of data [42]. Both and Px^‘'\u)x)
satisfy the requirement because Pg is the Fourier transform of a space limited 
signal. Here, a method for the recovery of the uniform samples of p P M  from 
its non-uniform samples will be introduced. The uniform samples of Px^^\u)x) 
can be obtained in the same manner.

Using the sine interpolation, Py’̂ \̂u>y) can be recovered from its uniform 
samples as [43]:

p P M  = E  ay* )(^ i)sinc ( 4 ^  -  i- (5.16)

The above summation is defined for all integer k values. But P y \ ' ^ k )  is 
assumed to be zero for k ^  [—Y j y )  some N.  It is enough to carry out the 
summation for the non-zero k values. But Pŷ "‘\a}y) is sampled non-uniformly 
at the instances ^{ky  -\- Aky). Therefore the relation between the non-uniform 
samples and the uniform samples can be written as:

+ =  E P P { T k ) m n z ( k , + A k , - k )  (5.16)

The above equation can be converted to matrix form as:

pV‘- \ K , ^ t . k , ) = S P ‘* - \ k )  (5.17)

where + Afc,) and are the non-uniform and the uniform sample

vectors, and S  is the transformation matrix. The elements of the matrix are 

sinc(fej, +  Aky — k) where k is the column and ky is the row.
To calculate the uniform samples from the non-uniform samples the matrix 

S  must be inverted.
P,(‘ ' ) ( i )  =  S -'P ^ ‘’-'>{k, + A k,)  (5 .1 8 )
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If the number of non-uniform samples are equal to the number of the rectangular 
samples then the <S matrix will be a square alternant matrix. And after some 
mathematical manipulations it can be proved that the S  matrix is invertible for 
any set of distinct ky A k y ’s [44].

The matrix <5 may be practically singular if some non-uniform samples 
are too close to each other or if there is no sample around a uniform sample 
location. Unfortunately, this occurs frequently. To overcome this problem the 
well-known singular value decomposition method is used and the uniform samples 
are calculated by multiplication of the pseudo inverse of S  with the non-uniform 
sample vector. See rf. [45] for the details of the singular value decomposition and 
the pseudo inversion.

Instead of solving the problem by the pseudo inversion of the matrix, some 
approximate methods may be proposed. The linear and the third order Lagrange, 

and cubic spline interpolation methods can be used if a fast image reconstruction 
algorithm is required. See Appendix C for the details of the above interpolation 
methods. The performances of the methods are compared and tested in the next 
subsection.

As a summary, in this subsection an expansion/shrinkage motion artifact 
free image reconstruction algorithm is proposed. The rectangular samples over 
the A:-domain of the proton density distribution are interpolated after the phase 
compensation of the acquired data. And then the inverse Fourier transform of 
the calculated data gives the artifact free image.

5.2.3 Simulations and Results

In this study, some simulations are carried out to see the properties of the 
proposed image reconstruction method. Firstly, a fictitious phantom is selected 
as a test object. This object is assumed to have a respiratory motion. The MR 
signal is simulated under these conditions. The reconstruction method is tested 
with this MR signal. The reconstructed image has almost no blurring or motion 

artifact. Different interpolation methods are used to recover the uniform samples 
from the non-uniform samples and their performances in terms of the image
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F igure  5.2: The 2-dimensional mathematical chest phantom. The white circular 
object represents the heart. The small circular objects stand for the backbone. 
The lungs are represented by two elliptic objects which have different internal 
structures. The thin layer covering the phantom stands for the fat around the 

body. The proton density is given in arbitrary units. The circular objects have 
1 unit of proton density, whereas the lungs have 0.1 unit. The other parts of the 
phantom are assumed to be filled with 0.5 units of proton density. The field of 
view [fx, fy) is (256mm, 256mm).

quality are observed. The new reconstruction method is tested with incorrect 

values of the model parameters. It is shown that if the errors in the model 
parameters are reasonable then a substantial amount of motion artifact reduction 

in the reconstructed image will be observed. In other words, the new method is 

robust with respect to to the model parameters.
Let the mathematical phantom object shown in Figure 5.2 be the test object. 

Assume that the object moves as defined in the expansion/shrinkage motion
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Figure 5.3: The respiratory fluctuation function which is used in the simulations. 
It is a periodic function with a period of Tp = 'ISOOmsec. The function is equal 

to exp{—lQH/Tp) for —Tp/2 < t < Tp/2.

model (see equation Eq. 4.74). Let the parameter c (the center of the expansion) 
be positioned near the backbone of the phantom. The diagonal percentage 
expansion matrix is assumed to be:

^ ( t )  =
0

0  a y f ( t )
(5.19)

Here, the fluctuation function f[t)  is periodic (see Figure 5.3):

f [ t  +  nTp) = exp I —16 (5.20)

The amplitudes of the fluctuation function in x and y directions, and Oy, are 
selected as 4% and 10% for the simulations, respectively. The motion period, Tp, 

is assumed to be 2800msec.
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During the study a simulated standard spin-warp imaging pulse sequence is 
applied to the test object (see Figure 2.20). In each simulation experiment a fixed 
repetition interval is used with Tr = 1500msec. Total of 256 repetition intervals 
are carried out. In each repetition interval, 256 samples are acquired with a 
20(j,sec sampling period. Therefore the data acquisition period ty = 5.12msec. 
The echo time, Te, is 30??2sec. The phase encoding (a;) gradient apjalication 
period, tx, is 3msec. The gradient pulse amplitudes are arranged so that a region 
which has a size of 256mm x 256mm is viewed.

If the inverse Fourier transform were directly applied to the simulated MR 
signal which is taken from this moving object, then the image would have the 
respiratory motion artifact (see Figure 5.4). The same data is reconstructed using 
the proposed method (see Figure 5.5). The motion artifacts and blurring due to 
the motion are significantly suppressed.

The practical difficulty of the proposed image reconstruction method is 
the computation time. The most time consuming part of the method is the 
interpolation from non-rectangular samples to rectangular samples. As it was 
explained in the previous section, to find the rectangular samples from the non- 

rectangular samples it is required to calculate the pseudo inverses of (256 x 256) 
matrices using the singular value decomposition (SVD) method where 256 is the 
dimension of the image. The distribution of the non-uniform samples in each 
row is different. Therefore 256 different S  matrices must be decomposed. On 
the other hand, the positions of the non-uniform samples in each column are the 
same. Therefore only one SVD is enough for the interpolation in the y direction. 

Total of 257 SVD are required. In SUN-3 160 system which has a fioating point 
accelerator (fpa), each SVD takes approximately 13 CPU minutes. Therefore an 
image reconstruction time is approximately 56 hours.

Much quicker image reconstruction can be achieved by some other interpola­
tion methods. The linear interpolation method requires much less computation 

time. Firstly, the non-uniform samples are sorted with respect to the sampling 

positions. And the rectangular samples are taken from an imaginary piecewise 
linear curve the corners of which are on the non-uniform samples. This method
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Figure 5.4: An image of the object with a simulated respiratory motion if the 
standard FT reconstruction method is used. The motion model parameters a^, 
ay, Cx, and Cy are 4%, 10%, 7mm and 98mm, respectively. The respiratory 
motion artifact can be observed on the image. As a measure of the image quality, 
the average of the intensity levels at the outside of the region of interest, e, is 
evaluated as 0.121 units. The region of interest (ROI) is inside the rectangle 
shown in the figure.

adds a total of 10 seconds to the conventional reconstruction time. The image 
obtained by this method is also acceptable ( see Figure 5.6). The linear 
interpolation is useful for the reconstruction of the images which do not have 

strong motion artifact.

The third order Lagrange and the cubic spline interpolation methods are also 
used. It is observed that these interpolation methods fail if there are very closely 
located samples. The noise on the neighbor samples may cause very high swings 
on the interpolated data. So the samples which are closer than a threshold are
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F igure  5.5: An image using the proposed reconstruction method. Almost all 
the motion artifact is suppressed. Exact motion model is assumed to be known. 
The rectangular samples are calculated using the pseudo inverses of 257 different 
matrices. The average of the intensity levels at the outside of the ROI, e, is 

0.0217 units.

replaced with their averages. In a sense this corresponds to remo^'ing singularities 
in the S  matrix. In this way, the interpolation method is stabilized.

The third order Lagrange interpolation is applied after sorting the samples 
and removing the singularities as explained in the previous paragraph (see Figure 

5.7). The quality of the images which are obtained using the third order 

Lagrange interpolation is better compared to the images obtained using the linear 
interpolation. The Lagrange interpolation adds a total of 15 seconds to the 
conventional reconstruction time. The cubic spline interpolation method is the 

best among these quick interpolation methods (see Figure 5.8). The overhead of 
the cubic spline method is approximately the same as the Lagrange interpolation
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Figure  5.6; An image using the linear interpolation. The rectangular samples 
are calculated using the linear interpolation of the non-rectangular samples. The 
motion artifact is reduced. The remaining motion artifact is due to the errors in 

the interpolation method. The average of the intensity levels at the outside of 
the region of interest is 0.0548 units.

method (15 seconds).
As a fifth interpolation method, a composite interpolation method is used. 

The motion in the x direction is compensated using the cubic spline interpolation 
method and the motion in the p direction is compensated by the singular value 
decomposition. The result is almost as good as the image obtained by the motion 
artifact suppression using SVD in both directions (see Figure 5.9). But it is much 
quicker (approximately 15 minutes).

The selection of the interpolation method among these five methods depends 

on the quality of the image one wants to obtain and the amount of time that can 
be afforded for the reconstruction of the images.
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Figure 5.7: An image using the third order Lagrange interpolation. The 
rectangular samples are calculated using the third order Lagrange interpolation of 
the non-rectangular samples. Before the interpolation, 12 x 256 samples which are 
too closely located to some other samples are removed from the non-rectangular 
sample set. The average of the intensity levels at the outside of the region of 

interest is 0.0464 units.

In all the above image reconstruction methods the exact motion model is 
assumed to be known. If the exact motion model is not known, then the 
reconstructed image will still have some motion artifact. The important point 
is that even if an approximate expansion/shrinkage motion model is used the 
reconstructed image would still be better then the image which is reconstructed 

by the standard methods. To test this fact some simulations are conducted 

with incorrect a^, üy, Cx, Cy and f{t)  values to observe the sensitivity of the 
reconstruction technique to these parameters. The cubic spline method is used 

in all these simulations.
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F igure  5.8: An image using the cubic spline interpolation. The rectangular 
samples are calculated using the cubic spline interpolation of the non-rectangular 
samples. Before the interpolation, 12 x 256 samples which are too closely located 
to some other samples are removed from the non-rectangular sample set. The 
average of the intensity levels at the, outside of the region of interest is 0.0396 
units.

5.2.3.i Sensitivity of the reconstruction method to the fluctuation 
function

In reality, it is not possible to measure or estimate the percentage expansion 
matrix, A{t),  exactly. The image must be reconstructed using an approximate 

value for A{t). The proposed reconstruction method is not very sensitive to this 
parameter. If one reconstructs the image of a moving object using A{t)  instead 
of A{t)  then the reconstructed image will have a similar artifact of the image of 
the object under a respiratory motion with the parameter — A { t^ . If the
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F igure  5.9: An image using the composite interpolation. The motion in the x 
direction is compensated using the cubic spline interpolation. In this direction 
there were no too closely located samples, so all the samples are used. In the y 
direction, the motion is compensated by the pseudo matrix inversion. To find 
the pseudo inverse, 24 eigen-values of the S  matrix are set to 0. The average of 
the intensity levels at the outside of the region of interest is 0.0321 units.

measurement error, is reasonable then a substantial amount of
image artifact reduction is expected. This fact is justified both experimentally 

and theoretically.

Three simulations are carried out to observe the effect of the measurement 
error. A.{t) has three parameters: f{t), Ux and, ay. The measurement error 
on these parameters are analyzed separately. If the measurement error in the 

amplitude of the fluctuation function along the x direction is less than 100% 
(i.e. if \ax — CLx\ < |aa;|) there will be artifact reduction. In the first simulation, 
ax is assumed to be measured with 50% error (dj, =  0.5aj,). And the image is
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reconstructed with áx instead of Ux (see Figure 5.10). The ghost artifact due to 
the motion in y direction is completely suppressed and the artifact due to the x 
motion is reduced. Secondly, a similar simulation is carried out for the fluctuation 
function amplitude in the y direction. The motion artifact suppression is observed

I
on the image which is reconstructed with áy = 8% instead of its actual value 10% 
(see Figure 5.11). In general, if \ay — < |ay( the^ the proposed reconstruction
method is helpful in the artifact reduction. In both experiments the fluctuation 
function f{t)  is assumed to be known. An additive white noise on the measured 
fluctuation function, /( i) , is assumed. The signal to noise ratio (SNR) of f{t)  
is 2t)dB. The image obtained by f{t) is shown in Figure 5.12. Since the error 
function f{t) — f{t) is not periodic then dk — Afe is not periodic, either, so there 
is not ghost like image artifact but there is blurring on the image. As the SNR 
of the f ( t )  decreases, the contrast to noise ratio of the reconstructed image also 

decreases.
The theoretical analysis of the sensitivity of the reconstruction method to 

fAit) is also conducted. The acquired data was formulated as (see equation Eq. 

4.78):
P[k] — exp{jAk'^Vc)Ps{V{k — Ak))  (5.21)

The proposed reconstruction method is based on this equation. The 
rectangular samples of Ps are calculated using s[kx, fej,], before taking the inverse 
Fourier transform. The image reconstruction is possible if A k  and c are exactly 
known. In the reconstruction if one uses A k  instead of A k  then the image I  will 
be obtained instead of I. In this reconstruction the following equation will be 

the base of the method:

P[k] = exp{jAk^Vc)Ps(v{k  — A^)^ (5.22)

If the above equation is combined with Eq. 5.21 the following result will be 

obtained:

P ,(y {k  -  Afe)) =  exp (-i(A fe  -  Afe)^Vc) PJiV{k -  Ak))  (5.23)

Let k = k — Ak.  One must be careful while changing the k vector by ife +  A k,  
because A k  and A k  are both functions of k (see equation Eq. 4.68). But if one
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Figure  5.10: Demonstration of the sensitivity of the proposed method to the 
estimate of the motion function amplitude, Ux. The image is obtained by the 
proposed reconstruction method using hx =  2% instead of its exact value =  

4%. The remaining motion parameters which are used in the reconstruction are 
the exact motion parameters. The composite interpolation method is used. To 

find the pseudo inverse, 33 eigen-values of the S  matrix are set to 0. The average 
of the intensity levels at the outside of the region of interest is 0.0658 units.

assumes that
Aib[ib] Ks Afe[fc]

the following approximate equation can be obtained:

P[fc] w exp ^—j ( A k  — A k)^V ^c^  M  — (Ak  — A k

(5.24)

(5.25)

Since this approximate equation is similar to Eq. 5.21, the image artifact of 

the reconstructed image will be again a respiratory type of image artifact and 
the amount of this artifact will be small and proportional to the error in A A;.
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F igure  5.11; Demonstration of the sensitivity of the proposed method to the 
estimate of the motion function amplitude, ay. The image is obtained by the 
proposed reconstruction method using a,y — 8% instead of its exact value Uy =  
10%. The remaining motion parameters which are used in the reconstruction are 
the exact motion parameters. The composite interpolation method is used.To 

find the pseudo inverse, 33 eigen-values of the S  matrix are set to 0. The average 
of the intensity levels at the outside of the region of interest is 0.0761 units.

There is a linear relation between A/s and Alt):  

f*kxtx / N -{■'Te.
A k  = -/V - 1 ky])9n{b''i ky])v%txlN  + Te, T')dT' (5.26)

Therefore, the error in A{t) is proportional with the error in Ak.  As a result, if 

A{t)  were used instead of A{t)  as the fluctuation function in the reconstruction 

algorithm then there would be artifacts on the reconstructed image as if there is 

a motion with the expansion matrix A{t) — A{t).
Reconstruction of an image with a reasonable estimate of the percentage
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Figure 5.12: The image is reconstructed using the proposed method with a white 
noise error in the fluctuation function. The SNR of the fluctuation function is 
20dB. The remaining motion parameters which are used in the reconstruction are 
the exact motion parameters. The composite interpolation method is used. To 
find the pseudo inverse,,-39 eigen-values of the S  matrix are set to 0. The average 
of the intensity levels at the outside of the region of interest is 0.1110 units.

expansion matrix A-{t) considerably reduces the motion artifacts on the image.

5.2.3.Ü Sensitiv ity  of the  reconstruction  m ethod  to the  cen ter of 
expansion

Sensitivity discussion in this subsection is similar to the previous sections. If 
one reconstructs a moving object image with the motion parameter c instead of 

c then the reconstructed image will suffer from a motion artifact. This motion 
artifact will be similar to the artifact of the image of an object which has a block 
motion with A [c  — c). A simulation result is given to confirm this argument. The
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Figure 5.13: A simulation image to demonstrate the sensitivity of the proposed 
method to the motion model offset c^. The MR image is reconstructed using the 
proposed method with incorrect value of the offset (c^ — —3mm, Cx — 7mm). 
The artifact on the reconstructed image is a result of this 10mm error. For the 
image reconstruction the composite interpolation method is used. To find the 
pseudo inverse, 42 eigen-values of the S  matrix are set to 0. The average of the 
intensity levels at the outside of the region of interest is 0.0629 units.

reconstruction is carried out using Cx instead of its real value Cx (see Figure 5.13). 
The motion artifact on this image is similar to the motion artifact of the image 

of the object which has a block motion in the x-direction. A similar simulation 
is carried out for the offset error in the y-direction (see Figure 5.14).

The sensitivity of the reconstruction method to the center of expansion is also 

theoretically analyzed. If the MR signal were taken from an object which has a 

expansion/shrinkage motion with parameter c, then the acquired data would be 
as given in Eq. 5.21. Assume that the image is reconstructed using an erroneous
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F igure  5.14: A simulation image to demonstrate the sensitivity of the proposed 
method to the motion model offset Cy. The MR image is reconstructed using the 
proposed method with incorrect value of the offset (cy = —93mm, Cy = —987mn). 
The artifact on the reconstructed image is a result of this 5mm error. For the 
image reconstruction the composite interpolation method is used. To find the 
pseudo inverse, 42 eigen-values of the S  matrix are set to 0. The average of the 
intensity levels at the outside of the region of interest is 0.0715 units.

value of the center of expansion (c). The relation between the Fourier domain 

samples of the reconstructed image and the acquired data is:

P[^] =  exp{—j A k ^ V ^ c ) P  {V{k — Ak)) (5.27)

If the above equation is combined with Eq. 5.21 the following result will be 

obtained:

Ps {V{k — Ak))  =  exp {—jAk'^V'^{c — c)) P {V{k — Ak)) (5.28)
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Because of similar reasons as in Section 5.2.3.i, the vector k cannot be replaced 
b}' fc + A/s, unless we assume that

A/i[fc] «  Ak[k]

then the following approximation will be obtained:

Plk] «  exp ( - j A k ^ V ^ ( c  -  c)) F, ( v ( k

(5.29)

(5..30)

This equation is in the same form as Eq. 4.73. Therefore, the reconstructed 
image will suffer from the block motion if it is constructed with an approximate 
c. But the amplitude of this block motion will be small and it is proportional to 
the error in the expansion center provided that the error in the center is much 
smaller than the size of the object.

5.2.3.ÍÜ Sensitiv ity  of th e  reconstruction  m eth o d  to  the  higher o rder 
te rm s of the  displacem ent function

It is known that the actual respiratory motion is not linear in space. For example, 
while the motion of the heart (for a phase of cardiac cycle) fits the block motion 
model, there is no motion within the spinal cord. If linear respiratory motion 
is used as a model of the chest motion then the heart and the spinal cord are also 
assumed to obey the model. Obviousl)'·, this is not true. Therefore the question 
is “what will be the artifact if a linear motion model is used for reconstructing 
an image of an object which has a non-linear motion?”.

To begin the analysis, let us rewrite the Taylor expansion formula (Eq. 4.59) 
for the displacement function:

d(t; x) = d{t] 0) + J { t ) x  -I- dho{t] x) (5.31)

For the non-zero dho case, the relation between the acquired MR signal and the 

proton density distribution will be as:

-PW = CW J j ps{x)Qyip{j{k -  NkY'Vx) \ho{k-,x)dxdy (5.32)
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where

a;)

rD/2

h o ( [ h ix /N  + 7;, /jj,]; x)

Although the motion model does not fit the linear respiratory motion model, if 
that model is chosen for the reconstruction, then the following equation will be the 
relation between the acquired data and the Fourier transform of the recoirstructed 
image.

P[fc] =  exp{-jAk'^V^c)Ps (y{k  -  Ak))  (5.33)

Combining above equation and Eq. 5.32, and assuming

Ak[k] p¿ Ak[k] 

X{k,x) f« \ { k , x )

the following result is obtained:

P[/j] «  W D j  j  ps{x)exp (^-jk'^V^x) Xho{k;x)dxdy

(5.34)

(5.35)

(5.36)

As a conclusion, the proposed reconstruction method cancels the linear and 
constant terms of the undesired phase of the acquired MRI signal. If the main 
components of a motion is the linear expansion and/or block motion then a 
substantial amount of motion artifact suppression will be obtained.

To observe this effect by simulation, an object which has a non-linear 

respiratory motion is selected. The heart of the phantom (the white circular 

block of the phantom) is assumed to be moving as a block while the other parts 
of the phantom has a linear respiratory motion. To obtain the MRI signal of this 
phantom two simulations are carried out. The heart of the phantom is removed 
and two independent objects are obtained. The block motion model is used in 
obtaining the MRI signal of heart. Another MRI signal is obtained by assuming 
a linear respiratory motion for the rest of the phantom. The MRI signal of the 

phantom which has a non-linear motion is acquired by adding the MRI signals 
of these two simulations.
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Figure  5.15: Non-linear motion during data acquisition causes non-linear 
motion artifact. The MRI signal is obtained by assuming the heart of the 
phantom has a block motion as explained in the text while the rest of the phantom 

has a linear respiratory motion. The image is reconstructed by the conventional 
image reconstruction method. The average of the intensity levels at the outside 
of the region of interest is 0.138 units.

The image shown in Figure 5.15 is reconstructed directly by taking the inverse 

Fourier transform of the MR signal. On the other hand, the image shown in 
Figure 5.16 is reconstructed by the proposed method. There is a considerable 
improvement in the image quality. The resultant image has some motion artifact 

due to the higher order undesired phase terms.
As a result, the non-linearity of the respiratory motion affects the recon­

structed image quality. But it is demonstrated that, using the proposed image 

reconstruction algorithm the effects of the constant and linear terms of the 
respiratory motion are compensated and a significant reduction in the motion
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Figure 5.16: Reconstructed image of the non-linear motion using the proposed 
image reconstruction method. There is a motion artifact on the image due to the 

non-linear motion of the phantom. For the image reconstruction the composite 
interpolation method is used. To find the pseudo inverse, 47 eigen-values of the 
S  matrix are set to 0. The average of the intensity levels at the outside of the 

region of interest is 0.0835 units.

artifact is obtained.

5.2.4 Estim ation of the Motion Model Parameters

In the proposed image reconstruction method, the motion parameters, a^, a^, 
Co;, Cy and f{ t)  are assumed to be known. However, the estimation of these 
parameters is one of the basic steps of the image reconstruction method.

The simplest way is to measure these expansion/shrinkage motion parameters 
using the displacement transducers [46]. In this method, at least two displacement 
transducers are required. Using these transducers, it is possible to measure the
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amount of displacement at the positions where these transducers are placed. The 

position of the transducer and the center of the expansion may be marked an 
operator on the image which has the ghost artifact. Using this information all 
the motion parameters can be easily calculated. Only drawback of this method 
is the recpiirement of a special (but simple) hardware and operator interaction.

In this dissertation, two motion parameter estimation methods are proposed 
although the direct measurement is feasible. In this way, full automation of the 
image reconstruction method is achieved. The first method that is explained in 
the following subsection is an iterative method to find these parameters. This 
method assumes that the fluctuation function, /(¿), is already known. The second 

subsection is devoted to a method which utilizes the navigator echoes [47] to 
obtain the motion model parameters.

5.2.4.i An iterative method for the estimation of the motion model 
parameters

As it is stated previously, in the estimation of the motion model parameters 

two displacement transducers are required and the positions of these transducers 
must be known. However, most of the commercial magnetic resonance imaging 
instruments support only one displacement transducer. Using this transducer 

only f{t)  can be measured. Since, there is no setup to find the position of the 
displacement in these instruments, another way to estimate the other motion 
model parameters (oa,, ay, and Cy) must be investigated. In this subsection, 

first, a new method for the estimation of the center of expansion (Cj, and Cy) is 
explained. Later an iterative method for the estimation of the amplitudes of the 
fluctuation functions {a^ and ax) is proposed.

Finding the position of the center of expansion can be automated by the aid 
of a simple algorithm. The position of the center of expansion, { c x ,  C y ) ,  must be 
at the bottom center of the image. The location can be found from the original 

image which has the ghost artifact. For this purpose, the image projections, 

Px{x) and Py{y), onto X and y axes are obtained (see Figure 5.17). And then 
the estimated center of expansion is calculated. Cx is the mean value of x which



Chapter 5. RECONSTRUCTION ALGORITHMS 112

satisfies Px{x) > T, and Cy is the minimum y which satisfies Py{y) > T. Here T is 
an experimental threshold constant. By this algorithm, the center of expansion is 
estimated with no detectable error for the phantom we used. In real applications, 
there can be higher estimation errors, but it is already shown that the proposed 
algorithm is not very sensitive to errors in the estimates of c.

The amplitudes of the fluctuation function along the x and y directions can 
be found using an iterative method which is developed in this dissertation [48]. 
In this method the center of expansion (cv and Cy) and the fluctuation function, 
f ( t) ,  are assumed to be known. For this case, the image can be reconstructed 
using initial estimates of the amplitudes of the fluctuation function along the x 

and y directions {hx and ciy). Because of the error in the initial estimates, the 
image will suffer from the motion artifact. The amount of the artifact on the 
image, e, is quantified as the average of the intensity levels where there is no 
object (background). It is a function of the estimates of the amplitudes of the 

fluctuation function.
e = e{ax,ay) (5.37)

If the estimated and the real motion model parameters exactly match, (i.e. =
ax and a,y = ay) there will be almost no motion artifact on the reconstructed 
image and e will be very close to zero. Therefore e will have a global minimum at 
this point. No local minimum is expected because as the error in the estimation 
increases the amount of motion artifact also increases (See Section o.2.3.i).As an 
example, a 3-dimensional plot of the error function is given (see Figure 5.18). A 

global minimum at the expected point can be seen and there are no local minima.

Therefore, the parameter estimation problem can be converted to a 

multivariate minimization problem. The parameters which minimize the function 

e are the correct motion model parameters. There are many known multivariate 
minimization algorithms in the literature [49]. The poly tope, Powell and quasi 
Newton minimization algorithms are used to find the global minimum. The 

poly tope algorithm solved the sample problem in the previous section in 160 
iterations with 0.01 % error. On the other hand the Powell minimization
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Figure  5.17: The projections of the image shown in Figure 5.4. (a) The

projection onto a:-axis, Px{x), (b) the projection onto y axis, Py{y). The image 
shown in Figure 5.4 is obtained by the conventional reconstruction method. 
Px{x) is obtained by summing the intensities of the pixels over the vertical lines. 
Similarly, Py(y) is obtained as the sum of the intensities of the pixels over the 
horizontal lines. The dashed line shown in both graphics represents the threshold 

level, T.
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Figure  5.18: The three-dimensional plot of the error function e(aa;,aj,). The 
minimum is observed at (4%, 10%). The function is smooth. Finding the 

minimum is not difficult.

algorithm solved the problem in 83 iterations within the same error bound. 
The quasi Newton method reached the minimum in 141 iterations. The above 
algorithms are implemented using a SUN-3 160 workstation, each iteration took 

approximately 63 seconds.
The block diagram of the proposed iterative motion model parameter 

estimation algorithm is given in Figure 5.19. In this method, the fluctuation 
function is assumed to be measured using a displacement transducer. The center 

of expansion is found using an non-iterative method. And finally, the amplitudes 
of the fluctuation function along the x and y directions are found by minimizing 
the amount of motion artifact on the reconstructed image.
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Figure 5.19: The block diagram for the iterative image reconstruction method. 
f ( t)  is assumed to be already measured by the aid of a displacement transducer. 
The center of expansion, (cx, Cy), is found using Px{x) and Py{y). The remaining 
two motion model parameters which are necessary for the proposed reconstruction 
method are found by the iterative image reconstruction method, e is the average 
of the intensity levels at the outside of the region of interest.

5.2.4.ii A parameter estimation method using the navigator echoes

Instead of measuring the motion by displacement transducers, the motion may be 

measured using the navigator echoes [47], [50]. Using the pulse sequence shown 
in Figure 5.20, three echoes are obtained in each repetition interval. The first 

and the third echoes are called the navigator echoes, and the second one is the 

MR signal which will be used in the image reconstruction.
In this method, the intraview motion of the protons are ignored. They are 

assumed to be suppressed by the gradient moment nulling (GMN) technique
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F igu re  5.20: MR imaging pulse sequence for generation two navigator echoes.
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[31]. And there are only in-plane expansion/shrinkage and block t\’pe of motions. 
Therefore the proton density function can be written as:

p(«C0) ¿) — I I ps(»AyiSJ -f· b-n'j (5.38)

where \A^\ is the determinant of jLn and

An = ^([0,77.])

hn = b([0,??]) -  X([0,n])c

If one obtains the values of An  and bn for all n then the reconstruction of 
the image without any artifact is possible. These values can be found by the aid 
of the navigator echoes. First, the projection of the proton density distribution 

onto X  and y axes are obtained, then these projections are compared to find A n  

and bn values.
The first MR signal appears at time r  fa Tin- Since there is no intraview 

motion, one can write the relation between the signal and the MR signal as 
follows:

s{[T,n]) = W D J j  p{xo;[0 ,n])exp{jjQ y{r-T in)y)dxdy  (5.39)

where Qy is the amplitude of the y-gradient when r  fa Tin- Remember xo — 
[x,y,0]'^. Assume N  samples are acquired at time r  =  t y k y / N  Tin for N / 2  < 

ky < —Nf2. After some simple and tedious manipulations the relation between 
the samples and the FT of the time varying proton density can be obtained as:

s ( l ^ k „ n ] )  = W D P „ {0 ,^ k ,) (5.40)

where
Pn{i^x,^y) =^(2)(j5(a?o;[0,n])) (5.41)

Using the projection-slice theorem [51], one can immediately write the 
following relation:

= f  p{xo][0,n])dx (5.42)
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where represents one dimensional inverse Fourier transform. Therefore, 
the one-dimensional inverse Fourier transform of the navigator echo gives the 
projection of the proton density distribution onto the y-axis. The similar analysis 
can be carried out for the third echo. And it can easily demonstrated that the 
one-dimensional inverse FT of the third echo gives the projection of the proton 
density onto the y a.xis.

Let Pniy) be the projection obtained by the Fourier transformation of the 
navigator echo at the nth rejDetition interval.

P n { y )  =  J  p(xo][0,n])dx

—  ^xn^yn Psi^^xn^ X̂Tl') ^ynl/  “ i”  hyyi^dx

— CLyn J  P s i^ ^ ^ y n V  “ 1“  ^yn )d x (5.43)

Since the 0th repetition is the reference frame:

Po{y) =  /  Ps{x,y)dx (5.44)

Combining the above equation with Eq. 5.43, the following result can be 
obtained;

Pn{y} ~  ^ynPoiAyny T ^yn) (5.45)

The pn and po functions are known. The problem is to find the Uyn and byn 
values. There may be various ways of finding these values, the one which is 

developed in this dissertation is robust to the non-linearities of the motion.
Let us define the normalized ith moment of the function Pn{y) as:

^(i) ^  JPn{y)y^dy 
” JPniy)dy

Using this definition one may easily derive the following relations:

Ctyn

•VW =  ^  ( ^ i f ’ +  +  i-t.)

(5.46)

(5.47)

(5.48)
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The above equations can be solved for and byn- The results are;

-  iV/6

byn =

(1)̂
(5.49)

(5.50)

As a result, it is shown that the FT of the navigator echoes are the projections 
of the moving proton density distribution. Using these projections it is possible 
to calculate the amount of expansion/shrinkage and the block motion in each 
repetition interval.

5.3 R otational M otion

The rotational motion of the object in MR imaging is an interesting subject. 
There are some methods in the literature on the static imaging of the rotating 
objects [52], [53] and [54]. In all of these studies the object is assumed to have 
a constant angular frequency. Coiy et al. [52] solved the imaging problem by 
rotating gradients with the same frequency of the object. On the other hand, 

Matsui et al. [53] got the MR image by applying linearly increasing gradient field. 
In their method, the A:-domain is scanned spirally as in [23]. Ogura and Sekihara 
[54] applied a constant gradient. Their object experienced an oscillating gradient 

field as in [55].
In our study, the object is assumed to have rotational motion with arbitrarily 

time varying angular velocity. In addition, the center of the rotation may also be 
time varying. For the rotational motion, the relation between the proton density 
distribution and the acquired MR signal is as follows (see Eq. 4.82):

P[fe] =  ^[A;]P,(Vfe.) (5.51)

Therefore, the main image reconstruction ideas for the expansion/shrinkage 
motion and the rotational motion cases are the same. As it is in the former 

type of motion, the first step to obtain the static image of the rotating body is
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the phase compensation:
P[k] = />(/;]{ - I f (5.52)

These phase compensated samples are the non-rectangular samples of the proton 
density distribution:

= Ps{VK) (5.53)

To get the static image of this rotating body, the rectangular samples of the 
object must be interpolated. The two dimensional discrete inverse FT of these 
recovered rectangular samples will be the static image.

The most important part of the reconstruction method is the interpolation of 
the rectangular samples using the non-rectangular ones. As it is already proved, 
the exact recovery of the rectangular samples from the non-rectangular samples 
is possible if there are enough number of samples.

As in the case of the expansion/shrinkage motion, the position of the non- 
rectangular samples is not arbitrary. The samples which are acquired in the same 
repetition interval scan lie on the same straight line. But now, this scan line is not 

necessarily horizontal. This fact can be shown easily. Let us recall the definition 
of Gr (see Eq. 4.81):

G r ( [ r , n ] )  =  7  /  n{-^{[T' ,n]))g{[r ' ,n])ri {T,T')dT' (5.54)

Since the angular velocity of the body may not be very high, one may assume 
that the body is stationary during the MR data sampling time. So the above 
equation may be modified if r  Tg as:

GriirM) = [  ‘ n{- /3{[T\ ,n]))g{[r\nMry)dr' i ·
Jo

Q .
0

(r -  T,) (5.55)

If the MR is signal is sampled at the time [kxtx/N Te, fcj,], K  can be found

as:

K[k. ,k, ]  =  V -‘ (
kx

0 +  qIK] (5.56)
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wherre

r2«

№ .)  =

If there were no rotational motion, then ^[ky] would be zero all the time and 
q[ky] — 2Trky/fx. Therefore, if there were no motion would be equal to k.

On the other hand, if there is rotational motion, q and P[ky] may take 
arbitrary values. The careful analysis of Eq. 5.56 depicts the fact that for a 
constant ky value, the samples on the /r-domain will be on a non-horizontal line.

Although the problem of finding the rectangular samples over the Â;-domain 
using the non-rectangular ones is a two-dimensional problem, using the above 
property of the acquired samples it can be reduced to 2 one-dimensional problems 
as in the case of the expansion/shrinkage motion.

The most important question of this method is the possibility of having an ill 
conditioned problem. The non-rectangular samples may be placed so that some 
considerable large regions have no samples. This fact makes the interpolation of 
these regions practically impossible. If the maximum deviation of the angle of 

rotation is small enough the possibility of having such regions decreases. Further 
studies on the reconstruction algorithm is left as a future research area.

5.4 The Expansion/Shrinkage Along the 
z-direction

The static image reconstruction algorithm for an object which has an expan­
sion/shrinkage motion along the .z-direction is very similar to the algorithm 
proposed for the block motion. In the expansion/shrinkage motion along the 
z direction, the the MR data correspond to the amplitude distorted samples 

over )t-domain. Remember that there was a phase distortion in the block motion 

case. For the expansion/shrinkage along the z direction, the image reconstruction 
algorithm starts with the evaluation of the amplitude distortion. Then the
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amplitude compensated rectangular i:-domain samples is found. And the image 
is reconstructed by calculating the inverse discrete Fourier transform of these 
rectangular samples.

In case of expansion/shrinkage motion along the 5:-direction, the rehition 
between the acquired MR data set and the ¿-domain can be written as (See 
Eq. 4.97):

P[k] = (5.57)

where (See Equations 4.98, 4.99, 4.96 and 4.94)

WD

M-, = ¿ A G ,([M x /A ' + T „ y )

AGz([r,n]) =  7 /  5z([r',n])A;([r',n])r;(r,r')dr' 
Jo

A.^([rn]) — -̂ 2([' )̂ ^]) ~ A^([0, n])

(5.58)

(5.59)

(5.60)

(5.61)1 + A^([0, n])

In the above equations, IF, D, tx, iV, Te, Qz, and r/ are the parameters which 

are related to the pulse sequence and all of them are known. Az{t) stands for 

the amount of expansion along the ^-direction. Therefore, once Az{t) is known 
evaluation of the amplitude distortion is not difficult.

Using the acquired MR data set and these calculated values, the rectangular 

samples over the ¿-domain can be evaluated as:

p ,(v ¿ )  = (5.62)

And finally, the inverse discrete Fourier transform of these calculated values gives 
the desired motion artifact free image.

It is interesting to observe the study carried out by Mitsa et. al. [35]. In 

their study an infinitely thin object oscillates along the 2: direction. This motion 
causes amplitude distortion as in the case of expansion/shrinkage motion. Mitsa 
et. al. developed an iterative method which corrects this amplitude distortion. 

In this excellent iterative method, it is not necessary to know the motion model 
parameters. However, their methods has no practical application because in
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realit}^ infinitely thin objects can not be found. With a modification, their method 
can be used in reduction of the expansion/shrinkage motion along the 2 direction. 
Because the expansion/shrinkage motion of a thick object along the 2 direction 
and the 2 motion of an infinitely thin object cause exactly the same type of 

artifact.



Chapter 6

CONCLUSION AND  
FURTHER RESEARCH  
AREAS

In this dissertation, the motion artifact in magnetic resonance imaging is 

analyzed. Useful formulas for the block, expansion/shrinkage and rotational 
motions are derived. It is proved that if these types of motions exist during 
the data acquisition period, the samples of the MRI signal are the phase and 

amplitude distorted non-rectangular samples of the Fourier transform of the 
proton density distribution of the body.

In the image reconstruction methods which are proposed in this dissertation, 
the distortion is compensated and the rectangular samples are interpolated. 
It is proved that for these type of motions, the problem of calculating the 
rectangular samples using the non-rectangular samples can be converted into 

two one-dimensional problems. This yields significant computational savings.
In this dissertation, the in-plane expansion/shrinkage motion is simulated 

for a fictitious phantom and the image reconstruction method for this type of 

motion is used to eliminate the motion artifact. It is observed that the image 
quality depends on the interpolation method. Best results are obtained when 
the singular value decomposition method is utilized as the interpolation method.

124
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But because of the high computation cost of this method some other interpolation 
methods are also tested. It is observed that the quality of the images deci-eases 
with the methods which have lower computational cost. Although the optimum 
interpolation method depends on the application, the author recommends the 
cubic spline interpolation method which increases the computation time by 30 

%.
Some properties of the proposed image reconstruction methods are:

• The proposed methods can be used to reduce the motion artifact of a object 
whose motion is an arbitrary function of time.

• These methods are robust with respect to the estimates of the motion 
model parameters. These estimates are used during image reconstruction. 
The methods work even if the accurate estimates of these parameters are 
not available. Considerable improvement in the image quality can still be 
obtained even if the estimates are not very accurate.

• The methods can be used in conjunction with any Fourier transform 
imaging pulse sequence. Therefore, already proposed motion artifact 
suppression methods in the literature can be combined with the proposed 
method to get better results.

An important issue which is investigated in this dissertation is the modeling 
of the motion. It is believed that the MR signal itself contains information on 

the motion, and the related motion model parameters can be estimated. For this 
purpose, an iterative image reconstruction method is proposed. In this method 
the two of the expansion/shrinkage motion model parameters (a^ and Oy) are 

found iteratively. This method could be easily adopted to the other motion types 
to find their parameters. The most important problem of this method is the 
computation cost because of the iterative nature of the motion.

The possible applications of the proposed image reconstruction methods are 
respiratory motion artifact suppression in the transaxial imaging of the chest, 
conscious motion of the head and eye. All of these cases should be experimentally
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verified. The verification of the proposed image reconstruction methods is not 
done in this dissertation. The experiments are left to the future studies.

Another issue which may be analyzed in the future studies is the recovery 
of the rectangular samples from the non-rectangular ones. The interpolation 
methods used in this dissertation failed if there are some regions which has no or 
very few samples. This situation is important especially for the rotational motion 
artifact reduction. To overcome this difficulty the singular value decomposition 
or similar techniques are used. However, the performance of these methods might 
be increased using the property:

Psiy^Xl^y) ^y) (6.1)

It is known that the proton density distribution is a real function. Therefore, its 
Fourier transform proton density distribution should hold the above relation. 

Therefore every non-rectangular sample corresponds to two points in the k- 
domain. In this way, the . number of non-uniform samples in the ¿-domain 
may be doubled. There are some practical difficulties of this method, and the 

implementation is of this method requires further studies.



APPENDICES

A B asic N M R  Equation for th e R otating  

Frame

In this appendix, the statement “the rotating frame cancels the effect of the main 
magnetic field” will be proved. This statement was formulated in Eq. 2.11 as:

dm'
dt =  7 m '  X h e j f (A.l)

where
hejj = h '- H o z  (A.2)

To obtain the above formulation the following steps are carried out.
The relation between the magnetization in the stationary and rotating frames 

can be written as:
m  =  '7Z,{u>ot)m' ( A . 3 )

where 7?-u(a;) is the rotation matrix around t^-axis in counter clockwise direction. 

For example:
cos(û') sin(a:) 0

(0;) =  — sin(û) cos(o:) 0
0 0 1

Similarly, the magnetic field in the stationary and rotating frames have the 

relation:
h = n ,{uo t)h ' (A.4)

1 2 7
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The basic equation of the NMR defines a relation between the magnetization 
of the protons and the magnetic field which aifects these protons (see Eq. 2.5).

dm
dt =  7 m X h (A.o)

If one substitutes the equation A.3 into the above equation, the following 

result will be obtained.

d1Zz{oJoi) , , rr,t ,
dt = 1"" X

On the other hand, it can be shown that:

I / , \ (  /  A \
-------- -̂----- -m  =  LOoTlz{<̂ oi) X z)

CL L

(A.6)

(A.7)

where z  is the unit vector in the 2: direction. Using the above equation, the 
relation A.6 can be reduced into the following form:

dm '
dt

=  ( m  X h) — ujQm' x z

Knowing that

IZzinoQt) {a x b )  = {'R.z{coot)a) x {7lz{oJot)b)

one may simplif}'  ̂Eq. A.8 as:

dm '
dt

=  jm' X {h' — Hqz)

(A.8)

(A.9)

(A.IO)
This completes the proof of Eq. A.l.
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Object k-domain

' / l

Figure  B .l: The proton density distribution of a stationary object. The k- 
doniain is sampled rectangularly.

B The Effect of M otion: E xam ples

This appendix is prepared to give a feeling to the reader to understand the 
relation between the proton density distribution of a moving object and the 
samples of the MR signal. In this appendix, the block, expansion/shrinkage and 
rotational motions will be analyzed on some simple examples. In these examples, 
the intraview motion is ignored and it is assumed that there are 5 repetition 

intervals and 5 samples are acquired in each reiDetition interval.
Let the proton density distribution of an object be as shown in Figure B.l. 

If thei’e were no motion, the samples of the MR signal would correspond to the 
rectangular samples over the ¿-domain (the Fourier transform domain).

B .l Block Motion

It is known that the shift in the space domain corresponds to the linear phase 
change in the ¿-domain. For example if the object displaces along the y-direction 
by a distance of j/oj the Fourier transform of the original object must be multiplied 

by exp{—jcOyyo). Assume that the object is in the original position during the first 

repetition interval as shown in Figure B.2a. Assume that the object is displaced 
by yo along the j/-direction before the second repetition interval. The phase of
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the Fourier transform of the object is changed and the new samples are acquired 
on the second row with these new phases (See Figure B.2b). Again it is assumed 
that the object goes back the original position before the third repetition interval. 
And the samples acquired during the third repetition interval have the original 
phases. In the fourth repetition interval, the object displaces along the?/-direction 
by a distance of yo one more time. The phases of the samples acquired during this 
repetition interval are changed. And at the last repetition interval, object goes 
back its original position again. The samples acquired during this interval have 
original phases (See Figure B.2e). As a result, for this simple motion, the samples 
acquired have different phase distortions depending on the position of the object 
at the data acquisition time. The data which are acquired on the second and the 

fourth rows have phase distortions but there are no phase distortion on the other 
samples (See Figure B.2).

If one considers the intraview motion as well as the view-to-view motion, the 
same effect on the acquired samples will be observed. But the calculation of the 
amount of phase distortion requires some manipulations (See Section 4.3.1).

B.2 Expansion/Shrinkage

It is known that expansion in the space domain corresponds to shrinkage in 
the ¿-domain. Assume that the object is in the original position during the 

first repetition interval (See Figure B.3a). Five samples are acquired during this 
period. It is assumed that the object is expanded just before the second repetition 
interval (See Figure B.3b). The FT of the proton density distribution's shrunk 

and the new samples are acquired on this domain. The object goes back the 
original form before the third repetition interval (See Figure B.3c). And the 
samples acquired during the third repetition interval are on the original domain. 
In the fourth repetition interval the object is expanded one more time. The 

samples acquired during this repetition interval are on the shrunk FT domain. 
And at the last repetition interval, the object goes back its original position. The 

samples acquired during this interval have original phases. Since there is a one 
to one relation between the original FT domain and the shrunk FT domain, all
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O bject k -dom ain

<») a ji/n ,

(b)

(d)(

( e ) l ^

,exp(-j\̂ ŷ )

exp(-jWyŶ  )

F igure B .2: An example for the block motion, (a) First repetition interval. The 

position of the samples are shown by cross-marks, (b) Second repetition interval. 
The object displaces along the ^-direction and the phase of its Fourier transform 
changes, (c) Third repetition interval. The object goes back its original position. 

The samples are acquired on the third row. (d) Fourth repetition interval. The 

object moves along the j/-direction. (e) Fifth repetition interval. The object goes 
back the original position one more time. In the image shown at the right hand 

side, all the samples are placed on the FT of the original form of the object. The 

samples acquired on the second and fourth rows have phase distortion.
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the samples may be collected in one domain as shown in Figure B.3. As a result, 
for this simple example, the samples acquired during the expansion/shrinkage of 
the body correspond to non-rectangular samples over the ^-domain.

In addition to the view-to-view motion, if there were intraview motion, the 
expansion/shrinkage would have the same effect on the acquired samples but 
finding the positions of the samples would not be as simple as in this example. In 
addition to that in the above example the center of expansion is assumed to be 
at the center of the image. But if the center of the expansion and the center of 
the image do not coincide then additional phase distortion will be observed (See 
Section 4.3.2).

B.3 Rotational Motion

It is known that a rotation in the space domain corresponds to a rotation in the 
¿-domain. Assume that the object is at the original position during the first 
repetition interval (See Figure B.4a). And assume that the object is rotated 

before the second repetition interval (See Figure B.4b). The FT of the proton 
density distribution is also rotated and the new samples are accpired on this 
domain. It is assumed that object goes back the original position before the 

third repetition interval (See Figure B.4c). And the samples acquired during the 
third repetition interval are on the original domain. Assume that the object is 
rotated one more time. The samples acquired during this repetition interval are 
on the rotated FT domain. And at the last repetition interval, the object goes 
back its original position. The samples acquired during this interval have original 
phases. Since there is a one to one relation between the original FT domain and 

the rotated FT domain, all the samples may be collected in one domain as shown 
in Figure B.4. As a result, for this simple example, the samples accjuired during 
the rotational motion of the body correspond to non-rectangular samples over 

the ¿-domain.
If one also considers the intraview motion, the rotational motion causes sample 

position shift as in the view-to-view case. But the method for finding the position 
of the samples will be different. In addition, in the above example the center
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O b ject k-dom ain

Figure B.3 ; An example for the expansion/shrinkage. (a) First repetition 
interval. 5 samples are acquired on the ¿-domain. The position of these samples 

are shown by cross-marks, (b) Second repetition interval. The object expands 
and its Fourier transform shrinks. Five samples are acquired on the second 
row. (c) Third repetition interval. The object goes back its original form. The 
samples are acquired on the third row. (d) Fourth repetition interval. The object 
expands, (e) Fifth repetition interval. The object goes back the original form 
one more time. In the image shown at the right hand side, all the samples are 

placed on the FT of the original form of the object.
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of rotation is assumed to be at the center of the image. But if the center of 
the rotation and the center of the image do not coincide then additional phase 
distortion will be observed (See Section 4.3.3).
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Object k -d o m a in

(a)

(d)

w ^  X

Figure  B.4; An example for the rotational motion, (a) First repetition interval. 

5 samples are acquired on the ¿-domain. The position of these samples are shown 

by cross-marks, (b) .Second repetition interval. The object rotates and as a result 
its Fourier transform also rotates. Five samples are acquired on the second row. 
(c) Third repetition interval. The object goes back its original form. The samples 
are acquired on the third row. (d) Fourth repetition interval. The object rotates, 

(e) Fifth repetition interval. The object goes back the original form one more 

time. In the image shown at the right hand side, all the samples are placed on 

the FT of the original form of the object.
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C Som e Interpolation A lgorithm s

In this appendix, three interpolation methods (linear, third order Lagrange, and 
cubic spline) are introduced. These methods are used to get a signal of which 
the non-uniform samples are given.

Let h { t )  be a bandlimited signal and let f =  1 . . .  N }  be an arbitrary set 

of time instances. Without loss of generality one may assume t i  >  t j  if i  >  j .  Let 
h ( t )  be the signal which is obtained by the interpolation of { h { t i )  : i  = I . . .  N'}. 

L inear in terpo lation  is defined as:

h{t) =
D\h(ti^i) +  Dgk^ti)

otherwise
(C.l)

where

"”= n ¿hi (C.2)

] = 0
j  7̂ k

The linear interpolation may be called first order Lagrange interpolation. 
The th ird  order Lagrange in te rpo la tion  is defined as:

h{t) = E l o
0

¿¿+2 > t>  ¿,+1, i — 1,2. . .  lY -  3 
otherwise

(C.3)

The cubic spline is an interpolation method for smooth functions. Each 

time segment [f,+i · · · L] is interpolated by a third order polynomial function, 
h{{t). The coefficients of these functions are calculated so that:

h m

h(ti)

^i+l (̂ 1+1)

(C.4)

(C.5)

(C.6)

(C.7)

where h'{t) is the first derivative of As a boundary condition, Ao(ii) and 

assumed to be zero. For cubic spline interpolation, the function
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h(t) is defined as:

h{t) =
hi ti+i > t > t i .  i =  1 , 2 . .. N  -  1
0 otherwise

(C.8)

For the details of these interpolation methods, see rf. [45].
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