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ABSTRACT

STR U C TU R AL ANALYSIS OF POLE ASSIG N M EN T AN D  
STABILIZATION IN D Y N A M IC  SYSTEM S

Ayla Şefik
Ph.D. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. M. Erol Sezer 
April, 1989

Motivated by the need for qualitative investigation of general system 
properties such as controllability, obser\^bility, existence of fixed modes, 
etc. as the complement of the quantitative approach in analysis, especially 
of large-scale systems, the problems of pole assignability and stabilizability 
are considered from the structural point of view. The study is based on 
the definition of a generic property as a property that holds for almost all 
values of the nonzero system parameters. Structured matrices and digraphs 
are used for system description. Both problems are first formulated in an 
algebraic setting and then translated to a structural framework by means of 
several graph-theoretic results which give sufficient conditions for solvability, 
in terms of the existence of particular cycle families in the digraph. Following 
a similar approach, a graphical investigation of structural observability is 
presented. Lastly, genericity of several results are reconsidered in the light of 
these graphical characterizations.

Keywords: Qualitative approach, algebraic approach, pole assignment, 
stabilization, obser '̂ability, structural property, genericity, structured matrix, 
digraph.
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ÖZET

DEVİNİR SİSTEM LERDE K U TU P  Y E R L E ŞT İR M E  V E  
K A R AR LILA ŞTIR M A  PROBLEM LERİNİN YAPISAL

ÇÖZÜM LEM ESİ

Ayla Şefik
Elektrik Elektronik Mühendisliği Bölümü Doktora 

Tez Yöneticisi: Prof. Dr. M . Erol Sezer 
Nisan, 1989

Denetlenirlik, gözlenirlik, değişmez özdeğerlerin varlığı, vb. gibi genel sis
tem özelliklerinin nitel veya yapısal anlamda incelenmesinin, özellikle büyük 
çaplı sistemler için, nicel yaklaşımın tümleri olarak gerektiği bilinmektedir. 
Tezde, bu gerçekten yola çıkılarak, yapısal açıdan kutup yerleştirme ve 
kararlılaştırma problemleri ele alınmıştır. Bu çalışma, ‘jenerik’ (generic) 
özelliğin, sistemde sıfır olmayan parametrelerin hemen tüm değerleri için 
bulunan özellik olarak tanımını temel almaktadır. Sistem modellemesi 
için yapı matrisleri ve yönlü çizgeler kullanılmıştır. Her iki problem de 
önce cebirsel olarak tanımlanmış, daha sonra çözüm için yeterli koşullan 
veren çizgesel sonuçlar aracılığıyla yapısal bir çerçeveye oturtulmuştur. 
Benzer bir yaklaşım kullanılarak, yapısal gözlenirliğin çizgesel incelemesi 
gerçekleştirilmiştir. Son olarak yapısal yaklaşımdan çıkan gözlemler ışığında, 
bilinen bazı sonuçlar ‘jenerisite’ (genericity) açısından, yeniden ele alınmıştır.

Anahtar sözcükler: Nitel yaklaşım, cebirsel yaklaşım, kutup yerleştirme, 
kararlılaştırma, gözlenirlik, yapısal özellik, jenerisite, yapı matrisi, yönlü 
çizge.
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Chapter 1

INTRODUCTION

In systems theory, a traditional approach in analysis is to transform the 
equations describing the system in order to obtain a standard representation, 
such as Kalman’s or Luenberger’s canonical forms or the standard block 
diagram configuration. Once this is accomplished, long-established and 
well-tested methods are employed to treat the problem on hand. This 
is a quantitative analysis in which every step depends completely on the 
corresponding numerical data.

Frequently, however, there arise complications, especially when dealing 
with dynamic systems such as electric power systems, aerospace systems, 
economic systems, process control systems in chemical and petroleum 
industries, ecological systems, etc.. One possible cause of complication is 
dimensionality: The system may comprise a large number of variables making 
it impossible or uneconomical to analyze it eis a whole. Uncertainity in 
system parameters may cdso be a reason: In such a case, it is impossible 
to obtain an exact mathematical model of the system. Information 
structure constraint is another possibility: Restriction on what goes where 
in information distribution, especially in interconnected systems, makes the 
traditional control and estimation methods difficult to apply to dynamic 
systems even with smedler dimensions. (A system possessing any one of these 
characteristics is termed as a complex dynamic system [1]).
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On the other hand, it is well-known that a way out through many 
problems and complications arising in various branches of mathematics and 
engineering sciences can be established after sufficient insight into their 
structures has been gained. An insight into the system structure in its original 
form would yield information on effects of individual system components, 
subsystems, subloops, trade-off information between various subsysterns and 
interconnecting structure; which may often be of great value to the analyst 
and to the designer.

This need for dealing with system structures is met by the qualitative 
analysis of systems. The qualitative analysis is concerned with the general 
properties of systems such as controllability, observability, stability, existence 
of fixed modes, etc.. Analogous to the term potential energy used in classical 
mechanics to describe the latent capacity of a system for doing mechanical 
work, these properties may be viewed as potential properties in the sense 
that they represent latent qualities that are determined by the structure of 
the system [2]. In the rest of the thesis, we shall refer to such properties as 
qualitative properties or structural properties.

The general tool that combines the qualitative properties of a system with 
the system structure is the structural modeling [3] based on the axiomatic 
theory of directed graphs [4]. Structural information is, in general, binary in 
nature and hence directed graphs (digraphs) serve as excellent mathematical 
models in this respect. In a structural description by a digraph,system 
variables are associated with vertices, and oriented edges correspond to the 
interaction between the variables. Signs or weights may be assigned to the 
vertices or the edges when it is necess2iry to represent some of the quantitative 
properties of the system.

The computational simplifications offered via graph-theory have resulted 
in the applications of structural modeling in many areas of engineering 
and societal problems [5-11]. There have been a considerable number of 
results that exploited the theory of digraphs for the stability, optimality, and 
reliability Euialysis of large-scale systems [12-28].
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A system is said to have a structural property in the generic sense if that 
property holds for almost all values of the nonzero system parameters. For 
example, in a structurally controllable system a possible loss of controllability 
can occur only in pathological cases when there is an exact matching of 
system parameters. In that case, a slight change in the value of some of 
the parameters can restore the property. Conversely, if the uncontrollability 
is due to a special structure of the system, then no matter how much the 
parameters are perturbed, the property can not be regained. From the 
physical point of view, only the latter case is important because it is not 
possible to know whether such a matching occurs in a given system. This 
concept of structural property is consistent with physical reality also because 
of the fact that system parameter values are never known precisely with the 
exception of zeros that are fixed by coordinatization or by the nonexistence 
of physical connections between certain parts of a system. (Note that digital 
computers work with ‘true’ zeros and ‘fuzzy’ numbers justifying the need for 
investigating the system properties independently of the numerical data.)

It was Lin [29] who first introduced the concept. He developed a purely 
graph-theoretical characterization of structural controllability for single
input systems. Shields and Pearson [30] extended his results to multi
input systems but on a purely algebraic basis. The algebraic approach 
due to Shields and Pearson was simplified considerably by Glover and 
Silverman who used Boolean matrix algebra [31]. Davison [32] generalized 
the approach to observability where he switched back to Lin’s graph- 
theoretic point of view and interpreted the Boolean operations of [31] in 
terms of the reachability properties of a digraph. Later, Lin [33] defined 
minimal structural controllability and gave a characterization for structurally 
controllable multi input systems in terms of structured matrices and digraphs.

After the introduction of the concept of fixed modes by Wang and Davison 
[34] in their systematic approach to the decentralized stabilization problem, 
Sezer and SiljaJc [35] recognized that the existence of fixed modes was a 
structural property in the context of the ideas and results due to Lin [29], 
Shields and Pearson [30] and Glover and Silverman [31]. Similar to the
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occurrence of structural uncontrollability and unobservability, the existence 
of fixed modes is either a consequence of an exact matching of system 
parameters, which is quite unlikely to occur, or is due to a special structure 
of the system. Motivated by this fact, Pichai, Sezer and Siljak [36], defined 
structurally fixed modes and obtained a graph-theoretic characterization 
for the existence structurally fixed modes. All almost at the same time, 
Reinschke [37], and Papadimitriou and Tsitsiklis [38] gave alternative graph- 
theoretic criteria for the existence of fixed modes.

Reinschke did considerable work related to the structural properties of 
dynamic systems and obtained purely graph-theoretic formulations. In an 
early paper [39], he formulated structural completeness of systems. Later, 
he developed another criterion for structural completeness in terms of the 
existence of certain cycles in an appropriately chosen digraph [40]. In [37], he 
provided a result which relates the coefficients of the characteristic polynomicJ 
of a system to the cycle families in the digraph associated with the system, 
and based on this result, derived his graph-theoretic criterion for the existence 
of structurally fixed modes. He utilized this approach of characterization of 
structural properties by means of cycle families in investigating the problem 
of pole assignability. In one of his recent papers [41], he dealt with the 
e.xplicit nonlinear dependencies between the coefficients of the closed-loop 
characteristic polynomial and the output feedback gains and gave a graph- 
theoretical interpretation of the relation.

The main motivation of the thesis, which is concerned with a qualitative 
analysis of arbitrary pole assignability and stabilizability as potential system 
properties, comes from the benefits and the simplicity of the structural 
insights, especially in the context of the ideas and result due to Reinschke.

In Chapter 2, we introduce the strüctural framework for our qualitative 
approach. Here, we review tools of structural modeling and structural 
description of systems. We also discuss some well-known structural 
properties, namely, structural controllability and the existence of fixed modes.
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Chapters 3 and 4 consider the structural pole assignability and stabiliz- 
ability problems, respectively, on a purely graph-theoretical basis. In both 
chapters, we first present an algebraic formulation of the problem, based on 
the characterizations and results due to Reinschke [37,41]. We then establish 
sufficient algebraic conditions for generic pole assignability and stabilizability, 
respectively. In the next step, the algebraic characterization of the problem 
is carried to a structural setting, and several results are stated and proved. 
For Chapter 3, the main result which is stated in the form of two theorems 
is translated to an algorithm.

In Chapter 5, we present a graphical investigation of structural 
obser\'ability, the inspiration for which came from the close study of the 
system digraph, during the analyses given in Chapters 3 and 4. The structural 
obser\Tibility matrix is interpreted in terms of paths from the state vertices 
to output vertices in the system digraph, and a result, which characterizes 
structural observability in connection with the existence of such particular 
paths is derived. Generic observability index is defined and lower and upper 
bounds are provided for it in terms of the system digraph.

Chapter 6 is an account of an algebraic study on the genericity of 
some results on pole assignability and stabilizability. Here, we use an 
algebraic approach, in combination with the insight provided by the results 
of the preceding chapters, and reconsider some well-known results on pole 
assignability and stabilizability of certain classes of systems.

Finally, Chapter 7 includes a summary of the results, with emphasis on 
the contribution made by the thesis, and on points requiring further research.



Chapter 2

STRUCTURAL REPRESENTATION 
OF DYNAMIC SYSTEMS

In this chapter, we introduce the structural framework for the analysis of 
various qualitative properties of systems. We start with an introduction to the 
mathematical tools of structural modeling, namely, structured matrices and 
directed graphs (digraphs). Structured matrices and the related concept of 
generic!ty are taken mainly from Shields and Pearson [30], whose formulations 
are connected to Konig’s theorem [42]. A summary of the standard material 
on digraphs, which can be found in books such as those of Harary, Norman 
and Cartwright [4] and Deo [6], is followed by a review concerning a special 
digraph structure, called cactus, first introduced by Lin [29,33].

After an account on the description of dynamic systems via system 
structure matrices and digraphs, as done by Siljak [27], a discussion on the two 
important qualitative properties of systems, namely, structural controllability 
(observability) [29,33] and existence of structurally fixed modes [36], is 
presented. Characterizations of these two properties are crucial, as structural 
pole assignability and stabilizability are defined in the same context in this 
thesis.

A concise collection of the preliminary material presented in this chapter, 
together with a list of related references, is presented by Jamshidi [43].



2.1 STRUCTURED MATRICES 
AND GENERICITY
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Two matrices M i,M2 6 are said to be structurally equivalent if
there is a one-to-one correspondence between the locations of their nonzero 
entries. The equivalence class of structurally equivalent matrices in can 
be represented by a p x 5 structured matrix M, whose entries are either fixed 
zeros or algebraically independent parameters in TZ. If the number of nonzero 
elements of M is p, then we can define a parameter space associated with 
M such that for every d G TẐ , M(d) defines a fixed matrix in the equivalence 
class that M represents. A fixed matrix M  is said to be admissible with 
respect to M, denoted as M G M, if M = M(d) for some d G 7Ẑ . If, for an 
admissible M  =  M(d), some elements of d are zeros, then M  is said to be 
structurally reduced to M.

Let n  be a property that may be asserted about the structured matrix 
M. Then n  is a mapping II : IẐ  —> {0,1}, where

1 , if n holds for M(d)
0 , otherwise

Consider a polynomial $(d) in d =  (di,...,d^) with real coefficients. The set

r  =  {d G $(d) =  0},

is called a variety in TẐ . F is said to be proper if F ^  and non-trivial if 
F ^  0. The property II is said to be generic if there exists a proper variety F 
such that kerll C F.

The implications of genericity are based upon the fact that if a variety 
F C TẐ  is proper and nontrivial, then it is a closed set. Thus, a property 
which is generic relative to II holds at any point d' G F“̂, the complement of 
F, and in a sufficiently small neighborhood of d'. Also, if d G F with F proper 
and nontrivial, then almost all points in a sufficiently small neighborhood of 
d are in F*̂ . Therefore, all the points at which a generic property fails to 
hold lie on a hypersurface in 1Ẑ , and can be suitably perturbed so that the

n(¿) =



property holds. In other words, a generic property is expected to hold almost 
everywhere in

For a structured matrix M, we define the generic rank, denoted by p(M), 
as the maximal rank M (d) can attain in TV̂ . It can be shown that the set 
{d € 7?.̂ | rank M (d) < /9(M )} is a proper variety in TZ'̂ . Therefore, almost 
all fixed matrices M (d) have rank p(M). Note that in a structured matrix, 
due to the algebraic independence of the nonzero entries, generic rank equals 
term rank. Indeed, it has been shown in [30] that for some r < min{p, q), 
generic rank of M  is r if and only if M  has r independent nonzero entries 
(i.e., no two parameters lie on the same row or column).

2.2 DIGRAPHS

A digraph can be represented by an ordered pair T> =  (V,£^), where V 
and £ are the finite sets of vertices and oriented edges, respectively. An 
edge oriented from Vj G V to u,· G V is denoted by the ordered pair (uj,u,·). 
Then Vj is called the tail and u,· the head of the edge.

If {vj,Vi) G S, then Vj is said to be adjacent to u,·, and u, adjacent 
from Vj. This adjacency relationship between the vertices of a digraph is 
described by a square binary matrix, R =  (ry) called the adjacency matrix, 
where ry =  1 if and only if (uj,u,·) G £. R characterizes the structure of V 
completely. This relationship can be used to define an equivalence relation 
called connectedness on as follows:

(i) Adjacent vertices are connected.

{ii) Any two vertices connected separately to a third one are connected.

CHAPTER 2. STRUCTURAL REPRESENTATION OF DYNAMIC SYSTEMS 8

Maximal subgraphs that contain connected vertices are called connected 
components of V. If all vertices in V  are connected, then the digraph is 
said to be connected.
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A sequence of edges {(ui, U2), (u2, U3), · · ·, , Ufc)} where all vertices are
distinct is called a path from vi to Vk, denoted by (ui,U/t). In this case, Vk 
is said to be reachable from vi. This relationship can be represented by a 
matrix R  =  (fy ) where fy =  1 if and only if Uj Teaches Vi. Thus the adjacency 
matrix R  can be interpreted as the one step reachability matrix. R  ̂=  R x  R, 
where all the multiplications and additions are Boolean, represents the two 
step reachability . With R* =  R*̂ “  ̂ x R , the reachability matrix of the 
digraph 'D can be written as R  =  I +  R  +  R^ + · · ·. Note that, since T) 
has a finite number of vertices, say n, any vertex reaches another one in 
at most n-1 steps, so that to compute R  it suffices to take only the first n 
terms of the infinite series above. Reachability defines another equivalence 
relation, namely strong connectedness, on T>. Two vertices are said to be 
strongly connected if they are mutually reachable from each other. A 
maximal subgraph containing strongly connected vertices is called a strong 
com ponent of V.

A sequence of edges {(ui, U2), (^2, 1̂3), · · ·, ujt)} where Vk =  Vi with
the remaining vertices distinct is called a cycle. The path that remains after 
the removal of an edge of a cycle is called the complementary path of that 
edge with respect to the cycle. Any two cycles are said to be disjoint if they 
have no common vertices. A collection of disjoint cycles is called a cycle 
family.

We now define some special structure digraphs which are characterized 
by Lin [29]:

A digraph V, =  with a vertex set V, =  { uq, i>i,· ··,!;<} and the
edge set =  { (uq, Ui),(ui,t;2), · · ·, (u<_i, Ui)}, is called a stem. Vertices Vq 
and Vt are the origin and the tip of the stem, respectively.

A digraph Vb =  {Vb,Sb), with V6 =  and Sb =
{ ( uq, Vi ), · · · , (vt_i, V t ) , (vt, Vi)}, is called a bud. Vertex vo is the origin and 
edge (vo,vi) is called the distinguished edge of the bud. Clearly, if the 
edge (vt, vi) is deleted from Pj, then it becomes a stem.
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A digraph Vc =  U “Dbi U T>b2 · · · U T>bky where T>a is a stem with origin 
Vo and tip Vt', and T>bi are buds with origins o,· ^  Vt such that u, is the only 
vertex common to T>g U T>bi U T>b2 U · · · U X̂6,:-i and T>bi, i =  1, · · ·, fc, is called 
a cactus. Origin Vo and tip vt of T>a are also the origin and the tip of T>c, 
respectively. If ’P, above is replaced by a bud, then the digraph becomes 
a precactus,denoted by Vp. Again, by deleting an appropriate edge of a 
precactus, it can be reduced to a cactus. Illustrations of these structures are 
given in Figure 2.1.

(a) (b ) (c )

Figure 2.1. Illustrations of (a) a stem, (b) a bud, (c) a cactus, 
and (d) a precactus.

In a cactus Vc =  (Vc, Sc), every vertex is reachable from the origin through 
a unique path. Let Vi,V2, · · ■ ,Vq be the vertices that are adjacent from the 
origin vq. Then the sets V,· =  {u G V| u is reachable from u,·} are disjoint 
and Vc =  {uo} U Vi U V2 U · · · U V,. Each of the subgraphs of Pc defined by 
one of the vertex sets { uq} U Vj is called a bunch of the cactus. The bunch 
that contains the tip of the cactus is called the terminal bunch, and the
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others (if any) nonterminal bunches. Thus a terminal bunch is a cactus 
itself and a nonterminal bunch is a precactus.

2.3 SYSTEM STRUCTURE MATRIX 
AND SYSTEM DIGRAPH

Consider a linear, time-invariant dynamic system with the state equations

X =  Ax +  Bu
S :

у =  Cx
(2.1)

where x G 7?.", и € and у &RJ denote the states, inputs and the outputs 
of <S, respectively, and A, В and C are real, constant matrices of appropriate 
dimensions.

Associated with this system, we define a square structured matrix S as

■ A  В О ■
S =  О О О  (2.2)

C O O

where A, В and C are structured matrices that correspond to A, В and C, 
respectively. S is called the system structure matrix. Viewing the matrix S 
as a binary matrix with zero and nonzero elements, we define the digraph 
В  =  (V ,5) which assumes S as its adjacency matrix to be the digraph of 
the system S. For convenience, the vertex set of V  can be partitioned as 
V =  U U X  \J y ,  where U, X  and V are the sets of input, state and output 
variables, respectively. Digraph T> completely characterizes the structure of 
system S of (2.1)

We say that two dynamic systems, represented by the triples (Л,·, B,·, (7,), 
i =  1, 2, are structurally equivalent if

(a) their digraphs are the same up to an enumeration of their vertices, or 
equivalently.
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(b) there exists a permutation of states, inputs and outputs after which 
Ai, Bi and C\ becomes structurally equivalent to A2, B2 and C2, 
respectively; that is, there exist permutation matrices Pi;, P„ and Py 
such that

■ Ai 0 PJA2PX PJB2P„ 0
0 0 0 = 0 0 0

. Cl 0 0 PyC2Pi; 0 0

The digraph B  associated with these systems defines an equivalence class of 
structurally equivalent systems. Then a property is a structural property of 
a system if it is a property of the associated digraph.

For a treatment of the structural properties of the pair (A,B) of S of (2.1), 
one can use the subgraph =  (A' U U^Eux) obtained by removing, from 
the associated digraph T> of 5 , the output vertices and the edges connected 
to them. Dux is called the output truncated system digraph and corresponds 
to the system structure matrix.

Sui —
A B
O O

(2.3)

Subgraph Dxy for the pair (A, C) can be defined, similarly.

Let F =  (fy) be an m X r structured matrix with v < m.r nonzero 
elements. Suppose a feedback of form

·. u =  Fy, (2.4)

where F  is a matrix admissible with respect to F, is applied to system S of 
(2.1). The resulting closed loop-system represented by

S ( F ) : X =  (A +  B F C )x  

has the system structure matrix

S(P) =

(2.5)

A B 0
0 0 F
C 0 0

(2.6)
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The associated system digraph then becomes T>(^) =  (V, S U £jr), where
=  {(j/j,Wi)| fy 7̂  0} is the set of feedback edges.

For convenience, the edges in E are called the d-edges and those in Ejr 
the f-edges. Accordingly, a cycle is called an f-cycle if it contains at least 
one f-edge and a d-cj’̂ cle otherwise. Similarly, a cycle family is called an 
f-cycle family if it contains at least one f-edge, a simple f-cycle family if it 
contains one and only one f-edge, and a d-cycle family otherwise. Note that if 
a feedback variable /,·_,· is given a fixed nonzero value, then the corresponding 
f-edge (t/j,u,·) becomes a d-edge as /,j is no more different from a nonzero 
parameter of A, B or C.

2.4 STRUCTURAL CONTROLLABILITY 
(OBSERVABILITY)

In a linear, time-invariant system represented by the triple (A,B,C), a 
possible loss of controllability (observability) may occur in the following two 
different ways:

{i) It may be due to an exact matching of the system parameters, e.g., as 
in the system represented by the triple.

A =
0 1 
1 0

B = C =

which is obviously both uncontrollable and unobservable. We know, however, 
that except for the fixed zeros that come by coordinatization or by absence 
of i^hysical connections between some parts of the system, system parameter 
values are never precise. Hence, an investigation of the system properties, 
with some parameter \Tilues slightly perturbed, is justifiable. Indeed, if the 
above triple is reconsidered with the A matrix slightly perturbed as

A =
0 1 "t· c
1 0

it turns out to be both controllable and observable.
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(zi) Loss of controllability (observability) which is due to the special 
structure of the system represents the other case. Here, no matter how 
much the parameters are perturbed, controllability (observability) cannot 
be restored. For example, in the above triple with the A matrix as

A = 0 0 
0 0

this is the situation.

It is obvious that (¿) represents pathological cases while (ii) is of primary 
importance, especially when dealing with an actual physical system. The 
distinction between these two cases is provided in the concept of structural 
controllability (structural observability):

Definition 2.1 A system S of (2.1) is structurally controllable (S.C.) if there 
exists a controllable system structurally equivalent to S.

Structural observability can be defined similarly.

Both algebraic and graph-theoretical characterizations of structural 
controllability have been given by Lin [29,33] and Shields and Pearson [30]. 
The following two theorems summarize these results.

Lemma 2.1 A system S of (2.1) is S.C. if and only if

(a) p [A B] =  n, and

(b)  the system digraph is input reachable, i. e., each state vertex is reachable 
from an input vertex.

Lemma 2.2 The following are equivalent:

(a) The system S of (2.1) is S.C.



(b) The output truncated system digraph is spanned by a family of 
disjoint cacti, Vd =  (Vdi^ci) with Vd =  U Af, and £d C £ux such
that UA’, =  X.

Structural observability can be characterized by dual statements.

It is obvious from these characterizations that structural controllability 
(observability) is a generic property of the system.

2.5 STRUCTURALLY FIXED MODES

Consider the system S of (2.1) and a feedback i f  of (2.4) specified by the 
structured matrix F, applied to S. The set of fixed modes of S with respect 
to i f  is defined by

A f  = n  A(Al+ 5 F C ) ,
FcF

where A(·) denotes the set of eigenvalues of (·)., and the intersection is over 
all F  admissible with respect to F.

As in the case of loss of controllability (observability), a fixed mode 
either originates from an exact matching of system parameters or is due 
to the special structure the system. This fact allowed Sezer and Siljak 
[36 ] to employ the ideas and results developed in the context of structural 
controllability, in characterizing the existence of structurally fixed modes as 
a generic property of the system. According to this, a system is said to have 
structurally fixed modes with respect to a feedback structure constraint F  if 
every system structurally equivalent to S has fixed modes with respect to F. 
The following lemma, which is due to Sezer and Siljak gives necessary and 
sufficient conditions for the existence of structurally fixed modes in terms of 
system digraph.
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Lemma 2.3 A system S of (2.1) has no structurally fixed modes with respect 
to a feedback F  of (2.4) if and only if both of the following conditions hold:
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(z) Each state vertex in X  is contained in a strong component of T>{T) 
which includes an edge from £jr.

(ii) There exists a cycle family in 'D(T') which covers all the state vertices.



Chapter 3

THE POLE ASSIGNMENT 
PROBLEM:
A STRUCTURAL APPROACH

In this chapter, we present a qualitative analysis of the pole assignment 
problem based on the structure of the pair (S, J-). We start with a discussion 
on an algebraic formulation of the problem, as has been done by Reinschke in 
[44]. Based on this and structural interpretation of characteristic polynomial 
(also due to Reinschke [37]), we derive purely graph-theoretical conditions for 
structural pole assignability. We then provide a search algorithm to detect 
these conditions. Finally, we consider some examples of structurally pole 
assignable systems to demonstrate nontriviality of our conditions.

3.1 ALGEBRAIC FORMULATION OF
THE POLE ASSIGNMENT PROBLEM

Consider the system S of (2.1) with a feedback JF given by (2.4) applied to 
it. Then, the closed loop system <S(.F) of (2.5) has a characteristic polynomial

p(s) =  det{sl -  A -  BFC)  =  s” -1- pis”  ̂ - f -----h Pn-i-s + Pn (3.1)

17
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The pole assignability problem is that of arbitrary assignability of the closed 
loop characteristic polynomial coefficients pk by a proper choice of the nonzero 
elements of F.

Let the nonzero elements of F  and the coefficients of the characteristic 
polynomial p{s) in (3.1) be represented eis points
/  =  (/i, / 2 , · · · 5 ft') and p =  {pi,p2, ■·■ ,Pn) in 72.”, respectively. From
(3.1), p and /  are related by a smooth mapping g : 72." —> J\f defined as

P =  g {f) (3.2)

where TV is a smooth manifold in 72.". Therefore, the concern of the pole 
assignment problem is the existence of a solution /  G 72." of (3.2) for every 
given p € 72.". To provide conditions for the solvability of (3.2), we recall few 
concepts from differential geometry [45]:

Suppose that u > n, and let g : 72." -+ 72." denote the restriction of g to 
72.". Let the derivative of p at a point x G 72." be denoted by gx{x), that is 
dg =  gx dx.

The mapping g defines a homeomorphism between 72." and (̂72.") if and 
only if g is one-to-one, and g and g~̂  are continuous on 72" and g(72"), 
respectively. Following is a well-known theorem on homeomorphic mappings.

Lemm a 3.1 (H adam ard Theorem ) Assume that g : 72" —> 72" is 
continuously differentiable on 72" and that || g~̂  || is bounded on 72". Then 
g is a homeomorphism of'RP onto 72".

We now return to the pole assignment problem and consider (3.!2). It is 
clear that a necessary condition for solvability of (3.2) for all p G 72" is that 
u >  n. We assume that in our investigations this is always the case and 
partition the feedback variables / 1 , / 2 , · · · , / 1/ into two disjoint subsets /„  and 
fc containing n and u — n elements, respectively. If we fix the variables in ff 
at particuleir real values, then p depends only on /„ , i.e., (3.2) is reduced to

P = 9 (M (3.3)
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where g : is obviously a restriction of g to 7?.". This leads us to the
following result [44], which gives a sufficient condition for pole assignability:

Lemma 3.2 Assume n < v < mr. If there exists a 'partitioning of the 
feedback variables / i , / 2, · ' '  >/*/ disjoint sets /„  and fc containing
n and u — n elements such that after appropriatel'y fixing those in fc, the 
derivative gĵ  is unimodular, then the system S is arbitrarily pole assignable 
by the feedback T .

This result depends on the fact that when gĵ  is unimodular, then det gĵ  
is a constant, so that  ̂ is a homeomorphism by Lemma 3.1. Hence, for every 
p 6 7?.", there exists a unique /„  € 7̂ " satisfying g{fv) =  ^(/v,/c) =  P-

Example 3.1 To demonstrate the result of Lemma (3.2), consider the 
following system.

y =

controlled by the feedback

0 1 0 

0 0 0 
0 1 0 
1 0 0 

0 0 1

X +

1 0 
0 1 

0 1

u
(3.4)

X

u = / n  / l 2  

/21 /22
y- (3.5)

Let us conveniently take /n  =  / 1, /12 =  / 2, /21 =  /3 and /22 =  / 4. Then, the 
characteristic polynomial of the closed loop system is given by

p {s) — — ( / 1  +  fA)s^ — i f s  +  / 4  +  / 2 / 3  — / 1 / 4 ) 5  +  / 1 / 4  — / 2 / 3 ·
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With /  =  (/i , / 2, / 3, /4 ), we have 

P =  9Íf) =
- h  -  /4

—/3 — /4 — / 2/3 +  / 1/4 
/ 1/4 — / 2/3

Let us partition /  as /  =  /„  U /c where /„  =  ( / i , / 2, / 4) and /c =  / 3. Fixing 
/3 = 1, we get the mapping

P =  gifv) =

The derivative is given by

QSvifv) =

- / 1 - /4  
— /4 — /2 +  / 1/4 

/ 1/4 — /2

-1  0 -1

/4 —1 —1 +  /1
/4 —1 /1

(3.6)

for which det =  1. So, by Lemma 3.2 this system is arbitrarily pole 
assignable with the feedback of (3.5). Indeed, (3.6) can be written as

Pi ’ -1 -1 0 /1 0

P2 = 0 -1  -1 /4 + -1

Pz . 0 0 -1 _ /2 — / 1/4 _ 0

which is clearly solvable for /„ , for every p G

3.2 THE STRUCTURAL
POLE ASSIGNMENT PROBLEM

3.2.1 Problem Formulation

Imitating the definitions of structural controllability and existence of 
structurally fixed modes given in Sections 2.4 and 2.5, we define a structurally 
pole assignable system as follows:
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Definition 3.1 A system, S of (2.1) is said to be structurally pole assignable 
by a feedback T  of (2.4) if there exists a system structurally equivalent to S 
which is pole assignable by J·.

Let us assume, as in an analysis of structural controllability that the 
nonzero parameters of the system structure matrix S in (2.2) are algebraically 
independent, and thus correspond to a data point d&'R.^. Then, the mapping 
g between p and /  of (3.2) depends also on the system parameters, and this 
dependence can be indicated by expressing (3.2) as

p =  s W /) · (3.7)

It is clear from Definition 3.1 that structural pole assignability is equivalent 
to the existence of a particular data point d* G for which the equation

p = g{d-J) = s-{f) (3.8)

has a solution for every given p 6 7?.".

It is important to note that solvability of (3.8) does not readily imply 
solvability of (3.7) for almost all d € 7̂ ” . This is due to the fact that (3.7) 
is, in general, a non-linear equation, solvability of which cannot easily be 
reduced to a condition involving only the parameter vector d. Therefore, 
unlike structural controllability, structural pole assignability is not a generic 
property, or at least can not easily be proved to be a generic property. In our 
analysis, however, we do aim at obtaining structural conditions in terms of the 
system digraph, which guarantee genericity of structural pole assignability.

In order to complete the establishment of the framework needed for our 
structural approach, we refer to Reinschke’s [37] graph-theoretic formulation 
of the characteristic polynomial which is summarized below:

Consider the closed loop system digraph =  (V, S U £p) associated
with the system structure matrix S(F) of (2.6). By assigning a weight to 
every edge, T>(^) becomes a weighted digraph. The weight of a d-edge is 
the corresponding nonzero parameter value of A, B or C, and the weight
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of an f-edge is the corresponding variable feedback gain. In the thesis, the 
associated weight also refers to the edge. Accordingly, a path or a cycle is 
represented by a sequence of the weights of the edges it contains as {·}, and a 
cycle family by a collection of the cycles involved as { {·} }. The weight of a 
path, a cycle or a cycle family is the product of weights of all edges involved. 
Denoting the number of cycles in a cycle family CT by and defining
the width of CT  to be the total number of state vertices covered by
CT  ̂ Reinschke proved the following:

Lem m a 3.3 The coefficients pk =  9k(f),  =  1,2, of the closed loop
characteristic polynomial are given as

n U ) =  E
~i(cr)=k

(3.9)

where lo{CT) denotes the weight of CT, and the summation is carried over 
all cycle families of width k.

An immediate application of this lemma is that a feedback variable 
appears in a coefficient pk of the closed loop characteristic polynomial only 
if it takes part in a cycle family of width k, as illustrated by the following 
example.

Exam ple 3.2 Consider again the system of Example 3.1 for which the 
system structure matrix is

S(F) =

’ 0 0 d2 0 0 0 '
0 0 0 0 ¿3 0 0
0 (I4 0 0 ds 0 0
0 0 0 0 0 /1 /2
0 0 0 0 0 /3 /4
de 0 0 0 0 0 0
0 0 dj 0 0 0 0
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The digraph P (^ ) =  (V,S U £p) with V =  {x i,X 2,^3,uj,U 2,y u y 2}, 
associated with S(F) is shown in Figure 3.1. The f-cycle families of
width fc, 1 < fc < 3, in axe listed in Table 3.1.

Figure 3.1. of Example 3.2.

Table 3.1. F-cycle families in of Figure 3.1. 

Then, applying Lemma 3.3, we obtain

9 (f) =
—(¿$<̂ 2/1 “  dydsfi
—dedids/s — dTiî d̂ f̂  — d2d^fzdsd2f 2 +  (d&d2f\)(dTd5f 4) 
{d&d2fi)(d7didzf4) — dTd4dzfzd&d2f2

(3.10)
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Observe that (3.10) reduces to (3.6) when values of the elements of the 
parameter vector d =  (c/i,<¿4, i?2> d r )  and /3 are all fixed at unity.

Lemmas 3.2 and 3.3 provide the basis for deriving sufficient conditions for 
structural, but at the same time, generic pole assignability.

3.2.2 Conditions For Structural Pole Assignability

In the following, we first prove a result which is a special case of 
Lemma 3.2:

Corollary 3.1 Let /„  and fc be as defined in Lemma 3.2, with the feedback 
variables in /„  renumbered as / 1, / 2) · · ·, fn- For a partitioning M  =  X\J (Af — 
I )  with I  ^ (¡i, of the index set AÍ =  {1 ,2 ,···, 7i), define auxiliary variables 
fk as

fk , k e l  
Bkfk + V’fc , k eAf - I

where 9k = ^k(d) is a nonzero polynomial in d, and tpk = V̂ /.-(d, f j )  is a 
polynomial in fi, l e i ,  with coefficients being polynomials in d. Suppose that 
the restriction g of g in (3.3) to 'RA is given by

fk = (3.11)

SkUfv) =  5 l ( ¿ ; / )  =  « i  +  *: = 1,2,· ■■ ,n (3.12)
1=1

where ak =  oik{dl) and tki =  €ki{d). Then, S is structurally pole assignable by 
T  if the coefficient matrix E  =  E(d) =  (e^/) has full generic rank.

Proof: The derivative of g is computed as

gf̂  =  E {d)E{dJj),
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where =  (^kt) has elements

iki =  ■'

1

0
6k
0

d^k/dfi

k G i ) I — k 
k ^  k 
k e A f - I J  =  k 
k,l e A f - 1 , 1  ^  k 
k e A f - 1 , 1  e l

It follows that H can be permuted into

i j  0
d ^ ld fj Qm- j

where ©aT-t =  diag.{6k,k e  M  -  I ) ,  and j d f j  = {d4>k!dfi), k e  Af -  
1,1 e l .  Thus E(d, / )  is generically unimodular, and the proof follows from 
Lemma 3.2.

It is easily seen from the proof that a structurally pole assignable sj ŝtem 
by Corollary 3.1 is also generically pole assignable.

We note that under conditions of Corollary 3.1, the mapping g can be 
decomposed as g =  g o h, where g : > TZA is the affine mapping defined
in (3.12), and h : 'RA —> RA is defined in (3.11), both mappings being 
homeomorphisms. The significance of Corollary 3.1 lies in the fact that its 
assumptions and the full generic rank condition on the matrix E can be 
characterized, with the help of Lemma 3.3, in terms of the weighted closed 
loop digraph T>(E). This leads us to two main results which we state and 
prove below.

Theorem  3.1 Suppose that in there exists a choice of n distinct f-
edges, renumbered conveniently as / i , / 2, · · · , /n, which after converting the 
remaining f-edges into d-edges by fixing their weights at arbitrary values, 
satisfy the following conditions:

(t) No two f-edges occur in the same cycle;
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(it) All f-cycles have a vertex in common;

(Hi) For k =  1,2,· · · ,n, there exist particular simple f-cycle families of width 
k, denoted by such that

(a) f k e  CT\, and

(b) any other simple f-cycle family of width k which contains an 
f-edge fi, I < k, also contains a d-edge which appears in no

j  < k.

Then S is generically pole assignable with T .

Proof: Conditions (i) and (ii) guarantee that every f-cycle family is a 
simple f-cycle family, so that each product term uj{CT) in (3.9) contains at 
most one variable weight. In other words, each in (3.9) is an affine function 
of / i , / 2, ··· ifn as in (3.12), so that g has the structure in Corollary 3.1 with 
f^ =  fî  ̂ k G Ai, that is with T =  Af. Therefore, it suffices to show that 
the coefficient matrix E  =  (e*,/) in Corollary 3.1 is generically nonsingular. 
For this, we first note that condition (Hi — a) implies that each ejtjt, k G Â , 
contains at least one nonzero product corresponding to CE^, which we denote 
by elf.. We now define dn =  d, En(dn) =  E(d), and partition En as

En(dn) =
^ n~ l ( d n )

^n n i^ n )  H" ^nn(^n)

(3.13)

where, for convenience, we denote what is left from Cnn after separating e*„ 
again by Cnn (if there remains any). For a fixed I < n, either // appears in no 
cycle family of width n, in which case tni = 0 or if it does, then by condition 
(Hi — b), the corresponding product term contains the weight of a d-edge, 
which occurs in no ejjfc, k < n. Let dn-i denote the parameter vector after 
all parameters corresponding to such d-edges are set to zero. Then £?„(d„_i)
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is of the form

•̂ n—1 (^n—1) 1 ) ^

0 ^ n n i ^ n - 1 )

En(dn-i) —

where e*„(c?n_i) consists of a single nonzero product term, and each diagonal 
element ekic{dn-i) of £?n-i(dn-i) still contains the product term ^kkidn-l) — 
elk(dn), k =  1,2, · · - ,71 -1 .  Obviously, is generically nonsingular if
En{dn-i) is. On the other hand, is generically nonsingular if and
only if En-i{dn-i) is. Now, replacing and En{dn) by d„_i and En-i(dn-i) 
and repeating the argument above, we come to the conclusion that En{dn) is 
generically nonsingular if Ei(di) =  elj{d) is nonzero, which is guaranteed by 
condition {in — a). This completes the proof. □

We demonstrate the result of Theorem 3.1 in the following example.

Exam ple 3.3 Consider a system whose closed-loop digraph, T>{E), corre
sponding to

u —
f n  f l 2 / l 3

0 /22 /23

is as given in Figure 3.2.

Let us fix /22 =  Ij /23 =  0, and renumber the remaining nonzero feedback 
edges as /1 =  / 11, /2 =  / 12, and /3  = / 13.Then, the resulting f-cycle families
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CTka of width A:, 1 < < 3, in are as listed in Table 3.2.

Figure 3.2. V {T ) of Example 3.3.

Table 3.2. F-cycle families in of Figure 3.2.

Consider the following choice of ib =  1,2,3:

CT\ =  CTi\ =  f 2}

CT\ =  CTz\ — {d7,dsTd4,d3,di, fz}
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Clearly conditions (z), (ii) and (Hi — a) of Theorem 3.1 are satisfied. Let 
us test condition (in — b): For k =  2 , CT22 is the only f-cycle family of 
width 2, other than C!F̂  and it contains / 2. But it also contains ¿5 and <¿6, 
both of which are d-edges that do not occur in or thus satisfying 
condition (in — 6). For k =  Z, there is C.F32 as the only f-cycle family of 
width 3, other than CJ^y which contains / 1, but also ds which appears in 
no j  <  3, again satisfying condition (Hi — b). Therefore, the system
is generically pole assignable. Indeed, the coefficients of the closed-loop 
characteristic polynomial can be expressed as,

d̂ di 0 djd^

0 d\(d:id\ -|- ¿ 6̂ 5) 0

d2didiidQd8 0 d/id̂ did̂ d̂

which is generically solvable for all p =  (p\yP2iPz) as det gĵ  =  d (̂dzd\ -|- 
d̂ d̂ ')\d2d\d4d-jd (̂d3d\ — dgcis)].

A more general result, which makes full use of Corollary 3.1 is given by 
the following:

Theorem  3.2 The result of Theorem 3.1 remains valid if condition (ii) is 
replaced by

(a y  To any two f-edges fp and fq that appear in disjoint cycles there 
corresponds a unique pair of edges fy and dy such that

P i 9 i ( f v )

P 2
=

h ( f v )
=

P 3 M f v )

/1

/2

/3

(a) dy appears in every cycle of fy hut in no cycle of fp or fq, 
and

(b)  to any two disjoint cycles Cp and Cq of fp and fq there 
corresponds a cycle Cy of fy which covers exactly the same 
state vertices as Cp and Cq cover, and vice versa.
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Proof; The proof is based on the following facts:

Fact 3.1 does not contain more than two pairwise disjoint f-cycles.

P ro o f o f  Fact 3.1: Suppose that contains three pairwise disjoint
f-cycles formed by the f-edges /p, / ,  and Let us denote, for convenience,
the pair of edges fr and dr associated with each pair ( / i , / , ) ,  i , j  =  p, 
i ^  ji by fij and dij. Then, condition (ii)' implies that contains
a subgraph which is isomorphic to one of the basic structures shown in 
Figure 3.3. (There are eight possible combinations of different orientations of 
the edges /,j, i^j =  p,q,s, i 7̂  j ,  but six of these are essentially the same as 
one of the other two except for a relabeling of p,q and s.) However, each of 
these subgrahs contradicts condition (i), the one in Figure 3.3(a) containing a 
cycle which includes three f-edges /p,, fsp and / , , ,  and the one in Figure 3.3(b) 
containing a cycle which includes two f-edges /p, and Therefore, 
cannot contain three disjoint f-cycles. It cannot contain four or more pairwise 
disjoint f-cycles either, because this necessarily includes the existence of three 
pairwise disjoint f-cycles. This completes the proof of Fact 3.1.

fsp
‘ sp

(b )

Figure 3.3. The two basic structures mentioned in the proof of Fact 3.1.

Fact 3.2 The correspondence between (/r,dr)’s .̂nd the pair {fpi/gYs in the 
statement of condition (ii)' is one-to-one.
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P ro o f o f  Fact 3.2: If (fr,dr) corresponds to two distinct pairs {fpifq) 
and (fp',fqi) then either all cycles formed by fp and fpi or all cycles formed 
by fq and fqi should cover the same state vertices. Suppose, without loss of 
generality, that thê  former is true and that p < p'. Since fpi appears in CT*,, 
which is of width p', then so does fp in some CTp> of width p'. However, every 
d-edge in CJ-pi appears either in CT*, or in CT*, which violates condition 
{in — b). The situation is illustrated in Figure 3.4, where p =  1, p' =  2, 
CJ·· =  {d2,d i,fp}, =  {d^,d4,d3 ,fp,} and CTp> =  {ds,d.4,di, fp}.

in

Figure 3.4. Illustration of the situation mentioned in the proof of Fact 3.2.

Fact 3.3 Suppose the pair (/r,dr) corresponds to the (unique) pair ( /p ,/,) . 
If fr appears in a product term in some gk{f) oi (3.9), then so does the 
product fpfq, and vice versa. Moreover, all the product terms that contain 
fr in any gk{f) are of the form ekr{erfr +  Cpqfpfq), where Ckr, ê , and Cp, are 
polynomials in d with and Cp, being the same in all such expressions.

P ro o f o f  Fact 3.3: Let Cri, Cr2,····, denote all simple f-cycles formed by 
fr] and for each i, let CJ-di2·,····, denote all d-cycle families which have no
vertex in common with Cr,·. Then, any simple f-cycle family containing fr is of 
the form CTr =  CriDCdij for some i and j ,  so that Lo{CĴ r) =  ^(Cri)-i^(Cdij) =  
T̂ifr̂ dij- By condition (ay, to every Cri there correspond disjoint simple f- 

cycles Cpi and C,,· formed by fp and / , ,  which are also disjoint from all Cdij.
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Therefore, they form an f-cycle family C^pg = CpiUCgiUCdij of the same width 
as that of having the weight u>(CĴ pg) — Cpifp ■ e,,·/, · edij. This shows
the existence of the product fpfg wherever fr appears. The converse is also 
true, and the proof of the first part is complete. Now, let be the product 
of the weights of the d-edges which are common to all Cri, and which does 
not occur in some (obviously, dr appears in Cr), so that Cri =  ej.,· · Cp.
Also define Cp and e, to be the products of the weights of the d-edges which 
are common to all Cpi and Cg,·, respectively, and which do not appear in some 
Cri, and therefore write Cpi =  Cp,··Cp and e,,· =  e'̂ ,··e,. Since for fixed i, CpiUCgi 
and Cri cover exactly the same same state vertices, then Sp and e, may only 
contain weights of d-edges that are adjacent either from the input or to the 
output associated with fp and / , ,  respectively. Furthermore, e',· =  Cp,· · e',·. 
Then, bj{CJ r̂) +  — Ki ‘ d̂ij · (cr/r +  Cp · eg fpfg) independent of the
widths of the cycle families CJ-r and C!Fpg, and the proof follows.

Now, returning to the proof of Theorem 3.2, Fact 3.1 together with 
condition (i) imply that each product term u>{CJ-) in (3.9) contains at most 
two variable weights. Also, defining

X =  {k\fk forms a cycle which is disjoint from some other f-cycle},

and fr as in (3.11) with 6r =  and xj)r =  epgfpfg, Fact 3.3 guarantees the 
structure in (3.9). Rest of the proof is the same as that of Theorem 3.1. □

The following simple example illustrates this result:

Example 3.4 Consider the digraph 'D(X'), of Figure 3.5 corresponding to a 
closed-loop system under feedback of the form:

X": u =
f u  f l 2

/2 1  /2 2

Suppose we fix /12 =  a, for some arbitrary a E X, and renumber the 
remaining feedback edges as /1 =  / 22, /2 =  /11 and /3 =  / 21. This results in
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M2

= =  {ds,d2, d i j 2}

CJ^ =  CJ-3i =  {ds^dj, fs^de, d2,d i,a}

k CTu

1 { ¿ 4, /2}?

{<¿8, (¿7 , / i }

2 { ¿ 6 , ¿2, / 2 }

{¿8 , dr, /3 , <¿4, c?i, a }

{ {d4,di, f2},{ds,d7, f i ]  }

3 {ds, dr, /3 , i?6, d2,di, a}

{ {de-d2,d i ,f2},{d s ,d r ,fi}  }

Table 3.3. F-cycle families in V {T ) of Figure 3.5.
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Condition (i) and (in — a) of Theorem 3.1 are obviously satisfied. On 
the other hand, we observe that for the f-edges fi and / 2, which appear in 
disjoint cycles, there is the pair of edges /3 and a, as in condition (ii)' of 
Theorem 3.2. Hence, the system is generically pole assignable.

The usefulness of Theorem 3.1 and Theorem 3.2 depends largely on the 
choice of n feedback gains to be included in /„ , as well as on the choice of 
zero or nonzero fixed values to be assigned to the remaining feedback gains 
in fc· An algorithm, which determines whether such a choice of n feedback 
edges that satisfy the conditions of Theorem 3.2 exists, is given in the the 
next section.

3.2.3 The Choice Algorithm

In this section we present an algorithm to check the existence of a set of 
n f-edges / i , / 2, ···) fn in which satisfies conditions of Theorem 3.2, and
to identify one such set if there exists any. The algorithm accepts as input

II: n, the number of state vertices in T>(iF),

12: /  =  ( / 1, / 2, a set of all f-edges, u > n.

13: for each 1 < k < n , a, list of eill f-cycle families {CiFka\ of width A;, each 
CiFka being specified as a product of the parametric weights of all the 
edges appearing in CTus·,

and produces as output

01 : a positive or negative response regarding the existence of a required set 
of f-edges, and if the response is positive,

02 : the chosen subset /„  =  ( f i i /2 ·)'' ‘ ·> fn) /  (here we use a starred 
notation for the variable f-edges to distinguish between the orderings 
of /  and /„ ),
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03: { C ^ } ,  the list of particular simple f-cycle families defined by 1 < 
k < n ,

04: the fixed values (0 or 1) assigned to the f-edges in /c =  /  — /„.

The algorithm tries to construct an arborescence (a directed tree)
T  =  (Vc U Vf,St) having a longest path of length 2n by examining all 
cycle families CFks, k =  1, 2, s =  1,2, and all f-edges /**,
t =  l , 2, - ‘ -,n^  ̂ appearing in each CJ-ka· It halts with a positive response 
as soon as such a longest path is constructed, and with a negative response 
if no such path can be formed. The vertices of T  are arranged in n +  1 
levels, each of which,' except level 0, is further divided into two sublevels. 
The vertices at the first sublevels constitute Vc, and are called the c-vertices, 
while the vertices at the second sublevels constitute V/, and are called the 
f-vertices. Each c-vertex at level k is the child of some f-vertex at level fc — 1, 
and corresponds to an f-cycle family CFks width fc, while each f-vertex at 
level k is the child of some c-vertex CFka at the same level, and corresponds 
to an f-edge that occur in CJ~ks·, 1 < fc < n. Level 0 contains a single f-vertex, 
denoted by / q, which is the root of T. The algorithm proceeds as follows:

Suppose that a path Vk-\ of length 2(fc — 1) is constructed from /o* to 
some f-vertex /jJ_i at level (k — 1), with some f-edges of T>{F) assigned to the 
branches and f-vertices on Vk-i as described below. Choose an f-cycle family 
CJ-ks of width k which contains no f-edges that are assigned to the f-vertices 
of Vk-i- If no such CFka exists, terminate the path Vk-i, and search for 
an unexplored f-vertex at level [k — 1) to replace /^-i· ff there exist one or 
more such cycle families, construct a c-vertex for each of them and extend 
a brandi from to these c-vertices. Pick any one of these c-vertices, say 
CFks, 5 =  1,2,···,  n ,̂ and label it as CFl- Corresponding to each f-edge that 
occurs in CFk =  CFks construct an f-vertex, /**, t =  1, 2, ·· · extend a 
branch from CFl each /¿̂ *, and assign all other f-edges in to the 
branch of T . Pick one of the f-vertices, say //'*, and check if
the assignment fk =  ft"  violates the conditions of Theorem 3.2. If not, set 

and repeat the whole procedure with k — 1 , and Vk-i replaced
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t>y k, and Vk- If the assignment fĵ  =  violates the conditions of 
Theorem 3.2, terminate the path from to and pick another unexplored 
f-vertex to replace //'*. If none of Z/'* can be chosen as f^, go back to the 
upper sublevel to replace with another unexplored c-vertex CTks- If all 
the paths through all CTk» are terminated, search for an unexplored f-vertex 
at level (k — 1) to replace /¿ -i· I  ̂ checking whether the assignment 
violates the conditions of Theorem 3.2, the f-edges of that are assigned
to any branch of Vk* are assumed to be fixed at some nonzero value (at 1, 
for convenience), and all f-edges other than these and f j , l < j < k  can be 
fixed or variable, as appropriate.

With this introduction, we now state the choice algorithm to identify 
fv =  ( / r ) /2 5 ■ ■' ifn)i where we adopt the following notation:

k: index to scan the levels of T , 0 < < n,

n :̂ number of distinct f-cj'̂ cle families of width k in V (^ ),

Sk'· index to scan the c-vertices of T  at level k, 0 < Sk < n ,̂ 

the c-vertex chosen at level k

number of distinct f-edges of T>{T) that appear in 

tk'. index to scan the f-vertices of T  at level k, 0 < tk < nl, 

fî : the f-vertex chosen at level k

The corresponding flowchart is given in Figure 3.6.

The Algorithm

1. Set fc <— 1, and construct vertex /J of T

2. Add the c-vertices C^ks and the branches {fk-\i^^ks) to T, 1 < s < n ,̂ 
and set Sk *— 0.

3. Set Sk *— Sk +  1. If Sk < nl go to 5.
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4. Set k <— k — 1 . If k =  0 , stop. No choice of /„  is possible. Otherwise, 
go to 7.

5. If CJ-ksk contains an f-edge corresponding to an f-vertex fj of T, i < 
j  < k — 1 , terminate the path from / q to , and go to 3. Otherwise, 
let — Ĉ Fksk-

6. Add the f-vertices /¿t and the branches (CJ^^,fkt) to T, 1 < < < nl, 
and set tk *— 0.

7. Set tk tk +  1. If tk > nl, go to 3.

8. If fkt̂  is assigned to any branch / / )  of T, 1 < ;  < A; - 1, terminate
the path from to and go to 7. Otherwise, assign all the f-edges 
in CJ l̂, except fkt ,̂ to the branch {CT*ki fktk)·

9. Delete all f-edges of except fktki those that correspond to the f-
vertices f j ,  1 < j  < k — 1 , and those that are assigned to the branches 
(CJ^*j,fj), I < j  < k — 1. Convert all f-edges that are assigned to the 
branches (C J^,fj) to d-edges by choosing their weights to be unity. If 
f\i /2 1 " '  ·> fk-i fktk do not satisfy the conditions of Theorem 3.2 
for the remaining subgraph and with n replaced by k, terminate the 
path from /0 to fkt̂  and go to 7. Otherwise, let fH =  fkt,,·

10. If k < n, set k k +  1 , and go to 2.

11. Let fv =  ( / r ,/25 · " i /n ) ·  Convert all the remaining f-edges of V {T ) 
into d-edges by fixing their weights to 1 if they are assigned to some 
branch (CT*k,fk) o fT , 1 < k < n, and to 0 otherwise. Stop.

The following example demonstrates an application of the choice 
algorithm. This example also shows the significance of Theorem 3.1 and 
Theorem 3.2 and hence the usefulness of our choice algorithm. In a classical 
approach, in order to place all the poles of a system with a digraph V {T ) of 
the example, as given in Figure 3.7, at desired locations, one would attempt 
to use a dynamic output compensator , whereas we show below that constant 
output feedback is sufficient for the job.
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Figure 3.6. Flowchart of the choice algorithm
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Exam ple 3.5 Consider the digraph T>{T) of Figure 3.7, in which unity 
weight is assigned to any d-edge adjacent from an input or to an output 
vertex. In this example, this causes no loss of generality as every input 
or output vertex has a unique edge adjacent from or to itself. We want 
to identify an /„  =  (/i*, / 2, /|, / 4), if there exists any. We have, n =  4, 
/  =  ( / 1, / 2, / 3, / 4, / 5, /e) and the list of all f-cycle families {C!Fks} of width 
fc, 1 < fc < n, is given in Table 3.4.

Let us now apply the choice algorithm. The steps which the algorithm 
goes through are given below in detail. Figure 3.8 shows the arborescence T  
constructed during this application.

1. =  = ({/„·),(()

2. The c-vertex and the branch (/o*,CjFn) added to T . sj =  0.

3. Si =  1 (=

5. C ri=C J^n, n* =  1.

6. The f-vertex fu  =  /e, and the branch added to T. ti =  0.

7. ii =  1 (=  nj).

8. Pass

9. Satisfied. =  /n  =  U

10. fc = 2

2. № 1, № 2  and ( / 2· , № 2) added to T. S2 =  0.

3. S2 =  1 (<  n‘2)

5. c:T2 =  № 1, n; =  1
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f2

Figure 3.7. V(J^) of Example 3.5.

k

1 { M
2 {<̂ 51/ 3}

( ¿ l . /s )
3 { i i s . A l . U e ) )

{(¿5, ¿3, / 4}

{d s,fl,f4 }
{¿4, ¿5, / 1}

4 {di,d4, ds, / 2}

{d i,f4,ds,f2}

Table 3.4. F-cycle families in of Figure 3.7.
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/о

Figure 3.8. The arboresence generated by the choice algorithm 
in Example 3.10.
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6- /21 — /3 and (C^2) /3 ) added to T. ¿2 = 0.

7 . <2 = 1 (= nj)

8. Pass

9 . Satisfied. /2 = /21 = /3

10. A; =  3

2. № 2, № 3, № 4  and if;,CJ^32) , ( /2*,CJ^33),
( / 2*, <̂ 3̂4) added to T. S3 =  0

3 . S3 = 1 (< n§)

5 . Terminate the path {CT31 contains /3 = /2*). 

3 . S3 = 2 (< n|)

5 . =  CT32, «3 = 1

6. /4, (CJ^,/4) added to T. <3 = 0

7 . <3 = 1 (= n*)

8. Pass

9 . Satisfied. /3 = /34 = /4.

10. Jt = 4

2. CĴ 4i, C f 42,C f 43, 4i), (f3,CJ^42), ( f 3 ,CJ 4̂3) added to T. S4 = 0

3 . S4 = 1 (< n l) .
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5. = № i ,  n· =  1

6 . / 2, added to T. t4 =  0

7. U =  1 (=  n^).

8 . Pass

9. Violated. (/3  and /e appear in disjoint cycles, with no corresponding 
(dr,fr) pair ). Terminate the path.

7. ¿4 =  2 (> n·)

3. 54 =  2 (<  n )̂

5. Terminate the path. (C.^42 contains /4 =  / 3).

3. $4 =  4 (> n^)

4. k =  3

7. <3 =  2 (> n5)

3. 63 == 3 (< n|)

5. =  № 3, n̂  =  2

6 . /31 =  / 1 ,  /32 = /4 , (C .r ;,/4) added to T. ¿3 = 0.

7. i3 =  1 (<  n )̂

8. Assign /4 to branch (C.^5i/3i)·

9. Not satisfied (/3 and /3 should be grouped by /4 (d-edge) and / 1, but 
/4 does not appear in every cycle of / 1.). Terminate the path.
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7. h  =  2 (=  n*)

8. Assign / i  to (C^3,/32).

9. Violated. Terminate the path.

7. ¿3 =  3 (>  nl)

3. 53 — 4 (— n )̂

5. =  № 4, =  1.

6. /31 =  /1 and (C.7̂ 3, / 31) added to T. ¿3 =  0

7. ¿3 = 1 (= n )̂

8. Pass

9. Satisfied. /3 =  /31

10. A; =  4

2. CJ"w fij"42j C.̂ 43 and 5 =  1,2,3 added to T. 54 — 0

3. 54 =  1 (<  n^).

5. = № i , = 1.

6. Add /41 — /2 and /4 1  ̂ to X. ¿4 — 0

7. ¿4 = 1 (= n\)

8. Pass

9. Satisfied. /4 =  /41 =  /2
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10. Pass

11. f v  =  ( / 6 , / 3 , / i , / 2), /4 = /5  = 0 , =  { / e } ,  =  { i/ 5 ,/ 3 } ,

= { ¿ 4 > / i } ?  = {di,d4,ds,/2}.

Hence the response is positive and the chosen /„, the corresponding particular 

simple f-cycle families, and the fixed values assigned to the remaining edges 

are as displayed in step 11 above.

3.3 CLASSES OF STRUCTURALLY 
POLE ASSIGNABLE SYSTEMS

In this section we show that certain classes of systems which are known 

to be generically pole assignable by state or dynamic output feedback 

satisfy conditions of Theorem 3.2 and hence demonstrate that Theorem 3.2 

characterizes a non-trivial class of pole assignable structures.

3.3.1 structurally Controllable Systems 
With State Feedback

Consider a system described by

S  : X =  A x  B u , (3 .14)

and a full state feedback law

u =  F x ,  (3 .15)

where x  G and u G T?.*” . Since is a special case of static output feedback 

with states considered as outputs, the resulting closed-loop system S ( F )  can 

be represented by the reduced system structure matrix

S(F) =
A B 

F 0
(3 .16)
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Let the corresponding open- and closed-loop system digraphs be T>ux = (Af U 

^ux) and =  ( X U U ,  Sux U £ p ). We state our main result concerning

S{J^) as:

Theorem  3 .3  T he fo llo w in g  are equivalent.

(a ) S  is structurally  controllable.

(b ) S { iF )  is g en erica lly  pole-assignable.

( c )  T here exists a ch oice  o f  n feedback edges such  that w hen the rem a in in g  

feedback edges are assigned suitably fixed  w eights, 'Dxu(iF) sa tisfies  the  

con d ition s o f  T heorem  3. 1.

The proof of Theorem 3.3 is based on the following two lemmas.

Lem m a 3 .4  L et T>c = { X  U {u},5 ) be a cactus. T h e n  there ex ists  an 

en u m era tion  o f  the sta te vertices su ch  that

(a ) i f  Xi is on a n o n -term in a l bun ch and Xj is on the te rm in a l bun ch, th en

i <  j ,

(b ) i f  ( x { , Xj )  € E and Xj is n ot the ta il o f  the d istin g u ished  edge o f  som e

bud, then  j  = e -f- + 1, where k is the tota l num ber o f  sta te  vertices  on

the precactus with origin  x,·.

Proof: Using a modified depth-first search algorithm [46], scan first the 

non-termineJ bunches (if there are any) in any order, and last the terminal 

bunch of T>c, and assign the integers 1,2, · · · ,n to the state vertices during 

the scanning process according to the following simple recursive scheme: Let 

the current vertex being visited be x ,. If there is a cactus or precactus with
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origin at Xi, then replace T>c by this cactus or precactus (with x,· taking the 

role of u) and repeat. Otherwise, let the unique vertex adjacent from Xj be 

X*. If X* is not yet assigned an integer, lec i i + 1, x,· = x*, and repeat. 

Otherwise, x* should be adjacent from the root of the cactus or precactus 

currently being scanned. Continue with another bunch.

It is obvious that this scanning of D c results in an enumeration of the 

state vertices which satisfies the requirements. To illustrate the scheme, 

enumeration of the vertices of a simple cactus is shown in Figure 3 .9 . □

Figure 3 .9 . Enumeration of the state vertices in a cactus.

Lemma 3.5 Let S =  (A , B) be structurally controllable. Then there exists 
a fixed feedback matrix F\ and a column b,· of B such that

(a) the nonzero elements of A  -\- BJFi and hi are algebraically independent, 
and

(b) the system Si =  (A  +  BFi,bj) is structurally controllable.
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Proof: If (A ,b i)  is structurally controllable for some i, let F i =  0 . 

Otherwise, let Vxu be spanned by a union of cacti T>ci,'Dc2,· · · iT>ck with 

roots and tips x „ j , x„,+„2, · · ·, Xm+ •+n*, where 1 < A: < m,

1 < ¿1 < · · · < ¿fc < m, and rii +  U2 +  · ■ · +  nk =  n . Let Fi = (fpg) with

/p9 “
1, if p =  g =  n i + · · · + n/_i, for some 2 < I < k 

0, o th e r w is e ,

and let i =  i i . Then, since elements of (A , B ) are algebraically independent 

and nonzero elements of F i are fixed as unity, the elements of (A  + BFi,b,·) 

are also algebraically independent. Moreover, S i is spanned by a cactus 

obtained by coinciding roots of Pc,i+i with x„,+...+n,, / = 1,···^ — 1. □

Note that Lemma 3.5 is a structural counterpart of the well known 

algebraic result [47] that if ( A , B )  is controllable then for almost all F\, 

{ A  +  B F i ,  hi) are controllable.

The following example demonstrates the result of Lemma 3 .5 .

Exam p le  3 .6  Consider a system S  = ( A , B )  given by

A  =

" ~ "
Oil 0 0 0 0 0 bn 0 0

0 0 0 0 0 0 621 0 0

0 «32 0 0 0 0
, B  =

0 0 0

0 0 0 044 0 0 0 &42 0

<*51 0 0 0 0 0 0 &52 0

0 0 0 0 0 0 0 ¿62 i>63

The corresponding digraph, T>, can be obtained as in Figure 3 .10(a)

{ A,  5 ) is structurally controllable since V  is spanned by the collection of 

cacti V c i,  Vc2i Bc3 which axe defined by the vertex sets Vd = {wi, iCi, .T2, X3, },
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'■UA

( a ) ( b )
Figure 3 .10. T>(^) of Example 3 .6 .

Vc2 = {«2, T4, x s , }, Vc3 =  {«3, x e , }, respectively. On the other hand, observe 

that each (A,bi) is structurally uncontrollable, i =  1,2,3.

Let us choose F i =  (fpq) as

Fi =

0 0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 1 0
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and consider the system «Si =  (A + BF\,bi) where

Oil 0 0 0 0 0

0 0 0 0 0 0

0 032 0 0 0 0

0 0 i>42 O44 0 0

051 0 652 0 0 0

0 0 632 0 feg3 0

A = b =

bn

621

0

0

0

0

Elements of {A  +  BF^,bi) are obviously algebraically independent. The 
digraph associated with <Si is as shown in Figure 3.10(b), from where 
structural controllability of «Si can easily be concluded.

We now prove Theorem 3.3.

P roo f o f  Theorem  3.3: Due to Lemma 3.5, it suffices to give the proof 
for single-input case.

(a) ·«► (b): Obvious

(c) (b) : Theorem 3.1

(a) (c) : Let the system digraph T>xu be spanned by a cactus Vc, whose
state vertices are enumerated as in Lemma 3.4. Let the feedback edges be 
enumerated in the same way so that /,· =  (x,·, u), i =  1,2, · · ·, n. Since all f- 
cycles in Vxxi(F) pass through vertex u, conditions (i) and (ii) of Theorem 3.1 
are readily satisfied. The enumeration of the state vertices guarantee that for 
I =  1,2, · · ·, n, any state vertex Xj with j  < i either lies on the complementary 
path of ft in T>c(F), and hence belongs to the f-cycle defined by /,·, or belongs 
to a d-cycle in Vc{F) which has no vertex in common with the complementary 
path of /,■. Let CF* denote the union of these cycles in T>{F). Obviously, CF  ̂
is a simple f-cycle family of width i which contains /,·. (For example, referring 
to Figure 3.10, CFl consists of the f-cycle { ( u,Xi ) , (x i,.T3),(.T3,X6),(-T6)« )}
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and the d-cycles { (0:2,2:2)} and { (3:4, X5), (xs, 0:4)}). This proves condition 
(Hi — a) of Theorem 3.1. Now, let CĴ i be any simple f-cycle family of width 
i which includes an f-edge /,· for some j  < i. If CiFi contains a d-edge which 
does not belong to the edge set of X>c, then this edge does not appear in 
any and condition (Hi — b) of Theorem 3.1 is readily satisfied for CiFi.
Suppose all the d-edges of CĴ i belong to T>c. Since CjFj covers exactly i 
vertices, it covers a vertex Xk with k > i. Then, the edge originating from Xk 
in CiFi is a d-edge (the only f-edge in CiFi is fj which originates from Xj and 
j  < k which does not appear in any CiF ,̂ I < k. Again, (Hi — b) is satisfied. 
This completes the proof. □

3.3.2 A Class of Structurally
Controllable and Observable Systems 
With Dynamic Output Feedback

Consider a single input/single output system

S : X =  Ax +  bu

Ty =  C X

I
to be controlled by a dynamic output feedback of the form

S : X =  Ax +  by 

u =  c^x +  f y

(3 .17)

(3.18)

where x € 7?.” is the state of the controller S. It is well known [48] that the 
closed-loop system consisting S and S is the same as the one obtained by 
applying a constant output feedback of the form

:Fa
u f y

Uc b Â Vc
(3.19)



CHAPTER 3. THE POLE ASSIGNMENT PROBLEM: A STRUCTURAL APPROACH 52

to an augmented system 

<Sa:

■ - -
X A 0 X

X 0 0 X

y 0 X

Vc 0 I X

+
b 0 

0 I

u

Ur
(3.20)

Thus the pole assignment problem by dynamic output feedback is essentially 
the same as the pole assignment by constant output feedback, and hence, can 
be attacked with the graph-theoretic approach of Section 3.2.2.

We assume that S is structurally controllable and obser\’able, that is, it 
has no structurally fixed modes. Let V {f)  be the digraph of the closed-loop 
system consisting of S and the (scalar) constant output feedback

: u =  fy .

Then, S having no structurally fixed modes is equivalent to the following two 
conditions [36]:

(a) T>(f) contains a cycle family CJ- of width n.

(b) T>(f) is strongly connected, that is, each state vertex reaches every 
other either in 2?, or through the feedback edge (y, u).

We further assume that each cycle in has a vertex in common with some 
input-output path in T>. This is a crucial assumption that enables us to define 
the auxiliary variables fk in (13) using simple polynomials ‘tl>k as will become 
clear in the following development.

We now choose the order of the controller 5  to be n =  n — 1, and fix its
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structure as

0 0 · ·· 0 dn—1

1 0 · ·· 0 &n-2

A = 0 1 · ·· 0 dn-3

0 0 ·■ • 1 0.1

= 0 0 ·· • 0 1

b =

b n - l

K -2

(3.21)

/  =  /

where a,·, 6,·, i =  1,2, · · ·, n — 1, and /  are variable feedback gains. Thus, of 
the elements of !Fa in (3.19), — (2n — 1) are fixed at 0 or 1 with the
remaining 2n — 1 left as variable parameters.

With S chosen as above, the closed-loop digraph T>a{T^ which corre
sponds to the system SaiTa) has the structure shown in Figure 3.11.

¿n —1 ^

02

t - j?n-l !/n-l

\

.ai ___

\
\

—

- A

/ ti2 X2 V2 y  ! / Vi

t /

Figure 3.11. Illustration of the closed-loop system digraph VaiJ^a)· 

We now prove the following result about pole assignability of Sa{^a)·
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Theorem 3.4 Suppose that contains a cycle family of width n, each
cycle of which has a vertex in common with some input-output path in T>. 
Then T>a{J-a) satisfies the conditions of Theorem 8.2 with n replaced by ria =  
2 n -  1.

Proof: Referring to Figure 3.11, we first note that 'Da(^a) =  (V U V, 5 U 
S U £/), where V  =  (V ,£) is the digraph of «S, X> =  (V,S) is the digraph 
associated with the fixed parameters of S, and S/ is the set of (variable) 
f-edges corresponding to the feedback parameters a,, 6, , i =  1,2, — 1;
and / .  Thus 'Da(iFa) has =  2n — 1 state vertices, which is exactly the same 
as the number of f-edges. We will show that these f-edges can be suitably 
ordered so as to satisfy the conditions of Theorem 3.2.

We first observe that f-cycles in Pa(.^o) are of one of the following forms:

Cl =  {(y ,u ),(« ,i/)}

Cii =  {(y i,u ,),(«.-,y i)}

Cm  =  {(y ,u ,),(u ,-,y i),(y i,u ),(u ,y )}

where (u,y) denotes a path in T> and (ti,-,yi) denotes a path in t>. 
Consequently, no f-cycle in T>a{Ĵ a) contains more than one f-edge, satisfying 
condition (i) of Theorem 3.2. Also, only fp =  (y ,u ) and an f-edge /, ,  = 
(yi,u,·), I =  1,2, · · · ,n — 1, can appear in disjoint f-cycles ( of forms Cj and 
Cii, respectively). It is not difficult to see that for every such pair (fp,fqi)·, 
dr =  (y i,« ) and fri =  (y, Ui) form a unique pair which satisfies condition (Uy 
of Theorem 3.2.

To continue the proof we need the following result:

Fact 3.4 T>{f) has a subgraph T> with the following properties:

(a) V  contains a unique cycle family OF of width n.

(b) Each cycle in CT  has a vertex in common with some input-output path.
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(c) T> is minimal in the sense that removal of any edge violates (a) or (b) 
above.

P ro o f o f  Fact 3.4. Pick an arbitrary cycle family C~iF of width n in 
T>{f), and a minimal set £a, of additional d-edges such that each cycle in CĴ  
has a vertex in common with some input-output path in the subgraph T>, 
formed by CJ- and these additional d-edges. Include the f-edge into T>, if not 
already included. If T> contains another cycle family ClF of width n, then 
one of the cycles in CT  contains a d-edge which is not included in CT. The 
subgraph T> oi T> obtained by removing this particular d-edge still contains 
a cycle family of width n each cycle of which has a vertex in common with 
some input-output path. Replace T) by T>, CT by CT  ̂ and repeat the same 
argument. Each time by deleting a d-edge from and modifying CT  ̂ we 
eventually obtain a subgraph which satisfies properties (a) and (b). Finally, 
removing some d-edges from E-a. if not needed for (b), minimality of T> with 
respect to the properties (a) and (b) is guaranteed. This completes the proof. 
□

We note that in T) in Fact 3.4 may or may not contain the f-edge (y, xi). 
We continue with the proof of Theorem 3.3 by considering the two cases 
separately:

Case I: T) does not include the f-edge (y, it).

In this case, CT  is a d-cycle family of width n. Let T>a(Ta) be the digraph 
obtained from T>a{Ta) by replacing V  with T>. Since VaiTa) is obtained from 
T^ai^a) by removing some d-edges of 2?, it suffice to complete the proof for 
VaiTa)·, because T>a{Ta) still satisfies conditions (¿) and (n )' of Theorem 3.2, 
and if it also satisfies condition {in), then so does Va{Ta)·

Let {A j ^ 2? · · ·) A }  be a family of input-output paths in V  such that any 
d-cycle in CT  has a vertex in common with some A ‘. Define CTj to be the 
subfamily of all cycles in CT  which has no vertex in common with any V\, 
I > j .  The definition of Tj and CTj is illustrated in Figure 3.12 for a simple
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Figure 3.12. Definition of Vj and

digraph V. Note that CIFo =  0, CIFs =  and CTj~\ C j  =  1,2, · · ·, 5.
We further define the integers otj and ¡3j as the number of state vertices in 
Vj and CJFj, that is, aj =  'y{Vj) and ^j =  '^{CVj), j  =  1,2, and let
CV4+1 =  0 - 1  =  00 =  0 for convenience. It is easy to see that aj and 0j satisfy

(a) 1 < 01 < 02 < ’ · · <  0 s =  n

(b) aj +  0 j - i  < a j + i  +  0 j  — 1 , I < j  < s.

We partition the integers {1,2, •••,na =  2n — 1} into two groups at s 
levels as
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L e v e l G r o u p  A G r o u p  B

0 1 , ·  - , a i  -  1 Ofl,  · · · , ori Pi - 1

1 + / ? l , - - - , c r 2  + / ? 1  + / ? 1  - -  1 Of2 +  /? !  +  » · · · , « 2  +  /?1 +  /?2 -  1

P 0(p +  Pp-1 + Ppt · · · Ofp +l  Pp + Pp — 1 O'p+1 +  Pp +  Ppy · • · » o f p ^ i  +  +  ^ p + 1  “  1

s  — 1 

s

Ots-l +  P$-2 +  Ps^l , · · · . Of, +  Pt-I  +  / ? , _ !  — 1 

Of, +  / ? ,  — 1 +  Pay · · · ,  2 n  — 1 .

Of, +  Pa-l  + , · · · , Of, +  Pa—\ +  — 1

where Group A / Level 0 is empty if « i  =  1, and Group A/Level s is empty if 

Oís +  l^s-l — 'O'·

We now define the feedback edges fk and the associated cycle families 
1 < fc < 2n -  1, for T>a{Ĵ a) as follows:

(a) 1Í k E Group A / Level p, that is, if

0!p  +  /5 p - l  +  <  Qip+1 +  /^p +  ~  1?

then

f k  =

(b) If 6 Group B /  Level p, that is, if

Oip+i +  /3p l̂ p k < oip+i +  /3p +  ^p+i — 1,

then

f k  — i y i O k —ap^\—0p)

C^k =  {(«fc-c»p+i-/3p,yi),(yi,«),^P+l,(y,«A:-ap+i-/?p)} UC^p

Note that in case (a)

l { C T , )  =  7 ( ( « i t - / J p , y i ) )  +  7 ( C ^ p )

=  (k — 0 p) +  Pp =  k,
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and in case (b)

=  Ifiiuk yi)) +  li'Pp+i) +  'yiCJ^p)

=  (k — oip+i — /3p) + Op+i +  ^p =  k,

SO that CIf I is an f-cycle family of width k in f>a{^a)· By definition, it includes 
fk and no other f-edge, satisfying condition (in — a) of Theorem 3.2. Finally, 
to prove condition (in — b), let CiFk be a simple f-cycle family of width k, 
which includes some f-edge /; with I < k. We consider all possibilities for k 
and 1:

1. k € Group A or B /  Level p, I E Group A / Level q·, q < p. In this 
case, CTk =  ?yi)>(yi5 ^CTd·, where CTd is a d-cycle family in
V. If CTd contains a d-edge which does not belong to CTp (remember that 
k e Level p), then that d-edge does not belong to any CTt·, r < p, either. 
Since any j  < k is at some level r < p, and CIF̂  includes CJ-r, this particular 
d-edge appears in no CJ-j, j  < k, and condition (in — b) is satisfied. If C~J-d 
does not contain such a d-edge, then minimality of V  implies CĴ d C CJ-p. 
Then, ^(CiFd) < p̂i and we must have ')(CTk) =   ̂~ with equality
holding only if CiFd =  CJ-p. This, however, is impossible because

(a) If 5 =  p, then either j(C~J-k) < I < k or ')(Ci!Fk) < l < k  (for 
■̂ (CiFk) =  I =  k can occur only if CĴ k =  CIF).),

(b) if 5 < Pj then I— q̂-\-̂ p < Og+i q̂-\-̂ p — \ < oip+i -t*̂ p +  /?p — 1 < ¿ — 1, 
contradicting the assumption that (̂CJ^k) =  k.

2 . k £ Group A / Level p, I £ Group B / Level q, q < p. In this case, 
Cifk =  {(« /-c ,+ ,-/? ,,y i),(y i,«), A ,(y ,« /-a ,+ ,-/?,)} U CliTj where Vt is some 
input-output path in P, and C^d is some d-cycle family in f). As in case 1, if 
CjFd contains a d-edge which does not occur in CĴ p, then condition (Hi — b) 
is satisfied. On the other hand, if i <  p +  1, then Pt contains a d-edge which 
has no vertex in common with any C.Pr, f' ^  Pf ^nd again condition (Hi — b) 
is satisfied. The only remaining possibility is the case when CĴ d C CTp
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and t < p. This case, however, can be shown, as in case 1, to lead to a 
contradiction that j{CJ^k) < ·̂

3. k e  Group B / Level p, I € Group B / Level q ,q < p . CTk is as in case 2. 
Again, if CTd Contains a d-edge which does not occur in CT-p̂  or if t > p +  2, 
then condition {Hi — h) is satisfied. Otherwise, CTd C Ĉ Tp and i < p +  1, 
then j{CiFk) < k unless I =  k and CTd =  CTp  ̂ in which case CTk =  
and if t <  p, then again ' {̂CT\  ̂ < k, both contradicting the assumption on
cy^ .

As a result, condition {iii — b) is also satisfied, and the proof is complete 
for Case I.

Case II. The f-edge (y,u) is included in T>.

In this case, OF is an f-cycle family of width n, which includes the f- 
cycle {(u, y), (y,u)} with P  =  (u ,y) being some input-output path in f>. 
Let the family of the remaining d-cycles of OF be denoted by C y. Let 
{'P i,p 2, ··· ■,'Ps]̂  Ft ^  V, be a minimal family of input-output paths in f> 
such that any d-cycle in C y  has a: vertex in common with some Pj, and let 
Ps+i =  P- We now define subfamilies of ClFj, I < j  < s, the same way as 
CJ-j's are defined in Case I, but with respect to CT  and {P j} rather than CT 
and {P j}t similarly define integers aj and 1 < i  < 5, in terms of CTj 
and Py  With these definitions, the proof follows the same lines as the proof 
of Case I, except that the integers at Level s are modified as

Level GROUP A GROUP B

a. + /î.-l + /3«,"-,a .+l + (0, +/3,,· · ·, 2n -  1,

where, obviously, a,+i ^3 =  n. This completes the proof of Theorem 3.4. □

The following two examples illustrate the ordering of the feedback edges, 
and the definition of f>l, 1 < Ar < 2n — 1, for T>a{Ta) of a structurally 
controllable and observable system controlled by dynamic output feedback, 
according to the scheme given in the proof of Theorem 3.4.
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Example 3.7 The digraph T>{f) associated with a structurally controllable 
and observable single-input/single-output system under feedback u =  fy ,  is 
given in Figure 3.13(a). Figure 3.13(b) shows a subgraph f)  of !> (/), which 
satisfies Fact 3.4.

f
/ N

Figure 3.13. T>(f) of Example 3.7.

The corresponding cycle family of width n =  6 is a d-
cycle family (Case I in the proof of Theorem 3.4) defined as CJE = 
{ {¿75 de, ¿5, ¿2}» {<̂ 4}, {dio} }. Then, 'Pi =  { ¿ 15̂ 25̂ 35̂ 9}» P2 =
{¿15 ¿25 ¿5» ¿85 ¿ 11} â re the input-output paths such that any cycle in CP has a 
common vertex with either 'Pi or V2. Thus we have, CPi =  {¿lo}» CP2 =  CP, 
so that tti =  3, «2 =  4, /9i =  1, /02 =  65 and the partitioning of the integers 
 ̂=  1,2, •••,na, na =  11, becomes

Level Group A Group B

0 1,2 3

1 4,5 6,7,8,9,10

2 11
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Figure 3.14 shows the corresponding definition of the feedback edges in 
T^ai^a)· Then, our choice of 1 <  ̂ < 11, becomes

cy\  =  { / i }

cy\  =  {/2 }

C yi -  {d^,dz,d2,d i,fz)

cy\  =  {/4 }

cy\  =  { / 5}

CjFg =  { {¿4}, {dii,ds, d$, ¿2, di, fs] } 

dy^ =  { {d4},{duids,d5,d2,d i , f7} }

8 — { {dii J, {d ll, dg, d$, d2, d j, J {

Figure 3.14. Va(^a) illustrating the ordering of the f-edges corresponding to 
T>(f) of Figure 3.13(a).
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CJFg — { {¿ 4}, {duidsi ¿5, ¿ 2, dî  / 9} }

10 { {1̂ 4}5 {d-l j , C?8, ¿5, (¿2) di j f  10} }

Q'·̂  11 { "(̂ 4̂ > "{̂ 10̂  7 "{̂ 75 6̂5 2̂1 }

Exam ple 3.8 Consider the digraph X>(/) given in Figure 3.15(a). The 
subgraph V  of V {f )  (there exists only one) is shown in Figure 3.15(b).

f f

Figure 3.15. Illustrations of (a) P ( / ) ,  and (b) V  of Example 3.8

CT  is an f-cycle family (Case II in the proof of Theorem 3.3 ) defined as 
C 7  — { {d8,drjd2,d i , f } , {d 5,d6} }. Then, we have V =  { ¿ 1,^2, ¿ 7,^8), and 
CT — {ds,de}. Thus, "Pi =  {di, ¿3,(̂ 9}, P2 =  'P-, and Oi =  2,
0:2 =  3, ,di =  2. This results in a partitioning of the integers k =  1, · · ·, Ua, 
Ua — 9, as

Level Group A Group B

0

1

1

4,5,6

2,3

7,8,9
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Ordering the feedback edges as shown in Figure 3.16, we define 
1 < A; <  9, as

c y ,  =  { / i }

CT2 — {dg',d3,di, /2}

CT3 =  {dg,d3 ,di, fs }

c y \  =  { / 4 }

= {/5 }

Cy\ =  {/e }

CT-J =  { {¿5,(^6}) {ds, ¿7,^2, ¿ 15/ 7} }

CT^ — { {ds,ds},{d8,d7,d2,di,f8} }

CjFg =  { {c?5, de}? {ds, ¿7, 2̂, ¿1,/9} }

Figure 3.16. 'Dai^a) illustrating the ordering of the f-edges corresponding to 
v(f) of Figure 3.15(a)

We note that our assumption that each cycle in the cycle family CT  of
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width n has a vertex in common with some input-output path is obviously 
not essential for structural pole assignability of S using a dynamic output 
feedback controller S. However, it is needed for proving generic pole 
assignability using Theorem 3.2. On the other hand, we have observed 
through the study of several examples that it might be possible to remove this 
assumption by modifying Theorem 3.2 to include more general cases when 
ipk of (3.11) contains linear terms in addition to a single quadratic term. We 
illustrate this situation by the following example.

Exam ple 3.9 Consider the digraph of Figure 3.17. The only cycle family 
of width =  4 in T>(f) is — { { ¿ 2) <̂1? /}?  de, ds} } and the cycle 
{d7,d6,ds} in does not have a vertex in common with any input-output 
path. Therefore, we cannot apply Theorem 3.4 in this case. Let us choose 
the controller S as before and consider the enumeration of the feedback edges 
for the resulting Va(J^a), as shown in Figure 3.18.

Figure 3.17. T>(f) of Example 3.9.

Obviously, conditions (i) and (ii)' of Theorem 3.2 are satisfied and thus 
each cycle family contains at most two variable weights. We claim that for 
the definition of the feedback variables as in Figure 3.18, the system satisfies 
the conditions of Corollary 3.1. To see this, we first obtain the cycle families 
of T>a(^a), as given in Table 3.5.
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Figure 3.18. T>a{!Fa) illustrating the ordering of the f-edges for T>(f) of 
Figure 3.17.

Let US now define /^ =  / i ,  /2 =  /2 +  / 1 / 3 ,  /3 =  /3 , /4 =  /4 , /5 =  /5 , 

fe -  d2<iiU +  d2<iififA +  / 5, /7 = /7 + / 1/ 5· Then, g of (3.12) can be written
as

g =  a-\- E f  =

0 d2d\ 0 1 0 0 0 0

¿4^3 0 0 1 0 0 0

0 0 0 ¿4^3 0 1 1 0

d'j dQ c?5 + d-jdQd^d2d\ 0 djdgds d^dz 0 0 dzd\

0 0 d-jd^d^d2di 0 djd^dz d id z 0 0

0 0 0 0 0 0 djdsdz 0

0 0 0 0 0 0 0 dyd^dz

f
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{/3}
{c?4,ci3}

{d2,d i ,f2}

{/4}

{¿7, ¿6, ds}

{d2,d i,fs }

{ { d ^ M A h ] }

{ / 5}

{ { d 2,d u h } A U } }

{d2,diA7}

{ {d7,d6yd5}Ad'2ydi,fi} } 

{ {d j id e^d A ,  {/3} }) 

{ { ¿ 4 , ^ 3 } ,  { / 4 } }  

{ { d 2 , d l J l } A f s } }

{ {dr,de,dAAd2,d i ,f2} }

{ { ¿ 4,^3}, { / 5} }

{ {d7,d6ids}A d2,d i,fi]A h} }

{ {d7,de,dAAd2idiA6} }

{ {¿7, <̂ 6,̂ 5}, {/5} }

{ {d7,de,dA Ad2,di,fi}A f4} }

{ {d7,d6Tds}Ad2,di,f7} }

{ {d7,de,ds}Ad2,d7,fi}A fA  }

Table 3.5. F-cycle families for T>a{Ta) of Figure 3.18.
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The diagonal elements in E  are nonzero, and an argument similar to that used 
in showing the generic nonsingularity of the coefficient matrix in the proof of 
Theorem 3.1 can be used to justify that E  is generically nonsingular.

Before closing the section , we finally note that, provided Theorem 3.2 is 
modified to remove the assumption mentioned in Theorem 3.3, our second 
assumption which restricts «S to be a single-input/single-output system can 
easily be relaxed. One way of doing this is to employ preliminary constant 
output feedback to reduce the system to a single-input/single-output system 
without destroying structural controllability and observability, and then 
design S. A more efficient way, which also allows generic pole assignment 
using a smaller order dynamic compensator is to imitate the well-known 
results of [49,50] in a structural setting. This, however, requires a structural 
interpretation of controllability and observability indices of <S, which is not a 
straightforward task, as we consider in the Chapter 5.



Chapter 4

STABILIZATION:
A STRUCTURAL APPROACH

This chapter is devoted to a qualitative analysis of the stabilization 
problem, again based on the structure of the pair We first give an
algebraic result on stabilizability of Then, based on this result, we
develop sufficient conditions for generic stabilizability of in terms of
the system digraph,

4.1 ALGEBRAIC FORMULATION

Consider the system S of (2.1) with a feedback of (2.4) applied to it. 
The characteristic polynomial of the resulting closed loop system S (^ )  is p(s) 
given by (3.1). Let the points /  =  ( / i , / 2, · · ·, /..) and p =  (pi,p2, · · · ,Pn) be 
defined as in Section 3.1 . In the following, we propose and prove a result on 
the stabilizability of S of (2.1) with T  of (2.4):

Lem m a 4.1 Lti f  be partitioned into /„  and fc as in Lemma S.2, with 
feedback variables in / „  renumbered as fi, /2,' ‘ fn- Suppose that the 
mapping g between p and f  can be written in the ^staircase’ form

68
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Pi — 9 i { f v )  -  Ofi + ( a i / i  +  ci)6ii + ----- l·(akík +  Ck)bki + ----- l·{anfn +  Cn)fcni

Pk =  9k {fv )  = Offc -̂ (akfk + Ck)bkk + · · · +{anfn + Cn)bnk (4.1)

Pn — 9n (fv )  — Qn -\-(anfn -l· Cn)bnn

where Ok, bkj, Ck are ’polynomials in f i , · · · , fk -i, I < k < n, 1 < j  < k -  1 , 
with Cfc ^  0 ^  bkk and ak’s are constants. Then S of (2.1) is stabilizable with 
T  of (2 .4).

P roof: Suppose that conditions of the lemma hold, and let ojt =  0, 
A: =  1,2, · · ·, n. Then, p{s) can be written in a nested form as

p { s )  =  s [ · · ·  s[s(s +  / 191(5)) +  / 292(5)] +  · · · /n -l9 n -l(5 ) j  +  /„9 „ (5 )  (4.2)

where fk =  Ukfk +  Ck, and qk(s) =  6ai5*“  ̂+  6fc25*"̂  H-------1 < fc < n. We
use induction to show that (4.2) Ccm be stabilized using a recursive root-locus 
technique. For this, we define

P k (^ )  =  5[· · · 5(5(5 +  / i 9i) -F / 292] +  · · · /fc-i9fc-i] +  fkQk-

(i) For i  =  1, pi(s) =  5 -f / i 9i =  5 d- (c i / i  -t- ci)6n can be stabilized by- 
choosing /1 so as to place the only root of pi(5) on the negative real axis.

( u )  Suppose that pjt_i(5) is stabilized by a proper choice of / 1, /2 , · · · , fk -i , 
and consider the root locus of pjt(s) =  spk-i(s) +  fk^k{ )̂  ̂ with respect to fk- 
Since spk-i{s) has k roots, all stable except one, which is at the origin, and 

(9k) ^  k — fk can be chosen to stabilize all the roots of Pk(s). Since 
f k  =  a jt(/i,/2 ,· · • , f k - i ) f k + C k ( f i , f 2 , · ’ · ,/fc-i), f k  can be determined uniquely 
in terms of fk and / 1, / 2» · ’ ' > /jt-i· This completes the proof for the case when
Qffc =  0, 1 < < n.

We note that, starting with an arbitrarily large / 1, and using high gains at 
each step, Pk(s) can be stabilized with arbitrary degree of stability. In other 
words, all the roots of p(s) can be placed to the left of the line Re(s) =  —ao 
in the complex plane for arbitrarily large real ao. With this observation
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in mind, replacing pk{s) by pk(s) — Qk in tbe proof above, we can stabilize 
Pk{s) — Oik with arbitrary degree of stability (no matter how large Ok are), 
implying stabilizability of p k ( s ) ,  1 <  A: <  n .  This completes the proof. □

The examples below demonstrate this result:

Exam ple 4.1 Consider the system given by

X =

y =

0 1 0 

0 0 0 
0 1 0

1 0 0 

0 0 1

X +

X

1 0 
0 1 
0 1

u

and controlled by the feedback

u = fi  0 
/2 /3

The closed loop characteristic polynomial is obtained as

p(s) =  3^ -  (/1 +  -  (/3 +  /2 -  flfz )s  +  /1/3.

Thus, we obtain the mapping between p and /  as

Pi = - /1  -  /3

P2 — —/2 — /3 +  /1/3

Pz =  f i h

which can be written in the staircase form as

Pi = ( / i ) ( - l )  + (/2)(0) + (/3 )(- l)
P 2 =  (/2)( —1) +  ( /3 )( -l  + /1 )

( / 3 ) ( / l )

and hence is stabilizable by Lemma 4.1.
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Exam ple 4.2 Let the system equations be given as

X =

y =

0 0 0 
1 0 0 
0 1 0

1 0 0 
0 1 1

X +
1 0 

0 1 
0 0

u

and suppose that the allowed feedback has the form

u = fi h
0 /3

y-

This results in

p(s) =  -  ( /. + k ) s ' ‘  -  ( h  +  /3 -  /1/3)3 -  (/2 -  /1/3)

so that the mapping between p and /  becomes

P i =  - f i  -  /3

P2 =  — /2 — /3 +  / 1 / 3

P 3 =  — f i  +  / 1 / 3

and can be written in the staircase form as

P i  =  ( / i ) ( — 1 ) +  ( / 3 ) ( — 1 ) +  (/2  — / i / 3 )(0 )

P2 =  ( / 3 ) ( - l ) +  (/2  — / i / 3 ) ( - l )

P 3 =  { f i  -  / i / 3 ) ( - l ) .

Therefore, this system is also stabilizable.

4.2 GENERIC STABILIZABILITY

4.2.1 Problem Formulation

Let us first give a definition of structural stabilizability, following the 
previous definitions of certain structural properties.
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Definition 4.1 A system S of (2.1) is said to be structurally stabilizable by a 
feedback J- of (2.4) if there exists a system structurally equivalent to S which 
is stabilizable by T .

Now, as before, we associate a data point d G with the nonzero 
parameters of the system structure matrix of «S, which are assumed to be 
algebraically independent. In this case, the relation in (4.1) can be expressed 
as

P  =  9 { d , f v )  (4.3)

with Ck =  ak{d,fk), bkj =  bkj{d, fk) and Ck =  Ck{d, fk) polynomials in d and 
ifc =  ( / i ,  · ■ ■ > fk -i),  ̂ ^ k < n, 1 < j  < k] and ak =  Ofc(d) is a polynomial in 
d. Then, we have the following straightforward result:

Lemma 4.2 Let /„  =  ( /i ,  / 2, · · · ,  f n )  f c  be as in Lemma 4 .I and suppose 
that the closed-loop characteristic polynomial coefficients in (4-3) can be 
written as in (4-i)> with ak and bkk being nonzero. Then, S is structurally 
stabilizable by T .

Note that, as in the case of structural pole assignability, structural 
stabilizability is not a generic property, in general. It is clear, however, that 
structural stabilizability implied by Lemma 4.2 is a generic property.

4.2.2 Graphical Conditions for Generic Stabilizability

We will use Lemma 4.2 in order to develop graphical conditions sufficient 
for generic stabilizability.

Let P(.F) =  (V ,5 U Sf ) be the digraph associated with the closed- 
loop system S{fF^, in the usual way. The definition below allows for a 
generalization of condition (ii)' of Theorem 3.2 to any pair of edges of the 
digraph.
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DeRiiition 4.2 In , consider a pair of edges, denoted by {ep,e,} which
never appear in the same cycle. Suppose that there corresponds to the pair 
{ep,e,} a unique ordered pair of edges (6^,6^) such that,

(a) e, appears in every cycle of Cr but in no cycle of Cp or e „  and

(b) to any two disjoint cycles Cp and Cq of Cp and eg, there corresponds a 
cycle Cr of tr which covers exactly the same state vertices as Cp and Cq 
cover, with no input and/or output vertices that occur in CpDCq taking 
part in a cycle disjoint from Cr, and vice versa.

Then, we say that {cp, e,} is a pair biased to (e ,̂ e«) and that any cycle family 
of {ep,€q} is an accompanying cycle family of Cr.

Note that, as in Fact 3 in the proof of Theorem 3.2, for a pair {cp,eg} 
biased to an ordered pair (cr, e*), whenever appears in some product term 
in g{d, fv) of (4.2), so does the product CpC,, and vice versa. Moreover, every 
product term that contains Cr in any gk{d,fv) can be grouped with another 
term that contains the product CpC,, as ^kriPr^r +  p̂q̂ p̂ q)·, with /?r and ^p, 
being the same in all such expressions.

We can now state and prove our first result on stabilization:

T heorem  4.1 Suppose that in T>{^) there exists a choice of n distinct f- 
edges, renumbered conveniently as / i , / 2, · *' ?/n> which after converting the 
remaining f-edges into d-edges by fixing their weights at arbitrary values, 
satisfy the conditions listed below. Then, S is structurally (generically) 
stabilizable with T .

There exists an integer n, 1 < n  < n , such that.

(i) for k =  n,n — 1 ,· · · ,fi, there exist particular cycle families of width k, 
denoted by CT\, such that fk € CT l̂, fj ^ CT l̂, j  > k, and either of 
the following holds:
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(a) Any cycle family of width I < k which contains fk either 
contains some fj  or is an accompanying cycle family of fj,

j  > k.

(b) Any other cycle family of width k which neither contains nor 
is an accompanying cycle family of any fj , j  > k, contains 
either fk or a pair of edges {cp, e,} biased to (fk, e), for some 
e such that if Cp =  / /  (respectively e, =  fi), then CT* does 
not contain Cq (respectively Cp),
I < k.

(ii) With fk and all {cp, e ,}, which are biased to (fk, e) for some e, removed, 
k > n, the remaining digraph satisfies Theorem 3.1, with n replaced by 
h — 1.

Proof: For k =  n,n — \,· ■ · ,h, existence of C^k as in condition (i) implies 
that each gk in (4.3) contains an identically nonvanishing term that contains 
fk, but no f j , j  > k. Let us denote this term by akblkfk-

Consider the case k =  n, and suppose that condition (t-b) holds. If every 
other f-cycle family of width n contains then §n can be written as

9n(d, fv) — ^n/n(^nn "b bfin)

where for convenience, we let represent sum of product terms
corresponding to other f-cycle families of width n, which contain /„ .  Then, 
the arrangement of the product terms that contain / „  in gk, k =  n,n — 
1, · · · ,2,1, as in (4.1) follows with c„ =  0. If, on the other hand, there are 
f-cycle families of width n which do not contain / „  but which contain a pair 
of edges {ep,e,} as in condition (¿-b), then every such cycle family is an 
accompanjdng cycle family of / „  and corresponds to a term including the 
product CpC, which can be grouped as ^kn(Pnfn +  Ppq̂ p̂ q) with jSn and ^p, 
being the same in all such expressions. This, however, defines nothing but the 
grouping (« „ /„  +  Cn) of the staircase form of (4.1), with c„ =  ^p,epC,. Note
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that, this is consistent with the definition of c„, which is a polynomial in 
d and / 1, / 2, · ■ ■ 5/n-i· Moreover, the condition which says that if Cp =  // 
(respectively, e, =  //)  then does not contain e, (respectively, Cp),
guarantees that after this grouping, each still contains the product term

Alternatively, if (¿-a) holds for k =  n, then / „  appears in no gk, 
fc =  n, · · ·, 2,1, so that every product term in gk is considered in the grouping 
(«n/n +  Cn)bnn and we are done since =  0, / =  n — 1, · · ·, 2,1.

For A: =  n — 1, if condition (¿-b) is satisfied the same argument as above 
applies. If, on the other hand, (¿-a) is satisfied, then every product term in gk, 

=  n — 2, · · ·, 2,1, which includes /„_ i is a term associated with the grouping 
of fn- This implies that, every product term in gn-i not associated with /„  
can be considered in the grouping of /n_i, i.e., in (a„_i/„_i +  Cn-i)bn-i,n-i 
and again we are done as =  0, I =  n — 2, · · ·, 2,1.

The same argument can be repeated for k =  n — 2, n — 3, · · ·, so that 
we have the following structure:

gi(d,fv)= 

3n—l /») =

§n{d,Jv) =

+ -----h(on/n +  Cn)6ni

+(ofl/ft + + ---h(an/n + Cn)6„,fi_i
On +(an/n + Cf»)6n,n + ----hton/n + Cn)6n,n

(4.4)

9n{d, fv) — On 4"(on/n 4" Cn)6 n

The part appearing in box in (4.4) is exactly the part that satisfies 
condition (ii) of the theorem; and it is easy to show that by algebraic 
manipulations we can get.
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— ai  — ( a i f i  +  ci)6n+ (a j /j  +  C2)62jH-------h +  cn_i)i>ft_j,j

§2(<ifSv) — 02 = (“2/2 + C2)̂ 2H----l/n-1 + Cft_])6n_j 2

Pn-1 (<i. ¡v) — On-J = (Ofl-l/n—1 + Cn—1 )6n-l,n—1

where ajt, 6̂ 1, Ck and Qk, 1 < k <  h — 1, 1 < I < k, are polynomials in d. 
Note that condition (iii-h) of Theorem 3.2 guarantees the existence of the 
term akbkkfk·) for all fc, A; =  1, 2, · · ·, h — 1. The rest of the proof follows from 
Lemma 4 .2 . □

We illustrate Theorem 4.1 by few examples:

Exam ple 4 .3  Consider a system whose closed-loop digraph, T>(^), corre
sponding to

" /11 0 0 0
/21 /22 /23 0

0 /32 /33 /34
0 0 /43 /44

u y

is as given in Figure 4 .1.

Let us fix /23 =  /34 =  0 and renumber the remaining nonzero feedback 
variables as /1 =  /n ,  /2 =  /22, /3 =  /21, /4 =  /23, /5 =  /33, /e =  /44, /7 =  /43· 
The resulting f-cycle families are listed in Table 4 .1. Consider the following 
choice of C ^ ,  k — n,n — 1, - "  ,1

{ '{^25 C?3 , ¿ 5 , ¿ 4 , _/3 J, {ciiO} dg, d j i , dx3 , d i 2 , yV J }

{ {^2, {d6jd7,d9,d8>/4}> {di4,di3, di2,/e} }
{ {^2, ¿3) ds, d4, / 3}, {¿10, dg, ¿85/5} }

: { {d 2 ,d i,/i}, {dejdijdg, ¿8 ,/4} }
{d2,d3, ¿$,¿45/3}
{¿ 6, ¿5, ¿4, 2̂ }

■ {d2,d i , / i }

—

c n = № 1
CTi = № 3
CT\ CTa2

c n CTz\
CT2X

CT\ CT\\
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I/,/,

Figure 4.1. V{J^) of Example 4.3.

We observe the following:

For k =  7, any f-cycle family of width 7, other than contains either /7 
or the pair { / 5, fs } biased to ( / 7, dn). Moreover, CJ^ and do not contain 
fe and / 5, respectively, so that condition (i-b) of Theorem 4.1 is satisfied.

For k =  6 , there are two f-cycle families, C^s2 and of width 6, other
than but C^e2 is an accompanying cycle family of /7 and contains 
/ 7. So again, condition (i-h) is satisfied.

For k =  5, there exists only one f-cycle family, C.F51, of width 5, which 
neither contains nor is an accompanying cycle family of fe or /7; but it 
contains / 5, cind hence, condition (i-h) is satisfied.

For fc =  4, there exists no f-cycle family of width 4, other than which 
neither contains nor is an accompanying cycle family of / 5, fe or / 7.

Finally, with n =  3, condition (ii) of Theorem 4.1 is satisfied for
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1
2 {¿6, ¿5, ¿4,/2} 

{dlOi dg, ds, / 5 } 
<̂13) / 5}

3 {¿2, <¿3» d^, ¿4 , / 3}
{<¿6, C?7 , dg, ds, / 4 }
{ {c?25iil?/l}) {<̂ 6 , C?5j<i45/2} }
{ { d 2 ,d i ,f i} ,{ d io ,d g ,d s ,f 5 }  }

{ { d 2 id i ,f i} ,{ d i 4 ,d i 3 ,d i 2 ,f 6 }  }
4 {¿10, ¿9, ¿11, ¿13, ¿12, / 7}

{ {¿2,¿l,/l}, {¿6,¿7, ¿9,¿8,/4} }
{ {¿6, ¿5, ¿4,/2)·, {¿10, ¿9, ¿8, ŝ} }
{ {¿6, ¿5, ¿4, 2̂}, {¿14, ¿13, ¿12, yisl }” 
{ {¿10, ¿9, ¿8,/5}, {¿14, ¿13, ¿12,/e} }

5 { {¿2,¿l,/l}, {¿6, ¿5,¿4,/2}, {¿10,¿9,¿8,/5} }
{ {¿2, ¿1,/1}, {¿6, ¿5, ¿4, ̂ 2}, {¿14, ¿13, ¿12,/(5} } 
{ {¿2, ¿3, ¿5, ¿4,/3 }, {¿10, ¿9, ¿8,/5} }
{ {¿2, ¿3, ¿5, ¿4,/3 }, {¿14, ¿13, ¿12,/e) }
{ {¿6, ¿7, ¿9, ¿8,/4}, {¿14, ¿13, ¿12,/e} }
{ {¿2, ¿1, y*! J, {¿10, ¿9, ¿8, ^5{, {¿14, ¿13, ¿12, y*6} } 
{ {¿2,¿l,/l}, {¿10,¿9,¿ll,¿13,¿12,/7} }

6 { {¿2, ¿1,/1}, {¿6, ¿7, ¿9, ¿8,/4}, {¿14, ¿13, ¿12,/e} }
{ {¿6, ¿5, ¿4,/2}, {¿10, ¿9, ¿8, ^s}, {¿14, ¿13, ¿12, yisj } 
{ {¿6, ¿5, ¿4,/2}, {¿10, ¿9, ¿11, ¿13, ¿12,/7} }

7 { {¿2, ¿l,/l}, {¿6, ¿5, ¿4,/2}, {¿10, ¿9, ¿8,/5}, {¿14, ¿13, ¿12,/e) } 
{ {¿2, ¿3, ¿5, ¿4,/3}, {¿10, ¿9, ¿8,/5}, {¿14, ¿13, ¿12,/e} }
{ {¿2, ¿l,/l}, {¿6, ¿5,¿4,/2}, {¿10, ¿9, ¿11, ¿13, ¿12,/7} }
{ {¿2, ¿3, ¿5, ¿4, ̂ 3 !, {¿10, ¿9, ¿11, ¿13, ¿12, }

Table 4.1. F-cycle families in T>{^) of Figure 4.1.
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t  =  1,2,3 and hence the system is structurally stabilizable.

Indeed, the components of g can be written in the staircase form of (4.1)
as

—/i(l) + /2(0 ) + /3(0 ) + /4(0 ) + /5(0 ) +/6(0)
92 =

93 —
94 =
95 =
96 =

97 =

/ 2(1 )+ / 3(0)+ /4(0 ) + /5(1 ) + /6(1 )
/3(1)+  /4(1) +  fs ifi)  +  fe ifi )  

h i f i )  +  / 5(72) +  fe ih )
f s i h )  +  f e i h  +  /4 )

+ / 7(0) 
+ / 7(0) 
+ / 7(0) 
+ / 7(1)
+ /7(/l)

f e i f ih  +  / 2 /5 )  +  / 7( / 2)

/ 7(73)

with
/1  =  ( — d i d i f i )

/2 =  (—d6d$d4f2)
/3 =  { — d 2 d ^ d T d z fz  +  d2d zd -jd id Q f\  / 2 )

/4 =  { — d 6d 7d g d s f 4 )

7s =  {—diodsdsfs) 
fe =  {—d\Ad\zd\2f 6)
/ 7  =  { ~ d i o d g d \ z d \ 2d \ i f 7 +  d i o d s d i s d u d s d i A / s f ^ )

verifying the result of Theorem 4.1.

Example 4.4 Consider the digraph of Figure 4.2, whose f-cycle families are 
listed in Table 4.2.

Choosing

C ^4 = <̂ 4̂1 = { {¿2}, {¿s}? {ds, dgjdio,/4} }
= C^3i = { {¿2}, {<¿5}, {(¿8i d?,/3} }

C^2 — *̂̂ 11 =  { {da}, {de,d4,/2} }
CJ-  ̂ =  C^n  =  {da, d i,/x }

we easily see that conditions of Theorem 4.1 are satisfied, with 12 =  4.
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Figure 4.2. T>(^) of Example 4.4.

7(c :f )
1

{¿6, <̂ 4,/2} 
{<̂ 8, cirj/a}

2 { {<̂ 5}, {d3,di,fi] } 
{ {<̂ 2}, {d6-,d4,f2} } 
{ {<̂ 2}, {<^8,^7,/3} } 
{ {<̂ 5}, {<^8,^7,/3} } 

dĝ  1̂0)
3 { {d2},{ds},{ds^dT,f3} }

{ '{̂ 3» '{̂ 8> l̂Oj 4̂} } 
{ {d6,d4^f2},{ds,dg,di0,f4} } 
{ {<̂ 2)5 {<̂ 8i<̂ 9><il05/4} }
{ {ds},{ds,dg,dio^f4} }

4 { {d2 }Ads},{ds,dg,dio,/4 } }
{ {d5}t{d3,di, fi},{ds,dg,dio,/4 } }; 
{ {<̂ 2)5 {<̂ 65<̂ 45/2}j {<̂ 8, <̂ 8,<̂ 10i/4} }

Table 4.2. F-cycle families in T>(^) of Figure 4.2.
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Exam ple 4.5 Consider the digraph of Figure 4.3, whose f-cycle
families are given in Table 4.3.

Figure 4.3. V{J^) of Example 4.5.

l ( c r ) u{CJ^)
1 {<¿9, (¿10, /1}

{d7idQ^f2}
2 {dz-id2id\^fz}

{ {¿7,rf6,/2} }
3 { {d9},{dio,fi}Ad3,d2,di,f3} } 

{ {d7,de,f2},{d3,d2,di,f3} }
4 {(¿7, (¿5, (¿4, (¿2, <¿1, /4}

{ {d9idio,fi},{d7,dQ ,f2],{d3,d2,di,f3} }

5 {d9,d8,d5,d4,d2,di,fs}
{ {d9,dio,fi},{d7,d3,d4,d2,di,f4} }

Table 4.3. F-cycle families in of Figure 4.3
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Choosing

CT\ =  CJ’si =  {d9,ds,d5,d4,d2,dx,fs]
C7\ =  CJ’41 =  {dr^d^.d^.d^.dx.fji}

(^^3 fi]·, {d3,d2,di, f^} }

CJ~2 — ^*^22 =  { {doidio, fl}i{d7,dQ,/ 2} }
CT\ =  CT\\ =  {¿95 <¿10?/1}

Theorem 4.1 is satisfied with n =  2. Note that condition (¿-a) of Theorem 4.1 
holds for k =  5,4, and (¿-b) for k =  3.

We know turn our attention to systems whose characteristic polynomial 
coefficients are not in the form of (4.1), but can be put effectively into 
that form with certain modifications. Our desire is motivated by the fact 
that the stabilization procedure in the proof of Lemma 4.1 involves use of 
high feedback gains, which suggests that certain system parameters can be 
neglected to bring the coefficients into the desired form of (4.1). The following 
results are based on such an asymptotic approach involving use of high gains.

Let us denote by # /( · )  the number of variable f-edges in (·).

T heorem  4.2 Suppose that, for k =  1,2, ■ ■ ■ ,n, there exists particular cycle 
families of width k, denoted by CT\, in V{lF) such that

(i) fk e CJ l̂ and fj ^ CT\, j  > k;

(ii) for any other f-cycle family C^k of width k, ff/(C^k) ^ 4fi{^^k)y 
strict inequality if CĴ k contains no fj, j  > k.

Then S is generically stabilizable by T .

P roof: Let fk — fkP-, where p > 0 is an arbitrarily Wge parameter, and 
let r\k — max{ffj{C!Fk)}·, where the maximum is taken over all cycle families 
of width k. Then each characteristic poljmomial coefficient has the form

Pk =  9 k ( d , f v )  =  p^'’ g k { d , f v )  +  h k { d ,  f k , p ) .
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where /„  =  ( / i , / 2, · · ·, f n ) ,  and deg[hk{d, /„ , ·)] < 77̂ . Thus, for fixed /„  and 
d, as 7) 00, roots of p(s) approacli the roots of

p{s) =  s” +  PiS" * +  · · ·+  Pnj

where pk =  p̂ ’’gk(d, f v ) ·  The conditions of the theorem guarantee that the 
cycle families which correspond to the product terms appearing in gk(d,fy) 
trivially satisfy conditions of Theorem 4.1, and the result follows. □

The example to follow is an illustration of the result of Theorem 4.2.

Exam ple 4.6 The closed-loop digraph, associated with a two input-
three output system under the feedback

: u = fn  /12 0
/21 0 /23

is given in Figure 4.4. Table 4.4 displays a list of the f-cycle families of Vi^F) 
corresponding to a reordering of the feedback variables as /1 =  /u ,  /2 =  / 21, 

/3 =  /23» /4 =  /12-

Figure 4.4. of Example 4.6.
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1 {c?4, (¿1, y*! }

2 { ¿ 4 ,  ¿ 5 , ¿ 7 , / 2 }  
{ ¿ 9 ,  ( ¿ 8 ,^ 7 , /3 }

i ^3, (¡2 , <¿1 ̂  f 4}

3 { ¿ 4 ,  ¿ 6 , d s , ¿ 7 , / 2 }
{  { d ^ i d s ,  d r ,  / 3 } ,  { d 4 , d i ,  f i ]  }

4 { ¿ 3 ,  (¿10, d s ,  ¿ 7 ,  / 2 ,  ¿45 / 4 }

{  {¿ 9 > ^ 8 5 ^ 7 ,/3 }>  {¿ 3 5 ^ 2 5 ^ 1 5 /4 }  }

Table 4.4. f-cycle families of of Figure 4.4.

We choose

=  C J ^ 4 \ =  {¿3 5 ¿1 0 5 ¿8 5 ¿7 5  /25  ¿ 4 5 ¿ l : . / 4}

c n —  C T z 2 =  {  {¿95 ¿85 ¿ 75/ 3)5 {¿4 5  ¿1:, / ■ ) )

C J ^ 2 =  CT̂ X =  {¿45 ¿55 ¿ 75/ 2}

c r i =  CTxx =  {¿45  ¿ 1 5/ 1 }

i?4 =  2 
T}z =  2 
2̂ =  1 

771 =  1

Clearly, this choice satisfies Theorem 4.2. For k =  1,2,3,4, neglecting 
those cycle families which contain less than r)k f-edges, the coefficients gu can 
be written as

g\ = / l ( —d i d i )  +  / 2(0) + / 3(0 ) + / 4(0)
92 =  f2 ( -d id id j )  +  f3{-did^d7) +  h ( —d3d2di)
93 = i3(d3d3d7did2di) + fi{0)
9i = h(d3dTf2di[-d3diodi + ¿ 9(13(12])

verifying Theorem 4.2.

As a preparation for our last result on generic stabilizability of S (^), 
consider the following recursive reduction process applied to the closed-loop 
digraph V{!F):

(i) Delete from 'D{^) all edges that do not appear in any cj'̂ cle.

(ii) Let a be a d-edge such that to every simple cycle C“, I =  1,2, · ··,
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that contains a, there corresponds a cycle family C^f with the following 
properties:

(a) covers the same state vertices as C“ does,

(b) C^f covers no input or output vertices which are covered by some f- 
cycle disjoint from Cf,

(c) includes all the f-edges that appear in Cf and at least one additional 
f-edge.

Let S f{f)  denote the set of the additional f-edges in but not in Cf.
Delete a, and record

Let the digraph obtained from 'D(^) by successive application of (i) and 
(ii) above be denoted by We state the following:

Theorem  4.3 Suppose 'D(J-) satisfies either Theorem 4-i or Theorem 4·  ̂
with at least one f-edge from each S f{f) included in fy, I =  1,2, ■■■ . Then 
S(T^) is generically stabilizable.

Proof: Let f>{!F) be obteiined from by deleting a single d-edge
satisfying either (i) or (ii) of the reduction process. If the d-edge deleted is 
one which does not take part in ziny cycle, then S {^ )  and S(J^) have the same 
closed-loop characteristic polynomials, so that stabilizability of S (^ ) implies 
stabilizability of S(J-). Suppose that the d-edge deleted is of the second type,
i.e., satisfies condition (ii) of the reduction process. Then,

Pk Pk hh(d, fy), k 1,2,' n

where pk and pk are the closed-loop charateristic polynomial coefficients of 
S(J^) and S (^ ), and hk is a sum of product terms each of which corresponds 
to a cycle family of width k which includes one of Cf, / =  1,2, · · ·. By 
conditions (n')(a-c) of the reduction process, corresponding to every such 
product term, gk contains a product term (due to C ^f), which includes
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more f-variables. Choosing fk =  pff., and letting /9 -4 oo as in the proof 
of Theorem 4.2, we observe that roots of p(s) approach those of p{s). Since 
T>(^) is stabilizable by assumption, then so is This finishes the proof
•for a one-step reduction process. Repeating the same argument for every 
d-edge deleted, the proof is completed. □

We illustrate this result in the example below.

Exam ple 4.7 Figure 4.5 shows the closed-loop system digraph T>{T) to be 
considered.

'35

Figure 4.5. of Example 4.7.

The reduction process proceeds as follows;

1. For a =  ¿5, the cycles containing a are Cf* =  {ds,dQ,ds}., and 
C2* =  {ds,dQ,d7,d4, f 2,di}. Corresponding to these cycles,
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contains the cycle families c?2, / 1}, { ¿ 9, ¿g,/ 35, «¿n) },
and =  { {<̂ i-,d3 ,d4, f 2},{d g ,d s,f35,d u } }, which satisfy
conditions (n’)(a-c) of the reduction process. Let =  { /n j/a s } , 
£2  ̂ =  { / 35}» and delete ¿5.

2. Delete d& and dr as they form no cycles.

3. For a =  (¿15, the only cycle to be considered is Cf** =  {</15, die}, to
which there corresponds =  {die, di7, / 24,d i3}, with £1 '̂  =  {/24}.
Delete dis.

After the reduction process, T>{Ĵ ) consists of two decoupled subgraphs 
T>i{J î) and ^ 2(^ 2) are as shown in Figure 4.6.

V · .

a  i
d, I

A

/

( 2 )

Figure 4.6. Reduced digraph 'D{^) corresponding to D(.F) of Figure 4.5. 

Subsystem £ 2(^ 2) corresponding to £>2(^ 2) is stabilizable (in fact, pole
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assignable) with the only possible choice of fvi =  where =  fn

and /1  =  / 12.

Keeping in mind that /3 5  and /24 should be chosen as variable f-edges, 
let us fix /25 =  /34 =  0, and renumber the remaining f-edges to get /„1 =  
( / ı^ / 2 ^ / з ^ / 4 ) >  where / /  =  /23, =  /24, /3 =  /33, /4 =  /35· The f-cycle
families of are listed in Table 4.5.

Table 4.5. F-cycle families in of Figure 4.6.

Now, choosing

C J - 1  =  {  { d i 7, d ie , <¿13,/2  } j  {d s ,  ¿95 d l l , /4 }  }

CJ·  ̂ =  {di4,di2,d9,dii,/3}
CĴ 2 ~  {di7, di6,di3,/ 2}

=  {di4,di3,//}
we observe that conditions of Theorem 4.1 are satisfied so that the subsystem 
is generically stabilizable. Hence, by Theorem 4.3 the overall system is 
structurally stabilizable.

As demonstrated by Example 4.7, reduction of by deleting certain
d-edges provides considerable simplification in the stabilization process 
especially when the reduced digraph T>{!F) consists of decoupled components. 
This shows a parallelism with the decomposition approach to stabilization 
of large-scale systems. In the following, we take a closer look at how the 
reduction process can be applied to decentralized stabilizability of a class of 
interconnected systems.
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4.3 A CLASS OF GENERICALLY 
STABILIZABLE SYSTEMS

In this section, we show that certain class of structures which is known 
to be stabilizable by decentralized state feedback satisfy the conditions 
of Theorem 4.3, thus demonstrating the nontriviality of the result of 
Theorem 4.3.

Consider a system S composed of N  interconnected structurally control
lable subsystems described by

N
. Xi — j4j*Xj -|- A i j X j  -f" ¿I'ix,*, z — 1 , 2 , '  * *, ^ .

t=l
Suppose that local state feedback law

-- fi

is applied to the decoupled subsystems

SP : Xi — AiXi -1- biU{.

(4.5)

(4.6)

(4.7)

where x,· € 11̂ · and u e H, with Eili = n, and f [  = (/,t, / ,2, · · · ,/in,)· 
By the results of Section 3.3.1 we know that each decoupled subsystem 
SP{J î) is generically pole assignable. Our aim is to show that the overall 
system is generically stabilizable under some well-known restrictions on the 
interconnection structure.

For this, we first note that the closed-loop digraph has the structure 
7?(.F) =  (V, U U Ef ), where =  (V, 6^ U Sp) is a collection of
disjoint subgraphs T>f{!Fi) =  (V,-,5P U Spi) associated with the decoupled 
subsystems and is the set of interconnecting edges corresponding
to the nonzero parameters of Aij.

We assume that each (A,·, 6,·) is in controllable canonical form, and that 
the interaction between the states of the subsystem satisfies the following 
condition:

Im Aij C Im bi, i j, i j  =  1,2, · · ·, TV (4.8)
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i.e., the interaction from the states of S j  to those of 5, has the same effect 
on Si as the constant input u,.

Due to the special forms of the pairs (j4,·, i», ) and the interconnection terms 
Aij, the digraph heis the structure shown in Figure 4.7.

Figure 4.7. The interconnection structure between the subsystems of 
'D{T) mentioned in Theorem 4.3.

Referring to Figure 4.7 we state the following:

T heorem  4.4 All the d-edges ofT>{T) corresponding to the interconnection 
matrices Aij of (4-8) can be deleted by the reduction process. The resulting 
digraph T>{J-) consists of decoupled components T>i{!Fi) associated with the 
decoupled systems SP(iFi). Since SP(T'i) are generically stabilizable by 
Theorem 3.3, then so is S{iF) by Theorem 4-3.

P roof: An edge of T>(^) due to a nonzero term of some interconnection 
matrix Aij is of the form (xjg,,X{ni)·, where 1 < qj < Uj. If such an edge
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occurs in a cycle covering some state vertices of the subsystems <5j, <S,,· · 
then this cycle is of the form

Cji—l în,)i i^ im ) ' ' ' 1 ®/gi)) ( /̂gn ^ j n j \  ^ j q j ) }

where (xin,, »̂g·)? 1 ^ 9« < denotes the unique path in Vf* from x,n, to 
Xig.. We note that such a cycle contains no f-edges. Now, the f-cycle family 
consisting of the cycles

{ ) (®«n,· 5 ^tg,·) 1 (^tgjjW,·) }

{ j (^Jnji^jqj) ? (®jg>5^j) }

covers exactly the same vertices, and includes the feedback edges 
/.·,,· =  (a:;,(,u,·),···, /i„  =  (xig,,ui), fjĝ  =  (xjgj,Uj). Moreover, none of 
the input vertices covered by this cycle family, namely, u,·, · · · ,« / ,  Uj, can be 
covered by a cycle disjoint from Cj,.,. Hence the conditions of the reduction 
process are satisfied, and the interconnection edge (xjqjyXim) can be deleted 
from Since this is true for all interconnection edges, and since all f-
edges are used in stabilization of the resulting decoupled system associated 
with the proof follows from Theorem 4.3. □



Chapter 5

A GRAPHICAL INVESTIGATION 
OF STRUCTURAL 
OBSERVABILITY

In this chapter, we present a graph-theoretic interpretation of the so- 
called structural observability matrix and develop graphical conditions for 
this matrix to have full generic rank. We then show that the digraph of 
any structurally observable system satisfies these conditions. We also define 
structural observability index and provide graphical techniques to compute 
bounds for it. Dual results concerning controllability can easily be obtained.

5.1 STRUCTURAL OBSERVABILITY

Since structural observability is a property of the pair (.4, C) of system 
S of (2.1) we consider the reduced system structure matrix

A  0
Sxy —

C 0
(5.1)

and associated input-truncated digraph T>xy =  {X  \J y,€xy) obtained by 
removing the input vertices and the edges connected to them.

For structural observability it is necessary and suificient that

92
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(z) every state reaches an output; and 

(ii) p
A
C

= n.

A structural equivalent of these conditions is the existence of a family of 
disjoint output cacti spanning Dij,. On the other hand, let us denote 
conveniently the vector of reduced system parameters by d and define 
structural observability matrix as

O n - i ( d )

cjA

cjA

c[A^~^

(5.2)

where

C =

Then, it is obvious that the pair (A, C) is structurally observable if and only 
if p[On-i(d)] =  n.

5.2 GRAPHICAL INTERPRETATION 
OF THE
OBSERVABILITY MATRIX

Consider the input truncated weighted digraph T>xy in which weight of 
any edge, denoted by u;(u,·, uy), is the parameter value of the corresponding
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=^xy

entry of the related system structure matrix Sxy. Here, let us generalize our 
definition of a path so as to allow it go through a vertex more that once and 
hence also include a multiplicity of some edges ( A path which does not go 
through any vertex more than once will be distinguished, where necessary, 
by the term simple path).

Recall that S ŷ =  x Ŝ j, can be interpreted as the L-step reachability 
matrix where

O
CA^-^ O

In Ŝ ĵ , (j, A:)-th nonzero entry in the lower block row implies that state vertex 
Xk reaches output y j  in L-steps, i.e., D x y  contains a path of length L  from 

to yj, which we denote by {xk^yj)^. Combining this with the definition 
of the structural observability matrix On-i(d), we conclude that the (7, fc)-th 
entry of the L-th block row of On-i(d) is given by J2‘̂ [(^k,yj)i} where u;(·) 
denotes the weight and the sum is over all L-step paths from to yj.

Let us illustrate this with an example.

Exam ple 5.1 Consider the system digraph of Figure 5.1.

Figure 5.1. T>xy of Example 5.1.

For this system, structural observability matrix can be obtained by
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inspection of the digraph as

03(d )=

d\ 0 dr 0
0 1̂̂ 3 + d̂ d/̂ djd^ drds

c?i(i3c/2 “l· d'^d^d2 djd^d^ d rd l drd^d^

d'j dQ d  ̂d^ djd^d^ + c?iC?3<i2CÎ3 + ¿76/46/2̂ 3 d rd l d rd ld s

Structural observability matrix On-i is not a structured matrix as its 
nonzero parameters are not necessarily algebraically independent. Therefore, 
existence of n nonzero elements lying on independent rows and columns (i.e., 
no two elements lie on the same row or column), is a necessary but obviously 
not sufficient condition for On-i to have full generic rank. In terms of system 
structure, this necessary condition is equivalent to having, in for every 
distinct Xk, a particular path denoted by 1 < i'fc < t, 1 < Lk < n,
such that for j  ^  k either rj ^  rk or Lj ^  Lk-

In order to guarantee full generic row rank for rows correspond
ing to the n nonzero elements mentioned above should be generically linearly 
independent, or equivalently the square matrix obtained by taking only the 
rows and columns that contain these n nonzero elements should be generically 
nonsingular. Formulation of a structural counterpart of either one of these is 
not an easy task at all. We derive however, some partial results concerning 
the second one.

Numerous examples which we have considered reveal a similarity between 
this case and and the problem of deriving structural conditions for the generic 
nonsingularity of the coefficient matrix E, dealt with in Theorem 3.1. This 
leads us to the result stated and proven below:

Theorem  5.1 Sxippose that in Vxy, after a suitable enumeration of states, 
there exists particular paths of length Lk, denoted as Vl =  1 ^
Lk < n, k =  1,2, - · · ,n, which satisfy the conditions (i) — (Hi) below. Then 
S is structurally observable.
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(¿) F o r  j  < k, L j  <  Lk  and if L j  =  Ljt then rj  <  rk-

(ii) Any other path (xkiyrk)L^ of length Lk contains an edge which appears 
in no V*, I > k.

(Hi) For 1 k < j  < n, if there exist paths {xk,yrj)j^., then all of these 
paths, except possibly one, say V j ,  contain an edge which appears in no 
V * ,  I > k. If V j  exists, then it contains an edge, a,j, with multiplicity aj 
such that ttj appears in no V f, I > j ;  Vl contains aj with multiplicity 
< d-j and ifuj appears in any V*, k < a < j ,  then every path (x«, yTk)Lt 
contains another edge which appears in no V * ,  I > k.

P roof: Consider the structural observability matrix On-\{d) of the 
system with digraph T>xy. Denote by T{d) the submatrix obtained by 
taking the rows and columns of On-i{d), which contain the product terms 
corresponding to k =  1,2, · · ·, n. Obviously, On-i{d) has full
generic rank and hence system structurally observable if T(d) is generically 
nonsingular. Consider now the n x n  matrix T{d). By condition (i), diagonal 
elements of T{d) are of the form

tkk(d) =  tl(d) +  ikk(d),

where tl{d) is the weight of and tkk(d) is the sum of the weights of all 
other paths {xk, yTk)Lk' define d\ =  d, Ti(di) =  T(d), and partition T\
as

^î(di) +  <n(di) hiidifs
tji(di)'s T2(dl) _

Ti(di) =

where, for a fixed j  > 1, tji(di) is the sum of the weights of all paths 
(xi, j/rj)^ · By condition (ii) every product term in in(di) contains the weight 
of an edge which occurs in no  ̂^ 1· Let d[ denote the parameter vector 
after all parameters corresponding to such edges are set to zero. Then, Ti(dj) 
has the form

■ t 'M ) tu(d[ys

T M )  .
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where each diagonal term tkk(d\) of T2{d\) still contains the product term 
=  tl(di). If tji{d\) =  0, j  =  2, then let <¿2 =  d\. Otherwise,

by condition (in), all product terms in each nonzero tji(dj), except possibly 
those that correspond to ‘P j’s, contain an edge which appears in no Vk, 
k > 1. Let d" be the parameter vector after all such terms are set to zero. 
Then T\{d'0 has the same structure as T\{d\) with tkk{d'{) still containing 

~  ^i^i) — ^ki^i)i each tji{d") either being zero, or containing 
a single nonzero product term due to Vj's. If tji{d'{) =  0, j  >  2, then let 
¿2 = d'(. Otherwise, condition (in) implies that each nonzero tji is of the 
form tj\(d'l) =  a^Hji(d'(), with no t*(d"), I > J, containing aj·, and =
a'j'i\(d'l), with (7i < aj. We cem then eliminate all such tj\ by subtracting a 
suitable multiple of the 1-st row from the jf-th row. After such operations, 
Ti(d") becomes

Tr(d'i) =
■ t:(di) tuid^ys ■

0 T,{d'n

where some elements tji(d") of T2(d"), j, / > 2, are of the form

Now, if no t’̂ (d'(), 1 < a < j , contains aj., let c?2 =  d'{. Otherwise, by 
condition (lii), every product term in each tia(d'{) such that t ’̂ (di) contains 
a,j, contain an edge which appears in no tj{d'( Let c?2 be the parameter
vector after all parameters corresponding to such edges are set to zero, and 
consider

<1/(̂ 2 )'S
0 T2(d2)

Ti(d2) =

Clearly, the elements of T2(c?2) contain fewer product terms than the 
corresponding elements of T2(d'{). Moreover, the diagonal elements still 
contain the terms <¿(^2) =  Now, if T2(d2) has full generic rank, then
so does T\(d2), and therefore, T(d) =  Ti(di). Continuing with the same 
argument with d\ and ri(d i) replaced by ¿2 and T2(d2), and so on, we finally 
reach the conclusion that if =  t^(dn) +  inni^n) is nonzero, then T(d)
is generically nonsingular. The fact that in(dn) =  in(d) ^  0 completes the 
proof. □
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L i (^ u yj )r . {{^2,yj)7.} {( 3̂? y j ) j^ {(•'»̂ 4,yi)7.}
1 1 w {d2 } {ds}

2 {de} {<¿6)

2 1 {¿7, ¿2 } {(¿3 , ds] {d4,d2}
2 {<̂ 3 , ds}

3 1 {¿7,^3, (¿8 } {d3,d4,d2} "{ ̂ 4 Î ̂ 3 Î 5̂ }

2 { C?7 y C?3 ̂ {d4, ds, ds}
4 1 {¿7, ¿3,^4, ¿2 } {d3,d3,d4,d8} {d4 , d^, ds, ds}

2 {d3, ds, d\, ds}

Table 5.2. Paths from the state vertices to the output vertices in V^y 
of Figure 5.3.

It is easy to see that the choice of

VI =  (xi,y i)I =  {iii}

V2 =  (.T4,y2)I =  {ife}

VI =  (X3,yi)2 =  {<̂ 4,<f2}

VI =  (X2,y2)2 =

satisfies the conditions of Theorem 5.1, and hence the corresponding system 
is structurally observable (as expected).

Another choice of paths would be

V*

v;
v;
v:

(xiî yi)i — {^1} 

{^4,y2)l =  {de} 

(x3,yi)^ =  {¿ 4,^2}

=  (X2,yi)3 = {d3,d4,d2}

which also satisfies Theorem 5.1. Note that by deleting all other edges, 
is decomposed into two disjoint cacti, the existence of which is the necessary 
and sufficient condition for structural observability.
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In the following, we study a few examples which illustrate the implications 
of Theorem 5.1.

Exam ple 5.2 Consider the digraph T>xy of Figure 5.2.

Figure 5.2. T>xy of Example 5.2.

All the paths of length T, 1 < L < n, between the state vertices and the 
output vertex are listed in Table 5.1. (Note the one-to-one correspondence 
between this table and On-i)·

L (^Uy)L (^2»y)r, {(®4,y)f,}
1 w { ¿ 2} w {¿6>
2 {<̂ 3,^2} {¿ 5, 014} {¿ 7 , ¿e}
3 {¿5, ¿5, ¿4} {dr, dr, de}

Table 5.1. Paths from the state vertices to the output vertex in 
T>xy of Figure 5.2.
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We choose

v :

v;

n

-p :

(a^2,y)2 =  {¿3,^2}

(^3? y)3 “{^5) 6̂5 ^4}

(®4jy)4 — 7̂? ^7j

which satisfy conditions (i) and (ii) of Theorem 5.2 trivially. For k — 1, 
condition (in) is also trivially satisfied. Consider k =  2. We observe that 
there exist paths (x 2,y)^ and (2̂2» y)4 which contain ¿3 with multiplicity 2 
and 3, respectively, and occurs in with multiplicity 1, while it occurs 
in no V*, / > 2 so that condition (in) is satisfied. Similar argument applies 
for k =  3. Thus, by Theorem 5.1, the system is structurally observable. This 
result is also verified by the fact that the corresponding digraph T>xy is a 
cactus.

Example 5.3 Let us now study a two-output system whose digraph V^y 
and the corresponding list of state-output paths are given in Figure 5.3 and 
Table 5.2.

Vz

Figure 5.3. T>xy of Example 5.3.
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The preceding example leads us to the result which we state and prove 
below:

T heorem  5.2 The following are equivalent:

(a) The system S in (2.1) is structurally observable.

(b) The input-truncated digraph T>xy associated with S is spanned by a 
collection of disjoint output cacti.

(c) T>xy satisfies the conditions of Theorem 5.1.

P roof:

(a)<i4>(b) : Obvious.

(c)=^(a) : By Theorem 5.1.

(a)=^(c) : First consider the case when r =  1 (single output) and T>xy is 
a cactus, with output y. Recall that in the cactus, every state vertex reaches 
the output vertex along a unique simple path so that for fixed T, there exist 
one and only one path of length L from any state vertex to the output vertex. 
If the cactus is just a stem, then Theorem 5.1 is trivially satisfied. Otherwise, 
denote the stem of Vxy by Bq, and order the buds of T>xy as , etc.
such that for j  < i, no vertex in B,· occurs on a simple path from a vertex in 
B j  to y. (Note that denoting the stem as Bo is consistent with this reordering 
of the buds.) Then, first scan Bq and label its vertices as xj, a;2, · · ·, etc. such 
that the length of the unique (simple) path from Xk to y is k. Next, scan 
the buds Bi, i =  1,2, · · ·, in their order and label their vertices according to 
the following scheme: Let the bud to be scanned be Ŝ,·, and the last vertex 
in B i - i  which has been labeled be Xk. Suppose that the length of the unique 
simple path from the tail, Xt,·, of the distinguished edge of Bi to y is L,·; where 
1 < Li < k due to the ordering of the buds. Identify in Bi the unique state 
vertex that reaches in Bi to xu through a path of length +  1 — L,, and



CHAPTER 5. A GRAPHICAL INVESTIGATION OF STRUCTURAL OBSERVABILITY 102

label it xjt+i- Once, xt+i is identified, label the remaining vertices of B, as 
3;jt+2, arjt+3, · · ·, etc., where is the unique vertex in B,· that is adjacent to
Xk+h  ̂=  1,2, · · ·. The enumeration of the state vertices in the output cactus 
shown in Figure 5.4 illustrates the scheme.

Figure 5.4. Enumeration of the state vertices in a cactus, according to the 
scheme mentioned in the proof of Theorem 5.2.

With the state vertices of Vxy labeled as above, let the unique path of 
length k from Xk to y be denoted as Vl =■ {^kiy)*k·, \ < k < n. Then, 
the conditions (i) and (ii) of Theorem 5.2 are readily satisfied. Also, 
condition {in) is trivially satisfied for those Xk that belong to Bo as Vk is 
the only path from xjt to y. Consider the case when Xk belongs to some bud 

i >  1, and suppose that, for a fixed j  > k, it reaches y through several 
paths Vji,Vj2·, · · ·, etc., of length L j  = j. Then each Vji should necessarily 
travel through the cycle of at least one bud B^, , with < i, at least once. 
If Vji travels through the cycle of some Bm, with rrit < then it contains 
an edge (from the cycle of Bm,), which appears in no Vi, I > k. On the 
other hand, at most one of Vjt's, denoted by Vj, loops in B,· but in no Bm 
with m < i (because, the lengths of such paths differ by an integer multiple
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of the length or width of the cycle of B i ) .  A typical situation is illustrated 
in Figure 5.5, corresponding to the case when j  =  k +  Z. Referring to the 
figure, we identify aj =  which obviously occurs in no V*, I > j ,
and the multiplicity of aj in is at least one less than its multiplicity in 
Vj. Moreover, only k < a < j ,  such that aj appears in V* can possibly 
be a =  y — 1. Then, any path of length Lk =  k from x j-i  to y should loop 
in some Bmi ^  < b ^nd therefore, should contciin an edge which appears in 
no Vi“, I > k. Thus, condition (in) is satisfied, and the proof is complete for 
the single output case, and when T>xy is a cactus.

Bi·. -  Vj

-  n

Figure 5.5. Illustration of Vk and Vj for j  =  k +  Z.

For the general case, let T>xy =  (A* U U 3̂ >i,£c· U ¿U), where X  =  UA'i, 
=  U{y<} and £c =  U£i, i =  1,2, · · ·, are such that the disjoint subgraphs 

Vt =  (At U {j/t}, £t) form a family of spanning cacti V c — UPt =  (A* ^c)
for T̂ xy. Let the state vertices of each individual cactus Pt be labeled as in 
the single output case. Then, it is easy to see that Pt’s can be reordered, and 
the sets A ’̂s can be merged to obtain a new ordering of all the state vertices 
in such a way as to satisfy condition {i) of Theorem 5.2. Also, the paths in 
the collection P c of cacti satisfy the remaining conditions. Noting that any 
other path in Vxy which does not appear in P c  is due to the additional edges 
in Sa ·, which obviously appear in no the proof is completed. □
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The significance of interpreting structural observability in terms of the 
particular paths mentioned in the statement of Theorem 5.1 lies in its 
contribution to the structural intei'pretation of the observability index. 
Furthermore, we show in the next section that it provides a better upper 
bound for the estimate of the so-called generic observability index.

5.3 GENERIC OBSERVABILITY INDEX

Generic observability index can be defined as the structural counterpart 
of obser ’̂ability index as follows:

Definition 5.1 Let denote the L-step structural observability ma
trix. Then

Lo =  min{p [OL-\{d)] =  h}
L·

is defined as the generic observability index.

If we let

Lj =  min{p OL-i(d)
cjA^ = p [Ol. M ] } ,

then we can easily deduce from this definition that

Ln =  maxfir,).

A cheiracterization of generic observability index can also be given in 
terms of Rosenbrock’s extended observability matrix [51]. Consider the L- 
step Rosenbrock matrix which is an [Lr +  {L — l)n] x Lii matrix written in
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terms of the structured matrices A  and C as

C
In - A  

C 

In

RL(ci) =

In - A  
C

Generic observability index Lo can also be written as

- A
C

(5.3)

Lo =  min{/?[RL(ii)] = Ln),
L

i.e., it is the minimum L for which Ri,(<i) has full generic column rank. In 
the following, we state two facts that provide bounds for Lq.

Fact 5.1 Lei 7(·, ·) represent the number of state vertices, eqxtivalently the 
steps, occxiring in {·,·). Then,

Lo > max { min -  1}l<i<n l<j<r

P roof: Let
7 (x', y') =  max { min 7(0:,·, y,)}

l<t<n l < j < r

and suppose that Lo < V')· This implies that Oi_i{d) has a zero column,
which contradicts the definition of Lq. □

Note that any shortest path algorithm can be used to determine this lower 
bound for Lo.
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Next fact is concerned with an upper bound for Lg.

Fact 5.2 ;
Lg < mini max(n,))

where the minimization is over all possible decompositions ofT>xy into disjoint 
subgraphs T>j =  (Xj U with jiXj) = nj, each of which is spanned by
an output cactus.

P roof: Obvious. □

Exam ple 5.4 Consider the digraph of Figure 5.6:(a). The two possible 
decompositions of this digraph is as given in Figures 5.6:(b) and (c).

(b) ( c)

Figure 5.6. T>xy and the associated possible cactus decompositios of 
Example 5.4.

Clearly, Lg =  2 for this system as also revealed by the decomposition of 
Figure 5.6:(c).

Another upper bound for Lg can be obtained using the results of the 
previous section:
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Fact 5.3

Lo < m in{7(P ;)}

where the minimization is over all ‘possible choices of a set of n particular 
paths ■Pj, · · · ,P* as stated in Theorem 5.1.

Proof: Obvious. □

We finish this section by the following two examples which illustrate the 
result of Fact 5.3.

Example 5.5 For the system of Example 5.2, we know from Fact 5.2 that 
Lo < 2. However, by the first choice of the set of particular paths of 
Example 5.2, Fact 5.3 also gives the same bound, and indeed Lo =  2.

Example 5.6 Consider the digraph of Figure 5.7.

Figure 5.7. Vxy of Example 5.6.

Again, Fact 2 gives Lo < 3, whereas the existence of the choice of the set 
of particular paths as

VI =  (r i,y i) =  {di}

VI =  (.T2,y2) =  { 4 }

VI =  (x4,yi) =  {ds,d2}

P* =  (X3,y2) =  {^4,^3}

reveals that Lo < 2  (clearly Lo =  2, as Lo > 2 by Fact 5.1).



Chapter 6

AN ALGEBRAIC STUDY ON 
GENERICITY OF SEVERAL 
RESULTS ON POLE 
ASSIGNABILITY AND 
STABILIZABILITY

In the previous chapters we studied generic pole assignability and 
stabilizability problems using a graph-theoretic approach. The results we 
have obtained were essentially algebraic ones, which were stated in a graphical 
framework. Although the graphical approach provides extreme simplicity in 
testing certain sufficient conditions for pole assignability and stabilizability, 
it has a serious limitation: No similarity transformation, which changes the 
system structure or destroys algebraic independence of nonzero parameters, 
is allowed in a graphical analysis. Therefore a more general algebraic 
approach would be preferable for those systems which are not already in 
a canonical form that allows for the use of graphical procedures without any 
transformation. In this chapter, we consider genericity of some well-known 
results on pole assignability and stabilizability of certain classes of systems 
following an algebraic approach.

108
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6.1 Pole-Assignability By Dynamic Output Feedback

The first problem we consider is pole assignment in single input/multi 
output, structurally controllable and observable systems, single input/single 
output version of which was considered in Section 3.3.2.

Consider a system represented as

5  : X =  Ax +  bu 
y =  Cx,

(6.1)

and a dyneimic output feedback controller

X =  Ax +  By
S :

u =  c^x +  f^y,
(6.2)

where x G BA, u E B, y £ BJ' and x G B^. As has already been discussed in 
Section 3.3.2, the pole assignment problem for the pair (S ,S) is equivalent 
to the pole assignment problem for the augmented pair (Sa,^a), where Sa is 
described by

5a

and

X ' A 0 ' X

X 0 0 _ X

y ’ C X

. y . I X

U ' P  c" y
ü B Â y

+
' b U

I Û
(6.3)

(6.4)

represents an equivalent constant output feedback law for Sa- Again, as in 
Section 3.3.2, we assume that the pair (A, c^) is in observable canonical form 
of (3.21), which corresponds to the case where some of the feedback variables 
have already been fixed at either zero or one.

Let us first consider the case when n =  0, that is, when S of (6.1) reduces 
to constant output feedback

^  : w =  f  y, (6.5)
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SO that Sa =  S and Ta =  · Rewriting (6.5) as

T  \ u =  f x ,  f  = (6.6)

and using the result of Section 3.3.1, we observe that the coefficients of the 
closed-loop characteristic polynomial can be expressed as

p =  a  +  E f  =  a  +  E C ^ f ,  (6.7)

where a  = o(d) and E  =  E ( d )  are as in the proof of Theorem 3.1. Let us 
partition the matrix =  EC^ into its rows as

=  EC^ =
tO·

(6.8)

and rewrite (6.7) explicitly as

P i ' ai{d)  ■ ■ c j (d )  ■

P2 o'2(d)
+

c t(d )

Pn oin(d) . ^n(d) .

/ · (6.9)

Note that Qk{d) in 6.9 are due to d-cycle families of width A;, and cj.{d)f are 
due to simple /-cycle families of the same width in the closed-loop digraph

=  ® (/) ·

Next consider the case when =  1, for which the closed-loop digraph 
Va(Ea) is shown ill Figure 6.1. An inspection of Figure 6.1 reveals the 
following facts about the cycle families in T>a(Ea)'·

(i) Any d-cycle family of width k in T>{f) also appears in T>a{Ea) ; and 
in addition, forms an f-cycle family of width k-Fl together with the cycle 

{ ( « i ,y i) ,(y i ,« i ) } ,

(ii) The same is true for the /-cycle families of T>{f),

(Hi) The cycle {(ui, yi), (yi, « i ) }  is a single f-cycle family of width 1 by 
itself.
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Va(J^a) :

y

Figure 6.1. Illustration of Va{^a) for n =  1

(iv) Every f-cycle family of width k+1 formed by the f-cycle in (iii) and an 
/-cycle family of width k in V( f )  is accompanied by a simple f-cj^cle family 
of width k + 1 which contains an f-edge from y to ¿i.

Based on these facts it is easy to see that the coefficients of the closed- 
loop characteristic polynomial are given as

Pi tti 1 c l 0
P2 «2 Ol c i Cl

Pn

—

Oifi

+

Oin-l ^n-1

Pn+1 0 Oin 0 -T
ci J

-Ol

/
b - c i i f

(6.10)

Similarly, in the most general case, we have

Pi Ol
P2 02

Pn = On +
Pn+1 0

_Pn + n. 0

1

ari

On-l
Ofn

c l  0
- a i

cT cf

1 : : 0 - ¿ n
Ol - l -x /

0 c j  :
61 -  ¿ 1 /

O n-l
On

■··
cl  J . in -  ^hf _

(6 .11)

where B =  [bi 62 * · · bn]· Rewriting 6.11 in compact form as

p =  a(d)-f-Qft(d)/, (6.12)
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where /  are the auxiliary variables in Corollary 3.1, we observe that S(S) is 
generically pole assignable if and only if

p(iln) =  n +  n

A sufficient condition for (6.13) to hold is given below:

(0.13)

Lemm a 6.1 If Lo is the generic observability index defined in Section 5.3, 
then (6.13) is satisfied for h =  Lq — 1.

The proof of the lemma is based on the following fact.

Fact 6.1 In T>ux there exist a spanning cactus T>c and an ordering of the 
state vertices Xi,X2, · · ·, Xn, such that any xj which is adjacent to x\ in T>ux, 
occurs in the same bunch of T>c a,s X\.

P roof: Let Vg be an arbitrary cactus spanning Vux, the vertices of which 
are ordered according to the enumeration scheme of Lemma 3.4. If Vg consists 
of a single bunch, then there is nothing to prove. Otherwise, order the bunches 
of Hg as Bi, B2, · · ·, Bt, where Xi € Bi and Bt is the terminal bunch. If any 
Xj which occurs in some Bi,l >  1, is adjacent to x\ in then modify Vg 
by deleting the edge which connects Bi to u and adding the edge (xi,Xj)  to 
Vg. This way Bi is combined with B% to form a single bunch. Reorder the 
vertices of the modified cactus, and repeat the same process, until either Vg 
consists of a single bunch, or else, no vertex of any Bi, / > 1, is adjacent to 
xi in Vux-

P ro o f o f  Lemma 6.1: Fact 6.1 implies that, after a scaling of the weight 
of the edge (u,Xi) in Vux·, the matrices A and 6 in (6.1) can be assumed to 
have the forms

(6.14)

ail ai2 ··· În 1

A =
* * *

, b =
*

* * ♦ *
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where ♦ denotes any zero or nonzero element. In (6.14), oij ^  0 implies that 
there exists an edge (xj,X j) in Vux, which, by Fact 6.1, takes part in a cycle 
covering Xi and xj.

Now, let RL(d) denote the Rosenbrock’s L-step observability matrix 
defined in (5.3), with each block column postmultiplied by E' ,̂ that is,

C
- A  
E^

Rl =
- A
C

E^ ~A
C

(6.15)

where A =  AE^, and C is as defined in (6.8).

Perform the following column operations on Rl : Starting with the first 
block column, add ¿-th column of block k to the (i — l)st column of block 
k +  1, i =  2,•••,72,A; =  1 ,2 ,···,!>  — 1. The resulting matrix R^ has the 
structure illustrated below for L =  3.

Rs =

Cl C2 · · ·  C „ C 2 C n 0 C3 · C n 0 0  '

1 5|C . . . 5jc C L u • · · 1 ^ I n i 5 i 2 · • * a i n - -1 ^ I n 0

* * * *  · * * 0

I E l
• •

0

♦ ♦ * * *  · ■ * * 0

Cl ^ n — 1 Cn C2 ·· C n - 1 C n 0

1 * * a n  ·« a > i n - -2 Q l n - 1 5 l n

* *  · ■ * * *

E l
•

* *  · · * * ♦

Cl · · C n  — 2 C „ _ i C n

(6.16)
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By the proof of Theorem 3.3, E f  has full generic rank n — 1, so that

p[Ri.(<i)l = pIRM] = ( i  -  i)(n -1) + mw)]

where

(6.17)

Rl(d) =

Cl C2 Cn

1 5 i i ¿12 0,\n

Cl C2 Cn

1 d l l 5 i 2 * · · În

On ¿12 
Cl ¿2

*̂ ln
Cn

(6.18)

with 2L — 1 block rows, is the matrix obtained from R{d) by deleting the 
rows and columns that correspond to rows and columns of E^'s.

We now claim that

p\RUd)] = (6.19)

On On
di2

=  E
Ol2

Oln Oln

where 0,̂  is defined in (6.11). To prove the claim, first note that the first row 
elements of A in (6.15) are related to the first row elements of .4 in (6.14) as

(6.20)

If in T>uxi the edges (xj, Xi) that correspond to nonzero Oij’s were replaced by 
hypothetical f-edges (x j,u ), then the left-hand side of (6.20) would represent 
the coefficients of the characteristic polynomial of the resulting hypothetical 
closed-loop system, as the weight of the edge (u,Xi) is normalized to unity. 
Therefore, each di; in (6.20) is nothing but the sum of the weights of all cycle 
families of width j  in which contains Xi. Next we note that in

1 Ci2 ··· Cin
* * · · · *
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each nonzero e ijJ  >  2, is the sum of the weights the cycle families of width 
j  — 1 not containing .Ti . As a result of these two observations we conclude 
that each â j =  aij +  Cij+i in (6.16) represents the sum of the weights of all 
cycle families of width j  in T>ux, so that â j =  ay, where qj are as in (6.9). 
Hence, R l is nothing but the transpose of with columns rearranged, so 
that (6.19) is true.

Finally, the definition of the generic observability index Z q, together with 
(6.17) and (6.19) implies that

p[^L.-i(d)] =  P[RLo(d)] =  n + L o - l ,  

completing the proof of Lemma 6.1.

Combining the result of Lemma 6.1 with (6.11), we reach the following 
conclusion about stabilizability of S{S), the proof of which is obvious.

T heorem  6.1 The single input, structurally controllable and structuraJly 
observable system of (6.1) is generically stabilizable by an (Z q — l)st 
order dynamic output feedback controller of (6.2), where Lq is the generic 
observability index of S.

Before closing the section, we finally note that the dual result applies to 
single-output systems with Lq replaced with the generic controllability index 

Ic.

6.2 Stabilization Of A Class Of Interconnected 
Systems Using Decentralized State Feedback

The laext problem we consider is the stabilization of the interconnected sj'̂ stem 
consisting of controllable subsystems as described in (4.5) using decentralized 
constant feedback of the form (4.6). We assume, as in Section 4.3, that the 
interconnections satisfy the matching conditions in (4.8); however, we do not 
require the subsystems to be in any specific form.
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We assume, without loss of generality, that the input vectors are of the 
form

r T
hi =  [6,1 6,-2 ··· 6,·,. 0 ··· o j  , l < i < N ,  (6.21)

where 1 < g,· < n,· and 6,fc ^  0,1 < k < qi. We also express the matching 
conditions as

Aij =  hihj·, i , j  =  1,2, · · ·, iV, (6.22)

where

hjj =  . . .  h%

The overall system then has the representation

: X =  (Ad +  BdFd +  B dH)x ,

(6.23)

(6.24)

w.'here
An =  diag {A i,A 2, ■

Bd and Fd are defined similarly, and H = (hfj)̂ ]̂̂ }.

Keeping in mind that the k — th coefficient pk of the closed-loop charac
teristic polynomial consists of product terms, each of which corresponds to a 
nonzero term in the determinantal expansion of some k x k principal minor 
oi Ad +  BdFd +  BdH, we can write

P t= P i +  p {+ P * . 1 < ! · < " , (6.25)

where contains all product terms which include one or more h-parameters; 
pI contains those which include one or more f-parameters but no h- 
parameters; and p° is a constant due to parameters of Ad - Obviously, there 
are, in general, more than one product terms in p  ̂which contain exactly the 
same h- and f-parameters; and similarly, more than one product terms in p{ 
which contain the same f-parameters. However, some of such terms cancel 
each other algebraically; and the remaining terms which differ only in a- or 
b-parameters can be grouped together to form a single product term. We 
can, therefore, assume that no two product terms in contains exactly the
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same h- and f-parameters, and no two terms in p{ contains exactly the same 
f-parameters.

Now using the matching conditions (6.22) and simple matrix manipula
tions, it is not too difficult to see that

(i) if a (grouped) product term in contains h'J, I < p < nj\ 1 < <
N, then it contains no \ < q < n,·; and vice versa; and

(n) to every (grouped) product term in p  ̂ there corresponds a (grouped) 
product term in p[, which contains more f-parameters than the former.

These observations guarantee that choosing high feedback gains for the 
decoupled subsystems as in the proof of Theorem 4.2, the terms in can 
be made to dominate over Pk (6.25), so that the poles of the
overall closed-loop interconnected system approach to those of the closed- 
loop decoupled subsystems. Moreover, genericity of pole-assignability of the 
decoupled subsystems, which was i^roved in Theorem 3.2, implies genericity 
of stabilizability of S(F) of (6.24). We state this result as a theorem.

T heorem  6.2 The interconnected system described in (4-5), in which the 
subsystems are structurally controllable, and the interconnections satisfy the 
matching conditions in (4-S), is generically stabilizable using decentralized 
constant state feedback.

6.3 stabilization of a Class of Interconnected Systems 
Using Decentralized Dynamic Output Feedback

The final problem we study is the generic stabilizability of a class of 
interconnected systems using decentralized dynamic output feedback. The 
interconnected system we consider consists of structurally controllable and
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structurally observable single input/single output subsystems described as

5 .: (6.26)y,· =  cfxi, I =  1 ,2 ,··· , AT, 

where x,· 6 7?.”’ and y, 6 TZ. To each decoupled subsystem

S F  ·· +
y,· =  cfxi, I =  1 ,2 ,··· ,N ,

obtained from (6.26) by setting Aij =  0, we apply local dynamic output 
feedback

X{ —  A^Xi - j-  h{y{.
Si·.

Ui =  cjxi +  fy i.
(6.28)

where x, € 7?·"’ -1

As in Sections 3.3.2 and 6.1, we interpret the dynamic output feedback Si 
in (6.28) applied to Sf* of (6.27) as a constant output feedback Tai applied 
to an augmented subsystem where 5^ and ^ai are as in (6.3) and (6.4). 
Also, we choose (Â,-,cî^) to be in observable canonical form of (3.21), which 
corresponds to fixing all but 2n, — 1 elements of Ĵ ai at zero or one.

The class of interconnected systems we consider is characterized by the 
following two assumptions:

{i) The decoupled subsystems of (6.27) generically have no transmis
sion zeros,

{ i i ) There exists a subset M  of the set M  =  {1 ,2 ,•••,AT} such that the 
interconnection matrices Aij in (6.26) satisfy

Aij =  î Îj . i e M ,  j  e M  

Aji =  9jicf , i € A f - M ,  j  €J\f

(6.29)

(6.30)

where hij =  [h*/ h*J · · · and gji =  [yf · · · ŷ ‘ ] .̂ In other words, we
assume that for each Si, either the interaction from any other subsystem has 
the same effect on Si as the control input u,· (when i E M )  or the interaction 
from Si to any other subsystem is a reproduction of the measured output y, 
( when i E Af — M.).
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With this set-up, we now state our main result as follows.

T heorem  6.3 Under the assumptions (i) and (ii) above, the interconnected 
system consisting of the subsystems <S,· of (6.26) is generically stabilizable by 
decentralized output feedback controllers S, of (6.27).

The proof of Theorem 6.3 depends on the following characterization of 
transmission zeros of a single input/single output system by Reinschke[52].

Lem m a 6.2 L etV {ej) denote the closed-loop digraph of a single input/single 
output system described by (6.27) with a feedback edge ej of weight xo{ej) =  
— 1. Then the coefficient fk of the numerator polynomial /3(s) =  -f-
^25” “  ̂ +  · · · +  /?n of the transfer function of the open-loop system are given 
by

Y , k =  l ,2 ,- - - ,n ,  (6.31)
u)(CJ^)=k

where the summation is carried out for all cycle families of width k which 
include Cf.

P r o o f  o f  Theorem  6.3: The closed-loop digraph of the equivalent 
augmented system is of the form T>a(iFa) =  (VajfaUi^/Ufc), where P f  (.Fq) =  
(Va,^o U Sf) is a collection of decoupled closed-loop digraphs =
(Vat, £’/,·) associated with the decoupled augmented subsystems (.Pat),
and Ec is the set of coupling edges due to nonzero parameters of .4,y, i , j  G A/”.

Each closed-loop decoupled subsystem graph T>̂ /iFai) has the structure 
shown in Figure 6.2

Assumption (i) concerning the decoupled subsystem implies that the 
coefficients ^k ^he numerator polynomial of the transfer function of S f  are 
all zero except /5̂ ,. Graphically, this means that in T>P(fi) there exists only 
one cycle that includes /·, and this particular cycle is of width n. Equivalenth', 
in PP there is a unique input/output path which covers all the state vertices
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!> ? ( / )

Vi

Figure 6.2. Closed-loop decoupled subsystem graph

Xki < k < rii,l < i < N. Translated into the structure of the matrices hi 
and cf, assumption (i) means

A. =

Tci =

* * * · · · * * * ’  1 '

jf: *  j|c . . . :|c 5|c :f: 0

0  *  *  * * · *  *  * 0
• ·  ·  ·  ·  ·

, b i  = 1

0  0  0  · · · * = ! <  * 0

0  0  0 · · ·  ♦ +  * 0

0  0  0  · · ·  0  ♦ * 0

0  0  0  · · ·  0  0  1 •

(6.32)

Since each SP is structurally controllable and observable, by Theorem 6.1, 
S î{iFai) are genericzdly pole assignable. In particular, the variable feedback 
gains ÛJ,/* and 6), 1 < / < n,· — 1,1 < i < N  can be computed from (6.11),
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which, due to (6.32), takes the form

Pi
1 a'l

P2 a*

1

Pni = a· 1 r

1 b\ -f- f'a\

< , - l
. P2n.-1 . 1

(6.33)

We choose the feedback gains so as to place the poles of the closed-loop 
decoupled subsystems at —per}, where > 0,1 < / < 2rii — 1,1 <
i < N, and p > 0 is an arbitrarily large parameter. Then, pj G 0 {p ‘ ), and 
(6.33) implies that

d\ ^{(d,p)

V’i.-i(<i,p)
Z= V’;.(^ ,p)

. K - i  . . ^2m-i(d,p) .

(6.34)

where rp}{d,p) are polynomials in p of degree /, with coefficients being 
polynomials in d. That is, degip]{d, ·) =  I, I < I <  2n, — 1.

The structure of shown in Figure 6.2, together with assumption
(¿¿) also implies that no cycle in Pa(^o), which includes a coupling edge due 
to a nonzero parameter of some hjj or gij, can include a feedback edge. To 
see this, consider such a cycle Cc which pass through the state vertices of

I £ C C. Af. Let Cm =  C C\ AA and Cn- m — C — Cm =  CC\ {Af — Ad). 
Then assumption (¿¿) implies that Cc should cover the state vertices x[ for 
I E Cm and for I G Cn - m · Therefore, Cc cannot contain any //  or 6̂ ,̂ 
1 ̂  9/ ^  “  L  ̂S Obviously, Cc cannot contain any or 6^, m E Af — C
either, for then it would have cover contradicting definition of the set 
C. Finally, that Cc cannot contain any a-type feedback edge is clear from the 

structure of TAaii^ai)·
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Now consider an arbitrary cycle family of an arbitrary width in 
'^a(-^a), which includes a coupling edge. Let =  Cd U U · · · U Cck U 
CJFaK U CĴ d U CJ f̂, where

-  Ccjc, Cak, 1 < k < K , and the cycles in the cycle families CjFd and 
are all disjoint,

-  each Cck is a simple d-cycle which includes a coupling edge, and covers 
some (or all) state vertices of D ^ ,/ G , where Ck C M  are disjoint, 
1 < < /\ ,

-  for each \ k < K , CTak is an d-cycle family, which consists of simple
d-cycles C\i formed by the feedback edges d' ,̂ l < $ / < n /  — where
not all cycles need to exist (in fact, CTak may be empty),

-  CTd and CTj are families of simple d- or /-cycles in 2?̂ (.7̂ at)> *  ̂
M -\ jC k .

Let each coupling cycle Cck,  ̂ k < K , cover ni state vertices of I G 
Ck- We now construct another cycle family of the same width as CTc·, 
which includes no coupling edges as follows:

^  №  U · · ■\j'^K ^C T dC iC 7},

where each C!Fk consists of simple cycles , I £ Ck, which include

"s,+„ , i f  ni-\-qi< ni
f '  , i f  fii +  qi =  ni (6.35)
^n+q,-m , i f  «/ + ? ;>  ni

Note that, in each case 7(CJ,) =  n/ -f- qi, so that j(CJ^k) =  Hi^c ^ =
l{Cck) +  l{CTak), and therefore, '^{CT) =  m{CTc).

We now compare weights of C!Fc and CT. By the choice of the feedback
gains as in (6.34), uj{CTc =  i’cid^p) and u>{CT) — tf}{d,p) are both
polynomials in p. By definition of CTc we have

K K
o.(CJ^,) =  n  · "(C ·^ /) ■ n  n

Jt=l Jt=l /€C*
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SO that

deg tpc(d, ·) -  deg tpj(d, +  ^^9 ^ii(d, ■) (6.36)
=̂1 leCf,
K

=  deg ‘ipf{d, ·) +  53 Qi- (6.37)
fc=i teCk

On the other hand, by construction of CJ=', we have

—  ̂ _  
deg iP(d, ·) =  deg V>/(d, ·) +  53 53 deg xl>’l{d, ·)

A:=l /6/:*
K

=  deg rPf(d, ·) +  E  E  «/ +  9h 
k=ileCk

where the last equality follows from (6.34) and (6.35).

(6.38)

(6.39)

As a result, associated with every cycle family which includes a 
coupling edge, we have another cycle family which includes no coupling 
edges such that j(C ^ ) =  and deg ^(d, ·) > i^,(d, ·) . The proof then
follows the same lines as the proof of Theorem 4.2 on letting p OO.



Chapter 7

CONCLUSION AND  
SUGGESTIONS FOR 
FURTHER RESEARCH

This thesis concerns a qualitative analysis of certain (potential) system 
properties, namely, pole assignability, stabilizability and observability. In the 
following, while we summarize and comment on the results of each chapter, 
we also give suggestions for points which need further studying.

We know that the well-known result of Brasch and Pearson [49] which 
states that all the poles of a controllable and obser\^ble system can be 
assigned arbitrarily using a dynamic feedback compensator of order L =  
min{Lc,Lo} — 1, where Lc and Lo are the controllability and observability 
indices of the system, is overly sufficient. This can be explained by the fact 
that their algebraic criterion does not take into account the structure of the 
system, which actually plays the most important role in the solvability of 
the problem. In Chapter 3, we investigate arbitrary pole assignability as a 
structural property of the system by means of digraphs and prove two main 
theorems, namely. Theorem 3.1 and Theorem 3.2, that provide graphical 
sufficient conditions for structural pole assignability. Indeed, our results 
show that, in some systems for which we would normally attempt to use 
dynamic output feedback in order to place all the poles at desired locations,

124
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it is sufficient to use constant output feedback or at least a compensator of 
smaller order. Furthermore, the conditions, being in terms of the digraph, 
turn out to be sufficient for generic pole assignability, too. We prove that 
certain classes of systems which are known to be generically arbitrarily pole 
assignable satisfy the conditions of one or the other of these two theorems, 
also demonstrating the nontriviality of the theorems.

Note that Theorem 3.2, which is a slightly generalized version of 
Theorem 3.1, represents a special case of Corollary 3.1, stated in graph- 
theoretic terms. It corresponds to the case when of (3.11) contains a 
single quadratic term and it seems possible to obtain more general results 
by considering modifications of this theorem to cover other forms of xj)̂ . For 
example, in showing the pole assignability of structurally controllable and 
observ'able systems with dynamic output feedback, via Theorem 3.2, we had 
to limit ourselves to a class of systems with a certain structure. However, 
as verified by Example 3.9 of Section 3.3.2, modifying Theorem 3.2 somehow 
to include the case when xj)k contains linear terms in addition to a single 
quadratic term might solve this problem. On the other hand. Corollary 3.1 is 
still a special case of some other result, namely. Lemma 3.2, which possibly 
has hints for characterizing a broader class of pole assignable structures.

In Chapter 4, we extend the approach used in the preceding chapter, to 
investigate structural stabilizability. Assuming high gain feedback, we state 
and prove three results each characterizing a class of structurally and at 
the same time generically stabilizable systems. Similar to the situation in 
Chapter 3, the first two problems in this chapter describe special cases of the 
algebraic result of Lemma 4.1. This lemma demands a very limiting structure 
for the coefficients of the closed-loop characteristic polynomial which might 
probably be relaxed, hence allowing for more general graphical results on 
stabilizability.

In Chapter 5, we present a graphical interpretation of the observability 
matrix and provide a new graphical criterion necessary and sufficient for the 
structural observability of a system. Generic obserrability index is defined
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and lower and upper bounds for it are obtained. We actually aimed at 
but were unsuccessful in developing a graphical interpretation of the generic 
observability index which would have possibly led to a graphical method to 
compute the index. This requires checking the generic linear independence of 
rows with elements which are not necessarily algebraically independent and 
hence it is extremely difficult to progress in this way. An alternative way 
of attacking this problem might be through consideration of Rosenbrock’s 
extended observability matrix instead of the regular obser\'ability matrix.

Chapter 6 considers genericity of some well-known results on pole 
assignability and stabilizability of classes of systems with certain structures, 
using an algebraic approach in conjunction with some purely graph-theoretic 
results. In addition to the cases studied here, it might be worthwhile 
to consider the problem of stabilizability using dynamic output feedback 
for other classes of systems, for example for interconnected systems whose 
subsystems have stable zeros.
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