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ABSTRACT

MODELING AND ANALYSIS OF ISSUES IN HUB 
LOCATION PROBLEM

Bahar Yetiş Kara 
Ph.D. in Industrial Engineering 

Supervisor: Assoc. Prof. Barbaros Ç. Tansel 
September, 1999

The hub location problem has been around for more than 10 years. The first 
mathematical model was formulated by O’Kelly (1986) which is a quadratic 
integer program. Since then, nearly all of the researchers in this area have con­
centrated on developing ’good’ linearizations. However, there are many aspects 
of the problem that need to be analyzed. In this dissertation, we investigate 
some of these issues. We first study the application areas of the hub location 
problem and clarify the underlying assumptions of the real world problems 
which lead to the customarily defined hub location problem. We identify a 
certain problem characteristic of cargo delivery systems, which is one of the 
major application areas of the hub location problem, which is not satisfacto­
rily modeled by means of the customarily defined hub location models. We 
propose a new hub location model that captures the specific requirements that 
are particular to cargo delivery systems. Another issue that we concentrate on 
is the identification, modeling and analysis of the hub location problem under 
different performance measures, namely minimax and covering criteria. We 
propose new integer programming models for the hub location problem under
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minimax and covering objectives. Both of the new models are the result of a 
different way of approaching the problem and their computational performance 
is far more superior than the performance of the various linearizations of the 
basic models proposed for these problems in the literature.

Key words: Hub Location Problem, Modeling, Complexity, Linearizations



ÖZET

ANA DAĞITIM ÜSSÜ YERSEÇİMİ PROBLEMİNİN
İNCELENMESİ

Bahar Yetiş Kara
Endüstri Mühendisliği Bölümü Doktora 

Tez Yöneticisi: Doç. Dr. Barbaros Ç. Tansel 
Eylül, 1999

Ana dağıtım üssü yer seçimi problemi 10 yıldan daha uzun bir süredir lit­
eratürde yer almaktadır. Bu konudaki ilk matematiksel model 1986 yılında 
O’Kelly tarafından ortaya konulan quadratik tamsayılı programlamadır. 
O’KelIy’nin bu çalışmasından sonra ana dağıtım üssü yer seçimi problemi 
üzerinde çalışan araştırmacıların büyük bir kısmı bu temel modelin linearizasy- 
onu üzerinde yoğunlaşmışlardır. Oysa ki ana dağıtım üssü yer seçimi problem­
inin incelenmesi gereken daha pek çok boyutu bulunmaktadır. Biz bu doktora 
çalışmasında bu boyutların bazılarını inceledik. Öncelikle ana dağıtım üssü 
probleminin uygulama alanları üzerinde bir araştırma yaptık. Bu araştırma 
sonucunda gerçek hayattaki problemlerin literatürde tanımlanan ana dağıtım 
üssü modeline dönüşebilmesi için gereken varsayımları ortaya çıkardık. Bu 
çalışma sırasında, ana dağıtım üssü problemlerinin önemli bir uygulama alanı 
olan kargo dağıtım sistemlerinin önemli bir özelliğini modellemede temel ana 
dağıtım üssü modelinin yetersiz kaldığı bazı durumları keşfettik ve bu özelliği de 
rnodelleyen yeni bir ana dağıtım üssü modeli geliştirdik. Bu doktora çalışmasında 
üzerinde durduğumuz bir diğer konu da ana dağıtım üssü modelinin farklı
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performans ölçütleri altında incelenmesidir. Ana dağıtım üssü problemi için 
minimax ve kaplama (cover) ölçütleri için yeni modeller geliştirdik. Her iki 
problem için geliştirmiş olduğumuz yeni modeller ana dağıtım üssü problem­
lerinin farklı yaklaşımlarla incelenmesi sonucu ortaya çıkmış modeller olup, 
literürde bu ölçütler için geliştirilmiş olan modellerden çok daha iyi perfor­
mans göstermişlerdir.

Anahtar sözcükler: Ana dağıtım üssü problemi, Modelleme, Optimizasyon, 
Linearizasyon teknikleri
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Chapter 1

Introduction

This thesis is on modeling and analysis of issues on hub location problems. The 
generic hub location problem can be stated as follows: There are n demand 
nodes, of any kind, each of which generates and/or absorbs demands. Exam­
ples include cities with passenger or cargo flows between cities, and computers 
with flow of data packets/messages in between. The main problem involves 
determining the locations of hubs and the allocation of demand nodes to hubs 
so as to carry the total traffic from origins to destinations via hubs to mini­
mize a cost function. The hubs are consolidation and dissemination centers. 
Flows from the same origin with different destinations are consolidated on their 
route to a hub facility and are combined with the flows with different origins 
but same destinations. Thus, hubs replace direct flows with indirect ones.

The process of consolidating and disseminating flows is referred to as 
‘hubbing’ in the literature. Hub location is a rather new research area which 
started with a quadratic integer programming (IP) formulation of O’Kelly 
(1987). Since then, the literature is focused on developing ‘good’ linearizations 
for the O’Kelly’s model and some heuristics. However, real world applications 
require the consideration of different phenomena which have not been covered 
in the original model. Thus, the literature suffers from lack of different mod­
eling issues. In this thesis, we analyze the problem structure of real world
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applications to identify their requirements. The analysis of cargo delivery sys­
tems (which is an application area of hub location problems) leads to a different 
problem that we call the Latest Arrival Hub Location problem. Another issue 
that deserves attention is on the modeling and analysis of the hub location 
problem under different performance criteria, e.g. minmax.

In this thesis, we first analyze the problem structure of the application 
areas of hub location problem : airline systems, cargo delivery systems, and 
telecommunications network design. We search answers to such questions as 
why these systems have the hub structure, what the basic assumptions or 
restrictions are, and under what circumstances these problems can be unified. 
We also identify the factors affecting the problem parameters and costs in each 
application area. This analysis is presented in Chapter 2.

In Chapter 3, we first identify the ‘transportation network’ aspect of the 
hub location problem as a distinguishing feature. We then provide a combi­
natorial formulation which takes into account the transportation network on 
which the cross traffic is carried. The existing studies in the literature on hub 
location have almost exclusively focused on the p-hub median problem which 
involves the minimization of total cost. In Chapter 3, we also present the liter­
ature on the p-hub median problem which involves an initial IP and different 
linearizations. We then provide 3 new linearizations for the initial model which 
are also explained in the same chapter.

Once the locations of hubs are known, the p-hub median problem turns 
into the hub allocation problem which is a provably difficult problem. We show 
in Chapter 4 that the allocation problem is NP-Hard by first proving that it is 
equivalent to a well known location problem, the restricted multimedian loca­
tion problem with mutual communication (restricted MMC). A byproduct of 
this analysis is a strengthened version of a previous theorem of Tamir (1993) 
on the complexity of the restricted MMC problem. Additionally, we identify 
solvable cases of the allocation problem. These cases are in two categories: the 
ones utilizing the structure of the flow graph, and the ones utilizing the struc­
ture of the transport network. The definition and utilization of the transport
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network in this problem area is the result of our proof of equivalence of the 
allocation problem with the restricted MMC. The use of a transport network 
leads to interesting results for the allocation problem which are also discussed 
in Chapter 4.

Other criteria different than the total cost criterion is essentially unstud­
ied in the literature. We analyze the hub location problem under the minimax 
criterion. The minimax criterion is traditionally used in location applications 
to minimize the adverse effects of worst case scenarios in providing emergency 
service. In hub location, even though emergency service protection does not 
seem to be an issue, the minimax criterion is still important from the view­
point of minimizing the maximum dissatisfaction of passengers in air travel and 
minimizing the worst case delivery time in cargo delivery systems. The latter 
case is particularly important for delivery of perishable or time sensitive items. 
In Chapter 5, we analyze the hub location problem under minimax criterion, 
the p-hub center problem. We first prove that this problem is NP-Hard. We 
then focus on different linearizations of the basic model, proposed by Campbell 
(1994a) as well as a new model that we propose for this problem. We study 
the computational performances of these models. It is known from location 
literature that covering problems have an inverse relationship to center prob­
lems. Campbell (1994a) also defines the hub covering problem as it may prove 
to be a useful model in solving the p-hub center problem. In Chapter 5, we 
also analyze the hub covering problem. Utilizing its close relation to the p-hub 
center problem, we first prove that it is NP-Hard. We then focus on different 
linearizations of the basic model proposed by Campbell as well as a new model 
of the problem and study their computational performances. Both in the p-hub 
center and hub covering problems, the computational performance of the new 
models that we propose is far more superior than the linearizations of the basic 
models in terms of both CPU times and core storage requirements. This shows 
that it is sometimes more important to devise a new model for a given problem 
than focusing solely on improvements that come from different linearizations 
of the basic model.

We realize in our analysis of cargo delivery systems that the structure of
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the customarily defined hub location problem is not appropriate for the require­
ments of the real problem, especially for overnight delivery firms. Overnight 
delivery firms typically require a minimax type objective. Even though the 
p-hub center problem has a minimax objective, it is not a realistic model for 
overnight delivery since it focuses solely on the travel distances from origins to 
destinations without paying attention to how this travel actually takes place 
in the real world. One particular aspect that has been overlooked is the fact 
that any carrier departing from a hub must wait for the arrival of all incoming 
units that will be loaded onto that carrier. When there are hard constraints on 
the maximum delivery' time, as in the case of cargo delivery, it seems necessary 
to pay attention to waiting times at hubs to correctly compute the maximum 
delivery time (Hall 1989). In chapter 6, we formulate a new model which cor­
rectly computes the delivery times. We call the resulting model the Latest 
Arrival Hub Location model. We study various aspects of the latest arrival hub 
location problem including modeling variations, computational aspects, and 
the analysis and interpretation of the model output, meanwhile investigating 
answers to various what-if type questions in the same chapter.

The last chapter is a short summary of the thesis and highlights our 
contributions to the existing literature.



Chapter 2

Rubbing in Real Life

In this chapter, we analyze the structure of three real world applications in 
which hubbing is most often encountered.

2.1 Airline Systems

Consider an airline company which gives flight services between pairs of, say, 
n cities. It is possible that there will be cross-traffic between every city pair. 
-A. crude approach to provide the required flight services between the city pairs 
is to assign a direct flight between each pair of cities. This would result in 
^2) flight segments which results in a highly complex and expensive network 
structure (Yu 1998). For example, Turkish Airlines (THY) gives, flight service 
in Turkey between 29 cities. If THY assigns a direct flight between each pair 
of cities, it would end up with 406 flights segments! However, THY provides 
the required service with only 38 segments using the hub structure shown in 
Figure 2.1.

Notice that instead of providing direct flights between every city pair, all 
flights are consolidated at 3 cities: Ankara, Istanbul, and Izmir. For example, 
any passenger flying from Ağrı to Edremit needs to follow the following route:
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Figure 2.1; Segment Structure of Turkish Airlines 

Ağrı — > Ankara — > Istanbul — y Edremit

Toh and Higgins (1985) analyze the economical profitability of hubs in 
airline systems. They classify the advantages of hubbing in two categories: 
Operational and Marketing.

• Operational:

-  Hubbing allows indirect connections between city pairs

* which cannot generate enough volume of traffic

* which are too far from each other

for direct flights.

-  Indirect flights lead to serving all city pairs with minimum aircraft 
availability

-  Shorter nonstop flows allow the use of smaller aircraft with greater 
frequency and higher utilization rates.

-  Hubbing allows smaller processing costs since maintenance, servic­
ing, and apron services are centralized at a hub city.
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Marketing:

-  Flight arrivals/departures can he synchronized to elevate passenger 
load factors.

-  Hubbing establishes regional identification and domination as a re­
sult of more frequent flights.

Kanafani and Ghobrial (1985) analyze the impacts of hubbing on airport 
economies. The authors also provide regional air networks for Delta Airlines 
for 1960, 1970, and 1982. Hubbing structure has b 3gun to emerge in the 
United States in 1970 and it has become dominant as of 1982. Ceha and Ohta 
(1994) as well as Ghobrial and Kanafani (1995) analyze hubbing in airline 
systems. O’Kelly (1986a) is the first thorough study of this problem. After 
analyzing Civil Aeronautics Board Sample Survey 1970 Report of the United 
States Intercity Passenger Stream, the author points out that “... several air 
carriers operate a highly simplified sparse network organized around hubs...” .

In view i>f the summarized advant.ages of hubbing, it is clear that the 
network of the segment structure of airliu.· systems will be in the hub network 
structure; Certain nodes will be selected as hubs, and 'TOSs-traffic between the 
nodes will be routed via these hubs.

We now analyze the cost paraincrter in airline 33'^stems. We base our 
analysis on Meyer and Oster (1984) and O’Connor (1989).

The total cost is usually aggregated from two factors:

• costs of opening hubs,

• costs of assigning flights between pairs of cities.

• The opening cost at city i, f{i): Once a node is selected as a hub, then 
the airport corresponding to that node will be the place where most of the 
‘processings’ regarding the aircrafts and passengers are done. The sum 
of the costs of these processes constitutes the cost f{i). They include



CHAPTER 2. HUBBING IN REAL LIFE

-  Maintenance burden: overhead costs related to the upkeep and re­
pair of flight equipment and other property such as the administer­
ing of stockrooms, the luviping of maintenance records, scheduling 
and servicing of maintenance operations.

-  Operating costs related to

* Reservations and sales.

* Advertising and publici:y.

* Traffic servicing including ticketing and baggage handling.

* Terminal gate and lounge facilities.

-  Cost of servicing aircraft which includes the routine services such as 
washing the aircraft and cleaning the passenger cabin.

-  Overhead costs which includes the expenses of maintaining the or­
ganization such as personal functions, planning and general man­
agement.

• Cost of assigning a flight between two cities, c{i,j), corresponds to the 
sum of costs which result from having a flight scheduled between cities i 
and j. It will incur the following types of costs:

-  Fuel cost: Each flight consumes a fixed amount of fuel for taxiing, 
take-off and landing. The rest of the fuel consumption varies by the 
distance or time flown.

-  Crew cost includes the salaries of aircraft crew. This cost is depen­
dent on the duration of the flight since people are paid according to 
that.

-  Direct maintenance cos·:: This cost includes the cost of labor and 
material directly attributable to the maintenance and repair of air­
craft including the periodic overhauls and other flight equipment. 
This cost is also dependent cn the duration of the flight.

-  Miscellaneous flying and Oil cost: Miscellaneous flying and oil ex­
penses includes the cost for other kinds of material which are needed 
for a flight. They are also dependent on the flight duration.



-  Passenger service: This includes the cost of food and of providing 
cabin attendants. This cost is also dependent on the flight duration.

-  Landing fee: This cost is independent of the flight duration. This 
fee is to be paid for every landing of an aircraft and so it is a fixed 
cost.

Note that all components of c{i,j) except landing fee are travel time 
dependent and they are customarily defined as $ per unit time costs.
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Since the cost components are independent of the amount of traffic car­
ried, this will lead to a model in which the cross-traffic between origin-destination 
pairs is not apparent in the objective function. If that sort of a model were 
applied to, say, Turkish Airlines, it may ,-esult in choosing, say, Edremit, Siirt, 
and Trabzon as the hub cities. Making a trip by passing through Ankara may 
seem reasonable lor passengers, but they may question the situation if they 
were forced to their destination by passing through, say, Edremit. In fact, 
even though the costs that we have explained in c(i,j) are not defined as per 
passenger costs in the optimization models that seek to find the location of hubs 
and allocation of nodes, they are transformed into per passenger costs. The 
main reason for that is to reflect the marketing issue in the models. Revenue 
of an airline system is based on the passenger fees and the volume of traffic. 
This may also be a reason to incorporate per passenger costs into the models. 
There may be ways to transform the explained costs to the per passenger cost 
on each arc. For simplicity, researchers usually use the length of an arc as 
the cost of carrying one passenger over that arc. Since all the significant cost 
components of c(i,j) are dependent on tlie time of the flight duration which is 
directly transformable to the length of the traveled arc, taking the length as 
the cost seems reasonable.
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2.2 Cargo Delivery Systems

Consider a firm which carries cargo between n demand centers. If the firm as­
signs a carrier (aircraft/truck) for each demand center pair, it will require 
carriers and most of the carriers will not be fully utilized (Yu 1998). Thus, as 
in the airline case, it is again economically infeasible to give direct service be­
tween each demand center pair and so hubbing is encountered in cargo delivery 
systems.

Another factor which is utilized in the service network structure of cargo 
delivery firms is the usage of stopovers.

stopover

Figure 2.2; A stopover

If stopovers exists, the carrier stops at each stopover city and collects its 
cargo before reaching the hub. On the way back, the cargo of the stopover cities 
are delivered by the same carrier. Stopovers save the companies investment in 
carriers and also on labor and fuel and so used frequently by cargo delivery 
firms. Kuby and Gray (1993) give an analysis for the case of Federal Express 
which show that a hub network with stopovers is economically more profitable. 
They also point out that the cargo should arrive at its destination in 15 hours 
(between 5:30 p.m. and 8.30 a.rn. the next morning). Another study for cargo 
delivery systems is conducted by Marsten and Muller (1980). The authors 
analyze the case of The Flying Tiger Line which used to operate under a single 
hub strategy. They proposed new hubs.

The design problem of cargo delivery systems is, again, that of deciding 
on the locations of hub nodes and determining the route for cargo between 
every city,,pair depending on the locations of these hub nodes. In the delivery 
business service, time is more important than its cost. As pointed out by Air 
Cargo World Magazine, “delivery is time-sensitive rather than price-sensitive... 
customers are willing to pay for time ...”. Thus, the objective may be to 
minimize the total cost, or to minimize the maximum delivery time between
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an origin/destination pair (especially for overnight delivery firms), depending 
on the firm’s strategy. So, we consider the cargo delivery firms in two categories: 
cost sensitive and time sensitive. We first analyze the cost parameters for the 
cost sensitive case. This analysis is based on O’Connor (1989). Total cost is 
again aggregated from two factors: cost of declaring a city as a hub, /(i), and 
cost of providing direct service between two nodes, c{i,j).

• The setup cost for ‘processings’ operations, f{i), includes :

— Cost of sorting and allocating. Cargo from many demand centers 
come to the hub at batches. Sorting and allocating these cargo 
according to their destinations is a major cost component.

— Cost for unloading arriving carriers and loading the leaving ones.

— Cost for storing, guarding, and providing proper protection for the 
waiting cargo.

— Cost for paperwork which is used to tell shippers where their cargo 
is, or to keep statistics.

• Cost of providing service between two nodes i and j ,  c(i,j), includes:

— Cost of allocating aircraft/truck.

— Fuel cost for aircraft/truck depending on the travel time.

— Crew cost, which is the salary for the driver or aircraft crew.

— Direct maintenance cost of aircraft/truck. It includes both labor 
and equipment cost used for maintenance.

— Equipment cost, i.e. the cost of aircraft/truck depreciated to unit 
time of usage.

— Other miscellaneous and oil costs which are encountered by carriers 
in order to ‘move’.

If the objective is to minimize the maximum delivery time, then the 
‘cost’ parameter is, in fact, the duration of the corresponding journey. In 
order to identify the factors which constitute the cost, we need to analyze
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how the delivery actually takes place. We base our analysis on Sigafoos and 
Easson (1988). The typical overnight delivery firm picks up packages from 
customers at a local station by 5:30 p.m. with a promise to deliver them to 
their destinations by 8:30 a.m. the next morning. Each incoming package at 
the local station is labeled (e.g. fragile, hazardous, flammable) and assigned 
a bar code that includes the zip code of the destination. The processed units 
are loaded onto an aircraft and are delivered to the hub which serves that local 
station. There are two major operations at any hub: unloading the arriving 
aircrafts and loading the departing ones. The packages that are unloaded from 
arriving aircrafts are fed into a conveyor system that is equipped with manual 
or automatic bar code readers. The bar code readers at the feeder lines read 
the zip code information and route the packages to the specific area of the hub 
where they can be reloaded onto the correct cargo containers. The outgoing 
aircraft is ready to depart when all the cargo for its destination is loaded onto 
it. If a departing aircraft from a hub is destined to go to a nonhub city, then it is 
unloaded at the local station of its final destination and the unloaded packages 
are delivered to the consignees by 8:30 a.m. An aircraft that goes from a 
hub to another hub goes through the unloading, reloading, and the associated 
sorting/routing operations at the second hub to have its cargo delivered to the 
final destination cities that are serviced from that hub.

As is evident from the above description, the delivery time from an origin 
г to a destination j  consists of two components: flight times and the transient 
times spent at hubs between flights. Then ‘for a time sensitive cargo delivery 
firm’ the problem is to decide on the locations of hubs and the route structure 
for each pair of nodes so as to minimize the latest arrival time at any consignee.

2.3 Communication Network Design

Communications network is the general name given to networks which are in­
stalled to satisfy communication between ‘devices’ which ‘communicate’ (Stallings 
1991). The terms ‘communication’ and ‘communicating device’ are specified
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according to the usage area. For example, if the devices are computers and if 
communication is data transfer or program execution, then we have computer 
communication networks. On the other hand, if devices are telephones and 
if communication is phone-talk, then we have telephone networks. The basic 
structure of all communication networks is the same. Considering the fact that 
the number of devices which communicate is typically very large, it is clear that 
providing direct connection between each pair of devices is impossible. Com­
munication between any pair of devices is satisfied through a ‘communication 
network’.

There are some special devices which are used to satisfy communication 
needs in a communication network. Some examples from computer communica­
tions are: multiplexer, concentrator, router, bridge, gate, switch, hub, repeater 
etc. They all have different special characteristics, but their main purpose in 
the communication network is to allow data to pass on its way to its destina­
tion. Multiplexers and concentrators are used to utilize link capacities, whereas 
switchers are used for switching the flowing data. Bridges and routers are used 
for interconnecting geographically distant devices. Hubs and repeaters repeat 
the incoming information on their output line. Depending on the use of these 
special devices, the topological structure of communication networks, and the 
hierarchy of the network change.

The topological structure of communication networks is hierarchical. The 
number of hierarchy levels depends on the size (both geographical, and the 
number of devices) of the communication network. The lowermost layer is 
composed of communicating devices, e.g. computers, telephones etc., and the 
upper layer(s) is composed of special devices, e.g. concentrators, hubs, etc.

The topological design problem of communication networks is customar­
ily defined for a two-level hierarchical structure. In fact, any problem which 
require more than two levels of hierarchy can be analyzed by taking into ac­
count two levels at a time sequentially, from down up (Stallings 1991). In a 
two layered network, the upper layer is called the ‘backbone network’ and the 
lower layer is called the ‘local access network’. Topological design problem has
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three phases (Gavish 1991, 1992):

• locating backbone nodes

• designing the backbone network

• designing local access network and connecting local access network to the 
backbone network.

Each device in the local access network sends its message using the backbone 
nodes. Depending on the position of the destination device, backbone arcs 
may or may not be used. In order to satisfy communication between each pair, 
a path must exist from each device to at least one backbone node. Physical 
links are being established to satisfy this communication. In communication 
networks there are no physical carriers. Message from any device travels along 
the network until it reaches the destination device. In order to utilize the 
established links, ‘multidrop lines’ are used which means several devices are 
attached on a line and they use the same entrance to the backbone node. A 
message will flow through a link only if that link is empty at that moment. If 
the link is busy, the message either waits, or continues along its way by using 
another link (if exists).

Figure 2.3: A Multidrop Line

When installing a communication network, the set of potential locations 
for backbone nodes is given. The problem is to select which subset of this po­
tential location set will be used as backbone nodes and to determine the route 
structure of any communicating pair. Note that the set of potential locations 
for backbone nodes is not a subset of devices. This is one of the major differ­
ences between communication networks and airline or cargo delivery networks. 
In the first two application areas, hub locations are selected from among the 
demand centers whereas, in communication networks, hub (backbone node) 
locations are selected from a different set that does not include any demand
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centers (devices). In fact, this difference can be handled by enlarging the set of 
demand centers by adding to it the potential hub location set. The nodes cor­
responding to these locations will have zero demand, i.e. the flows originating 
or ending at these nodes will be zero.

For communication networks there are two types of costs: communication 
costs and cost of delay. The delay costs include the costs that result from 
queuing. In the literature, there are some models which include these costs in 
the form of expectations based on some underlying distribution. In this thesis 
we mainly concentrate on the communication costs.

Communication costs are of two types: setup costs and movement costs. 
As discussed in Klincewicz (1998) and in Altmkemer and Yu (1992),

• setup costs of hubs, f{i), include

-  investment for acquiring land for the multiplexers, concentrators etc.

-  all equipment costs which depend on the type of backbone node 
(concentrator, switch etc.)

• arc cost, c{i,j), includes

-  investment for acquiring land for the link

-  material and equipment cost such as cost of fiber, repeater etc.

-  if the line is leased, this cost represents the fixed charge paid to the 
company for using arc {i j ) .

For determining the route structure, the researchers prefer to specify the struc­
tures of local access and backbone networks, and analyze the problem according 
to that specification. Most commonly used structures are: complete, tree, star 
or ring structures for backbone networks and star or tree structures for local 
access networks.

For example, if backbone network is complete and local access network 
is a star tree, then any device will have connection with exactly one backbone 
node, and data will travel along 2 or 3 links before reaching the destination.
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Figure 2.4: Example of a Complete-star Topology

Problems which are in other structures can be handled by writing appro­
priate constraints to satisfy the required network structure in the final network. 
For example, Kim and Tcha (1992) analyze the case when the backbone net­
work is a tree and the local access network is a star tree. Lee, Ro, and Tcha 
(199.3) analyze ring structured backbone networks connected to a star type local 
access networks. Chung, Myung, and Tcha (1992) analyze the complete-star 
topology.

2.4 Structural Similarities and Différencies

Upto now we have identified 3 different real world application areas : airline 
systems, cargo delivery systems, and communication networks. The common 
properties of these systems are:

1) There are n demand centers and there is some sort of flow between these 
demand centers (people, cargo, data packets).

2) It is economically infeasible to give direct service between each pair since 
this would require connections which is too costly and results in a 
complicated network.

3) The flow between each pair is required to pass through some specific 
nodes which are called hubs. In airline or cargo delivery systems hubs 
are nodes for consolidating and disseminating flows whereas in communi­
cation networks they are used for switching or multiplexing data packets.



CHAPTER 2. HUBBING IN REAL LIFE 17

Besides these common properties, there are some area specific properties:

1) For cargo delivery systems there are two different problem types: cost 
sensitive and time sensitive. Both of them satisfy the 3 common proper­
ties explained above, but the design problem of the time sensitive cargo 
delivery systems has additional requirements.

2) Stopovers may be used in cargo delivery systems and multidrop lines 
may be encountered in communication networks. Such issues are not 
considered in airline systems.

3) In airline and cost sensitive cargo delivery systems, per passenger and per 
cargo costs are used which are called usage-based costs in the literature 
whereas in communication network design problems hub and link setup 
costs are considered.

The 3 common properties of the three problem areas are the basics of a 
problem known in the literature as the hub location problem. The hub location 
problem can be stated as follows: Given n demand centers with known cross 
traffic, and arc costs satisfying triangle inequality, determine the locations of 
hubs and the allocations of nonhub nodes to hubs so as to minimize the total 
cost. In terms of the allocation of nonhub nodes to hubs, there are two variates 
of the problem: the single-assignment allocation and the multi-assignment al­
location. In the single-assignment allocation, each node is assigned to exactly 
one hub whereas in the multi-assignement allocation each node can be assigned 
to many different hubs. A typical flow between an origin/destination pair {i,j) 
is then: i —> hubl —>■ hub2 —>■ j  where hubl =  hub2 allowed, i hubl, 
hub2 —)■ j, and hubl —>· hub2 are direct links . Having a direct link between 
i hubl, hub2 -> j  is a problem requirement (allocation phase) whereas 
the direct link between hubl —> hub2 is justified by the triangle inequality 
assumption on arc costs.

Because of this route convention of the hub location problem, we conclude 
that the customarily defined hub location problem has application in airline.
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or cargo delivery systems and in communications network design only under 
certain assumptions.

Airline systems: Restricts the route between each origin destination pair 
to at most 3 segments on each route, stopping only at hub nodes.

Cargo delivery systems: Applicable to cost sensitive cargo delivery sys­
tems when stopovers are not allowed. The route restriction explained for 
airline systems is also valid here. For time sensitive cargo delivery sys­
tems, even though the basic requirements of hubbing are the same (open 
p hubs, provide service to each node from hubs), there are additional 
restrictions to correctly compute transport times. This special problem 
has not been analyzed in the literature. We propose a new model for this 
problem which will be explained in Chapter 6.

Communication network design: Applicable to systems with complete 
backbone network without any multidrop lines.



Chapter 3

The p-Hub Median Problem

Most of the literature on the hub location problem is devoted to the p-hub 
median problem which is the problem of locating a fixed number, p, of hubs and 
finding the allocation(s) for each node based on the selected set of hubs while 
minimizing the total cost of travel. We provide combinatorial formulations of 
the p-hub median problem for both single and multi assignment cases.

3.1 Combinatorial Formulation

In the literature, the p-hub median problem is generally posed by its integer 
programming formulations. We first give a combinatorial formulation which is 
more compact and provides additional insights.

Let G = {N', E) be a connected transportation network with node set 
N' — ( 1, ...,n'} and arc set E. Without loss of generality, we assume that the 
nodes 1,..., n are the demand centers each of which generates and/or absorbs a 
positive flow from the rest of the nodes. The remaining nodes n -f-1, ...,n' are 
intersection points of the transport network, and neither generate nor absorb a 
flow, but act as transshipment points which allow the passage of flows. Let N  = 
{1,..., n} and refer to this set as the demand set. The arc set E  is composed of

19
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the links of the transportation network. For a surface transportation system, 
these arcs are the road segments whereas, for air transport, the arcs correspond 
to nonstop flight routes. Associated with each arc (i, j) G is a weight dij > 0 
which represents the cost of carrying a unit flow between its endpoints. In 
most cases, we may interpret this cost to be the physical distance between the 
endpoints of the arc. The length of a path in G is the sum of the weights of its 
edges. For each pair of nodes i , j  G N', let Cij be the length of a shortest path 
connecting i and j. Note that, under the assumption of a connected network, 
dj is always finite even if {i,j) ^ E. Note also that, 0 < dj < dij^i, j  G 
N',dj  = 0 iff i = j ,d j  = Cji and dj + Cjk > Cik^iG^k. Let Wij denote the 
flow from node i to node j  with Wij or Wji > 0 for i , j  G N  and Wij = 0 
otherwise. We define the cost network to be the auxiliary graph K  = {N, A) 
with node set N  and undirected arc set A =  {{i,j) ' i , j  ^ N}. Assign the 
weight Cij to each arc (i,j) S A. Note that the cost network is a complete 
graph on n nodes. In order to incorporate economies of scale resulting from 
the increased traffic between the hub nodes, the least cost of travel between 
the hub nodes is discounted by a factor a  (0 < a  < 1). Hence, the cost of 
carrying unit flow between two hub nodes k and r is ackr- The p-hub median 
problem can be defined using the transport network, G, or the cost network, 
K. Most of the models in the literature do not differentiate between these two 
networks and define the problem with respect to a ‘cost matrix’. However, 
how the entries of the cost matrix are defined is not very clear. In the papers 
that we are aware of in the literature, the problem is posed on a complete 
graph whose arc costs satisfy the triangle inequality. This graph corresponds 
to our cost network. The arc costs of the cost network, K,  are induced by the 
shortest path lengths of an underlying transportation network, G. We prefer 
to make a distinction between these two networks because the structure of the 
transportation network has a role in determining the difficulty of the problem. 
For example, as will be proved in the sequel, the allocation problem is NP-Hard 
for p = 3 even if the transport network is a star tree whereas it is polynomially 
solvable for general p if the transport network is a path. The transportation 
network aspect of this problem is first distinguished by Kara and Tansel (1997).
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The p-hub median problem is to select a subset H = { h i , h p }  of N'  and 
allocate the rest of the demand nodes to the hub nodes hi,..., hp. As discussed 
in Chapter 2, H C N  in airline or cargo delivery systems, and H C N' — N  
in communication network design. Because our focus is primarily on airline or 
cargo delivery systems, we follow the customary convention in the literature 
and assume that the hubs are selected from among the demand centers; that 
is, H C N .

Under the single assignment restriction, all the incoming and outgoing 
traffic of a node passes through the same hub. Define a{i) G if  to be the hub 
to which nod(; i is assigned. Then the cost of carrying a unit flow from i to j  
is :

C a { i )  +  0:^a(i)a(j)  +  ^a{j) j  (^ ) '

The single assignment p-hub median problem is, then:

min min ^  Wij{Cia{i)+aCaii)aU)+Caij)j) (2)
\H\=P CeN

For the multiple allocation case, once the hubs are fixed, the optimal 
allocations of nodes can be found directly by taking into account each pair of 
demand nodes separately (under the assumption that the arcs are uncapaci­
tated). The allocation for the pair (i,j) is determined by solving:

min (cih,+ocCh,h2 + Ch2 j) (3)/11

For a fixed value of i, the result of the minimization in (3) for different values 
of j  may cause demand center i to be allocated to different hubs. In fact, it is 
possible for a demand center to be allocated to all of the hubs. The multiple 
assignment p-hub median problem is then :

min X) Wij min {ci/n -f ach  ̂ + <̂/127} (4)HCN,
\H\=P
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3.2 Literature on Hub Location Problems

The hub location problem is first posed by O’Kelly (1986a) in which the author 
gives real world examples which operate under one-hub or two-hub strategies. 
O’Kelly points out the fact that ^2) segment requirements would drop to (n—1) 
if hubbing exists. Later, O’Kelly (1986b) analyzes the cost terms in a hub 
network and identifies the quadratic structure in hubbing. O’Kelly (1987) 
presents the first model of this problem which happens to be a binary program 
with a quadratic objective function. He considers the case with single allocation 
and provides the following quadratic integer programming formulation, (QP), 
which is later considered to be the basic model for hub location problems in 
the literature.

Let Xjk be a zero/one variable which takes on the value 1 if node j  is 
assigned to hub k and 0 otherwise. Note that Xkk = 1 means there is a hub 
at node k and Xkk = 0 means there is no hub at node k. With the parame­
ters N,Wij,Cij,p, and a as defined in Section 3.1, the formulation provided by 
O’Kelly (1987) is :

(QP) min ^ikXik A ^^kmXikXjm T ^2 ^jmXjm}k m
S.t

E-Yi-k

X i kîk 
Xik

= 1 V ie iV (5)

= P (6)

< Xkk V z, A: e N (7)
G {0,1} y i , k e N (8)

Constraints (5) and (8) ensure that each node is assigned to exactly 
one hub whereas constraint (7) allows assignments to hub nodes only. The 
restriction on the number of hubs being p is satisfied by constraint (6). This 
model is linearized by many other researchers. Initial linearizations of Aykm 
(1995a), Campbell (1996), and Skorin-Kapov et al. (1996) are based on defining 
four indexed variables, namely Xijkm to replace the product terms XikXjm- 
Among the three, that of Skorin-Kapov et al.’s happens to perform best in



CHAPTER 3. THE P-HUB MEDIAN PROBLEM 23

terms of solution time requirements on standard optimization tools such as 
CPLEX. We will analyze their model later in sections 3.3.1 and 3.3.2. The 
best integer programming formulation (in terms of CPU time) for the p-hub 
median problem is due to Ernst and Krishnamoorthy (1996), (1998a) which is 
a multicommodity flow based formulation and will also be analyzed in sections 
3.3.1 and 3.3.2.

O’Kelly and Miller (1994) develop a categorization for hub location prob­
lems. They identify three criteria as a basis of their categorization.

• the structure of the connection between hub nodes

• the allocation structure (single/multi)

• the existence or nonexistance of direct connections between nonhub ori-
gin/destination pairs

Note that with our formulation of the cost matrix, we do not need to make 
the first distinction. The standard hub location problem corresponds to a hub 
connection structure which is a complete graph, single allocation structure, and 
nonexistence of direct connections between nonhubs. Aykm (1995a) develops 
an integer programming formulation for both single and multiple allocations 
where there is a subset A of demand centers for which direct service is allowed.

Aykin (1994), Campbell (1996), Klincewicz (1991), (1992), (1996), O’Kelly 
(1992a), O’Kelly et al. (1994), Skorin-Kapov et al. (1994) and Ernst and Kr­
ishnamoorthy (1996), (1998a), (1998c) develop several heuristics for the p-hub 
median problem. Lower bounds for the p-hub median problem are analyzed 
by O’Kelly (1995) and Ernst and Krishnamoorty (1998b).

Since the literature on the hub location problem is mainly devoted to 
the p-hub median problem, the literature on other hub location problems are 
sparse and so we will discuss them here. Campbell (1994a) is the only study 
which discusses performance measures other than the total sum criterion. He 
proposes integer programming formulations for the p-hub median, p-hub cen­
ter, uncapacitated hub location, and hub covering problems. Among these
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problems, the p-hub center and the hub covering problems have not received 
any attention in the literature. We analyze these problems in Chapter 5.

O’Kelly (1992b) introduces the planar p-hub median problem and Aykm 
(1995b) develops heuristics for this problem. Campbell (1994b) presents a 
survey of hub location papers.

3.3 Different Linearizations of the Basic Model

In this section, we analyze the computational performance of different lineariza­
tions of the basic model (QP) both for single and multi assignment cases. Apart 
from the linearizations of the literature, we also propose new linearizations for 
the single assignment case.

3.3.1 Single Allocation

In the literature, there are mainly four different linearizations for (QP); the 
ones provided by Aykm (1995a), Campbell (1996), Skorin-Kapov et al. (1996), 
and Ernst and Krishnamoorthy (1996).

The first three linearizations are similar to each other. They define 
Xijkm = Atyfe * Ajm and develop integer programming models which differ in 
forcing that equality linearly. Among all, the best one (in terms of CPU re­
quirement for CPLEX 5.0) is the one provided by Skorin-Kapov'et al. (1996). 
Their model is also the one whose linear programming relaxation is tightest.
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With Cijkm = c-ik + CiCkm + Cjm the model provided by Skorin-Kapov et al. is: 

(SK) min E E E E  i j  C i j  krn  ̂ i j  k m
i j  k TTi

S.t
^ i j k m y  i , j ,k  E N (9)

X j m 'i ^ N (10)

{0,1} V i,j, k ,m E N (11)
(5) -  (8)

The constraints (9) - (11) are to satisfy that Xtjkm = 1 if and only if Xik = 
Xjm = 1· The authors report that the LP relaxation of their linearization has 
usually ended in all integer solutions (74 of 80 in CAB2 data test which will 
be explained later).

The linearization of Ernst and Krishnamoorthy (1996), on the other hand, 
is a different approach. They utilize a multicommodity flow structure in their 
model. They consider output flow of each demand center as a diflferent com­
modity and model the related multicommodity problem. The authors define 
Zii to be the amount of flow of commodity i (flow emanating from node i) that
is routed through hubs k and 1. With Oi = E ^ p  and A  = E  A'i model

i 3
is:

(EK) min EE{Oi + Di)XikCik + E E E a C k iZ i
i k i k I

S.t.
= O iX i , -E w i jX jk  ' ^ i , k e N  (12)

k̂l >̂ 0 ' i i , k , l  g N  (13)
(5) -  (8)

where constraint (12) is the flow balance equation.

As seen in Table 3.2, the computational performance of this model solved 
via CPLEX is very good. The CPU time of (EK) is even better than the CPU 
time required to solve the LP relaxation of (SK).

At the time of our study of the p-hub median problem, the EK model
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was not in existence, so we have independently developed three different lin­
earizations for this problem:

• The first linearization is an adaptation of the linearization of Kettani and 
Oral (1993) for the Quadratic Assignment Problem (QAP) to the p-hub 
median problem.

• The second linearization is based on a multicommodity flow structure 
where the flow between each pair of nodes is taken as a different com­
modity.

• The third one is based on a reinterpretation of the quadratic objective 
function.

The first linearization which is based on Kettani and Oral’s approach
defines a new variable Z) CijkmA ĵm 3-nd forces this equality by

j ^
appropriate lower and upper bounds. The IP model of the hub location problem 
linearized via this approach, (KTl), is:

(KTl) min y:EWrk^ih + 'iik}i k
S.t.
€ik > EEQ jkmXjrn~D-,X , ,  + D + { l -X .k )  y i , k , e N  (14)j ^

> 0 
(5) -  (8)

y i , k  e N  (15)

where and are lower and upper bounds for the variable ei*.. The authors 
suggest that these bounds can be determined by using the procedure suggested 
by Kaufman and Broeckx (1978). This results in:

D.. = min D E  CijkmX jm 
j

s.t. (5 )-(8 )

and D — max y 1 Z> Elij ic.rn.X-i

s.t.(5) -  (8)

While solving the model (KTl), the calculation of the lower and upper bounds 
DH- and requires solving 2rP IP’s via CPLEX. Once the D~f. and for all 

variables are calculated, the CPU time requirement of (KTl) would be very
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small. The major part of the CPU time is due to the preprocessing required 
to form D~î  and values. It is possible to use different and easy to calculate 
methods to find correct bounds for the variable etk, but then, the bounds will 
not be tight enough and the solution time of (KTl) would increase. As seen 
in Table 3.2, the computational performance of (KTl) is not satisfactory.

In the second linearization that we propose, we interpret flow between 
each city pair as a different commodity. We define Zijkm to be the amount of 
commodity (i,j) that is routed through hubs k and m. The resulting multi- 
commodity model is;

(KT2) min E E (a :  +A)ATifc +  E E E E  C'ijkm^ijkm
i k i j  k HI

S.t.
[ W i j  +  W j i ) X i k  { ' Wi j  +  W j i ) X j i ^  — X i j k m

m

^ijkm ^  0
(5) -  (8)

\ f i , j , k € N  (16) 

V i,j, k ,m E: N  (17)

where (16) is the flow balance equation. The structure of the model (KT2) is 
similar to that of flow with gains model. Thus, we initially expected that the 
CPU time requirement of (KT2) would be better than the other linearizations. 
However, the linearization of Ernst and Krishnamoorthy (EK) is better than 
that of (KT2). The structure of (KT2) is similar to that of (SK) and the 
computational performance of (KT2) is competitive with that of (SK) as seen 

in Table 3.2.

The third linearization that we propose in this report happens to be 
the best linearization of the p-hub median problem in terms of core storage 
requirements. For that linearization, we first define

A  = + OCCrk)Xir I Xjk (18)
k '■

E  E (^r T ^Ok T CkAXirXjm
k r

andSince E Xik = 1, we have ^  Zj — A
k j  J I .

so the objective of the p-hub median problem can be written as E  A  where Z.
3

is determined by (18). Observe that the second summation operator (over k) 
in (18) can be replaced with a maxirnand operator since there exists exactly
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one k for which Xjk = 1 for every j. Then we have:

2/j ^  ^  ̂'^ii ^ (̂Qr T ^^rk)-^ir T ^kj ^ jk  '^k (19)
i r -*

Consequently, the p-hub median problem can be stated as:

min Zj
3

(KT3)' s.t. (5) -  (8),(19),Z,· > 0 

Note that, in (KT3)' the nonlinearity is in the constraints.

Observation 1: Zj > Y,Wij E(ci,· + a.Crk)Xir ~ Cjk + 2ckjXjk (20)
correctly linearizes the constraint (19).

Proof : There are two cases to consider depending on the value of Xjk

• Case 1: If Xjk = 1> then the right hand sides of inequalities (19) and (20) 
are the same. ^/.

• Case 2: If = 0, then (20) provides Zj > Y,Wij YI{cir+aCrk)Xir-Cjk
i L T

whereas (19) provides Zj > 0. For ease of computation, we define 2 
auxiliary variables:

Let Lik = Z)(cjr + aCrk)Xir
r

and Sj Tf ^ij\Lik ('jk T “¿CjkXjk]i
with Zj > Sj yk

Since Xjk = 0 in this case, due to constraint (5), there exists. ^'( k) 
such that Xjk> = 1·

Then 5 /  = x: Wij {Lik' + Cjk' )
i

and Sj 'fS/' îj{Lik Cjk).i

We prove the observation by showing that the inequality provided by 
(20) for the case with Xjk = 0 is ineffective. For this we show that

S ^ > S ^ y k  (21).
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We show that Lik> + Cjk' > Ltk -  Cjk V k (22) which is stronger 
than (21). Using triangle inequality, (22) can be rewritten as

L ik ' ^jk' (^kj ^kj ^  L ik' “h Ckk' ^kj ^  . (^ ir  ”i” OiCkk* ^ jk ‘
r

Without loss of generality, let Xis = 1. Then we have

Lik' T ĵk' ^  îs T ^^sk' CXCkk' ĵk ^  îs T ^^sk ĵk — Lik ĵk'

This proves the inequality (22) which is stronger than (21). So, we have 
shown that Sj > S j^k .  This means that even if (20) for Xjk = 0 case 
provide an incorrect constraint, that constraint is ineffective since there 
will be another k' for which Xjk> — 1. That is, (20) always provides a 
correct constraint which is tighter than any incorrect one. □.

Then a new formulation for the p-hub median problem is:

min Ç Zj
j

(KT3) s.t. (2 0 ),(5 )-(8 ),Z j > 0

Note that in this new formulation, there are rP binary and n real variables 
with 2rг̂  + n + 1 constraints. Table 3.1 provides the number of variables and 
constraints for all the linearizations.

Model Binary
Variables 

Real Total Constraints
(SK) rP + rP - + rr 2n  ̂-f -t- n -f-1

(KTl) rP + rP n·̂  + -1- n -f 1
(EK) -f rp 2n^ -f- n -t-1

(KT2) 2nP~ n'* + -\-n + l
(KT3) n rP + n 2n^ -t- n -f-1

Table 3.1: Core Storage Requirement of the Linearizations of (QP)

Note that, except for (SK), all the linearizations require rP binary vari­
ables. In terms of storage requirements, the best model is our third lineariza­
tion, (KT3).
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The computational performances of all the linearizations are compared 
by solving the models via CPLEX 5.0 using the CAB Data set. That data set 
is generated from the Civil Aurenatics Board Survey of 1970 passenger data 
in the United States. It contains the passenger flow between 25 cities and the 
distance between the cities. This data set is considered as benchmark by all the 
researchers in hub location area and any heuristic or exact solution procedures 
are tested via this data set. The researchers take northwest 10, 15, 20 and 25 
nodes as different sets of nodes. The number of hubs, p, is taken from the set 
{2, 3, 4} and the discount factor a is taken from the set {0.2, 0.4, 0.6, 0.8,1.0}. 
The combinations generate 4 * 3 * 5 = 60 instances. We enlarge the standard 
test set for p by adding the case p = 5 and compare the performance of different 
linearizations on the resulting 80 instances. We make a distinction about the 
data sets and call the standard set consisting of 60 instances CABl and call 
the enlarged set of 80 instances CAB2. Table 3.2 gives average and maximum 
CPU usage of CPLEX for each value of n with CAB2.

We have identified 5 different linearizations of the basic model, (QP). 
Skorin-Kapov et al. (1996) claimed that their linearization is the best among 
the one provided by Campbell (1996) and Aykm (1995a) in terms of solution 
time and quality. The common structure in all the three linearizations is that 
they all define Xijkm variables. The resulting models are really huge and it 
is nearly impossible to solve them as integer programs. Instead, the authors 
concentrate on LP relaxations and add integrality restrictions only when the LP 
solutions have noninteger variables. In the CAB2 data set, the LP relaxation 
of (SK) found the optimal integer solution in 74 out of 80 instances which is 
better than both Campbell’s and Aykm’s. However, when compared to our 
four indexed multicommodity flow based linearization (KT2), the performance 
of (KT2) is nearly 30 times faster than that of (SK) in average CPU time 
requirements. (KT2) gives the same performance in terms of solution quality 
as (SK). It finds integer solutions to the same set of 74 instances out of 80 as 
does (SK). The 6 instances that result in noninteger solutions have the same 
cost at LP optimality in both (KT2) and (SK).

The three indexed multicommodity flow based linearization provided by
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(EK)

(KT3)

n

(SK) 
as LP

10
15
20
25

(KT2) 
as LP

10
15
20
25
10
15
20
25

CPU
Avg. Max

15.8 sec. 
4.9 min. 

56.9 min. 
4.75 hrs.

21.8 sec. 
6.1 min. 
1.3 hrs. 

8.56 hrs.
0.9 sec. 

9.87 sec.
2 min. 

9.6 min.

1.2 sec. 
15.9 sec.

4 min. 
19.5 min.

0.9 sec. 
10 sec. 

3.5 min. 
28.2 min.

1.7 sec. 
21 sec.

14.8 min.
4.8 hrs.

10 13.3 sec. 14.5 sec.
(KTl) 15 3.6 min. 4.7 min.

20 20.05 min. 50 min.
25 1.6 hrs. 9 hrs.
10
15
20
25

5.1 sec. 
1.9 min. 
19.4 min 

1.5 hrs.

9 sec. 
4.4 min. 

49.3 min. 
8.83 hrs.

Table 3.2: Computational Performance of the Linearizations

Ernst and Krishnamoorthy (EK) can be solved as IP in CPLEX. Both the 
storage requirements and solution times as IP are very low when compared 
with those of (SK) and (KT2) as IP’s. In fact, the (EK) model obtains the 
IP solution in a few seconds even if you do not specify any starting solution. 
The authors also suggest a heuristic algorithm whose solution can be used as 
a starting solution for CPLEX. The solution quality of their heuristic is also 
very good. The heuristic finds the optimal solution in 59 out of 60 instances 
of the CABl data set.

It is also possible to solve our linearization (KTl) as IP in CPLEX. 
However, the solution times are higher than that of (EK). In fact, the highest 
portion of the solution times are due to the computation of the lower bounds 
D~î  and for each {i, k) pair. Nearly 70% of the total time is devoted to this 
bound calculation. Once these values are known, the solution time of (KTl)
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is very low (even lower than that of (EK)). However, those bounds have to be 
calculated and that increases the solution time of (KTl).

For our last linearization (KT3), the CPU times are much better than 
that of (SK), (KTl), and (KT2). However, in terms of average CPU time, 
(EK) is about 10 times faster than (KT2) for n = 10 and 15, while it is about 
5.5 times faster for n = 20 and about 3 times faster for n = 25. The gap 
in average CPU time between (EK) and (KT3) seems to be decreasing with 
increased n.

In conclusion, we may say that (EK) gives the best CPU times as IP on 
CPLEX followed by (KT3) which is about 3 to 10 times slower while (KT3) is 
the best one in terms of core storage requirements with (EK) also being nearly 
as competitive in this respect as (KT3). The state of the art is determined by 
(EK).

3.3.2 Multiple Allocation

O’Kelly’s original formulation (QP) is for the single allocation case. For mul­
tiple allocation, there are some mixed integer programming formulations pro­
vided by Aykin (1995a), Campbell (1996), Skorin-Kapov et al. (1996), and 
Ernst and Krishnamoorthy (1998a). In the first three models the authors relax 
the integrality requirement on Xijkm variables and define Xijkm to be the 
fraction of flow from i to j  that is routed through hubs k and m. The basic 
structure of the model, as represented in Campbell (1996), is:

min ^Y^^Y^'^ijC'ijkmXijkm
i j  k HI

S.t
X] S  ^ i j k m
k HI

1 Vi,;· G N (23)

^ i j k r n < X k k V i , j , k ,m G N (24)

^ i j k r n < X m m V i , j , k ,m e N (25)

^ i j k m > 0 V i , j , k ,m G N (26)
(6) -  (8)
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Note that, in the solution of the above model the real valued variables 
Nijkm will have values of 0 or 1. Since there is no capacity restriction, the 
minimizing Cijkm will be selected for each (i,j) pair. There is a formal proof 
of this result in Ernst and Krishnamoorthy (1998a).

For the solution of the above model, Aykm (1995a) and Ernst and Kr­
ishnamoorthy (1998a) provide enumeration based algorithms. The IP model 
of Ernst and Krishnamoorthy (1998a) is again different than the basic model. 
They use the same approach as they did in the single assignment case, and 
define:
Zh : the amount of flow of commodity i (traffic emanating from node i) that 
is routed between hubs k and I,
Uij ; the amount of fiow of commodity i flowing from hub I to node j,
Pik : flow from node t to hub k.
The corresponding model is:

min E [ E PikCk + E E aCkiZl - P E E cijUi]
i k k I j

S.t

E P i k
k

= Ci Vf e N

E U i , Wi j V i J , e N

E Z k  +
1

E  U i ^
3

S  + Pi k
1

V i, , k , e N

P i k < O i X k k Vf, , k e N

U h
< W i j X u V'Po J e N

z i „  L ' l „  P i , > 0 V f. k , l  e N

{ 1 2 ) , X k k =  0/1

This new formulation requires 2rP -P -f n variables out of which n are 
binary and l-pn-p3n^+n^ linear constraints whereas traditional models require 
[tA + n) variables and 1 -P + 2rP linear constraints. The authors also point 
out that, in terms of CPU time usage in CPLEX, the new formulation is much 
better than the existing models.



Chapter 4

Allocation Problem

In this chapter, we concentrate on the allocation phase of the p-hub median 
problem. Recall that the allocation problem is the problem of determining 
which demand node must be assigned to which hub(s) given that the hubs are 
at a fixed set of locations.

Having a good methodology to solve the allocation problem is extremely 
useful in searching for an optimal solution to the hub location problem since the 
allocation problem must be repeatedly solved for each choice of hub locations 
that is encountered at the nodes of an enumeration tree which seeks to optimize 
the location and allocation aspects jointly. Another reason for our focus on the 
allocation phase is that, in many real world problems, especially in airline or 
cargo delivery systems, the decisions on the hub locations is a top management 
decision which takes a considerable amount of time and money to change once 
implemented. If the problem parameters change in time, an immediate but 
less expensive reaction is to reallocate the demand centers without changing 
the locations of the hubs. Hence, there is ample justification to consider the 
allocation problem as a problem in its own right.

The complexity status of the allocation problem depends on which as­
signment rule is used. The allocation problem in the multiple assignment case 

polynomially solvable. In the single assignment case the problem is NP-Hard

34
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for p > 3 while the case with p — 2 reduces to a minimum cut problem which 
is polynomially solvable (Sohn and Park 1997, 1998b). We strengthen the NP- 
Hardness result by proving that the allocation problem in single assignment 
case is NP-Hard even if the transport network is a star tree.

4.1 Solvability of the Allocation Problem

In this section, we analyze the solvability of the allocation problem for multiple 
assignment and single assignment cases.

First, we briefly discuss the polynomial solvability of the multi assignment 
case. The Multiple Assignment Allocation Problem can easily be solved by 
decomposing the problem for each pair of nodes and solving a shortest path 
problem for each pair where the paths are restricted to those that visit at least 
one hub. This can easily be done, as observed by Sohn and Park (1998a), 
by employing Floyd’s (1962) all pairs shortest path algorithm and terminating 
at the pth step. Let H  denote the set of nodes which are selected as hubs. 
The method begins with an initial n by n matrix C^ = [c°_̂·] where 4  = oo 
if i, j  ^ H ■, 4  = Cij if either i or j  is in H but not both; ĉ j - acij if 
i , j  G H. The initial matrix gives the path lengths when no intermediate nodes 
are visited by the path. Assume without loss of generality that the first p 
nodes 1, ...,p are the hub nodes. The Aith step computes C* = [c* ] from C'°~̂  
by 4  = min{4'"^ + }̂· That is, cL is the length of a shortest path
from i to j  if the path is allowed to use any subset (including the null set) 
of the first k nodes as intermediate or end nodes, but not allowed to use any 
of the nodes A: + 1, as intermediate nodes. Matrix (7̂  gives the all pairs 
shortest path lengths when all paths visit at least one hub. The time bound 
of the method is 0{pn^)· Note that the algorithm works on the cost network 
and the time bound of obtaining the cost network (i.e. c^’s for i , j  G N) is 
0{nn''^) if one uses Dijkstra’s method on the transportation network once for 

each demand center.
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For the single assignment case the problem is trivial if p = 1 and can 
be solved polynornially if p = 2. In the latter case, the problem becomes 
a minimum cut problem on a graph with n + 2 nodes with the two hubs 
denoting the source and the sink (Sohn & Park 1997). In the rest of this 
chapter we focus on the single assignment case for p > 3. We realize that 
this problem is equivalent to a restricted version of the Multimedian Location 
problem with Mutual Communication (MMC) which is a well known problem 
from the literature.

4.1.1 Multi-median Location Problem with Mutual Com­
munication

In this section, we first define a location problem well known in the literature 
as the multi-median or the m-median problem with mutual communication 
(MMC) (discussed in Tansel et al. 1983b). Our interest in this problem comes 
from the fact that the single assignment hub allocation problem is equivalent to 
a special case of problem MMC as will be shown in the sequel. Problem MMC 
is defined as follows: Suppose given a connected undirected transportation 
network G = {V, A) with node set V = {pi, ...jp^} and arc set A where each 
arc (Pi, v-j) € yi is assigned a positive weight lij which represents its length. For 
each pair of nodes Pi and Vj, let d{vi,Vj) denote the length of a shortest path 
connecting Pi and Vj. Nodes in set V represent existing facilities. New facilities 
will be opened in order to serve these existing facilities and fji > 0 denotes the 
flow per period between new facility j  and existing facility i. New facilities 
will also have interaction between themselves. Let Vjk = Vkj > 0 denote the 
flow per period between new facilities j  and k. The problem is to choose 
the locations xi, of new facilities on the nodes of G to serve existing
facilities as well as other new facilities with minimum total transportation 
cost. An instance of this problem is defined by the data G = {V,A),V = 

{vu- ,Vn}Ahj  ■ ^ = { !,...,n} and
usually represented by an auxiliary graph as in Figure 4.1. The graph has m 
nodes on the left, n nodes on the right, and arcs correspond to positive flows
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fij ,i  G M, j  G N, and positive flows Vij,i,j ^ ·̂ ·̂

Figure 4.1: Flow Structure of MMC

The problem is formulated as :
m n

Vjkd{xj,Xk)

Kolen (1986) proves the problem is NP-Hard on general networks but 
gives necessary and sufficient conditions for optimality for the case of a tree 
network. Kolen’s result leads to a polynomial time algorithm for MMC when 
the transport network is a tree.

Tamir (1993) defines the restricted MMC as the version of MMC where 
the locations of the new facilities are restricted to a subset of the node set 
instead of the whole node set. Let Q Ç V denote the set of available locations 
of new facilities. Then the restricted MMC is as follows:

m  n

f  jid{xj, Vi) + ^ ) Vjkd(^xj 1X

Tamir proves that the restricted MMC is NP-Hard even if Ğ is a tree on 4 
nodes. Thus, even though MMC on tree networks is polynomially solvable, 
the restricted MMC is NP-Hard on tree networks with n > 4. However, the 
case in which the transport network is a path is still polynomially solvable in 
0{rrP +tv?logq + nm) time, where q = |Q|(Tamir 1993). The restricted MMC 
forms one of the rare cases in which polynomial solvability of the path problem 
does not extend to the tree network case.

Next, we define a special version of the restricted MMC which has not 
been defined in the literature before. We call this special version the Balanced
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Restricted MMC and abbreviate it to BR-MMC. In BR-MMC, m = n. In 
addition, vjij = 0 for every i , j  such that i j  and wu > 0 for i = 1 , n. The 
flow data Vjk{— Vkj) among new facilities are nonnegative constants which are

n
required to satisfy the condition wu = 0  Vik where C is a positive constant.

fc=l
An instance of BR-MMC is defined by G = {V,A),V = {ûi, ·.·, €«}, {kj > 0 : 
{vi,Vj) G À}, {vjk > 0  : I < j  < k < n},C > 0,Q (the values of wa are 
induced by wu = C Y  Vik).

k

Lemma 1: The allocation problem is polynomial time transformable to BR- 
MMC.
Proof : Given an instance of the allocation problem, we obtain an instance
of BR-MMC as follows. Take n = n' and 0  = K  The transport network 
G {V, A) of BR-MMC is taken to be the transport network G = {N', E) 
of the allocation problem with = dj and d{vi,Vj) = dij. The flows Vjk are 
determined as: vjk = (^{fkj + fjk) Vj, k Ç. N, Vjk = 0 otherwise. Take Q = H. 
Then the restricted MMC obtained from the allocation problem becomes

X\ Xi )  +  V j k d { x j , X k )

where wu = Y  [fij + fji) E. N, and wa = 0 for i e N' \  NO.
j e N

Lemma 2: BR-MMC is polynomial time transformable to the allocation prob­
lem.
Proof: Given an instance of BR-MMC, an instance of the allocation prob­
lem is obtained as follows. Take n' = n. Renumber the nodes of G so that 
•Wii > 0 for z = 1, and Wu = 0 iov i = n + 1, ...,n' where n < n'. The 
transport network of BR-MMC forms the transport network of the allocation 
problem with = hj'd (i,j) G A. Let a  =  A The flows fij are determined 
by taking fik and fki to be any values that satisfy «(/¿/t + fki) — ' îk, e.g. 
fik = fki = (l/2)(l/o:)uifc· Finally, we take H = Q O.

Lemmas 1 and 2 imply that the problems BR-MMC and the allocation 
problem are special cases of each other. Then the following theorem follows:

Theorem  1 : The allocation problem is equivalent to BR-MMC.
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4.1.2 Complexity of the Allocation Problem

Even though the NP-Hardness of the restricted MMC is well established (Tamir 
1993), the complexity status of BR-MMC is not known (Kara and Tansel 1998 
is the first study that considers BR-MMC due to its relation to the allocation 
problem). We first establish the NP-Hardness of BR-MMC then deduce the 
complexity of the allocation problem from it.

Theorem  2 : BR-MMC is NP-Hard even if the transportation network is a 
star tree with |(5| =  3.
Proof : We prove that BR-MMC is NP-Hard by showing that it is a gen­
eralization of the 3-rnultiway cut problem which is shown to be NP-Hard by 
Dalhaus et al. (1992) The 3-multiway cut problem is defined as follows: Given 
a graph G* — (R*, PJ*) and a set of 3 specified nodes x, y, and z in V*, find a 
minimum cardinality subset of edges, E*, such that the removal of E* from E* 
disconnects each of the above three nodes from the other two.

Consider the 3-multiway cut problem. Suppose G* has I + 4 nodes and 
V* — {vi,V2 , v-i, y, Zi, ..., zi}. The three specified nodes are Vi,V2 , and U3. Every 
3-multiway cut corresponds to a feasible solution to an instance of BR-MMC 
defined by the following:
• R = {Vi,V2 ,Vz,y,Zi, ...,Zi}, Q = {vi,V2,Vz}
• For j, k E N, Vjk is 1 iff nodes j and k are connected by an edge in G* and 0 
otherwise.
• Take G = 1. Then wu = X] = the degree of node i.

j_eN

• Transportation network G = {N,A) is a star tree with y at the center with 
arc lengths defined by ly.y = 0.5 for i = 1, 2,3 and ¿¿¡y = 0 for i = I , ..., I, where 
9 is an arbitrary positive constant.
With these parameter settings, a feasible solution to BR-MMC corresponds to 
a 3-multiway cut in the 1+4 node graph G*. In a feasible solution of BR-MMC, 
the set of new facilities (ui, V2 , vsAJ, zt} is partitioned into three subsets, 
say Ml, M2 and M3, such that each new facility in subset Mi is located at 
Vi e Q,i -  1, 2, 3. From this solution of BR-MMC problem the corresponding 
solution to the 3-multiway cut problem is obtained as follows: Color the nodes
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in Mi (in the linkage network of BR-MMC) with color i,{i — 1,2,3). Then, 
the arcs which have end points at different colored nodes are the ones that 
need to be removed from G* to have the required disconnection in the 3- 
multiway cut problem. An optimum solution to the BR-MMC problem is 
also an optimal solution to the 3-multiway cut problem because the objective 
functions of both of the models differ by a constant which comes from the 
cost of the interaction between new and existing facilities in BR-MMC. That 
constant is (0.5 degree(j/) -I- X) degree{zi){9 -t- 0.5)).

Then BR-MMC defined on a star tree with \Q\ = 3 is a generalization of 
the 3-multiway cut problem which proves that BR-MMC is NP-Hard □.

This theorem mildly strengthens an earlier result of Tamir (1993) on the 
NP-Hardness of the restricted MMC.

From Theorems 1 and 2, the following corollary is established.

Corollary 2.1 : The allocation problem is NP-Hard for p = 3 even if the 
transportation network is a star tree.

This corollary strengthens the result of Sohn and Park (1998b) on the 
complexity of the allocation problem.

4.2 Polynomially Solvable Cases

The polynomial solvable cases are in two categories; the ones utilizing the flow 
data and the ones utilizing the transport network structure.

4.2.1 Utilizing Flow Data

Lemma 1 shows that the allocation phase of the p-hub location problem is 
reducible to the restricted MMC. Thus, we can make use of the results and 
algorithms which have been developed for the restricted MMC in the solution
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process of the allocation phase of the hub location problem. Even though the 
classical MMC is a well studied problem, the restricted version of it is recently 
defined by Tamir (1993) and has not received as much attention.

There are two polynomial algorithms for MMC problems which have a 
special structured ‘linkage network’ defined by Uj ’̂s. The linkage network is 
the auxiliary network LN -  {M,I) where M = {l,...,m} and I  = {{j,k) : 
Vjk >0}. One of the algorithms is applicable to series-parallel linkage networks 
(Chajjed and Lowe 1992) and the other one is applicable to linkage networks 
that are k-trees (Chajjed and Lowe 1994, Fernandez-Baca 1989). A k-tree 
is either a k-clique (i.e. a complete graph on k nodes) or a graph recursively 
constructed as follows: Given a k-tree and a subgraph of the k-tree which is a 
k-clique, the graph obtained by introducing a new node and connecting it to 
every node of the k-clique is again a k-tree. A partial k-tree is a subgraph of a 
k-tree. Series-parallel graphs are partial 2-trees.

These algorithms are enumeration based methods which optimize the lo­
cation of a node conditional on all possible ways of locating its neighbors. 
Given a k-tree, it is possible to obtain an “elimination ordering”, which se­
quentially eliminates nodes together with its incident arcs to obtain a k-clique. 
The algorithms proceed by eliminating nodes in this elimination ordering. For 
every new facility, there is a set of available positions for locations, (e.g the 
set Q = H  or the whole node set). At the elimination of each node, the best 
location for that node is found by enumerating all the alternatives for every 
possible combination of the positions of the node’s neighbors. The complexity 
of such an algorithm is plus the time needed to obtain an elimi­
nation ordering. Since allocation phase of the p-hub location problem in the 
single assignment case is equivalent to this restricted MMC, that problem is 
also polynomially solvable in 0(np*+^) if the flow graph of Wj^s is a k-tree.
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4.2.2 Utilizing Transport Network Structure

Tamir (1993) gives the only result in the literature regarding polynomial solv­
ability of the restricted MMC focusing on the structure of the transport net­
work. He presents a polynomial time algorithm for the case when trans­
port network is a path. He proves that the restricted MMC is polynomi- 
ally solvable if the transport network is a path and gives an algorithm of 
0{m^ + rrPlogq -f nm),q =' |Q|. Since the allocation problem is polynomial 
time transformable to the restricted MMC, the allocation problem is also poly- 
nomially solvable if the transport network is a path. The nodes which are in 
set H can be renumbered as 1, ...,p in the order as they appear in the transport 
network starting from one end of the path. The algorithm is based on solving 
min-cut problems between hub nodes I — 1 and 1. A direct min-cut approach 
would require 0{np^). Tamir (1993) improves this bound to 0{n^+rPlogp+'n?) 
by applying a parametric approach for the solution of consecutive min-cut prob­
lems.

VVe further analyze the transport network structure in the allocation 
problem in the next section and identify more general cases which are also 
polynomially solvable.

4.3 Transport Network Structure in Solvabil­

ity

Even though Corollary 2.1. proves that the allocation problem is NP-Hard on 
tree networks, we identify certain structures of the transport network for which 
the allocation problem is polynomially solvable. We also develop a decomposi­
tion theorem, again, based on the structure of the transportation network. All 
these results utilize a new definition, the so called allocation set.

The allocation set, Aj, of each node i, is to be constructed in such a way 
that, keeping the allocations of the nodes other than node i as constant, for
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each solution in which node i is allocated to a hub not in Ai, there exist another 
solution in which node i is allocated to a hub in Â  with objective value at least 
as good as the previous one. Then, in solving the allocation problem for the 
set of hubs among which the hub that node i is allocated to will be selected, 
we take into account the sets Â  for each node i, instead of set H.

In the rest of this chapter, we call the solutions in which any node is 
allocated to a hub which is not in its allocation set as “dominated solutions”.

We now present a procedure to compute the Allocation Sets for the nonhub 
nodes.

• Apply Dijkstra’s algorithm to find the shortest paths between each pair 
of hubs. Let SPL{hi, hj) denote the length of a shortest path between 
hubs hi and A.

• For each non hub node i,

-  Apply Dijsktra by taking node i as the source node. This will result 
in shortest paths from node i to every other node. Let SPL{i,j) 
denote the length of a shortest path from node i to node j

-  Take any hj e H. If SPL{i, hj) < SPL{i, ht) + SP{ht, hj) M h t e H  
then put hj in set /L. Repeat this step for each hj 6 H.

Observe that, the above procedure requires for the first step and 0(n^ + 
p^) for each non hub node in the second step where O(n^) is needed for Dijkstra 
and 0{p^) is for the last step. Thus, the time bound for computing all the Ai’s 
is O(n^).

Example 1: For the transport network given in Figure 4.2, Ai = {hi, /12}

Next we prove that the solutions in which the allocation sets are formed by the 
above procedure are nondominated.

Theorem  3 : The solutions in which any demand center is allocated to a
hub which is not in its allocation set are “dominated solutions”.
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hi

h3

Figure 4.2: Example for Allocation Sets

Proof : We prove the result by taking a solution in which the allocation of
some node, A: is to a hub h ^ Ak- We construct another solution in which the 
allocation of node k is changed to a hub in its allocation set which has at least 
as good objective value as the old one.

Let /  be a solution in which node k is allocated to h ^ Ak- Since h ^ Ak, there 
is a node h' £ H  such that h' is on a shortest path between node k and h (see 
figure below).

h’ h
-a

Now consider the solution, II,  in which node k is allocated to h' and all the 
other allocations are the same as in /.
Let A = Cost(/) - Cost(//), and let a{i) denote the hub to which i is allocated.

A = Y ^ i W j k  + ' ^ k j ) { C k h  + CiCha[j) + Ca(j)j -  Ckh' ~  OiCk’ a{j) ~  
jeN

Since Ckh = (̂ kh' + Ch'hi

A = {Wjk + Wkj){Ch'h + OiCha{j) — OiCh'a(j)) 
j e N

Since triangle inequality is satisfied and a  > 0 we have:

OtCh'a{j) C aCh'h + CX.Cha(j)

Then

which is

A ^  'y {'CJjk d~ Wkj){Chh' A CXCha{j) '^Ch'h CXCha{j)}
jeN

> X i'^jk + Wkj){l -  Oi)Chh> > 0.
j e N
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Instead of solution I, we can use I I  whose objective is at least as good as I. 
Then the solutions in which demand centers are allocated to hubs which are 
not in their allocation sets are “dominated solutions”. □

Corollary 3.1 : Each demand center j  can be allocated to a hub in its allo­
cation set without loss of optimality.

In view of Corollary 3.1, we identify some structures for the transport network 
for which the allocation problem is polynomially solvable. We start the analysis 
with the simplest case: transport network being a path.

4.3.1 Transport Network Path

First note that, if transport network is a path the allocation set of each demand 
center contains 1 or 2 hubs.

We explain our results by going over an example. Take an example with 
10 nodes 3 ot which are selected as hubs. The transport network is given in 
Figure 4.3.

Figure 4.3: Example With Path Transport Network

A\ =  {hi}, A2 — A'i =  {h i, h.2}, 4.4 4.5 =  /I5 =  4.7 =  {/12, /13}.

The allocation of node 1 is trivial. It will be allocated to hi (Corollary 3.1).

Now, consider node 2. According to Corollary 3.1. it will be allocated to either 
hi or h2.

Case 1: Node 2 is allocated to hi. The cost of the allocation induced by node 
2 is:

'^W2jC2h, +Ul2:iO:Ch,aCi) + VJ2jaChia{j) (27')
j e N  je{4,5,6,7}

Note that for j  e (4,5,6,7}, CfnaU) = + Ck̂ a(j)· Then, the cost of this
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allocation is:

^  гУ2jC2/ı, + 'in23aCft^a(3) +  W 2 j O ! C h , k 2 +  W 2 j a C h , a ( j )
j e /v  ;'e{4,5,6,7} je{4,5,6,7}

Case 2: Node 2 is allocated to /i2, the cost of the allocation induced by node 2 
is:

Y  U>2jC2h2 +  W2lO:Chih2  +  W 2 3 a c i i2  a{3) +  Y  W 2 ja C h 2  « ■ ) ( 28) 
ie/v je{4,5,6,7}

Note that the components W23o:Chia{3) and vJ2zach2 a{z) are either 0 or W2zOiCh-,h2 

depending on the allocations of nodes 2 and 3.

We define a minirnum-cut problem by assigning cost components given 
in (27) and (28) to arc capacities. The resulting graph is given in Figure 4.4.

Figure 4.4: Min-Cut Structure for 2 Nodes

If we solve a minimum-cut problem between h\ and /12 on the graph given 
in Figure 4.4, the solution will provide us with the optimum allocations of nodes 
2 and 3. The nodes will be allocated to the hub that they are-connected to 
after the removal of cut edges. However, we need to knov/ the values of a{j) 
in order to solve the constructed min-cut problem since the arc capacities are 
dependent on a{j). Consider the residual graph of the graph given in Figure 
4.4 when

E  W2jCiCh2 a{j) is sent through path /î  2 /12
je{4,...,7}

E  W3jaCh2 a{j) is sent through path hi ^  3 ^  /12
je{4,. ..,7)
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In that case, a{j) iov j  € {4, 5,6,7} disappears from the arc capacities. Thus, 
we can find the allocations of nodes 2 and 3 without knowing the exact allo­
cation of nodes in set {4, 5, 6, 7}. This leads to the following theorem.

Theorem  4 : The allocation problem decomposes into independent minimum 
cut problems if the transport network is a path.

Let Lj denote the nodes on the left of node j  (nodes 1 to j  -  1), and 
Rj denote the nodes on the right of node j  (nodes j-t-1 to n). Without loss of 
generality we assume that nodes are renumbered in the order that they appear 
in the transport network from 1 to n. Then, the generic minimum-cut problem 
to solve the allocation problem between hubs hi and hi+y is given in Figure 4.5.

Figure 4.5: Structure of the Generic Min-Cut Problem

The polynomial solvability of the allocation problem on a path transport 
network can also be deduced from Theorem 4. However, Theorem 4 can be 
utilized in more general structures as will be shown in the next section.

4.3.2 First Generalization : (Block Graph Path)

Suppose that the transport network has the structure shown in Figure 4.6.

The allocation sets of the nodes 1,...,7 are the same as the ones given 
in Figure 4.3 (transport network path case). If we were to write the cost of 
allocating node 2 to hy or /12, we will end up with the same expressions given
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Figure 4.6: Transport Network Structure

in (27) and (28). Thus we can make use of the same idea that we have used for 
the path case in solving the allocation problem defined on a transport network 
given in Figure 4.6. We, first, need to define the concept, block.

A block is a maximal set of nodes whose allocation sets are the same. In the 
example, we ha.ve 3 l)locks B\ = {1},B2 — {2,3},i?3 = {4, 5,6,7}.

We define a block node, bi for each block Bi, and let B = {bi, 62,..., br} where 
r is the number of blocks.

We define a block graph Gs = (Nb,Ab) corresponding to a transport network 
G = {N,E)  as follows.
We take the block nodes and hubs as the nodes of the block graph. We put 
arcs between two hub nodes if that arc already exists in the transport network 
and we put arcs between a block node and a hub node if the hub node is in 
the allocation set of the nodes in the corresponding block, i.e. Gb = (Nb , ^ b ) 

where

Nb = H O B  and Ab = : i , j  e H and {i,j) 6 E
or i ^ H, j  E B  and i G Aj 
or i e B , j  e H  and j  G At}

The block graph of the transport network given in Figure 4.6 is:

bl
O

hl
-D-

b2
O

h2
- o

b3
O

h3
■a

Figure 4.7: Block Graph of Figure 4.6

Note that if we draw the block graph of the transport network given in Figure 

4.3., we would end up with the same graph.
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Our min cut based decomposition is valid for the cases where the block 
graph of the transportation network is a path. This leads to the following 
theorem:

Theorem  5 : The allocation problem decomposes into independent minimum 
cut problems if the block graph of the transport network is a path.

Proof: Directly follows from Theorems 3 and 4.

The following corollary immediately follows.

Corollary 5.1: The allocation problem is polynomially solvable if the block 
graph is a path.

We remark here that, if the transport network is a path then so is the 
block graph but the reverse is not true.

In the next subsection we take into account the cases where the block 
graph is a tree.

4.3.3 Generalization 2: (Block Graph Tree)

We first need to verify the validity of the decomposition idea. Can we solve 
the allocation problem on each block separately? The answer is yes due to the 
following theorem.

Theorem  6 : Let N  — B\ O B^O ... Br- Let A{Bi) denote the set of hubs in 
the allocation sets of nodes in Bi {{A{Bi) = {u4.fc : k G 5j})). The problem 
decomposes into subproblems each associated with a given block if for each pair 
of blocks Bi and Bj there is a cut vertex Lj G B  between A{Bi) and A{Bj) so 
that the following condition is satisfied:

Ca{k)a{l) = <̂a{k)Uj + %■ a{l) k E Bi,l E B j  (29)
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Proof: With Oi = Etyjj, and A  = E A i> allocation problem can be
j j

written as:
r r __

{P) „ Y .  Y { O i  + Di)Cia{i)+ Y  OCWijCa(i)a(j) +a{г)eH,г&N ^

r  ___

' Y  Y j a{j))
k=l,k l̂

where the first term is the linear cost of allocating node i to a{i), the second 
term is the cost of interaction between two nodes of the same block, and the 
third term is the cost of interaction between two nodes of different blocks. Let

P{Bl) --= Y ( O i  + Di)Cia(i) + Y  aWijCa{i)a{j)·

Using (29), (P) can be rewritten as:

(-  ̂) „('¿ipw'ipw X/ ( Y^ Y j T Cti â(j))
aOJGW.ieyv L V fc=l,A:#iiGB;jeSfc

which is equivalent to:

, E ( i ’W ) +  E  E « c ., . ,„ .  {Wij + Wji)a(i)6//Vi6W L V

Observe here that, the above form of the cost function is; as if there is a 
fictitious hub node at the point tu- and all the flow between node i E. Bi and 
any node j  € Bk is processed at this fictitious hub. Thus, as long as we 
know the location of the fictitious hub, which is Lk, we can find the optimal 
allocations of nodes in set Bi without knowing the exact allocations of the 
nodes in the other blocks. Let

G{Bi) = F{Bi) + Y  Y  aca(i) Y  {wij + Wji)
k~l,k^l ieBi j^Bk

Then, we have:
{P") min Y C {B i) .

Since A = 5 i U A  U ... A  we can write (P") as:

(P*) min y  GiBi)
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which is equivalent to

(P*) y  min G(Bi).

Thus, we have shown that, instead of minimizing (P), we can solve (P*) which 
minimizes the cost of each subset Bi seperately and adds up the result. This 
completes the proof □.

Corollary 6.1 : The decomposition theorem is satisfied if the block graph is 

a tree.

Proof: The result immediately follows since each node of a tree is a cut vertex 
and a cut vertex exists between each pair of nodes. □.

Example 2: Consider the allocation problem defined on a transport network 
which lead to the block graph given in Figure 4.8.

Figure 4.8: Example for Decomposition

Take Pi and By. We have ^(P i) = {hi , /12} and A{By) = and a
cut vertex between /l(Pi) and A{By) is ^2· Since a seperating cut vertex can 
be found for every pair of blocks, the problem decomposes. Thus, we solve 
the allocation problem for subproblems corresponding to each block. P i , ..., By 
separately. Note that the allocation sets for nodes in all blocks except P 3 have 
two hubs. The subproblems for those nodes can be solved via minimum-cut 
algorithms by using the generic graph defined in Figure 4.5.

However, the allocation sets of the nodes in P 3 have 3 hubs h2 ,hi,hy. Thus, 

for the nodes in this set, we need to solve a 3-way cut problem.

As a result, for block graph being a tree, the decomposition theorem applies 
and each block can be solved independently. For each block Pj, we need to solve
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a k-way cut problem where k is the degree of node b{ in the block graph. Thus, 
with a tree structured block graph, the allocation problem is polynomially 
solvable if the degree of all block nodes are less than or equal to 2. (Since 
2-way cut problem is polynomially solvable.) Otherwise, decomposition still 
applies but polynomial solvability is no longer valid since k-way cut problem 
is NP-Hard for A; > 3 (Dalhaus et al. 1992).

We remark here that the proof of theorem 6 still applies, if we change the 
condition (29) to (29') given below.

~ 9'*/ + V/c G Bi,l G Bj (29 )

where f̂ki is a constant. The requirement is, in fact, to be able to write the cost 
of going from one hub to the other as the sum of the costs of going from nodes 
to hubs and a constant term, which can be any number. In the proof, we need 
to add a constant term which is X) X) Wki f̂ki for the expression of G(Bi) which

l kyil
does not change the results. The following corollary is then established.

Corollary 6.2: The decomposition theorem is satisfied if condition (29) is
replaced with (29').

The following theorem summarizes the obtained results.

Theorem  7: If the decomposition theorem is satisfied, for each block Bi, we 
need to solve a /sj-way cut problem where ki is the degree of the block node bi.

For the cases when the problem cannot be solved polynomially, the de­
composition theorem still helps a lot since it breakdowns the initial problem 
into many smaller sized subproblems. The following example highlights that 
property.

Example 3 : Suppose that n = 38,p = 9 with the following transport network.

When certain nodes are selected as hubs, we have the structure given in Figure 
4.10 whose block graph is given in Figure 4.11:

Note that Theorem 6 is satisfied and the problem decomposes for each
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Figure 4.10: Blocks of Example 3

block. For example the cut vertex between ^ ( ^ 3) and A{B4 ) is h4 and that of 
A{Bi) and AiBs) is hi.

Then, instead of solving an allocation problem with 38 nodes and 9 hubs 
we need to solve 5 independent subproblems:

S P l :  B l : n  = 5 , p = l  SP2 : B2 : n = 5,p = 3 
SP3: B 3 : n  = 6,p = l SPA : B4 : n = 6,p ^  2 
SP5 : 55 : n = 6,p = 3

The allocation problem of SPl and SP3 are trivial and SP4 is polynomially



CHAPTER 4. ALLOCATION PROBLEM 54

Figure 4.11: Block Graph of Example 3

solvable. Thus, we end up with 2 smaller sized problems (n = 5,6,p = 3) 
instead of (n = 38,p = 9).

This example highlights the importance of the decomposition theorem. 
Even if the whole problem cannot be solved to optimality in polynomial time, 
decomposition is still important as it may greatly reduce the size of the initial 
problem. Since the decomposition theorem utilizes the structure of the trans­
port network, we conclude that the distinction of the transport network in hub 
location problem leads to interesting and fruitful results.



Chapter 5

p-Hub Center and Hub 
Covering Problems

As mt;ntioned before, the literature on hub location is mainly focused on the 
problem with the total cost criterion. There are only two studies in the liter­
ature that deal with other performance measures. O’Kelly and Miller (1991) 
give initial motivation for the minimax criterion in hub location problem in 
the rontext of cargo delivery. In the same paper, the special case with p = 1 is 
shown to be equivalent to the well known 1-center location problem in which a 
single facility is to be located to minimize the maximum distance to the users 
of the facility. The second paper that deals with different performance mea­
sures in hub location is Campbell (1994a) in which the author gives integer 
programming formulations for 4 different hub location problems: the p-hub 
median, uncapacitated hub location, p-hub center, and hub covering problems. 
These four problems are defined analogous to the well known facility location 
problems: p-median, uncapacitated facility location, p-center, and covering 
problems. Among these four, the literature is mainly focused on the p-hub 
median problem. The structure of the uncapacitated hub location problem is 
very similar to the p-hub median problem and the models that are developed 
for the p-hub median problem can be applied to the uncapacitated hub loca­
tion problem with minor changes. However, the p-hub center and hub covering
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problems are completely different and deserve special attention. The p-hub 
center problem involves locating a fixed number, p, of hubs to minimize the 
maximum travel time between origin destination pairs. The hub covering prob­
lem involves the decision on the number of hubs and their locations so that 
the time of journey between each origin destination pair is within a specified 
bound. Campbell (1994a) gives quadratic binary programs for the p-hub cen­
ter and hub covering problems which we refer to as the basic models in the 
sequel. Campbell also gives linearizations for the basic models, but he does not 
report any computational results. In this chapter, we focus on these problems 
in the single assignment case. We first provide combinatorial formulations of 
the p-hub center and hub covering problems and prove that both are NP-Hard. 
We then develop new models for these problems whose computational perfor­
mance is far more superior than the linearizations of the basic models provided 
by Campbell (1994a).
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5.1 Complexity

Campbell (1994a) observes that rninimax is a well justified performance mea­
sure when ‘time’ is of concern. We also follow his convention and interpret Cij 
as time.

The p-hub center problem involves the decision of locations of hubs and 
the allocation of demand nodes to hubs so as to minimize the maximum travel 
time between any origin destination pair. Thus, the p-hub center problem is:

“ S  + + (30)
\H\=p i<j

The hub covering problem is closely related to the p-hub center problem. 
An origin-destination pair, ¿, j, is said to be covered by hubs a{i) and a{j) if the 
travel time from i to j  via the hubs a{i) and a{j) is less than a predetermined 
upper bound, say /3. The hub covering problem seeks to minimize the number 
of hubs so that each origin destination pair is covered. That is, the hub covering
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problem is:

mm \H\
H C N .

S’t. Cjo(i) "b CXCfi[i)a(j) T ^  j  ^  ̂ ^  j  (31)

We now state the recognition form of the p-hub center problem which is 
also the same as the recognition form of the hub covering problem :
Given an undirected network G — (N,E) with node set N = and
with edge lengths dij > 0,{i,j) e E, a. rational a in the unit interval, a 
positive rational /?, and a positive integer p( l  < p < n -  1), does there exist 
a subset H oi N  consisting of at most p nodes and an assignment vector 
a = ( o ( l ) , a ( n ) )  € W" such that Cia{i) + aca{i)a{j) + Ca{j)j < p iov 1 < i  < 
j  < n ?

Theorem  8: The recognition form of the p-hub center problem for p < n — 1 
is NP-Complete even if a  = 0 and G = {N, E) is a planar graph with unit arc 
lengths and maximum degree three.

Proof: The theorem will be proved by reduction from the dominating set prob­
lem.

Dominating Set Problem: Given a connected undirected graph G = 
(N,E)  and a positive integer k < |iV|, does there exists a subset X  oi N  
with |X| < k such that every node not in X  is adjacent to at least one node 
in X,  i.e. Vu G N \ X  3 V e X  for which (u,v) e E ?

We note that the dominating set problem is NP-Gomplete even if G is 
planar with maximum degree 3 (Garey and Johnson 1979).

Clearly, the recognition form of the p-hub center problem is in class NP. 
Consider an instance of the dominating set problem. We reduce it to the p-hub 
center problem as follows: Take N  = N ,E  = E, dij = 1 V(i, j) e E,p = k,a = 

0 , ^  =  2.

We first prove that if X  solves the dominating set problem, then X  also 
solves the created instance of the p-hub center problem. To prove the claim.



CHAPTER 5. P-HUB CENTER AND HUB COVERING PROBLEMS 58

take H = X  and construct an assignment vector a — ( a ( l ) , o ( n ) )  where, 
for each i E. N, a{i) is a closest node in H to i. The constructed solution 
(H,a) satisfies \H\ < k = p and Cja(o + OiCa{i)aij) + -  2 since or = 0
and H is a dominating set so that Cia{i) < 1 Vi e N. Conversely, if {H,a) 
solves the created instance of the p-hub center problem, then X  = H solves 
the dominating set problem. To prove the claim, suppose there is a node i 
which is not adjacent to any h G H. Then, the distance of node i to a closest 
member of H is at least 2. Since p < n — 1 there is at least one other node 
j  ^ H , j  ^  i, so that Cia{i) + aCa(i)a{j) + (̂ a(j)j > 2  + 0 + l =  3 contradicting 
that {H, a) is a feasible solution to the created instance of the p-hub center 
problem. Note also that \H\ < p -  k.

Hence, the dominating set problem has a YES answer if and only if the 
corresponding instance of the p-hub center problem has a YES answer. □

Since the recognition form of the p-hub center problem is NP-Complete, 
we might say that the optimization form for p < n -  1 is NP-Hard.

Since the recognition form of the hub covering problem is the same as the 
recognition form of the p-hub center problem when the upperbound on \H\ is 
p, the following corollary follows.

C o r o l l a r y  8 . 1 :  The recognition form of the hub covering problem is NP-
Complete. So, we might say that the optimization form is NP-Hard.

We now provide basic formulations and new models of the p-hub center 
and hub covering problems.



5.2 The p-hub center problem

5.2.1 Basic Model and Linearizations

In this section we first give the original integer programming formulation of 
Campbell(1994a). Using the variable definitions of Section 3.2, the basic for­
mulation of the p-hub center problem is;

(p-HCl) min max XikXjm{cik + ackm + c-m)

s.t (5) -  (8)
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We now give the linearization of (p-HCl) proposed by Campbell (1994a). 
Let Xijkrn be a binary variable which takes on the value 1 if the path from origin 
i to destination j  is via hubs k and m {i k m ^  j) and 0 otherwise. The 
linearization proposed by Campbell is :

(LINl) min 2" 
s.t
Z > Xijkmi^ik + ^^km + ^jm) V i , j , k ,m (32)

E E  Xijkrn 
k ^

V i j (33)

E  Ei'^ijXijkm "1" '^ji^jimk) E{' -̂Uj T U)ji)Xif^
7 m j

V i,k (34)
J
Xijkm £ {0; U V i , j , k ,m (36)
and constraints (5) -  (8)

Constraints (33) and (35) ensure that there is exactly one pair of hubs {k, m) on 
the path from origin i to destination j  {k = m is possible). Constraint (34) is 
the constraint that correctly relates the path variables Xijkm to the allocation 
variables Xik- Tho right hand side of (34) is the total flow originating and 
ending at node i provided that i is allocated to a hub at node A;.When Xik = 1, 
the left side of (34) achieves the same total flow by summing all the incoming 
and outgoing flows on all paths each of which includes a shortest path between 
i and /c as a subpath. Note also that when Xik — 0, such path variables are 
forced to take on the value zero. We refer to the above formulation as (LINl).

In linearizing the pi'oblem, it is desired that Xijkm — 1 if and only if Xik



CHAPTER 5. P-HUB CENTER AND HUB COVERING PROBLEMS 60

Xjm = 1· This is accomplished by constraint (34) in the above linearization. 
The same thing can be achieved by using the constraints (9) and (10) given 
in Section 3.3.1. as was done previously by Skprin-Kapov et al. (1996) for 
the p-hub median problem. Imposing the constraints (9) and (10) together 
with the zero/one requirement on the variables Xijkm makes constraints (33) 
and (34) redundant. We refer to the linearization obtained from (LINl) by 
replacing (33) and (34) with (9) and (10) as (LIN2).

We now propose a third linearization, called (LIN3), which we obtain from 
(LIN2) by replacing (9) and (10) with constraint (36) below and by replacing 
the zero/one requirement on the variables Xijkm by Xijkm > OVi,;,/:,m.

X i j k m  >  ^ i k  +  ^ ■jm 1 V i , j ,k ,m  (36)

Note that integrality on Xijkm variables is not necessary in (LIN3), because 
the objective function and constraints (32) and (36) force Xijkm variables to 
take on their lowest possible values which is either one or zero.

Then, the three linearizations are :

(LINl) min z
s.t. (.32)-(35), ( 5 ) - ( 8)

(LIN2) min Z
s.t. (32), (9), (10), (35), (5) -  (8)

(LINS) min Z
s.t. (32), (36), ( 5 ) - ( 8)

We test these linearizations with the CABl data using CPLEX 5.0. Table 
5.1. provides the solved instances within the time bound. We put a time bound 

of 15 hours.

(LINl) has a poor computational performance as it has not been able 
to solve any of the 60 instances within the 15 hour limit. (LIN2) has limited 
success as it has been able to solve, within the 15 hour limit, only 10 of the
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Model (n, p) Combination Solved Max. CPU
(LINl) None -

(LIN2) n = 10 p = 2, 3 14.5 hr
(LINS) n = 10 

n = 15
P  = 2, 3, 4

p = 2
1.1 hr 

13.6 hr

Table 5.1: Computational Performance of the Linearizations of (p-HCl)

60 instances corresponding to all values of cv for n = 10 and p -  2,3. The 
maximum CPU time of (LIN2) for the solved 10 instances is 14.45 hours. 
(LINS) has a better performance. It has been able to solve the 10 instances 
that have also been solved by (LIN2) within a maximum time of 40.3 minutes, 
thus achieving about a 20-fold reduction in CPU time. In addition, it has been 
able to solve the 5 instances corresponding to n = 10 and p = 4 within 1.1 
hour. The largest problem size that can be solved by (LINS) is n = 15 for 
p -- 2 (the cases p = 3, 4 are not solved within the 15 hour limit). All the 5 
instances corresponding to (n,p) = (15,2) has been solved by (LINS) within 
the 15 hour limit where the maximum CPU time is 13.6 hours.

As can be seen from the reported results, (LINS) has the best performance 
among the three linearizations but with limited success. The largest problem 
size it can handle is n = 15 with p = 2 while none of the instances with larger 
n can be solved by (LINS) regardless of p. In the next section we reformulate 
the p-hub center problem from a different perspective. The resulting model 
solves, for example, the (n,p) = (15,2) combination in the order of a few 
minutes while (LINS) spends almost 13.5 hours to solve the same combination. 
Substantial improvement has also been obtained from the new mpdel for larger 
sized problems.

5.2.2 New Model for the p-hub Center Problem

Define now a real variable Rij which stands for the travel time from node i to 
node j  via the two hubs to which i and j  are assigned. Let Rij = Lir + Crj 
where Lir is another real variable which stands for the travel time from origin
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i to node r under the assumption that node j  is assigned to a hub at node r. 
In order to ensure that the real variables Rij’s and Li/s  take on the correct 
values we impose the constraints

Lij- — + cxCrk)Nii  ̂ (37)
k

Rij — Yj{Lir + Crj)Xjr (38)T

With the single assignment constraint (11), there is exactly one k for which 
Xik = 1 and exactly one r for which Xjr = 1 so that (37) and (38) supply the 
correct values for Ljr and Rij.

The new model, which we call p-HC2', is as follows: 

min Z
(P-HC2') s.t. > RijViO (39)

(5) -  (8), (37), (38).

(p-HC2') is a nonlinear mixed integer program with 2r? + 1 real variables and 
n- binary variables. The nonlinearity is due to constraint (38).

We may eliminate the real variables Rij and from (p-HC2') to obtain 
a simplified model which retains the binary variables and the real variable 
Z. Observe that, because of the single assignment constraint, the summation 
operator in (38) can be replaced by the maximum operator. With this and 
using the right side of (37) for we have:

Rij = max

Using (40), it is direct to replace (o9) by

^  > Cj-j T  X/(Ctfc T  (^ ^ k r)X ik  k

Xjr (40)

Xjr Vr and Vi, j  (41)

The simplified model which we refer to as (p-HC2) is:

(P-HC2) min Z
s.t. (41), (5) -  (8)

(p-HC2) is a nonlinear mixed integer program with one real and vp· binary 
variables. The number of constraints is + n + 1. The nonlinearity is

due to constraint (41).
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Observation 2: Z >Y^{cik+ackr)Xik+CjrXjr'^'i',j,r (42) correctly linearizes
k

the constraint (41).

Proof: There are 2 cases to consider depending on the value of Xjr- Let s be
the index for which Xis = 1. Then T,{cik + aCkr)Xik = Qs + aCs,· both in (41)k
and (42).

• Case 1: Xjr = 1 · Then Z > Cis + otĉ r + Cjr which is the time of journey 
between nodes i and j  when i is assigned to a hub at node s and j  is 
assigned to a hub at node r. Hence, the right sides of (41) and (42) are 
identical for the pair i , j  in this case.

• Case 2: Xjr “ 0 : In this case (42) yields Z > Cis + acsr while (41) 
yields Z > 0. If Xrr = L then for i ,r,r  (41) and (42) both yield Z > 
ds + OiCsr + Crr- Hence Z  > ds + aCsr is an implied constraint. If Xrr = 0, 
then due to constraint (5), there exists an index k such that Xrk = 1· 
For r, k (41) and (42) both yield Z > ds + otCsk + Ckr- Since 0 < a < 1 
and triangle inequality is assumed, Z > ds + OiCsr is implied. □.

The linearized version of (p-HC2), referred to as (LinNew), is as follows:

(LinNew) min Z
s.t. (42),(5)-(8)

Note that the linearization does not change the number of variables and 
constraints of (p-HC2). Thus, (LinNew) requires n^ zero/one variables and 
■nf + n + 1 constraints. Table 5.2 provides the number of variables and 
constraints for all the models of the p-hub center problem.

As can be seen from Table 5.2. the linearization of our new model, 
(LinNew), is best in terms of core storage requirements. It requires only 
binary variables whereas the other linearizations require at least binary 
variables. Substantial improvement is also pronounced for the CPU time usage 
of the linearizations. We test the computational performance of (LinNew) using 
80 instances generated from the CAB2 Data and we present the CPU times
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Model
Variables 

0/1 Real Constraints
(LINl)
(LIN2)
(LIN3)
(LinNew)

n‘̂ + rP 1 
n'  ̂+ nr 1 

n‘̂ n~ + \ 
n? 1

n'* + 3n  ̂-|-1 
rP -1- 2rP + n^ + n + \ 

2tP -t- -I- n + 1 
4- n  ̂-f n -t- 1

Table 5.2: Summarized Information of the Linearizations for p-hub Center

reported by CPLEX 5.0 for each of the 80 instances in Table 5.3. The last two 
columns of the table provide the averages and maxima over p for each setting 
of n. The reported CPU times are in seconds for n = 10 and 15, in minutes 
for n = 20, and in hours for n 2o.

As can be seen from Table 5.3, in comparison to (LIN3) which solves 
(n,p) = (15,2) in a maximum CPU time of 13.6 hours, (LinNew) solves the 
same combination in a maximum CPU time of 3.5 minutes. This shows that 
the computational performance of the new model is significantly better than 
all three linearizations of the basic model.

This significant improvement is also detected in the larger problem sizes. 
For example, while the linearizations of the basic model cannot solve the prob­
lems with n = 15,P > 3 within the 15 hour limit, the linearization of the new 
model solves these instances in a matter of about 5 minutes. Additionally, 
the 15 hour limit has not been encountered by the new model for the large 
problem instances n = 20 and 25. For n = 20, the maximum CPU time of the 
linearization of the new model is a little over 1 hour while the average time is 
about half an hour. For n = 25, the average and maximum times go up to 5.4 
and 11.3 hours, respectively. This shows that the exponential behavior of the 
solution time becomes pronounced after n > 20.

Thus the performance of the new model is significantly better than all 
the linearizations of the basic model in terms of both CPU time usage and core 
storage requirements. In the next section we analyze the hub covering problem 
which is closely related with the p-hub center problem as observed in Section

5.1.
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n a 2 3 4 5 Avg. Max.
0.2 8.0 8.1 6.1 7.4
0.4 6.4 4.0 2.6 2.9

10 0.6 4.5 5.9 2.5 3.7 in secs.
0.8 2.4 5.5 4.0 1.2
1.0 1.8 4.4 3.3 1.4 1 4.3 8.1
0.2 211.8 313.2 311.8 238.2
0.4 124.3 180.6 137.3 62.2

15 0.6 16.3 25.9 77.4 77.4 in secs.
0.8 20.0 20.5 17.8 35.1
1.0 23.7 15.3 13.4 6 .3 96.4 313.2
0.2 43.4 62.2 69.2 45.4
0.4 35.5 55.6 56.6 34.4

20 0.6 23.3 36.1 21.8 15.4 in mins.
0.8 13.0 21.4 11.6 27.6
1.0 2.4 0.9 6.8 1.9 29.2 69.2
0.2 3.8 8.1 10.2 7.1
0.4 4.0 7.5 11.3 8.5

25 0.6 3.0 8.2 7.9 8.2 in hrs.
0.8 1.9 4.2 4.4 5.4
1.0 0.8 0.5 1.9 1.8 5.4 11.3

Table 5.3; CPU Times for (LinNew)

5.3 The Hub Covering Problem

5.3.1 Basic M odel and Linearizations

Using the variable definitions of Section 3.2, for the hub covering problem, 
Campbell (1994a) defines

i 1 if the time of travel from node i to node j  via k, m  (in that order) 
Vijkm = s is no more than the time bound(i.e. Cik + ackm + Cjm < P)

0 otherwise

Then, the formulation of the hub covering problem proposed by Campbell
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(1994a) is:
(HCl) min T,^kk

k
S.t

^ijkm^ik^jrnk̂ m > 1 (43)

(5), (7), (8)

Constraint (43) ensures that every origin destination pair is covered by some k 
and m. The parameter Vijkm taking on the value of 0 and 1 determines if the 
pair (i,j) can be covered by {k, m). Campbell linearizes (HCl) in the same way 
as he linearizes (p-HCl). The linearization of (HCl) proposed by Campbell 
(1994a) is:

(C-LINl) min J2Xkk
k

S.t
VijkmXijkm 1 '^Lj>k,T7l (44)
(34), (5), (7), (8), ^ijkm ^  0

where (34) is the constraint that Campbell used for correctly relating the Xijkm 
variables with the Xik variables. We refer to the above formulation as (C-LINl). 
We also develop different linearizations for the model (HCl), just as we did for 
the p-hub center case. We again end up with 3 different linearizations:

(C-LINl) min E  Xkk
k

s.t. (34), (44), (5), (7). (8) ) X i j k m  ^  0

(C-LIN2) min T^Xkk

s.t. (15), (16), (44), (5), (7), (8) ) X i j k m  P  0

(C-LIN3) min E  Xkk

s.t. (36), (44), (5), (7), (8) ) X i j k m  ^  0

In all the linearizations, there are binary, n“* real variables, while there 
are + 2n^ + n constraints in (C-LINl), n'‘ + 2n  ̂ + + n constraints in
(C-LIN2), and 2n^ + + n constraints in (C-LIN3).



We test these linearizations with the CAB2 data using CPLEX 5.0. In the 
hub covering problem, p is a decision variable instead of a parameter. Addition­
ally, we have an upperbound, /3, defining the cover for each origin/destination 
pair. The choice of /3 determines which of the coefficients Vijkm are 1 and which 
of them are zero. From the computational study that we have conducted for 
the p-hub center problem with the CAB2 Data set, we have the optimum costs 
for 80 instances. We use these costs as the /3 values. We take the objective 
value Z* of the p-hub center solution as the /3 value for the related (n, a) com­
bination. Since we have tested 4 different p values, we have 4 different Z* 
values for each (n, a) combination. The optimal p-hub center objective values 
X* are given in Table 5.4 below.
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a 0.2 0.4
n = 10 

0.6 0.8 1.0 0.2 0.4
n = 1 5

0.6 0.8 1.0
1425 1627 1671 1744 1839 2004 2019 2103 2424 2611
1117 1185 1387 1589 1791 16.38 1741 1844 2165 2610
811 970 1148 1457 1770 1324 1435 1756 2100 2605
736 863 1079 1413 1766 1149 1287 1560 2080 2600

n = 201 n = 25
1851 2067 2255 2493 2611 2114 2401 2557 2713 2826
1549 1744 1996 2264 2605 1913 2087 2.336 2552 2762
1356 1473 1835 2154 2601 1617 1881 2184 2457 2726
1162 1386

.
1663 2118 2600 1319 1597 2002 2307 2725

Table 5.4: Bound Values Used for Test Problems

We solve the models (C-LINl), (C-LIN2), and (C-LIN.3) with the ex­
plained CAB2 Data set using CPLEX 5.0. Table 5.5 provides .the summary 
information of the computational performance of the three linearizations. An 
upper limit of 8.5 hours is imposed on the CPU time.

Within the 8.5 hour time bound, all instances corresponding to n = 10 are 
solved to optimality with all the three linearizations. The average (maximum) 
CPU times encountered are 4.3 (11.6), 1.45 (3.7), and 0.99 (2.2) minutes for (C- 
LINl), (C-LIN2), and (C-LIN3), respectively. For n — 15 all the 20 instances 
are solved to optimality by (C-LIN2) and (C-LIN3) with an average of 1.5
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Model Combination Solved Avg. CPU Max. CPU
(C-LINl) n = 10 ,all 4.3sec. 11.6sec

n =  15 , 3 missed 2.5 hrs. 6.5 hrs
(C-LIN2)

(C-LIN3)

n = 10 , all 1.45 min 3.7 min
n = 15 , all 1.5 hr 4.5 hr
n = 10 , all 0.99 min 2.2 min
n = 15 , all 1.3 hr 3.4 hr
= 20 . p =  2 7.5 hr 8.5 hr

Table 5.5: Computational Performance of the Linearizations of (HC-1)

and 1.3 hours, respectively. With (C-LINl) 17 out of 20 instances are solved 
to optimality within the time limit (the remaining 3 instances required 10-12 
hours). For n = 20, 5 out of 20 instances, all of which resulted in a p* of 2, 
are solved to optimality with (C-LIN3) in the time limit. The remaining 15 
instances for n =  20 and all instances of n = 25 required more time than the 
limit. With (C-LINl) and (C-LIN2), none of the instances of n = 20 and 25 
are solved within the time limit.

In the next section, we propose a new model for the hub covering problem 
whose computational success is orders of magnitude better than any of the 
linearizations of the basic models that we considered.

5.3.2 New M odel for the Hub Covering Problem

In this new model, we do not define the parameter Vijkm, and instead, we put 
new covering constraints into the model. The new model, which we call (HC2), 

is as follows:

(HC2) min S  ^kk

s.t. \{cir A o:Crk)Nir + CjkjXjk < (3Vi,j ,k,r  (45)
(5), (7), (8)

HC2 is a nonlinear mixed integer program with binary variables and + 

rP + n  constraints.



O bservation  3: + o;Crfc)Xir + CjkXjk < /?Vi, j,/c ,r  (46)
correctly linearizes the constraint (45).
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Proof : There are 4 cases to consider depending on the values of Xir and X.jk-

Case 1: Xir =  I ,Xjk  =  1 : Then (45) and (46) yield the same lefthand- 
sides. y/.

Case 2; Xir = l ,X jk  = 0 : Then (46) yields 
Cir + occrk < P (47)

while (45) yields 0 < /?. If Xkk = T then for i, k, r, k (45) and (46) both 
yield Cir + oiCrk + Ckk < P- Hence, (47) is an implied constraint. >/.
If Xkk = 0) then due to constraint (5), there exists and index I such that 

= 1, For i, k, r, I (45) and (46) both yield Cir + ocv; +  cik < p. Since 
0 < a  < 1, and triangle inequality is assumed, Cir +  (xcrk < P is, again, 
implied, y/

Case .3; Xir = 0, Xjk = 1 ; This case gives Cjk < P- Since Xir = 0, due 
to constraint (5), there exists an index I ^  r such that Xu = 1 and for 
i , j , i , k  case 1 will be encountered: P > cu + acik + Cjk > Cjk and the 
constraint is ineffective, y/

Case 4: Xir = 0, X ,. =  0 : In this case both (45) and (46) yield 0 < p
y/n.

The linearized version of (HC2), referred to as (C-LinNew), is as follows:

(C-LinNew) min X) Xkk
k

s.t. (46),(5), (7), (8)

Note that the linearization does not effect the number of variables and 
constraints.

We test the computational performance of (C-LinNew) by using 80 in­
stances generated from the CAB2 Data set corresponding to the same com­
binations of {n,ce,Z) described in Section 5.3.1. In Table 5.6, we present the



CPU times reported by CPLEX 5.0 for each of the 80 instances. All the values 
are in seconds.
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n = 10 n =  15 n = 20 n = 25
a Value P* CPU Value P* CPU Value P’ CPU Value P* CPU

1425 2 4.5 2004 2 26.1 1851 2 307.0 2114 2 370.1
0.2 1117 3 4.5 1638 3 250.6 1549 3 1102.1 1913 3 5140.5

811 4 0.4 1324 4 83.0 3 356 4 84.2 1617 4 2814.8
736 5 0.3 1149 5 4.2 1162 5 50.5 1319 5 263.3

1627 2 3.2 2019 2 11.1 2067 2 91.9 2401 2 999.3
0.4 1185 3 0.7 1741 3 2.3 1744 3 68.4 2087 3 221.4

970 4 0.3 1435 5 2.2 1473 4 42.0 1881 4 568.2
863 5 0.2 1287 5 1.4 1386 5 16.0 1597 5 50.3

1671 2 1.9 2103 2 12.6 2255 2 123.6 2557 2 181.7
0.6 1.387 3 0.5 1844 3 1.8 1996 3 82.3 2336 3 284.5

1148 4 0.2 1756 4 1.6 1835 4 78.6 2184 4 368.0
1079 5 0.2 1560 5 1.5 1663 5 8.3 2002 5 165.8
1744 2 0.6 2424 2 7.0 2493 2 13.0 2713 2 113.4

0.8 1589 3 0.5 2165 3 3.9 2264 3 25.2 2552 3 69.4
1457 4 0.2 2100 4 1.6 2154 4 8.0 2457 4 486.0
1413 5 0.2 2080 4 2118 5 5.7 2307 5 31.8
1839 1 0.4 2611 1 2.6 2611 1 11.2 2826 2 31.8

1.0 1791 3 0.4 2610 3 6.5 2605 3 13.3 2762 3 36.2
1770 4 0.5 2605 3 3.5 2601 3 12.0 2726 4 33.4
1760 4 0.3 2600 3 4.5 2600 3 11.6 2725 5 27.3
Avg. 1.0 21.5 107.7 612.9
Max. 4.5 250.6 1102.1 5140.5

Table 5.6; CPU times for (C-LinNew)

Note that with the linearizations of the basic model, (C-LINl), (C-LIN2), 
and (C-LIN3), the largest size that can be solved within the 8.5 hr tim.e limit 
is n = 15 (and 5 of the 20 instances of n =  20). Using the linearization of our 
new model, (C-LinNew), we solved all the 80 instances corresponding to all 
n combinations in a maximum time of 1.5 hours. As can be seen from Table 
5.6, the instances with n — 10 are solved within a few seconds whereas the 
best linearization of the basic model requires 2.2 minutes for this size. The 
improvement is more pronounced with increasing n. For n =  15, (C-LIN.3) 
requires 3.4 hours whereas, with (C-LinNew) the same size can be solved within
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4.5 minutes. For n > 20 the linearizations of the basic model do not report 
any solved instance within the 8.5 hr time limit whereas with the new model, 
the instances corresponding to n = 20 are solved within 18.5 minutes and the 
ones corresponding to n = 25 are solved within 1.5 hour. This shows that the 
computational performance of the new model is far more superior than the 
linearizations of the basic model.

5.3.3 Generalization to Distance Constraints

In the hub covering problem, we defined the notion of covering by having a hub 
restricted travel time less than a predetermined upper bound, P, for every origin 
destination pair. However, it might be the case that every origin destination 
pair has different upper bounds on the journey times, namely, Pij. This time, 
the hub covering problem will be

(DCl) min T,Xkk
k

S.t. [(Cir Xir "i“ ^jk]Xjk ^  Pij h^T (48)
(5), (7), (8)

Observe here that we cannot directly change P to Pij in the linear constraint 
(46) of the hub covering problem since during the proof of Observation .3 (that 
we can replace nonlinear constraint (45) with (46)) we use the fact that the 
upperbound on the constraints is the same, /?, for each pair. In model (DCl) 
each pair has a different upper bound and so we cannot utilize Observation 3.

O bservation 4: {cir + aCrk)Xir + cjkXjk ~ a ( l  -  Xjk)cjk < Pij Vi, j, r, k (49) 
correctly linearizes the constraint (48).
Proof: There are 4 cases to consider depending on the values of Xir and Xjk.

Case 1: X^r = 1, Xjk = I : Then Cir + acrk + Cjk is the time of journey 
between nodes i and j  when i is assigned to a hub at node r and j  is 
assigned to a hub at node k. Hence, the left sides of (48) and (49) are 
identical for the pair i , j  in this case, -y/



• Case 2: Xir = 1, Xjk = 0 : This case gives Cir + aCrk -  acjk < Pij in (49) 
while it gives 0 < /5̂  in (48). If Xkk = 1, then for i, r, k, k (48) and (49) 
both yield + aCrk < Pij- Thus, Cj,· + aCrk -  cxcjk < Pij is an implied 
constraint, y
If Xkk = 0, then constraint (5)implies that there exists and index I such 
that Xki = 1. For both (48) and (49) yield Cir + acri + cij < Pij.
Note that

Pij > Cir + acvi +  Cji > Cir + acri + acji + acjk -  aCjk > Cir + aCrk -  cxcjk

and so the constraint Cir +  ocCrk — cxcjk < Pij is implied . y

• Case 3: Xir = 0, Xjk = 1 : This case gives Cjk < Pij in (49) and 0 < Pij 
in (48). Since Xir = 0,31 r s.t. Xu = 1 and for i , j , l , k  case 1 will be 
encountered: P̂ j > Cu + (xcik + Cjk > Cjk and hence, Cjk < Pij is ineffective.

y

• Case 4: Xir =  0,Xjk = 0 ; This case gives -OiCjk < Pij in (49) and 
0 < Pij in (48). Since -acjk < 0, the constraint is ineffective, y o .

The linearized version of DCl, referred to as (DC-Lin), is as follows:
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(DC-Lin) min J2 Xkk
k

s.t. (49), (5), (7), (8)

Note that the linearization does not effect the number of variables and 

constraints.

The above analysis shows that even if there are different time bounds for 
the delivery times between different origin-destination pairs, the model (DC- 

hin) can be used.



Chapter 6

Latest Arrival Hub Location 
Problem

In this chapter, we analyze the problem structure of the ‘time sensitive’ cargo 
delivery systems which are explained in Section 2.2. Recall that, for cargo 
delivery firms, the objective is to minimize the arrival time of the latest arrival 
at any destination. This is a minimax type objective but is different from 
the objective of the p-hub center problem, which is also minimax, since the 
travel time in the p-hub center problem is not the actual arrival time. In 
the real world, the actual delivery time from an origin i to a destination j  
consists of two components: flight times and the transient times spent at hubs 
between flights. In the models of the p-hub center problem, the transient 
times are not taken into account. This chapter proposes a new model which 
correctly computes the delivery times. We refer to the resulting model as 
the latest arrival hub location problem. Depending on the structure of the 

objective function, minimax, covering, and minisum versions for the latest 
arrival hub location problem can be distinguished. Our primary focus is on the 
minirnax version. We study various aspects ot this problem including model 
development, linearization, computational aspects, and sensitivity analysis of 

the model output.

73
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6.1 M odel Development

Using the variable and parameter definitions of Section 3.2, for a specified 
location, assignment pair (if, a), denote by Tij{H, a) the total time spent during 
delivery from i to j  via the hubs a{i),a{j) G //. Thus, the arrival time of the 
units originating at i destined to go to j  is ri + Ti,{H,a) where is the 
ready time of the outgoing cargo from city i. We note here that, although 
the packages at a given city i are collected at different times during the day, 
they can all be assigned a common ready time, r;, which is the flight departure 
time from city i. We assume that there is a positive flow, Wij > 0, from 
every origin i to every destination j. We term this assumption the full cross­
traffic assumption. This seems to be a reasonable assumption for cargo delivery 
systems. The total delivery time, l\j{H,a) is the sum of the total flight time 
and the total transient time; that is,

T i j [ H ,  a) = C i a ( i )  + O i C a [ i ) a ( j )  + (50)

where Tij{a{i)) and Tij{a{j)) are, respectively, the transient times at hubs a{i) 
and a{j) of the units going from i to j. An expression for computing the Tij{.) 
values, and hence, the Tij{H, a) values, in terms of the input data r =  (rj,i G 
N )  and C  -  [ c i j ]  will be derived subsequently. The minimax, covering, and 
minisurn versions of the latest arrival hub location problem in implicit forms 

are as follows;

-i-Tij{H,a) (51)1. min rnin maxHCN, aeĤ  ijeN
\H\=p i<j

2. minHCN,
aeĤ
s.t. r'i +  <

3. mm min E  ;HCN,
\II\=P

aeH" i,jeN
(53)

We now derive an algebraic expression for Tij{H, a). Denote by DTp^ the 
departure time of a flight going from node p to node q. For nonhub origins 

f, DTia{i) — Ti- To compute Tij{H,a), consider the journey from i to j  via 
the hubs a{i) and a{j). All units going from i to j  experience a flight time of



CHAPTER 6. LATEST ARRIVAL HUB LOCATION PROBLEM 75

Cta(i) during the first segment of this journey. The transient time at a{i) is the 
departure minus the arrival time of these units. That is,

(iQ) (r; +  Cjd(j)) (54)

To correctly compute the departure time DTa{i)a{j), observe that the aircraft 
going from a{i) to a{j) transports not only those units that come from i but 
also the units that come from other nonhub origins that are also serviced from 
a{i). Note however that the triangle inequality on C — [cy] implies that this 
aircraft does not transport the units that come from other hubs. Accordingly, 
DTa{i)a(j) is the latest of the arrivals from nonhub origins to a{i). Hence,

DTa{i)a{j) =  ̂ max (r^ +  Cfca(q) (55)K:a[K)=a[i)

Observe from (55) that DTa{i)a{j) is, in fact, independent of a{j). Hence the 
departure time from hub a{i) is the same regardless of which hub the aircraft 
is flying to. This is true under the assumption of full cross-traffic. If this 
assumption is not satisfied, (55) must be written as:

DTa[i)a{j) = , max (r^ + Cka(j)) (55')
Keia{i)a(j)

where Ia{i)a{j) is the set of origins k such that a{k) -  a(i) and Wki > 0 for some 
I for which a(l) = a(j).

The units going from i to j ,  together with other units that are serviced 
via the hub pair a{j)), experience a common flight time of aca( i)a{j)· The 
transient time at a{j) is:

Pj{^{j)) — ~ {DTa[i)a{j) 4 CiCa(i) a{j)) (56)

Here, DTa(j)j is determined by the latest of the arriving units at a{j) that are 
destined to go to j. A unit that is destined to go from an arbitrary node k to 

node j  arrives at a{j) at time DTa{k)a{j) ' CiCa(k)a(j)· Hence,

DTaU)j = max (DThaU) + acha(j)) (57)

Substituting the right hand side of (55) for DTka{j), we have

DTaU)j = max (aChaU) + {vk +  c^)) (58)
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Observe from (58) that DTa{j)j is in fact, independent of the destination j. This 
is again true under the assumption of full cross-traffic. Tij{a{j)) in expression 
(56) is now computable given the values of DTa(j)j in (58) and of DTa(i)a{j) in 
(55). Substituting the computed forms of Tij{a{i)) and in (50) and
cancelling out like terms, T i j { H , a )  reduces to

Tij{H, a) =  Ca(j)j + max f ac^aU) + , max {vk + Ckh)
f i E H  L k : a [ k ) ~ h

-  Ti (59)

Using (59) and dropping the constant term Y, WijTi from the objective function 

in (62), the explicit forms of the minimax, covering, and minisum latest arrival
hub location problems are as follows:

rnin
H C N ,
\H\=p

(60)

nunHCN,aCHn
S.t.

1^1

CaO); + max [ OiCha{i) + , + ^kh) < P Vj (61)

M C N .  a e H ' ^  - j g M  
\H\=p

where Wj — Y  Wij is the total flow into j  .

Note that in the implicit form of the minimax problem defined in (51), 
the maximum is taken over all index pairs i , j  G N xN , i  < j , whereas in the 
explicit form defined in (60) the maximum is taken on the index j  e N  alone. 
This is justified by the fact that the arrival time at node j  is not dependent 
on the originating index i, i.e. regardless of the ready times, all units from 
different origins that are destined to go to node j  arrive at node j  at the same 
time. Similarly, in the explicit form of the covering problem in (61), one upper 
bound constraint is written for each index j  e N  whereas in the implicit form 
in (52) one constraint is written for each index pair i , j  e N x N , i  < j. This 
again follows from the fact that the arrival time at node j  (the left side of 
(61)) is not dependent on the originating index i which is true regardless of the 
ready times. Similarly, with the omission of the constant term Y  w^ri from

ieN
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the objective function of the minisum problem, the summation of the explicit 
form in (62) is on the index j  alone whereas the summation is over all index 
pairs in the implicit form defined by (53).

Hence, the explicit forms reduce the number of terms in the maximand, 
constraints, or the summation from rP to n. This helps to obtain greatly 
reduced and compact integer programming formulations for these problems. 
Additionally, the input requirement in (62) is reduced from an n by n flow 
matrix W = [wij] to an n vector {Wi, ...,Wn) which is much easier to obtain 
from the annual inflow records of the local stations than having to keep track 
of the cross-traffic on the entire network. The independence property from 
the originating indices seems to be a unique feature of the latest arrival hub 
location problem but is not observable in the traditionally studied hub location 
problems.

6.2 The M inimax Latest Arrival Hub Location 

Problem - Complexity

We now focus on the minimax latest arrival hub location problem, abbreviated 
from now on to minmaxlatest. We first show that it is NP-Hard.

Theorem  9: Minmaxlatest is NP-Hard.

Proof: To prove this, take o; = 0 and rj =  OVz 6 N. With 0 =  0 the
OiCha{j) term in (60) disappears and the innerrnod two maximizations output a 
value q(H, a) = max max ĉ h which depends only on the hub set H  and the^  ^  hen k:a(k)=̂h
assignment vector a, but not on the index j. It is direct now to conclude that, 
for fixed H, assigning each node j  to a closest hub in II  is optimal. To see 
this, let a* be. such an assignment vector. For any other assignment a e FT", 

Ca'{k)k < Ca{h)k VA:. Hence, g{IUa*) < g{H,a) and consequently,

rnax ^a*{j)j T g^Hy ) ^  r^ax ^a(j)j T gi^Hj u).
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It follows that a* is an optimal assignment. Hence (60) reduces to

min max CaUi) j P ff(H, a*)HcN. jeN ^  '
|//|=p

: - min max 2(minc,Ti)HCN. jeN ^heH  ̂ '
|/r|=p

which is the node restricted p-center problem on a complete graph with 
arc weights i , j  G N. Hence, minmaxlatest is a special case of the p-center 
problem. It is well known that the p-center problem is NP-Hard (Kariv and 
Hakimi 1979), implying that the minmaxlatest is also NP-Hard even if a  = 0 
and 7'i =  OVz G /V. □

Observe also that the recognition form of the minmaxlatest asks :
Given a e [0,1], an n by n matrix C with symmetric positive rational entries 
Cij that satisfy the triangle inequality, rationals ri,i = 1, ...,n, a positive integer 
p i l  < p  < n), and a positive rational P, does there exist a subset H  o/ {1,..., n} 
with \H\ < p  and an assignment vector a G IH such that

max Cnii) i + max jeN hen O i C h a ( j )  +  , +  C k h )  <  PAî*Û̂rCj——/i J

This is the same as the recognition form of the covering version of the latest 
arrival hub location problem when the upperbound on |i7| is p. The following 
corollary immediately follows.

C orollary 9.1. The recognition form of the covering version of the latest 
arrival hub location problem is NP-Complete. So, we might say that the opti­
mization form of the covering version is NP-Hard.

6.3 IP Formulations

In this section we give integer programming formulations for the minimax 
version of the latest arrival hub location problem. Recall from (55) that the 
departure times from a hub h towards all other hubs are the same. Recall also 
from (58) that the departure times from a hub h towards all cities that are
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serviced from h are, again, the same. The following observation immediately 
follows:

O bservation 5: At any hub h, there are two different departure times: the 
departure time for aircrafts that are destined to go to other hubs, and, the 
departure time for aircrafts that are destined to nonhub destinations.

Let IDTh and DT^ denote these two departure times, respectively. Using 
(55) and (58), we have :

DTh = max (r*, + Ckh) (63)k:a{k)=h
DTh = m a x (№  + ackh) (64)keH

Using the variable and parameter definitions of Section 3.2., an integer pro­
gramming formulation for the minmaxlatest is as follows:

(MML) min
s.t
Z > {DTk + Cjk)Xjk V k , j (65)

DTk > ^jkXjk V j, k (66)
DTk > DTr + OiCrkXrr Vr, k (67)

(5) -  (8)

Constraint (65) forces Z  to take on the value of the latest arrival time. 
Constraints (66) and (67) ensure that DTk and DTk take on the intended 
values as defined in (63) and (64) at optimality.

(MML) is a mixed integer program with rP zero/one and 2n -f 1 real 
variables, and with 4n^ -f- n +1 constraints. The model is nonlinear because of 
the constraint (65).

One way to linearize (MML) is to replace (65) with

Z >  DTk + CjkXjk - M { 1 ~  Xjk) (68)

where M is a large positive number. Unfortunately, the computational per­
formance of this linearization is very poor. A less obvious but still correct
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linearization is to simply drop the last term in (68), i.e. write

Z  > DTk + CjkXjh (69)

in place of (65). We call this linearization (LI). The correctness of linearization 
(LI) is justified by the next two lemmas. In the lemmas (Z, DT, DT, X)  stands 
for any solution where DT, DT, and X  are the vectors of variables DTk, DTk, 

and Xjk, respectively.

Lem m a 3: If {Z ,D T,D T,X)  is feasible for (LI), then it is also feasible for

(MML).
Proof: The only two different constraints between (Ll) and (MML) are (65) 
and (69). If Xjk = 1, then (65) and (69) yield the same right hand sides. If 
Xjf. = 0, (69) yields Z > DTk whereas (65) yields Z >0. Since DTk > 0 due 
to (66) and (67), (65) is also satisfied. □.

Lem ma 4: If (Z, DT, DT, X)  is feasible for (MML), then a solution [Z, DT, DT, X)  
can be constructed from the given feasible solution by replacing DTk with 

— max(I)Tr + OiCrkXrr) such that the solution so constructed is feasi-
r

ble for (Ll).
Proof: If Xjk = 1) then (65) yields Z > DTk + Cjk and (69) yields Z >

Since DTk > DTk due to constraint (67), (69) is also satisfied. 
liXjk  = 0, then (65) yields Z > 0 whereas (69) yields Z > IJTk· We now prove 
that Z > LJTk is an implied constraint in (MML). There are two possibilities 

for the value of Xkk-
If XfcA: =  1, then for j  = k (65) provides Z > DTk + Ckk > DTk, and hence,

Z > DTk is implied.
If Xkk = 0) then, due to constraint (5), there exists an index I such that 
Xki = 1. For the pair {k,l), (65) yields Z > DTi + cik (70). Let s be the 
index such that DTk = DTs + aCsk (71)· Using (70) and (67) we have.

Z > DTi + cik > DTs + OiCsi + cik-

The triangle inequality and (71) imply

Z >  DTs +  ttCsfc =  DTk ■
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Hence, Z > DTk is an implied constraint in (MML). Thus, {Z ,D T ,D T ,X )  is 
feasible for (LI). □.

We can conclude from Lemmas 3 and 4 that any optimal solution 
(Z*, DT’, DT’’, X*) to (LI) is also an optimal solution to (MML). The feasibil­
ity of this solution to (MML) follows from Lemma 1. If {Z*, DT*, DT*, X*) is 
not optimal for (MML), then there exists another solution {Z', D T', DT , X') 
which is feasible to (MML) where Z' < Z*. Lemma 2 implies a solution 
{Z', Ü T ', IJT , X ') can be constructed form the {Z', D T ', D T \ X ') solution 
which is feasible to (LI). This contradicts the optimality of (Z*, DT*, D T \ X*) 
since Z' < Z*.

We now give a second linear model which is directly obtained from the 
combinatorial formulation by a reinterpretation. For fixed {H,a), let Tj{H,a) 
be the cfunrnon arrival time at node j  from all origins. That is

L)(H, a) = Ca{j)j + max [ acha(j) + (r^ -f- с̂ л)
k:a{k)=h

Using the auxiliary variables DT^ and DT^ defined in (63) and (64), we also 
have fj{H , a) = Ca(j)j + DTa{j,· It now follows that

m axfj(F , a) = max (DI), + max c^)·
j GN hEn k:a(k)=h

Hence, we may rewrite explicit form of the minimax latest arrival hub problem

as;
min min max (DT^ + max ct-h)
ffcN. a e l l"  h e n  k:a(k)=h '
\H\=p

This form of the combinatorial formulation directly leads to the following linear 

integer program, (L2);

(L2) min Z 
s. t.

Z > DTh + Ph Vh (72)
Ph > tkhXkh Vk, h (73)
(66)-(67), ( 5 ) - ( 8)

Note that there is no nonlinearity in this new formulation. (L2) requires 

zero/one and 3n + 1 real variables. The number of constraints is 4n  ̂4- 2n -h 1.
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Observe that (LI) and (L2) are essentially the same linear integer pro­
grams since ph is just and auxiliary variable and can be removed to convert (72) 
and (73) to the form Z > DTk + tjkXjk which is nothing but (69). Despite 
the fact that (LI) and (L2) have essentially the same mathematical structure, 
they are obtained out of entirely different considerations. (LI) is simply a lin­
earization of the nonlinear model which is the natural model for hub location 
researchers since it focuses on the analysis of what goes on during the trip 
from an origin i to a destination j  via the assigned hubs a{i) and a{j). On the 
other hand, (L2) is directly obtained from the combinatorial formulation by a 
reinterpretation that requires a switch from the traditional viewpoint. Instead 
of focusing on individual journeys from origins to destinations, it focuses on 
the analysis of what happens at the final destination.

6.4 Computational Results

VVe test the model (L2) with the CAB data using CPLEX 5.0. We take ri = 0 
for every instance. In Table 6.1. we provide the CPU times reported by CPLEX 
5.0 for each of the 80 instances of CAB2 Data set. The last two columns of 
the table provides the averages and maxima over p for each setting of n. The 
reported times are in seconds n = 10 and 15, in minutes for n = 20 and in 

hours for 71 — 2 0 .

As can be seen from Table 6.1, all the instances of the CAB2 data set are 
solved to optimality within 23 hours. For n ~  10, the 20 instances are solved 
within an average of 6.3 seconds whereas the maximum CPU time reported is 
12.5 seconds. Increasing n from 10 to 15 resulted in average of 2 and maximum 
of 6.7 minutes. The 20 instances corresponding to n =  20 require an average 
of 38 minutes whereas the worst instance of this case require 2.5 hours. The 
exponential behavior begins to take over for n > 20 since the 20 instances of 
n = 25 case require an average of 4.2 hours and a maximum of 23 hours.
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CPU
P

n a 2 3 4 5 Avg. Max
0.2 3.7 5.5 6.9 9.0
0.4 3.7 5.9 7.5 10.6

10 0.6 2.9 5.0 9.9 8.8 in secs.
0.8 3.6 4.7 12.5 5.7
1.0 2.3 7.5 6.3 4.5 6.3 12.5
0.2 19.0 33.3 100.8 244.6
0.4 21.0 63.4 71.6 176.8

15 0.6 11.0 25.7 199.7 260.1 in secs.
0.8 23.0 30.4 145.8 289.4
1.0 9.8 70.1 200.6 403.7 120.1 403.7
0.2 1.8 5.8 21.7 54.4
0.4 1.7 8.7 44.2 122.4

20 0.6 1.8 7.8 11.5 105.5 in mins.
0.8 1.0 8.8 37.8 150.8
1.0 1.3 8.3 .33.5 129.5 37.9 150.8
0.2 0.1 0.5 2.0 5.7
0.4 0.1 0.7 3.0 5.8

25 0.6 0.1 0.5 1.7 17.3 in hrs.
0.8 0.1 0.6 4.4 22.9
1.0 0.1 0.7 3.7 13.5 4.2 22.9

Table 6.1: CPU Times for Minmaxlatest with CAB2

The average and maximum CPU times of the model (L2) with the cus­
tomarily used CABl set is very different than that of CAB2. Table 6.2 provides 
the summary information of averages and maxima of the CPU time require­

ments of (L2) for the CABl set.

n = 10 n = 15 n = 20 n = 25
Avg. 5.8 secs. 68.4 secs. 13.0 mins. 1.2 hrs
Max. 12.5 secs. 200.G secs. 44.2 mins. 4.4 hrs

Table 6.2: CPU Times for Minmaxlatest with CABl

Especially for n > 20, including p = 5 case (solving the model with 
CAB2) significantly increased the averages and maxima over n. When n = 10 
and 25, the average CPU time with CAB2 is nearly the maximum CPU time 
of CABl. With CABl, 55 out of 60 instances are solved to optimality in one
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hour

In order to have an idea about the effectiveness of the latest arrival model, 
we compared the average and maximum CPU times with CAB2 with those of 
(EK) (the best model for the p-hub median) and (LinNew) (the best model for 
the p-hub center).

n (EK)
Avg. Max.

(LinNew) 
Avg. Max.

1
Avg.

(L2)
Max.

10 O.Osecs l.Tsecs. 4.3secs. 8.1secs. 6.3secs. 12.5secs.
15 lOsecs 21secs. 96.4secs. 313.2secs. 120.1secs.. 403.7secs.
20 3.5mins 14.8mins. 29.2mins. 69.2mins. 37.9mins. 150.8mins.
25 28.2mins 4.8hrs. 5.4hrs. 11.8hrs. 4.2hrs. 22.9hrs.

Table 6.3; CPU Time Comparison of the Best Models

As can be seen from Table 6.3, the computational performance of the to­
tal sum model is very different than those of the minimax models. On the other 
hand, the performance of (LinNew) and (L2) can be considered somewhat sim­
ilar. If we look at the solution times of (LinNew) from Table 5.3. and solution 
times of (L2) from Table 6.1., we see that, in terms of individual instances, 
(L2) is faster than (LinNew) in 44 out of 80 instances. Even though the latest 
arrival problem has additional requirements, the performance of its model is 
comparable with that of the p-hub center problem. Thus, we may conclude 
that, the computational performance of the model which also takes the tran­
sient times into account is comparable with the computational performance of 
the model which do not consider the transient times.

In the next section we present an analysis on departure times from hubs. 
This analysis also provides a framework to utilize the transient times on a need 

basis.
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6.5 Analysis of Departure Times

For a specific solution {H,a), let f{H ,a) be the value of the outermost max- 
irnand in (60). That is, f{H ,a) is the latest arrival time induced by {H,a). 
Given such a solution, it is natural to ask how the departure times at hubs and 
nonhubs can be effected without increasing the latest arrival time, f{H ,a). 
Specifically, we may ask how much delay can be tolerated at a given hub with­
out increasing the latest arrival time. Another related question is the following: 
Even if the delay at a hub is within the tolerable limit, does this delay increase 
the departure times of the flights at subsequent hubs, and if so, in what way? 
In this section, we analyze these and related what-if questions.

Let (H, a) be a given solution. Corresponding to {H, a), the values of the 
departure times DTk and DTk are determined by (63) and (64). Note also that

f{H ,a) = max(DTfc + max cjk) (74).
k E H

Let us first focus on the question of how much delay can be tolerated on DTk 
and DTk without increasing /  {H, a). Let 9 be a specific index and let óq and 
óq be the amounts of increase in DT¡ and DTq, respectively. Assuming that 
D Tk,k ^  q, do not change, we can determine the maximum tolerable delays, 
¿max as follows. From (74), we require that

/  {H, a) > DTq + 6q + Pq

where pq =  max Cjq. Thus, = f{H ,a) — DTq — pq. To derive the upper
j :a ( j ) - q

bound on 5q, substitute the right side of (64) in place of DTk in (74). This 
gives

f{H , a) = max [pk + '^^^[DTr +  acrk)]·
reH

It follows that =  min{f{H, a) — pk — DTq — acqk) (75).

We can conclude now that as long as the departure time from hub q to 
other hubs is no later then DTq+ 5^°'^ and, as long as the departure time from 
hub q to nonhub destinations is no later than DTq + 5'^°' ,̂ the maximum arrival 
time resulting from {H,a) will not be any later than f{H ,a). In particular, if
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{H*,a*) is an optimal location-allocation decision, then the values of and 
¿rnax̂  computed relative to (if*, a*), give the maximum tolerable delays at hub 
g at optimality.

Suppose now, we conduct the one-at-a-time delay analysis separately for 
each g 6 {1, ···,«}, i.e. we compute separately for each g assuming
that L)Tk,k ^  g, do not change when delay is allowed at hub g. This supplies 
a collection of maximum tolerable delays = l,...,n . It is direct
to conclude that there is at least one hub k for which = 0 and at least 
one hub k' for which = 0. It is possible that k — k', but in general they 
are different. Any delay at one of these hubs increases the latest arrival time 
by the amount of delay. Note also that, there is an origin s G arg max Cik

i \ a ( i ) = k

and a destination d such that a{d) — k' with Ck>d = pk', so that {s,k,k',d) 
forms a critical path that determines the latest arrival time by the relation 
f{H , a) ~  /’s + Csk + CiCkk' +Ck'd- If there is more than one k for which =  0 
or more than one k' for which 5^ “  = 0, then each such pair {k, k') identifies 
a critical path. If f{H ,a) needs to be reduced for some reason, one way of 
doing this is to find a solution {H', a') for which f{H ', a') < f{H , a). If f{H , a) 
is already optimal, then this way of reducing f(H ,a )  is not possible. A less 
costly alternative that does not require a change in the given solution {H, a) is 
to focus on the critical paths induced by (H, a) and reduce their total journey 
times. This can be done by either setting the appropriate r¿’s to earlier times 
or by decreasing the Right times by assigning faster aircrafts to critical path 
segments. Hence, the model on hand allows to perform a trade-off analysis 
between the cost of reducing the critical journey times and the benefits that 
would be obtained from the reduction of the latest arrival time. Such analysis 
may prove to be quite useful when it is desirable to reduce the latest arrival 
time without changing the current hub locations and the current allocations of 
nodes to hubs.

We now analyze the effects of vvhat happens when the actual delay Sg(Sg) 
exceeds the maximum tolerable delay We assume again that
DTk,k g, do not change. Under this assumption, if 5g > then the
latest arrival time at the destinations which are serviced from hub g will be
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later than f{H , a) and the amount of increase is 5̂  — 5^°·  ̂ time units. Note 
that the latest arrival time at the destinations which are serviced from other 
hubs k ^  q will not change as long as ó', < Consider now the case with
Sg > 5̂ “ . Observe that the delay Sg affects in general the departure times of 
flights from other hubs k to nonhub destinations. The new departure time at 
hub k, DT^^'^, is defined by:

= DTk + max(0, DTg + 5gP acgk -  DTk) (76).

Note that the values of DTk, k ^  q, are not aflfected by 5g, so the initial 
assumption is not violated. With the new departure times DTJ^ '̂ ,̂ k ^  q, the 
new maximum arrival time is

a) = (77).

Whenever Sg > 6^°'^, it is direct to conclude that f^^'^{H,a) exceeds the old 
latest arrival time f{H , a) by 8g —

Suppose now we allow delays at many different hubs. In this case, the 
delay at any given hub affects the tolerable limits on the delays at other hubs, 
and so the analysis of simultaneous delays must take these interdependencies 
into account. Let 5k,5k, A: G 77, be the delays associated with hub k. From 
(74), we require

f{H , a) > DTk + 5k + Pk, k e H  (78).

Substituting the right side of (64) for DTk in (78), we have:

5j + 5k<bjk y j , k e H  (79)

where bjk = f{H , a) — DTj — acjk — Pk- (79) is a system of linear inequalities 
in the 2p variables 5k, 5k, k ^ H. Any feasible solution to the nonnegativity 
constraints 5k, 5k > 0, k £ H, and (79) constitutes a collection of delays on 
departure times that does not increase the latest arrival time beyond its current 
value. If a given set of nonnegative delays is not feasible to (79), then the 
amount of increase in the current value of the latest arrival time is determined 
by the maximum violation in (79).
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The feasibility of delays 5k, 5k, k G H, is dependent on the solution {FI, a) 
but it can be seen from (79) that this dependence is reflected only on the right 
hand side values bjk but not on the structure of the feasibility system. Hence, 
even if {H, a) changes, the feasibility of a given set of delays can easily be 
checked by recomputing the bjk values relative to the new solution.

Using and and the above system of inequalities we may answer 
such what-if questions as:

• what-if airport q has to be shut down for 2 hours starting at 11:45 a.m. 
due to thick fog?

• what if the sorting operations at hub q has to be delayed due to equipment 
malfunction for 2 hours, starting at 11:45?

Observe first that both the thick fog and the equipment malfunction are un­
expected events but their effects on the system performance can be analyzed 
using the same approach. It is possible that the departure times at hub q are 
already delayed by 5̂  and 5̂  time units. Thus, the planned departure times are 
DTq + 5q for hub-to-hub flights and DTq 4- for hub-to-nonhub flights. Now, 
let us analyze how the additional two-hour shutdown will affect the departure 
times and the latest arrival time. We first analyze DTq.

• If DTq -I- 5q < 11:45, i.e., if the departure time is before the unexpected
event has started, then the two-hour shutdown does not additionally 
affect the system. That is, the addit; jiial delay resulting from the two- 
hour shutdown is zero and the latest arrival time is not affected as long 
as 5q < 5^°·^. Observe here that if 5q > then the increase in the
latest arrival time is 5,, —

• If 11:45 < DTq + 5q < 13:45, then the aircrafts at hub q cannot depart
until 13:45, so the actual delay will be 13:45 —DTq. The latest arrival 
time is not affected if 13:45 —DTq < If the actual delay 13:45
—DTq is greater than then the latest arrival time at one of the
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destinations that receives service from hub q increases by the amount 
(13:45 -DT^) -  6,m a x

Q

.  If DT, + 6, > 13:45, then the two-hour shutdown does not additionally 
affect the system. That is, if 5q < 5^“̂ , then the latest arrival time does 
not change, and if Sq > then the latest arrival time at one of the 
destinations that receives service from hub q increases by 6q —

Similar analysis can also be conducted for D2 q.

• If DTq + 6q < 11:45, then the two-hour shutdown at hub q does not 
additionally affect the system.

• If 11:45 < DTq-\-5q < 13:45, then actual delay is 13:45 -D Tq. The new 
departure times DT^^^, k ^  q, can be computed using 13:45 -D T , in 
place of 6q in (76). The new maximum arrival time is again computed 

using (77).

• If IJTq + Sq > 13:45, then the two-hour shutdown does not additionally 
affect the system performance.

Using the inequality system (79), we may answer more general what-if 
questions that address simultaneous delays at different hubs, e.g.

• what-if airport a has to be shut down for 2 hours, beginning at time t, 
due to stormy weather and what-if the sorting operations at hub b has to 
be delayed for 3 hours due to equipment malfunction beginning at time

■n

Suppose that the current delays at hubs a and b are With an
analysis similar to the one that we have conducted for the single shutdown
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case, the actual delays Sa,5a resulting from the unexpected events are:

If DTa + S'^<t then 5a = 5'̂
If t < DTa + 5'̂  < t + 2 then 5a = t + 2 -  DTa
If i + 2 < DTa + 5'a then 4  = K
If DTa + <̂a < i then ¿a =
If t< D T a  + 5 '^ < tp 2  then 5a = t + 2 -  DTa
If t + 2 < DTa + 5'̂  then 5a = 5'̂

5b and 5b are defined similarly by replacing t with t' and i + 2 with i' + 3 in 
the above definitions. If the inequality system (79) yields a feasible solution 
with the so formed values of 5a, 5a, 5b, 5b, then the latest arrival time does not 
increase. The maximum violation in (79), if any, determines the increase in 
the latest arrival time. In addition, the union of the indices of the violating 
constraints in (79) give the set of hubs whose delays result in an increase in 
the old latest arrival time.

Hence, utilizing (79), the effects ol delays resulting from unexpected 
events can be foreseen which is a critical issue in managerial decisions.



Chapter 7

Summary and Conclusions

In this thesis, we analyze some important issues surrounding the hub location 
problem which is a rather new research area. “Hubbing” is the main prob­
lem characteristic of the hub location problems. We first analyze different real 
world problems which constitute the application areas of the hub location prob­
lem. The three main areas of application are airline systems, cargo delivery 
systems, and large scale communication systems. We conclude that hubbing 
is definitely encountered in these areas, but we observe that the structure of 
the real problems lead to the customarily defined hub location problem only 
under certain assumptions. The clarification of the underlying assumptions 
and common features in different problem areas organizes the available litera­
ture in a new and more focused structure, thus forming an improved basis for 
future research. During the analysis on the real world problem requirements 
we also identify a problem which is not satisfactorily modeled by means of 
the customarily defined hub location prob’em. We analyze the problem and 
propose a model for it, the latest arrival hub location problem, in Chapter 6.

Nearly all of the literature is focused on developing linearizations of the 
basic model proposed by O’Kelly (1986a). We conduct a computational study 
of those linearizations together with 3 different linearizations that we propose 
in this thesis in Chapter 3.

91
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In Chapter 4 we focus on the allocation problem. We prove that it is 
equivalent to a well known location problem from the literature: the restricted 
multi-median location problem with mutual communication. Using this equiv­
alence we strengthen the complexity result of the allocation problem by proving 
that the problem is NP-Hard even if the trasport network is a star tree. We 
also concentrate on polynomial time solvable special cases of the problem. The 
polynomial time solvable cases are in two categories: the ones based on the 
structure of the flow data and the ones based on the transport network. The 
study on the transportation network leads to interesting decomposition results 
which are totally new to the hub location literature.

Another deficiency of the literature is on the analysis of the hub location 
problem under different performance measures. We analyze the problem under 
minimax and cover objectives, namely, the p-hub center and hub covering 
problems, in Chapter 5. The two problems have already been deflned and 
modeled in the literature but without any analysis. We first prove that both 
are NP-Hard. We then provide integer programming models for both of the 
problems. The new models are far more superior than the original models both 
in terms of CPU time and core storage requirements.

As a final topic, we analyze the latest arrival hub location problem in 
which the transient times at hubs during delivery are also taken into account. 
This problem is totally new to the literature. We provide the combinatorial 
formulation of the problem under totalcost, rninimax, and cover objectives. We 
prove that the minimax and covering versions are NP-Hard. For the minimax 
problem, we provide an integer programming formulation from, two different 
perspectives.

We believe that the hub location problem is a fruitful area of research. 
The main reason for this is the fact that nearly all of the literature is devoted 
to only one aspect of the problem leaving many untouched or barely touched 
issues. We analyze some of those issues but there are still different faces of the 
problem which needs further consideration. One such issue is the allocation 
problem for the p-hub center and covering problems and also for the latest
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arrival hub location problem. Another issue is the analysis of the p-hub center, 
covering, and latest arrival hub location problems for multi-assignment cases. 
The allocation problems under the multi-assignment cases of the p-hub center 
and covering problems constitude another issue that need consideration. When 
we first started our analysis on the hub location problem, we got biased from 
the literature and initially concentrated on the total sum problem. However, 
as we proceeded with our analysis of the problem under different criteria and 
in different settings we put the problem into a different perspective which has 
led to many fruitful results. For example, the identification of an underlying 
transport network is a result of our analysis which lead to interesting decom­
position theorems for the allocation problem. The identification of the latest 
arrival hub location problem is a result of our analysis on the application ar­
eas. The new models that we propose for the p-hub center and hub covering 
problems and their linearization are the results of a different way of studying 
to the problem. All this process of detailed analysis, understanding what really 
is going on in the real world, helped us identify different faces of our problem 
leading to an enrichment of the literature.
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