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ABSTRACT

ROBUST REGRESSION, HCCM ESTIMATORS, AND AN EMPIRICAL BAYES

APPLICATION

MEHMET ORHAN 

Ph. D. OF ECONOMICS 

Supervisor: Prof. Dr. Asad Zaman 

May 1999

This Ph.D. thesis includes three topics o f econometrics where the chapters of the whole 

study are devoted to robust regression analysis, research on the estimators for the covari

ance matrix of a heteroskedastic regression and finally an application of the Empirical 

Bayes method to some real data from Istanbul Stock Exchange. Some robust regression 

techniques are applied to some data sets to show how outliers of a data set may lead 

to wrong inferences. The results reveal that the former studies have gone through some 

wrong results with the effect of the outliers that were not detected. Second chapter makes 

a thorough evaluation of the existing heteroskedasticity consistent covariance matrix esti

mators where the Maximum Likelyhood estimator recently promoted to the literature by 

Zaman is also taken into consideration. Finally, some empirical study is carried out in the 

last part of the thesis. The firms of ISE are categorized into sectors and some estimation 

is done over an equation which is very common and simple in the finance literature.

Key Words: Heteroskedasticity, Breakdown Point, Least Median of Squares, Outlier, 

Robust Distance, Empirical Bayes.
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ÖZET

KATI REGRESYON, HUKM TAHMİN EDİCİLERİ, VE BİR AMPİRİK BAYES

UYGULAMASI

MEHMET ORHAN 

Doktora Tezi, İktisat Bölümü 

Tez Yöneticisi: Prof. Dr. Asad Zaman 

May 1999

Bu doktora tezi üç ekonometri konusunu içermektedir ki bunlardan ilki katı regresyon 

analizine, İkincisi heteroskedastik regresyonda kovaryans vektörü tahmin edicileriyle ilgili 

araştırmalara, ve sonuncusu da İstanbul Borsası’ndaki gerçek verilerin kullanıldığı Am

pirik Bayes yöntemine ayrılmıştır. Değişik katı regresyon teknikleri avantajlı ve sakıncalı 

taraflarıyla incelenmiş ve katı regresyon analizinin katkılarıyla daha önceden yapılmış bazı 

çalışmalar gözden geçirilmiştir. Sonuçlar ortaya çıkarmıştır ki daha önceki çalışmalarda 

dikkate alınmayan bazı dışgözlemler yanlış neticelere yol açmışlardır. İkinci kısım, mev

cut heteroskedastisitiye uygun kovaryans matrisi (HUKM)tahmin edicilerinin teferruatlı 

ve kapsamlı bir değerlendirmesini bazı karşılaştırma kriterlerine göre yapmıştır. Zaman 

tarafından literatüre kazandırılan bir tahmin edici de dikkate alınmıştır. Son olarak, am

pirik bir çalışma yapılmıştır. İstanbul Borsası’ndaki firmalar sektörlere sınıflandırılmış 

ve bunlar üzerinde finans literatüründe çok yaygın ve basit bir denklem kurularak bazı 

katsayı vektörü tahminleri yapılmıştır.

Anahtar Kelimeler: Heteroskedastiklik, Kırılma Noktası, En Küçük Kareler Medyanı, 

Dışgözlem, Katı Mesafe, Ampirik Bayes.
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1 Robust Regression Analyses with Applications

1.1 Introduction

One might expect to see some reasonable and realistic results even when some of the data 

points deviate from the usual assumptions of classical regression analysis, but the classical 

regression method is very sensitive to the outliers. Indeed, the least squares method is 

currently the most popular approach for estimation. There are several reasons for this, two 

of which are the ease of calculation and the tradition that shaped the current literature.

Real data sets containing outliers are very common situations. So many data sets con

tain outliers as a result of mistakes in recording or observing the data or some exceptional 

observations that might take place. It is possible that the estimates become totally incor

rect and the outliers themselves are hidden, which means that it becomes impossible to 

detect the existence of the outliers for ever. To solve this problem out, robust statistical 

techniques (RRT)  ̂ have been developed. These techniques give more trustworthy results 

when the data are contaminated and may let us identify the outliers to some extend.

The goal of positive breakdown regression is to be robust against the possibility of one 

or more unannounced outliers that may be seen anywhere in the data. The outliers may 

be in the response variable as well as the regressors themselves. The positive breakdown 

regression became more popular in the eighties although there was a huge amount of 

previous work about the detection and the neutralization of the outliers via different 

methods that have their own positives and negatives.

Let’s suppose that we have a simple linear regression model:

Vi — Po +  +  · . . + Pk^ik + (1)

for i= l ,2, . . . ,  n where y stands for the response variable (dependent variable) and x 

stands for the independent regressors (explanatory variables). Po denotes the constant 

term, or the vertical intercept. The classical theory assumes that the error term, e follows 

a Gaussian distribution with mean 0 and variance cr̂ . The main objective is to make some 

inferences about the vector of coefficients, /3. The Ordinary Least Squares (OLS) residual

^Prom now on Robust Regression Techniques will be abbreviated by RRT.



for the row of observations, Cj, is given by

/̂ 1) · · · , /5fc) — yi ( 0̂) · · · ) ̂ k^ik) (2)

More precisely speaking, the objective of the LS method is to minimize the sum of 

squares of the residuals ei{0o ,$ i,... ,Pk)· More formally.

minimize
n

{PoA..Pk)i=l
(3)

The main idea is to make all of the residuals as small as possible so that the sum of 

their squares should be minimized. Indeed, the observations that deviate from the bulk of 

the data are penalized by taking the square of the distance from the line. LS simply wants 

to place a line among the regression points in such a way that the cumulative squares 

of the distances is minimized. The main motivation behind such a preference is that the 

method lets one to compute the vector of coefficients directly and explicitly from the data 

by a simple formula.

After such an initiation Gauss was able to introduce the distribution which is world 

famous by his name, the Gaussian distribution, as the one for which LS is optimal. More 

recently, people began to realize that actual data often do not satisfy his assumptions, 

sometimes with dramatic deviations from them leading to some serious mistakes of the 

estimation procedure.

In the terminology, regression outliers are observations that do not obey the linear 

pattern formed by the majority of the data. It is difficult to make a good analysis of how 

things are shaped for robust regression because the mentioned outliers do usually affect 

the trend of the data in such a way that one can never be sure about the whole picture 

without working on the outliers. In most cases outliers are not the mistakes but they 

are the cases which represent the data coming from extraordinary conditions. But some 

recording or reading errors of the data are also possible. Regardless of the source of the 

outliers the conclusion is that one has to detect and work on them very carefully to make 

some correct inferences.

We say that an observation {xi^yi) is a leverage point when its regressor lie outside of 

the majority of the regressors. Indeed, the term leverage comes from mechanics, because



such a point pulls the LS solution towards it. The LS method estimates a from the 

residuals, ej using the formula:

1
n -  fc -  1 5 (4)

i=l

where k is apparently the number of regressors. Once the estimate for variance is calculated 

one can obtain the standardized residuals, ef/a. It is also common to calculate these 

values and label the observations for which this figure exceeds 2.5, or less than -2.5 as the 

regression outliers. The logic behind is that values generated by Gaussian Distribution 

are rarely larger than 2.5 or less than -2.5, whereas the other observations are considered 

to obey the model. In simple regression models, where the number of regressors is small, 

the detection of the outliers may be possible even by observing the plot of the regressors 

and the regressand, but in multiple regression, where k is large, the detection by eye is no 

longer possible and the residual plot mentioned about above become an important tool. 

Since most of the regressions done by the economists and even the econometricians are 

done routinely, many results must have been affected or even determined by the outliers 

and this may have remained unnoticed.

1.1.1 Breakdown Value

In any data set, one can displace the LS fit as much as he wants by simply moving a 

single data point {xi^Vi) enough far away. This statement can be experimented by any 

statistical package by changing one of the observations. The statement is true for both 

single and multiple regression. On the other hand, it is possible to find some robust 

regression methods that can resist some of the outliers.

The breakdown value can be considered as a superficial but useful measure. The concept 

was first introduced by Hampel [34] and is applied to the finite sample setting by Donoho 

and Huber [21]. It is a rough but useful measure of robustness. Let’s use the latter 

version. Consider a data set Z = {xn .̂ . . ,   ̂ =  1? · · · ? ^) and a regression estimator

ET. Applying ET to Z yields a vector of regression coefficients.

Now consider all possible contaminated data sets Z ' obtained by replacing any m of 

the original observations by arbitrary points.



This yields the maximum bias

Tnaxbias{m·, ET, Z) := maxz’ \ET{Z') — ET(Z)\ (5)

where | . | is the Euclidean norm. If m outliers can have an arbitrarily large effect on ET, 

it follows that maxbias{m; ET  ̂Z) =  oo, hence E T(Z ’) becomes useless. Therefore, the 

breakdown value of the estimator ET at the data set Z is defined as

rTTl
e^{ET^Z) :=  m in{— \maxbias[m\ET^Z) =  00}

n (6)

In other words, it is the smallest fraction of contamination that can cause the regression 

method ET to run away arbitrarily far from ET(Z). For many estimators e* (F?T, Z) varies 

only slightly with Z and n, so that we can denote its limiting value (for n 00) by e*{ET).

How does the notion of breakdown value fit in with the use of statistical models such 

as (1)? We essentially ajssume that the data from a mixture of which a fraction (1 — e) was 

generated according to (1), and a fraction e is arbitrary (it could even be deterministic, 

or generated by any distribution). In order to be able to estimate the original parameters 

(/3o,. . .  we need that e < e*{ET), For this reason e* is sometimes called breakdown 

bound.

For least squares we know that one outlier may be sufficient to destroy the regression. 

Its breakdown value is thus e*(£JT, Z ) =  1/n hence e*{ET) =  0. The estimators where 

e*{ET) >  0, will be called positive-breakdown methods.

1.1.2 Positive-Breakdown Regression

Let us first consider the simplest case (k=0) in which the model (1) reduces to a univariate 

location problem yi =  /?o +  The LS method (3) yields the sample average ET  =  

Pq =  Ei{yi), E  standing for the expected value or the average, with again e*(ET) =  0%. 

On the other hand, it is easily verified that the sample median ET  :=  medi{yi) has 

e*{ET) =  50%, which is the highest breakdown value attainable. Because for a larger 

fraction of contamination, no method can distinguish between the original data and the 

replaced data. The further the contamination is disseminated, the worse the situation 

is. Estimators ET with e*{ET) =  50%, like the univariate median, will be called high-



breakdown estimators.

The first high-breakdown regression method was the repeated median estimator pro

posed by Siegel [92] in 1982. It computes univariate medians in a hierarchical way. For 

simple regression, it is described in the entry Repeated Median Line Method. Its asymp

totic behaviour was obtained by Hossjer et al [43], and for algorithms and numerical results 

see Rousseeuw et al [83, 85]. But in multiple regression where {k > 2) the repeated median 

estimator is not equivariant, in the sense that it does not transform properly under linear 

transformations of [xn .̂ . . ,  Xik)·

However, it is possible to construct a high-breakdown method which is still equivariant. 

It is instructive to look at (3). This criterion should logically be called least sum of squares, 

but for historical reasons (Legendre’s terminology) the word sum is rarely mentioned. Now 

let us replace the sum by a median. This yields the least median of squares method (LMS), 

defined by

minimize 0  ̂ ^jnedirf (7)

[78] which has a 50% breakdown value. The LMS is clearly equivariant because (7) is 

based on residuals only.

Another method is the least trimmed squares method (LTS) proposed in (Rousseeuw 

[76, 78]). It is given by
h

minimizcp^ 0̂  : n (8)
i=l

where (r^)l : n <  (r )̂2 : n <  {r^ )n :n  axe the ordered squared residuals (note that

the residuals are first squared and then ordered). Criterion 8 resembles that of LS but 

does not count the largest squared residuals, thereby allowing the LTS fit to steer clear of 

outliers. For the default setting h «  n /2  we find e* =  50%, whereas for larger h we obtain 

€* «  (n — h)In. For instance, putting h «  0.75n yields e* =  25%, which is often sufficient. 

The LTS is asymptotically normal unlike the LMS, but for n < 1000 the LMS still has 

the better finite-sample efficiency. Here we will focus on the LMS, the LTS results being 

similar.

When using the LMS regression, o  can be estimated by

5d = 1.483(l -b (9)



where n  are the residuals from the LMS fit, and 1.483 =  i>“ ^(3/4) makes a consistent at 

Gaussian error distribution. The finite-sample correction factor 1̂ +  ) was obtained

from simulations. Note that the LMS scale estimate a is itself highly robust. Therefore, 

we can identify regression outliers by their standardized LMS residuals ri/a.

In regression analysis inference is very important. The LMS by itself is not suited 

for inference because of its low finite-sample efficiency. This can be resolved by carrying 

out a reweighted least squares, RLS, step. To each observation i one assigns a weight Wi 

based on its standardized LMS residual n /d , e.g. by putting wi :=  w{\ri/a\) where w is a 

decreasing continuous function. A simpler way that is followed in this study many times, 

but still eflFective, is to put wi if | Tila\ < 2.5 and Wi =  0, otherwise. But simplicity brings 

some trouble of not qualifying the point as a good leverage one. Either way, the RLS fit 

(/?o, A , /?2, · · ·, A )  is then defined by:

.... (10)
i=l

which can be computed quickly. The result inherits the breakdown value, but is more 

efficient and yields all the usual inferential output such as t-statistics, F-statistics, and 

statistics, and the corresponding p-values. The p-values assume that the data with 

Wi = 1 come from the model (1) whereas the data with Wi = 0 do not. Another approach 

which avoids this assumption is to bootstrap the LMS, as done by Efron and Tibshirani 

[23]. The LMS and the RLS are computed with the program PROGRESS by Rousseeuw 

and Leroy [84]. Indeed, the RLS does nothing more than running OLS over the data set 

avoiding the observations with 0 weights assigned by LMS.

1.1.3 Detecting Leverage Points by Eye

In the typical regression model a data point {xn,Xi2, . . . , Xiĥ Vi) with outlying 

Xi{xii^Xi2  ̂· · · T̂ ik) plays a crucial role, because a slight change of the coefficients estimated 

may give case i a large residual. Therefore, the LS method gives priority to approaching 

such a point in minimizing the objective function.

Detecting outliers in the k-dimensional data set X is not trivial. Especially where k is 

greater than two when we can no longer have the opportunity of inspection by eye.



A classical approach to the solution of the problem is to compute the Mahalanobis 

Distance defined as:

M D{xi) =  sj{xi -  X ){C ov{X ))-^ {xi -  X y (11)

for each rcf. Here X  is the sample mean of the data set where the Cov{X) is the sample 

covariance matrix. This distance tells us how far away xi from the mass of the data 

relative to the size of the mass is. It is well known that this approach suffers from the 

masking effect, by which the multiple outliers do not necessarily have a large Mahalanobis 

Distance.

One of the most commonly used statistic to discover the leverage points has been the 

diagonal entries of the hat matrix. Indeed, these entries are equivalent to the Mahalanobis 

Distances since.

M D l  1 , ,
ha — -------r  H—  (12)n — 1 n

Therefore, the diagonal entries of the hat matrix are masked when the distances are 

masked.

One can play with the elements in the square root formula of the (11) equation to have 

some more reliable diagnostics.

The Minimum Volume Ellipsoid proposed by Rousseeuw [77, 79] proposes an ellipsoid 

with the minimum volume to include some certain percentage of the data. One can refer 

to [84] in order to have some more detailed information about the technique.

Since the MVE estimator, the robust distances RD{xi) and the one-step reweighted 

estimates (14) depend only on the x-data, they can also be computed in data sets without 

a response variable yi. This makes them equally useful to detect one or several outliers in 

an arbitary multivaraite data set. For some examples see [86], page 634, and [10].

The MVE and the RD{xi) can be computed by the software available from the super

visor or the author of this thesis, as well as the LTS subroutine written in Gauss.



1.1.4 D iagnostic D isplay

Combining the notions of regression oultliers and leverage points, we see that four types 

of observations may occur in regression data:

regular observations with internal Xi and well-fitting yi

vertical outliers with internal Xi and non-fitting yi

good  leverage points with outlying Xf and well-fitting yi

bad leverage points with outlying Xi and non-fitting yi

In general, good leverage points are beneficial, since they can improve the precision of 

regression coefficients. Bad leverage points are harmful because they can change the least 

squares fit drastically. In the coming applications one of the best techniquies is to detect 

the regeression outliers with standardized LMS residuals and leverage points which are 

diagnozed by robust distances. Indeed, Rousseeuw and van Zomeren proposed a display 

which plots robust residuals versus robust distances [87] where the cutoffs at the [-2.5,2.5] 

band and the 0.975 are bordered by horizontal and vertical lines. With the help of 

such a display, the four types of points categorized above are determined automatically. 

One can play with the band length and the critical values of the to be more robust

or loose to such points of outliers.

1.1.5 A pplications

Although there are some applications of positive-breakdown methods, there have been 

quite a few substantive applications performed where the use of LMS and/or MVE has 

made a difference.

The main obstacle preventing the wide, common, and frequent applications of high 

breakdown methods was the difficulty and slowness of computation, but the invention of 

powerful computers enabled such computations available. For instance, there are several 

intensive users of LMS in financial markets, where profits can be made by finding majority 

patterns and detecting subgroups that believe in another way. In management science, 

the LMS has been applied to measures o f production efficiency by Seaver and Trinatis

8



[91]. The LMS regression is being used in chemistry after the publication of Maissart et al 

[66]. Also, the LMS is an essential component of a new system for connecting optical fiber 

cables implemented at NIST, see Wang et al [106]. In large electric power systems, Mili 

et al [70] modified positive-breakdown methods to estimate the system’s state variables. 

Faster algorithms needed to be constructed to allow real-time estimation.

Positive-breakdown methods have opened new possibilities in the rapidly evolving field 

of computer vision. The LMS has been used for analyzing noisy images, Meer et al [68], for 

interpreting color omages Drew [22], for discontinuity-preserving surface reconstruction, 

Sinha and Schunk [95], for extracting geometric primitives, Roth and Levine [75], Stewart 

[99], for robot positioning Kumar and Hanson [53], and for detecting moving objects in 

video from a mobile camera, Thompson et al [104], Abdel-Mottaleb et al [1]. The MVE 

was applied to image segmentation Jolion et al [46]. Chork [10] used the MVE to analyze 

data on surface rocks in New South Wales, for which concentrations of several chemical 

elements were measured. Outliers in this multivariate data set revealed mineralizations, 

yielding targets for mining prospection. A larger study in Finland carried out MVE-based 

factor analysis, Chork and Salminen [11]. The same methods apply to environmetrics, 

since mineralizations in geochemistry are similar to contaminations of the environment.

1.1.6 Other Robust Methods

The earliest systematic theory of robust regression was based on M-estimators Huber [44], 

[45] given by
n

minimize I a) (13)
¿=1

where p{t) =  [tj yields regression (see Method of Least Absolute Values) as a special 

case. For general p one needs a robust a to make the M-estimator equivariant under scale 

factors. This d either needs to be fixed in advance or estimated jointly with (/?o, · . . ,  /3̂ ;), see 

Huber [45], page 179. Scale equivariance holds automatically for R-estimators, Jureckova 

[49], and L-estimators Koenker and Portnoy [52]. The breakdown value of all M-, L-, and 

R- estimators is 0% because of their vulnerability to bad leverage points.

Zaman [112] makes a thorough appreciation of the robust methods where he mentions 

the need for the consequently invented estimators, with the drawback of them in chapter



The next step was the development of generalized M-estimators (GM- estimators) with 

the purpose of bounding the influence of outlying {xn ,̂ . .  ,Xik) by giving them a small 

weight. This is why GM-estimators are often called bounded influence methods. A survey 

is given in Hampel et al [35]. Both M- and GM-estimators can be computed by iteratively 

rewighted LS or by the Newton-Raphson algorithm. Unfortunetly the breakdown value of 

all GM-estimators goes down to zero for increasing k, when there are more opportunities 

for outliers to occur.

In the special case of simple regreesion (k= l) several earlier methods exist, such as 

the Brown-Mood line, the robust-resistant line of Tukey, and the Theil-Sen slope. Their 

breakdown values are derived in Rousseeuw and Leroy ([84] Section 2.7).

For multiple regression the LMS and the LTS described above were the first equivariant 

methods to attain a 50% breakdown value. By choosing h in (8), any positive breakdown 

value between 0% and 50% can be set as well. Their low finite-sample efficiency can 

be improved by carrying out one-step RLS fit (10) afterwards. Another approach is to 

compute one-step M-estimators starting from LMS as proposed by Rousseeuw [78], which 

also maintains the breakdown value and yields the same asymptotic efficiency as the 

corresponding M-estimator. In order to combine these advantages with those of the bounds 

influence approach, it was later proposed to follow the LMS or LTS by a one-step GM- 

estimator of the Mallows type, see Simpson et al [93], the Schweppe type, see Coakley and 

Hettmansperger [13], or the Hill-Ryan type, see Simpson and Yohai [94]. For tests and 

variable selection in this context see Markatou and He [59] and Ronchetti and Staudte 

[74].

A different approach to improving on the efficiency of the LMS and the LTS is to replace 

their objective functions by a more efficient scale estimator applied to the residuals r̂ . This 

yielded the class of S-estimators, see Rousseeuw and Yohai [89]. An S-estimator is the 

(^0, · · ·) 0k) which minimizes an M- estimator S' (ri , . . . ,  r^) given by

ri \

5.

1 ^
(14)

with bounded p. The breakdown value of the S-estimator . . .  ,Pk) depends on k and n, 

and can be as high as 50%. Altough S-estimators are not M- estimators, they happen to
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have the same expression for their influence function, hence they have the same asymptotic 

efficiency. Anologuous situations already occur in univariate location where the trimmed 

mean L-estimator and the Huber-type M-estimator happen to possess the same infuence 

function while their breakdown values are different.

Going further in this direction has led to the introduction of even more efficient positive- 

breakdown regression methods, including MM-estimators, Yohai [110], r-estimators , Yohai 

and Zamar [111], and generalized S-estimators Croux et al [14].

Multivariate M-estimators have a relatively low breakdown value, (see Hampel et al 

[35], page 298). Together with the MVE estimator, Rousseeuw [77, 79] also introduced the 

minimum covariance determinant estimator (MOD), which looks for the h observations 

of which the empirical covariance matrix has the smallest possible determinant. Then 

T(X) is deflned as the average of these h points, and C(X) is a certain multiple of their 

covariance matrix. The motivation for the MCD are given by Davies [18] and Butter et al 

[8]. S-estimators were extended to the multivariate scatter framework in (Rousseeuw and 

Leroy [84], Davies [17]). The breakdown value of one-step reweighted estimators (14) was 

obtained by Lopuhaa and Rousseeuw [55], whereas Davies [19] studied one-step estimators.

All positive-breakdown estimators, for regression as well as multivariate location and 

scatter, have some unconventional features that distinguish them from zero-breakdown 

methods (Rousseeuw [81]).

1.1.7 Maxbias Curve

There is a growing interest in the maxbias curve, which plots the worst-case bias (5) ET 

of an estimator as a function of the fraction e =  m /n  of contamination. It is increasing 

in e, and is usually drawn for the population case. The maxbias curve of an estimator 

was considered in Hampel et al [35], where it was mentioned that its tangent at e =  0 is 

related to the influence function of T, and that it has a vertical asymptote at e =  e*{ET). 

Therefore, the maxbias curve measures both local robustness (breakdown value) and global 

robustness (breakdown value). There has been much work on finding estimators with low 

maxbias curve: for univariate location Huber [45], for univariate scale Martin and Zamar 

[65] Rousseeuw and Croux [82], and for residual-based regression Martin et al [64], where 

the LMS turns out to be optimal.
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The maxbias curves of the LMS, S-, r-, and generalized S- estimators were compared by 

Croux et al [14]. Lower bounds for maxbias curves were obtained by He and Simpson [40]. 

The research for multivariate scatter methods with low maxbicis curve led to new types 

of projection estimators (Maronna et al [62]). Related projection methods for regression 

were proposed by Maronna and Yohai [63].

1.1.8 Algorithms

The basic resampling algorithm for approximating the LMS (described fully in Rousseeuw 

and Leroy [84]) considers some k + l observations, computes the coefficients . . . , that 

fit these points precisely, and evaluates the objective function (7) for these coefficients. 

This is repeated often, and the solution with lowest objective function is kept. For small 

data sets we can consider all subsets of k+1 observations. For larger data sets we randomly 

draw many (k-t-l)-subsets so that with high probability at least some of them are outlier- 

free. This algorithm can be speeded up on a parallel computer as in Kaufman et al [50]. 

Also the MVE can be aproximated using (k+l)-subsets (Rousseeuw and Leroy [84]). It 

is even possible to combine the LMS and MVE algorithms (Dallal and Rousseeuw [15], 

Hawkins and Simonoff [39]).

Several modified algorithms were proposed for computing these and other positive- 

breakdown estimators for regression or multivariate location and scatter. These develop

ments include exact algorithms for the LMS (Souvaine and Steele [97], Stromberg [100]) as 

well as rough approximations (Rousseeuw and van Zomeren [87]). One can also carry out 

local improvements by means of M-steps (Ruppert [90]), by interchanging points (Hawkins 

[38]), or by sequentially adding data points (Hadi [33], Atkinson [3]). Rousseeuw [80] con

structs a relatively small collection of (k+l)-subsets which is still sufficient to maintain 

the exact breakdown value. Finally, Woodruff and Rocke [108] incorporate simulated 

annealing, genetic algorithms and tabu search.

1.1.9 Other Models

Positive-breakdown regression methods such as LMS can be extended to zero-intercept 

model (see [84]), as well as to models with several intercepts [88]. Rousseeuw and Leroy 

[84], Chapter 7, applied the LMS and other high breakdown RRTs to autoregressive time
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series, to orthogonal regression, and to directional data. Other extensions were to nonpara- 

metric regression, nonlinear regression (Stromberg and Ruppert [102], Stromberg [101]), 

and logistic regression (Christmann [12]).

In multivariate analysis one can replace the classical covariance matrix by a positive- 

breakdown scatter matrix, e.g., for discriminant analysis, correlation matrices, principal 

components, and factor analysis (see e.g., Chork and Salminen [11]). More research needs 

to be done for these and other situations.

1.2 Application to a Growth Model

This part of the thesis includes some applications of the robust regression techniques to 

some data sets from previous econometric studies. The first data set is from De Long and 

Summers [20] . They employ the data from the United Nations Comparison Project and 

the Penn World Table. Their main claim is that there is a strong and clear relationship 

between national rates of machinery and equipment investment and productivity growth. 

Equipment investment has far more explanatory power for national rates of productivity 

growth than other components of investment, and outperforms many other variables in

cluded in cross country equations accounting for growth. Some justification of intuition 

is also given to persuade people that the idea is very plausable. The claim is that this 

association between growth and the equipment investment is causal, that is, the higher 

equipment investment drives faster growth, and that the social return to equipment in

vestment in well-functioning market economies is on the order of 30 percent per year.

1.2.1 Model and the Data

A simple regression is used to support the claim. The explanatory variable is the GDP 

per worker growth (GRW), the regressors are the constant term (co.), labor force growth 

(LEG), relative GDP gap (GAP), equipment investment (EQP) and the non-equipment 

investment (NEQ). Cross-section data are used for 61 countries for which data are avail

able. See Table 1, for the data set in detail. Although different time periods and sets of 

countries are selected for regressions -and this leads to many different regressions to be 

carried out- we focused on the main regression where the time period is the longest, from
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2

3
4
5
6
7
8
9
10 

11 

12

13
14
15
16
17
18
19
20 
21 

22

23
24
25
26
27
28
29
30 I

GRW
0.0089
0.0332
0.0256
0.0124
0.0676
0.0437
0.0458
0.0169
0.0021
0.0239
0.0121
0.0187
0.0199
0.0283
0.0046
0.0094
0.0301
0.0292
0.0259
0.0446
0.0149
0.0148
0.0484
0.0115
0.0345
0.0288
0.0452
0.0362
0.0278
0.0055

LFG
0.0118
0.0014
0.0061
0.0209
0.0239
0.0306
0.0169
0.0261
0.0216
0.0266
0.0354
0.0115
0.0280
0.0274
0.0316
0.0206
0.0083
0.0089
0.0047
0.0044
0.0242
0.0303
0.0359
0.0170
0.0213
0.0081
0.0305
0.0038
0.0274
0.0201

GAP
0.6079
0.5809
0.4109
0.8634
0.9474
0.8498
0.9333
0.1783
0.5402
0.7695
0.7043
0.4079
0.8293
0.8205
0.8414
0.9805
0.5589
0.4708
0.4585
0.7924
0.7885
0.8850
0.7471
0.9356
0.9243
0.6457
0.6816
0.5441
0.9207
0.8229

EQP
0.0214
0.0991
0.0684
0.0167
0.1310
0.0646
0.0415
0.0771
0.0154
0.0229
0.0433
0.0688
0.0321
0.0303
0.0223
0.0212
0.1206
0.0879
0.0890
0.0655
0.0384
0.0446
0.0767
0.0278
0.0221
0.0814
0.1112
0.0683
0.0243
0.0609

NEQ
0.2286
0.1349
0.1653
0.1133
0.1490
0.1588
0.0885
0.1529
0.2846
0.1553
0.1067
0.1834
0.1379
0.2097
0.0577
0.0288
0.2494
0.1767
0.1885
0.2245
0.0516
0.0954
0.1233
0.1448
0.1179
0.1879
0.1788
0.1790
0.0957
0.1455

0.0535
0.0146
0.0479
0.0236

- 0.0102

0.0153
0.0332
0.0044
0.0198
0.0243
0.0231

- 0.0047
0.0260
0.0295
0.0295
0.0261
0.0107
0.0179
0.0318

- 0.0011

0.0373
0.0137
0.0184
0.0341
0.0279
0.0189
0.0133
0.0041
0.0120

- 0.011
0.011

0.0117
0.0346
0.0282
0.0064
0.0203
0.0226
0.0316
0.0184
0.0349
0.0281
0.0146
0.0283
0.0150
0.0258
0.0279
0.0299
0.0271
0.0253
0.0118
0.0274
0.0069
0.0207
0.0276
0.0278
0.0256
0.0048
0.0189
0.0052
0.0378
0.0275
0.0309

0.7484
0.9415
0.8807
0.2863
0.9217
0.9628
0.7853
0.9478
0.5921
0.8405
0.3605
0.8579
0.3755
0.9180
0.8015
0.8458
0.7406
0.8747
0.8033
0.8884
0.6613
0.8555
0.9762
0.9174
0.7838
0.4307
0.0000
0.5782
0.4974
0.8695
0.8875

0.1223
0.0462
0.0557
0.0711
0.0219
0.0361
0.0446
0.0433
0.0273
0.0260
0.0778
0.0358
0.0701
0.0263
0.0388
0.0189
0.0267
0.0445
0.0729
0.0193
0.0397
0.0138
0.0860
0.0395
0.0428
0.0694
0.0762
0.0155
0.0340
0.0702
0.0843

0.2464
0.1268
0.1842
0.1944
0.0481
0.0935
0.1878
0.0267
0.1687
0.0540
0.1781
0.0842
0.2199
0.0880
0.2212

0.1011

0.0933
0.0974
0.1571
0.0807
0.1305
0.1352
0.0940
0.1412
0.0972
0.1132
0.1356
0.1154
0.0760
0.2012
0.1257

Table 1: De Long and Summers growth data on 61 countries

1960 to 1985 and all 61 countries are included.

The regression is carried out by using Ordinary Least Squares method. The results 

obtained from the OLS regression are given in Table 2. The claim that the equipment 

share of investment very crucial is supported by the results of the regression. Some other 

points deserve attention. First of all, the coefficient of the labor force growth is negative 

which means as GDP per worker growth is increasing the labor force growth is decreasing. 

Another point is the significance of the regressors. The t-statistics are not listed in the 

original article. These statistics reveal that labor force growth and the non-equipment 

share are not significant. This fact should have been considered by the authors.

But these results are more than enough to prove that the most important driver of
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var. coef. s.e. t-val. p-val.

con -0.0143 0.0103 -1.391 0.170

LFG -0.0298 0.1984 -0.150 0.881

GAP 0.0203 0.0092 2.208 0.031

EQP 0.2654 0.0653 4.064 0.000
NEQ 0.0624 0.0348 1.791 0.079

Table 2: De Long and Summers data set, OLS, =  0.788, F-val=41.6

var. coef. S.e. t-val. p-val.

con -0.02306 0.00899 -2.56440 0.01315

LFG 0.10040 0.17215 0.58290 0.56238

GAP 0.02230 0.00797 2.78277 0.00741

EQP 0.28279 0.05595 5.05444 0.00010
NEQ 0.09147 0.03038 3.01071 0.00396

Table 3: De Long and Summers data set, RLS, B? =  0.843, F-val=57.9

growth is equipment investment and the other causes of growth are far below the equipment 

investment.

1.2.2 RLS and LMS

Same data and the same regression equation are used in some robust regression techniques 

to understand how much results obtained correct and reliable are. Several robust regression 

techniques are run the first of which is the Reweighted Least Squares (RLS) based on LMS. 

The same table is arranged for this technique also.

The RLS simply assigns some weights to the cases of regression and then reruns OLS. 

The weights axe based on the LMS. For this regression weights assigned to the cases turned 

out to be all one except for two cases belonging to Cameroon and Zambia leading to an
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average weight of 0.97. It is obvious that the data belonging to these countries were 

having high standardized LMS residuals. The standardized residuals of LMS for these two 

countries are 2.57 and -4.65.

The consequences of delivering 0 weights to only these two countries is apparent over 

the table for RLS. The impact of eliminating these small number of data points is high 

on the regression statistics. The B? statistics has risen from 0.78 to 0.84. The F-statistic 

is also improved from 41.6 in OLS to 57.9 in RLS. Now each of the regressors but the 

labor force growth becomes significant, that is, the constant term and the non-equipment 

investment alter their significance.

The Least Trimmed Squares will also be applied to the same data as well as the Mini

mum Volume Ellipsois method. One basic drawback of the minimum Ellipsoid Method is 

about its coverage. The method is applied to the regressors only where the regressand may 

well be contaminated by outliers. And another prominent drawback of the method is that 

it just detects the outlying observations and does nothing about qualifying them ats good 

or bad leverage points and beyond that, the method assigns weights to the cases accord

ing to the robust distances calculated. The weights just consider whether the distances 

exceed the corresponding critical values. Indeed, some cases exceeding these critical 

values may be very precious good outliers that should never be eliminated by means of 

assigning zero weights.

1.2.3 Least Trimmed Squares

Yet another prominent robust regression technique applied is the Least Trimmed Squares. 

A Gauss program is written to perform this technique. One important question about the 

application of the technique is to decide which percentage of the data to trim. Indeed, a 

parameter is assigned to this percentage in the program. Although so many percentages 

are tried several of them are chosen to be reported. Tables 4, and 5 are arranged to display 

the summary statistics for the LTS where the trimmed percentages begin from 5 percent 

and goes until 20 percent with equal increments in percentage.

Table 4 suggests that all the regressors but the labor force growth are significant, and 

the t-statistic for this variable is not as small as the one obtained by OLS. There are some
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Table 4: De Long and Summers data set, LTS, 5 % trim, =  0.518, F-val=14.2

improvements for the significance of all of the regressors. The coefficient for the labor 

force growth again turns out to be positive.

The trimmed percentage is increased to 10, 15, and 20 percents to note the additional 

effects of eliminating some more of the data provided that the objective of the LTS is 

satisfied.

When the trimmed percentage insreases, there arises a trade-off in between the data 

lost by being trimmed and the sum of squares of OLS residuals of the remaining data. 

Here by incresing the trimmed data percentage from 5 % to 10 % some more cases are lost 

and there is some more improvement for the and the F-statistics of regression. Some 

more significance for all of the regressors is achieved as well.

One important result of applying the the LTS algorithm is that we are now able to see 

the labor force growth among the significant regressors. We were not able to observe this 

as a consequence of the robust regression techniques we have been trying so far. One can 

comment on the sign of this regressor depending upon which portion of the business cycle 

and the marginal productivity of labor the economy is.

1.2.4 Minimum Volume Ellipsoid Method on Growth Data

The last technique to be discussed about is the Minimum Volume Ellipsoid Technique. The 

software using the technique is fed by the regressors of a data set and then determines the 

cases to be included and excluded. One important point that deserves attention is that

17



var. coef. s.e. t-val. P“val.

con -0.0297 0.0079 -3.781 0.000
LFG 0.2455 0.1519 1.616 0.112

GAP 0.0255 0.0068 3.728 0.000
EQP 0.3303 0.0491 6.726 0.000
NEQ 0.0887 0.0260 3.414 0.001

LTS10% B? : 0.604 F-val.: 19.05

con -0.0326 0.0070 -4.645 0.000

LFG 0.2091 0.1326 1.576 0.122

GAP 0.0306 0.0060 5.081 0.000

EQP 0.3808 0.0453 8.407 0.000

NEQ 0.0787 0.0232 3.391 0.001

LTS15% B? : 0.690 F-val.: 26.16

con -0.0358 0.0063 -5.718 0.000

LFG 0.2973 0.1194 2.489 0.017

GAP 0.0293 0.0054 5.438 0.000

EQP 0.3636 0.0429 8.468 0.000

NEQ 0.1037 0.0229 4.530 0.000

LTS20% B? : 0.757 F-val.: 34.3

Table 5: De Long and Summers data set, LTS, 10, 15, and 20 % trims
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the points excluded outside of the ellipsoid may be good or bad leverage points and if the 

good leverage points are let out, this is a very big loss for the success of the regression.

The software used may try all possible combinations to fix the minimum volume ellip

soid or it may select a huge number of combinations. The first one is complete enumeration 

and results in the best possible performance of the minimum volume of the ellipsoid, but 

this requires so much computation time and a powerful computer. On the other hand, the 

compensation of the huge number of combinations is at its saving for computation time.

1.3 Detection of Good and Bad Outliers

Good leverage points are very precious since they manipulate the regression line towards 

where it has to, but bad ones are at least as bad to compensate the advantages of the good 

leverage points. This fact makes the detection of the characteristics of the data points 

extremely important. Two main statistics play crucial roles in analyzing these points. The 

main purpose of detecting the outliers is not to eliminate them. Some RRTs eliminate 

some of them and some of them delete all of the outliers regardless of whether they are 

useful or harmful for the regression.

The two criteria we will follow heavily depends on the robust distances and the stan

dardized residuals. The standardized residuals are LMS residuals divided by their standard 

errors. Since these are supposed to follow the Gaussian Distribution they will hardly be 

out of the [-2.5,2.5] tolerance band. So we suspect the cases that are outside this band. 

The second criterion is the robust distances of the cases. Each robust distance should be 

less than the x l  where k is the number of regressors the and percentages may replace (.) 

depending on the sensitivity of the researcher. If the robust distance exceeds this critical 

value and the standardized residual is out of the band then the case is marked as a bad 

leverage point. But if it stays in the tolerance band while the critical value is exceeded 

then that particular point proves to be a good leverage point. Now we are going to analyze 

the data sets of the examples with the above method.

The MVE subroutine prepared by Rousseeuw and Leroy, simply checks for the robust 

distances calculated only and then assigns a weight of 0 or 1 depending on the size of the 

robust distance. But this approach suffers from not taking the regressand into account, 

since the program does not even require the input of the regressand.
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var. coef. s.e. t-val. p-val.

con -0.222 0.0934 -2.379 0.021

LFG 0.045 0.1771 0.253 0.802

GAP 0.025 0.0082 2.982 0.004

EQP 0.283 0.0581 4.859 0.000
NEQ 0.085 0.0314 2.703 0.009

Table 6: Regression statistics for De Long and Summers data which considers both robust 

distances and the standardized residuals, is 0.84 and F-val is 55.8

Finally, a new method that checks for both the standardized LMS residual and the 

robust distance at the same time is applied to the data. Only one of the 13 points 

removed by MVE subroutine is qualified as a bas leverage point and is removed. The 

procedure expalined above is applied and the only such country to be removed is found 

to be Zambia. The results of regression when only this country removed is displayed in 

Table 6. Notice that there arises some alterations in the significance of the constant term 

and the non-equipment investment term, the t-values improve from -1.39 to -2.38 for the 

constant and from 1.79 to 2.70 for the non-equipment term. GAP is also rescued from 

being borderline significant (t-value is 2.21) to significant (now t-value is 2.98) by using 

the new method instead of OLS.

Table 7 lists the standardized residuals by OLS and LMS, and also the robust distances 

of the MINVOL. Note that there are some differences between the OLS and the LMS 

standardized residuals.

1.4 Gray’s Data Set on Aircrafts

Gray [31] had made a regression to figure out the cost of building the airctafts from 1947 

to 1969. The response variable is the cost whereas the regressors are the weight of the 

plane, maximal thrust, lift-to-drug ratio and the aspect ratio. The data set contains 23 

years’ data, and no constant is included as a regressor. The same procedure is followed.
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I OLS LMS RD W 31 0.40 - 0.29 4.68 0
1 - 0.67 - 1.16 3.78 0 32 - 0.71 - 0.92 2.63 1
2 0.08 0.22 1.40 1 33 1.45 1.24 2.50 1
3 0.25 0.26 3.61 0 34 0.10 - 0.09 4.66 1
4 - 0.13 0.05 1.40 1 35 - 1.74 - 1.40 1.22 1
5 1.48 1.37 7.30 0 36 - 0.36 - 0.16 1.42 1
6 1.12 0.98 2.69 1 37 0.69 0.35 1.31 1
7 1.93 2.52 1.19 1 38 - 1.00 - 0.45 1.40 1
8 - 0.12 - 0.3 5.05 0 39 0.41 0.18 2.50 1
9 - 1.21 - 2.2 4.06 0 40 0.93 1.52 1.15 1
10 0.58 0.54 1.29 1 41 - 0.09 - 0.32 3.21 1
11 - 0.38 - 0.4 1.40 1 42 - 1.66 - 1.64 0.78 1
12 - 0.35 - 0.6 3.23 1 43 0.06 - 0.39 3.22 1
13 0.09 0.03 0.58 1 44 1.03 1.45 0.81 1
14 0.43 0.00 1.23 1 45 0.33 - 0.21 1.40 1
15 - 0.51 - 0.17 1.24 1 46 0.98 1,29 0.97 1
16 - 0.23 0.44 1.33 1 47 - 0.16 0.06 1.63 1
17 - 1.09 - 1.94 2.84 1 48 - 0.20 - 0.05 1.05 1
18 - 0.01 - 0.19 1.93 1 49 0.08 0.00 1.65 1
19 - 0.33 - 0.58 2.18 1 50 - 1.08 - 0.92 0.92 1
20 0.89 0.60 2.10 1 51 1.51 1.94 2.77 1
21 0.04 0.55 1.14 1 52 - 0.06 0.00 1.61 1
22 - 0.44 - 0.36 1.53 1 53 - 1.14 - 1.22 4.74 0
23 1.58 1.65 2.87 1 54 0.87 0.88 1.67 1
24 - 0.69 - 0.78 1.37 1 55 0.74 1.04 0.67 1
25 1.34 1.67 1.01 1 56 - 0.07 0.23 3.70 0
26 - 0.23 - 0.51 1.21 1 57 - 0.04 0.00 7.38 0
27 0.45 0.02 4.20 0 58 - 0.34 0.00 5.27 0
28 0.79 0.80 2.39 1 59 0.27 0.56 3.81 0
29 0.91 1.24 0.84 1 60 - 3.42 - 4.43 3.32 1
30 - 1.65 - 1.96 1.40 1 61 - 1.68 - 2.06 1.40 1

Table 7: Minimum Volume Ellipsoid, standardized residuals by OLS and LMS, and weights 

assigned by the MVE subroutine
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We first run OLS and then we will keep on applying the RRTs starting by RLS, ans LTS. 

We will finalize this section also by the joint consideration of the robust distances and the 

standardized LMS residuals. Data are provided in Table 8.

The results of the OLS regression are given in the following Table 9. The coefficient 

of determination is very high and this seems to be a good way of explaining the cost in 

terms of the regressors. All the regressors prove to be ¡significant, and the F-statistics for 

regression is so high to claim that all coefficients of the regression are far from being equal 

to 0 simultaneously.

There may be some outliers that cannot be detected by the OLS. The residuals over 

scale with respect to the OLS are searched and it is detected that there are no outliers. 

That is, all the standardized residuals reside in the band covered by 2.5 standard deviations 

around 0. Table 10 is prepared to display the standardized residuals by OLS and LMS for 

the current data. Note that all OLS standardized residuals stay in the [-2.5,2.5] tolerance 

band, leading to the idea that the data contains no outliers. According to the LMS 

standardized residuals there are three cases which are not covered by the band for 1960, 

1962, and 1968. OLS is unaware of this and does not consider these cases as outliers. All 

cases are in the band as long as OLS regression is used.

1.4.1 LMS and RLS Based on LMS

Note that the t-values of the reweighted least squares show that some of the^regressors 

proved to be significant according to the LS now loose their significance. There are some 

substantial changes of the regression statistics compared to the LS regression. The main 

difference is from the detection of the leverage points. Although some improvement is 

seen in the coefficient of determination, the F-statistics for the regression is subject 

to some smaller values. The coefficients are having substantial changes according to the 

comparison of the two Tables 9 and 11.
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Year Cost Asp. Lift. Weight Thrust

1947 2.76 6.3 1.7 8176 4500

1948 4.76 6.0 1.9 6699 3120

1949 8.75 5.9 1.5 9663 6300

1950 7.78 3.0 1.2 12837 9800

1951 6.18 5.0 1.8 10205 4900

1952 9.50 6.3 2.0 14890 6500

1953 5.14 5.6 1.6 13836 8920

1954 4.76 3.6 1.2 11628 14500

1955 16.70 2.0 1.4 15225 14800

1956 27.68 2.9 2.3 18691 10900

1957 26.64 2.2 1.9 19350 16000

1958 13.71 3.9 2.6 20638 16000

1959 12.31 4.5 2.0 12843 7800

1960 15.73 4.3 9.7 13384 17900

1961 13.59 4.0 2.9 13307 10500

1962 51.90 3.2 4.3 29855 24500

1963 20.78 4.3 4.3 29277 30000

1964 29.82 2.4 2.6 24651 24500

1965 32.78 2.8 3.7 28539 34000

1966 10.12 3.9 3.3 8085 8160

1967 27.84 2.8 3.9 30328 35800

1968 107.10 1.6 4.1 46172 37000

1969 11.19 3.4 2.5 17836 19600

Table 8: Gray’s data
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var. coef. s.e. t-val. p-val.

Asp. -4.442 0.7780 -5.710 0.00002

Lift 2.482 1.1595 2.140 0.04552

Weight 0.003 0.0005 7.666 0.00000

Thrust -0.002 0.0005 -4.119 0.00058

Table 9: Gray’s Aircraft Data, OLS, =  0.937, F-val=70.97

Year OLS LMS 1958 -1.81 -0.44

1947 0.88 0.00 1959 -0.18 0.41

1948 1.19 0.25 1960 0.01 -2.94

1949 1.27 0.94 1961 -0.11 0.14

1950 -0.82 0.00 1962 0.13 3.85

1951 -0.19 -0.17 1963 -1.50 -0.30

1952 -0.72 -0.11 1964 -0.30 2.03

1953 -0.49 -0.29 1965 0.61 2.26

1954 0.78 0.41 1966 0.92 0.00

1955 -0.13 1.20 1967 -0.37 1.18

1956 -0.97 1.60 1968 2.21 11.04

1957 -0.40 1.94 1969 -0.31 0.00

Table 10: Gray’s Aircraft Data, OLS and LMS standardized residuals
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var. coef. s.e. t-val. p-val.

Aspect -1.99517 0.67576 -2.952 0.0094

Lift. 2.40440 1.86995 1.286 0.2168

Weight 0.00160 0.00040 4.019 0.0010

Thrust -0.00065 0.00036 -1.817 0.0880

Table 11: Gray’s Aircraft Data, RLS, =  0.942, F-val=64.94

var. coef. S .e . t-val. p-val.

Aspect -2.61821 0.64751 -4.04353 0.00076

Lift. 1.90141 0.79402 2.39467 0.02773

Weight 0.00223 0.00040 5.63467 0.00002

Thrust -0.00106 0.00038 -2.82496 0.01122

Table 12: Gray’s Aircraft Data, LTS 5 percent trim, ií^ =  0.938, F-val=67.98 

1.4.2 The LTS on G ray ’s A ircraft D ata

First around 5 percent of the data are eliminated and the OLS regression is run with the 

remaining data. The coefficient of determination and the F-statistics are close to the ones 

obtained by OLS, but there are some crucial changes in the coefficients. See Table 12.

When the trimmed percentage increases to 10, both statistics for regression say that 

this is a more successful regression than the OLS. Indeed, one needs a bencmark to show 

that the robust regression technique is doing better than OLS and the only two such 

criteria that we are using are the coefficient of determination, R? and the F-statistics both 

of which reveal that now, the LTS is doing better than OLS when some of the cases are 

eliminated.

The improvement still continues when 20 percent of the data are removed. Note that 

the statistics belonging to the robust regression techniques are close to each other and
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var. coef. s,e. t-val. p-val.

Aspect -1.88404 0.550351 -3.42337 0.00348

Lift. 1.35277 0.62742 2.15609 0.04664

Weight 0.00170 0.00035 4.91687 0.00015

Thrust -0.00058 0.00032 -1.83241 0.08557

Table 13: Gray’s Aircraft Data, LTS 10 percent trim, =  0.951, F-val=77.41

var. coef. s.e. t-val. p-val.

Aspect -1.96283 0.45502 -4.31377 0.00084

Lift. 1.32201 0.50754 2.60476 0.02181

Weight 0.00199 0.00029 6.84605 0.00001

Thrust -0.00081 0.00026 -3.05932 0.00913

Table 14: Gray’s Aircraft Data, LTS 20 percent trim, =  0.973, F-val=118.22 

substantially different than the ones by OLS.

1.4.3 Minimum Volume Ellipsoid Method Applied

The subroutine is run to obtain the Minimum Volume Ellipsoid and thereby the outlying 

cases. The subroutine itself assigns zero weights to two cases but these may be good or 

bad outliers. To detect whether they are harmful or useful to the appropriateness of the 

regression, the robust distances are considered over the standardized residuals. The band 

for the standardized residuals was already determined as [-2.5,2.5] and the 0.975 percent 

critical value for the distribution is 11.14. So the robust distance calculated must be 

more than 3.34 and the standardized LMS residual should be less than -2.5 or higher than

2.5 for the point to be regarded as a bad leverage point. These, and may be the ones near 

the boundary, must be eliminated from the data set. Although 1960, 1966, and 1968 have 

their robust distances greater than 3.34, 1960, and 1968 have their standardized residuals
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var. coef. s.e. t-val. p-val.

Aspect -2.921 0.688 -4.248 0.001

Lift. 4.190 2.060 2.034 0.058

Weight 0.002 0.000 4.602 0.000

Thrust -0.001 0.000 -2.917 0.010

Table 15: Gray’s Aircraft Data, Outliers removed using standardized residuals and robust 

distances together, =  0.941, F-val=67.96

outside the tolerance band. So they are eliminated. Then OLS is run over the remaining 

data and the results in Table 15 are obtained.

Note that there is a slight improvement in the fit o f the regression line according to the 

coefficient of determination, and the coefficients are subject to changes.

1.5 Augmented Solow Model

Nonneman and Vanhoudt [72] introduces human capital to the Mankiw, Römer, and Weil’s 

1992 study [60] on augmented Solow model. The augmented Solow Model suggests

ln{YtlYo) =  /3o +  ßiln{YQ) +  ß2ln{Sk) +  ßzln{N) (15)

where Y  is real GDP per capita of working age, Sk is average annual ratio of domestic 

investment to real GDP, and N  is annual population growth,n, plus 5 percent.

Nonneman and Vanhoudt uses the data in Table 16 all throughout their paper. Some

times they are changing the regression equation and sometimes they are playing with the 

regressors included but the data set does not change. Their main objective is to apply the 

augmented Solow model introduced by Mankiw, Römer and Weil to the OECD countries 

in a better way.
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Canada

USA

Japan

Austria

Belgium

Denmark

Finland

France

Germany

Greece

Ireland

Italy

Netherlands

Norway

Portugal

Spain

Sweden

Switzerland

Turkey

UK

Australia 

New Zealand

1

1

2

3

4

5

6

7

8

9

10 

11 

12

13

14

15

16

17

18

19

20 

21 
22

8̂5

23060

25014

17669

16646

16876

19406

17776

18546

17969

9492

12054

16055

16937

22107

7925

11876

20826

22428

51500

17034

20617

17319

6̂0

12361

16364

4648

7827

8609

10515

8630

9650

9819

3164

5454

7086

10008

8977

2965

4916

11364

14532

2884

10004

12824

13569

_ A _
0.2542

0.2397

0.3658

0.2828

0.2645

0.2915

0.3852

0.2972

0.3095

0.2885

0.2877

0.3139

0.2789

0.3494

0.2608

0.2817

0.2636

0.3142

0.2323

0.2067

0.3128

0.2680

Sh

0.106

0.119

0.109

0.080

0.093

0.107

0.115

0.089

0.084

0.079

0.114

0.071

0.107

0.010

0.058

0.080

0.079

0.048

0.055

0.089

0.098

0.119

gr

0.0125

0.0255

0.0240

0.0110

0.0140

0.0110

0.0120

0.0205

0.0245

0.0020

0.0080

0.0095

0.0205

0.0145

0.0035

0.0045

0.0225

0.0230

0.0020

0.0225

0.0105

0.0095

n

0.0197

0.0154

0.0124

0.0036

0.0045

0.0058

0.0076

0.0099

0.0050

0.0070

0.0105

0.0064

0.0138

0.0068

0.0060

0.0090

0.0031

0.0084

0.0271

0.0033

0.0200

0.0170

Table 16: Nonneman and Vanhoudt data on Augmented Solow model
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var. coef. s.e. t-val. p-val.

Const. 2.9759 1.0205 2.913 0.009

ln{Yo) -0.3429 0.0565 -6.070 0.000

ln{Sk) 0.6501 0.2020 3.218 0.005

ln{N) -0.5730 0.2904 -1.973 0.064

Table 17: Augmented Solow Model, OLS, B? =  0.746, F-val=17.7 

1.5.1 OLS and LM S

If there is no robust regression technique applied, the OLS regression gives the coefficients 

and regression results tabled in 17

Table 18 orders the OLS and the LMS standardized residuals, as well as the weights 

assigned by the MVE method. These weights are taken into consideration and the cases 

penalized by zero weights are eliminated from the data set, and OLS is run over the 

remaining ones to see the results obtained by the MVE algorithm. These weights by the 

MVE algorithm are assigned according to the robust distances (RD) of the corresponding 

cases. Note that cases 1 and 19 are assigned 0 weights and these are the cases with the 

highest robust distances. Indeed, the MVE just checks whether the RDs are exceeding 

the critical values or not, and the cases exceeding the critical values are addressed as 

the bad leverage points and assigned zero weights. It is no coincidence that these are the 

cases with maximum robust distances.

RLS based on LMS leads to the coefficient of determination equal to 0.971 which 

is higher than 0.746 of OLS, there is some improvement in terms of the F-statistic of 

regression also. There are some considerable changes in the coefficients of the regressors 

as well. One of the main differences between the RLS and the OLS is the significance of 

population growth in the regression equation. The neoclassical theory of growth claims 

that the growth rate of population is effective in determining the GDP growth and so does 

the enogeneous growth theory in the short run, so the result obtained by RLS is more 

plausible. The cases deleted by the LMS algorithm are 1, 2, 3, 14, and 19. See Table 19.
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Country

Canada

Japan

Belgium

Finland

Germany

Ireland

Netherlands

Portugal

Sweden

Turkey

Australia

OLS

1.82

2.40

0.01

- 1.21

-0.9

-0.23

-0.29

- 0.22

0.12

-1.38

- 0.20

LMS

3.05

4.85

0.00

0.00

-0.48

-0.23

0.81

-2.06

0.49

-2.82

2.34

RD

0.902

1.920

0.615

2.396

0.969

0.999

2.151

0.902

0.902

5.734

3.064

W

0

1

1

1

1

1

1

1

1

0

1

Country

USA

Austria

Denmark

Prance

Greece

Italy

Norway

Spain

Switzerland

UK

New Zealand

OLS

1.06

- 0.02

-0.30

- 0.01

0.40

-0.09

0.65

0.17

-0.98

0.45

- 1.22

LMS

3.22

0.00

0.38

1.15

-0.44

0.44

2.51

0.00

0.41

-0.25

-0.08

RD

3.832

0.749

0.496

0.902

0.901

0.902

1.666

0.749

0.913

2.494

3.284

W

1

1

1

1

1

1

1

1

1

1

1

Table 18: Augmented Solow Model, OLS and LMS standardized residuals, and weights 

assigned by MVE

var. coef. s.e. t-val. p-val.

Const. 2.4949 0.5193 4.805 0.001

ln{Yo) -0.4437 0.0260 -17.054 0.000

ln{Sk) 0.3208 0.0807 3.975 0.002

ln{N) -0.9037 0.1575 -5.737 0.000

Table 19: Augmented Solow Model, RLS, B? =  0.971, F-val=122.6
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The LTS subroutine is run over the same data set. 5, 10, 15, and 20 percent trim’s 

regeression results are tabled in the same fashion. The only country deleted for 5 percent 

trim is Canada, 10 percent trim only adds Japan, and 15 percent trim adds USA to the 

deleted countries. Finally 20 percent trim deleted Australia additionally. Table 20 lists 

all results for the LTS. Notice that the coefficient o f variation is increasing as more data 

points are deleted. The more data points eliminated according the LTS objective, the 

more successful the fit is, finally 20 percent fit leads to much better results than OLS.

The Minimum Volume Ellipsoid tried all combinations possible and found out that 

Canada, and Turkey should be eliminated to have a better regression. The results obtained 

here are similar to the ones obtained by other robust regression techniques. The most 

stimulating drawback of MVE seems to be its rejecting the significance of population 

growth. Refer to Table 21 for regression results.

The robust distances of MVE and the standardized LMS residuals are simultaneously 

considered to identify the bad leverage point. The only such point is from Turkey. Re

moving Turkey’s data gives the tabled results in Table 22. Notice that the population 

growth turned out to be insignificant again.

I . 6 Benderly and Zwick’s Return Data

J. Benderly, and B. Zwick’s data set from AER [4] aims to explain the return on common 

stocks by output growth and inflation over 1954-1981 period. Indeed, they would like to 

make some contribution to the original article by Fama [26] on the significance of inflation 

to determine the real stock returns. The regression equation concentrated on is

Rt = /3o + PiGt + P2h (16)

where R is the real stock return, G is the output growth in percentage, and I stands for 

inflation in percentage again. Here R is measured using Ibbotson-Sinquefeld data base, 

G is measured by real GDP, and P is measured by the deflator for personal consumption 

expenditures.

The data are given in Table 23
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var. coef. s.e. t-val. p-val.

Const. 1.8730 0.8506 2.202 0.042

ln{Yo) -0.3010 0.0454 -6.632 0.000

ln{Sk) 0.3955 0.1721 2.298 0.035

ln(N) -0.7108 0.2287 -3.108 0.006

LTS5 : 0.780 F-val.: 20.1

Const. 1.5979 0.6933 2.305 0.035

IniXo) -0.3255 0.0375 -8.679 0.000

ln{Sk) 0.4568 0.1105 3.250 0.005

ln{N) -0.9093 0.1953 -4.656 0.000

LTSIO : 0.864 F-val: 34.0

Const. 1.7573 0.5951 2.953 0.010

ln{Yo) -0.3624 0.0349 -10.370 0.000

ln{Sk) 0.5670 0.1271 4.462 0.000

ln{N) -1.0154 0.1715 -5.919 0.000

LTS15 R? : 0.900 F-val.: 44.9

Const. 1.4047 0.5764 2.437 0.029

ln{Yo) -0.3822 0.0337 -11.338 0.000

ln{Sk) 0.5337 0.1180 4.520 0.000

ln{N) -1.1850 0.1804 -6.571 0.000

LTS20 : 0.916 F-val.: 51.1

Table 20: Augmented Solow Model, LTS 5, 10, 15 and 20 percent
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var. coef. s.e. t-val. p-val.

Const. 4.2295 1.1941 3.542 0.003

IniYo) -0.4234 0.0568 -7.457 0.000

ln{Sk) 0.5746 0.1855 3.099 0.007

ln{N) -0.3530 0.3428 -1.030 0.318

Table 21: Augmented Solow Model, MVE, li? =  0.838, F-val=27.7

var. coef. S.e. t-val. p-val.

Const. 4.8712 1.2027 4.050 0.001

ln{Yo) -0.4222 0.0601 -7.026 0.000

ln{Sk) 0.4968 0.1906 2.607 0.018

ln{N) -0.0921 0.3266 -0.282 0.781

Table 22: Augmented Solow Model, both robust distances and standardized LMS residuals 

are considered, =  0.809, F-val=23.9
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Table 23: Data set of Benderly and Zwick

Applying OLS to the data gives the initial regression results in Table 24. These OLS 

regression results are parallel to the ones reported in the original paper. The small E? 

value compared to that of Gray’s data suggests a less successful regression by OLS. Both 

t-values and the p-values prove that the only significant regressor according to OLS is the 

percentage growth of the coming year whereas both the constant term and the infiation 

term are very obviously insignificant.

A glance at Table 25 for the standardized residuals of OLS reveal that no such residual 

falls outside the tolerance band. So all of the cases seem to be obeying the general trend 

of regression, or otherwise the masking effect is influencing the general trend of the data 

and the outliers are so pulling the regression line towards themselves that they all look
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var. coef. s.e. t-val. p-val.

Const. -3.586 8.581 -0.418 0.679

Growth 4.778 1.368 3.492 0.002

Inflation -1.046 1.145 -0.913 0.370

Table 24: Return on stocks, OLS and RLS, B? =  0.558, F-val=10.5

close to that line. Although the LMS standardized residuals also show no standardized 

residuals outside the same band there are two such residuals outside the tolerance band 

of two standard deviations from 0, belonging to years 1979 and 1980. Note that the OLS 

residuals for the above two years are among the maxima of them. One can mark these as 

the points outside the band provided that the there will be a narrower band of length 4 

instead of five.

RLS uses the consequences of LMS and is designed to remove the data for years falling 

outside the wider band but since there is no such year detected, RLS gives the same results 

as OLS and therefore is not reported.

LTS subroutine is run to make the mandatory deletes from the original data set to 

minimize the sum of squared residuals of the remaining data set. Instead of dealing with 

the percentages, some certain number of observations are deleted this time, namely 1, 2, 

3, and 4 of the data set are removed consequently and the results are displayed in Table 

26. These are denoted by LTSl, LTS2, and etc.

Indeed, one can suspect about the existence of outliers in any data set, and the de

tection of such points from the whole set of points is another problem. Different RRT’s 

may suggest different points ss outliers and attempts to remove them. LMS uses the 

minimization of the median of squares as the criterion and has no obligation to blame 

some of the points as outliers. The same is true for the MVE also, but LTS can determine 

any number of points as the ones that adds more than the others to minimize the sum 

of squared residulas, therefore there is no limitation to the number of observations to be 

deleted from the initial set of observations. One can even run the program to mark three 

fourths of the initial data for this purpose. The superiority of LTS comes from the lower
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Year OLS LMS Year OLS LMS

1954 1.61 1.35 1968 0.10 0.47

1955 1.68 1.52 1969 -0.25 0.25

1956 0.11 0.37 1970 -0.56 -0.11

1957 -0.34 0.00 1971 -0.61 -0.23

1958 1.22 1.20 1972 -0.33 0.00

1959 0.37 0.48 1973 -0.53 0.26

1960 -0.55 -0.31 1974 -1.11 0.00

1961 0.19 0.22 1975 1.02 1.39

1962 -1.61 -1.26 1976 0.09 0.46

1963 0.08 0.19 1977 -1.81 -1.10

1964 -0.57 -0.43 1978 -0.19 0.52

1965 -0.83 -0.55 1979 1.59 2.27

1966 -1.28 -0.84 1980 1.60 2.29

1967 0.38 0.56 1981 0.54 1.16

Table 25; The standardized residuals o f OLS and LMS for the return on stocks
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var. coef. s.e. t-val. p-val.

Const. -6.80 8.24 -0.82 0.418

Growth 5.44 1.33 4.09 0.000

Inflation -0.52 1.11 -0.47 0.643

LTSl : 0.553 F-val.: 14.8

Const. -14.08 8.30 -1.70 0.103

Growth 6.25 1.28 4.87 0.000

Inflation 0.35 1.10 0.32 0.754

LTS2 : 0.613 F-val.: 18.2

Const. 5.84 7.33 0.80 0.435

Growth 4.22 1.13 3.75 0.001

Inflation -3.30 1.08 -3.04 0.006

LTS3 E? : 0.702 F-val.: 25.9

Const. 10.11 7.03 1.44 0.166

Growth 3.46 1.09 3.16 0.005

Inflation -4.04 1.05 -3.83 0.001

LTS4 : 0.744 F-val.: 30.5

Table 26: Return on stocks data, LTS, up to 4 years data are removed one by one
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RRT Year

LTSl 1977

LTS2 1955,1977

LTS3 1962,1979,1980

LTS4 1962,1975,1979,1980

MVE 1974,1979

Table 27: Suggested cases to be deleted by MVE and LTS

var. coef. s.e. t-val. p-val.

Const. -3.35 8.26 -0.41 0.689

Growth 4.79 1.33 3.59 0.001

Inflation -1.20 1.22 -0.98 0.336

Table 28: Return on stock’s data, MVE, =  0.576, F-val=10.4 

breakdown value it has.

To make comparison of the data points, the deleted observations by LTS and MVE 

are listed in Table 27. Note that the years with the highest LMS standardized residuals 

belong to 1979 and 1980. These two years are detected by LTS3.

Notice that year 1977, suggested to be deleted by LTS2, is not included in the delete 

list of LTS3, and LTS4. Such things may happen theoretically since the selection by both 

LTS2 and LTS3-LTS4 can be correct as long as the objective of the least trimmed squares 

technique is concerned. But we use LTS as a RRT technique and it does not sound very 

plausible to accept or reject case year 1977 as an outlier by the same technique.

Since MVE does not even require the response variable as an input, it lacks a complete 

analysis of robust regression. MVE only determines the cases far away from the bulk of the 

regressors. This is the main reason behind MVE’s selecting 1974 as a special selection for 

itself and this year is not detected by the other LTSs. Table 28 is the regression results of 

OLS after removing the years with zero weight assigned by MVE. The other year assigned
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Table 29: Return on stock’s data, Robust and Mahalanobis distances, and the weights 

assigned by MVE

0 weight is 1979.

The essence of MVE is the original robust distance calculation it presents. These 

distances are able to detect the outliers much better than the Mahalanobis distances as 

Table 29 suggests. The table is directly copied from the MVE subroutine output.

If one considers a narrower strip for the limitation to the standardized LMS residual, 

that is, if a band of 2 standardardized deviations around 0 instead of 2.5 is preferred, and a 

critical value for 95 % instead of 97.5 % is imposed then two years may be registered for 

leading to bad leverage points, 1979, and 1980. See Tables 29 and 25. So the simultaneous 

analysis of the robust distances and the standardized LMS residuals, marks 1979 and 1980 

and eliminating these two points and running OLS over the remaining data points give 

the results in Table 30. Maybe these points reflect the economic crisis at the beginning of 

eighties.
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var. coef. s.e. t-val. p-val.

Const. 3.26 7.82 0.42 0.681

Growth 4.31 1.22 3.54 0.002

Inflation -2.97 1.16 -2.56 0.018

Table 30: Return on stock’s data, both LMS standardized residuals and robust distances 

considered, =  0.682, F-val=16.4

Two points deserve attention: now the inflation is significant, which is reasonable as 

also Fama had found, and the fit is better than the one by OLS - i f  we consider the 

coefficient of determination and the F-value of regression. So just removing the suspicious 

points makes a more successful and reasonable regression.

1.7 Tansel’s Study on Cigarette Demand in Turkey

Tansel [103] reports the results of a comprehensive study on cigarette demand in Turkey, 

where he uses four different models. The regressand is the cigarette consumption in Turkey 

per adult, C, and the regressors are the constant term, co., income, I, and price, P, for all 

models. The additional regressors are lagged consumption, C — two dummies for years, 

D l, and D2, for Model 1, C — / and the first dummy for Model 2, the two dummies for 

Model 3, and C — I the first dummy, secondary and tertiary, S and T, enrolment ratios for 

Model 4. All variables are in logarithms.

This time the joint analysis of considering both the robust distances and the standard

ized LMS residuals is called NEW. That is, as explained before, the bad leverage points 

are the ones with a standardized LMS residual outside the [-2.5,2.5] tolerance band, and 

at the same time with a robust distance greater than the tabled critical value. NEW 

is supposed to yield better results since the standardized residual used by it has 50 % 

breakdown value, that is it is very robust to outliers, and the same is true for the robust 

distance since the formula for the Mahalanobis Distance is substituted by a new one where 

the covariance matrix is more robust than the ordinary covariance matrix again.
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OLS and NEW are run for all these four models and the results are reported in Table 

31, as well as the coefficient of determination and the F-values of regressions. The other 

RRTs are also run but not reported here.

Finally, Table 32 is about the indices of observations detected by NEW and LTS as the 

bad leverage points for the different models o f Tansel. Note that the observations detected 

are similar.
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var. coef. s.e. t-val. p-val. var. coef. S .e . t-val. p-val.
CO. -3.019 0.8455 -3.570 0.002 CO. -1.599 0.7880 -2.030 0.056
I 0.447 0.1206 3.706 0.001 I 0.232 0.1140 2.032 0.056
P -0.172 0.0881 -1.952 0.064 P -0.085 0.0755 -1.126 0.274
C-1 0.311 0.1731 1.797 0.086 C-l 0.700 0.1732 3.993 0.001
D1 -0.087 0.0264 -3.287 0.003 D1 -0.086 0.0214 -4.042 0.001
D2 -0.050 0.0441 -1.139 0.267 D2 -0.027 0.0384 -0.707 0.488
01 B? 0.88 F-val 33.6 N1 B? 0.93 F-val 53.2

CO. -2.676 0.7953 -3.365 0.003 CO. -2.441 0.8671 -2.816 0.010
I 0.395 0.1225 3.514 0.002 I 0.232 0.1233 2.927 0.008
P -0.192 0.0870 -2.203 0.038 P -0.085 0.0890 -2.036 0.054
C-l 0.429 0.1389 3.094 0.005 C-l 0.700 0.1592 3.039 0.006
D1 -0.088 0.0265 -3.299 0.003 D1 -0.086 0.0268 -3.225 0.004
02 B? 0.877 F-val 41.1 N2 B? 0.88 F-val 40.3

CO. -4.240 0.5272 -8.043 0.000 CO. -4.040 0.5071 -7.965 0.000
I 0.628 0.0692 9.081 0.000 I 0.600 0.0667 8.990 0.000
P -0.218 0.0884 -2.462 0.022 P -0.166 0.0872 -1.909 0.069
D1 -0.101 0.0264 -3.821 0.001 D1 -0.082 0.0266 -3.071 0.006
D2 -0.098 0.0368 -2.661 0.014 D2 -0.132 0.0388 -3.408 0.003

03 B? 0.87 F-val 37.5 N3 0.93 F-val 53.2

CO. -7.544 2.9490 -2.558 0.018 CO. -2.265 2.6622 -0.851 0.406

I 0.905 0.3196 2.831 0.010 I 0.287 0.2993 0.958 0.351

P -0.152 0.0864 -1.763 0.092 P -0.087 0.0742 -1.171 0.257

C-l 0.389 0.1374 2.832 0.010 C-l 0.697 0.1718 4.058 0.001

D1 -0.111 0.0293 -3.798 0.001 D1 -0.119 2.0245 -4.866 0.000

s -0.194 0.1739 -1.117 0.277 s 0.085 0.1509 0.564 0.580

T -0.134 0.0701 -1.916 0.069 T -0.116 0.0567 -2.049 0.055

04 0.898 F-val 30.7 N4 B? 0.95 F-val 52.6

Table 31: Regression statistics for Tansel’s cigarette consumption data, OLS and NEW 

are abbreviated by O and N, respectively
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R R T M l Indices RRT M2 Indices

LTSl 20 LTSl 20

LTS2 15,20 LTS2 15,20

LTS3 15,20,27 LTS3 15,20,27

LTS4 14,15,20,27 LTS4 14,15,20,27

LTS5 7,14,15,20,27 LTS5 7,14,15,20,27

NEW 20,27 NEW 27

RRT M3 Indices RRT M4 Indices

LTSl 1 LTSl 20

LTS2 1,23 LTS2 20,27

LTS3 1,23,24 LTS3 15,20,27

LTS4 1,23,24,27 LTS4 6,15,20,27

LTS5 1,25,26,28,29 LTS5 6,7,15,20,27

NEW 25,29 NEW 20,22,27

Table 32: Suggested cases to be deleted by different RRTs, M l stands for Model 1
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2 HCCM Estimators

2.1 Introduction

An important assumption of the classical linear regression model is that the disturbances 

entering the regression are homoskedastic, that is, they all have the same variance, cr̂ . If 

this is not the case, we have the situation of heteroskedasticity.

Since this is a classical assumption of the classical linear regression model, it need not 

be guaranteed in practice. So one has to be careful about the nature of heteroskedasticity, 

the importance of its detection, its consequences, and the remedies to recover the problems 

forwarded by it.

Although we assume that the variances of the disturbance terms may be different we 

assume that they are pairwise uncorrelated throughout this part of the thesis. In short, 

we assume
0 0 .. 0

E{ee') =
0 0 .. 0

0 0 0 ..

where the a terms stand for the variances of the disturbances.

Heteroskedasticity arises in numerous applications, both from cross-section, and time 

series data, especially from finance literature. But cross-section data revealed more het

eroskedasticity than time series ones. Heteroskedasticity may also be a consequence of 

data aggregation. Regardless of the source and type of heteroskedasticity, OLS stays no 

more preferable. The usual formulae to estimate the variances of the OLS estimators are 

generally unbiased. One cannot tell whether the bias is upward (positive), or downward 

(negative). The bias arises from the fact that ctqls unbised estimator of a? any

more. Furthermore, the usual confidence intervals and hypothesis tests based on t and F 

distributions are not reliable. So, every possibility arises in drawing wrong conclusions if 

conventional hypothesis-testing procedures are employed.

If the type of heteroskedasticity is known with certainty, the OLS estimator is unde

sirable, and one should use generalized least squares. However, the exact type of het- 

eroskedcisticity is most of the times unknown, so GLS cannot be used properly either.
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The performance of the variance-covariance matrix esimators of the vector of coefficients 

being used is very much dependent on the variances of the noise terms. It is well known that 

Ordinary Least Squares (OLS) estimator is extremely good in estimating this variance- 

covariance matrix in a homoskedastic regression, but when one of the crucial and classical 

assumptions of the OLS is broken by setting the variance of the error terms to different 

numbers, OLS performance becomes very poor. And the homoskedasticity assumption of 

OLS is not very plausable in many cases. So the problem becomes very serious when one 

uses OLS in a heteroskedastic regression setting. The intention of this part of the thesis 

is to make a comprehensive study to evaluate, and discuss about prominent estimators of 

literature, and introduce two more of them. Simulation design to compare the estimators 

will be explained and the results of the simulation-based comparisons will be reported. 

Some more information will be given on research about the biases of some of the prominent 

estimators of the current literature.

2.1.1 Tests for Heteroskedasticity

Heteroskadasticity may cause some serious consequences if the regression is based on least 

squares, and one cannot even understand that the regression they are using heteroskadastic 

is without applying some reliable tests. There are several tests developed and suggested 

to be confident about heteroskedasticity of the data.

The test hypothesis can be expressed in terms of the following claims

Ho : cr? =  cr2. Hi : NotHo

The correct covariance matrix for the least squares estimator is 

CoviPoLs) =

for which White’s estimator is

(17)

(18)

CovwhiP) =  {X 'X )-^ X 'E X {X 'X )-^

(19)

where E is a diagonal matrix of squares of OLS residuals, and the conventional OLS esti

mator is
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CovPoLS =  (20)

White [107] has found a statistical test based on this observation. A simple operational 

version of his test is carried out by obtaining nB? in the regression of on a constant 

and all unique variables in X  ® X . The statistic is asymptotically distributed as with 

A: -  1 degrees of freedom where k is the number of regressors.

The White test is extremely general. In order to carry it out one need not make any 

specific assumptions about the nature of heteroskedasticity. Although, this seems to be a 

very advantageous benefit of White’s invention, there is a potential shortcoming. The test 

may reveal heteroskedasticity, but it may as well identify some specification error, such as 

the omission of the term from the simple regression see [105]. Little can be said about 

the power of this test except for some specific cases. One further drawback of the test 

is about the consequences of running the test, i.e. it does not suggest anything after the 

rejection of the homoskedasticity null.

We can obtain a more powerful test by narrowing our focus, the Goldfeld-Quandt [30] 

test is more general. For the Goldfeld-Quandt test, the assumption is that the observations 

can be divided into two groups in such a way that under the assumption of homoskedas

ticity, the disturbance variances would be the same in the two groups, while under the 

alternative, the disturbance variances would differ systematically. The most favourable 

case for this test is groupwise heteroskedasticity. By ranking the observations based on 

the level of assumed heteroskedasticity, one separate the observations into those with high 

and low variances. The test is applied by dividing the observations into two groups with 

sizes Ti, and T2. In order to obtain statistically independent variance estimators, the re

gression is then estimated separately with the two sets of observations. The test statistic is

1̂F[Ti - k ,T 2 - k ]  =  ^ (21)

where the disturbance variance of the first sample is assumed larger. Under the null 

hypothesis of homoskedasticity, this has an F-distribution with T\ — k, and T2 — A: degrees 

of freedom. The statistic obtained from the sample must be compared to the tabled 

F-statistic’s critical values.
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Goldfeld and Quandt suggest to select some of the observations in the middle o f the 

sample to be omitted to increase the power of their test. However, the more observations 

dropped, the less the power of the test will be, since the degrees of freedom for the F- 

statistic will be smaller. And the number of observations to be dropped from the middle 

of the sample depends on the subjectivity of the applier. Harvey and Philips [37] suggest 

that no more than one third of the sample size should be dropped. The Goldfeld-Quandt 

statistic has F distribution under the null hypothesis, and the nominal size of the test is 

correct. And if the null is incorrect, it will follow the F-distribution for only large samples. 

The separation of the sample and the number of observations to delete from the middle 

make the Goldfeld-Quandt test less powerful.

Breusch-Pagan [7] have suggested a Lagrange Multiplier test of the hypothesis

(2 2 )

where 2: is the vector of exogeneous variables. The model is homoskedastic if a  =  0. Under 

the null hypothesis of homoskedasticity, LM is asymptotically distributed with degrees 

of freedom equal to the number of variables in z. It is claimed that the Breusch-Pagan test 

is sensitive to the assumption of normality. Koenkar and Basset [51] suggest to replace 

the denominator of LM by a more robust estimator of the variance of the disturbance term

XT'  ̂ / 2V =  - y  n (e f ------- ) (23)

The modified statistic will have the same asymptotic distribution of Breusch-Pagan 

statistic, but absent normality, it provides a more powerful test [32].

One other quite old test for heteroskedasticity is by Glejser [29]. After obtaining the 

residuals from the original model, Glejser, suggests regressing the absolute values of resid

uals on X which is thought to be closely associated with the heteroskedastic variance af. 

Some suggested forms of the regression includes the constant and X, or constant and \/X, 

or the constant with the inverse of X.
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2.2 Introduction of the Estimators

In the standard regression analyses, t/ =  X /?+ e , where y is an n x 1 vector o f observations 

of the dependent variable, X is the n x k matrix o f regressors, and e is the n x 1 vector of 

the errors terms, the OLS estimator (OLS) for the vector of coefficients is:

0OLS =  {X 'X )-^X 'Y , 

and the distribution for this esimate is:

0OLS~N{P,aHX'X)-^))

OLS method estimates the covariance matrix by:

CovoLsW) =  c ^ X 'X ) -\

E2=i{Yi-xiP)̂=
n — k

(24)

Since OLS fails when heteroskedasticity is introduced. White [107] developed a good 

method where there were earlier studies made by Eicker [25]. The heart o f the problem is 

to find Cov ^OLS) which is equal to

Cov p =  Cov [{X'Xy'^X'Y]

=  Cov [{X 'X )-^X '{X p  +  e)]

=  Cov [{X 'X y^X 'X p] +  Cov [{X'X)-^X'e\

=  0 +  {X'X)-^X'11X{X'X)-^

where S is the covariance matrix of the disturbance terms as stated in previous section: 

S =  E(ee') = diag{a\,al,...,(7^,)

All terms in Cov Pols are known except S. White estimates this E matrix by simply 

replacing the a“f  terms by squares of the OLS residuals, that is. White’s estimator (Wh) 

for the covariance term is:

Covwhi^) =  {X 'X )~^X 'E X {X 'X )\ - i

(25)
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where E =  e^,. . .  ,e^), being the residual of regression. This was a very

useful finding since one need not specify the correct type of heteroskedasticity to use the 

estimator developed by White.

Some time later White’s estimator was proved to be biased by Chesher and Jewitt [9] 

and some others as follows:

jB(e?) =m[T,rrii

=af -  2aih[hi 4-  h[T,h{

where M  = I  — X{X'X)~^X\  and H = I — M. ai, rrij, and hi are the entries of

and H, respectively. In the above expression —2aih\hi +  h'̂ T,hi is the bias term. 

There appeared several attempts to recover for the bias term once it became available. 

Most of such attempts were towards approximating this bias term and removing it. Indeed, 

White’s estimator did not have any problems regarding consistency but it suffered from 

bias.

Hinkley [41] attempted to correct White’s esimator by simply premultiplying it by a 

factor to make some sort of a degrees of freedom correction and obtained the following 

estimator (Hi):

CovHiiP) =
n

n — k
{X^X)-^X^EX{X'X) - 1

(26)

Instead of premultiplying White’s estimator Horn, Horn & Duncan [42] divided the 

squares of the OLS residuals by the corresponding entries o f the hat matrix, i f ,  and ob

tain their estimator, (HD). That is:

COVHD0)

E

e?

{X 'X )-'^X 'E X {X 'X )-^

d iag{el,el,...,el)

6?/(1 —  htt)

(27)

(28)

Two bootstrap methods which were first discovered by Efron (1982) and developed later 

by Freedman (1984) are also included in the study, denoted by (BO). The first one resam

ples the {yi,Xi) pairs and gets the (j/*,x|), for each resampling $oLS is obtained for this
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pair and is called /3*. The corresponding covariance matrix estimator is:

M
CovBoP = (29)

j=l

M is the simulation sample size, and is the average of all /9 ’̂s.

The second bootstrap method first obtains the OLS residuals, resamples on them with 

replacement, and obtains the randomly ordered residual vector, e*. The new vector of 

coefficients are calculated from Y* = X p  +  e*, and the vector of coefficients, /3**, are 

calculated for each resampling. The covariance estimate is calculated similar to the above 

one. Since the estimator converges to the OLS estimator asymptotically, it is not included 

in the tables.

Wu (1986) introduces another bootstrap idea in which he figures out the coefficient 

vector, Pwu, of Y* =  XP  +  i^ t * ·  Here Wu states that any (i|), i.i.d. samples from 

a finite population with aj =  0, and ^ aj =  l would work. For the

simulation we carried on our selection is

CLn —

which proves to satisfy the conditions stated above. The corresponding covariance matrix 

is calculated similar to the other bootstrap methods mentioned above. Wu states that his 

method is equivalent to the method by Horn, and Horn & Duncan [42] when the parameter 

of interest is linear. Since the covariance estimate for our study requires linearity, his claim 

for equivalence holds, and the simulations carried out justify his claim for suffficiently large 

simulation sample sizes, but not included here to save space.

One of the prominent and well-performing estimators is by jackniving (Ja). The logic 

behind jacknife method is to drop one of the observations each time and calculate the 

estimator n times and the variabiliy of the recomputed estimates will be used to get the 

variability of the original one. See Efron [24], Wu [109], and MacKinnon and White [58]. 

After tedious manipulations the jacknife estimator turns out to be:
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Covja^ =  -^X 'v*u*'X )]{X 'X )-'^

n* =  diag{uf,uf,...,u ·^)

(30)

where u* is a vector of г¿*’s, u* =

Another estimator tries to detect whether the regression is heteroskedastic first, and 

suggests OLS if heteroskadasticity is not detected and suggests White’s estimator, other

wise, see [48]. It is called Pre-test OLS, (PO) but is old fashioned now.

Finally, another way of making a better estimator is through estimating the bias of 

OLS estimator and simply subtracting it (BC). The estimator attempts to use the formula 

stated for bias of the OLS estimator and tries to fix the bias by replacing the unknown 

variance terms of bias by their OLS estimates with the hope of estimating the bias so well 

that there will be some improvement. This is somewhat true since our simulations reveal 

that this bias correction idea works better than OLS.

Previos studies in the literature reveal that Horn and Horn & Duncan’s estimator, 

Wu’s bootstrap, and jacknife method dominates the others but the jackniving does slightly 

better.

Two other methods, invented by Zaman, are also included in the study. These are 

James Stein (JS) and Maximum Likelihood (ML) estomators.

2.3 Random Coefficients Model

The key difference between the classical regression models and the random coefficients 

model stems from the variance of the noise terms. That is,

cr̂  =  xtQx[

where fi is equal to LL'. This can be obtained by allowing some more flexibility to the 

regression setting. If one assumes

yi =  XiPi (31)
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combining the terms gives

A  =  /3 +  i/j (32)

£?h] =  0 (33)

E[uiiyl] =  LL' (34)

(35)

Vi =  Xi/3 +  Xii î (36)

= XiP +  tWt (37)

E[w] =  0 (38)

wiw'il =  Xi^X'i (39)

=  XiLL'X'i (40)

(41)

L is selected to shape ft throughout the studies. L is allowed to come from Cauchy 

distribution to make it as free as possible.

2.4 Simulation Design and Data Sets

A GAUSS program is coded to run the simulations towards evaluating the performance 

of the prominent estimators in a random coefficients model addressed above. Several 

evaluation criteria are used to assess the estimators.

The Monte Carlo sample size is 500 and the simulation is run for 100 different L 

matrices. The Monte Carlo sample size for the bootstrap is 250.

Different criteria are used to assess all aspects of the success of the estimators from 

the literature. First criteria may be called the — P) is assumed to

follow distribution with fc — 1 degrees of freedom. The percentage of times this statistic 

exceeds the 99 % critical values of the χ  ̂ table are considered. The above statistics are 

calculated for all estimators and the percentage of times it exceeds 99 % critical values 

are obtained. Then the absolute value of the difference of this number from 1 % are 

calculated and the median is reported in the tables. This statistic is expected to exceed 

the critical value only 1 % of the times, and when 1 % is subtracted one ends up with
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0, for a perfect estimator and sufficiently large simulation sample size. Consequently, the 

greater this number, the less successful the estimator is.

Entropy-loss is the second criterion we used which is defined as:

Eioss =  trace{C -  -  ln{ahs{det{CC~'^))) -  k (42)

where trace returns the sum of the diagonal entries of a matrix, abs stands for absolute 

value, det denotes the determinant of a matrix and In is the natural logarithm. If the 

estimator is perfect in the sence that it can hit the true value then, the first term of 

the summation, the trace, returns k, the logarithm component returns 0, and when k is 

subtracted from the previous two components of the E-loss, one gets 0.

Third criterion is the quadratic-loss, where the deviations from the correct figures are 

penalized by the squares of the difference. Namely,

Qioss = t r { { C - C f ) (43)

White and MacKinnon use a very convenient statistic to compare the existing estimators 

of 1980’s which they call the quasi-t statistic. One can refer to [58] to follow their reference. 

We adopted a similar method and used a similar criteria. First we obtained the critical 

values where 99 % of the random numbers are divided to the left side of the t-distribution 

density. We referred to Monte Carlo simulation to obtain the critical values and compared 

those figures to the tabulated ones from t and Normal distributions. Then we realized that 

the t-critical values are the most fitting ones. The percentage by which the estimators 

exceed the critical values are calculated out of the simulations carried on over the data sets 

for all entries of the vector of coeflScients. Then the maximum of the absolute difference 

for each run of Monte Carlo for different L are calculated and are recorded as the t-loss 

statistic. That is,
A  , o (44)tioss =  m ax{abs{-^)),i =  1 ,2 , . . . , / :
da

Finally, the percentage of the times the 99 % critical values are passed are averaged for 

each and these are also listed at the last columns of the tables. For all estimators, 

these numbers would preferably be around 1 %, and the deviation of these from 0.01 can 

be accounted for the failure. 1 % critical values are used for the x^, and t losses as well
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as the t-statistic because 1 % critical values are more sensitive to discriminate among the 

performance of the estimators.

Three different data sets are used from the literature, the first of which is the famous 

data set used by White and MacKinnon [58] which uses quarterly data on the rate of 

growth of the real U.S. disposable income and the U.S. treasury bill rate. The simulation 

results from his data set are listed in Table 1. The second data set is from Cohen et 

al. (1993) that comprises 79 observations about the number of hours needed to splice x 

pairs of wires. The analyses made by them reveal that the explanatory variables present 

heteroskedasticity. Finally, the third data set is taken from the graduate textbook of Judge 

et al.

2.5 Simulation Results

All the simulation results are listed in Tables 1, 2, and 3. In terms of the xf ŝs 

apparent that ML outperforms all the others by leading to a loss of 0.008, where the second 

best is HD by 0.016 as long as the first data set is concerned. The nearest loss is two times 

the loss encountered by ML, the others are even worse. The same comment may be true 

for the Qioss 3-s well because ML Qioss is a bit more than half of the others. Coming to the 

tioss one can say that ML is among the best ones but has performed not more successfully 

than Hi, HD, and BC. Finally, if we check how much the last three columns are to 1 

% we realize that ML has done differently for different entries of the P vector but the 

overall performance of ML seems to be the best among all. OLS is the worst without any 

question. This is natural because its basic assumption of homoskedasticity is broken. The 

James Stein estimator does second best for the E and Q losses, but does worse according 

to the other criteria.

The second data set also reveals the best result of the ML as long as the loss is 

concerned. The x^ loss by ML is about 25 percent less than the others. The same is true 

for the Eioss also, where the Eioss by ML is 0.086 and the smallest other is 0.108. The 

Qioss say the same thing but the difference is not that big now. The best ones of the 

remaining set are jacknife, HD, and Hinkley’s estimators. Bias-corrected estimator scores 

the best in terms of the quasi-t losses.
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OLS

Wh

Hi

HD

Ja

ML

BC

BO

PO

JS

^ lo ss Qi 0

0.041

0.025

0.018

0.016

0.020

0.008

0.018

0.018

0.034

0.024

0.459

0.374

0.364

0.370

0.373

0.199

0.398

0.354

0.418

0.327

0.00872

0.00885

0.00921

0.00971

0.00940

0.00707

0.01007

0.00905

0.00912

0.00858

0.030

0.010

0.008

0.008

0.010

0.008

0.008

0.010

0.018

0.016

00

0.01050

0.01236

0.01050

0.01016

0.01136

0.01122

0.01032

0.01140

0.01104

0.01036

01

0.0312

0.0196

0.0172

0.0159

0.0174

0.0138

0.0162

0.0164

0.0220

0.0208

0 2

0.0200

0.0154

0.0128

0.0121

0.0134

0.0107

0.0124

0.0131

0.0168

0.0148

Table 33: First data set, 1 % critical values are used 

Similar comments are valid for the third data set.

One interesting result of our simulations is that the jacknife is not the best o f the 

remaining estimators. The James Stein estimator introduced in this paper does the second 

best as long as the first three columns of the table are concerned, but does substantially 

worse when the remaining columns are taken into account.

2.6 Bias of the Eicker-White Estimator under Simplifying Assumptions

Heteroskedasticity consistent covariance matrices are being used very widely. In so many 

applications people are not reporting the ordinary standard errors they used to report. 

Instead, they are first checking for heteroskedasticity and then possibly reporting the het

eroskedasticity corrected standard errors. One might use one of the prominent estimators 

developed so far and has to prefer one of them. In this part o f the study, the aim is to find 

the bias terms of the estimators to make comparison over the ranges they perform better 

under some simplifying assumptions. The assumptions can be summarized as follows:
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^ lo ss Qloss Moss /3o A
OLS 0.041 0.323 0.03253 0.023 0.01016 0.03606
Wh 0.010 0.110 0.02794 0.006 0.01090 0.01532
Hi 0.008 0.108 0.02848 0.006 0.01016 0.01442
HD 0.008 0.111 0.02952 0.006 0.01002 0.01362

Ja 0.008 0.111 0.02881 0.006 0.01076 0.01456

ML 0.006 0.086 0.02460 0.006 0.01086 0.01246

BC 0.008 0.114 0.02999 0.006 0.01004 0.01344

BO 0.008 0.117 0.02908 0.006 0.01142 0.01476

PO 0.016 0.181 0.02910 0.008 0.01046 0.01800

JS 0.018 0.167 0.02791 0.010 0.01008 0.02014

Table 34: Second data set, 1 % critical values are used

X^ ^ lo ss Qloss ^loss 00 01 02

OLS 0.041 0.421 0.00104 0.021 0.01112 0.01580 0.03250

Wh 0.038 0.476 0.00137 0.014 0.01376 0.01760 0.02238

Hi 0.030 0.461 0.00143 0.010 0.01112 0.01418 0.01862

HD 0.026 0.473 0.00155 0.008 0.01076 0.01266 0.01700

Ja 0.031 0.476 0.00148 0.010 0.01248 0.01488 0.01904

ML 0.014 0.225 0.00092 0.008 0.01122 0.01382 0.01074

be 0.028 0.513 0.00160 0.008 0.01098 0.01332 0.01706

bo 0.026 0.438 0.00135 0.010 0.01200 0.01386 0.01842

PO 0.036 0.485 0.00129 0.017 0.01150 0.01510 0.02652

JS 0.027 0.391 0.00119 0.014 0.01094 0.01394 0.02446

Table 35: Third data set, 1 % critical values are used
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1. X is Т  X 2.

2. First column of X  is 1.

3. o1 =  T  Noise terms

4· =  0

5. E t= i^ t= T

The second column of X is indexed by X\̂ X2  ̂· ··, xt - Here, most of the assumptions can 

be satisfied by making simple manipulations over the regressors, or selecting the regressors 

in the given conditions. The notation for some of the expressions are determined as follows:

1. E i= i^ ?  =  5T

2. T j= ix i =  K T

3. E l= ix l =  GT

4. Z l= ix t =  LT

5. М {Х ) =  ^Е1=1Хг =  0

6. =

7. M {X,a^) =  ^El=iXt(^t

And the rest of the moments are used in the text is similarly. 

For our simple case the variance-covariance matrix is:

(Х 'Х )-'^Х 'Ш {Х 'Х )-'^  =

i  T.rr2 i  t 2/t2T 2-it=i xt'Xt T ¿^t=i
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For the above matrix the Bicker White estimator is:

i. /»2 1  ̂ ,,2T 2̂ i=l T 1 1̂=1

^Er=,:r,e2 fE /= ,x ? e ?

where the e term stands for the OLS residuals.

Before coming to the calculation of the bias for the first entry of tlui covariancii matrix, 

the preliminaries are:

e =  y — xP

= {I -X (X 'X )-^ X ')Y  

= ( I -H ) e

(45)

(46)

(47)

et — Cf — ^  htjCj

Eel

t=l
T

=  (1 -  htt)et -  53 hijcj 

=  Var{et)
T

=  (1 -  2htt +  +  $3

=  crj -  2httcr] +  hjiffi +  53

T

=  a ^ - 2hit(rJ + Y , h y ]  
j=l

2 .  0 ^ 1
=  -  |;(1+ a:?)a  ̂+  53

j=i

=  a? -  -  |x?a? + ^  + 2o:tX,rT2 + xfxjr/j

=  a? -  -  |x?a? + ^  + | x .M (.,a ^ ) + ^x?M (x^a^)

= d -  -(1  +  x?)^? + ^(1 +  2xtM (x,a2) + xiM{x^,a^))

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)
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Now the bias terms for the four entries of the variance-covariance matrix will be pro

vided. Since the matrix is symmetric around the first diagonal axis, three bias terms will 

be calculated. The proofs for the manipulations are given in the appendix to the thesis. 

Bias o f Bicker-White estimator entry by entry of the covariance matrix is entry is

B\\ =  EC\i — C\\

Now, coming to the calculation of the B \2 =  B 21

B\2 — EC\2 — C\2

(58)

(59)

(60) 

(61)

Finally, the bias of the last entry is

B22 =  E C - C (62)

(63)

(64)

2.7 Bias of H -H D  estimator

The same assumptions are still holding. Recall that the E matrix in the middle of the 

covariance matrix is estimated by H-HD by dividing each entry of El-W by the correspond

ing entries of the hat matrix. So first we concentrate on an arbitrary entry of that matrix. 

Here we assume that

1 - h t t
1

1 — htt

ate  ̂ where

 ̂+  hit +  +  4  + . ..  +  R {Taylor's expansion)

(65)

(66)

(67)
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where R is the remainder o f the approximation.

For the time being take at =  1 +  /1« . So:

E . el =  Eatel
1 — ht

= E{{l + hu)el)

=  Ee^ +  E{htt^)

(69)

(70)

(68)

Now let

A = E e 'i= a ‘l -^ [ l + x ^ , )a ' l

+ i ( l  +  2xtM{x, a^) +  XfUix"^, cr )̂) (71)

(72)

The bias of the first entry is:

En^ =  ^ ^ M { x ^ ,a ^ )  +  ^ M { x , a ^ ) - ^ M { x ‘̂ ,a^) (73)

(74)

For the bias of the off-diagonal entries

12 — o H D■D21

T3
,2K +  T , ,ST +  S +  G,

=  ^  +  ( “ “ y 3  ̂ )M {x, cr̂ ) +  ^ )M {x^,a ‘̂ )

,T  +  3 _2  ̂ 2
T3

5 J2\- { - j ;^ ) M { x ^ ,a  ) -  ^ M { x  ,a  )

(75)

(76)

(77)

Finally, for the last entry:

22 —
.K  +  T +  1. 2^.2-5T-|-2S'-l·2(?
( ----- ^3------ ) +  M {x,a^){----------^ ---------

-M (a :^  ct2) ( ^ ^ )  -  M(a;®,o-2) ^

T3

(78)

(79)
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2.8 Conclusion

This chapter of the thesis comprises two main issues: comparison of the main estimators 

for the covariance matrix of the heteroskedastic regression, and the determination of the 

bias terms for some of the estimators. Since this is some real research towards finding out 

some facts the study is not completed and still remains open for some further research. 

The research topics may be the comparison of the estimators under some more general 

assumptions, including some of such estimators, and more important is to find a better 

estimator, which outperforms all of them.

As long as the comparisons are concerned, ML has done the best. We examined all 

prominent variance-covariance matrix estimators for /3 that are relevant and simulated to 

observe their performance by using some data sets from econometrics literature. The ML 

and James Stein estimators promoted by Zaman are also included. Several different criteria 

are used to reveal different aspects of the estimators. ML estimator is found to compete 

well with the existing estimators of literature for estimating the variance-covariance matrix 

of P if not outperforms them, although it takes considerable more time to calculate it.

The issue about the bias terms of the estimators is also important since the econometrics 

literature is now more aware of the estimators in heteroskedastic regressions and people 

should use these estimators more consciously, if one figures out the ranges over which 

estimator is doing better than the others, at least econometricians should know which 

estimator to prefer over different ranges. But this seems like a tedious and time consuming 

job as one can easily understand by looking at the derivations at the appendix of the thesis.

61



3 Empirical Bayes Application to Istanbul Stock Exchange 

Data

The final part of the thesis is dedicated to some empirical application of the Bayesian 

approach. The initials of the theory is explained in its philosophy. The application requires 

some complicated manipulation of the theory where some inferiors of the ordinary Bayesian 

approach are somehow avoided.

The application uses some huge amount of daily data o f the prices of all stocks processed 

in the Istanbul Stock Exchange. A simple relationship between the prices of stocks and 

the market index is used to run OLS and the Empirical Bayes procedure over different 

sectors and different time periods with different number of firms to evaluate which of the 

two approaches performs better. Two bencmark criteria are used. The estimated figures 

are compared to the already known numbers and the mean absolute deviation and the 

mean squared deviation are calculated for both methods.

The missing values of the data are substituted by the one-day-before values if the 

missing values are not coming consequently and frequently, otherwise, that portion of the 

data set is removed from the analyses.

This part of the thesis includes both the theory of the Empirical Bayes approach as well 

as the application supported by it, and some issues of the finance literature to better un

derstand what the application refers to. So both of these are explained in the introductory 

part.

3-1 Introduction

3.1.1 Portfolio Risk and the Capital Asset Pricing Model

The stocks that are held in isolation are risky. The riskiness of the stocks held in portfolios^ 

will be analyzed in this section via their beta coefficients. Such a relationship between a 

stock’s price and its beta is drawn in finance literature. A stock held as part of a portfolio 

is less risky than the same stock held in isolation. This fact has been incorporated into

portfolio  is used as a collection of investment securities throughout the chapter. If you owned some 

stocks of three different firms with the hope of observing some higher increases of these stocks then you 

are having a portfolio of three stocks.
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a procedure for analyzing the relationship between risk and rates of return, the Capital 

A sset P ricin g  M od el, or C A P M . The CAPM is an extremely important analytical 

tool in both financial management and investment analysis. Indeed, the 1990 Nobel Prize 

was awarded to Professors Harry Markowitz and William F. Sharpe, the developers of the 

CAPM. So many implications of the issue took place in the literature after the invention 

of CAPM. Lin, Chen, and Boot [54] investigate several important issues that feature the 

dynamic and stochastic behavior of beta coefficients for individual stocks and affect the 

forecasting of stock returns.

Jorion, Giovannini [47] provides two alternative estimation and testing procedures of 

a representative agent model of asset pricing which relies on a particular parametrization 

of non-expected-utility preferences. Smith [96] uses Intertemporal Capital Asset Pricing 

Model (ICAPM) as a vehicle to explain the predictability of excess returns in forward 

foreign exchange markets.

Handa, Kothari, and Wasley [36] perform multivariate tests of the CAPM using monthly 

and annual returns on market-value-ranked portfolios, and fail to reject the CAPM when 

annual holding period returns are used.

The plan for the research of this study included the possible selection of portfolios 

according to the estimates by Empirical Bayes and OLS. Some further comparisons of the 

two techniques can be realized when this part of the research will hopefully be finished 

later. That is, the two techniques will be considered according to the profitability of the 

portfolios they suggest.

3.1.2 Portfolio Risk and Return

Most financial assets are not held in isolation; rather, they are held as parts of portfolios. 

Most of the financial institutions such as banks, pension funds, insurance companies, 

mutual funds are required by law to hold diversified portfolios. Most of the individual 

investors hold stock portfolios, not the stock of only one firm just to diversify the risk 

coming from just one item of portfolio. Since the risk is diversified, from an investor’s 

standpoint the fact that a particular stock goes up or down is not very important, indeed 

what is important is the return on his or her portfolio, and the portfolio’s risk. The risk 

and return of an individual security should be analyzed in terms of how that security
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affects the risk and return of the portfolio in which it is held.

Companies are subject to risk because of strikes, failing marketing programs, the win

ning and losing of major contracts, and other events that are unique to a particular firm. 

Since these events are essentially random, their effects on a portfolio can be eliminated 

by diversification. Here the idea is that the bad events in one firm will be offset by good 

events in another. Market risk, on the other hand, stems from factors which systematically 

affect most firms, such as recession, inflation, and high interest rates, and even war. Since 

most stocks will tend to be negatively affected by these factors, systematic risk cannot be 

eliminated by diversification within a country, but the effect of it can be diminished by 

selecting a good balance of risk and return in the portfolio. This also depends on the risk 

aversion of the portfolio possessor.

We know that investors demand a premium for bearing risk; that is, the higher the 

riskiness of a security, the higher the expected return required to induce the investors to 

buy or hold it. However, if investors are primarily concerned with portfolio risk rather 

than the risk of the individual securities in the portfolio, the answer to the question of how 

should the riskiness of an individual stock be measured, is provided by the Capital Asset 

Pricing model (CAPM): the relevant riskiness of an individual stock is its contribution to 

the riskness of a well-diversified portfolio.

One other main concern is whether all stocks equally risky in the sense that adding 

them to well-diversified portfolio would have the same effect on the portfolio’s riskiness 

are or not. The answer is negative. Different stocks will affect the portfolio differently, so 

different securities have different degrees of relevant risk. One should also want to know 

how the relevant risk of an individual stock can be measured? As we have seen, all risk 

except that related to broad market movements can, and presumably will, be diversified 

away. After all, the risk can never be eliminated completely. The risk that remains after 

diversifying is market risk, or risk that is inherent in the market, and can be measured by 

the degree to which a given stock tends to move up and down with the market. Beta is 

used to determine the required rate of return on a stock, given its market risk.
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3.1.3 The Concept of Beta, /3

The tendency of a stock to move with the market is reflected in its beta coefficient, /3, 

which is a measure of the stock’s volatility with respect to the volatility o f an average 

stock. ¡3 is the key concept o f the CAPM. There have been many studies under different 

conditions to make better estimates o f beta, Mcdonald, and Nelson [67] have done it for 

thick tailed distributions for returns. Luoma, Martikainen, Perttunen, and Pynnonen [57] 

investigate beta estimation of different techniques for infrequently traded and inefficient 

stocks. Person, and Foerster [27] develop evidence on the finite sample properties o f the 

Generalized Method of Moments (GMM) in the asset pricing context.

An average risk stock is defined as one that tends to move up and down in step with the 

general market as measured by some index. Such a stock will, by definition, have a /3, of 

1.0, which indicates that, in general, if the market moves up by 10 percent, the stock will 

also move up by 10 percent, while if the market falls by 10 percent, the stock will likewise 

fall by 10 percent, li /3 =  0.5, the stock is only half as volatile as market -it will rise and 

fall only half as much- and a portfolio of such stocks will be half as risky as a portfolio of 

/3 =  1.0 stocks. On the other hand, if /3 =  2.0, the stock is twice as volatile as an average 

stock, so a portfolio of such stocks will be twice as risky as an average portfolio. The value 

of such a portfolio could double, in a short time. The literature on risk is very wide.

If a stock with /0 >  1 is added to an average /3 =  1 portfolio, then P, and consequently 

the riskiness, of the portfolio will increase. Conversely, if a stock with /0 <  1 is added to' 

an average-risk portfolio, then the portfolio’s P and risk will decline. Because of this, since 

a stock’s P measures its contribution to the riskiness of a portfolio, /3 is the theoretically 

correct measure of the stock’s riskiness.

3.2 Bayes Method

The general method for the Bayesian calculations go as follows: let у be the vector of 

observations that presumably depends upon the unknown parameter of interest, 9. It is 

assumed that there is some prior information about 9 in the form of a density n{9). Then 

the joint density of у and 9 can be written as: / (y ,  9) =  f{y\9)n{9) =  ■к{9\у)т{у) What we 

need here for the Bayesian calculations is тг(0|у) which is the updated 9 after receiving the

65



data, y. Tt{6 \y) is usually called the posterior density. The way to calculate this parameter 

under the assumption of normality is given as follows: let y and 6 be k-variate normal 

vectors where the density o f y given 6 , f{y\0) is N {6 , 2 j,(e), and the marginal density o f 0 

is N(iJ,, Eg). Then the marginal density o f y is N{/i, +  Sy|e). The conditional density

of 0 given y is also normal with mean vector E[0|j/]=P~^(S^^y +  S^'V) and covariance 

matrix Cov{0\y) =  P~^ where P  =  +  E^"\

Similarly, if the data density is P\l3 ~  N{P, a^{X'X)~^), and the prior is /3 ~  

then the posterior density of P is multivariate normal with mean and covarance matrix

E [ m  =  i M ^ ' X )  +  E ^ i ) - i (^ (X 'X ) /3  +  E ^ V )

C o v i m  =  { ^ { X ' X )  +  E0 )̂

The Bayes method suffers from three difficulties that come from the very nature o f it. 

First of all, the risk for Bayes estimator can be unbounded, and no one can dare such 

a risk. Second, the choice of the hyperparameters is important and this choice of the 

prior parameters may lead to the failure of Bayes estimation. Finally, the values selected 

for the prior may conflict the data [112], chapter 5. The Empirical Bayes method is 

specially designed to avoid these three difficulties by simply making the selection of the 

priors after looking at the data, and flx the values of the prior according to those of the 

data. The details are elaborated in the coming sections about the theory of Empirical 

Bayes procedure. Although there are different ways of implementing the Empirical Bayes 

method, all of them use the marginal density of the observations to bring estimates for the 

hyperparameters. The data density depends on the parameters, and the prior density of 

parameters depends on hyperparameters so that the marginal density of the observation 

depends on hyperparameters [112].

3.3 Empirical Bayes Method and the Model

Our main concern in this part is to find out the best regression that is capable of forecasting 

the prices of the stocks for the following days. We initially estimate these regressions with 

OLS, but so many of the regressions are imprecisely estimated, especially for the stocks 

with small number of firms and the cases where the number of observations is small.

The imprecision of OLS lead us to implement an Empirical Bayes procedure that gen

erates substantially more precise estimates.
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The model used is

Yi — XiPi +  €¿5 i =  1, ...,T (80)

A  — (A 15A 2) (81)

(̂ ¿1 j ···) ) (82)

[et|o·?] ~  JV„,(0,<T?) (83)

For the given equations above i denotes the index for a stock, T  is the number of stocks 

in that sector, ni is the number of observations per stock, which ranges from 5 to 120 by 

construction.

More specifically, we used the following equation for estimation of all firms in the 

different sectors:

Pi — Pi\ +  Pi2Rm (84)

Pi =  InPk -  InPk-i, A: =  2 ,3 , . . . ,  ni (85)

Rm =  Inljc -  Inik-i, fc =  2 ,3 , . . . ,  rii (86)

In the above equations, rii is the number of observations, that is the number of days for 

the estimation period, i is the Istanbul Stock Exchange Index, Pi is the price of the stock, 

and Rm̂  stands for the market return. The ratios of the logarithms are used to play with 

smaller numbers that are standardized.

We consider two approaches to estimating these sets of regressions. The first is OLS 

based on 1-4, so that.

~  NiPi,aUXiXi)-^) (87)

where
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^OLS ^ (^x>x.)-ix>Y. (88)

Note that the OLS approach of Equations 1-4 assumes that parameter estimates for one 

stock tell us nothing about the likely true parameter values for any other stock. While this 

is a standard conservative assumption, it should not be restrictive for us. Indeed, there is 

some more information embedded in the data which is ignored by OLS. The information 

is the likely coordinated action of the stocks within the same sector. The idea leading 

to the extra information employed by Empirical Bayes is that the stocks within the same 

sector are aflFected from the exogeneous shocks to that sector together, therefore they move 

similar to each other. This piece of information is used in our second approach. Empirical 

Bayes which ctssumes that the true parameter values for the individual stocks are related. 

In particular, the Empirical Bayes model is obtained by assuming that Pi hats a normal 

prior distribution of the form

[ A | ( ^ , A ) ] ~ W A ) (89)

The standard Bayesian approach now tries to specify the hyperparameters 6 and A and 

use Bayes’ rule for estimating the Pi's. This leads to the Bayesian estimator

where

0 B a y e s  ^  +  ^ - ^ e )

Di =  ai^X'iXi +  A -i

(90)

(91)

This estimator is a weighted average of the OLS estimate and the assumed prior mean 

where the weights are the estimated variances o f the OLS estimate and the assumed 

prior variance. Note that the expression in the second squared bracket above is the OLS 

estimate of /3 pre-multiplied by the OLS estimate of covariance, o^{X'X)~^.  Now we 

follow an Empirical Bayes method that allows 6 and A to be estimated directly from the 

interstock distribution of the OLS parameters. In particular an initial estimate for 0 is

T T

2=1 2=1
(92)
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which is essentially a weighted average of the stock-specific OLS estimates where the 

weights are inversely related to the parameter’s estimated variance. With this initial 

estimate of 6 in hand, we then proceed to estimate 6 and A with an iterative procedure.

While one can allow for all forms of A this makes computation intractable for our data, 

and that is why we restrict off-diagonal entries of A to be zero. This means we do not 

let any prior covariance across the coefiicients, and this is called the D-Prior method of 

Empirical Bayes, D standing for the diagonal. We also tried another technique called, the 

g-prior but did not concentrate on it, since the results by d-prior dominated that. With 

this assumption and our initial estimate of 6 we form an initial estimate of A via

A. =  diag{Xf ,\ 2 )̂  where A+ =  max(0 ,Xj) 

Ai =  ^  E m  -  0j f  -  afixiXih]·^

(93)

(94)

where i indexes stocks and j  indexes regressors so that, for example, { X ‘Xi)j  refers to the 

diagonal element of {X-Xi). In essence, each \j is an estimate of the interstock variance 

of parameter j ,  corrected for sampling error. We then reestimate /?i’s with (90)-(91) and 

reestimate each element of 6 with

% =  +  A 7 i]-M E (A -2 (X 'ri),· +  A-^Ai)] (95)
2=1 2=1

Note that the calculation of (90-91) requires estimates of (93)-(94) and (95), and that 

(93)-(94) requires the estimates of (90)-(91) and (95) etc., so that solutions for 0, A and 

the /?i’s must be solved iteratively. Fortunately, the number of the iterations we faced 

while running the coded program for this method did not exceed 10 most of the times, 

provided that we had started from good initial points.

With solutions to (90)-(91), (93)-(94) and (95) in hand, the estimated variance of the 

posterior distribution of the /3i’s is computed as

VariPf^) =  +  [a U X lX i)r )1- 1\-1 (96)

Note that the estimated variance of the Empirical Bayes estimator is smaller than the 

variance of the OLS estimator by construction. The increased precision is a result of the 

increased information introduced into the model.
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3.4 Data and their Manipulation to Compare OLS and 

Empirical Bayes

Daily data belonging to Istanbul Stock Exchange from January the first of 1988 till the 

end of October 1995 are used to obtain the desired statistics. Firms are grouped into 21 

sectors. The list o f the sectors are given in Table 36 below as well as the number of firms 

in each sector.

To evaluate the performance of the methods, the data are split into two of different 

lengths. These are called the estimation and the forecast periods. We pretend as follows: 

the data in the forecast period are assumed unknown to the estimator, whereas the only 

data known are the ones in the estimation period. The true figures in the forecast period 

are then used to compare the estimated values with the true ones for different techniques. 

Table 37 below is designed to display the two periods expalined above, that is, the table 

expresses the different estimation and forecast periods in days. The stock exchange worked 

for 5 days of the week, so 20 days more or less corresponds to a week.

The comparisons are made for two kinds of stocks: initial public offerings, IPO’s, and 

the firms that already existed in that particular sector, non-IPO’s. We had set the initial 

dates of the regressions to the days where a new stock, IPO, is introduced to the sector. 

The data for the 21 sectors are arranged in a way to let the date at each joining firm 

initiates regressions. Many regressions are set via this way, where the length of the data 

were long enough to cover both the estimation and the forecast periods. If the data were 

not sufficient to handle this length then they were not included in the analyses.

In summary, we changed several things to make more detailed comparisons and we had 

to consider different aspects of the data. First, the estimation and the forecast periods 

were changed by which 10 different cases were obtained. Two different criteria are used: 

squared, and absolute discrepancies. The starting days of the regressions are set to dates 

where a new firm joined the stock exchange. All of these are carried out for the IPO’s and 

the non-IPO’s.

One may expect to observe Pn =  0, and Pi2 =  1. That is, the indiviual stocks are 

supposed to follow the market index with the intercept being equal to 0.
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i Ti Stock
1 6 Leasing-Factoring
2 11 Holding
3 5 Investment
4 5 Insurance
5 5 Petroleum and its by Products
6 4 Plastic Products
7 4 Ceramics and Porcelain
8 15 Cement
9 7 Iron and Steel
10 3 Other Metals
11 11 Food and Alcoholic Drinks
12 17 Textiles
13 5 Beverage
14 6 Paper and Paper Products
15 5 Press and Publising

16 4 Fertilizer and Agricultural Products
17 6 Durable Goods
18 6 Electric Machinery

19 3 Metal Products and Machinery
20 3 Energy
21 3 Construction Material

Table 36: Sectors and the number o f firms, or stocks, in each of them

Case a b c d e f g h i j

Estimation 5 10 15 20 20 40 60 80 100 120

Forecast 5 5 5 5 20 20 20 20 20 20

Table 37: Estimation and forecast periods in days
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3.5 Comparison of Techniques According to Sectors

All the comparisons are made according to squared or absolute discrepancies of the pre

dicted values around the true ones for IPO’s, and the non-IPO’s. The 10 different cases 

shaped due to estimation and forecast periods reveal the ability o f the estimators at dif

ferent number of data points included for estimation.

To evaluate the IPO’s we took different estimation and forecast periods where the 

number of firms started from 3 and were increased gradually as new firms entered the 

sector. This gave an opportunity to observe the successes o f the estimators when the 

number of stocks were changing. The capacity of the stock exchange enabled us to have 

17 such newly joining firms only.

Four tables are designed to have a closer look at how successful Empirical Bayes and 

OLS estimators are doing. Tables 38, and 39 display the figures for IPO’s. The tabled 

values are obtained as follows:

'P”' I I

where | . | stands for the absolute value, and r stand for the residuals of D-Prior and OLS. 

Similarly, Tables 40, and 41 display the same values for the non-IPO’s. Letters at the top 

of the tables belong to cases explained in Table 37. People may have some idea about the 

future prices of the non-IPO’s of a sector, but since there are no past prices of stocks for 

IPO’s their behaviors can be estimated with more difficulty, and correct estimations about 

them may bring much more benefit. That is why the IPO’s constitute an important part 

of the estimation.

It is reasonable to think that the two errors explained above should go parallel to each 

other, but they do not have the same formula of calculation and squared errors penalizes 

the discrepancy by the square of the difference, so the big differences are subject to huge 

numbers by squared residuals. Similarly, the small differences -less than 1- are made even 

smaller by taking the square.

By looking at the tables for IPO, Tables 39, and 38, one can say the Empirical Bayes 

technique does better when the estimation period is smaller. Note that the numbers in 

columns a-d tend to become smaller, as the estimation period moves from 1 week to four
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Table 38: Mean for the ratio of Sum of Squared Residuals of D-Prior to OLS estimators for

the 21 sectors for 10 different cases, IPO ’s
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Table 39: Mean for the ratio of Sum of Absolute Residuals of D-Prior to OLS estimators for

the 21 sectors for 10 different cases, IPO ’s
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weeks gradually, and the forecast period is fixed. The same is true when the estimation 

period moves from 1 to 6 months for columns e to j. Similar comments are true for 

non-IPO’s also. Regardless of whether we are looking for IPO’s or non-IPO’s and the 

estimation and forecast periods D-Prior dominates OLS, but the degree of domination 

changes due to some changes of the parameters.

One other point of interest may be the success of estimators, as the number of IPO’s 

joining the sector are increasing. Table 42 is prepared to answer this question. Initially, 

Empirical Bayes dominates OLS, and the difference of the domination increases as the 

IPO starts to join more number of firms in the sector. And then the domination oscillates, 

but it is clear.

A table is prepared to lead to the histogram to display the percentage of the difference to 

the sum for the sum of absolute residuals for the ten cases. Table 43. The table also reveals 

that as the estimation period becomes longer the percentage of domination alleviates. See 

the zeros in the final columns of the tabel. The same is repeated for the IPO to give a 

rough idea. But only the fifth IPO’s are included. There is nothing special to the fifth. 

The others are excluded just to save space. One can maJce the same comments for the 

IPO’s also.

Several tables are prepared to have an insight about the number of cases belonging to 

the superiority of the estimators. Since the criteria are parallel to each other, it may be 

satisfactory to be content with just one of them, otherwise the number of tables would 

double.

Table 45 counts the number of times D-Prior has a smaller sum of absolute errors less 

than OLS (<), as well as the number of times OLS is better than D-Prior (> ) for the 

initial public offerings. The same is repeated in Table 46 where the sum of absolute errors 

by D-Prior is at most 95 percent of that of OLS (<) , and vice versa for the domination of 

OLS (>). Again these are all for IPO’s.

The following two tables are doing the same thing for the non-IPO’s.

The final four tables give better understanding of the domination of the techniques. 

One may see the averages in the previous tables but may still suspect about the side of 

the better estimator, since a particular substantial domination may affect the average very 

much, but this table omits that possibility.
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Table 40: Mean for the ratio of Sum of Absolute Residuals of D-Prior to OLS estimators for

the 21 sectors for 10 different cases, non-IPO’s
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Table 41: Mean for the ratio of Sum of Squared Residuals of D-Prior to OLS estimators for

the 21 sectors for 10 different cases, non-IPO’s
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3

4

5

6

7

8

9

10 

11 
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16 
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a

3.29

2.56

23.68

16.81

8.48

17.58

41.47

23.49

12.24

36.42

-1.65

29.87

36.12

27.63

3.31

0.71

9.35

9.10

8.01

6.90

20.95 

24.84 

25.67

4.95 

8.50 

27.71 

10.97 

20.73 

9.47

-21.95

1.56

6.77

-1.79

13.12

-1.25

0.53

11.58

-7.83

-9.29

3.46

40.50

0.32

3.53

- 0.11

-1.45

-0.39

-0.52

7.35

22.50

2.26

3.94

4.51

5.42

8.41

- 1.01

13.14

5.83

27.77

-1.58

-4.48

3.09

4.56

4.44

12.16

2.43

6.99

13.24

14.00

0.99

0.70

28.59

12.57

33.46

0.73

6.06

-2.29

0.06

1.06

0.61

3.58

3.61 

19.21 

14.26 

-2.03 

0.25 

12.30 

-0.74

8.62 

0.41 

3.54

__^

1.97

1.13

0.88

1.73

1.18

13.55

5.44

6.46

2.70

- 2.10
-2.97

-2.25

2.01

-0.43

0.82

0.61

0.77

3.03

5.56

- 0.02

1.35

4.13

6.07

-0.81

-0.61

2.45

0.78

1.83

-1.83

1.91

i j ¡J-

-0.52 -0.81 0.72

1.26 1.54 2.75

2.03 1.32 5.11

1.29 -0.50 8.13

0.18 0.31 2.41

0.83 -1.94 6.74

8.15 0.35 13.29

12.32 6.66 1.065

1.59 -0.87 1.79

-0.87 -2.30 4.24

3.29 2.37 12.57

0.28 0.43 5.81

-1.61 1.06 13.35

1.40 1.26 3.70

0.80 -0.18 -1.16

2.03 0.58 6.0118.75 11.06 3.98 6.21 9.60 4.16 2.01 1.68

Table 42: Mean for the ratio of the difference of D-Prior and OLS to OLS errors, for the 21 

sectors for 10 different cases, IPO’s
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Table 43: Histogram for the difference o f OLS minus D-Prior divided by their sum in percentage 

for the non-IPO's

79



a b C d e f g h i j

-100-90 0 0 0 0 0 0 0 0 0 0
-90-80 0 0 0 0 0 0 0 0 0 0
-80-70 0 0 0 0 0 0 0 0 0 0
-70-60 0 0 0 0 0 0 0 0 0 0
-60-50 0 0 0 0 0 0 0 0 0 0
-50-40 0 0 1 0 0 0 0 0 0 0
-40-30 0 0 1 0 0 0 0 0 0 0
-30-20 0 0 0 1 0 0 0 0 0 0
-20-10 1 3 1 0 0 0 0 0 0 0
-10-0 2 2 4 6 4 4 6 5 4 7

0-10 6 7 8 5 10 13 11 11 12 9

10-20 0 2 0 2 1 0 0 0 0 1

20-30 2 1 1 2 1 0 0 0 1 0
30-40 1 0 1 0 1 0 0 0 0 0

40-50 2 1 0 0 0 0 0 1 0 0
50-60 1 0 0 0 0 0 0 0 0 0

60-70 1 0 0 1 0 0 0 0 0 0

70-80 0 0 0 0 0 0 0 0 0 0

80-90 0 0 0 0 0 0 0 0 0 0

90-100 1 1 0 0 0 0 0 0 0 0

Table 44: Histogram for the difference of OLS minus D-Prior divided by their sum in percentage 

for the IPO only for the fifth joining firms
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Table 45; Number o f cases where D-Prior is better than OLS, IPO

Table 46: Number of cases where D-Prior is at least 5 percent better than OLS, IPO

81



Table 47: Number o f cases where D-Prior is better than OLS, non-IPO

a a b b c c d d e e f f g g h h i i j j
< > < > < > < > < > < > < > < > < > < >

1 4 2 3 2 3 3 4 3 3 3 2 0 0 1 0 1 0 1 0 0
2 26 8 25 10 15 14 11 5 8 2 9 2 8 5 4 0 6 0 3 1
3 3 0 2 2 2 3 4 3 1 1 3 1 1 0 0 0 0 1 0 2
4 6 1 2 3 2 3 5 0 3 0 1 2 0 0 0 0 0 2 0 1
5 3 1 4 3 2 2 3 1 1 0 4 0 2 0 0 0 0 0 0 0
6 4 1 4 1 3 1 2 0 0 2 0 0 0 0 0 0 0 1 0 0
7 2 1 4 0 1 2 0 1 0 0 0 0 0 0 1 0 0 1 0 0
8 44 15 46 21 32 29 29 28 24 10 19 6 14 6 9 1 9 7 1 7
9 9 4 4 3 13 2 7 4 5 0 2 2 1 1 0 2 1 4 3 1
10 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0
11 31 9 33 10 20 10 18 10 16 1 11 6 7 3 5 3 9 7 5 6
12 72 11 58 18 59 24 55 18 51 9 27 12 14 8 16 2 12 4 6 5
13 3 2 2 3 3 3 3 4 3 4 0 1 1 1 0 0 0 0 0 0
14 5 4 8 3 5 3 7 4 4 0 3 1 2 0 1 0 3 0 1 0
15 4 3 4 1 0 1 3 0 5 0 3 1 0 1 2 1 2 0 0 0
16 4 1 2 0 0 2 0 3 2 2 2 0 0 0 0 0 1 1 0 1
17 4 5 8 1 7 3 5 1 6 0 3 0 2 1 0 2 2 0 0 1
18 9 4 7 3 8 4 12 1 10 0 6 4 6 0 6 1 5 0 1 1
19 2 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0
20 0 1 2 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0
21 1 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sum 237 73 221 85 178 111 171 88 143 35 96 38 58 28 44 14 50 30 20 26

Table 48: Number of cases where D-Prior is at least 5 percent better than OLS, non-IPO
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3.6 Concluding Remarks

A few points requires further mentioning:

1. In general, Empirical Bayes does better than OLS.

2. Empirical Bayes method is more successful when the estimation period is small.

3. The technique can successfully be used when there are groups o f data moving to

gether.

4. The IPO’s joining a higher number of firms’ sectors lead to more successful regression 

results of Empirical Bayes.

5. Hierchical Bayes may also be used to alleviate the problems faced by Bayes method 

in general, but its application requires more complicated calculations and computer 

program coding.
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4 Appendix to the Chapters

4.1 Proof for the Bias of the Estimators

4.1.1 Proof for the Bias of the Eicker-White Estimator

Bias of Eicker-White estimator for the first entry is

tdE W1̂1 E C i i  — C i i (98)
j T , r

¿=1 t=l

(99)

(100)

(101)

T

=  -  |;(1 +  x f h i  +  ;^(1 +  2xtM{x,a^)V ' I  / Z ' r p  y

t=l  ̂ ^
+x^,M{x\a^))-a^)]

t=i

^ ( 1  +  2xtM{x,a^) +  xlMix"  ̂,â )))] 

=  ^ [ - 2 - 2 M { x \ a ‘̂ ) +  l +  M{x\a'^)] 

=  - ^ ( 1  +  M(a;2, 0 )

Now, coming to the calculation of the B f ^  =

(102)

(103)

(104)

(105)

E x t e ^  =  V a r { y / ^ e 1 )  (106)
T

= x t ( l  -  h t t f c t  +  x t  ^  (107)

T
= a;t(l -  2h tt +  /1^)04 +  ^  ^  (1 +  X f X j f a ]  (108)

j=l,jjU

=  x t a ^ - 2 x t h t t o ^ + x t h ‘ftCTt +  [1 +  x t X j f a ]  (109)
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= -  |®<(! +  ^  ¿ ( 1  +
j=l

=  t̂<̂ t -  H (1 +  xtX jfcr]
J=1

9 2 o 2 q 9
=  XtCTt -  ^Xt<Xt -  +

x t^ [ T  +  2xtTM{x, a^) +  x iT M {x\  a^)]

=  t̂(̂ t -  -  ^4(^t +  p  +

i r c f M ( i2,a 2)

(110)

( 111)

(112)

(113)

(114)

Using the above derivation bias of the off-diagonal entries is:

tdE W  _  lyEW  ^12 — 2̂1

t=l  ̂ t=l

T2t=l t=l
T

= ^  ¿ ( 1  -  ^)xt(T^ +  i-^)xt(^t +  ^
t=l

T

H^XiMix^a'^) +  (i)a ;fM (a ;2 ,a2) -'f^xt^ t
i=l
.2\= j^[-2M(o:,a^) -  2M{x^,a^) + 2M{x,a^) + SM{x\a^) 

= { -^ W ix ^ ,  a )̂ -  ^ м ( a ;^  a^)

The preliminary calculation for the bias o f the final term goes as follows 

EXfCf =  Var{xtet)

=  xhU ^  +

+ f X t M { x , a ‘̂ ) +  + ^ x j M { x ,a ^ )

(115)

(116)

(117)

(118)

(119)

( 120)

(121)

(122)

Now coming to the bias calculation
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dEW _  2̂2 — Е С - С
T

t = l
Т2

t = l

í=l t = l

1 2 2r^ 4 2/^ \ i   ̂ 2
=  ÿ 2 E  ^t<^t[-;jr-] -  x U U ^ )  +  +

ψχ^Μ{χ,σ'^) +  ψχ^ΜΙχ“̂, σ^) -  χ^σ^

=  ^ [ - 2 Μ ( χ ^ ,  σ 2) -  2M (x ^  σ 2) +  1 +

25'Μ(α;,σ2) +  Λ:Μ(®2, σ 2)]
1 2 5 , , ,  24

=  ÿ 2 ) +

Ε ^ Μ ( χ 2, σ 2) -  ^Μ{χ^,σ'^)

(123)

(124)

(125)

(126)

(127)

(128) 

(129)
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4.1.2 Proof for the Bias of H-HD estimator

E
\ - h i

-e : = Eatel 

=  E {{l+ h tt)e })  

=  EeJ +  E(httet)

(130)

(131)

(132)

E(1 +  htt)ê =  A +  /̂ ítcr̂  -  ^ ^ (1  +  a:?)crf

+ ^ [1  +  2xtM(x, a^) +  x lM { x ‘̂ , a"̂ )]

1
+ ^ ( 1  +  x ’l)[l +  2xtM{x,a'^) + x iM { x ‘̂ ,a'^)]

=  A +  + x̂1â  ̂ -  ^ a 1  -  ^ x ^ t

+ ^  +  ^x tM {x ,a^ )  +  |^Af(x^α^)

+ 1^ +  ^x\M (x,a^) +  ^x^M (I^cг^)

(133)

(134)

(135)

=  A +  cr2(i -  ^ )  +  ^  +  xW ti^  “  ^ )  +  p  +  ^^iM{x,(T^) 

+^M(x^,(7^) -  ^ x ia ?  +  ^ a :fM (i,a 2 ) +  ^ x}M(x ,̂(7̂ ) (136)

Using the above derivation bias of the first entry is:

= ( ¿ E ^ e ? ( l  + M ) - ^ E ^ ?¿=1
T

i=l

=  ^ l I ^ E e f ( l  + /iu)-cT^]

(137)

(138)
t=l
T

=  + ^  + ^XiM (x ,a )̂

+ ix ^ M (x 2,a 2) +  < 7 ? (^ ^ )  +  ^  + (^ ^ )® ? i^ ?

+ 1 ^  + ^xiM{x,(7^) +  ^M{x'^,a'^) -  ^xt<^i 

+^x?M (x,(T ^) +  ^x^tM(x^,a^) -  ff?

=  ¿ [ T  -  2 -  2M (x2,a2) +  1 +  0 +  M(x\â ) + ^  ^

(139)
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+  ^  +  0 +  -  ^M(x'^,a^)

+^SM(x ,a^}  +  ^ M { x ^ , a ^ ) - T ]

=  ^ [ M { x ^ , a ^ ) i ^ Y ^ ) + M ( x , a ^ ) { Y )

^ -M (x^ α ^ )(-^ )]

=  ^ ^ M { x ^ ,  cr̂ ) +  ^ M ( x ,  cr̂ ) -  ^ M { x ‘̂ , a^)

(140)

(141)

(142)

(143)

For the bias of the off-diagonal entries

b HD
12 —

tdH D^21

^ i :^ Y ^ ^ teU l  +  htt))
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T

T T
=  i  ¿  octal

t = l

^ l Y x t a l  -  -x ta l -  -x la !  +  ^
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iLv .2K T . . 9 \ /

+  (— ji3— )-^ ( 2̂ )0· ) +  (
S T +  S +  G

τ г )M(x'^,a'^)

- ( ^ ) M ( x ^ α 2) - ^ M ( x ^ α 2)

(148)

(149)

(150)

98



(151)

Finally, the preliminary for the last entry:

t - l  t=\

=  ^ [ Y T E x ‘ia t{l +  htt)-xicT ‘̂ ] (152)
t=\

Again by following using the above calculation, a similar manipulation leads to

tdHD^22
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