
• .«.■ -M î» ·.{ a 18 jîg‘ ” ' , ν 'Π!
■' 1Μ Γ » w y> .· « vr »WM- ^ « л * » к * * .·· Mí >·*'·

17.1T" ;ж .;іг - .т-гг·:: жя·.;

A NEGOTIATION PLATFORM FOR COOPERATING
MULTI-AGENT SYSTEMS

A DISSERTATION SUBMITTED TO

THE DEPARTMENT OF COMPUTER ENGINEERING AND

INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

by

Faruk Polat

1993

__

Q
12^
• P 4 f
I99İ

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and in quality, as a dissertation for the
degree of Doctor of Philosophy.

Assist.Prof.Dr. H.Al^^ Güvenir (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and in quality, as a dissertation for the
degree of Doctor of Philosophy.

a/
Prof.Dr. TNeşe Yalabık

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and in quality, as a dissertation for the
degree of Doctor of Philosophy.

Prof.Dr. As gaç

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and in quality, as a dissertation for the
degree of Doctor of Philosophy.

Assist.Prof.Dr. Kemal Oflazer

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and in quality, as a dissertation for the
degree of Doctor of Philosophy.

Assist.Prof.Dr. Ilyas Çiçekli

Approved by the Institute of Engineering and Science:

Prof.Dr. MehmetCoaray,
Director of the Institute of Engineering and Science

Abstract

A NEGOTIATION PLATFORM FOR COOPERATING
MULTI-AGENT SYSTEMS

Faruk Polat
Ph. D. in Computer Engineering and Information Science

Supervisor: Assist.Prof.Dr. H.Altay Güvenir
1993

Research in Distributed Artificial Intelligence attempts to integrate and coor­
dinate the activities of multiple, intelligent problem solvers that interact to solve
complex tasks in domains such as design, medical diagnosis, business manage­
ment, and so on. Due to the different goals, knowledge and viewpoints of the
agents, conflicts might arise at any phase of the problem-solving process. Man­
aging diverse knowledge requires well-organized models of conflict resolution. In
this thesis, a computational model for cooperating intelligent agents which openly
supports multi-agent conflict detection and resolution is described. The model
is based on the insights that each agent has its own conflict management knowl­
edge which is separated from its domain level knowledge. Each agent has its own
conflict management knowledge which is not accessible or visible to others. Fur­
thermore, there are no globally known conflict resolution strategies. Each agent
involved in a conflict chooses a resolution scheme according to its self-interest.
The problem-solving environment allows a new problem solver to be added or an

existing one to be removed, without requiring any modification of the rest of the
model, and therefore achieves open information system semantics.

K eyw ords: Distributed Artificial Intelligence, Conflict Detection, Conflict
Resolution, Conflict Management Knowledge, Open Informa­
tion System

II

özet

YARDIMLAŞAN AKILLI SİSTEMLER İÇİN BİR MODEL

Faruk Polat
Bilgisayar ve Enformatik Mühendisliği

Doktora
Tez Yöneticisi: Assist.Prof.Dr. H.Altay Güvenir

1993

Dağıtık yapay us alanındaki araştırmalar, tasarım, tıp, iş yönetimi gibi karmaşık
alan problemlerini çözmek için bir araya gelen birden fazla akıllı problem çözücünün
çalışmalarının birleştirilmesini ve koordine edilmesini amaçlar. Problem çözücülerin
değişik amaç, bilgi ve bakış açılarına sahip olmaları, problem çözümü aşamalarında
çelişkilerin ortaya çıkmasına sebep olur. Dağıtık bilgi yönetimi çok iyi orga­
nize edilmiş çelişki yönetimi modellerini gerektirir. Bu tez çalışmasında, çoklu
çelişki bulumu ve çözümüne dayalı bir yardımlaşan akıllı sistemler modeli an­
latılmaktadır. Bu modelde her problem çözücü alan bilgisinden ayrı olarak çelişki
yönetimi bilgisine sahip olup bu bilgi diğer problem çözücüler tarafından bilin­
memekte ve erişilememektedir. Böylece tüm problem çözücüler tarafından bili­
nen bir çelişki yönetimi bilgisi bulunmamaktadır. Her problem çözücü, çelişkinin
giderilmesine kendi çelişki yönetim bilgisine dayanarak katkıda bulunur. Geliştirilen
model, yeni bir problem çözücünün sisteme entegre olması veya sistemden ayrılmasına
olanak verirken, modelin hiç bir şekilde değiştirilmesini gerektirmez. Böylece
model açık bilgi sistemleri mantığına erişir.
A nahtar
sözcükler: Dağıtık Yapay Us, Çelişki Bulumu, Çelişki Çözümü, Çelişki

Yönetimi Bilgisi, Açık Bilgi Sistemleri.

m

Acknowledgement

The author wishes to express his deepest gratitude to Assist.Prof.Dr. H. Altay
Güvenir for the valuable guidance, patience and support throughout all steps of
the development of the thesis work. Dr.Güvenir’s invaluable emphasis on various
aspects of the thesis have enriched the author’s appreciation, understanding and
knowledge of the field of Artificial Intelligence and Computer Science. The author
expresses his gratitude to the members of the Ph.D. committee for their beneficial
comments and remarks.

The author is also deeply appreciative of the beneficial discussions and con­
tributions received from Assist.Prof.Dr. Shashi Shekhar during his stay as a
visiting NATO scholar at the Department of Computer Science of University of
Minnesota, Minneapolis in 1992-93 academic year. In addition, sincere appreci­
ation is extended to Assoc.Prof.Drs. Maria Gini and Jaideep Srivastava in the
same department for their valuable advices on identifying the characteristics of
the computational model developed. Thanks to Assoc.Prof.Dr. Varol Akman of
Bilkent University for his valuable discussions and comments on AI based design-
problem solving. The author would like to thank Drs. Shashi Shekhar, Suzan
Lander and Mark Klein for their valuable comments that greatly contributed to
the formation of the thesis proposal.

The author is grateful to his colleagues, Ahmet Coşar, Reda Alhajj, Uğur

Güdükbay, and Veysi İşler, for their continuous encouragements in all stages of
this study.

Thanks to my parents, Sait and Hakime Polat, brother. Fazıl, and sister,
Naşide, for their continued encouragements and moral support that greatly helped

to get this work completed.

IV

Contents

1 Introduction 1
1.1 Our A pproach ... 4
1.2 Organization of the T h e s is ... 5

2 Distributed Problem Solving 7
2.1 Cooperation in DPS 9
2.2 Goals of C ooperation .. 10
2.3 Approaches to D P S .. 11

3 Cooperating Expert Systems 14
3.1 Previous Work .. 15

3.1.1 Blackboard Architectures and G B B 15
3.1.2 Hearsay-II... 17
3.1.3 The Contract Net P rotocol.. 18
3.1.4 The Distributed Vehicle Monitoring T estb ed 20
3.1.5 Other F ram ew orks... 22

4 Conflict Management 24
4.1 Models of Human Conflict Resolution... 25

4.1.1 Aspects of N egotiation .. 25
4.1.2 Integrative Agreement Between Two P a rtie s 27
4.1.3 Third-Party Intervention... 29

4.2 Computational M o d e ls ... 31

List of Tables

7.1 Evaluation
7.2 Evaluation
7.3 Evaluation

82
84

Vll

5 The Computational Model 37
5.1 Why Cooperative D esign .. 38
5.2 Architecture of the M o d e l ... 38

5.2.1 Representation of Problem and K now ledge.......................... 39
5.2.2 Shared M ed iu m .. 45
5.2.3 Agent Model ... 48
5.2.4 Conflict Resolution Knowledge.. 51

5.3 Problem-Solving Phases ... 54

6 Multi-Agent Conflict Management 58
6.1 Multi-Agent Conflict D e te c t io n .. 60

6.1.1 Computation of Degree of S a tis fa ction 60
6.1.2 Conflict Detection Algorithm .. 63

6.2 Multi-Agent Conflict R esolution.. 65

7 Examples of Cooperating Experts Problems 71
7.1 Office Design .. 71
7.2 Configuring A Personal Com puter.. 85

8 Conclusions and Future Work 92

References 96

Appendix

A A Sample Run 108

VI

List of Figures

1.1 Classification of D A I .. 2
3.1 An Example GBB Blackboard S tru ctu re ... 16
3.2 Task Announcement, Bid and Award Message E x a m p le s 19
3.3 The DVMT Problem-Solving A rch itectu re 21
5.1 The Architecture of the Proposed Cooperative Design Environment 39
5.2 Example of a task sequence to be performed by a set of agents. . . 43
5.3 The Shared Blackboard... 46
5.4 Internal Structure of a Design Agent in the M o d e l.......................... 50
5.5 Problem Solving Steps within Agent a,·.. 56
6.1 Proposal Evaluation and Conflict Detection within Agent a, . . . 64
6.2 Conflict Resolution Steps within Agent a,· 66
6.3 Conflict Resolution Steps for Agent a,· in Constraining Search Space. 67
6.4 Conflict Resolution Steps for Agent a,· in Counter-Proposing Al­

ternatives... 68
6.5 Conflict Resolution Steps for Agent a,· in Selecting an Alternative. 70
7.1 Global Layout of the Office... 75
7.2 Layout of the Office After proposal.O .. 76
7.3 Layout of the Office After Resolution Alternative p rop osa l-l 78
7.4 Layout of the Office After Resolution Alternative proposal_2 . . 78

vm

Chapter 1

Introduction

Distributed Artificial Intelligence (DAI) is a subfield of artificial intelligence which
is concerned with solving problems by using both AI techniques and distributed
processing capabilities. A DAI system must include at least two agents and
requires that these agents have some degree of information and/or control auton­
omy, and that some nonempty subset of the agents display sophistication in an
artificial intelligence sense (capable of reasoning, planning, etc). DAI is different
from distributed processing in that it does not only distribute data, as in the case
of distributed processing, but also control. In addition, DAI involves extensive
cooperation among problem solvers.

Distributed processing systems address the problem of coordinating a network
of computing systems to carry out a set of disparate and mostly independent
tasks. There is much less interdependence between tasks in distributed process­
ing than in DAI. This often leads to a concern with issues such as access control
and protection, and results in viewing cooperation as a form of compromise be­
tween potentially conflicting views and desires at the level of system design and
configuration. DAI, on the other hand, aims at combining approaches existing
in many disciplines such as negotiation, interaction, contracts, agreement, orga­
nization, cohesion, etc [8, 14, 15, 16, 24, 34, 48, 53, 83]. Generally speaking, in
terms of level interaction between processes, there are two approaches in AI to
distributing data and control for achieving cooperation (Fig. 1.1) :

1

CHAPTER 1. INTRODUCTION

Distributed A.I

firte-grained
CPai'allel A.I)

coarse-grained
CDPS)

D istributed
In.terx>re tat ion

Distributed
Planning and

Control

Cooperating Com puter-Supported
Exp^ert Munian Cooperation

System s

dassificcifion wntfi respect to data artel control distrihution
dassification w>itli respect to application domain

Figure 1.1: Classification of DAI

• Fine-grained (Parallel AI)

• Coarse-grained (DPS)

Parallel AI is concerned with developing parallel computer architectures, lan­
guages and algorithms for AI, whereas DPS considers how the task of solving
a particular problem can be divided among a number of problem-solving agents
which cooperate at the level of dividing and sharing knowledge about the prob­
lem and about the developing situation. DPS aims at conceptual advances in
understanding the nature of reasoning and intelligent behavior among multiple
agents. On the other hand. Parallel AI deals with solving performance problems
of AI systems. Although Parallel AI is considered as a sub-discipline separate
from DAI, it is important to note that developments in concurrent programming
languages and architectures may have profound impacts on DAI system architec­
tures, reliability, knowledge representation and so on.

One of the application domains of DPS (Fig. 1.1) is cooperating expert sys­

tems. Cooperating expert system approeich is concerned with solving complex

CHAPTER 1. INTRODUCTION

tasks that require diverse expertise to generate comprehensive solutions. When
human specialists cooperate, they bring together multiple disciplines or multiple
viewpoints on a single problem. Bringing together diverse knowledge is a source
of robustness and balance which is extremely important in many real-world situ­
ations: a civil engineer and an architect work together to design and build a safe
and attractive building, or a pediatrician and a cardiac specialist consult to help
an infant with a heart problem. The team can solve problems that are beyond
the scope of any of the individual experts and the solutions are generated from
a rich and varied body of knowledge, providing the potential for creativity and
innovation.

Although diversity is beneficial in some respects, there are also difficulties
in handling the conflicts that arise from trying to merge multiple perspectives
for a common good. Managing diverse expertise is difficult because one has to
take into account the problems which will arise in working out solutions in the
face of conflicting goals, constraints, viewpoints, and knowledge of heterogeneous
experts. Consider a team of human experts who are cooperating in choosing a
computer system for a company. The team consists of a computer specialist and
a manager. They have the shared goal of selecting an appropriate computer sys­
tem for their company, but each expert wants to insure that his own perspectives
should be reflected in the final solution appropriately. The computer specialist
recommends a UNIX-bcised workstation, a computer system known with its qual­
ity in networking and graphical capabilities. The manager recommends a classical
DOS-based personal computer because of its lower cost and his and other middle
manager’s acquaintance with DOS. In this conflicting situation, it is necessary
for the two agents to reconcile their difference to reach a globally agreed solution.

Resolution of conflicts usually is accomplished through exchange of informa­
tion among participants. How to exchange, what to exchange, when to exchange,
and who to exchange it with, are questions that have to be considered in devel­
oping computational models for conflict resolution. Applications of cooperating
expert systems can be seen in human problem-solving tasks such as design, med­
ical diagnosis, research, business management, and human relations. Computer

CHAPTER 1. INTRODUCTION

models of conflict resolution borrows many ideas from these natural application
domains.

1.1 Our Approach

In this dissertation, we present a formal computational model, caWed AfEVTUAfS^,
in which a set of knowledge-based agents cooperate for solving design problems.
Throughout this thesis, we use the terms agent, expert and problem-solver inter­
changeably to refer to the autonomous knowledge-based systems. The model is
based on resolution of conflicting solutions generated by experts having differ­
ent goals, priorities, and evaluation criteria. Many of the existing approaches
to conflict management [1, 43, 46, 99] rely on coordinated resolution strategies
which require resolution of a conflict based on a globally agreed strategy. In these
systems, conflict resolution knowledge is maintained centrally. In any case, one
of the disputants is given the power to take control of the conflicting situation
and apply a resolution scheme known to everybody. A mediator or a single agent
from the team would not have enough detailed knowledge about the problem to
be able to make good decision outside of its own expertise.

The novel approach in AfEVTUMS, however, allows agents to freely choose
the most appropriate action, given their understanding of the global and local
situations and their own capabilities. They maintain their own set of conflict
management knowledge which is not globally known. Using their own conflict
knowledge, the participants may come to an agreement on a revised solution.
Agents know the reasons behind their decisions and are able to anticipate the
impact of various revisions. AiEVTUAfE allows conflicts to be resolved through
negotiating agents that act based on their local perspectives of the global situa­
tion. AiEVTUAfE is designed for solving problems in the domain of design and
is based on the insights that, each agent has its own conflict knowledge separate
from its domain-level knowledge, and that this knowledge can be instantiated in

^ M C V T U M S stands for NEgotiaton PlaTform for cooperating mlllti-ageNt intelligent
systEms

the context of particular conflicts into specific resolutions. Each agent’s conflict
knowledge centers around the domain issues through which that agent is con­
tributing to the global solution. Agents are able to evaluate partial solutions to
tasks through different issue-perspectives and negotiate over conflicting solutions
cooperatively. This is similar to the resolution of conflicts that occur among
human beings when solving a problem.

There are several reasons why conflicts need to be resolved by using agents’
private conflict resolution knowledge instead of global knowledge about conflict
resolution. First of all, this task is very similar to the resolution of conflicts that
occur among human beings in solving complex problem tasks in domains like
design, diagnosis, business management, etc. When a conflict is detected, it is
not resolved by a central authority using global conflict resolution knowledge,
but rather by specialists who are involved in the conflict and negotiate a revised
solution that will be acceptable to all of them, using their own conflict resolution
knowledge and perspectives. Second, global conflict resolution requires consistent
merging of the conflict resolution knowledge obtained by each agent. This makes
the maintenance of global knowledge difficult. Because when a new agent is added
to, or removed from the system, or the conflict resolution knowledge of an agent
is revised, the global conflict resolution knowledge must be rebuilt accordingly.
Lastly, distribution of knowledge leads to increased reliability and fault-tolerance
to agent failures.

1.2 Organization of the Thesis

CHAPTER 1. INTRODUCTION 5

In the next chapter, an overview of DPS is presented by emphasizing the im­
portance of coherent cooperation and coordination. Existing approaches to the
coordination of cooperating agents and application domains in DPS are outlined.

In Chapter 3, cooperating experts approach is described and some typical
systems supporting this approach are introduced.

Chapter 4 describes conflict management issues in cooperating expert systems

CHAPTER 1. INTRODUCTION

and summarizes the existing approaches. First, models of human conflict reso­
lution are introduced, and then the existing computational models for conflict
resolution, development-time and run-time models, are described.

Chapter 5 explains the new model, AfEVTUAfS, for cooperating experts, and
how the problem-solving proceeds within it. The architecture of AiEVTUAfS^
representation of knowledge, the agent model, and the main problem-solving steps
are presented in details.

Chapter 6 describes how conflict resolution takes place in AfEVTUAfE. The
methodology used for jointly detecting and resolving conflicts is presented, along
with the relevant algorithms.

Chapter 7 includes two examples from the domain of design to illustrate how
problem-solving proceeds in AfEVTUAfE. The examples are chosen from the
domains of oflSce design and computer hardware configuration.

Chapter 8, the last chapter, summarizes the novel approach presented in the
dissertation and states its contribution to the area of computational models of
conflict resolution, and also suggests future work.

Chapter 2

Distributed Problem Solving

In DPS, a group of individual agents come together to solve a difficult global
problem. There are four phases in solving a problem cooperatively by several
agents. In the first phase, the original problem is decomposed into simpler ones.
In the second phase, these subproblems are distributed to the most capable and
relevant agents. In the third pheise, subproblems are solved cooperatively. The
last phase requires the synthesis of the subproblem solutions to obtain a global
solution for the original problem which is acceptable to all agents [16, 25, 28, 41,
54, 82].

Advances in hardware technology for processor construction and interproces­
sor communication make it possible to connect together large numbers of sophis­
ticated processing units that execute asynchronously. Various connection struc­
tures are possible, from a very tight coupling of processors through shared or
distributed memory, to a looser coupling of processors through a local communi­
cation network or to a very loose coupling of geographically distributed processors
through a communication network.

Besides the rapid development in processor and communication technology,
among the several other reasons that motivate researchers to explore new ideas
about problem-solving which requires multiple agents are:

• Many AI applications are inherently distributed. The applications may be

CHAPTER 2. DISTRIBUTED PROBLEM SOLVING

spatially distributed, such as interpreting and integrating data from spa­
tially distributed sensors or controlling a set of robots that work together
on a factory floor. It is also possible to have the applications being/unciion-
ally distributed, such as bringing together a number of specialized medical-
diagnosis systems on a particularly difficult case. Finally, the applications
might be temporally distributed, as in a factory where the production line
consists of several work areas, each having an expert system responsible for
scheduling orders.

• Sometimes problems are simply too large or complex to be solved by a single
problem solver. Such problems could only be solved via the cooperation of
several independent systems {synergy effect, emergent functionality). For
instance, multiple expert systems with different, but possibly overlapping
expertise, could cooperate to deal with problems that are outside the scope
of a particular expert system.

• A DAI system supports the principles of modular design and implemen­
tation. The ability to structure a complex problem into relatively self-
contained processing modules leads to systems that are easier to build,
debug and maintain. For example, the general field of medical diagnosis is
complicated and extensive. To manage the field, medical experts divide it
into many specialties. In order to build a general medical diagnosis system,
someone could exploit the modularity of the field, building a knowledge-
based system for each specialty in parallel and with minimum interaction
between the systems.

• The environment in which both control and data are distributed should
result in reliable computation and graceful degradation. That is, the failure
of one agent, for example, should not crash the whole system down. •

• One of the goals of AI is to develop systems which are essential for our daily
life. These systems should interact with humans intelligently. To achieve
this, these systems they must have the ability to intelligently cooperate and

coordinate with each other and with humans with more flexibility. DAI is
the first step towards this long-term goal.

However, many AI problems cannot be decomposed into independent subprob­
lems. Furthermore, it is often impossible to solve the subproblems in isolation.
Even if they were, merging the independently formed .solutions would be difficult.
Therefore, problem-solving agents should cooperate at every phase of problem­
solving. It is also necessary to develop ajjpropriate control regimes that allow the
coordination of activities of cooperating problem solvers.

CHAPTER 2. DISTRIBUTED PROBLEM SOLVING 9

2.1 Cooperation in DPS

Cooperation where no single agent has sufficient expertise, resources and infor­
mation to solve a problem independently is an important area of research in the
field of DPS [7, 11, 14, 21, 22, 52, 72, 73, 78, 79, 100]. Different agents might
have the expertise necessary for solving different parts of the problem. For ex­
ample, consider the problem of designing a steam condenser. One agent might
have expertise on the motor, another on the heat exchanger, yet another on the
pump components of the steam condenser, etc.

The agents in a DPS network might utilize different resources. Some might
be very fast as far as computation is concerned, a third party might have connec­
tions that speed up the communication, while others might have excess memory.
Finally, different agents might have different information or viewpoints regarding
a certain problem. For example, consider a distributed sensing network where
geographically separated agents are monitoring aircraft movements. In this case,
different agents will have different perceptions because their sensors will pick up
different signals. It is possible to form an overall picture of aircraft movement
only when agents combine the information about their views.

The amount of cooperation between agents is an important aspect of DPS.
It may range from fully cooperative to antagonistic. In fully cooperative sys­
tems, there is a high price due to the heavy communication between agents. In
antagonistic systems, on the other hand, there is no communication cost since

CHAPTER 2. DISTRIBUTED PROBLEM SOLVING 10

agents may not cooperate at all. The extent to which agents should cooperate in
solving a problem is dependent upon the application domain and is currently an
attractive research area.

2.2 Goals of Cooperation

Agents cooperate to improve their own self-interests by sharing subproblem so­
lutions. Cooperation thus requires intelligent local decisions so that each agent
performs tasks that generate useful subproblem solutions. There are several goals
to be achieved by the agents which are cooperating:

• Improved performance through parallelism (several agents solve different
parts of the whole problem concurrently),

• Increase in the confidence of a subsolution by letting agents verify each
other’s results (in order to get consistent results, agents use their own ex­
pertise to interpret the shared data),

• Exchange of tasks among agents by allowing a task to be performed by the
most capable agent (fair utilization of agents’ computational resources),

• Assigning of important tasks to multiple agents to guarantee a solution
even in the presence of agent failures (reliability), and •

• Improving the use of individual agent expertise through the exchange of
goals, constraints, partial solutions, and knowledge.

Problem solvers cannot achieve all of these goals simultaneously. While con­
centrating on the achievement of one goal, usually it is not possible to achieve
some of the other goals. For example, in a problem where a solution is to be
generated cis fast as possible, it is necessary to avoid actions causing inter-agent
communication. In this case, although we achieve an improved performance
through parallelism, we may not improve the use of individual agent’s expertise
through exchange of partial results and knowledge.

CHAPTER 2. DISTRIBUTED PROBLEM SOLVING 11

2.3 Approaches to DPS

Coordination of activities in a multi-agent environment is a very important is­
sue in DPS. There are several approaches to improve the coordination among
cooperating agents in a distributed problem-solving environment [62, 16]. These
are

• Negotiation,

• Function ally-accurate cooperation,

• Multi-agent planning, and

• Organizational structuring.

In the negotiation approach [10, 44, 83, 84], a problem task is decomposed
into a set of subtasks which are assigned to the agents based on a bidding protocol.
Since different agents may have different capabilities, the bidding protocol will
offer the opportunity for a task to be assigned to the most appropriate agent.
The negotiation approach allows effective use of computing resources and exper­
tise through the exchange of tasks. It also facilitates the generation of reliable
solutions through assignment of the same tasks to several agents having different
expertise and problem-solving capabilities.

In functionally-accurate cooperative systems [49], agents cooperate by gen­
erating and exchanging tentative, partial solutions based on their limited local
views of the network problem. By iteratively exchanging their potentially in­
complete, inaccurate, and inconsistent partial solutions, the agents eventually
converge on an overall network solution. This apjjroach allows the agents to
generate solutions without being overly influenced by each other.

In multi-agent planning [8, 27, 28, 36, 42, 47, 80, 81], agents form a multi­
agent plan which specifies all of their future actions and interactions. Multi-agent
plans can be generated in a centralized or distributed way. In centralized multi­
agent planning, agents agree on an agent to solve their planning problems and
all pertinent information is sent to that particular agent. On the other hand, in

CHAPTER 2. DISTRIBUTED PROBLEM SOLVING 12

distributed multi-agent planning, agents cooperatively generate the plan. This is
necessary, especially, in an environment where no single agent has a global view
of the problem and the environment.

In organizational structuring [17, 21], common knowledge about general problem­
solving roles and communication patterns are used to guide agents about how to
cooperate. An organizational structure is the pattern of information and control
relationships that exist among agents, and the distribution of problem-solving
capabilities among agents. Imposing a high level organization on DPS environ­
ment gives agents knowledge that improves the way they coordinate, while still
allowing them to pursue alternative solution paths that are not dictated by the
network.

To achieve coherent cooperation, agents must predict each others’ actions
during any phase of the problem-solving process. Multi-agent planning requires
accurate predictions in order to form acceptable plans. However, negotiation
and functionally-accurate cooperation can perform without adequate predictions.
Negotiation takes a top-down view of problem-solving while functionally-accurate
cooperation takes a bottom-up view. Organizational structuring lies between
the strongly top-down view of contracting and bottom-up view of functionally-
accurate cooperation.

There are several clcisses of application domains where DPS is applicable.
Some of them are

• Distributed Interpretation: These applications require the integration and
analysis of distributed data to generate a potentially distributed semantic
model of data. Application domains include distributed sensor networks
[50, 51] and communication network fault diagnosis [10, 11, 93, 97, 98]. •

• Distributed Planning and Control: These applications involve developing
and coordinating the actions of distributed effector agents to perform de­
sired tasks. Application domains include distributed air traffic control [20],
cooperating robots, remotely piloted vehicles [87], and distributed process
control in manufacturing [59].

CHAPTER 2. DISTRIBUTED PROBLEM SOLVING 13

• Cooperating Expert Systems: In these applications, several expert systems
work together to solve a common problem. The heterogeneous character
of cooperating experts allows different problem-solving approaches to be
used in solving the problem under consideration. Application arecis include
medical diagnosis [9] and engineering design [40, 43, 45, 46].

• Computer-Supported Human Cooperation: Intelligent systems with coor­
dination knowledge assist humans in decision making, through filtering
information and focusing attention on relevant information. Application
domains include intelligent command and control systems, and multi-user
project coordination [13, 58, 74].

There are several technology platforms built for implementing various DPS sys­
tems. These include testbeds such as the Contract Net Framework [83], DVMT
[50], MACE [26], integrative systems such as ABE [18], blackboard systems such
as GBB [12], BBl [35], object-based tools such as ORIENT84/K [94], belief-based
systems such as AgentO [76, 77, 100].

Chapter 3

Cooperating Expert Systems

In the cooperating experts approach, several specialized agents work together
to solve a global problem. Examples of the integration of expertise through
cooperation can be seen in human problem-solving tasks such as design, diagnosis,
business management, and human relations. As a subfield of DPS, cooperating
experts approach has the following distinguishing characteristics:

• agents are heterogeneous in their problem-solving capabilities and knowl­
edge,

• the knowledge of each agent is potentially inconsistent or incompatible with
that of others, •

• agents are logically independent and negotiate with each other around in­
teracting subproblems, and

• local goals, constraints, priorities, and evaluation criteria may be conflicting
among agents.

14

CHAPTER 3. COOPERATING EXPERT SYSTEMS 15

3.1 Previous Work

111 the following sections, we briefly describe blackboard architectures and GBB
(Generic BlackBoard), Hearsay-II, the Contract Net Protocol, Distributed Vehi­
cle Monitoring Testbed, and some other frameworks which are typical examples
reflecting the cooperating experts approach.

3.1.1 Blackboard Architectures and GBB

The blackboard architecture [19, 35, 56, 57] is one of the architectures that can
be used to implement a cooperating experts system application. The blackboard
problem-solving approach offers superior flexibility in structuring complex AI
applications. Blackboard systems perform problem-solving by using three bcisic
components:

• a blackboard ̂ which is a global database containing input data, partial so­
lutions, and other data that are used in various problem-solving phases,

• knowledge sources (KSs), which are independent modules that contain the
knowledge needed to solve the problem, and that can be widely diverse
in representation and in inference techniques. KS modularity facilitates
application development and simplifies maintenance and enhancement, and

• a control mechanism, which is separate from the individual KSs and makes
dynamic decisions about which KS is to be executed next.

GBB [12, 23] is a flexible, high-level tool for building efficient blackboard sys­
tems. GBB provides the following facilities that developers need in constructing
high-performance blackboard applications:

• a blackboard database compiler and runtime library, which support pattern-
based, multidimensional range-searching algorithms for efficient retrieval of
blackboard objects, •

• KS representation languages.

CHAPTER 3. COOPERATING EXPERT SYSTEMS 16

BBl

Figure 3.1: An Example GBB Blackboard Structure

• generic control shells and agenda-management utilities, and

• interactive graphics for monitoring and examining blackboard and control
components.

GBB views the blackboard eis a hierarchical forest of nested blackboards.
Blackboards are the containers for holding spaces and other blackboards. Black­
board objects reside in spaces, which are the leaves of this hierarchy. Each space
can be defined as a highly structured, n-dimensional volume, with blackboard
objects occupying some extent within the space. Spaces can be viewed as the
“containers” that hold blackboard objects (called units). Units contain slots
which hold data values and links which are special purpose slots that contain link
pointers between units. The space on which a unit is to be stored can be specified
by the sequence of nodes traversed from a root blackboard node through all inter­
mediate blackboard nodes to the leaf space node. For example, if the blackboard
BBl had the blackboards BB2 and BB3 as components, and BB2 and BB3 had
spaces SPl and SP2 as components as shown in Figure 3.1, the two paths (BBl
BB2 SPl) and (BBl BB3 SPl) specify different instances of the space SPl.

CHAPTER 3. COOPERATING EXPERT SYSTEMS 17

Efficient insertion and retrieval of blackboard objects is achieved using a lan­
guage specifying the dimensional structure of each space and a separate specifica­
tion of how that space is to be implemented. Any change to a blackboard object
or to the state of the blackboard database is called an event in GBB terminology.
For example, creation or deletion of a unit, access or modification of a slot, and
access or modification of a link are typical examjjles of events. When an event
occurs, event triggering mechanism of GBB instantiates those knowledge sources
that declared their interest in this particular kind of event. They are scheduled
and executed in a priority-based manner. Activation of a K.S is managed by a
centralized scheduler.

There are several problems in developing distributed knowledge-based system
applications on GBB. The autonomous behavior of agents in a typical application
must be simulated by using knowledge sources of the GBB. However, event triger-
ring mechanism of GBB does not allow real autonomy since knowledge sources
are specific modules that are executed upon particular events on the blackboard.

3.1.2 Hearsay-II

Hearsay-II [19] is a continuous speech understanding system developed at Carnegie
Mellon University. It can be considered eis the first system using the cooperat­
ing experts approach. It consists of a set of knowledge sources, a blackboard, a
priority based task scheduler, and a focusing mechanism for meta-level control.
The original Hearsay-II did not have a distributed architecture. Later on Lesser
and Erman developed a distributed Hearsay-II architecture which consisted of a
set of functionally-accurate complete Hearsay-II systems, each one with its own
blackboard, sampling one time-continuous segment of the speech signal.

Since speech processing is time localized except for the highest semantic lev­
els, these systems need only to exchange high level intermediate results consisting
of phrase hypotheses. They could converge on complete interpretations despite
the loss of some messages. This kind of communication is nearly ideal, but dis­
tributing a generic Hearsay-II architecture in this way would not necessarily work

CHAPTER 3. COOPERATING EXPERT SYSTEMS 18

for other applications. This work highlights a beisic trade off between communi­
cation and computation in DPS networks. The more communication takes place
the more reduced the inconsistency is because agents will have more common
information. Less communication leads to more inconsistency and causes agents
to spend more effort to resolve inconsistencies.

Cooperation among specialized knowledge sources occurs implicitly through
the incremental extension of globally available hypothesis. Knowledge Sources
containing expertise are instantiated in response to a particular pattern on the
blackboard. They cannot be suspended or reinstantiated once execution has
terminated. They also do not keep the history of their actions.

3.1.3 The Contract Net Protocol

The Contract Net Protocol developed by Smith and Davis [83] provides a general
paradigm to design cooperating expert systems in a distributed environment. It
models transfer of control in a distributed system with the metaphor of negoti­
ation among autonomous intelligent agents. The Contract Net consists of a set
of nodes (agents) that achieve the desired goal of coordinating their activities
through contracts. There are three classes of nodes in the net: manager^ bidder,
and contractor. The manager is the node that identifies a teisk to be done, and
assigns it to other nodes for execution. The bidders are the nodes that make offer
to perform the task announced by the manager. The contractor is a successful
bidder, the one whose bid has been accepted by the manager.

Contracting occurs through exchange of information between interested par­
ties followed by a final agreement by mutual selection depending on the available
information. It differs from voting in that parties are free to exit the process
rather than being bound by the decision of the majority. At the beginning, the
manager receives a large task and decomposes it into smaller subtasks in a pre­
defined way. It announces the task to the idle nodes. Nodes that have enough
resources, expertise, and information to perform the announced task send their
bids to the manager. Later, the manager evaluates the bids and awards the task

CHAPTER 3. COOPERATING EXPERT SYSTEMS 19

Task Announcement

To: * (broadcast message)
From: 25
туре: Task Announcement
Contract: 22-3-1
Task Abstraction:

Task Type Signal
Position Lat47N Long 17E

Eligibility ^ecification:
Must-have Sensor
Must-have Position Area A

Bid Specification:
Position Lat Long
Every Sensor Name Type

Expiration Time:2S 1730Z Feb 91

/■- ' --- .

Bid Award

IV); 25 T o; 42
From: 42 From: 25
Type: Bid Type: Award

Contract: 22-3-1 Contract: 22-3-1

Node Abstraction: Node Abstraction:
Position Lat 62N Long 9W Sensor Name SI
Sensor Name SI Types Sensor Name S2
Sensor Name S2 Types
Sensor Name Tl TypeT

_̂ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /

Figure 3.2: Task Announcement, Bid and Award Message Examples

to the most capable node. Afterwards, the manager sends the task information
to the contractor who reports back the progress and eventually the final result
of the tasks. The manager may choose to award the task to several nodes if it
wants to increase reliability.

Smith and Davis investigated a distributed interpretation application in the
Contract Net Framework, where the network should track vehicles over a wide
geographical area. The network contains two types of nodes. Sensor nodes extract
signal features from the data they sense, manager nodes process signals obtained
from different sensors to construct a map of vehicle movement. A manager node
tries to form contracts with sensor nodes through exchange of messages. Every
message includes information about its source, destination, type, and contract
identifier. Fig. 3.2 shows the use of three messages (task announcement, bid, and
award) for the distributed sensor net applications.

CHAPTER 3. COOPERATING EXPERT SYSTEMS 2 0

Task announcement message contains abstract information about the task,
expected capabilities for potential contractors, information that a bid should
contain and a deadline for the bids to be received. In vehicle monitoring, task
abstraction indicates the task type and manager’s location. The expected ca­
pabilities specify the sensory capabilities, and location of a potential contractor,
and bid specification includes the sensor’s location and sensory abilities. A task
bid message includes the information requested in the task announcement’s bid
specification. In this application, bid information consists of the position and

sensory capabilities of the sensor node. After evaluating bids, manager issues a
task award message for each node that is awarded the task. In this application,
the message specifies which of a sensor’s sensory capabilities are to be utilized.

The Contract Net Framework is concerned with the allocation of tasks to sev­
eral problem solvers through a bidding protocol. It requires a top-down decom­
position of large tasks and the allocation of the subtasks to appropriate agents.
It is well-suited for applications with well-defined task hierarchies, and for cases
in which tasks are initially presented to a few nodes in the network.

3.1.4 The Distributed Vehicle Monitoring Testbed

Distributed Vehicle Monitoring Testbed (DVMT) simulates a network of coop­
erating expert systems, called nodes, to track vehicle movement using sounds
recorded by acoustic sensors [50]. The spatially distributed nodes detect the
sounds of vehicles, and each applies the knowledge of vehicle sounds and move­
ments to track a vehicle over its spatial area. Nodes exchange information about
vehicles they have tracked to build a map of vehicle movements through the en­
tire area. There is a need for organizational structuring to guide their processing
and communication decisions, otherwise nodes may overwhelm each other with
tentative partial results.

For the specification of organization in DVMT, each node is associated with
a set of interest areas which defines what, when and to whom information should
be transmitted. It also indicates how much priority should be given to processing

CHAPTER 3. COOPERATING EXPERT SYSTEMS 21

Data

Gxitrol

Figure 3.3: The DVMT Problem-Solving Architecture

CHAPTER 3. COOPERATING EXPERT SYSTEMS 2 2

externally received goals versus internally generated goals. Each node in DVMT
is represented as a blackboard-based problem solver, with levels of abstraction
and knowledge sources appropriate for vehicle monitoring (Fig. 3.3). A knowl­
edge source performs the basic problem-solving tasks of extending and refining
hypotheses. Each hypothesis tentatively indicates where a certain type of vehicle
was at different discrete sensed time points. In this model, the basic Hearsay-II
architecture has been augmented to include more sophisticated local control and
the capability of communicating hypotheses and goals among nodes. In particu­
lar, a goal processing module and communication knowledge sources have been
added.

3.1.5 Other Prameworks

Georgeff [27] has developed a framework in which agents cooperate without ex­
plicit communication. It requires that each agent must have complete knowledge
of others’ abilities and payoffs. This is, however, too restrictive for the majority
of real-world problems. One of the motivations for developing a multi-agent en­
vironment is to allow agents to negotiate solutions when they do not have good
models of each other’s abilities and payoffs.

Shekhar [75] developed a shell for cooperating expert systems, called Coop.
It supports cooperation models to characterize three essential decisions in the
cooperation process. These reason about the need for cooperation, understanding
global knowledge to locate relevant expert systems and selecting appropriate
cooperation plans. Coop environment enables experts to autonomously resolve
the three fundamental decisions at run-time. Each agent in Coop uses a common
representation which combines a theory of fuzzy sets with a theory of evidence
and logic programming. After performing fuzzy set computations, an expert
decides whether it can achieve a given goal independently, or needs help from
others.

Chandrasekeran [9, 33], in the MDX approach, proposes a “cooperating com­
munity of specialists” where each specialist contains its own knowledge-base and

CHAPTER 3. COOPERATING EXPERT SYSTEMS 23

inference mechanism for solving disease diagnosis problems. MDX is based on a
hierarchy of specialists with those at top being more general than those at lower
levels. Task distribution is done according to the hierarchical structure of the
system. For diagnosticians, this hierarchy serves the function of organizing their
troubleshooting knowledge. The concrete details for each disease are encoded in
the production rules attached to the appropriate concepts.

Chapter 4

Conflict Management

In the cooperating experts approach, several specialized agents combine to solve
a common problem. During any phase of the problem-solving, conflicts might
appear as a result of incorrect and incomplete local knowledge, different goals,
priorities, and solution evaluation criteria. When there are several conflicting
proposed solutions for a (sub)problem, the agents involved in a conflict must
either agree to choose one proposal, cooperatively revise one, or search for a new
solution that will be acceptable to everyone.

A conflict may be either direct or indirect. A direct conflict occurs when
two or more agents have beliefs that are explicitly inconsistent. This type of
inconsistency is due to the uncertainty inherent in the domain. For example,
when several agents are designing an office, an agent might prefer a round desk
while another insists on a rectangular one. An indirect conflict occurs when agents
have constraints that do independently contain a shared object. For example, in
designing an office the functionality expert wants to place the PC desk in front
of a window, while the electricity expert says that the PC desk must be within 2

meter of the electrical plug, because the PC comes with a 2 m long main power
cable. This is a problem if the only window in the office is 4 meter away from the
electrical line. The inconsistency is not inherent in the knowledge, rather it is
due to a particular configuration of objects. Detection of conflicts in cooperating
experts is a difficult task and is actually dependent on the problem domain.

24

CHAPTER 4. CONFLICT MANAGEMENT 25

There are several methods that have been used to resolve conflicts. Existing
research related to conflict resolution in cooperative problem solving can be di­
vided into two categories: models of human conflict resolution and computational
models.

4.1 Models of Human Conflict Resolution

There are considerable amount of work concerning the resolution of conflicts that
occur between individuals or groups of individuals in domains such as business,
international relations and so on [71]. However, most of these techniques cannot
be directly applied to computational models because much of the work addresses
issues specific to the psychology of human participants that are not present in
machine agents and that greatly influences the process. Human motivation is
more complex than the state of our current understanding; for example, some­
times the disputants involved in a conflict do not know what they really want. As
a result, the level of description of conflict resolution expertise is more abstract
than appropriate for machine based agents.

4.1.1 Aspects of Negotiation

It is possible to make important observations in the human model of negotiation
behavior that are worth considering for computational models. Initially, Pruitt
[71] described levels of demand and rates of concession for parties involved in
negotiation. Later, he described how the demand levels and concession rates
can affect the motivation and expectations behind the proposal process. Each
party’s expectations can be described in terms of issue tracking, position and
image loss as well as limit and level of aspiration. Each party uses a model of
itself and its opponents to evaluate and generate proposals. Finally, the behavior
of parties during negotiation can be influenced by the perceived power that one
party maintains over the issues. We describe each of the aspects of negotiation
in detail in the following subsections.

CHAPTER 4. CONFLICT MANAGEMENT 26

Demand Level and Concession Rate

A party’s perceived benefit that it gains from any proposal it makes during ne­
gotiation describes a demand level. The other party’s behavior can be somewhat
determined by the demand level of the proposal of the first party. Research among
human subjects showed that bargainers that make low initial demands tend not
to agree or cause negotiation take longer [6]. The party responding to the initial
weak demand expects further large concessions from the perceived weak party.
This prevents the responding weak party from making large concessions of its
own. The opposite behavior is seen when more aggressive proposals are made. In
this case, aggressive proj)osals tend to require aggressive counter-proposals caus­
ing parties to quickly overshoot their final point of agreement in the negotiation.
Therefore, it is recommended that good negotiations must avoid the hazard of
moving too slowly or too quickly towards the agreement. A party’s demand level
can be measured in terms of the position the party takes on its issues. The con­
cept of demand level is not so clearly defined in many computational models of
negotiation.

Tracking, Position and Image Loss

The response of one party to another party’s original proposal is based on a
phenomenon called tracking. One party tracks the other party in order to estimate
that party’s ultimate demand level. Tracking a party’s demand level is very useful
when there is no other information available to help make this determination
(such as facial expression, body language, etc.). A party’s perceived position and
image loss will affect the other parties’ response behavior. The position of a party
is described as its desired benefit it gains given its level of alternatives. Image
loss is the impression the other party makes of the first party. If the first party
abandons its position, the impression gained by the second party will be that
the former lacks firmness in position. This can cause the second party to have a
higher demand level.

CHAPTER 4. CONFLICT MANAGEMENT 27

Limit and Level of Aspiration

A negotiation limit is the absolute lowest value that a party will agree upon for
its issues. This is the bottom boundary in a party’s negotiation position. The top
most negotiation boundary is determined by the parties’ level of aspiration. A
party’s aspiration is its perceived value that seems attainable at any time during
the negotiation [71]. Also, the level of aspiration will always be greater than or
equal to the bargainers’ limits. There are also interesting relationships between
limit and level of aspiration:

• limit tends to remain constant over time, whereas aspiration declines to­
wards the limit,

• limit and aspiration are positively correlated, and

• the strength of the correlation increases over time.

4.1.2 Integrative Agreement Between Two Parties

When parties want to develop an agreement which includes some aspects of each
party’s issues into the final solution, they can enter into a form of coordinated
behavior which is called integrative agreement. In the literature, there are four
types of integrative agreement: cost cutting, compensation, log-rolling and bridg­

ing. These four types can be classified into two groups. The first group represents
behaviors which improve the other party’s position without reducing the first
party’s position (cost cutting and compensation). The second group represents
behaviors which change the position of both parties (log-rolling and bridging).

Cost Cutting

The first party makes a proposal that is intended to benefit the second party
by reducing some cost of the second i)arty. During this action, the first party
maintains the same level of aspiration while attempting to entice the other to
make some form of a concession. Cost cutting can also be done by a third party

CHAPTER 4. CONFLICT MANAGEMENT 28

such cis an arbitrator. During cost cutting, parties need to exchange relevant
information about their priorities. Cost cutting allows the parties to maintain
their positions in addition to providing some form of negotiation for the other
party’s future concerns about an agreement.

Compensation

There are three types of compensation behaviors: specific compensation, homol­
ogous compensation and substitute compensation. Specific compensation can be
interpreted as a type of cost cutting behavior. It provides the first party with
some means of reducing tensions for the second party. Parties inform the others
of their “worries.” Through specific compensation, one party specifically compen­
sates the other’s issues by some secondary means. In homologous compensation,
the first party concedes the same aspects for a similar concession made by the
second party. The idea is for the first party to provide some type of benefit for
the second party. This is achieved indirectly by demonstrating to the second
party that the first party is losing an amount of benefits which is equal to what
it is gaining.

In substitute compensation, parties propose substitutes for the other’s re­
quested issues. The first party can use a stereotype of the second a s well as
the extend of the second party’s issue costs so a s to produce an adequate com­
pensation response. In general, this type of behavior requires a different realm
of reality and therefore is not a s useful in computational models of negotiation
where mechanical parties do not respond emotionally to proposals a s humans

would.

Log-rolling

The first party exchanges or swaps a set of its issues with a set of issues from the
second party. In this form of integrative agreement, each party changes current
bargaining position, but in the most minimum fashion possible. For log-rolling to
occur, parties have to know the priority ranking among the other party’s issues.

CHAPTER 4. CONFLICT MANAGEMENT 29

Bridging

During bridging a new proposal is generated that benefits both parties in terms of
their most important issues. Thus both parties change their negotiation positions,
but for their common benefit. The new proposal can come in several forms.
First, both parties agree to accept one party’s issues this time if the other party’s
issues could be met during the next encounter. Bridging can also result from
the resource shortage. In this case, parties must either schedule the resource
themselves or rely on a third party for help.

4.1.3 Third-Party Intervention

Sometimes intervention by a third party-during negotiation is useful when the
parties cannot develop any alternatives themselves. It has been shown that nego­
tiators concede much faster when a suggested alternative is made by a third-party
as opposed to conceding to alternatives made by the other party [30]. One idea
for this behavior is that negotiating parties use a third party to legitimize their
own interests in their proposals. In general there are three types of third-party
intervention:

• mediation,

• fact finding, and

• arbitration.

Third-Party Mediation

A major area of research in human negotiation has been in the area of third-party
mediation. Third-party mediation is a form of intervention which attempts to
coordinate behavior in a cooperative fashion between disputing parties. Medi­
ation may come about in several ways. First, each party can make a request
for mediation if it predicts that other party is powerful and firm in its position.
A time limit could also cause the disputing parties to request mediation which

CHAPTER 4. CONFLICT MANAGEMENT 30

would lead to a quick and equable solution. Mediation can also occur through
third-party observation of the negotiation process. The third-party could then
intercede and make suggestions.

Mediators can help in several ways. First, they can set the “right” envi­
ronment just by being present during negotiations. This type of negotiation is
described as process mediation. Second, they can take a more active role and get
involved in learning about the issues under discussion, which is named as content
mediation.

Third-Party Fact Finding

A second form of third-party intervention is fact finding. During fact finding, the
third party listens to both sides of the conflict and produces a set of non-binding
recommendations. It is up to the parties to elect to follow the suggestion as a
solution or to throw it out. Not much research has been performed in this area
of human negotiation.

Third-Party Arbitration

The final form of third-party intervention is arbitration. During arbitration, the
third-party performs services similar to the fact finding in order to learn about
the parties issues. This allows the arbitrator to make recommendations based
on these issues. Unlike fact finding, recommendations based on arbitration are
binding. Arbitration can be either requested by the parties, or it can be forced
upon them by a prior decision, such as a court order. There are three forms of
arbitration: conventional, final offer and mediation-arbitration combination.

In conventional arbitration, the arbitrator has the option of making a deci­
sion that seems the best for all parties involved. In final offer arbitration, the
arbitrator uses what the parties have currently proposed without any improvi­
sions. Finally, mediation-arbitration combination provides the arbitrator with the
greatest amount of flexibility. In this method, the arbitrator initially performs
mediation to get the two sides to agree. If that fails, the arbitrator then renders

CHAPTER 4. CONFLICT MANAGEMENT 31

a binding decision. This form of arbitration allows the arbitrator to reason with
the participants before throwing this weight around.

4.2 Computational Models

A common practice in building knowledge-based systems is to avoid potential
conflict situations through analysis and consistency checking of the knowledge­
base at development time [31, 55, 60, 61, 6 6 , 70, 89]. Traditional knowledge-ba^ed
systems rely on all of the potential conflict between different perspectives being re­
solved at hiowledge-base development time. This is done by checking knowledge­
bases for consistency and completeness. Consistency checking includes detecting
conflicts, redundancies and subsumptions. Completeness checking includes test­
ing whether the system answers all reasonable situations within its domain of
expertise. This approach, although effective, is very costly as the amount and
diversity of knowledge increases. Also, it may be impossible to foresee all possible
conflicts which may arise in a given domain. Resolving all conflicts, no matter
how unlikely, at development time can be prohibitively time-consuming. More­
over, dividing the domain knowledge into smaller internally consistent collections
is difflcult.

Problems encountered when resolving conflicts at development time can be
avoided by allowing conflicts to occur and be resolved at run-time. In other
words, participating agents are allowed to generate conflicting solutions to the
subproblems at run-time. In the case of a conflict, a set of strategies could be used
to resolve the conflict. An agent’s proposed solution can either be acceptable or
unacceptable to another agent depending on how the proj)osed solution benefits
the latter agent. When proposals are unacceptable, agents are in conflict. These
conflicts may involve single or multiple perspectives and must be resolved by some
form of iterative negotiation if the agents are to agree on a solution. To prevent
the overall performance degradation of a system, the negotiation mechanism must
allow agents to quickly converge on a solution. The fundamental advantage of

CHAPTER 4. CONFLICT MANAGEMENT 32

run-time conflict resolution is that it constitutes a more realistic model of coop­
erative problem-solving than development time conflict resolution does. This is
achieved both by constituting a better model of human group problem-solving, as
well as by reducing the complexity of the individual agents to more manageable
levels. Moreover, there are a number of advantages to allowing conflicts to be
detected and resolved at run-time using explicitly represented conflict resolution
strategies:

• improved comprehensibility: Run-time conflict resolution allows us to main­
tain in separate knowledge sources the different bodies of expertise as orig­
inally produced by the human domain experts. This makes it easier for a
domain expert to modify a knowledge source at a later time. If all conflicts
are resolved at development time, we have in effect replaced these multi­
ple bodies of expertise by a single one that is difficult for any one domain
expert to understand or modify. •

• increased extensibility: We can add new bodies of expertise to a system
without having to resolve, at development time, all the conflicts that may
arise among the knowledge sources. Run-time conflict resolution thus helps
insuring the independence of the bodies of expertise in a complex knowledge-
based system.

• increased flexibility: When conflicts are resolved at run-time instead of de­
velopment time, we have flexibility in the choice of which conflict resolution
strategy we use. We can, in fact, use conflict resolution knowledge added
to the system after the knowledge sources were originally developed.

• involving human problem solvers: Among the most compelling reasons for
using run-time conflict resolution is the role that humans can play in co­
operative systems with both human and machine-based agents. It is not
practical to expect the human participants to resolve all potential conflicts
before they participate in the system’s operation. The use of run-time

CHAPTER 4. CONFLICT MANAGEMENT 33

conflict resolution strategies constitutes a better model of how coopera­
tion among human teams takes place, and thus provides a more natural
framework for systems with human and automated participants.

Some examples of conflict resolution strategies in computational models in­
clude backtracking ̂ compromise negotiation^ integrative negotiation^ constraint
relaxation, case-based and utility reasoning methods, and mxdti-agent truth main­

tenance [1, 41, 43, 46, 63, 64, 90, 91, 99, 102, 103, 104].
There are two generally used computational models for conflict resolution:

compromise negotiation and integrative negotiation:

• In compromise negotiation, a solution is iteratively revised by sliding a
value or set of values along some dimension until a mutually acceptable
middle point is determined. In some sense, compromise acts to fine-tune
a solution that is close to acceptable. Compromise negotiation has certain
requirements that must be satisfied in order for it to be effective:

— there should be a small number of dimensions involved,

— there should be some method for evaluating whether the proposed
values are moving towards each other, and

— there should be a common scale on which agents can fine-tune their
findings.

• Integrative negotiation, on the other hand, is useful for finding solutions
for problems that are not appropriate for compromise negotiation or in
situations where novel solutions are desirable. The main point of integrative
negotiation is to identify the most important goals of each agent, and to
find a solution which fulfills all of these goals. If the goals are incompatible,
it may be necessary to decouple and abandon some of the goals.

There are several important studies that emphasize the use of conflict reso­
lution within cooperating expert systems. Below, we describe studies that come
closest to providing conflict resolution expertise with a first-class status.

CHAPTER 4. CONFLICT MANAGEMENT 34

PERSUADER

Sycara [90, 91, 92] presents a model of negotiation in which the system (PER­
SUADER) acts cis a mediator in union/management labor disputes. PERSUADER
attempts to find an equitable solution for a set of conflicting goals within the
context of industry standards. PERSUADER’S preferred reasoning method is
precedent-based reasoning. A case memory is searched for cases which are similar
to the current dispute based on a set of salient features. If one is found, the val­
ues used in that case are adjusted according to domain heuristics and presented
to the disputants as a possible solution. In most cases, the proposals presented
by the disputants are ignored by the mediator in developing a compromise solu­
tion. This may be responsible in domains where there is an accessible database
of standard cases such as law or labor relations. It does not work in domains
where problems require unique solutions or where there is no easily accessible
compilation of standards.

In PERSUADER, precedent-based reasoning breaks down when no appropri­
ate precedents exist. Preference analysis, a simplified derivative of multi-attribute
decision theory, is used to generate a solution based on the disputants’ utilities
when this happens. Preference analysis relies on the existence of a central media­
tor with access to the solution evaluation criteria of all agents. This is unrealistic
in cooperating experts approach since the knowledge represented is so diverse and
also against to the idea of modularity and open systems semantics. A character­
istic of this model is that negotiation is the main ttisk performed by the system.
The system performs conflict resolution on disputes that are provided by outside
agents. We note that our own work views negotiation as an integral part of a
general problem-solving process rather than as a se|>arate task.

CHAPTER 4. CONFLICT MANA CEMENT 35

DFI

Werkman [99] developed a system called Design Fabricator Interpreter (DFI)
which is a framework for distributed cooperative problem-solving among con­
struction agents. The DFI system reflects the distributed nature of the con­
struction industry by providing a multi-agent architecture which models design,
fabrication, and erection processes. Conflicting recommendations issued by de­
sign agents are resolved by a third-party arbitrator agent. The arbitrator makes
suggestions based on the globally known conflict resolution knowledge. It oper­
ates in both passive, and active mode. In passive mode, the arbitrator monitors
the agent proposal process and intercedes when a problem is evident. In active
mode, arbitrator mediates during the agent’s proposal process when called upon
by the agents.

CDE

Klein and Lu [43] proposed a model, called CDE (Cooperative Design Environ­
ment), for cooperative design, that emphasizes the parallel interaction of design
agents. This work addresses the problem of how conflicts among different experts
can be resolved, as follows: there are several design experts and a particular con­
flict resolution expert. Given a design problem, design experts attempt to solve
the subproblems relevant to their expertise. When a conflict is detected, the
conflict resolution expert takes control and tries to resolve it. This particular ex­
pert maintains the global conflict management knowledge, which contains conflict
classes and corresponding resolution strategies. Within this knowledge, the more
abstract classes represent domain-dependent classes and corresponding strategies,
while more specific classes apply only to a particular domain, which is gathered
in the phase of knowledge acquisition.

CHAPTER 4. CONFLICT MANAGEMENT 36

CEF

Lander and Lesser [46] proposed a framework, called CEF (Cooperating Experts
Framework), to support cooperative problem-solving among sets of knowledge-
based systems. The participating agents solve subproblems relevant to their spe­
cific expertise and integrate their efforts using conflict resolution strategies that
are appropriate to the problem-solving context. All of the agents have a global
knowledge of conflict resolution strategies. When a conflict is detected, agents
involved in the conflict propose their alternative resolution strategies. Eventually
they agree on a resolution scheme. Later, the conflict is resolved by one of the
chosen agents based on that scheme.

NTC

Adler et al. [1] discuss methods of conflict resolution in the domain of telephone
network traffic control. A homogeneous group of agents has geographically di­
vided responsibilities with no overlap. The basic problem that the agents are to
solve is excessive demand for the resources in some parts of the network. Two
negotiation protocols are described: •

• conflict-driven plan merging, a bottom up approach to resolving a conflict
that has already occurred, and

• shared plan development, a top down approach to avoiding conflicts as plans
are developed and refined.

Their research addresses how conflicts on the usage of resources could be resolved.
The strategies range from a priori protocols for avoiding conflict situations to
arbitration of conflicts.

Chapter 5

The Computational Model

The cooperating problem-solving environment, MSVTUMS, is organized as a
community of cooperating problem-solving agents, where each agent is repre­
sented a fully functional and autonomous knowledge-based system. AfSVTUMS
is designed for solving problems particularly in the domain of design. Most com­
plex design problems are based on the insights that each design agent has its own
conflict resolution knowledge separate from its domain-level design knowledge.
Such knowledge can be instantiated in the context of particular conflicts into
specific advice for resolving these conflicts. MSVTUMS allows a new problem
solver to be added, or an existing one to be removed, without requiring any mod­
ification to the rest of the system. MSVTUMS^ therefore, can be considered as
achieving open systems semantics^ [37, 38, 39] in the sense that it not only allows
scalability (the ability to increase the scale of commitment) but also robustness
(the ability to keep commitments in the face of conflicts), which are two primary
indicators in open systems semantics.

^Open system s deal with large quantities of diverse information and exploit ma-ssive
parallelism.

37

CHAPTER 5. THE COMPUTATIONAL MODEL 38

5.1 Why Cooperative Design

Design is the process of constructing an artifact description that satisfies certain
requirements. It is based on the interaction of multiple diverse expertise. In
traditional approaches, it is accomplished by a group of experts asserting and
evaluating design decisions in a sequential and iterative manner [29, 32, 65, 85].
Several iterations may be required before a design that satisfies all sources of
expertise is produced. This is a very time-consuming process and may sometimes
lead to poor design outcomes.

The model that we propose supports a parallel rather than a sequential inter­
action among the design experts. There are several characteristics which make
the design process particularly suitable to cooperating experts approach:

• resources and knowledge of a single individual may not overcome the cost,
scale, and complexity of many design problems,

• design problems can be characterized as routine, creative, or innovative,
with each type of problem requiring a different design methodology, and

• design commitments and critiques could be asserted in parallel by several
knowledge sources.

The process of design has been studied extensively, thereby providing a basis
for the implementation of knowledge-based design systems [2, 3, 4, 29, 30, 65,
8 6 , 95, 96]. With the exception of a few, none of the existing knowledge-based
design systems support parallel interaction among design experts. To achieve
parallel interaction among design agents, there is a need for an environment in
which design agents communicate with each other in solving a particular design
problem.

5.2 Architecture of the Model

As shown in Fig. 5.1, MSVTUMS is composed of a set of design agents which
are fully functional knowledge-based systems and a shared medium [67, 6 8 , 69].

CHAPTER 5. THE COMPUTATIONAL MODEL 39

Figure 5.1: The Architecture of the Proposed Cooperative Design Environment

The agents communicate by posting their assertions on the shared medium. As­
sertions are expressed in a common language. This requires that the agents have
translation capabilities from and into this common language.

AfEVTUAfS is implemented on a network of workstations running under
the UNIX operating system. Each agent is modeled as a process running on a
workstation which is an autonomous knowledge-bcised system that makes an offer
to solve subproblems within its interest area, may create subproblems to get help
from others, and cooperate with others to resolve conflicts to be encountered.

5.2.1 Representation of Problem and Knowledge

In this section, we formally describe the representation of elements used in defin­
ing problem and knowledge in our computational model.

D efinition (objects)
O = { o i ,02, represents the set of objects that contain information to be
used by the agents in their design processes. Each object represents a separate
element in the universe of objects.

CHAPTER 5. THE COMPUTATIONAL MODEL 40

For each object o,· E 0 ,1 < i < Nobj, Attributes(oi) = }

denotes a set of data attributes that include information in the form of ei­
ther numerical/symbolic constants, or procedures (methods) that yield numeri-
cal/symbolic values and constitute the derived attributes from basic data. An
attribute of an object may also point to a non-atomic structure, hence form­
ing a nested complex structure. Each object has two generic attributes other
than those in Attributes(oi). They are o b je c t - id and domain-name. While
o b je c t - id is a symbolic constant which uniquely identifies an object among oth­
ers, domain-name refers to the domain or class of the object which is a collection
of similar object instances.

In many systems, knowledge about a domain usually centers around the de­
scription of objects and their component pieces. The constituents of this knowl­
edge in our system are a database of design elements and their component pieces.
The following is an example of a floor beam object taken from a framing system.

Obj ect
object-id
domain-naime

beam-id
beajn-width
beaun-height
beam-depth
beam-section
begin-reaction
end-reaction
uniform-load

EndObj ect

symbolic
Floor-Beam

: symbolic
: numeric
: numeric
: numeric
symbolic
numeric
numeric
procedure calculate-beam-load ..

D efinition (relations)
TZel = {reli,re l2, denotes the set of relations where a relation has a
name and arity. Each relation is used to establish a relationship between a set

CHAPTER 5. THE COMPUTATIONAL MODEL 41

of objects involved in the problem to be solved. Each 7*e/,· 6 TZel, 1 < i < N „,
denotes hierarchical or logical relationship among certain types of objects. A
solution to a specific problem at any level of granularity is represented cis a set
of relationships which is a subset of Ttel*.

Below is a sequence of relationships that relates the objects motor, pump,
vbe lt, and e la s t ic -p la tfo rm which are some typical components to be used in
the design of a steam condenser:

Relationships
connected(motor, vbelt)
connected(pump, vbelt)
on(motor, elastic-platform)
on(pump, elastic-platform)
on(vbelt, elastic-platform)
In this example, {connected / 2 ,o n /2 } C 'Rtl and motor, and pump objects

are connected through vb e lt objects, all of them lying on e la stic -p la tfo rm
object. The functionality of the motor is to run the pump by delivering suffi­
cient power through vb e lt. Positioning of objects motor, pump and vbelt on
e la s tic -p la tfo rm is represented with other relationships.

Definition (domains)
T> = {D i, £>2,..., Dn^ ^ } denotes the set of domains. Each object o,· in O is taken
from some domain /)_,■, i.e., (Vo,· 6 O) {3Dj 6 V) [o,· € Dj] where 1 < i < Nobj·,
and 1 < i < Ndom- In the same way, each attribute of object o,· is an element
taken from some domain Dk, that is € Attributes(oi)) (3Dk 6 D) G
Dk] where I < k < Ndom and 1 < n < Mi.

In addition to the objects and their attributes, there is a set of parameters
which are used in the design problem-solving. These parameters take values
from domains in T>. These parameters stand for the domain values (constants,
or object instances) to be computed and presented as solutions.

We define a function dom.aintype{Di) which denotes type of domain Di G D

domaintype : T> -* {numeric, syinbolic, com plex}.

CHAPTER 5. THE COMPUTATIONAL MODEL 42

All domains in T> are bounded domains. A numeric domain is represented as
[I, u] where / is the lower bound and u is the upper bound in the domain. A sym­
bolic or complex domain is represented cis an ordered set of values (symbolic con­
stants or object instances). For D,· G Pand domaintype{Di) = complex or symbolic,
lower(Di) denotes the first element in D, and upper(Di) denotes the last element
in Di.

Note that the union of domains in T> forms the universe of discourse, called
Universe. That is, Universe = UDigD A ·

D efin ition (parameters)

^ = {Pı̂ P2■ı ■•-tPNpar} *5 of parameters for which the agents will be col-
laboratively seeking values from domains in T>. Parameters can be grouped into
two categories according to their underlying domains:

• atomic parameters, and

• complex parameters (non-atomic parameters).

pA Q 'p represents the set of atomic parameters. Atomic parameters denote
variables that take primitive constant values which can be either numeric con­
stants (integer or real) or symbolic (non-numeric) constants. P^ C V represents
the set of complex parameters. Complex parameters denote objects which are
structured composite data types. We define a function domain{pi) which returns
domain of parameter p,·.

domain : V D, {Wpi G V) (3Dj G T>) [domaiTi(pi) = Dj].

Note that P' ̂ and P^ are disjoint, i.e., P^ U P^ = V and P^ D P^ = 0.

D efin ition (tasks)
T = represents the set of teisks to be performed. A task rep­
resents simply a goal, at any level of granularity, that must be satisfied by at
least one of the agents in the problem-solving network. There exists a par­
tial order V o over the tasks in T that the agents should follow, defined as

CHAPTER 5. THE COMPUTATIONAL MODEL 43

Tasks: tl, t2, t3, t4, t5, t6, t7
Agents: al, a2, a3, a4

------------------ agents’ areas o f interests

----------------► sequence o f tasks

Figure 5.2: Example of a task sequence to be performed by a set of agents.

CHAPTER 5. THE COMPUTATIONAL MODEL 44

To = {po(ti,tj)\3ti,tj € T and tj is immediate successor of i,·} denotes the
set of intertask dependencies. Figure 5 .2 shows an illustrative set of tasks to
be attempted by a set of agents. In this example, circles represent tasks, arrows
represent flow of control and intertcisk dependencies while dashed areas illustrate
agents’ areas of interest. Agents that have overlapping interest areas may pro­
duce conflicting solutions since they have common interface parameters. In the
figure, agents « 1 and a2 may produce conflicting proposals through task t2 they
are sharing. In the meanwhile, agents may indirectly cause conflicting situations
even though they do not have overlapping interest areas. For example, agent a2
may recommend values for some parameters in task t2 that indirectly restrict
parameters in task t5 which is within the interest area of agent o3.

In the design problem-solving, each tcisk identifies the design parameter to
be instantiated with an appropriate value acceptable by all of the agents in the
problem-solving network. This instantiation can be viewed in two different per­
spectives:

• selecting an appropriate object instance from a domain, or

• finding a numeric, or symbolic value which will not cause any dissatisfaction.

In general design process is terminated when all of the tasks are finished
which results in a set of relationships to be established, all design parameters are
instantiated to appropriate values and all design agents agree on the final design
outcome. In NSVTUMS^ agents may cancel some of the tasks which may lead
to poor design outcomes upon negotiating over different issues.

Definition (constraints)
In our multidisciplinary design process, problem-solving agents generate partial
local solutions by assigning values to parameters and by exchanging cissigned
values in a particular strategy to reach a globally consistent satisfiable solution.
In assigning values to parameters, agents typically satisfy their requirements and
design procedures which are considered to be design constraints. Each agent has

CHAPTER 5. THE COMPUTATIONAL MODEL 45

its own constraint, in addition to the global design constraints which are imposed
by the agent that initiated the problem.

C = C {ai)U C (a2}U...UC{aiv^)[jCG denotes the set of constraints in the design
where C{ai) is the set of constraints specific to agent or,, Co is the set of global
design constraints, Na is number of agents in the problem-solving network and
1 < I < Na- Each agent o;, is only aware of the constraints C'(a,)UC'G. Given Pk C
P, Ck{Pk) represents a constraint which restricts the values that may be assumed
by the parameters in Pk which is a subset of V. Parameters of a constraint are
classified into two categories: input parameters and output parameters. Input
parameters are the only ones that may affect output parameters. Moreover, each
constraint has a set of methods assigned.

D efinition (actions)
Act — { 0 1 , 02, denotes the set of allowable actions (or moves) that the
agents execute in achieving their assigned tasks. Each o,· € Act, 1 < * < Â oci,
represents an action which involves a set of parameters.

Actions can be defined differently in different domains. An action aims at es­
tablishing a relationship among a set of objects. In the engineering design domain,
an action can be finding values for a set of design parameters (selecting appropri­
ate object instances to be instantiated to a complex variable, or finding a constant
value to be assigned to an atomic parameter), and/or adding/deleting/modifying
a relationship that involves certain types of objects.

5.2.2 Shared Medium

The shared medium is a public repository available to all agents. This permits
the storage of “global” information, although the information can only be used
locally by the agents. Alternatively, it would be possible to convey information
directly through point-to-point communication channels or through reserved-spot
communication [101]. The shared medium is partitioned into four sections, allow­
ing fast access, delete and update operations of units (Fig. 5.3). These sections
are called problem, solution, proposal and conflict areas.

CHAPTER 5. THE COMPUTATIONAL MODEL 46

Problem

Area

Solution

Area

Proposal

Area

Coi\flict

Area

Figure 5.3: The Shared Blackboard

The problem area of the shared medium contains the initial problem definition
and overall requirements that must be taken into account by the design agents. A
problem definition can be asserted by any of the agents that exist in the problem­
solving environment. In addition to other agents, the owner of the problem also
attempts to solve the subproblems within its area of interest. A problem instance
is a tuple of the form

Pi'oblemlnstance = < «o, T, Vo, Co, I > where

«0 denotes the problem originator, an agent that defines the problem
to be solved,

T is the set of teisks that must be satisfied for a design to be accepted,

Vo is the set of intertask dependencies,

Co is the set of constraints that design agents should not violate^,

I denotes the initial problem information (such as the layout of a room
if the problem is to design an office).

^Some of the constraints may be violated through negotiation with the problem originator.

CHAPTER 5. THE COMPUTATIONAL MODEL 47

The solution area of the shared medium maintains the evolving design tem­
plate TZ, to which non-conflicting design commitments produced by the agents are
added. The evolving design template is composed of a set of relationships that
represents current state of design at any phase of problem-solving. 7Z is updated
with new relationships introduced by a proposal when agents cooperatively agree
on the solution proposal. Note that 7Z C TZeT.

The proposal area includes partial and incomplete solutions produced at sev­
eral layers of abstraction by design agents. Design agents insert their solutions
as proposals into this area. A proposal instance is a tuple of the form

Q = < qj, a,·, T,j, Actij, Rij > where

qj is the identity of the proposal,

ai denotes the owner of the proposal,

Tij denotes the set of tasks for which the proposal has been generated,

Actij C Act* is an ordered set of proposed actions to update the

current design template,

Rij consists of the relationships to be established upon reflecting changes
offered by the actions in Actij.

The conflict area is the place where agents put their objections and critiques
related to a new design commitment. A portion of this area provides a commu­
nication medium with agents that are involved in a conflict situation. This area
holds evaluation results and conflict resolution recommendations issued by design
agents. An evaluation result instance is a tuple of the form

ER = < qj, Oft, Rdij, R^ij, Rd{j > where

qj is the identity of the proposal evaluated.

Of, denotes the owner of the evaluation result tuple,

Ruij is the set of ratings (evaluation results) for each action in Actkj
within proposal <7̂ ,

CHAPTER 5. THE COMPUTATIONAL MODEL 48

Rcij is degree of satisfaction or dissatisfaction caused by proposal qj

Rdij indicates whether the proposal qj is acceptable or not. Rdij €
{ c o n f l ic t in g -p r o p o s a l , n o n con flic t in g -p rop osa l}

A conflict resolution instance is a tuple of the form

CR = < qj, O',·, Resij, Rrefij > where

qj is the identity of the related proposal,

a, is the owner of the conflict resolution tuple,

Resij indicates whether agent o,· is to be constraining the search
space, or is to be counter-proposing a new alternative, and Resij G
{con stra in in g , counter-proposing} and

R refij includes the set of constraints if Resij = constraining, the set
of tasks Ti Q T for which the agent o,-j will be counter-proposing an
alternative proposal. The original task set for proposal qj is a subset
of T,.

In the resolution phase, agents that have overlapping interest areeis concerning
the task set under consideration try to generate alternative proposals. Other
agents attempt to restrict search spaces of the agents that have potential to
counter-propose.

5.2.3 Agent Model

111 this section, we describe a general model of an agent which constitutes the
base for the computational model developed.

D efin ition (agents)
A = {o i , 0 2 ,..., o No} represents the set of agents that will participate in the
problem-solving process. As shown in Fig. 5.4, an agent o, (1 < i < Na) contains: •

• a database that includes

CHAPTER 5. THE COMPUTATIONAL MODEL 49

— T{ai) which denotes the set of teisks that agent <v, can perform (^(a,·) Ç

n

— P(oci) = U P^(o;,·) denotes the set of parameters occurring in

task descriptions T{ai) for agent o;,·, where P{cti) Ç 'P, Ç

P ^ioi) Ç P^·

— D{ai) = {Z)',J(3p„ 6 P{ai)){3D,n € V)[domain{pn) = and Z)',̂ Ç
A n]} denotes the set of domains from which agent a,· picks up values
for its parameters whose values are unknown, or not known precisely.
Note that each domain in P (a ,) is a subset of a domain in V.

• a knowledge-base that includes

— domain knowledge^

— control knowledge and

— conflict management knowledge, and

• control procedures which are

— proposal generation,

— proposal evaluation,

— conflict detection and resolution, and

— communication.

As problem-solving process starts, each agent examines the global task set, T ,
and selects those tasks that it can perform. An agent checks the objects and the
relationship to be established among the objects that have been introduced in a
particular task definition. The agent may later decompose the task into several
subtfisks (goals) according to its problem-solving capabilities.

The knowledge-base includes domain and control knowledge, just like in a
classic knowledge-based system. In addition, it also contains conflict management
knowledge that can be used in cooperatively managing conflicts with other agents.
This knowledge is not available to other agents, and it varies with respect to

CHAPTER 5. THE COMPUTATIONAL MODEL 50

tasks

parameters

domains
1,

objects

DATA BASE

______________ l _ t _______________

domain
knowledge

control
knowledge

;
conflict

management
knowledge

KNOWLEDGE BASE

proposal
generation

proposal
evaluation

conflict
management communication

CONTROLLER

Figure 5.4: Internal Structure of a Design Agent in the Model

CHAPTER 5. THE COMPUTATIONAL MODEL 51

the agents’ beliefs and understanding of the environment. The general controller
includes procedures for generating and evaluating design commitments, managing
conflicts, and communicating with other agents.

The agents are actually heterogeneous in the sense that they might use dif­
ferent knowledge representation techniques and inference mechanisms. Agents
are assumed to generate proposals (solutions for subproblems) according to their
knowledge. They cooperate to achieve the common goal of solving a global prob­
lem. Local knowledge is represented in whatever language desired but cannot be
accessed by any agent except its owner. Several knowledge representation tech­
niques have been developed for the domain of design [5, 29, 32, 85, 86 , 88, 94, 95,
96]. If the internal language is not the same as the shared language, translation
procedures should be incorporated within the agents. In the case of a conflict,
agents might make some or all of their goals, constraints and even knowledge
available to others.

5.2.4 Conflict Resolution Knowledge

Conflict resolution knowledge of agents centers around the domain issues through
which each agent is to be contributing to the global solution. Each such issue is
identified during the knowledge engineering process.

A gen ts ’ Issues and Preferences

D efin ition (issues)
Issues(ai) = is a domain-dependent issue} denotes the set of issues over
which agent a,· is to be evaluating proposed partial solutions and negotiating with
others in generating agreeable solutions. (Ij in Issuts{ai) represents a domain-
dependent issue of agent cv,. P{ai,/3j) C P(or,) denotes the set of parameters
which are involved in issue /?_, of agent O’,·. Some parameters involved in one issue
may be within the scope of other issue. This may happen in two ways: •

• (3a,· € A) {3p,n e P{ai,0k)) \Pm € P(a,·,^/)] where / ^ k. That is,
different issues within same agent can share parameters.

CHAPTER 5. THE COMPUTATIONAL MODEL 52

• (3q!,-,q;_, € A) (3p„, e P{ai,/3k)) [p„. € P(aj,/9/)] where i ^ j and /
That is, different issues in different agents can share parameters.

As an example of an issue and its parameters, consider the electricity agent
which is concerned with electrical devices to be installed in an office. One of
the issues of this agent is configurability which involve location parameters of the
electrical devices to be placed in the office.

Each issue is assigned a set of constraints which restricts values of parameters.
C(oi,·, fij) denotes the set of constraints which restrict some parameters within the
scope of issue fij of agent cv,. Note that

Vc„,(P,„) € C{ai,fii) [P^ n P{aiJ,) ^ 0].

A proposal generated by an agent which consists of a series of actions may
affect another agent in its way to assign values to its parameters within its domain
of expertise. In this sense, we talk about satisfaction of an agent from a proposal.
This requires a fair evaluation of the proposal and understanding its total effects
from all related issues for each agent. Agents declare preferences along with
their issues and quantify their degree of satisfaction to be caused by any possible
proposal based on their issues.

D efin ition (issue preferences)
Each agent defines a set of preference values for all of its issues. E«, = |0 <
CTaifij € 3? < 1} denotes the set of preference values for all issues of agent or,. (7^ 0̂
reflects the degree of importance that agent o;,· gives to its issue fij. The issue
preference values must sum up to 1, i.e.,

(Tai0, = 1.
Pj£lssut$(oii)

D efinition (parameter jireferences)
In addition to issue preferences, each agent defines a set of preference values for

parameters within its domain of expertise. Aaip, = — ôiPjPk € 3? < 1}
denotes the set of preference values that agent a,· assigns to its parameters within

CHAPTER 5. THE COMPUTATIONAL MODEL 53

its issue Xaipjpk reflects the degree of importance that agent or, gives to its
parameter pk in its issue These preference values must add up to 1, i.e.,

p*eP(of,,/0>)

By this way, agents rank their parameters within their issues.

A gen ts ’ Satisfiability

Satisfaction or dissatisfaction of an agent caused by a proposal is quantified ac­
cording to the partial effects caused by the actions within the proposal. Each
such partial effect can be seen as an assignment of a new value to a parameter
from a domain. The aim is to decide whether this change has occurred in a
desired direction or not.

D efinition (desired changes for parameters)
and ^ denotes the set of desired direc­

tions for all parameters of agent or,. V’aipy takes the value of —1 or 1 depending
on whether a decrease or increase in the value of pj is desired by agent o,. In
other words, V’a,p> = 1 means that an increase in the value of pj is desired by
agent oti.

In case of computing a numeric value to be assigned to a parameter, an agent
tries to minimize or maximize the values to be picked up. For example, consider
a proposal which changes the value of parameter power in the design of a steam
condenser from 85 to 90 who.se domain ranges from 50 to 120, i.e., [50,120]. Motor
and pump agents are directly concerned with the parameter power. The motor
agent, from its efficiency issue, tries to minimize the power whereas the pump
agent, from its functionality issue, tries to maximize the power in order to run
properly. According to the proposal the motor agent is negatively affected, while

the pump agent is satisfied.
In non-numeric domains, agents keep values in their domains in an ordered

manner which reflects agents’])references. For each of its non-numeric domains,

CHAPTER 5. THE COMPUTATIONAL MODEL 54

an agent defines a preference set whose elements denote agent’s degree of prefer­
ence given to the corresponding non-numeric value in the relevant domain. If a
parameter is shared by different issues within an agent, the agent defines separate
preference sets for each occurrence of that parameter.

< 'Kai0,D'̂ v̂i € 3? < 1} deiiotes the set of preference
values for the values in domain D'j G D{oci) of agent a, from issue Note that
HaipjD'̂ , niay be undefined if none of the parameters within issue ()j of agent a;,
takes values from domain Dj[..

n _ / } (3 ; - e P (a „ A ·)) (3 D ' , € D (a M D i c d o m a i n (p) l

otherwise

TTa-jŝ Dĵ vt is a real number between 0 and 1 which represents preference value
defined by the agent a,· corresponding to the value of the domain from
issue A preference value of 1 indicates that the value to be picked up is
desired most, whereas that of 0 indicates that the value to be picked up is not
desired at all. The values in are arranged in non-decreasing order, i.e.,

— âipjD'î Vy if ̂ ^ J/·

5.3 Problem-Solving Phases

Problem solving in the system is initiated by one of the agents asserting a problem
definition into the problem area of the shared medium. Fig. 5.5 outlines the
basic steps in problem-solving phases. All the agents have the right to access the
shared medium. When a problem definition is asserted into the shared medium,
each agent examines the task set, T , to determine which of the tasks it can
perform. An agent a,· adds a task into its tcisk set T(of,) if it has the knowledge to
select particular object instances from its database and to establish the necessary
relationships among the objects. When this process is completed by all of the
agents, each agent knows the tasks it is going to perform. Some of the tasks might
have been attempted by more than one agent, since the knowledge and problem­
solving capabilities of different agents might overlap. However, one agent might

CHAPTER 5. THE COMPUTATIONAL MODEL 55

have deep knowledge, whereas another might have shallow knowledge. An agent
has a set of domains which constitute the agent’s problem-solving capabilities.
This means that an agent can perform a task if parameters in the task definition
take values from the domains of agent’s interest. An agent assigns a confidence
factor to each of its domains to illustrate the degree of confidence in offering values
from a domain. This confidence factor indicates whether an agent has deep or
shallow knowledge regarding with a particular domain. In the negotiation phase,
the proposal issued by the agent that has deep knowledge has more credibility
than the proposals issued by other agents.

Each agent is also aware of the partial order among the tasks. Therefore, an
agent can attempt the next task in its task queue if and only if plans for all of its
preceding tasks have been generated and agreed on. All interested agents, after
examining the problem definition, are instantiated and then they start producing
design proposals related to their expertise, knowledge, and viewpoints. When a
design proposal is generated, it is put into the proposal area.

After a proposal, q has been generated, all of the agents are signalled. An
agent does not interrupt its proposal generation process if it is currently working
on another proposal, but it immediately awakens another process, called the
evaluation process, that will run in parallel with the proposal generation process.
The evaluation process first informs the owner of the proposal whether it is going
to criticize the proposal. If not, the evaluation process will go to sleep and wait
for another proposal to be asserted.

If the agent is interested in the proposal, it evaluates the proposal and posts
the result in the conflict area of the shared medium. The owner of a proposal
also evaluates its proposal, usually as a part of the solution generation process. It
is necessary for the owner to indicate its confidence in its own solution, because
it might have used incomplete or inaccurate knowledge in producing that solu­
tion. The evaluation process results in a rating being produced which shows the
“quality” of a solution with respect to the goal criteria. However, the agents use
their internal evaluation criteria, and therefore may not share a common rating
scale for their findings.

CHAPTER 5. THE COMPUTATIONAL MODEL 56

A lgorith m P roblem -S olving
begin

if a, is the problem originator then
insert the problem definition tuple,

P r o b le m ln s ia n c e = < O i i , T I > into the shared medium
else

wait until P r o h le m ln s ta n c e tuple is asserted by
the problem originating agent.

T(a.) = 0
Po{oii) = 0
for j = I t o Nt (for each tj G T)

i f domains of all parameters in P a r a m e te r s { t j) is in the interest
area of a,·, i.e., d o m a in s ^ o f {P a r a m e te r s (t j)) C D(a,·) then

begin

for each p o { t x , t y) G V o
i f {tx = t j) or {ty = t j) then

P o { a i) = P o { a i) U { p o { t x , t y))
end

if T (a ,) = 0 then quit
wait until all agents identify their own task sets
repeat

take a task set T from T(a,·) which is to be attempted
next according to partial order in Po(a,)

for each t G b e f o r e { T)
i f a plan for t has not been generated and agreed on then

block until such a plan is generated and agreed on
generate a proposal q for the task set T
assert the proposal q into the shared medium
perform E va lu a te-P rop osa l(q)
wait until all agents finish evaluating q
i f a conflict is detected by any agent then

perform C o n flic t-R eso lu tio n (q)
T (a i) = T (a .) - T

until T(a,·) = 0
end P roblem -S olving

Figure 5.5: Problem Solving Steps within Agent a,.

CHAPTER 5. THE COMPUTATIONAL MODEL 57

After all the interested parties have finished evaluating the newly asserted
proposal, those agents that have identified the proposal under consideration as
conflicting with their beliefs come together to resolve the conflict (those interested
agents that put evaluation result tuples in which the overall result is indicated
as c o n fl ic t in g -p r o p o s a l) . Agents in AfSVTUAfS do not have a global knowl­
edge of conflict resolution. However, in other systems, agents are assumed to be
knowledgeable about the global conflict resolution knowledge. In MSVTUMS,
each agent has its own conflict resolution knowledge that allows it to participate
in the process of conflict resolution. The result of conflict resolution is either
revision or abandonment of the proposed solution.

When none of the interested agents detects any conflict related to a proposal,
the partial design template residing in the solution area is updated by using the
design contribution that exists in the proposal. This process continues until the
design template meets the requirements specified by the agent that put the initial
problem definition into the problem area of the shared medium. The design
process may also be terminated, although the agent that put in the problem
definition will not be satisfied. This may happen in cases where none of the
agents can generate a nonconflicting design proposal.

Chapter 6

Multi-Agent Conflict
Management

The agents may be working on different problems which may result in incidental
overlaps in the solution space. Also, they may be working on the same problems
and have different criteria for generating and evaluating solutions. An agent, a,,
maintains an issue set, /ssues(o,), which includes domain issues used to evaluate
partial plans proposed as solutions to tasks. A set of Evaluation procedures is
attached to each issue in Issues(ai). These procedures are used for detecting
potential conflicts in the proposed solution from the agent’s perspective on this
issue.

Upon detecting a conflict situation in a proposal, the agent uses its conflict
resolution knowledge to overcome the conflict from its perspective. When a con­
flict is detected, all agents involved in it participate in the resolution process
based on their own conflict resolution knowledge. Each agent may utilize differ­
ent conflict resolution strategies. For example, suppose that a team of agents are
given the problem of designing an office. Two members of the team are the func­
tionality and computer agents. One of the tasks is to identify the location of the
PC desk. The functionality agent suggests that the PC desk should be put close
to the window, so that a PC user could have a look outside when (s)he is bored
and use the daylight. On the other hand, the computer specialist, detecting a

58

CHAPTER 6. MULTI-AGENT CONFLICT MANAGEMENT 59

conflict, argues that daylight could damage the PC. The computer specialist uses
a conflict-resolution strategy which says, “put electrical devices far away from
windows.” The functionality agent, however, uses a domain-independent reso­
lution strategy, the “try other subgoal alternatives.” Eventually the two agents
revise the proposal, by using different resolution strategies, such that the PC
desk is put into a place in the office which is not exposed to daylight. In deciding
which strategy to apply, an agent uses the following piece of information:

• Critiques made by the interested parties to the proposal (after examining
the outcomes of evaluation procedures of other agents, an agent chooses an
appropriate resolution strategy taking into account different viewpoints).

• The relevance of the agent to particular problem being solved (if an agent is
more knowledgeable and capable compared to others, it should participate
in resolution of a conflict according to its relevance).

• Flexibility or insistence of agents involved in conflicts (this is important
for an agent to decide how to behave in a compromise type of conflict
resolution).

• Behavior and actions of other agents in resolving the conflict (by examin­
ing this information, an agent might decide to alter the conflict resolution
strategy it has been using).

• Number of agents involved in the conflict (depending on the domain, if the
number of agents involved in a conflict situation exceeds a certain amount,
some of the agents thinking that they could not be effective for resolving the
conflict compared to others, may continue to generate alternative solutions
rather than participating in conflict resolution).

• Available problem-solving resources (agents may have different problem­
solving capabilities).

Note that this criteria to choose the appropriate strategy is not just for design
problem-solving, rather they can be applied to many other types of problems.

CHAPTER 6. MULTI-AGENT CONFLICT MANAGEMENT 60

6.1 Multi-Agent Conflict Detection

Agents evaluate a proposal (partial solution for a certain task) in order to detect
the degree of effects to be caused by actions within the proposal from different
issues. An agent examines all actions in a proposal one by one. It identifies
which of the parameters within its area of interest will be affected by the action
under consideration. An affected parameter is identified in one of the following
two ways:

• directly, the action explicitly addresses a change in the value of the param­
eter within the agent’s area of interest,

• indirectly, the action addresses a change in the value of another parameter
which restricts the parameter in consideration.

The aim of an agent in the problem-solving network is to decrease its dissat­
isfaction to be caused by the actions in a proposal. In order to understand the
degree of effect caused by an action changing the value of a parameter, an agent
tries to detect whether the offered change occurs in a desired direction, or not.

6.1.1 Computation of Degree of Satisfaction

Each agent defines a method for each of its parameters, to compute the de­
gree of satisfaction to be caused by an action. The definition of such methods
depends upon the agents’ preferences. Each method aims at normalizing the
change offered for a parameter with respect to its ba.se domain. It returns a real
value between -1 and 1 where a positive value denotes the degree of satisfaction
whereas a negative value denotes the degree of dissatisfaction.

Suppose that the value of a parameter is changed in two different ways but in
the same direction (either increase or decrease); first from .Tj to Xj, second from
Xi to x '2 on where x\—x\ = x'̂ — X2· Although the amount of change is the same,
an agent may be affected differently depending on where these changes occur in
a base domain. In describing the method for computing the degree of effect, we
have to consider the following cases:

CHAPTER 6. MULTI-AGENT CONFLICT MANAGEMENT 61

• case I: the same amount of change may affect an agent in the same way no
matter where this change occur in the base domain.

• case II: an agent may prefer the same amount of change occurring towards
the lower bound of the base domain to the one occurring towards the upper
bound of the base domain. In other words, if X\ < xi and x\ < x '2 then the
change from Xi to x[is preferred to the change from x -2 to Xj·

• case III: an agent may prefer the same amount of change occurring towards
the upper bound of the base domain to the one occurring towards the lower
bound of the base domain. In other words, if Xi < x -2 and x\ < x '2 then the
change from X2 to x '2 is preferred to the change from x\ to x\.

Effect of an Action on an Agent’s Parameter

We define a function to compute the degree of effect of an action on a parameter
within the interest area of an agent as follows:

/_ r./ ̂ (PJ - Pj)^c.p,
daipjakiPjjPjj ^ p p y a i p j) — , / , x

"a iP j\ V j 1 V j))

where

a,· is the evaluating agent; o, 6 A,

Pj is the parameter within an issue of agent or,; pj 6 (3^/ 6

Issues{ai)) \pj e P{oii,

ak is the action affecting the parameter pj of or,; ak 6 Aci,

D'j,. is the domain for py, € D{ai),

rf)otiPj is the desired direction defined by agent or, for its parameter pj, V’a.p, €

û̂r, 5

haipj is a function for normalization defined below.

CHAPTER 6. MULTI-AGENT CONFLICT MANAGEMENT 62

The normalization function, haip ,̂ returns the bcise value for which the change
will be normalized according to the cases introduced above.

{ upper(Dp^) — lower(Dp.) for case /
max{pj,p'j) - lower(D'p.) for case II
upper(Dp^) — Tyiin{pj,pj) for case III

Effects of an Action on an Agent from an Issue-Perspective

Each agent evaluates the degree of effect of an action from all of its issues. Total
effect of an action from an issue of an agent is defined as follows:

faipjak — ^aiPjPrdaipjakiPj^Pj^ Op^,1paiPj)
Pl€P(ai,0j)

Here, fapja,, denotes the degree of effect caused by action ak from issue
of agent a,·. XatPjpi denotes the degree of importance that agent a, gives to its
parameter pi in its issue ^j. gaptak denotes the degree of satisfaction caused by
action Uk on agent o , ’s parameter p/.

Total Effect of an Action on an Agent

Total degree of effect of an action on an agent is computed as follows:

(3j£lssues(oti)
(Ik

Here, 5o,a/t denotes the total degree of effect caused by action on agent a,
from all of its issues. Caipj denotes the degree of importance given to issue /Sj by
agent q;,·.

Total Effect of a Proposal on an Agent

Total degree of effect of a proposal on an agent is computed as follows:

Poiq —

CHAPTER 6. MULTI-AGENT CONFLICT MANAGEMENT 63

Here, fiaiq denotes the total degree of effect caused by proposal q on agent
O',. Actq denotes the actions proposed by the proposal q. This value reflects
an agent’s total degree of satisfaction (or dissatisfaction) caused by a proposal.
Three cases are possible

• fiaiq > 0 means that agent or, is positively affected by proposal q.

• fJ'Oiq < 0 means that agent o;, is negatively affected by proposal q.

• ftaiq = 0 means that agent o;, is not affected in any way by proposal q.

An agent a,· detects a conflict on a proposal q if it is negatively affected by
the proposal. In other words, if < 0 then the agent detects a conflict.

6.1.2 Conflict Detection Algorithm

Fig. 6.1 outlines the basic steps in proposal evaluation and conflict detection.
When a proposal is asserted, each agent evaluates the solution based on these
issues. However, it is not necessary for an agent to criticize a proposal from all
of its issues since it may not have the knowledge to criticize the proposal from
some perspectives. An agent may detect simultane several conflicts in a proposal
based on different issues. Each such conflict is specified in the evaluation result
tuple that will be put into the shared medium.

In evaluating a proposal, an agent first determines the set of parameters,
affected by all of the actions within the proposal. A parameter can be identified as
an affected parameter in two different ways. First, a parameter can be explicitly
offered a new value by an action. Second, actions in the proposal may indirectly
cause a parameter to be offered a new value.

After determining the set of affected parameters, an agent starts computing
the degree of effect of each action proposed. First, the agent identifies which of
the affected parameters is directly or indirectly offered new values by the action
under consideration. Second, taking into account these parameters, the agent
computes the partial degree of satisfaction caused by the newly offered values for
the parameters. Third, the agent examines its issue set and identifies which of

CHAPTER 6. MULTI-AGENT CONFLICT MANAGEMENT 64

A lgorith m E va lu a te-P rop osa l(q)
begin

R a = Hi
Pcci = 0
for each G Actq

beg in
= 0

end

for each pj E P(oii)
begin

QoiiPjak “ 0
i f Pj is affected by action a t then

PaiQk ~ Potidk
end

for each pj E Pâ ak
begin

Ap = {offered{pj)- current(pj)) * tpâ pj
case FunciionType{ai,pj) o f

begin
1; A<i = u p p er (D p .) - low er {D 'j,.)
2: A d = m a x (o f f e r e d { p j) , c u r r e n t { p j)) - lo w e r (D p .)
3: A d = u p p er {D p .) - m i n { o f f e r e d { p j) , c u r r e n t (p j))

end
QoiPjOk ~ ^ p / ^ d

end
^OiOk ®
for each pj E issues{oti)

begin
foipjak ^
for each pi E P{otiyPj)

faipjOk ~ fa,0jak + ^ot^PjPt * Qa^pi^k
~ ̂or,afc “b ̂ ai(5j * foiPjak

end
~ /̂ or,7 d"

i?a = fla U {«a.afc}

i f R e = Ua,q < 0 then R d = c o n flic t in g
else R d = n o n -co n flic t in g
insert the evaluation tuple < R a, R e, R d > into the shared medium

end E va lu a te-P rop osa l

Figure 6.1: Proposal Evaluation and Conflict Detection within Agent a,

CHAPTER 6. MULTI-AGENT CONFLICT MANAGEMENT 65

its issues are involved. Then it computes the degree of satisfaction from all of its
issues. The total degree of effect of the action is computed by combining scores
computed from all issues according to the issues’ preferences. Finally, the agent
forms the evaluation tuple and indicates whether it has detected a conflict, or
not.

6.2 Multi-Agent Conflict Resolution

Agents involved in a conflict situation start negotiating over the proposed solu­
tion. Figure 6.2 outlines the basic steps in the conflict resolution phase. Agents
may have different roles in the negotiation process according to their knowledge
and problem-solving capabilities.

If an agent is not capable of proposing a resolution alternative, it may use its
perspective on the issue to constraint the search space of other agents. If it has
the ability to counter-propose a resolution, then it tries its domain-dependent
strategies first. Agents that detect a conflict from their issues might use relax­
ation techniques so that an acceptable resolution could be generated even if the
resolution alternatives they are proposing cannot be agreed upon.

If an agent detects a conflict and then chooses a strategy to resolve the con­
flict, this does not mean that the agent may not alter the resolution strategy
it has chosen. That is, upon observing the actions of other agents during the
conflict resolution phase, the agent may improve its understanding of the overall
problem and the particular conflict encountered. This feature allows agents to
alter strategies that they think will benefit from a change. An agent may de­
cide to constrain the search space of others if it is counter-proposing alternatives
which are based, on shallow knowledge. Also, the agent may also quit the conflict
resolution phase. Moreover, it may update its conflict management knowledge
after a resolution session, which affects its further activities. When an agent pro­
poses a revised solution based on its resolution scheme, it also evaluates the new
solution in order to reflect its degree of satisfaction. This enables other agents
involved in the conflict to choose the most appropriate action in the resolution

CHAPTER 6. MULTI-AGENT CONFLICT MANAGEMENT 66

A lgorithm C o n flic t-R eso lu iion (q)
begin

form Caiq as the set of all constraints violated by actions in q
wait until all agents finish evaluating q
retrieve the set of agents involved in conflict that cannot counter-propose AJ
retrieve the set of agents involved in conflict that can counter-propose AJ
i f a, G AJ then

begin
perform C onstrain ing (with all constraints)
i f s co re < 0 then

begin
update C ^ q in shared medium as

Ca,q = C a q - {c|c G Ca^q and typ e(c) = s o f t]
perform C onstrain ing (with hard constraints)

end
end

else
begin

end

perform C ou n ter-P roposin g (with all constraints)
i f s co re < 0 then

perform C ou n ter-P roposin g (with hard constraints)

i f s c o r e /ca rd {A ctq) < th re sh o ld then
begin

i f a i is the owner of q then
delete all proposals and evaluation results for the task set Tq in q

i f a, G AJ then
remove Tq from T(cti)

remove any p o {t jc ,ty) where t^ or ty G Tq, from Po(a,)
end

else
augment tl̂ e design template Tl with relationships in proposal p r e f e r r e d

where p r e f e r r e d represents the proposal agreed upon
end
End C on flict-R esolu tion

Figure 6.2: Conflict Resolution Steps within Agent a,

CHAPTER 6. MULTI AGENT CONFLICT MANAGEMENT 67

P rocedure C onstrain ing
begin

insert Cor into the shared medium
wait until the agents in finish inserting alternative proposals

into the shared medium upon constraining their search
spaces by the constraints provided by all agents in A^.

retrieve the set of alternative proposals from the shared medium,
for each qj E Qg

perform eva luate-proposal(q j)
wait until the preferred proposal is identified
retrieve the overall rating, sco re for the preferred proposal, p r e f e r r e d

end C onstrain ing

Figure 6.3: Conflict Resolution Steps for Agent Of,· in Constraining Search Space.

process.
After quantifying the total degree of effect of a proposal, an agent checks

whether this evaluation process results in a dissatisfaction, or not. If not, the
agent has not detected any conflict and can continue its processing. Otherwise,
the agent has detected a conflict related to the proposal that has to be resolved.
When all agents in the problem-solving network finish evaluating the proposal,
agents detected conflict in the proposal are involved in the process of conflict
resolution.

The owner of the proposal can generate alternative proposals for the tasks for
which the initial proposal has been generated and could not be agreed on. Other
agents can contribute to the process of generation of alternative proposals in two
ways:

• an agent involved in the conflict may not have expertise to generate alter­
native proposals, rather it can restrict the search space of other agents so
that its priorities are also considered in the generation of new proposals.

• an agent involved in the conflict may have expertise to generate alternative
proposals.

In the first case, an agent restricts the search spaces of other agents that have
potential for counter-proposing alternatives (Fig. 6.3). In order to do that, the

CHAPTER 6, MULTTAGENT CONFLICT MANAGEMENT 68

P rocedure C ou n ter·P roposin g
begin

wait until all agents in finish asserting their constraints into
the shared medium

c , =
for each ak G

begin
retrieve Cat,q
Cq — Cq U Cctv

end
oikq

generate an alternative proposal q* constraining
search space with constraints in Cq

update in shared medium U {q ')
wait until all agents in finish asserting their

alternative proposals into the shared medium
retrieve the set of alternative proposals
for each qj G Qg

perform eva luate-proposal(q j)
wait until all agents finish evaluating proposals
i f a, is the owner of q then

perform C h oose-P roposa l(q)
wait until the preferred proposal is identified
retrieve the overall rating, sco r e for the preferred proposal, p r e f e r r e d

end C ou n ter-P roposin g

Figure 6.4: Conflict Resolution Steps for Agent a, in Counter-Proposing Alter­
natives.

agent provides all of its relevant constraints to be violated by the actions within
the proposal under consideration. These constraints are the ones that cause some
parameters to take certain values which result in changes occurring in undesired
directions. The agent presents its relevant constraints to all agents by asserting
them to the shared medium. The constraints are classified as hard constraints
and soft constraints. Hard constraints are the ones that must be satisfied by any
candidate proposal. Soft constraints can be relaxed during the design process
and are not essential for achieving a globally satisfiable solution. In this way, the
agent forces other agents to generate alternative proposals taking into account
its expectations.

In the second case, an agent may have the ability to generate an alternative

CHAPTER 6. MULTI-AGENT CONFLICT MANAGEMENT 69

proposal in two different ways (Fig. 6.4). First, the tasks for which the origi­
nal proposal was recommended can also be within the problem-solving scope of
another agent. Therefore the agent can generate a completely new candidate
proposal for the same task set. Second, not the whole tasks, but rather some of
its subtasks can be within the problem-solving scope of the agent. This results in
the generation of an alternative proposal which is a revised form of the original
conflicting proposal. Moreover, the agent can introduce new tasks to enhance the
original task set with new ones, and hence it can generate a candidate proposal.
In this way, the agent can propose a new solution whose task set is the super set
of the original task set.

After all agents involved in the conflict generate their alternative proposals,
they post them to the shared medium. Later, the agents pick up each of the
alternative proposals one by one and evaluate them. The next teisk is to identify
a proposal among the candidates which will be acceptable by all agents (Fig. 6.5).
A score is computed for each alternative proposal by combining evaluation results
of all agents. This score is computed as the minimum of these evaluation results.
It represents the global effect of the proposal on the design. The aim is to
reduce the dissatisfaction of the most negatively affected agent. After finding
the degree of dissatisfaction or satisfaction caused by each alternative solution,
agents collobaratively choose a proposal which will be acceptable by all agents.

In this process, the aim is to choose a proposal among the alternative proposals
including the original one that has the most positive effect on all agents. This
is done by selecting the proposal which has the maximum rating among others.
Later, the design template residing in the solution area of the shared medium
is updated. This is done by augmenting the partial design template (the set of
agreed relationships aisserted so far) with new relationships to be established by
the execution of actions in the accepted proposal.

The rating for the preferred proposal may drop under a predefined threshold

value (which is supposed to be less than 0). This means that any proposal which
has rating below the threshold cannot be considered as a solution. When the
ratings for all candidate proposals drops under the threshold value, it is necessary

CHAPTER 6. MULTI-AGENT CONFLICT MANAGEMENT 70

P roced u re C h oose-P roposa l
begin

p r e f e r r e d = q
s c o r e = R e for q
for each qj G Qg

begin
sco reg . = 1
for each G U 4̂̂)

begin
retrieve R e for qj from the evaluation tuple owned by

end

if R e < scoreg- then
scoreg . = R e

i f scoreg . > s co r e then
begin

sco r e = score,9j

end
p r e f e r r e d =■ qj

end
assert preferred proposal, p r e f e r r e d , and its rating, s co r e

into the shared medium.
signal others that the preferred solution is identified

end C h oose-P rop osa l

Figure 6.5: Conflict Resolution Steps for Agent a, in Selecting an Alternative.

to delete some subset of the original tasks, or even the whole tasks from the
task sets of all agents along with their associated dependencies. Therefore, it is
possible to make progress in the design process.

Chapter 7

Examples of Cooperating
Experts Problems

111 this chapter, the computational model described in the previous chapters are
applied on two different design problem domains. The first example is chosen
from the domain of office design. The other example illustrates the application
of the model to the problem of configuring a personal computer. These problems
exemplify the applicability of MSVTUME to various types of problem charac­
teristics.

7.1 Office Design

The following example is taken from the domain of office design to exemplify the
problem-solving process used by cooperating agents in our implementation. The
motivation for choosing this example is that it is in a concrete, rather than an
abstract, domain and that it can be understood easily becau.se of its suitability
for simple, two-dimensional graphical representation. Here, we present a sim­
plified layout problem for an office design and describe design agents and their
interactions. A well-designed office encompasses different areas of expertise con­
cerning aesthetics, functionality, energy efficiency, etc. In this example we have
incorporated four agents in the framework. They are

71

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 72

• t h e c l i e n t a g e n t ,

• t h e f u n c t i o n a l i t y a g e n t ,

• t h e e l e c t r i c i t y a g e n t , a n d

• t h e c o s t a g e n t .

T h e c l i e n t a g e n t is t h e o n e t h a t p u t s t h e p r o b l e m d e f i n i t i o n s p e c i f y i n g g e n e r a l
c o n s t r a i n t s a n d t h e g l o b a l d e s ig n g o a l t o b e s a t i s f i e d . It m a y b e i n v o k e d b y a
p e r s o n w h o u s e s t h e o f f i c e b e i n g d e s i g n e d o r is t h e d e p a r t m e n t c h a i r m a n w h o is
h a v i n g t h e o f f i c e d e s i g n e d f o r a p r o s p e c t i v e f a c u l t y m e m b e r . T h e f u n c t i o n a l i t y
a g e n t s p e c i a l i z e s in t h e e f f i c i e n t u s e o f o b j e c t s a n d s p a c e s . E l e c t r i c i t y a g e n t is
c o n c e r n e d w i t h a ll t h e e l e c t r i c a l a n d e l e c t r o n i c a l d e v i c e s i n c l u d in g c o m p u t e r s ,
t e l e p h o n e s , f a c s i m i l e s y s t e m s , e t c . I t is i n t e r e s t e d in t h e i r m a i n t e n a n c e is s u e s
a n d w i r i n g . T h e c o s t a g e n t is r e q u i r e d t o c o n t r o l t h e o v e r a l l c o s t o f t h e d e s ig n
a n d a v o i d w a s t e f u l u s e o f r e s o u r c e s . It m a y p r o p o s e le s s e x p e n s i v e a l t e r n a t i v e s fo r
p r o p o s e d o b j e c t s . W h e n a p r o p o s a l is g e n e r a t e d , e a c h in t e r e s t e d a g e n t e v a lu a t e s
i t t o d e t e c t a p o s s i b l e c o n f l i c t f r o m i t s o w n p e r s p e c t i v e . A c o n f l i c t is d e t e c t e d
w h e n a n a g e n t f in d s a c o n f l i c t s i t u a t i o n (u p o n e x a m i n i n g its k n o w l e d g e - b a s e)
t h a t m a t c h e s t h e p r o p o s a l u n d e r c o n s i d e r a t i o n .

T h e d e s i g n p r o c e s s is i n i t i a t e d b y t h e c l i e n t a g e n t t h a t p u t s t h e f o l l o w i n g
p r o b l e m d e f i n i t i o n i n t o t h e p r o b l e m a r e a o f t h e s h a r e d b l a c k b o a r d . A s a n e x a m p l e
o f a t a s k d e s c r i p t i o n , t a s k t 4 i n d i c a t e s t h a t a n o b j e c t i n s t a n c e f r o m d o m a i n
p c d e s k s s h o u l d b e s e l e c t e d a n d a s s ig n e d t o p a r a m e t e r p . p c d e s k . S im i la r ly , ta s k s
t 5 a n d t 6 i n d i c a t e i n s t a n t i a t i o n o f t h e l o c a t i o n p a r a m e t e r s f o r t h e o b j e c t in s t a n c e
s e l e c t e d in t a s k t 4 a n d t h e i r r e l e v a n t d o m a i n s .

p r o b l e m _ t u p l e (c l i e n t _ a g e n t ,
[t a s k (t l , p _ d e s k , d e s k s) ,
t a s k (t 2 , p _ d e s k _ l o c x , l o c a t i o n x) ,
t a s k (t 3 , p _ d e s k _ l o c y , l o c a t i o n y) ,
t a s k (t 4 , p . p c d e s k , p c d e s k s) ,
t a s k (t 5 , p _ p c d e s k _ l o c x , l o c a t i o n x) ,

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 73

task(t6,p_pcdesk_locy,locationy),
task(t7,p_lampx,lamps),
task(t8,p_leunpy .lamps),
task(t9,p_lampz,lamps), ...],
[po(tl,t2),
po(tl,t3),
po(t4,t5),
po(t4,t6),
[constraint(cl,[p_total_cost] , P_total_cost < 1000),
constraint(c2,[p_pc,p_pcdesk] , P_pc==mac, P_pcdesk = pcdeskO),

...].
[layoutobject(room),
domains([rooms,doors,windows,eplugs,pplugs,lplugs...]),
domaintype(rooms,complex),
domaintype(doors,complex),
domaintype(windows,complex),
domaintype(eplugs,complex) ,
domaintype(pplugs,complex),
domaintype(lplugs,complex),
domain(rooms,[rooml,...]),
domain(doors,[doorl,...]),
domain(windows,[windowl,...]),
domain(eplugs,[eplugl,...]),
domain(pplugs,[pplugl,...]),
domain(Iplugs,[Iplugl,lplug2,lplug3,...]),
object(rooml,rooms),
attributes(rooml,[shape,length,width,height,
door,window,eplug, pplug,lplugx,lplugy,lplugz]),

attribute(rooml.shape,symbolic,rectangular),
attribute(rooml.width,numeric,5),
attribute(rooml.length,numeric,4),

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 74

attribute(rooml»height.numeric,2.5),
attribute(rooml.door,complex,door1),
attribute(rooml.window,complex,windowl),
attribute(rooml,eplug,complex,eplugl),
attribute(rooml,pplug,complex,pplugl),
attribute(rooml.Iplugx,complex,Iplugl),
attribute(rooml,Iplugy,complex,lplug2),
attribute(rooml.Iplugz,complex,IplugS),
obj ect(door1,doors),
attributes(door1,[shape,cornerx,cornery,length,

width,height.made]),
attribute(doorl,shape,symbolic,rectangular),
attribute(doorl.cornerx,numeric,5) ,
attribute(doorl,cornery,numeric,3) ,
attribute(doorl,length,numeric,1) ,
attribute(doorl,width,numeric,0.2),
attribute(doorl.height,numeric,2) ,
attribute(doorl,made,symbolic,wood) . . .]),

Fig. 7.1 shows the global layout of an office. In this example, we ignore the
third dimension; instead the height attribute of objects is used only when neces­
sary. Also we are not concerned with the precise coordinates of objects. After
examining the problem definition, all of the interested parties start producing
their design commitments. First, the functionality agent, according to its exper­
tise and understanding of the problem, asserts the following proposal into the
proposal area of.the shared medium which updates the template as shown in the

Fig. 7.2.

proposal(proposal_0,
functionality_agent,
Ctl,t2,t3,t4,t5,t6],
[assign(p_desk,deskl),

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 75

Figure 7.1: Global Layout of the Office

assign(p_desk_locx,0.75),
assign(p_desk_locy,0.5),
assign(p_pcdesk,pcdeskl),
assign(p_pcdesk_locx,0.75),
assign(p_pcdesk_locy,2.75)]

[add(on(deskl.layout)),
add(on(pcdeskl.layout)).
add(location(deskl.0.75.0.5).
add(location(pcdeskl.0.75.2.75))])

The functionality agent has decided to put a desk and a PC desk nearer to
the window so that the occupant could not only have a good view but also utilize
daylight.

This proposal triggers the evaluation procedures within other interested agents.
The client agent detects a conflict after evaluating the proposal. With this con­
figuration, the client agent notices that since the occupant is going to be an
engineer who will be using the computer frequently, (s)he must walk too much
due to the distance between the main desk and the PC desk (that will be put on

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 76

the PC desk). The client agent detects the conflict from its usability issue.
p_desk_locx, p_desk_locy, p_pcdeskJLocx and p_pcdesk_locy are the only
parameters within issue usability for which new values are offered. p_desk_locx
and p_desk_locy are not affected positively or negatively by the proposed val­
ues whereas p_pcdesk_locx and p_pcdesk_locy are affected negatively. This
means that changes offered for the values of parameters p_pcdesk_locx and
p_pcdesk_locy do not occur in the desired direction. Quantification for the total
degree of effects for the parameters p_pcdesk_locx and p.pcdeskJLocy from the
only affected issue usability results in a negative value. .Since no other issue in
client agent’s issue list has been activated, the total degree of satisfaction will be
negative leading to a conflicting situation.

The electricity agent detects a conflict from its configurability issue. No
parameter within this issue has been offered new value. However, parameters
p_pcdesk_locx and p_pcdeskJ.ocy indirectly affects the location parameters of
the PC, which is represented by p_pc_locx and p_pc_locy. This is due to the
fact that location of the PC and the PC desk should almost be the same, since a
PC will be put on a PC desk. Electricity agent computes the degree of effect of

the indirectly offered values for parameters p_pc_locx and p_pc_locy within its
issue con figurability. This evaluation results in a dissatisfaction since electricity
agent wants to keep electrical devices close to the electricity plug which is not
the case. Quantification for the total degree of satisfaction from all issues results
in a negative value leading to a conflicting situation. The client and electricity
agents assert the following evaluation results into the shared medium.

évaluâtion _resu lt(p rop osa l_0 ,
c lle n t .a g e n t ,
[0 ,0 ,0 ,0 , - 0 .1 2 ,-0 .1 8] ,
-0 .3 ,
c o n f l ic t in g .proposa l)

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 77

eva lu ation _resu lt(proposa l_0 ,
e le c t r ic i ty .a g e n t ,
[0 ,0 ,0 ,0 , - 0 .1 , - 0 .3] ,
-0 .4 ,
c o n flic t in g .p ro p o s a l)

The functionality, client and electricity agents combine to resolve the conflict
encountered. The client agent uses a specific resolution scheme which states
that “keep frequently used objects close to each other.” Since it cannot propose
any alternative proposal, it can only constrain other agents’ search spaces. The
functionality agent is capable of generating alternative proposals and tries other
location alternatives. The electricity agent is capable of generating an alternative
solution only for a subset of the original task set, namely [t5 ,t6] .

The functionality agent has two alternatives to resolve the conflict from its
perspective. It may put the PC desk either to the left, or to the right of the other
desk. The functionality agent proposes to put the PC desk to the left of the other
desk so that the PC desk will be close to the window and hence the occupant can
utilize daylight and have a better view (Fig. 7.3). The electricity agent counter­
propose an alternative in which it moves PC desk close to the electricity plug

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 78

p cd esk l
desk!

Figure 7.3: Layout of the Office After Resolution Alternative proposal.l

desk!
pcdeskl

Figure 7.4: Layout of the Office After Resolution Alternative proposal_2

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 79

(Fig. 7.4). The functionality and electricity agents assert the following conflict
resolution tuples along with their counter-proposals.

conflict.resolution(proposal,©,
client.agent,
constraining,
[constraint(c8,[p_desk,p_desk_locx,p_desk_locy,

p_pcdesk,p_pcdesk_locx,p_pcdesk_locy] ,
compute_place(P_desk,P_pcdesk,P_desk_locx,P_desk_locy

Rxu,Rxl,Ryu,Ryl),
P_pcdesk_locx <Rxu, P_pcdesk_locx > Rxl,
P_pcdesk_locy <Ryu, P_pcdesk_locy > Ryl])

confIict_resolution(proposal_0,
electricity_agent,
counter.proposing,
[t5,t6]).

proposal(proposal,1,
functionality,agent,
Ctl,t2,t3,t4,t5,t6] ,
[assign(p,desk,deskl),
assign(p,desk_locx,1.25) ,
assign(p,desk,locy,0.5),
assign(p,pcdesk,pcdeskl),
assign(p,pcdesk_locx,0.25) ,
assign(p,pcdesk,locy,0.5)]

[add(on(deskl,layout)),
add(on(pcdeskl,layout)),
add(location(deskl,1.25,0.5)),
add(location(pcdeskl,0.25,0.5)])

proposal(proposal,2,
electricity,agent,
Ctl,t2,t3,t4,t5,t6],

[assign(p_desk,deskl),
assign(p_desk_locx,0.75),
assign(p_desk_locy,0.5),
assign(p_pcdesk,pcdeskl),
assign(p_pcdesk_locx,3.15),
assign(p_pcdesk_locy,0.5)]

[add(on(deskl,layout)),
add(on(pcdeskl,layout)),
add(location(deskl,0.75,0.5)),
add(location(pcdeskl,3.15,0.5))])

After generation of alternatives, agents involved in the conflict evaluate proposal-l
and proposal_2 in the same way. The client agent is not negatively affected from
any of its issues since both solutions keep desks deskl and pcdeskl close to each
other. On the other hand, the electricity agent is negatively affected by the
offered values for p_pcdesk_locx and p_pcdesk_locy in p rop osa l.! which indi­
rectly causes PC to be far away from the electricity plug. The functionality agent
is not negatively affected by proposal.2 since the proposal does not cause any
of its parameters to be changed in an undesired direction. The evaluation results

for p rop osa l.! and proposal.2 are given below:

évaluâtion.result(proposal.l,
client.agent,
[0,0,0,0,0.1,0.15],
0.25,
nonconflicting.proposal)

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 80

évaluâtion.result(proposal.l,
electricity.agent,
[0,0,0,0,-0.3,0],
-0.3,
conflicting.proposal)

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 81

évaluâtion_resu lt(proposal_2 ,
c lle n t.a g e n t,
[0 ,0 ,0 ,0 ,0 .0 9 ,0 .0 8] ,
0 .17 ,
c o n f l ic t ing .proposa l)

évaluât ion .resu lt(p rop osa l_2 ,
fu n ctio n a lity .a g e n t,
[0 ,0 .1 ,0 .0 5 ,0 ,0 .0 5 ,0 .0 5] ,
0 .25 ,
co n flic t in g .p ro p o sa l)

In the resolution phase, overall score for each of the candidate proposal has to
be computed. Table 7.1 contains agents’ evaluation results of alternative propos­
als proposal-0 , proposal-l and proposal_2 for the task set [t l , t 2 ,t 3 ,t 4 , t 5 , t 6] .
These quantitative values reflect agents’ degree of satisfaction or dissatisfaction
upon execution of the actions in the proposals. In order to resolve the conflict,
agents jointly identify a proposal that will be acceptable by all agents. First, a
score is computed for each candidate proposal which is the minimum of evalu­
ation results for the proposal. The aim is to take into account the most neg­
atively affected agent’s perspective. In this case score(proposal.O) = -0 .4 ,
score (proposal-1) = -0 .3 and score (proposal-2) = 0. In the second phase,
the proposal having the maximum score value is identified and chosen to be the
preferred solution for the task set [t l , t 2 , t 3 , t 4 , t 5 , t 6] .

In the above example, proposal-2 is chosen as the solution since it has the
highest score. After the resolution phase, design template in the solution area of
the shared medium is updated by the relationships within the accepted proposal.
After the resolution steps these three agents come to an agreement to put the
PC desk close to the electricity plug as shown in Fig 7.4.

Suppose that at a particular time, the electricity agent takes the next task in
its task queue, which is to “put lamps into the slots in the ceiling.” The electricity

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 82

Ratings Computed for Alternative Proposals
proposal_0 p rop osa l.l p roposal-2

c l len t .agent -0.3 0.25 0.17
e le c t r ic ity ^ g e n t -0.4 -0.3 0.25
f unct i onal ity .agent 0.4 0.3 0.25
cost_agent 0.0 0.0 0.0

Table 7.1: Evaluation Results for proposal.O , proposal_l and proposal_2

agent generates a solution for this task in which it proposes to fix three 100 Watts
lamps into the plugs in the ceiling as follows:

p roposa l(p rop osa l_3 ,
e le c t r ic ity _ a g e n t ,
[t 2 0 ,t2 1 ,t2 2] ,
[assign(p.lam px,larapl1),

assign(p_launpy,launpl2),
assign(p_lam pz,lam pl3),

[a d d (fix ed C la m p ll,lp lu g x)),
a d d (fix ed (la m p l2 ,lp lu g y)),
add(fixed(launpl3 ,lp lugz))])

After examining the proposal, the cost and functionality agents detect con­
flicts and eissert their evaluation results into the conflict area of the shared
medium. The cost agent argues that having a total of .300 Watts of lighting is too
costly, detecting a conflict from its energy-cost issue. Therefore, the cost agent
disagrees with the lamp instances la jnpll, lampl2 and lampl3 selected by the
electricity agent for parameters p_lampx, p_lampy and p_lampz. Because these
parameters cause p_c_lampx, p_c_lampy and p_c_lampz within energy-cost issue
of the cost agent to be indirectly affected with new assignments. The functionality
agent evaluates the proposal and detects a conflict from the effective-functionality
issue. The evaluation result tuples to be asserted are

évaluât ion.result(proposal_3,
cost_agent,
[- 0 .1 , - 0 .1 , - 0 .1] ,
-0.3,
conflicting_proposal)

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 83

évaluât ion_result(proposal_3,
functionality_agent,
[-0.2,-0.2,-0.2],
-0 .6 ,
conflicting.proposal)

The electricity, cost and functionality agents come together to resolve the
conflict. The cost agent cannot counter-propose alternatives rather it can only
restrict the search spaces of others. The electricity agent can propose a new
alternative and finds plenty of options to meet the concerns of the cost agent by
looking at its database and offering a total lighting package that can be accepted
by the cost agent. Meanwhile, the functionality agent is capable of counter-
proposing and has a good resolution alternative for the conflict. It claims that
the level of lighting accepted by both of the agents can be lowered further. Since
the occupant of the office will be working alone most of the time, it is possible
to lower the total lighting power consumption by introducing a desk lamp that
might be put on top of the desk. Therefore, it generates an alternative proposal
by enhancing the original task list with a new task. The list of agents’ candidate
proposals is given below:

proposal(proposal_4,
electricity_agent,
[t20,t21,t22],
[assign(p_lampx,lamp41),
assign(p_lampy,lamp42),
assign(p_lampz,lamp43),

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 84

Ratings Computed for Alternative Proposals
proposal_3 proposal_4 proposal_5

client_agent 0.0 0.0 0.0
e le c t ric ity_agen t 0.2 0.15 0.2
f unct i onal i t y .agent -0.6 0.1 0.2
cost.agent -0.3 0.05 0.08

Table 7.2: Evaluation Results for proposal_3, proposal_4 and proposal_5.

[add(f ixed(lajnp41 jlp lu g x)) ,
a d d (fixed (la jn p 4 2 ,lp lu gy)),
add (fixed (lam p 43 ,lp lu gz))])

p rop osa l(p rop osa l_5 ,
fu n ction 2J .ity_agen t,
[t 2 0 ,t2 1 ,t2 2 ,t7 8] ,
[assign(p_l2unpx,leunp3l) ,

assign(p_lampy,launp32),
assign(p_lajnpz,lam p33),
assign(p_desklajnp,desklampl)]

[add(f ixed(lajnp31 jlp lu g x)) ,
a d d (fix ed (la m p 32 ,lp lu gy)),
add(fixed(lam p33, Ip lu g z))
add(on(desklam pl,deskl))]
add (location (desk lam pl,4 ,2)))

Evaluation riesults of these alternative proposals are given in Table 7.2. All
agents are affected positively by proposal_4 and proposal_5. Proposal_5 is
the solution acceptable by all agents. In the resolution phase, the cost agent
constrains the search space so that the total amount of lighting power should be
less than 220 Watts. The functionality agent uses a domain-dependent resolution
alternative to augment a final solution that is acceptable to all of the agents.

The design proceeds in this manner until it reaches tlie requirements specified
by the client agent. In this example, we only gave a segment of problem-solving
process emphcisizing the resolution of conflicts. However, this short scenario sets
a good example to illustrate the resolution of conflicts, which is described in·
AfSVTUAfS. Appendix contains a segment of the sam]>le run of this example.

7.2 Configuring A Personal Computer

In this example, we present a configuration problem for a personal computer and
describe design agents and their interactions. The aim is to identify hardware
requirements for a personal computer system which will meet needs of an end
user. Three agents are involved in solving the configuration problem. They are

• the client agent,

• the technical agent, and

• the cost agent.

The client agent defines the problem specifying general constraints and the
global design goal to be satisfied. The technical agent specializes in hardware
components and their functionality. The cost agent controls the overall cost of
the design and avoid wasteful use of resources. The client agent initiates the
design process putting the following problem definition into the problem area of
the shared blackboard.

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 85

problem_tuple(client_agent,
[task(t1,p_processor,processors)
task(t2,p_resolution,resolutions)
task(t3,p_color,colors)
task(t4,p_speed,speeds)
task(t5,p_fdisk,fdisks)
task(t6,p_hdisksize,hdisksizes)

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 86

task(t7,p_raansize,ramsizes) . . ,
[p o (tl,t4),
p o(t2 ,t3),
po(t4,t5), . . .] ,

[constraint(cl, [p_total_cost], P_total_cost < 2000),
constraint(c2,[p_processor,p_coprocessor_cost,p_processor_cost],
P_processor=p486, P_processor_cost=P_coprocessor_cost-20)

[layoutobject(pc_layout)
domains([processors,resolutions, colors, speeds, f di sks,

hdisksizes,ramsizes . . .])
domaintype(processors, complex)
domaintype(resolutions, complex)
domaintype(colors,symbolic)
domaintype(speeds,numeric)
domaintype(fdisks, symbolic)
domaintype(hdisksizes,numeric)
domaintype(ramsizes,numeric)
domain(processors,[p86,p88,p386,p486,. . .])
domain(resolutions,[resl,res2,res3,. . .])
domain(colors, [black_white, rgb])
domain(speeds,[15,33])
domain(fdisks,[f3_2,f5_4])
domain(hdisksizes,[10,80])
domain(ramsizes,[1 ,8])
obj ect(p68,processors)
attributes(p68,[wlength,bus_size,speed, . . .])
attribute(p68,wlength,numeric,8)
attribute(p68,bus.size,numeric,8)
attribute(p68,speed,numeric,15) . . .])

After examining the problem definition, all of the interested parties start pro­
ducing their design commitments. First, the technical agent asserts the following

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 87

proposal into the proposal area of the shared medium.

p roposa l(p rop osa l.lO ,
technical_agent,
[t l ,t2 ,t3] ,
[a ssign (p _p rocessor ,p88),

a s s ig n (p _ re s o lu t io n ,re s l) ,
a ss ign (p _co lor ,rgb)] ,

[add(comp(pc_layout,processor,p88)),
add(comp(screen,resolut ion, res1)),
add(comp(screen,color,rgb))])

The technical agent offers an INTEL 8088 processor, and a 400*600 color
monitor. This proposal triggers the evaluation procedures within other interested
agents. The client agent detects a conflict concerning the proposal. The client
agent states that the user is to be using windows software which cannot run on
a processor of type 8088. The client agent detects the conflict from its usability
issue. p_processor is the only parameter within issue usability for which new
values are offered. Quantification for the total degree of effects for the parameters
p_processor from the only affected issue usability results in a negative value.
Since no other issue in client agent’s issue list has been activated, the total degree
of satisfaction will be negative leading to a conflicting situation.

The cost agent detects a conflict from its hardxuare.cost issue. No param­
eter within this issue has been offered new value directly. However, parame­
ters p_resolution and p_color indirectly affects the cost parameters of screen,
which is represented by p_resolution_cost and p_color_cost. The cost agent
computes the degree of effect of the indirectly offered values for parameters
p_resolution_cost and p_color_cost within its issue hardxoare.cost. This eval­
uation results in a dissatisfaction since the overall hardware cost of the design
is increased. Quantification for the total degree of satisfaction from all issues
results in a negative value leading to a conflicting situation. The client and cost
agents assert the following evaluation results into the shared medium.

évaluâtion_result(proposal.10,
cllent.agent,
[-0 .4 ,0 ,0],
-0 .4 ,
conflicting.proposal)

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 88

évaluât ion.result(proposal.10,
co s t .a g e n t,
[0 ,-0 .1 ,-0 .2] ,
-0 .3 ,
conflicting.proposal)

The technical, client and cost agents combine to resolve the conflict encoun­
tered. The cost agent cannot propose any alternative proposal, rather it can only
constrain other agents’ search spaces. The technical agent is capable of generat­
ing alternative proposals and tries other alternatives. The client agent is capable
of generating an alternative solution only for a subset of the original task set,
namely [t l] . The agents assert the following conflict resolution tuples along
with their counter-proposals.

conflict.resolution(proposal.10,
COSt.agent,
constrain ing,
[constraint(c5,[p.resolution,p.color],

P.resolution.x < 600,
P.resolution.y < 800,
P.color =\= rgb)])

conflict.resolution(proposal.10,
client.agent,
counter.proposing,
[t l]) .

proposal(proposal.ll,
technical_agent,
[t l ,t2 ,t3] ,
[assign(p_processor,p386),

assign(p_resolution,res2),
assign(p_color,black_white)] ,

[add(comp(pc_layout,processor,p386)),
add(comp(screen,resolution,res2))
add(comp(screen,color,black.white))])

proposal(proposal_12,
client_agent,
[t l ,t 2 ,t 3] ,
[assign(p_processor,p386),

assign(p_resolution,resl),
assign(p_color,rgb)] ,

[add(comp(pc_layout,processor,p386)),
add(comp(screen, resolution, res1)),
add(comp(screen,color,rgb))])

After generation of alternatives, agents involved in the conflict evaluate proposal.l 1
and proposal_12 in the same way. The evaluation results for proposal_ ll and
proposal_12 are given below:

évaluâtion.result(proposal_ll,
client_agent,
[0 .1 ,0 ,0] ,
0 . 1 ,

nonconflicting.proposal)

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 89

évaluât ion.result(proposal_11,
cost.agent,
[-0 .0 5 ,0 ,-0 .0 4],

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 90

Ratings Computed for Alternative Proposals
proposal-10 proposal-11 proposal-12

client-agent -0.4 0.1 0.1
technical-agent 0.1 0.08 0.07
cost-agent -0.3 -0.09 -0.35

Table 7.3: Evaluation Results for proposal-10, proposal-11 and proposal_12

-0 .0 9 ,
conflicting_proposal)

évaluâtion_result(proposal_12,
technical_agent,
[0 .0 7 ,0 ,0] ,
0 .07 ,
nonconflicting_proposal)

évaluâtion _resu lt(proposa l_12 ,
cost_agen t,
[- 0 .0 5 , - 0 .1 , - 0 .2] ,
-0 .3 5 ,
con flic t in g _p rop osa l)

In the resolution phase, overall score for each of the candidate proposal has to
be computed. Table 7.3 contains agents’ evaluation results of alternative propos­
als proposal_10, proposal-11 and proposal_12 for the task set [t l , t 2 , t 3] .
In order to resolve the conflict, agents jointly identify the proposal that will
be acceptable by all agents. First, a score is computed for each candidate
proposal which is the minimum of evaluation results for the pro])osal. The
aim is to take into account the most negatively affected agent’s perspective.
In this case score (proposal_10) = -0 .4 , score (proposal-11) = -0 .09 and
score (proposal-12) - -0 .35 . In the second phase, the proposal having the

CHAPTER 7. EXAMPLES OF COOPERATING EXPERTS PROBLEMS 91

maximum score value is identified and chosen to be the preferred solution for the
task set [t l , t 2 , t 3] .

In the above example, proposal-11 is chosen as the solution since it has
the highest score. After the resolution phase, design template in the solution
area of the shared medium is updated by the relationships within the accepted
proposal. In this second example, we aimed at illustrating the applicability of
the computational model on a different application domain.

Chapter 8

Conclusions and Future Work

DAI attempts to integrate existing problem-solving methods used in classical AI
ill order to develop systems that benefit from multiple agents’ point of view. Co­
operating experts approach has an important role in the field of DAI because
many of the problems that are being encountered in real life require the applica­
tion of complex and diverse expertise. One of the important problems faced in a
cooperating community of experts is how to detect and resolve conflicts occurring
at any phcise of problem-solving. Existing approaches to conflict resolution rely
on coordinated conflict resolution strategies. In these approaches, each agent is
assumed to have a global knowledge of conflict resolution information. In case of
conflicts, they agree on a conflict resolution scheme and a special agent resolves
the conflict using a globally agreed resolution strategy.

In this dissertation, we present a computational model, MSVTUAfS, for co­
operative multi-agent systems for solving problems that openly supports multi­
agent conflict detection and resolution. Our novel approach allows an agent to
choose the most appropriate action given its understanding of the global and lo­
cal situation and its own capabilities. Each agent has its own conflict resolution
knowledge, which is not accessible and known by others. Furthermore, there are
no globally known conflict resolution strategies. Each agent involved in a con­
flict chooses a resolution scheme according to its self-interest. Agents might use
different strategies of their own and might still agree on a solution.

92

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 93

M SVTU M S achieves flexibility in its problem-solving which is the most com­
pelling argument for building modular multi-agent systems. A new agent can be
added or an existing one can be removed without any modification on the rest of
the system. This characteristic of AfSVTUAfS satisfies the requirements of open
systems semantics. However, in the existing approaches, addition or removal
of an agent requires that the global conflict resolution knowledge be reformed
accordingly.

Existing approaches are too restrictive and applicable only to the problems
where experts must agree on a known strategy for resolving conflicts. Our ap­
proach, we believe, is much similar to the conflict resolution in human problem­
solving. This approach also allows agents to alter strategies in resolution phase
if they think that it is wise to do that. In the sequel we summarize the salient
contributions of our approach:

• Each agent has its own conflict resolution knowledge which is not required
to be known by others.

• Each agent may detect conflicts in a proposal based on its different issue-
perspectives.

• Each agent can present its degree of satisfaction, or dissatisfaction on a
proposal that can be understood by others.

• Agents contribute to the developing solution based on their relevance and
problem-solving capabilities.

• Agents involved in a conflict situation may use different strategies for re­
solving the conflict.

• Agents may alter their own strategies during the process of resolving a
particular conflict.

• Agents may generate proposals and deal with resolving conflicts in parallel.

• The model achieves open systems semantics.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 94

AfSVTUAfS is implemented on a network of workstations running under
UNIX. All of the problem solvers, agents, are modeled cis processes running on
different workstations that communicate over internet wide-area network. Agents
are fully functional knowledge-based systems and behave autonomously as they
are described in the model. There is an equal distribution of control and authority.
Therefore, an agent developed by a knowledge engineer may enter the problem­
solving environment from a geographically distant site in the network.

Future Research Directions

We believe the research presented in this thesis may form a basis for developing
better computational models for DAI. The future research directions are listed
below.

• In this thesis, agents are assumed to behave cooperatively. Agents may have
solely their own benefit in mind, while in cooperative situations the parties
are united by the super-ordinate goal of achieving a global solution. There
is a need for developing computational models that support resolution of
conflicts in competitive situations.

• The model can be enhanced with the capability to understand the state­
ments made by human participants. This can be done by developing a
human model to be incorporated into the system that uses some form of
linguistic structure.

• We assume that each agent is a knowledge-based system that makes an offer
to solve subproblems (generate proposals) and cooperates with each other
in resolving conflicts through negotiation. The model can be augmented
to support special agents such as database systems, allowing capabilities of

existing systems to be utilized.

This dissertation presented a new approach which contributes to development
of a theory of conflict resolution by introducing multi-agent conflict detection and
resolution. Therefore it may be used as a bcisis for developing methodologies to

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 95

integrate today’s heterogeneous computing environments containing many inde­
pendent information resources of different types, such as a database management
system with its databases, an expert system with its knowledge base, an infor­
mation repository, an application program, or human beings.

Bibliography

[1] Adler M. R., et al., “Conflict Resolution Strategies for Non-hierarchical Dis­
tributed Agents,” Distributed Artificial Intelligence^ Vol. 2, M.N. Huhns,
1989, pp. 139-161.

[2] Akman V., et al., “Knowledge Engineering in Design,” Knowledge-Based
Systems, Vol. 1, No. 2, March 1988, pp. 67-77.

[3] Akman V., ten Hagen R .1. W., and Tomiyama T., “A Fundamental and
Theoretical Framework for an Intelligent CAD system,” Computer-Aided
Design, Vol. 22, No. 6, .July-August 1990, pp. 352-367.

[4] Akman V., “Heterogeneous Inference in Design,” in Proceedings of the En­

gineering Design and Analysis Conference (ESDA), PD-Vol. 47-7, ASME,
1992, pp. 143-150.

[5] Banerjee J., et al., “Data Model Issues for Object-Oriented Applications,”
ACM Transactions on Office Information Systems, Vol. 5, No. 1, .January
1987, pp. 3-26.

[6] Bartos O.J., Process and Outcome in Negotiation, Columbia University

Press, New York, NY, 1974.

[7] Bates J., Loyell A. B., and Reilly W. S., “An Architecture for Action, Emo­
tion and Social Behavior,” in Proceedings of the. Foxirth European Workshop
on Modeling Autonomous Agents and Multi-Agent Worlds (MA AM AW),
Rome, Italy, 1992.

96

BIBLIOGRAPHY 97

[8] Cammarata S., McArthur D., and Steeb R., “Strategies for Cooperation in
Distributed Problem Solving,” in Proc. Int. Joint Conf. Artificial Intelli­
gence, Karlsruhe, Germany, Aug. 1983, pp. 767-770.

[9] Chandr£isekeran B., “Decomposition of Domain Knowledge into Knowledge
Source: The MDX Approach,” Fourth National Conf. o f Canadian Society
for Computational Studies o f Intelligence, Canada, 1982.

[10] Conry S. E., Meyer R. A., and Lesser V. R., “Multi-stage Negotiation in
Distributed Planning,” Technical Report, 86-67, Deptartment of Computer
and Information Science, University of Massachusetts at Amherst, 1986.

[11] Conry S. E., Macintosh D. .J., and Meyer R. A., “DARES: A Distributed
Automated Reasoning System,” in Proceedings o f AAAI, 1990, pp. 78-85.

[12] Corkill D. D., Gallagher K. Q., and Murray K. E., “GBB: A Generic Black­
board Development System,” in Proc. AAAI-86, Philadelphia, 1986, pp.
1008-1014.

[13] Croft W. B. and Leftkowitz L. S., “Knowledge-bcised Support of Cooperative
Activities,” in Proc. 21st Annual Hawaii Int. Conf. Sys. Sci., Vol. 3, 1988,
pp. 312-318.

[14] Durfee E. D., Lesser V. R., and Corkill D. D., “Cooperation Through Com­
munication in a Distributed Problem Solving Network,” Distributed Artifi­

cial Intelligence, Vol. 1, M.N. Huhns, Pitman/Morgan Kaufman, 1987, pp.

29-55.

[15] Durfee E. D., Coordination of Distributed Problem Solvers, Kluwer Aca­
demic Publishers, Boston, 1988.

[16] Durfee E. D., Lesser V. R., and Corkill D. D., “Trends in Cooperative Dis­
tributed Problem Solving,” IEEE Transaction on Knowledge and Data En­

gineering, Vol. 1, No. 1, March 1989, pp. 63-83.

BIBLIOGRAPHY 98

[17] Durfee E. D. and Montgomery A., “A Hierarchical Protocol for Coordinating
Multi-Agent Behaviors,” in Proceedings o f A A A f 1990, pp. 86-93.

[18] Erman L. D., Lark J. S., and Hayes-Roth F., “ABE: An Environment for
Engineering Intelligent System,” IEEE Trans, on Software Engineering^ Vol.
14, No. 12, Dec. 1988, pp. 17.58-1770.

[19] Ermaii L. D., Hayes-Roth F., Lesser V. R., and Reddy D. R., “The Hearsay-II
Speech Understanding Systems: Integrating Knowledge to Resolve Uncer­
tainty,” Computing Surveys, Vol. 12, .June 1980, pp. 213-253.

[20] Findler N. V. and Lo R., “An Examination of Distributed Planning in World
of Air Traffic,” J. Parallel Distributed Cumput., Vol. 3, 1986, pp. 411-431.

[21] Findler N. V. and Gao .J., “ Dynamic Hierarchical Control for Distributed
Problem Solving,” Data and Knowledge Engineering, Vol. 2, 1987, pp. 285-
301.

[22] Fisher G., “Communication Requirements for Cooperative Problem-Solving
Strategies,” Information Systems, Vol. 15, No. 1, 1990, pp. 82-106.

[2.3] Gallagher K.Q., et ah, GBB Reference Manual, Technical Report, 88-66, De­
partment of Computer and Information Science, University of Massachusetts
at Amherst, 1988.

[24] Gasser L., “The Integration of Computing and Routine Work,” ACM Trans,
on Office Information Systems, Vol. 4, No. 3, 1986, pp. 205-225.

[25] Gasser L., “Social Conceptions of Knowledge and Action: DAI Foundations
and Open Systems Semantics,” Ai'tificial Intelligence, Vol. 47, 1991, pp. 107-

138.

[26] Gasser L., Braganza C., and Herman N., “MACE: A Flexible Testbed for
Distributed AI Research,” Distributed Artificial Intelligence, Vol. 1, M.N.
Huhns, Pitman/Morgan Kaufman, 1987, pp. 119-152.

BIBLIOGRAPHY 99

[27] GeorgefF M., “Communication and Interaction in Multi-Agent Planning,”
Readings in Distributed Artificial Intelligence^ A. H. Bond and L. Gasser
eds., Morgan Kaufmann, 1988, pp. 200-204.

[28] GeorgefF M., “The Representation of Events in Multi-Agent Domains,” in
Proceedings o f AAAI, 1986, pp. 70-75.

[29] Gero J. S. (ed.). Artificial Intelligence in Engineering Design, Elsevier, UK,
1988.

[30] Gero J. S. (ed.). Artificial Intelligence in Engineering 3, Elsevier, 1989.

[31] Gingberg A., “Knowledge Base Reduction: A New Approach to Check­
ing Knowledge Bases for Inconsistency and Redundancy,” in Proceedings
of AAAI, 1988, pp. 4-8.

[32] Goel V. and Pirolli P., “Design within Information-Processing Theory: The
Design Problem Space,” AI Magazine, Spring 1989, pp. 19-36.

[33] Gomez F. and Chandrasekaran B., “ Knowledge Organization and Distribu­
tion for Medical Diagnosis,” Technical Report, 84-FG-FGBC, Department of
Computer and Information Science, The Ohio State University, 1984.

[34] Gmytrasiewicz P. J., et al., “A Decision-Theoretic Approach to Coordinating
Multi-Agent Interactions,” in Proceedings of the 13th International Joint
Conference on Artificial Intelligence, 1991, pp. 62-68.

[35] Hayes-Roth B., “A Blackboard Architecture for Control,” Artificial Intelli­

gence, Vol. 26, 1985, pp. 251-321.

[36] Hertzberg J. and Horz A., “Towards a Theory of Conflict Detection and Res­
olution in Nonlinear Plans,” in Proceedings of the 13th International Joint
Conference on Artificial Intelligence, 1989, pp. 937-947.

[37] Hewitt C., “Offices are Open Systems,” ACM Transactions on Office Infor­

mation Systems, Vol. 4, No. 3, 1986, pp. 271-287.

BIBLIOGRAPHY 100

[38] Hewitt C., “Open Information Systems Semantics for Distributed Artificial
Intelligence,” Artificial Intelligence, Vol. 47, 1991, pp. 79-106.

[39] Hewitt C., “Traditional Artificial Intelligence and or Open Systems Science,”
in Proceedings o f the Fourth European Workshop on Modeling Autonomous
Agents and Mxdti-Agent Worlds (MAAMAW), Rome, Italy, 1992

[40] Huang G. Q. and Brandon J. A., “Agents: An Object Oriented Prolog Sys­
tem for Cooperating Knowledge-Based Systems,” Knowledge-Based Systems,
Vol. 5, No. 2, June 1992, pp. 125-136.

[41] Huhns M. N. and Singh M., “The Semantic Integration of Information Mod­
els,” in Proceedings o f the AAAI-92 Workshop Cooperation Among Hetero­

geneous Intelligent Agents, July 1992, San Jose, CA, USA. pp. 38-45.

[42] Kamel M. and Sayed A., “An Object Oriented Multiple Agent Planning
System,” in Readings in Distributed Artificial Intelligence, A. H. Bond and
L. Gasser eds., Morgan Kaufmann, 1988, pp. 147-228.

[43] Klein M. and Lu S. C-Y., “Conflict Resolution in Cooperative Design,” Ar­

tificial Intelligence in Engineering, Vol. 4, No. 4, 1989, pp. 168-180.

[44] Kraus S. and Wilkenfeld B., “Negotiation Over Time in A Multi-Agent En­
vironments: Preliminary Report,” in Proceedings o f the 13th International
Joint Conference on Artificial Intelligence, 1991, pp. 56-61.

[45] Laasri H. and Maitre B., “Cooperating Expert Problem Solving in Black­
board Systems: Atome Case Study,” in Proceedings of the First European
Workshop on Modeling Agents in a Multi Agent World (MAAMAW), Rome,

Italy, 1990.

[46] Lander S. and Lesser V. R., “Conflict Resolution Strategies for Cooperating
Expert Agents,” International Conference on Cooperating Knowledge-Based
Systems, Keele Univ., October 1990.

BIBLIOGRAPHY 101

[47] Lansky A .,“Localized Searcli for Multi-Agent Planning,” in Proceedings o f
the 13th International Joint Conference on Artificial Intelligence, 1991, pp.
252-258.

[48] Leftkowitz L. S. and Croft W. B., “Planning and Execution of Tasks in
Cooperative Work Environments,” in Proceedings of IEEE Conference on
Artificial Intelligence Applications, 1989.

[49] Lesser V. R. and Corkill D. D., “Functionally-Accurate, Cooperative Dis­
tributed Systems,” Readings in Distributed Artificial Intelligence, A. H.
Bond and L. Gcisser, Morgan Kaufmann, 1988, pp. 295-.309.

[50] Lesser V. R. and Corkill D. D., “The Distributed Vehicle Monitoring
Testbed: a Tool for Investigating Distributed Problem Solving Networks,” in
Blackboard Systems, R. S. Engelmore and A. Morgan eds., Addison-Wesley,
1988, pp. 353-386.

[51] Lesser V. R. and Erman L. D., “Distributed Interpretation: A Model and
Experiment,” Readmes in Distributed Artificial Intelligence, A. H. Bond and ‘
L. Gasser eds., Morgan Kaufmann, 1988, pp. 120-1.39.

[52] Levesque H. J., Cohen P. R., and Nwnes J. H. T., “On Acting Together,” in
Proceedings of AAAI, 1990, pp. 94-99.

[5.3] Malone T. W. and Crowston K., “Towards an Interdisciplinary Theory of
Coordination,” Technical Report, CCS-TR-I20, Center for Coordination Sci­
ence, MIT, Cambridge, 1991.

[54] Morgenstern L., “A First Order Theory of Planning, Knowledge, and Ac­
tion,” in Proceedings of the 1986 Conference on Reasoning about Knowledge,

1986, pp. 99-114.

[55] Nguyen T. A., et al., “Verifying Consistency of Production Systems,” in
Proceedings o f the Third Conference on Artificial Intelligence Applications,

1987, pp. 4-8.

BIBLIOGRAPHY 1 0 2

[56] Nü H. P., “Blackboard Systems: The Blackboard Model of Problem-Solving
and the Evolution of Blackboard Architectures,” AI Magazine^ Vol. 7, No.
2, Summer 1986, pp. 39-53.

[57] Nii H. P., “Blackboard Systems: Blackboard Application Systems, Black­
board Systems from a Knowledge Engineering Perspective,” A I Magazine,
Vol. 7, No. 3, 1986, pp. 82-106.

[58] Nirenburg S. and Lesser V. R., “Providing Intelligent Assistance in Dis­
tributed Office Environments,” Readings in Distributed Artificial Intelli­

gence, A. H. Bond and L. Gasser eds., Morgan Kaufmann, 1988.

[59] Parunak H. D., “Manufacturing Experience with the Contract Net,” Dis­
tributed Artificial Intelligence, Vol. 1, M.N. Huhns, Pitman/Morgan Kauf­
man, 1987, pp. 285-310.

[60] Polat F. and Güvenir H. A., “Knowledge Base Verification in an Expert Sys­
tem Shell,” in Proceedings o f the Third International Symposium on Com­

puter and Information Sciences (ISCIS) Oct 89, Izmir, pp. 889-898.

[61] Polat F. and Güvenir H. A., “A Unification-Bcised Approach for Knowledge
Base Verification,” Expert Systems, Vol. 8, No. 4, November 1991.

[62] Polat F. and Güvenir H. A., “Coordination Issues in Distributed Problem
Solving,” in Proceedings o f the Sixth International Symposium on Computer
and Information Sciences, M. Baray and B. Ozguc eds., Elsevier, Vol. 1,
Antalya, Turkey, 1991, pp. 585-594.

[63] Polat F. and Güvenir H. A., “A Conflict Resolution-based Cooperative Dis­
tributed Problem Solving Model,” in Proceedings of the AAAI-92 Workshop
Cooperation Among Heterogeneous Intelligent Agents, .July 1992, San .Jose,
CA, USA, pp. 106-115.

[64] Polat F. and Güvenir H. A., “A Conflict Resolution Based Decentralized
Multi-Agent Problem Solving Model,” in Proceedings o f the Fourth Euro­

pean Workshop on Modeling Autonomous Agents and Multi-Agent Worlds

BIBLIOGRAPHY 103

(MAAMAW-92)y Rome Italy, 1992. A longer version of this paper will be
appearing in Lecture Notes on Artificial Intelligence to be published by
Springer-Verlag.

[65] Polat F. and Güvenir H. A., “ Distributed Artificial Intelligence in Engineer­
ing Design” in Proceedings o f the Engineering Design and Analysis Confer­

ence (ESDA), PD-Vol. 47-7, ASME, 1992, pp. 139-142.

[66] Polat F. and Güvenir H. A., “UVT: Unification Based Tool for Knowledge
Base Verification,” IEEE Expei't, Vol. 8, No. 3, June 1993, pp. 69-7.5. An
earlier version has appeared in Proceedings o f the European Workshop on
the Verification and Validation of Knowledge Based Systems, Cambridge,
England, 1991, pp. 147-163.

[67] Polat F., Shekhar S., and Güvenir H. A., “Distributed Conflict Resolution
Among Cooperating Expert Systems,” Expert Systems, Vol. 10, No. 4, 1993,
pp. 227-236.

[68] Polat F., Shekhar S., and Güvenir H. A., “A Negotiation Platform for Co­
operating Multi-Agent Systems,” International Journal of Concurrent En­

gineering: Research & Applications (to appear)

[69] Polat F. and Shekhar S., “A Negotiation Platform for Cooperating Intelligent
Systems,” Technical Report, TR-93-38, University of Minnesota, Computer
Science Department, May 1993.

[70] Preece A. D., Shinghal R., and Batarekh A., ’’ Principles and practices in
Verifying Rule-Bcised Systems,” Knowledge Engineering Review, Vol. 7, No.
2, 1992, pp. 115-141.

[71] Pruitt D. G., Negotiation Behavior, Academic Press, 1981.

[72] Rosenschein J. S., and Genesereth M. R., “Deals Among Rational Agents,”
in Proceedings of International Joint Conference on Artificial Ititelligence,
1985, pp. 91-99.

BIBLIOGRAPHY 104

[73] Rosenschein J. S., “Rational Interaction: Cooperation Among Intelligent
Agents,” Ph.D. Thesis, Stanford University, CA, 1986.

[74] Sathi A., Morton T.E., and Roth S.F., “Castillo: An Intelligent Project
Management System,” AI Magazine, Vol. 7, No. 5, 1986, Winter 1986.

[75] Shekhar S. and Ramamoorthy C. V., “Coop: A Self-Assessment Based Ap­
proach to Cooperating Expert Systems,” International Journal on Artificial
Intelligence Tools, Vol. 1, No. 2, 1992, pp. 175-204.

[76] Shoham Y., “Agent Oriented Programming,” Technical Report, STAN-CS-
1335-90, Dept, of Computer Science, Stanford University, 1990.

[77] Shoham Y., “Agent Oriented Programming,” Artificial Intelligence, 1992.

[78] Shoham Y., “Micro and Macro Theories of Artificial Agents,” in Proceed­
ings o f the Fourth European Workshop on Modeling Autonomous Agents and
Multi-Agent Worlds (MAAMAW), Rome, Italy, 1992.

[79] Shoham Y., “On the Synthesis of Useful Social Laws for Artificial Agents
Societies,” in Proceedings o f AAAI, 1992, pp. 276-281.

[80] Singh M. P., “Social and Psychological Commitments in Multi-Agent Sys­
tems,” in AAAI Fall Symposium on Knowledge and Action at Social and
Organizational Levels, November 1991.

[81] Singh M. P., “Towards a Formal Theory of Communication for Multi-Agent
Systems,” in Proceedings o f the 13th International Joint Conference on Ar­

tificial Intelligence, 1991, pp. 69-74.

[82] Singh M. P., “On the Semantics of Protocols Among Distributed Intelligent
Agents,” in Proceedings o f the IEEE International Phoenix Conference on
Computers and Communications, 1992.

[83] Smith R. G. and Davis R., “Frameworks for Cooperation in Distributed
Problem Solving,” Readings in Distributed Artificial Intelligence, A. H. Bond
and L. Gasser eds., Morgan Kaufmann, 1988, pp. 61-70.

BIBLIOGRAPHY 105

[84] Smith R. G. and Davis R., “Negotiation as a Metaphor for Distributed Prob­
lem Solving,” Artificial Intelligence, Vol. 20, 1983, pp. 63-109.

[85] Smithers T. and Troxell W ., “Design is Intelligent Behavior But What’s the
Formalism,” AI EDAM, Vol. 4, No. 2, 1990, pp. 89-98.

[86] Sriram D. and Adey R., Applications o f Artificial Intelligence in Engineering
Problems, Vols. 1-2, Springer-Verlag, 1986.

[87] Steeb R., et al., “Cooperative Intelligence for Remotely Piloted Vehicle Fleet
Control,” Technical Report, R-3408-ARPA, Rand Corp., 1986.

[88] Stefik M. and Bobrow D. G., “Object-Oriented Progamming: Themes and
Variations,” AI Magazine, 1986, pp. 40-62.

[89] Suwa M., Scott A. C., and Shortliffe E. H., “Completeness and Consistency
in a Rule-Based System,” AI Magazine, Vol. 3, 1982, pp. 16-21.

[90] Sycara K., “Resolving Goal Conflicts via Negotiation,” in Proc. of the Na­

tional Conference on Artificial Intelligence, Minneapolis, MN, Aug. 1988,
pp. 245-250.

[91] Sycara K., “Augmentation: Planning Other Agents’ Plans,” in Proceedings
of 11th International Joint Conference on Artificial Intelligence, 1989, pp.

517-523.

[92] Sycara K., “Negotiation in Design,” In it Proceedings of the MIT-JSME
Workshop on Cooperative Product Development, MIT, Cambridge, MA,

1989.

[93] Tan M. and Weihmayer R., “ Integrating Agent-Oriented Programming and
Planning for Cooperative Problem Solving,” in Proceedings o f the AAAI-92
Workshop Cooperation Among Heterogeneous Intelligent Agents, July 1992,
San Jose, CA, USA. pp. 129-137.

BIBLIOGRAPHY 106

[94] Tokoro M. and Ishkawa Y., “An Object-Oriented Approach to Knowledge
Systems,” in Proceedings o f the Int. Conf. on Fifth Generation Computer
Systems, 1984, pp. 623-631.

[95] TomiyamaT., KiriyamaT., and Yoshikawa H., “ Infrastructure for Intelligent
CAD,” in Proceedings of the Engineering Design and Analysis Conference
(ESDA), PD-Vol. 47-7, ASME, 1992, pp. 131-138.

[96] Veerkamp P., “On the Usage of Meta-Knowledge for Reasoning about Design
Processes,” in Proceedings o f the Engineering Design and Analysis Confer­

ence (ESDA), PD-Vol. 47-7, ASME, 1992, pp. 151-157.

[97] Velthuijsen H. and Griffeth N. D., “Negotiation in Telecommunication Sys­
tems,” in Proceedings of the AAAI-92 Workshop Cooperation Among Het­

erogeneous Intelligent Agents, .July 1992, San Jose, CA, USA. pp. 138-147.

[98] Weihmayer R. and Brandau R., “Cooperative Distributed Problem Solv­
ing for Communication Network Managament,” Computer Communications,
Vol. 13, No. 9, November 1990, pp. 547-557.

[99] Werkman K., et al., “Design and Fabrication Problem Solving Through Co­
operative Agents,” NSF-ERC-ATLSS Technical Report, 90-05, Lehigh Uni­
versity, Bethlehem, 100.

[100] Werner E., et al., “Planned Team Activity,” in Proceedings of the Fourth
European Workshop on Modeling Autonomous Agents and Multi-Agent
Worlds (MA AM AW), Rome, Italy, 1992.

[101] Winston P. H., Artificial Intelligence, Addison-Wesley, 1984.

[102] Zlotkin G. and Rosenschein J. S., “Negotiation and Task Sharing Among
Autonomous Agents in Cooperative Domains,” in Proceedings of the 11th
International Joint Conference on Artificial Intelligence, 1989, pp. 912-917.

[103] Zlotkin G. and Rosenschein J. S., “Negotiation and Conflict Resolution in
Non-Cooperative Domains,” m Proceedings o f AAAI, 1990, pp. 100-105.

BIBLIOGRAPHY 107

[104] Zlotkin G. and Rosenscliein J. S., “ Incomplete Information and Deception
in Multi-Agent Negotiation,” in Proceedings o f the 13th International Joint
Conference on Artificial Intelligence, 1991, pp. 225-231.

Appendix A

A Sample Run

AfEVTUAfS is implemented on a network of workstations running under the
UNIX operating system where each agent is modeled as a process running on
a workstation. Each agent has a communication procedure written in C pro­
gramming language which communicates with a server process, again written in
C, keeping the shared medium. All agents are connected to the server through
a stream socket in INET’ domain. No messages are lost and the modules are
designed to ensure reliable delivery of messages of any length (messages are par­
titioned into blocks of 1 Kbytes and packed later). Each agent is implemented in
SB-Prolog programming language. The abstract data types used in communica­
tion are represented in Prolog. It is the responsibility of the knowledge engineer
to encode the knowledge of each agent (control, domain and conflict resolution).
Agents can be distributed over geographically distant sites. Upon getting the
internet address, or IP number (Internet Port number) of the server, a new agent
can easily enter the problem-solving environment from a site on internet.

In the rest of the appendix, a segment of an example run is given to illustrate
how agents interact in detecting and resolving a particular conflict in designing an
office. The example consists of the messages exchanged between the agents and
the server process. A message sent from a particular agent to the server forms
a request to be accomplished by the server. After performing the request, the

MNET stands for the InterNET domain, a wide-area network consisting of hundreds of sites.

108

APPENDIX A. A SAMPLE RUN 109

server process sends back its rep ly to that particular agent. A request messages
is represented as a list of two elements. The first elements denotes the message
owner. The second element represents the message body which is also a list of
two elements. The first element of the message body represents the request type,
while the second element denotes the argument(s) passed. The second element
can be an atom, or a list of atoms depending on the number of arguments to be
passed. If no argument is to be passed, this field filled in with a variable name.
Note that SB-Prolog represents a variable name as unique number preceded by
an underscore character. The response of the server process can be represented
as an atom, or as a list depending on the type of the request.

SB-Prolog Version 3.1
I ?- yes
I ?- request :

[agent1,
[assert.problem^tuple,
[[tasks([tl,t2,t3,t4,t5,t6,t7,t8,t9,t20,t21,t22,t40,t41]),
task(t41,p_pc_locy,plocationy), task(t40,p_pc_locx,plocationx),
task(t22,p_c_lampz,lcost),task(t21,p_c.lampy,lcost),
task(t20,p_c_lampx,Icost),task(t9,p_lampz,lamps)
task(t8,p.lampy,lamps),task(t7,p_lampx,lamps)
task(t6,p.pcdesk_locy »locationy),task(t6,p_pcdesk_locx,locationx)
task(t4,p_pcdesk,pcdesks),task(t3,p_desk_locy,locationy)
task(t2,p_desk_locx,locationx),task(tl,p_desk,desks)],
[po(t7,t22), po(t7,t21), po(t7,t20), po(t7,t9), po(t7,t8),
po(t6,t7), po(t4,t6), po(t4,t5), po(tl,t3), po(tl,t2)],
[gconstraints([c20,c21]),
constraint(c21,[pi,p2],[],_1395456),
constraint(c20,[pi],[],_1395624)] ,
[layout([locationx,locationy,rooml,door1,windowl,

eplugl,pplugl,Iplugl,lplug2,lplug3]),
value(p_c_lampz,95),value(p^c^lampy,96),
value(p.c_lampx,95),value(p_lampz,lamp03),
value(p_lampy,lamp02),value(p.lampx,lamp01),
value(p_pc_locy,3),value(p_pc_locx,3),
value(p.lampz,lamp03),value(p_lampy,lamp02),

APPENDIX A. A SAMPLE RUN 110

value(p.lampx,lamp01),value(p_pcdesk_locy,3.5),
value(p_pcdesk_locx,2.3),value(p_pcdesk,pcdeskO),
value(p_desk_locy,0.5),value(p.desk_locx,0.76) ,
value(p_desk,deskO),
attribute(lplug3,cornery,numeric,2),
attribute(lplug3,cornerx,numeric,6),
attribute(lplug2,cornery,numeric,2),
attribute(lplug2,cornerx,numeric,4),
attribute(Iplugl,cornery,numeric,2),
attributedplugl,cornerx,numeric,2) ,
attribute(pplugl,cornery,numeric,0.5),
attributeCpplugl,cornerx,numeric,6),
attribute(eplugl,cornery,numeric,0),
attribute(eplugl,cornerx,numeric,6),
attribute(windowl,nparts,numeric,3),
attribute(windowl,frame,symbolic,wood),
attribute(windowl,height,numeric,1),
attribute(windowl,width,numeric,0.1),
attribute(windowl,length,numeric,2),
attribute(windowl,cornery,numeric,3),
attribute(windowl,cornerx,numeric,0),
attr ibute (windowl, shape, symbolic, rectcingular) ,
attribute(door1,made,symbolic,wood),
attribute(doorl,height,numeric,2),
attribute(doorl,width,niiraeric,0.2),
attribute(door1,length,numeric,1),
attribute(door1,cornery,numeric,7),
attribute(door1,cornerx,numeric,8),
attribute(doorl,shape,symbolic,rectangular),
attribute(rooml,lplugc,complex,lplug3),
attribute(rooml,lplugb,complex,lplug2),
attribute(rooml,lpluga,complex,Iplugl),
attribute(rooml,pplug,complex,pplugl),
attribute(rooml,eplug,complex,eplugl),
attribute(rooml,window,complex,windowl),
attribute(rooml,door,complex,door1),
attribute(rooml,height,numeric,2.6),

APPENDIX A. A SAMPLE RUN 111

attribute(rooml»length,numeric,8),
attribute(rooml»width,numeric,10),
attribute(rooml»shape,symbolic,rectangular),
object(lplug3,eplug),
object(lplug2,eplug),
objectdplugl ,eplug),
object(pplugl,eplug),
object(eplugl,eplug),
object(windowl»window),
obj ect(door1,doors),
obj ect(rooml,rooms),
attributes (lplug3, [comerx, cornery]),
attributes (lplug2, [comerx, cornery]) ,
attributes (Iplugl, [comerx, cornery]) ,
attributes (pplugl, [comerx, cornery]) ,
attributes(eplugl, [comerx,cornery]) ,
attributes (windowl, [shape, cornerx, cornery, lenghth,

width,height,frame,nparts]),
attributes (door 1, [shape,comerx,comery, length, width, height »made]) ,
attributes(rooml,[shape,length,width,height,door,

window, eplug, pplug, Ipluga, Iplugb, Iplugc])]]]]
reply : okey
request : [agent2,[get_problem_tuple,_1392488]]
reply :

[agent1,
[tasks([tl,t2,t3,t4,t5,t6,t7,t8,t9,t20,t21,t22,t40,t41]),
task(t41,p_pc_locy,plocationy), task(t40,p_pc_locx,plocationx),
task(t22,p_c_lampz,lcost),task(t21,p_c_lampy,lcost),
task(t20,p_c_lampx,Icost) , task(t9,p_lampz,lamps)
task(t8,p_lampy,lamps),task(t7,p.lampx,lamps)
task(t6,p_pcdesk_locy,locationy),task(t5,p_pcdesk_locx,locationx)
task(t4,p_pcdesk,pcdesks) ,task(t3,p_desk_locy,locationy)
task(t2,p_desk_locx,locationx),task(tl»p.desk,desks)] ,
[po(t7,t22), po(t7,t21), po(t7,t20), po(t7,t9), po(t7,t8),
po(t6,t7), po(t4,t6), po(t4,t6), po(tl,t3), po(tl,t2)],
[gconstraints([c20,c21]),
constraint(c21,[pi,p2],[],_1395456),

APPENDIX A. A SAMPLE RUN 1 1 2

constraint(c20,[pi], □ ,.1395624)],
ClayoutC[location!»locationy,rooml,doorl,windowl,

eplugl,pplugl,Iplugl,lplug2,lplug3]) ,
valua(p.c_lajnpzp96), value(p.c.lampyp96) p
value(p.c.lanpXp 95), value (p.lampz, lampOS),
value (p_laBpyplajDp02) , value(p.lanpZplajnpOl) ,
value(p_pc.locyp3),value(p_pc_locXp3),
value(p.lajnpzplajnp03) , value(p.lampy ,lamp02) »
value(p.lampxplampOl),value(p_pcdeak_locy,3.5),
value(p.pcdesk_loci^2.3),value(p_pcdesk ̂ pcdeskO),
value(p_desk_locy,0.5),valueCp.desk.locz,0.75),
value(p.deskpdeskO),
attribute(lplug3 pCornery pniuneriCp2),
attribute(lplug3,corner!»numericp6)»
attribute(lplug2»comery »numericp2) »
attribute(lplug2pcorner!»numericp4),
attribute (Iplugl pcomery .numeric p 2) ,
attribute(Ipluglpcorner!.numericp2).
attribute (pplugl, comery. numeric .0.5),
attribute(pplugl.corner!pnumeriCp6).
attribute(eplugl.cornery.numeric,0),
attribute(eplugl.corner!.numeric,6).
attribute(vindovl.npaxts.numericp3).
attribute(vindovl.frame.symbolic.vood),
attribute(vindovl.height.numeric.1).
attribute(vindovl.0idth.numeric pO.1),
attribute(«indo0l.length.numeric p2).
attribute(«indovl.cornery.numeric.3).
attribute(0Índo0l .comer! .numeric .0) .
attribute(vindowl.shape.symbolic.rectangular),
attribute(doorl.made.symbolic.vood),
attribute(door1.height.numeric,2).
attribute(doorl.vidth.numeric.0.2).
attributa(doorl.length.numeric.1),
attribute(doorl.cornery.numeric.7).
attribute(doorl .comer!.numeric,8) .
attribute(doorl.shape,symbolic.rectangular).

APPENDIX A. A SAMPLE RUN 113

attribut6(roomljlplugc,complex,lplug3),
attribute(rooml,lplugb,complex,lplug2),
attribute(rooml,lpluga,complex,Iplugl),
attribute(rooml,pplug,complex,pplugl),
attribute(rooml,eplug,complex,eplugl),
attribute(rooml,window,complex,windowl),
attribute(rooml,door,complex,door1),
attribute(rooml,height,numeric,2.5),
attribute(rooml»length,numeric,8),
attribute(rooml»width,numeric,10),
attribute(rooml»shape,symbolic,rectangular),
object(lplug3,eplug),
object(lplug2,eplug),
objectdplugl ,eplug) ,
object(pplugl,eplug),
object(eplugl,eplug),
object(windovl,window),
object(door1»doors),
object(rooml»rooms),
attributes(lplug3, [comerx,cornery]),
attributes(lplug2, [comerx,cornery]) ,
attributes (Iplugl, [comerx, cornery]),
attributes (pplugl, [comerx, cornery]),
attributes (eplugl, [comerx »cornery]) ,
attributes(windowl,[shape,cornerx,cornery,lenghth,

width,height,frame,nparts]),
attributes (door 1, [shape, comerx, cornery, length, width, height,made]),
attributes (rooml, [shape »length, width, height, door,

window,eplug,pplug,Ipluga,Iplugb,Iplugc])]]
request : [agent3,[get.problem.tuple,_1392488]]
reply :

[agent1,
[tasks([tl,t2,t3,t4,t5,t6,t7,t8,t9,t20,t21,t22,t40,t4l]),
task(t41,p_pc_locy,plocationy), task(t40,p.pc_locx,plocationx),
task(t22,p.c_lampz,lcost),task(t21,p„c.lampy,lcost),
task(t20,p.c.lampx,Icost),task(t9,p^lampz,lamps)
task(t8,p.lampy,lamps),task(t7,p.lampx,lamps)

APPENDIX A. A SAMPLE RUN 114

task(t6,p_pcdesk_locy,locationy) , task(tS »p.pcdesk^locx, locationx)
task(t4,p.pcdesk,pcdesks),task(t3,p.desk.locy,locationy)
task(t2,p^desk.locx,locationx),task(tl,p_desk,desks)] ,
[po(t7,t22), po(t7,t21), po(t7,t20), po(t7,t9), po(t7,t8),
po(t6,t7), po(t4,t6), po(t4,t5), po(tl,t3), po(tl,t2)],
[gconstraints([c20,c21]),
constraint(c21,[pl,p2], □ ,.1395456),
constraint(c20,[pi],[],.1395624)],
[layout([locationx,locationy,rooml,doorl,windowl,

eplugl ,pplugl, Iplugl, lplug2, lplug3]) ,
value(p.c.lampz,95),value(p.c.lampy,95),
value(p.c.lampx,95),value(p.lampz,lamp03),
value(p.lampy,lamp02),value(p.lampx,lamp01),
value(p.pc.locy,3),value(p.pc.locx,3),
value(p.lampz,lamp03),value(p.lampy,lamp02),
value(p.lampx,lampO1),value(p.pcdesk.locy,3.5),
value(p.pcdesk.locx,2.3),value(p.pcdesk,pcdeskO),
value(p.desk.locy,0.5),value(p.desk.locx,0.75),
value(p.desk,deskO),
attribute(lplug3,cornery,numeric,2),
attribute(lplug3,cornerx,numeric,6),
attribute(lplug2,cornery,numeric,2),
attribute(lplug2,cornerx,numeric,4),
attribute(lplugl,cornery,numeric,2),
attributedplugl,cornerx,numeric,2) ,
attribute(pplugl,cornery,numeric,0.5),
attributeipplugl,cornerx,numeric,6),
attribute(eplugl,cornery,numeric,0),
attribute(eplugl,cornerx,numeric,6),
attribut e(window1,npart s,numeric,3),
attribute(windowl,frame,symbolic,wood),
attribute(windowl,height,numeric,1),
attribute(windowl,width,numeric,0.1),
attribute(windowl,length,numeric,2),
attribute(windowl,cornery,numeric,3),
attribute(windowl,cornerx,numeric,0),
attribute (windowl, shape, symbolic, rectaingular),

APPENDIX A. A SAMPLE RUN 115

attribute(door1,made,symbolic,wood),
attribute(doorl,height,numeric,2),
attribute(doorl»width,numeric,0.2),
attribute(doorl»length, muneric,1),
attribute(doorl»cornery,numeric,7),
attribute(doorl»cornerx,numeric,8),
attribute(door1,shape,symbolic,rectangular),
attribute(rooml»Iplugc,complex,IplugS),
attribute(rooml»Iplugb,complex,lplug2),
attribute(rooml»Ipluga,complex,Iplugl),
attribute(rooml,pplug,complex,pplugl),
attribute(rooml,eplug,complex,eplugl),
attribute(rooml,window,complex,windowl),
attribute(rooml,door,complex,door1),
attribute(rooml»height,numeric,2.5),
attribute(rooml»length,numeric,8),
attribute(rooml»width,numeric,10),
attribute (rooml »shape, symbol ic,rect2aigul2ür) ,
obj ect(lplug3,eplug),
obj ect(lplug2,eplug),
obj ect(Iplugl,eplug),
object(pplugl,eplug),
object(eplugl,eplug),
object(windovl»window),
obj ect(door1,doors),
obj ect(rooml,rooms),
attributes (lplug3, [comerx, cornery]),
attributes(lplug2, [comerx»cornery]),
attributes (Iplugl, [comerx, cornery]) ,
attributes (pplugl, [comerx, cornery]) ,
attributes(eplugl,[cornerx,cornery]),
attributes(windowl, [shape,cornerx,cornery,lenghth,

width,height»frame,nparts]),
attributes (door 1, [shape, comerx, cornery, length, width, height, made]),
attributes(rooml, [shape,length,width,height,door,

window,eplug,pplug,Ipluga,Iplugb,Iplugc])]]
request : [agent4,[get_problem_tuple,_1392488]]

APPENDIX A. A SAMPLE RUN 116

reply
[agent1,

[tasks([tl,t2,t3,t4,t5,t6,t7,t8,t9,t20,t21,t22,t40,t41]) ,
task(t41,p_pc_locy,plocationy) , task(t40,p_pc_locx,plocationx),
task(t22,p_c_lampz,lcost) ,task(t21 ,p_c_lampy ,lcost),
task(t20, p_c_lampx, Icost), task (t9, p.lampz, lamps)
task (t8, p.leunpy, lamps), task(t7, p^lcimpx, lamps)
task(t6,p_pcdesk_locy,locationy),task(t5,p_pcdesk_locx,locationx)
task(t4,p.pcdesk »pcdesks),task(t3,p_desk_locy,locationy)
task(t2,p_desk_locx,locationx),task(tl,p_desk,desks)],
[po(t7,t22), po(t7,t21), po(t7,t20), po(t7,t9), po(t7,t8),
po(t6,t7), po(t4,t6), po(t4,t5), po(tl,t3), po(tl,t2)],
[gconstraintsC[c20,c21]),
constraint (c21, [pi ,p2] , [] ,_1395456) ,
constraint (c20, [pi] , [] ,.1395624)] ,
[layout([locationx,locationy,rooml,door 1 »windowl,

eplugl,pplugl,Iplugl,lplug2,lplug3]),
value(p_c.lampz,95),value(p.c.lampy,96),
value(p.c.lampx,96),value(p.lampz,lamp03),
value(p.lampy,lamp02),value(p_lampx,lamp01),
valueCp.pc.locy ,3) ,value(p.pc_locx,3) ,
value(p.lampz,lamp03),value(p_lampy,lamp02),
value (p.lampx, lampOl), value (p.pcdesk.locy ,3.5),
value(p.pcdesk.locx,2.3),V2Llue(p_pcdesk,pcdeskO),
value(p.desk.locy,0.6),value(p.desk.locx,0.75),
value(p.desk,deskO),
attribute(lplug3,cornery,numeric, 2) ,
attribute (lplug3, cornerx, numeric, 6) ,
at tribut e (lplug2, cornery, numeric, 2) ,
attribute(lplug2,cornerx,numeric,4),
attributedplugl,cornery,numeric,2),
attributedplugl,cornerx,numeric,2),
attribute(pplugl,cornery,numeric,0.5),
attribute(pplugl,cornerx,numeric,6) ,
attribute(eplugl,cornery,numeric,0) ,
at tribut e(eplugl, cornerx, numeric, 6),
attribute(windowl,nparts,numeric, 3),

APPENDIX A. A SAMPLE RUN 117

attribute(windowl,frame,symbolic,wood),
attribute(windovl,height,numeric,1),
attribute(windowl,width,numeric,0.1),
attribute(windowl,length,numeric,2),
attribute(windowl,cornery,numeric,3),
attribute(windowl,cornerx,numeric,0),
attribute (windowl, shape, symbolic, rectaingular),
attribute(doorl,made,symbolic,wood),
attribute(door1,height,numeric,2),
attribute(door1,width,numeric,0.2),
attribute(doorl,length,numeric,1),
attribute(doorl,cornery,numeric,7),
attribute(doorl,cornerx,numeric,8),
attribute(door1,shape,symbolic,rectangul2ur),
attribute(rooml,lplugc,complex,lplug3),
attribute(rooml,lplugb,complex,lplug2),
attribute(rooml,lpluga,complex,Iplugl),
attribute(rooml,pplug,complex,pplugl),
attribute(rooml,eplug,complex,eplugl),
attribute(rooml,window,complex,windowl),
attribute(rooml,door,complex,door1),
attribute(rooml,height,numeric,2.5),
attribute(rooml,length,numeric,8),
attribute(rooml,width,numeric,10),
attribute(rooml,shape,symbolic,rectangular),
object(lplug3,eplug),
object(lplug2,eplug),
objectdplugl,eplug),
object(pplugl,eplug),
object(eplugl,eplug),
object(windowl,window),
object(door1,doors),
object(rooml,rooms),
attributes(lplug3, [comerx,cornery]),
attributes (lplug2, [comerx, cornery]),
attributes (Iplugl, [comerx, cornery]),
attributes (pplugl, [comerx, cornery]),

APPENDIX A. A SAMPLE RUN 118

attributes(eplugl, [comerx,cornery]) ,
attributes(windovl,[shape,cornerx,cornery,lenghth,

width,height, frame,npcirts]) ,
attributes (door 1, [shape, comerx, cornery »length, width, height ,made]) ,
attributes(rooml,[shape,length,width,height,door,

w indow,eplug,pplug,Ipluga,Iplugb,Iplugc])]]
request : [agent1,[signal_quit,_1392488]]
reply : []
request : [agent1,[quitted,.1392488]]
reply : []
request : [agent1,[task.status,tl]]
reply : waiting
request : [agent1,[quitted,.1392488]]
reply : []
request : [agentl,[proposal.asserted,.1392488]]
reply : []
request : [agentl,[task.status,tl]]
reply : waiting
request : [agent2,[quitted,.1392488]]
reply : []
request : [agent2,[quitted,.1392488]]
reply : []
request : [agentl,[quitted,.1392488]]
reply : []
request : [agent2,[quitted,.1392488]]
reply : []
request : [agent4,[signal.quit,.1392488]]
reply : []
request : [agent2,[quitted,.1392488]]
reply : []
request : [agent4,[quitted,.1392488]]
reply : []
request : [agent2,[quitted,.1392488]]
reply : []
request : [agent4,[task.status,tl]]
reply : waiting
request : [agentl,[proposal.asserted,.1392488]]

APPENDIX A, A SAMPLE RUN 119

reply : []
request : [agent4,[quitted,.1392488]]
reply : []
request : [agent1,[task.status,tl]]
reply : waiting
request : [agent4,[proposal.asserted,.1392488]]
reply : []
request : [agent3,[quitted,.1392488]]
reply : []
request : [agent4,[task.status,tl]]
reply : waiting
request : [agent3,[task.status,t4]]
reply : waiting
request : [agentl,[quitted,.1392488]]
reply : []
request : [agent3,[quitted,.1392488]]
reply : []
request : [agentl,[proposal.asserted,.1392488]]
reply : []
request : [agent3,[proposal.asserted,.1392488]]
reply : []
request : [agentl,[task.status,tl]]
reply : waiting
request : [agent3,[task.status,t4]]
reply : waiting
request : [agent2,[quitted,.1392488]]
reply : []
request : [agent4,[quitted,.1392488]]
reply : []
request : [agent2,[quitted,.1392488]]
reply : []
request : [agent4,[proposal.asserted,.1392488]]

reply : []
request : [agent2,[quitted,.1392488]]
reply : []
request : [agent4,[task.status,tl]]
reply : waiting

APPENDIX A. A SAMPLE RUN 1 2 0

request : CsLgent2, [quitted,_ 1392488]]
reply : []
request : [agentl,[quitted,„1392488]]
reply : []
request : [agent3,[quitted,„1392488]]
reply : []
request : [agentl,[proposal„asserted,„1392488]]
reply : []
request : [agent3,[proposal„asserted,„1392488]]
reply : []
request : [agentl,[task„status,tl]]
reply : waiting
request : [agent3,[task_status,t4]]
reply : waiting
request : [agent4,[quitted,„1392488]]
reply : []
request : [agent2,[quitted,„1392488]]
reply : []
request : [agentl,[quitted,„1392488]]
reply : []
request : [agent3,[quitted,„1392488]]
reply : []
request : [agentl,[proposal„asserted,„1392488]]
reply : []
request : [agent3,[proposal„asserted,„1392488]]
reply : []
request : [agentl,[task„status,tl]]
reply : waiting
request : [agent3,[task„status,t4]]
reply : waiting
request : [agent4,[proposal„asserted,„1392488]]
reply : []
request : [agent4,[task„status,tl]]
reply : waiting
request : [agentl,[quitted,„1392488]]
reply : []
request : [agent3,[quitted,„1392488]]

APPENDIX A. A SAMPLE RUN 121

reply : []
request : [agentl,[proposal_asserted,_1392488]]
reply : []
request : [agent3,[proposal.asserted,.1392488]]
reply : []
request : [agentl,[task.status,tl]]
reply : waiting
request : [agent3,[task_status,t4]]
reply : waiting
request : [agent4,[quitted,_1392488]]
reply : []
request : [agent4,[proposal_asserted,_1392488]]
reply : []
request : [agentl,[quitted,.1392488]]
reply : []
request : [agent3,[quitted,.1392488]]

reply : []
request : [agentl,[proposal.asserted,.1392488]]
reply : []
request : [agent3,[proposal.asserted,.1392488]]
reply : []
request : [agentl,[task.status,tl]]
reply : waiting
request : [agent3,[task.status,t4]]
reply : waiting
request : [agent4,[task.status,tl]]
reply : waiting
request : [agentl,[quitted,.1392488]]
reply : []
request : [agent3,[quitted,.1392488]]
reply : []
request : [agent4,[quitted,.1392488]]
reply : □
request : [agent3,[proposal.asserted,.1392488]]
reply : □
request : [agent4,[proposal.asserted,.1392488]]
reply : []

APPENDIX A. A SAMPLE RUN 122

request : [agents, [task^status, t4]]
reply : waiting
request : [agent4,[task.status,tl]]
reply : waiting
request : [agent2,[get_unique_id,_1392488]]
reply : 0
request : [agentl, [proposal_asserted,_ 1392488]]
reply : []
request : [agent2»

[assert_proposal,
[0,agent2, [tl,t2,tS,t4,t5,t6] ,
[assign(p_desk,deskl),
assign(p_desk_locx,0.75),
assign(p_desk.locy,0.5),
assign(p_pcdesk,pcdeskl),
assign(p.pcdesk_locx,0.75),
assign(p_pcdesk_locy,2.75)] ,
[add(relation(on(deskl,layout))) ,
add(relation(on(pcdeskl »layout))),
add(relation(location(deskl,0.75,0.5))),
add(relation(location(pcdeskl,0.75,2.75)))]]]]

reply : ok
request : [agent1,[task.status,tl]]
reply : waiting
request : [agents,[quitted,_1392488]]
reply : []
request : [agents, [proposal_asserted,_1392488]]
reply : ok
request : [agent2,

[assert.evaluation.result,
[0,agent2,[0.114286,0.0,0.0,0.136842,0.0404348,0.0128571] ,
0.30442,nonconflict ing]]]

reply : .1392288
request : [agentl,[quitted,.1392488]]
reply : []
request : [agent2, [évaluât ion.f inished, 0]]
reply : []

APPENDIX A. A SAMPLE RUN 123

request
reply :
request
reply :

[agent1,[proposal.as s ert ed,.1392488]]
ok

request
reply :

request

reply :
request
reply :
request
reply :
request
reply :
request

[agents,[get_current_proposal,„1392488]]
; [0,agent2,[tl,t2,t3,t4,t5,t6],

[assign(p_desk,deskl),
assign(p„desk„locx,0.75),
assign(p„desk„locy,0.5),
assign(p„pcdesk,pcdeskl),
assign(p„pcdesk„locx,0.75),
assign(p_pcdesk_locy,2.75)],
[add(relation(on(deskl,layout))),
add(relation(on(pcdeskl.layout))),
add(relation(location(deskl,0.75,0.5))),
add(relation(location(pcdeskl,0.75,2.75)))]]

: [agent1,[get.current„proposal,„1392488]]
[0,agent2,[tl,t2,t3,t4,t5,t6],
[assign(p„desk,deskl),
assign(p„desk„locx,0.75),
assign(p„desk„locy,0.5),
assign(p„pcdesk,pcdeskl),
assign(p„pcdesk„locx,0.75),
assign(p_pcdesk„locy,2.75)],
[add(relation(on(deskl.layout))),
add(relation(on(pcdeskl.layout))),
add(relation(location(deskl,0.75,0.5))),
add(relationdocation(pcdeskl ,0.75,2.75)))]]

: [agents,[assert„evaluation„result,
[0,agents,[0.0,0.0,0.0,0.0,-0.145431,-0.145431],
-0.290862,conflicting]]]

„1392288
: [agent2,[evaluation„finished.O]]
[]
: [agents,[evaluation„finished.O]]
[]
: [agent4,[quitted,„1392488]]
□
: [agentl, [assert„evaluation„result,

APPENDIX A. A SAMPLE RUN 124

[0,agentl,[0.0,0.0,0.0,0.0,-0.168478,-0.0535714],
-0.22205,conflict ing]]]

reply : _1392288
request : [agent4, [proposal_asserted,.1392488]]
reply : ok
request : [agentl,[évaluâtion_finished,0]]
reply : []
request : [agent4,[get_current_proposal,_1392488]]
reply : [0,agent2,[t1,t2,t3,t4,t5,t6] ,

[assign(p_desk,deskl),
assign(p.desk_locx,0.75),
assign(p_desk_locy,0.5),
assign(p_pcdesk,pcdeskl),
assign(p_pcdesk_locx,0.75),
assign(p_pcdesk_locy,2.75)],
[add(relation(on(deskl,layout))),
add(relation(on(pcdeskl,layout))),
add(relation(location(deskl,0.75,0.5))),
add(relat iondocat ion (pcdeskl ,0.75,2.75)))]]

request : [agent2,[évaluâtion_finished,0]]
reply : []
request : [agentl,[evaluation_finished,0]]
reply : []
request : [agent4,[assert_evaluation_result,

[0,agent4, [0.0,0.0,0.0,0.0,0.0,0.0],0.0,nonconflicting]]]
reply : _1392288
request : [agents,[évaluâtion_finished,0]]
reply : ok
request : [agent4,[assert.conflict.resolution,[0,agent4,nothing,[]]]]
reply : .1392288
request : [agents,[assert.conflict.resolution,

[0,agents,counterpropos ing,[t1,t2,t3,t4,t5,t6]]]]
reply : .1392288
request : [agent4,[current.handled,0]]
reply : []
request : [agents, [all.constraints.ass-irted.O]]
reply : []

APPENDIX A. A SAMPLE RUN 125

request : [agent2, [évaluâtion_finished,0]]
reply : ok
request : [agent2,[conflict_or_not,0]]
reply : conflicting
request : [agents, [all.constraints_asserted,0]]
reply : []
request : [agent2, [assert.conflict.resolution,

[0,agent2,counterproposing, [t1,t2,t3,t4,15,t6]]]]
reply : .1392288
request : [agent4,[current.handled,0]]
reply : []
request : [agents,[all.constraints.asserted,0]]
reply : □
request : [agent1, [évaluâtion.finished,0]]
reply : ok
request : [agent2, [all.constraints.asserted,0]]
reply : []
request : [agent4,[current.handled,0]]
reply : □
request : [agent 1, [assert.conflict.resolution, [0,agent 1 »constraining, [c6]]]]
reply : .1392288
request : [agent2,[all.constraints.asserted,033
reply : ok
request : [agent1,[candidates.proposed,033
reply : [3
request : [agent4,[current.handled,033
reply : [3
request : [agents,[all.constraints.asserted,033
reply : ok
request : [agents,[retrieve.constraints,033
reply : [[33
request : [agent2,[retrieve.constraints,033
reply : [[33
request : [agent4, [current.handled,033
reply : [3
request : [agent2, [get.unique.id,.139248833
reply : 1

APPENDIX A. A SAMPLE RUN 126

request
reply :
request

reply :
request
reply :
request
reply :
request
reply :
request

: [agentl,[caaididates.proposed,0]]
[]
: [agent2,

[assert.cemdidate.proposal,
[l,agent2,[tl,t2,t3,t4,t5,t6],
[assign(p_desk,deskl),
assign(p_desk_locx,1.25),
assign(p_desk.locy,0.5),
assign(p.pcdesk,pcdeskl),
assign(p_pcdesk.locx,0,25),
assign(p_pcdesk.locy,0.5)],
[add(relation(on(deskl,layout))),
add(relation(on(pcdeskl»layout))),
add(relation(location(deskl,1.26,0.5))),
add(relation(location(pcdeskl,0.25,0.5)))]]]

.1392288
: [agent4,[current.handled,0]]
□

[agent2,[candidates.proposed,0]]

reply :
request

[]
: [agent3,[get.unique.id,.1392488]]
2
: [agent3,

[assert.candidate.proposal,
[2,agent3,[tl,t2,t3,t4,t5,t6],
[assign(p.desk,deskl),
assign(p.desk.locx,0.75),
assign(p.desk.locy,0.5),
assign(p.pcdesk,pcdeskl),
assign(p.pcdesk.locx,3.15),
assign(p.pcdesk.locy,0.5)] ,
[add(relation(on(deskl»layout))),
add(relation(on(pcdeskl»layout))),
add(relation(location(deskl,0.76,0.5))),
add(relation(location(pcdesk,3.16,0.6)))]]]

.1392288
: [agent2,[candidates.proposed,0]]

APPENDIX A. A SAMPLE RUN 127

reply :
request
reply :
request
reply :

ok

request
reply :

: [agents,[candidates_proposed,0]]
ok
: [agent2, [get^caindidates, 0]]
[[1,agent2,[tl,t2,tS,t4,t6,t6],

[assign(p.desk,deskl),
assign(p_desk_locx,1.25),
assign(p_desk_locy,0.5),
assign(p_pcdesk,pcdeskl),
assign(p.pcdesk_locx,0.25),
assign(p_pcdesk_locy,0.5)],
[add(relation(on(deskl,layout))),
add(relation(on(pcdeskl,layout))),
add(relation(location(deskl,1.25,0.5))),
add(relation(location(pcdeskl,0.25,0.5)))]],
[2,agents,[tl,t2,tS,t4,t5,t6],
[assign(p.desk,deskl),
assign(p_desk_locx,0.75),
assign(p_desk_locy,0.5),
assign(p.pcdesk,pcdeskl),
assign(p_pcdesk_locx,S.15),
assign(p.pcdesk_locy,0.5)],
[add(relation(on(deskl,layout))),
add(relation(on(pcdeskl,layout))),
add(relation(location(deskl,0.75,0.5))),
add(relation(locationCpcdesk,S.15,0.5)))]]]

: [agents,[get_candidates,0]]
[[1,agent2,[tl,t2,tS,t4,t5,t6],

[assign(p_desk,deskl),
assign(p.desk_locx,1.25),
assign(p_desk_locy,0.5),
assign(p.pcdesk,pcdeskl),
assign(p_pcdesk_locx,0.25),
assign(p.pcdesk.locy,0.5)],
[add(relation(on(deskl,layout))),
add(relation(on(pcdeskl»layout))),
add(relation(location(deskl,1.25,0.5))),

APPENDIX A. A SAMPLE RUN 128

add(relation(location(pcdeskl,0.25,0.6)))]],
[2,agents, [tl,t2,t3,t4,tS,t6],
Cas8ign(p.d6sk,deskl),
assign(p.de8k_locx,0.75),
a88ign(p.desk_locy,0.5),
as8ign(p.pcdesk,pcdeskl),
a8sign(p_pcdesk_locx,3.15),
as8ign(p„pcdesk_locy,0.5)] ,
[add(relation(on(deskl.layout))),
add(relation(on(pcdeskl,layout))),
add(relat iondocat ion(deskl ,0.75,0.5))),
add(relation(location(pcdesk,3.15,0.5)))]]]

requ68t : [agent4,[current_handled,0]]
reply : []
requeet : [agents,[a88ert_evaluation_result,

[2,agents,[0.0,0.0,0.0,0.0,-0.155952,-0.155952],
-0.SI1905,conilicting]]]

reply : .1392288
requeet : [agents,[8ignal_candidate_evaluated,0]]
reply : .1392288
requeet : [agent1,[candidate8.proposed,0]]
reply : ok
requeet : [agent2,[aeeert.evaluation.reeult,

[2,agent2, [0.114286,0.0,0.0,0.136842,-0.0161905,0.0514286] ,
0.286366,nonconflict ing]]]

reply : .1392288
requeet : [agent1,[get.candidates,0]]
reply : [[1,agent2, [tl,t2,tS,t4,t5,t6],

[assign(p.desk,deskl),
assignCp.desk.locx,1.25),
assignCp.desk.locy,0.5),
a8sign(p.pcdesk,pcdeskl),
assign(p.pcdesk.locx,0.25),
assign(p.pcdesk.locy,0.5)] ,
[add(relation(on(desk1,layout))),
add(relation(on(pcdeskl,layout))),
add(relation(location(deskl,1.25,0.5))),

APPENDIX A. A SAMPLE RUN 129

add(relat ion(location(pcdeskl ,0.25,0.5)))]],
[2,agents,[tl,t2,t3,t4,t5,t6],
[assign(p_desk,deskl),
assign(p_desk_locx,0.75),
assign(p_desk_locy,0.5),
assign(p.pcdesk,pcdeskl),
assign(p_pcdesk_locx,3.16),
assign(p_pcdesk_locy,0.5)],
[add(relation(on(deskl,layout))),
add(relation(on(pcdeskl,layout))),
add(relation(location(deskl,0.75,0.5))),
add(relation(location(pcdesk,3.15,0.5)))]]]

request : [agent2,[signal_candidate_evaluated,0]]
reply : .1392288
request : [agents,[assert.evaluation.result,

[1,agents,[0.0,0.0,0.0,0.0,-0.307692,-0.307692],
-0.615385,conflicting]]]

reply : .1392288
request : [agent4,[current.handled,0]]
reply : []
request : [agents, [signal.caindidate.evaluated,0]]
reply : .1392288
request : [agent1,[assert.évaluâtion.result,

[2,agentl,[0.0,0.0,0.0,0.0,0.0674604,-0.214286] ,
-0.146825,conflicting]]]

reply : .1392288
request : [agent2,[assert.evaluation.result,[l,agent2,

[0.114286,-0.024,0.0,0.136842,0.0534783,0.0514286],0.332035,
nonconflicting]]]

reply : .1392288
request : [agentl,[signal.candidate_evaluated,0]]
reply : .1392288
request : [agent2,[signal_candidate_evaluated,0]]
reply : .1392288
request : [agents,[candidate.evaduation.finished,0]]
reply : []
request : [agent4,[current.handled,0]]

APPENDIX A. A SAMPLE RUN 130

reply : []
request : [agentl,[assert_evaluation_result,

[l,agentl,[0.0,0.0136135,0.0,0.0,-0.222826,-0.214286],-0.423598,
conflicting]]]

reply : _1392288
request : [agent3,[candidate_evaluation_finished,0]]
reply : []
request : [agentl,[signal_candidate_evaluated,0]]
reply : .1392288
request : [agent4,[current.handled,0]]
reply : []
request : [agentl,[preferred.proposal.identified,0]]
reply : []
request : [agent3, [candidate.evciluation.finished,0]]
reply : ok
request : [agent2,[candidate.evaluation.finished,0]]
reply : ok
request : [agent4,[current.handled,0]]
reply ; []
request : [agentl,[preferred.proposal.identified,0]]
reply : []
request : [agent3,[preferred.proposal.identified,0]]
reply : []
request : [agent2,[signal.choose.proposal,0]]
scoreforO-0.290862
scorefor2-0.311905
scoreforl-0.615386
reply : .1392288
request : [agentl,[preferred.proposal.identified,0]]
reply : ok
request : [agent2,[preferred.proposal.identified,0]]
reply : ok
request : [agentl,[retrieve.preferred.and.score,0]]
reply : [[0,agent2,[tl,t2,t3,t4,t5,t6] ,

[assign(p.desk,deskl),
assignip.desk.locx,0.75),
assign(p.desk.locy,0.5),

APPENDIX A. A SAMPLE RUN 131

assign(p_pcdesk,pcdeskl),
assign(p_pcdesk_locx,0.75),
assign(p_pcdesk_locy,2.75)],
[add(relation(on(deskl,layout))),
add(relation(on(pcdeskl,layout))),
add(relation(location(deskl,0.75,0.5))),
add(relation(location(pcdeskl,0.75,2.75)))]],-0.290862]

request : [agents,[preferred_proposal_identified,0]]
reply : ok
request : [agent4, [current_haLndled,0]]
reply : ok
request : [agent1,[task.status,tl]]
reply : agreed
request : [agent2,[retrieve_preferred_and_score,0]]
reply : [[0,agent2,[tl,t2,tS,t4,t5,t6] ,

[assign(p_desk,deskl),
assign(p.desk_locx,0.75),
assign(p_desk_locy,0.5),
assign(p_pcdesk,pcdeskl),
assign(p_pcdesk_locx,0.75),
assign(p_pcdesk.locy,2.75)],
[add(relation(on(deskl,layout))),
add(relation(on(pcdeskl,layout))),
add(relation(location(deskl,0.75,0.5))),
add(relation(location(pcdeskl,0.75,2.75)))]],-0.290862]

request : [agents,[retrieve_preferred_and_score,0]]
reply : [[0,agent2,[t1,t2,tS,t4,t5,t6],

[assign(p.desk,deskl),
assign(p_desk_locx,0.75),
assign(p_desk_locy,0.5),
assign(p_pcdesk,pcdeskl),
assign(p_pcdesk_locx,0.75),
assign(p.pcdesk_locy,2.75)] ,
[add(relation(on(deskl»layout))),
add(relation(on(pcdeskl,layout))),
add (relat iondocat ion (deskl ,0.75,0.5))),
add(relation(location(pcdeskl,0.75,2.75)))]],-0.290862]

APPENDIX A. A SAMPLE RUN 132

request : [agent4, [retrieve.preferred_and_score,0]]
reply : [[0,agent2,[t1,t2,t3,t4,t5,t6],

[assign(p_desk,deskl),
assign(p_desk_locx,0.75),
assign(p_desk_locy,0.5),
assign(p„pcdesk,pcdeskl),
assign(p_pcdesk_locx,0.75),
assign(p_pcdesk_locy,2.75)],
[add(relation(on(deskl.layout))),
add(relation(on(pcdeskl.layout))),
add(relation(location(deskl,0.75,0.5))),
add(relation(location(pcdeskl,0.75,2.75)))]] ,-0.290862]

request : [agent2,[update_value,[p_pcdesk_locy,2.75]]]
reply : _1392288
request : [agent3,[update_value,[p_pc_locy,2.75]]]
reply : .1392288
request : [agent3,[update.value,[p_pc.locx,0.75]]]
reply : .1392288
request : [agent2,[update.value,[p.pcdesk.locx,0.75]]]
reply : .1392288
request : [agent2,[update.value,[p.pcdesk,pcdeskl]]]
reply : .1392288
request : [agent2,[update.value,[p.desk.locy,0.5]]]
reply : .1392288
request : [agent2,[update.value,[p.desk.locx,0.75]]]
reply : .1392288
request : [agent2,[update.value,[p.desk.deskl]]]
reply : .1392288

