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Abstract

MINIMIZING SCHEDULE LENGTH ON 

IDENTICAL PARALLEL MACHINES:

AN EXACT ALGORITHM  

H. Cemal Akyel
Ph. D. in Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Ömer S. Benli 
June 1991

The primary concern of this study is to investigate the combinatorial aspects 
of the single-stage identical parallel machine scheduling problem and to develop 
a computationally feasible branch and bound algorithm for its exact solution. 
Although there is a substantial amount of literature on this problem, most 
of the work in this area is on the development and performance analysis of 
approximation algorithms. The few optimizing algorithms proposed in the 
literature have major drawbacks from the computer implementation point of 
view. Even though the single-stage scheduling problem is known to be unary 
A/’P-hard, there is still a need to develop a computationally feasible optimizing 
algorithm that solves the problem in a reasonable time. Development of such 
an algorithm is necessary for solving the multi-stage parallel machine scheduling 
problems which are currently an almost untouched issue in the deterministic 

scheduling theory.



In this study, a branch and bound algorithm for the single-stage identical parallel 
machine scheduling problem is proposed. Promising results were obtained in 
the empirical analysis of the performance of this algorithm. Furthermore, 
the procedure that is developed to determine tight bounds at a node of the 
enumeration tree, is an approximation algorithm that solves a special class 
of identical parallel machine scheduling problems of practical interest. This 
algorithm delivers a solution that is arbitrarily close to 4/3 times the optimum. 
To our knowledge this is the best result obtained for this problem so far.

K eyw ords: Deterministic Machine Scheduling, Identical Parallel Machines, 
Minimizing Makespan, Computational Complexity Theory, 
Approximation Algorithms, Optimizing Algorithms, Perfor
mance Bounds.
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özet

ÖZDEŞ PARALEL MAKİNALARDA  

ÇİZELGE UZUNLUĞUNUN ENAZLANMASI:

BİR KESİN ÇÖZÜM ALGORİTMASI

H. Cemal Akyel 
Endüstri Mühendisliği Doktora 

Tez Yöneticisi: Doç. Dr. Ömer S. Benli 
Haziran 1991

Tek aşamalı özdeş paralel makinalı çizelgeleme problemlerinin kombinatoryel 
özelliklerinin incelenmesi ve hesap zamanı açısından uygulanabilir bir dal- 
sınır yönteminin geliştirilmesi bu çalışmanın ana içeriğini oluşturmaktadır. 
Çizelgeleme literatüründe bu problemle ilgili pek çok çalışma olmakla beraber, bu 
çalışmaların çoğu yaklaşık algoritmalar geliştirilmesi ve yaklaşık algoritmaların 
performans analizi ile ilgilidir. Literatürde önerilen kesin çözüm algoritmaları 
ise bilgisayar uygulamaları açısından bir takım problemleri içerir. Tek-aşamalı 
çizelgeleme problemleri için, MV-zox olmalarına rağmen, eniyi çözüm veren, 
çalışma zamanı açısından uygulanabilir algoritmalara ihtiyaç vardır. Zira böyle 
bir algoritma çok-aşamalı paralel makinalı çizelgeleme problemlerinin çözümü 
için gereklidir ki bu son sınıftaki problemler çizelgeleme kuramında hemen hiç 
dokunulmamış bir alanı belirlerler.

Bu çalışmada, tek aşamalı özdeş paralel makinalı çizelgeleme problemleri için bil

in



dal-smır algoritması önerilmiştir. Algoritmanın deneysel performans analizinden 
elde edilen sonuçlar ümit vericidir. Buna ek olarak dal-smır ağacındaki bir 
düğümdeki alt ve üst sınırları bulmak için geliştirilen algoritmanın kendi başına 
uygulanabileceği pratik durumlar da söz konusudur. Bu algoritma eniyi çözüm 
çarpı 4 /3 ’e istenen ölçüde yakın sonuçlar verebilmektedir. Bu da adı geçen 
problem için bildiğimiz en iyi sınırdır.

A nahtar
Sözcükler: Deterministik Makina Çizelgelemesi, Özdeş Paralel Maki- 

nalar, Çizelge Uzunluğunun Enazlanması, Hesap Karmaşıklığı 
Teorisi, Yaklaşık Algoritmalar, Kesin Çözüm Algoritmaları, 
Performans Sınırları.
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Chapter 1

Introduction

The theory of deterministic scheduling is concerned with the development and 
analysis of mathematical models which are useful in real life. In practice, 
scheduling problems may arise in a variety of situations. For example, consider a 
production system in which a set of jobs, each requiring a sequence of operations 
(routing) is to be performed by using a number of machining centers (stages). 
To perform a job, each of its operations must be processed in the order given by 
the routing. The processing of an operation requires the use of a particular stage 
for a given duration. Each machine of a stage can process only one operation 
at a time. Given a criterion to measure the quality of each possible (feasible) 
schedule, the problem is to find a processing order on each machine.

From the practical point of view, it can be argued that most deterministic 
scheduling models developed in the literature have certain restrictive assump
tions. The crucial assumption that is usual in these models is related with the 
configuration of a production environment. In multi-stage scheduling problems 
availability of several parallel machines at each stage of production increases the 
routing flexibility and hence allows the greater possibility of generating “better” 
schedules. Unfortunately, scheduling models developed for these problems 
frequently assume the availability of a single machine at each stage of production.



Although the above assumption is unrealistic, it is enough to make most of the 
scheduling problems MV-hard. A recent study due to [Lawler et al. 1989] showed 
that over 4,536 scheduling problems (class of problems) defined in the literature, 
only 416 were solvable in polynomial-time. 3,817 problems were shown to be 
A7'P-hard (3,582 of them were unary MV-hard). The status of 303 was unknown 
at the time the study was done. Perhaps these complexity results are the primary 
reason why more general models without this assumption are not well-studied in 
the literature. Nevertheless, these latter class of problems does exist and requires 
solutions.

The purpose of this study is to investigate the combinatorial aspects of 
a single-stage identical parallel machine scheduling problem, and develop a 
computationally feasible branch and bound algorithm for its exact solution. 
Undoubtedly, such an efficient algorithm is a basic requirement in solving the 
general class of multi-stage parallel machine scheduling problems.

The following section formally defines the class of problems that is the main 
concern of this study.

Chapter 1. Introduction 2

1.1 Problem Definition

Scheduling independent and nonpreemptable jobs on identical parallel machines 
so as to minimize schedule length (makespan) is one of the fundamental problems 
in deterministic scheduling theory. In an instance Ipms =  (<7, M )  of this problem, 
we are given

• a set of independent jobs, each job Jj having a
processing time pj € 2'^, and

• a set Af =  {Ml., M2, ,  Mm} of identical parallel machines.

In an instance Ipms, we assume that m > 2 and m < n since otherwise the 
problem is trivial (if m =  1, the makespan is equal to for any sequence
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of n jobs and if m > n, the makespan is equal to the processing time of the 
longest job).

As described in [Coffman et al. 1978], a feasible (nonpreemptive) schedule is a 
partition V =  { . . . ,  ) oi J  into m disjoint sets, one for each machine.
The machine M,· (i =  1, 2, . . .  ,m) processes jobs in V\ The total completion time 
of jobs in V' (i =  1, 2, . . . , m )  is /(P ‘ ) where 1{X) — X  C V
(for an empty set, /(0) =  0). Such a completion time is possible since we assume 
that jobs are independent and thus a machine can process them consecutively 
without any idle time. The makespan for the schedule P  is then given by

CmaxiV) — max /(P ‘ )
l<i<m

This abstract problem can be used to model a variety of problems in the real 
world [Garey and Johnson 1981]. In a television station, machines could stand 
for commercial breaks and jobs could stand for commercials themselves. Given 
the duration of each commercial, the aim is to allocate the commercials into 
breaks such that the durations of breaks are as equal as possible. This objective 
can equivalently be stated as to minimize the maximum break-length that is, 
the schedule length. In a computer system, machines could be identical parallel 
processors and jobs could be independent tasks. Given the processing time of 
each task, the aim is to distribute the load among the processors as uniformly 
as possible. In the plumber’s pipe-cutting problem, a plumber needs a collection 
of pipes of lengths pi,. . . ,pn,  which can be obtained by cutting up purchased 
pipes with a standard length C. The plumber wishes to buy minimum number 
of these G-length pipes. Given an upper bound, ub, and a lower bound, lb, on 
the number of pipes that are to be purchased, the plumber can form a related 
single-stage identical parallel machine scheduling problem by treating pipes to 
be cut as jobs and the midpoint of lb and ub as the number of identical parallel 
machines. If the optimal makespan for the latter problem turns out to be greater 
than C, then the current number of purchased pipes is not enough to cut the 
needed pipes and hence lb is updated to the midpoint. If else ub is updated. 
This way, in a binary search the plumber determines the minimum number of



purchased pipes. The same strategy can be used to solve several other problems. 
In a classroom scheduling problem, given the duration of each class and the total 
availability time, C of each room, the aim is to determine minimum number of 
rooms required to schedule all of the classes. In a truck loading problem, items 
with given weights have to be packed into minimum number of trucks each having 
a finite capacity C.

Although the above interpretations are possible, we will be using the production 
terminology throughout this study. The problem of determining an optimal m- 
machine schedule P , with minimum =  Cmax{V )̂ is denoted by \\P\\Cmax·,
using a notation similar to the one in [Graham et al. 1979]. In this notation 
(see Appendix A for details) each scheduling problem is represented by a 4-tuple 
a|^|7|i, where

• a identifies the production environment, such as single stage (1),

• ¡3 identifies the machine environment at each stage of production, such as 
identical parallel machines (P ),

• 7 identifies further assumptions of the scheduling problem, such as “job 
preemption (pmtn) allowed” , “each job must be completed by its deadline 
dj'\ etc.

• 8 identifies the optimality criterion of the scheduling problems, such as 
makespan [Стах)·

Chapter 1. Introduction 4

In Chapter 2, the characteristics of an optimum solution to l\P\\Cmax are 
analyzed and the previous approaches to solve this problem are reviewed. A 
discussion on the major drawbacks of these approaches concludes that there is a 
lack of an exact algorithm which solves \ \P\\Cmax in a reasonable time. The main 
chapter. Chapter 3, presents a detailed development of the branch and bound 
algorithm, including the computational results. In Chapter 4, the significance 

and the importance of the results of this study and possible directions for future 
research are discussed. In Appendix A, the details of the classification scheme for
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deterministic scheduling problems are presented. Appendix B provides a glossary 
of basic complexity theoretic concepts used in the study. Finally, the detailed 
computational results are given in Appendix C in tabular format.



Chapter 2

A Single-Stage Identical Parallel 
Machine Scheduling Problem

It is not difficult to be deceived by the apparent simplicity of the class of 
scheduling problems \\P\\Cmax·, thus underestimating the complexity of the 
problem. The scheduling of n independent jobs on m identical parallel machines 
is among the hardest problems in the scheduling theory. A few number of 
optimizing efforts, each failing to solve the problem, reported in the literature can 
be considered as an indicator of this fact. However some of the characteristics of 
the problem makes the development of “good” algorithms possible. In Section 2.1, 
these characteristics will be discussed and the complexity class of the problem will 
be identified. Section 2.2 reviews the optimizing algorithms developed to solve 
\̂P\\Cmax and discusses their major drawbacks. In Section 2.3, we will briefly 

review one of the promising research areas of the deterministic scheduling theory, 
development of approximation algorithms for \ \P\\Cmax with “good” performance 
guarantees.



2.1 Problem Characteristics

An analysis of problem characteristics provides an insight which may be useful 
in developing efficient solution procedures. For l\P\\Cmax·, even the trivial 
property stated in the following lemma leads to a substantial reduction in 
the computational burden of the proposed implicit enumeration algorithm (see 
Chapter 3).

Lem m a 2.1 There exists an optimal schedule for l\P\\Cmax in which at least 
one job is assigned on machine M,· V f =  1, 2, . . . ,  m.

P roo f: Suppose the contrary, that is, there is an optimal schedule P , in which 
no job is assigned on machine Af,j for some ii =  1, 2, . . . , m .  Without loss of 
generality, assume that C^^x — CmaxiV )̂ =  for some ¿2 =  1, 2, . . . , m ,  is
the makespan of this schedule. By scheduling job Jj 6 Vp on machine M,·, we 
obtain another schedule P ,. in which 1{VI\) < l{Vp). Furthermore, V £ ^ ii, 

^  — CmaxiV*)· Thus we obtain a contradiction that Cmax{P»^) <

^max·

The following lemma provides a necessary condition that an optimal schedule for 

l\P\\Cmax satisfies.

Lem m a 2.2 In an optimal schedule to \\P\\Craax> the earliest start time of job Jj 
on machine Mi, E STji < \ =  (l/m )/(j7 ’) V 7 =  1, 2, . . .  ,n and i =  1,2 . . .  ,m.

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 7

P roo f; Suppose for a contradiction that there is an optimal schedule in which 
jFS'TjjVj >  A for some job Jjj {ji =  1, 2, . . . , n )  and some machine M,·, (¿1 = 
l , 2, . . . , m ) .  Then there exists at least one other machine Mî  (¿2 7̂  ¿1) with 
ESTj î  ̂ < ESTj^i, since ESTj^  ̂ < l(J)  =  mA. Thus by scheduling job Jj, 
on machine we obtain a contradiction. ■

The well-known A/"P-hardness result due to [Garey and Johnson 1979] rules out 
the possibility of finding necessary and sufficient conditions which can be used to
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determine an optimal schedule for llPIIC^aa: in polynomial-time (since otherwise 
V =  AfV, which is extremely unlikely). In the remainder of this section, the 
above complexity result will be discussed in detail. In this discussion (and in 
the remainder of this study) we will use the relationship between the single-stage 
identical parallel machine scheduling problem and the bin packing problem.

In an instance Î p =  [J^m) of the bin packing problem, II^p, we are given

• a set 7̂ =  {7 i, J2, . . . ,  7„} of jobs (or, pieces) of size pj for each Jj G J^ 
and

• a set B =  {B i, Bii - · ·, Bm] of bins with unit bin sizes.

The aim is to decide whether or not there exists a feasible packing. A feasible 
packing can be considered as a feasible schedule V  which finishes at (or, before) 
time one (that is, the size of each bin). Such a packing may exist since we assume 
that in a nontrivial instance I^p, Pj < 1 V Jj € J . Otherwise, the answer for 
the above decision problem is always “no feasible packing” since at least one job 
cannot fit into a bin.

\\P\\Cmax can now be viewed as determining minimum bin size r*, for which a 
feasible packing exists. Suppose that we have a procedure exacthinpack which 
given an instance Î p either outputs “no feasible packing” or determines a feasible 
packing (that is, the procedure outputs “yes” ) for the decision problem IT̂ p. 
Procedure 2.1 uses the procedure exactbinpack in a binary search to determine 
a minimum makespan schedule for the problem l\P\\Cmax· It is initialized with 
lower {lb) and upper {ub) bounds on the optimum schedule length, For the
midpoint r of the current range of possible optimum makespan values, related 
bin packing problem is exactly as defined before, except that the bin sizes r >  1. 
Therefore, the binary search procedure determines the scaled instance I^p/r· after 
dividing job and bin sizes by r. Clearly such a scaling does not affect the essential 
structure of the original instance. The procedure exactbinpack is called for the 
scaled instance if s. feasible packing (schedule) is determined, then the
upper bound is updated to the midpoint, otherwise the lower bound is updated.
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P roced u re  2.1: An exact binary search procedure for \\P\\Cmax 

argum ents
Ipms: an instance of \\P\\Cmax 
lb: a lower bound for l\P\\Cmax 
ub: an upper bound for \\P\\CTnax

procedu re called
exactbinpack: a hypothetical procedure that solves the bin packing problem IÎ p

procedure exactbinarysearch (lpms,lb,ub) 
begin

while ub — lb >  1 
begin

r :=  {ub +  lb)/2
if exactbinpack (I^p/i") outputs “no feasible packing” 

lb :=  r 
else 

ub := r
end

output and the schedule related with ub
end

Thus at each packing attempt ( “iteration” ) lb and ub are still lower and upper 
bounds on the problem, respectively. Moreover, [lb] and [u6J are also respective 
lower and upper bounds since all of the processing times are integer. Hence the 
search can be terminated whenever ub—lb < 1 with C^^x ~  since [u6J < f/6] 
is a lower bound

This search interval is called the interval of uncertainty. After £ iterations of 
a binary search, the size of this interval is reduced by a factor of 2“ .̂ Thus 
O (log \ub — lb~\) iterations are required to satisfy the stopping condition of 
Procedure 2.1, ub — lb < 1. The initial lower and upper bounds are described in 
the following lemmas.
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Lem m a 2.3 [McNaughton 1959] A lower bound on \\P\\Cmax is

max{/(i7)/m, max pj}J j G JT"

P roo f: is at least maxj^^jpj since each job has to be processed in any
schedule for l\P\\Cmax· Furthermore the inequality 1{J) <  must hold
since otherwise there is no way to finish all of the jobs by the time ■

The above lower bound is also an optimal makespan value for llPlpm^njCTOai:·

Lem m a 2.4 [Graham 1966] An upper hound on \\P\\Cmax is 2/6.

P roo f: Due to Lemma 2.2, in an optimal schedule, a job starts its processing on 
a machine before ( l /m ) /(J ’) <  lb. Hence — lb ^  naaxj^ejrPj < lb. Thus 
C* <  2/6. ■max —

As it will be discussed in Section 2.3, it is possible to improve these bounds. 
Nevertheless, it is sufficient to show that Procedure 2.1 is polynomial in the binary 
encoding of the input provided that the procedure exactbinpack is polynomial. 
Unfortunately, the latter possibility is extremely unlikely since the bin packing 
problem H^pis unary A/’P-complete as shown in the following theorem.

T h eorem  2.1 [Garey and Johnson 1979] The bin packing problem H^p/s unary 
MV-complete.

P roo f: Without loss of generality, we assume that in the bin packing problem the 
size of each bin is r >  1. Consider the following unary A/’P-complete recognition 
problem [Garey and Johnson 1979]:
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3-PARTITION:

INSTANCE: A finite set S  of 3m elements, a bound r G and a “size” 
Pj  G for each Jj G such that each pj satisfies r /4  < pj < r /2  and such 
that Y,j.^jPj =  mr.

QUESTION: Can ¿1 be partitioned into m disjoint sets . . . ,  such that,
for 1 <  f <  m, /(P ') =  r?

An instance of the 3-PARTITION is a special case for the bin packing problem 
in which piece sizes and the number of pieces are so restricted that in a feasible 
packing each bin must contain exactly three pieces. Hence, we can directly use 
the procedure exactbinpack to solve an instance of 3-PARTITION (see Procedure
2.2). Clearly if exactbinpack were a (pseudo) polynomial-time procedure then 3-

P rocedure 2.2: A solution procedure for 3-PARTITION

argum ent
I: an instance of 3-PARTITION 

procedu re called
exactbinpack: a hypothetical procedure that solves the bin packing problem Ĥ p

procedu re 3 — partition ( / )  
begin

call exactbinpack t) 
if  1{V') < T V i =  1, 2, . . . ,  m or 

“no feasible packing” is output then 
output “no” 

else
output “yes”

end

PARTITION would be solved in (pseudo) polynomial time which is not possible 
unless V=AfV.  Therefore the bin packing problem is unary A/'P-complete. ■



T heorem  2.2 [Garey and Johnson 1979] The general problem class l\P\\Cmax, 
is unary AfV-hard.

P roo f: Without loss of generality, we assume that in the bin packing problem 
the size of each bin is r >  1. Suppose that we have a hypothetical subroutine, 
Ipcmax, which solves l\P\\Cmax to optimality in (pseudo) polynomial-time. 
Using Ipcmax we can solve the bin packing problem H^pas shown in Procedure 
2.3.
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P rocedure 2.3: A solution procedure for the bin packing problem IIlbp

argum ent
I^p: an instance of the bin packing problem, IT̂ p 

procedure called
Ipcmax: a hypothetical subroutine that solves llPUGn

procedu re exactbinpack (I^p) 
begin

call Ipcmax (Ipms) 
if  Стах >  1 then 

output “no feasible packing” 
else

output “yes” and the packing (schedule)
end

This shows bin packing problem is Turing-reducible to l\P\\Cmax· Hence the 
latter problem is unary A/'P-hard since the former is unary WP-hard due to 
Theorem 2.1. ■

Above complexity result provides a formal justification to use an implicit 
enumeration algorithm to determine an optimal solution for the problem.



2.2 Optimizing Algorithms

A quick review of the scheduling literature suggests that there is a lack of efficient 
optimizing algorithms for l\P\\Cmax (See for example [Lawler et al. 1982; Lawler 
et al. 1989; Cheng and Sin 1990]). In the following sections we will analyze 
the algorithms based on the two approaches: Branch and Bound and Dynamic 
Programming.

2.2.1 A  Branch and Bound Algorithm
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In [Lawler et al. 1982] the only branch and bound algorithm for \\P\\Cmax is 
reported as the algorithm due to [Bratley et al. 1975]. However this algorithm is 
developed to solve l|P|rj, dj\Cmaxi a general case of \\P\\Cmax· In this section we 
argue that the above algorithm, when applied to the special case fails to provide 
an efficient solution procedure.

Consider a related scheduling problem \\P\rj,dj\Cmax· In an instance of this 
problem we are given a set =  { Ji, ^2» · · ·, of independent jobs and a 
set M  — {M l, M 2, . . . ,  of identical machines (m < n). Each job Jj 
(j =  1, 2, . . . , n )  becomes available for processing at a ready time rj >  0; has 
a processing time pj € and must be completed by a deadline dj (in a
nontrivial instance dj > rj + Pj)·  The aim is to determine a feasible schedule 
(if any) that minimizes makespan. In this problem, if we let rj =  0 and 
dj =  ub V y =  1, 2 , . . .  ,n, where ub is an upper bound on the optimal schedule 
length, the problem reduces to l\P\\Cjnax· The implication of this observation 
is twofold. First, \\P\rj d̂j\Cmax is unary MV-haxd since its restricted version 
(i.e. l\P\\Cmax) is unary A7P-hard (see Theorem 2.2). Second, an optimizing 

algorithm for l\P\rj,dj\Cmax can be used to solve l\P\\Cmax·

In l\P\rj,dj\Cmaxi a feasible schedule can be considered as a partition V  =
( ) of J  into m disjoint sets, one for each machine M,· [i =
1, 2 . . . ,  m), such that the completion time of a job Jj € V\ Cj{V') < dj. In other



words, a feasible schedule corresponds to an assignment of jobs to machines such 
that (i) no job is processed on more than one machine, and (ii) the jobs assigned 
on a machine must be completed before their deadlines. It is the second property 
that makes the sequencing of jobs on a machine necessary. For instance, consider 
jobs Jjj and Jjj that are somehow assigned on a machine M{ with =  2, 
Tj-j =  3, pji =  1, pĵ  — 2, djj =  6 and dĵ  = 5 . In a feasible schedule, the sequence 
of these jobs has to be Jjj — Jj, is processed before J j,” ). The problem
of determining a feasible sequence of jobs on a machine (i.e. a sequence that 
results in a feasible schedule) is denoted by \\\rj,dj\Cmax·, using the notation in 
Appendix A. In this feasibility problem, although there is no need to specify an 
objective, we arbitrarily choose Стах in order to be consistent with the overall 
objective in 1|Р|г̂ , dj\Cmax· The sequencing problem l||rj, dj\Cmax is unary MV- 
hard (complete) due to the following proposition.

P rop osition  2.1 The sequencing problem \\\rj,dj\Cmax is unary MV-hard.
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P roo f: Suppose for a contradiction that there exists an (optimizing) algorithm 
Irjdjcmax which solves l\\rj.,dj\Cmax in polynomial-time. In an instance I of 
this problem we are given a set J  oi n jobs. Each Jj € J  becomes available for 
processing at a ready time ry > 0; has a processing time pj G Z'̂ ·, and must be 
completed by a deadline dj.  Consider another sequencing problem \ \\rj,dj\Lmax 

which is known to be unary A/'P-hard [Lenstra 1977; Rinnooy Kan 1976]. An 
instance I' of this latter problem is same as / ,  except that a job Jj G J  may 
not be completed by its due date dj. The objective is to minimize the maximum 
of the differences between the job completion times and their due dates (i.e. 
Lmax)· Let lb and ub denote lower and upper bounds on the minimum Lmax- 
Clearly lb =  —dmax — —maxjj^j dj (none of the jobs are scheduled) and ub = 

rmax +  Y2jj€jPi ~  Scheduled after
maximum ready time rmax and dj = 0 V J j  E ¿1) are the simple bounds on 
this problem. Procedure 2.4 uses the procedure Irjdjcmax in a binary search to 

determine a schedule which minimizes Lmax  for the problem l\\rj.,dj\Lmax·
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P rocedu re 2.4: An exact binary search procedure for solving l\\rj,dj\Lj, 

argum ents
F: an instance of l\\rĵ dj\Lmax 
lb: a lower bound for l\\rj,dj\L 
uh: an upper bound for \\\rj,dj\L.

max 
max

procedure called
Irjdjcmax: a hypothetical procedure that solves 1||г̂ , djlCn

procedure lrjdjlmax{I',lb,ub) 
begin

while ub — lb >  1 
begin

Lmax :=  {ub +  /6)/2 
dj := dj + Lmax V Jj E J 
if  Irjdjcmax (I) outputs no feasible schedule 

lb :=  Lmax 
else

u b L m a x
end

output and the schedule related with ub
end

Procedure 2.4 determines in О {u b-lb ) = О {J2jjeJPi dmax) calls
of the procedure Irjdjcmax. Therefore, it would be polynomial in the binary 
encoding of the input provided that the procedure Irjdjcmax were a polynomial

time subroutine for l\\rj.,dj\Cmax· Thus l||rj,djlTmax is Turing reducible to 
l\\'’'j-,dj\Cmax· Thus the latter problem is unary A/^P-hard since the former is 
known to be unary AfV-havd. ■

The above complexity result justifies the enumeration of all possible arrangements 
of n jobs on m machines. The number of arrangements of n jobs on exactly m
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machines is

(2.1)

This number can be verified as follows: suppose we have fixed a job on a machine
\

(say Ji on Ml). Then there are ( ) different ways to assign the remaining

n — 1 jobs (selected from a given list) to m machines. Since there are (n — 1)!
• 72 __ \different ways of forming a list of remaining jobs, we obtain ( )(n — 1)!

771— 1

distinct schedules provided that the job Ji is fixed on machine Mi. Each time 

fixing one job Jj (j =  2 ,... ,n) on machine Mi we obtain ( )(n — 1)! distinct

schedules provided that the job Jj is fixed on machine Mi. Since there are m! 
different ways to arrange m identical machines, the number of distinct schedules 
that uses exactly m machines will be (2.1).

To the best of our knowledge the only (optimizing) algorithm for l\P\rj,dj\Cmax 
is due to [Bratley et al. 1975]. In their branch and bound algorithm, leaf nodes 
of the enumeration tree correspond to all possible arrangements of n jobs on m 
or less machines. Using (2.1), it is easy to see that the total number of leaf nodes 
is

Table 2.1 shows how this number changes as n and m changes.

As opposed to the situation in l\P\f'j,dj\Cmaxi the ordering of the jobs that are 
assigned on the same maclxine is immaterial in l\P\\Cmax· Therefore, the set of 
schedules that the branch and bound algorithm of [Bratley et al. 1975] enumerates 
is much larger than what is required for l\P\\Cmax· Moreover, the computational 
results presented in [Bratley et al. 1975] suggest that the performance of the 
algorithm is poor even for l\P\rj,dj\Cmax·  The problem instances that were 
generated in their empirical analysis are small and easy problems. In the largest 
problem instance generated, n =  25 and m =  3. When the processing time 
variability increases slightly, the branch and bound algorithm fails to solve 40% of 
the generated problems to optimality. This failure is partly due to the redundant
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Table 2.1: Number of leaf nodes in the enumeration tree proposed by fBratley 
et al 1975]

m
1 2 3 4

1 1 - - -

2 2 3 - -

3 6 12 13 -

4 24 60 72 73
5 120 360 480 500
6 720 2520 3720 4020

n 7 5040 20160 32760 36960
8 40320 181440 322560 381360
9 362880 1814400 3507840 4354560

10 3628800 19958400 41731200 54432000
11 39916800 239500800 538876800 738460800
12 479001600 3113510400 7504358400 10797494400
13 6227020800 43589145600 112086374400 169167398400
14 87178291200 653837184000 1787154969600 2826029606400
15 1307674368000 10461394944000 30294456192000 50127517440000

m
5 6 7 8

1 - - - -

2 - - - -

3 - - - -

4 - - - -

5 501 - - -

6 4050 4051 - -

n 7 37590 37632 37633 -

8 393120 394296 394352 394353
9 4566240 4594464 4596480 4596552

10 58242240 58877280 58937760 58941000
11 808315200 822286080 823949280 824068080
12 12114748800 12422108160 12466016640 12469937040
13 194853859200 201703582080 202845202560 202967519040
14 3345466924800 3501298120320 3530980252800 3534690519360
15 61035701126400 64671762355200 65450918332800 65562226329600

enumeration of schedules in which no job is assigned on at least one machine. 
It is trivial to show that in l\P\rĵ ,dj\Ĉ nax■ı there exists an optimal schedule (if 
there exists a feasible solution) in which at least one job is scheduled on every 
machine Mi (i =  1, 2, . . . ,  m). Furthermore the branch and bound algorithm 
does not use an effective bounding scheme to cut the size of the tree.
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2.2.2 Dynamic Programming Approaches

In the literature there are several dynamic programming formulations for the 
general problem l\P\\Cmax or its restricted version in which the number of jobs 
with distinct processing times is fixed. Dynamic programming formulations that 
solve the general J.|i’ llC'mo® problem are due to [Rothkopf 1966; Lawler and Moore 
1969; Blazewicz 1987]. First two of these formulations, [Rothkopf 1966; Lawler 
and Moore 1969], were not originally developed to solve l\P\\Cmax but for more 
general class of scheduling problems. The last formulation, [Blazewicz 1987], was 
developed specifically for the l\P\\Cmax·  In Section 2.2.2.1, these formulations 
will be discussed. The algorithm due to [Sahni 1976] solves l\P\\Cmax by using 
the above formulations in a straightforward manner and will not be discussed 
in this section. In Section 2.2.2.2, we will present the work due to [Hochbaum 
and Shmoys 1988], a polynomial-time dynamic programming formulation for the 
special case of \ \P\\Cmax· This formulation plays an important role in developing 
a polynomial e-approximation scheme for the problem (see Section 2.3.2).

2.2.2.1 Dynamic Programming Formulations for the General Case

The formulations due to [Rothkopf 1966; Lawler and Moore 1969] are quite 
general providing a dynamic programming technique for a variety of scheduling 
problems including l\P\\Cmax as a special case. As mentioned in [Rothkopf 1966; 
Lawler et al. 1989], the technique is applicable to any parallel machine scheduling 
problem (where the machines may not be identical and the objective may be of 
the general form f j  or fmax) if following condition is satisfied: it is possible 
to index the jobs in such a way that the jobs assigned on a given machine can 
be assumed to be processed in the order of their indices. In l\P\\Cmax this 
assumption is certainly valid for any indexing of jobs since order of the jobs 
scheduled on a machine is immaterial. However, the technique when applied for 
a particular problem (in our case l\P\\Cmax) has some computer implementation 
problems that makes it impractical (such as large space requirements, average



run-time being close to the time-complexity of an algorithm). In what follows we 
first state the formulations developed for l\P\\Cmax by using this technique.

D ynam ic program m ing form ulation for l\P\\Cmax [R oth kop f 1966] Let
F j(ti,t2, . . .  ,tm) denote the minimum makespan for the scheduling problem in 
which jobs J i,. . .  ,Jj are to be scheduled nonpreemptively on m machines without 
an idle time such" that none of these jobs start on a machine M,· (i =  1, 2, . . .  ,m) 
before the time i,·. Then the recursive equation becomes:

F j{h ,t2, . . . , tm )=  mm {max{i,· -f p j,. . . ,  i^ ) } }

where Fo{ti, ¿2, · · ·, tm) =  0.

F j(ti,t2,...,tm )  is computed for ;■ =  0, 1, . . .  ,n; =  0, 1, . . . ,  t/; i =  1, 2, . . . ,  m,
where U is an upper bound on the minimum makespan. The problem is solved 
by the calculation of T’n(O) 0, . . . ,  0).

D ynam ic program m ing form ulation for \\P\\Cm.ax [Lawler and M oore  
1969] Let F j(ti,t2 , . . .  itm) denote the minimum makespan for the scheduling 
problem in which jobs are to be scheduled nonpreemptively on m
machines without an idle time such that no job is completed later than time 
ti on machine Af,· (i =  1, 2, . . .  ,m). Then the recursive equation becomes:

F j(ii,i2,...,tm ) =  mm {max{i,·, . . . ,  t,· -  py,. . . ,  i ^ ) } }
K i< m
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where

To(ii ,t2)··· ,  tjn) —
0 if ti = 0 for i = 1 ,2 ,..., m 
-|-oo otherwise

F j{ti,i2, t m )  is computed for ;  =  0, 1, . . . ,  n; i,· =  0, 1, . . . ,  C/; i =  1, 2, . . . ,  m. 
The problem is solved by the calculation of Fn{U, U ,.. . ,  U).

Although there is a slight difference between the above formulations, the time 
required to solve the related recursive equations is the same. In each of these



formulations, we have O (U^) different states in a stage (simply each for some 
Mi may take a value between 0 and U). For each state we spend O (m) time to 
compute the outer minimization in , tm)· Then for n stages the total
effort is bounded by O [mnU'^).

D ynam ic program m ing form ulation for \\P\\Cma.x [B lazewicz 1987] In
this formulation the computational effort is reduced. Let
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Fj{t\ , ¿2) · · · 1 tm) — ^

true if jobs J i,... ,Jj can be scheduled
on machines M i, M2, ■ ■ ■, Mm 
in such a way that M,· is busy 
in time interval [0, i,·] f =  1, 2, . . . ,  m 

false otherwise

where

Fo{tl,t2, . . . ,  tm) —
true if =  0 for i =  1, 2, . . .  ,m 
false  otherwise

Then the recursive relation is
m

^jit\i ¿2) · · · itm) — \J Fj^ilfi^ . . . ,t{ P jj.. . ,  tm)
t = l

After F j(ti,t2, . . .  ,tm) is computed for j  =  0, 1, . . . ,  n; ¿,· =  0 ,1 , . . . ,  17; i  =
1 ,2 ,... ,m, the minimum makespan is determined as

=  m in{m ax{ii,t2, | Fn{ti,t2, . . . , t m )  = true}

Time complexity of the above procedure is O inU'^) (effort spent in determining 
the outer minimum of the recursive equations in the previous formulations is 
eliminated since the value of Fj(ii, ¿2, · · ·, tm) can immediately be determined as 
true whenever F}_i ( i i , ¿2, · · · it i—p j,. . . , tm) turns out to be true at the previous 
stage).

Observing that only m — 1 of the values t\,t2,...,tm  in the equations 
Fj{t\,t2, . ■ ■, tm) of the above formulations are independent (i.e. once a schedule



is determined for m — 1 machines, the schedule on the m-th machine can 
be determined by simply scheduling the remaining jobs on this machine), we 
improve the time bound to O (or to O in the formulation
of [Blazewicz 1987]). This bound can further be reduced to O (mn2^U). 
In l|P||a,„a^, schedules V  =  ( V \ V \ ...  . . .  ,V^,.. .  ) and P " =
( P ^ P ^ . . . , P ^ . . . , P ^ . . . , P ' "  ) (i =  l , 2, . . . , m ; ^ =  l , 2, . . . , m )  have the
same makespan yalue since the machines are identical. This type of schedules are 
referred as symmetric schedules. Consider the dynamic programming formulation 
of [Lawler and Moore 1969]. At any stage j  of the dynamic programming, the 
(redundant) enumeration of symmetric schedules can be avoided in O (t/m 2") 
time as follows: (i) select a subset of the set { J j , . . . ,  Jj} (a subset has a length 
between 0 and U), (ii) select m subsets one for each machine (the outer minimum 
can be updated during this selection) and (iii) check whether or not the selected 
subsets are distinct by searching O (2” ) sets in the set of all subsets. Since the 
above steps are repeated for each stage, the total effort becomes O (mn2"17). 
Such a procedure has a storage requirement of at least O (2") (to store all 
subsets of the set {Ji,· - ■ ,Jj}· This number excludes the storage requirement 
for intermediate solutions at a stage). Clearly such a procedure is impractical 
considering realistic problem instances. Furthermore any attempt to reduce the 
storage requirement increases the computation time.

2.2.2.2 A Dynamic Programming Formulation for the Special Case
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In this section we present a dynamic programming formulation for the bin packing 
problem II^p, in which there is a fixed number Â; > 0 of piece sizes. An algorithm 
that uses this formulation is polynomial if k is fixed. As we discussed in Section
2.1, an optimizing algorithm for this problem can be called polynomial number 
of times to determine an optimal solution for \\P\\Cmax (see Procedure 2.1).

Consider an instance of the bin packing problem H^pin which we are given Uj 
jobs having processing time pj for all j  =  1, 2, . . . ,   ̂and for some A: > 0. For such
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an instance, a packing V' of a bin Bi (i — 1 , 2 , ,  m) can be uniquely described 
by an array of the distribution of piece sizes that are packed in that bin. Such 
an array is called a configuration [Hochbaum and Shmoys 1987; Hochbaum and 
Shmoys 1988]. In a configuration (xi,X 2, . . .  ,Xk), an entry xj {j =  1,2, ...,A:) 
shows the number of pieces with size pj that are packed in a bin. A configuration 
is called feasible if each Xj >  0 and xjpj <  1 (the bin size).

Let the state vector F, =  {un,Ui2, . . .  ,Uik) be the distribution of the unpacked 
pieces of each size before we pack the bin Bi. Then Uij (i =  1,2, . . . , m  — 1; 
j  =  1, 2, . . . ,  Â;) is the number of unpacked pieces of size pj before we pack the 
bin B{. Since each entry can take a value between 0 and n, total number of 
possible state vectors when packing a bin is n*'. Consider a directed layered 
graph where the nodes correspond to state vectors. Let Vo,. . . ,  Kn be the nodes 
in the 0-th through m-th layers, respectively. V, {i =  1,2, . . . , m  — 1) contains 
a vertex Fi for each possible state vector. Vo and Vm are the dummy nodes; 
the former corresponding to the initial distribution of piece sizes and the latter 
corresponding to the “success” node where all the pieces are packed feasibly (that 
is, Fm =  (0 ,0 , . . . ,  0)). From each node F{, there is an arc directed towards the 
node F’.+i if and only if there is a feasible configuration {xi,X 2, · · ·, ^k) such that

(^(t-l-l)lî ^(i+l)2) · · · > (̂¿+1)/:) (^tlj '̂ ¿̂2) · · · > Uii · ■ · ■> ’̂ ik) ^ 1,2, ... ,k

In the directed layered graph, there exists a path from Vo to if and only if 
there exists a feasible packing. The complexity of the algorithm is determined 
as follows: at a layer of the graph we have O (n*) nodes for which O {n^) 
configurations (arcs) have to be constructed. Since the feasibility of each node is 
checked in O (n) time, time bound of an algorithm is O (n^^+ )̂ for each layer. 
Thus for O (m) layers, the complexity of the algorithm is O which is
polynomial when k is fixed.

As far as the real life scheduling problems are concerned, there may be cases 
where the assumptions on the problem instance become realistic. Consider a 
shop for example, where items are similar to each other and require almost the 
same amount of processing. In this case the above formulation has practical



importance. Moreover, as it will be presented in next section, it can be used to 
develop approximation algorithms with as small performance guarantees as we 
wish to solve the general problem.

2.3 Approximation Algorithms

In the deterministic scheduling literature the most studied scheduling problem 
from the viewpoint of approximation algorithms is l\P\\Cmax [Lawler et al. 1989]. 
The focus of the research is on the development of an approximation algorithm 
and/or on the performance analysis of an approximation algorithm. In general 
these algorithms can be classified as

(i). list scheduling algorithms, and

(ii). bin packing based algorithms, the algorithms that are using the relation 
between l\P\\Cmax and the bin packing problem II^p(see Section 2.1).

In this section, we present the approximation algorithms which play a pioneering 
role by giving rise to the development of several other algorithms in the same 
category. Although we state the performance guarantee of each algorithm, the 
details of their derivation are not presented. See [Coffman et al. 1988; Fisher 
1982; Friesen 1978; Garey et al. 1978] for a review of the related research.

2.3.1 List Scheduling Algorithms
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The motivation behind these algorithms is the observation that it is always 
possible to find a (sorted) list L of jobs using which we can determine an optimal 
schedule as in Procedure 2.5 in Ö (n) time.
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P rocedure 2.5: A list scheduling heuristic for lIPIIC,, 

argum ents
Ipms: an instance of \\P\\Cmax 
L: a list of jobs

procedu re called
list schedule: a recursive call

procedu re listschedule (Ip ms, L) 
begin

begin
pick job Jj from the top of the list L 
assign Jj to the first available machine Mi

call listschedule {Ipmzi L)
end

else
output makespan and the related schedule

end

Consider the following 7-job l\P'i\\Cmax instance

1 2 3 4 5 6 7

Pj 1 1 1 1 1 1 3

Calling the procedure listschedule (L) for L =  (Ji, J2, ■ ■ ■, Jr) we obtain the 
schedule depicted in Figure 2.1. An optimal schedule is as shown in Figure 2.2. 
It can easily be verified that interchanging the places of the jobs J7 and Ji in the 
above list and calling the procedure listschedule {L) for this list we obtain the 
schedule depicted in the Figure 2.2. If we let Cmax{LS) denote the makespan value 
that can be determined by the procedure listschedule (L), then for the above 
problem CmaxiLS)/C^^j. =  5/3 =  2 — (1/3). [Graham 1966] showed that the



Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 25

Ml

M o
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J i J a

J2 Jz

1

, 1

Jz Jz

Jj

Figure 2.1: A list schedule for the 7-job l\P“i\\Cmax instance for L
(Ji, J2,... ,/7)

Ml

Mo

M o

Js

Js

J7

J a

Jz

Jz

J i

Figure 2.2: An optimal schedule for the 7-job l\P'i\\Cmax instance for L =
(Ji, J2, . . .  ,«̂ 7)

above result can be generalized as a list scheduling algorithm that uses arbitrary 
list of jobs has the performance guarantee Cmax{LS)/C^^^ <  2 — (1/m ). As it is 
shown in the above example this bound is tight. This work was the first worst-case 
analysis of a heuristic. Later [Graham 1969] showed that if the list is constructed



according to descending order of processing times, the list scheduling heuristic, 
known as the Longest Processing Time (LPT) heuristic, has the performance 
guarantee Cmax(LPT)IC*^^^ <  § -  5̂ . The computational effort required by the 
LPT  heuristic is dominated by the effort required to form a list (sorting) which 

is O (n log n).

2.3.2 Bin Packing Based Algorithms

The relation between the bin packing problem fl^pand l\P\\Cmax allows us to 
solve the latter by using a procedure for the former in a binary search (see 
Procedure 2.1). This principle can be used to determine an approximate solution 
for \\P\\Cmax if we Call an approximation algorithm for H^pat each iteration of 
the binary search. In this section we will present two approaches developed to 

solve l\P\\Cmax based on this scheme.
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2.3.2.1 Primal Algorithms

[Coffman et al 1978] were the first who have used the above principle. Their 
MU LTI FIT  algorithm is given in Procedure 2.6. At an iteration of the 
binary search, the procedure FED (First Fit Decreasing Algorithm) is called 
by M U LTIFIT  to pack a bin (if it can). For a sorted list L of piece sizes (in 
nonincreasing order of sizes), FFD  works as shown in Procedure 2.7.

At each packing attempt if the procedure FFD  outputs a feasible packing, then 
the current bin size, r, becomes an upper bound for the minimum makespan 
problem. Thus each time uh is updated, the new uh is still an upper bound on 
the problem. On the other hand, if the procedure outputs “no feasible packing” , 
then for a particular bin size, t , a feasible packing may exist. Therefore lb may not 
be a lower bound on the problem. But upon a termination of the binary seaich 
procedure M ULTIFIT, we have a valid upper bound on the minimum makespan 

for l\P\\Cmax·  The time complexity of M ULTIFIT  is O (n log n +  nk log m)
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P roced u re  2.6: A primal bin packing based approximation algorithm for 
l\P\\C^ar

argum ents
Ipms: an instance of \\P\\Cmax 
lb: a lower bound for \\P\\Cmax 
ub: an upper bqund for l|P||Cma®·

procedure called
FFD : First Fit Decreasing heuristic for the bin packing problem (see Procedure 
2.7).

p rocedure M ULTIFIT (lpmsTub,lb) 
begin

while ub — lb >  1 
begin

T :=  (ub +  lb)/2
if  FFD  (I^p/r, i )  outputs “no feasible packing” 

lb :=T  
else 

ub :=  r
end

output [u6J and the schedule related with ub
end

time for k iterations of thé binary search. With the development of this algorithm 
the question of “What is the worst-case performance bound of the MU LTIF IT?” 
motivated many researchers. Although [Coffman et al. 1978] were able to show 
that the bound is at most 1.22Cj^axf they could not show that this is the tightest 
bound. After a decade and several attempts, [Minyi 1989] have proved (in thirty 
seven pages) that the bound is exactly 13/11.
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P rocedu re 2.7: FFD  heuristic for the bin packing problem, IT̂bp

argum ents
I^p: an instance of the bin packing problem, ll^p
L: list of pieces sorted in nonincreasing order of their sizes

procedure called
FFD : a recursive call

procedure FFD  
begin

if  I  ^  0 
begin

pick job Jj from the top of the list L 
find the first bin Bi that Jj fits (assume bins are indexed) 
if none 

begin
I  :=  0
output “no feasible packing”

end
else

begin
assign Jj to Bi 

call F F D { l i ^ , L )
end

end
else

output the packing
end

2.3.2.2 Dual A lgorithms

[Hochbaum and Shmoys 1987] have used the same principle of solving the bin 
packing problem in a binary search to solve l\P\\Cmax· However their approach
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differs from that of [Coffman et al. 1978] in the procedure they have used to solve 
the underlying bin packing problem. An e-relaxed decision procedure, as termed 
in [Hochbaum and Shmoys 1988], is a polynomial time procedure which, given 
an instance Î p =  (̂ 7 ,^ ) of the bin packing problem H^p, either

(i). produces an e-relaxed packing, that is a feasible packing for the original 
instance in which size of each bin 5,·, e =  1, 2, . . . ,  m is extended to 1 -f e; 
or

(ii). outputs “no feasible packing” indicating that there is no feasible packing.

Consider Procedure 2.8. At a packing attempt if the procedure e — relaxed 
outputs “no feasible packing” then due to the definition of an e-relaxed decision 
procedure there will be no feasible packing. Hence each time lb is updated, the 
new lb is still a lower bound on the problem. On the other hand, if the procedure 
e — relaxed does not output “no feasible packing” , then given a particular bin 
size T a feasible packing may not exist. In such a case the only thing that an 
£-relaxed decision procedure provides is an e-relaxed packing. Therefore, after 
an update of ub, newly found ub may not be an upper bound on the problem. 
But given a ub, the procedure e — relaxed computes an upper bound.

Since all of the processing times are integer, it is clear that [/fe] is a lower bound. 
Hence the search can be terminated whenever ub—lb < 1. However, the procedure 
£ — relaxed should be called once more, with bin sizes scaled by r =  f/6]. If the 
output is “no feasible packing” then [”/6] -|-1 will be a lower bound on the optimum 
makespan and the schedule produced b y u 6 < [ / 6] - f - l  can be used to determine 
an upper bound on the minimum makespan. Otherwise [/6] will be a lower bound 
and the schedule produced by \lb~\ can be used to determine an upper bound on 
the minimum makespan. Thus at the termination of the binary search we obtain 
a schedule whose length (1 +  e) times the lower bound. Therefore the algorithm 
has a worst case bound of 1 -|- e.

As mentioned before, the stopping condition of the binary search is satisfied in 
O (log \ub — /6])  time. If we use the lower and upper bounds given in Lemmas
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P rocedu re 2.8: A dual bin packing based approximation algorithm for 
l\-P\\Cmax

argum ents
Ipms: an instance of l\P\\Cmax 
lb: a lower bound for \\P\\Cmax 
uh: an upper bound for \\P\\Cmax

procedure called
e — relaxed: a hypothetical e-relaxed decision procedure for the bin packing 
problem, Ilgp

procedure e — makespan (Ipms> lb, ub) 
begin

while ub — lb >  1 
begin

r :=  {ub +  lb)/2
if  £ — relaxed (f^p/'^) outputs “no feasible packing” 

lb:=T  
else 

ub :=  r
end

if  e — relaxed (I^p/R^l) outputs “no feasible packing” 
output ub and related schedule 

else
output |’/6] and related schedule

end

2.3 and 2.4, respectively, then we will have a polynomial-time procedure which 
produces schedules with lengths at most (1 -|- e)C'^aa:·

[Hochbaum and Shmoys 1987] have provided a family of approximation 
algorithms Dc for £ > 0, such that for a fixed e, is an e-relaxed decision 
procedure (hence a polynomial-time procedure) that runs in O ((m /£)(n/e)^/‘^̂ ). 
Such a procedure can directly be obtained from the dynamic programming
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formulation given in Section 2.2.2.2.

Suppose that the bin packing problem is scaled such that all bins have sizes 
one and the piece sizes are less than one. Obviously, for such an instance if 
^ j j ç jP j  > rn, then there is no feasible packing. We exclude this trivial case by 

assuming J2jjçjPj ^

arge ISLet Ĵ iarge denote the set of pieces for which pj > e. Any piece Jj G Ju 
called as a large piece. Then the set Jamaii =  J  \ Jiarge denotes the set of small 

pieces (that is, pieces with size pj < e). Consider only the pieces with pj > e 
{j — 1, 2, . . . , n )  for the time being. Partition the interval of large piece sizes 
(e, 1] into f(l — e)/£^l equal length subintervals. Thus the size of each interval is 
at most £̂ . Round the pieces sizes in an interval to the lower end of that interval. 
As a result we obtain an instance with at most k =  [(I — £)/e^] distinct piece 
sizes. This problem can be solved by using the dynamic programming formulation 
given in Section 2.2.2.2 in O ((m/£)(n/£)^A*) time. There is a clear reduction in 
the computation time as compared with the dynamic programming formulation 
given in Section 2.2.2.2. This is due to the fact that in a feasible configuration 
each entry can take a value between 0 and [1/eJ whereas in the previous case 
this value can be n. If the large pieces with rounded sizes cannot be packed by 
the dynamic programming algorithm, then there is “no feasible .packing” for the 
original instance where the processing times are larger and there are additional 
small pieces. If on the other hand they are packed then there exists a path from 
“initial” to “success” referring to a feasible packing for the restricted problem. In 
a feasible packing there are at most [1/eJ large pieces with rounded piece sizes. 
Therefore, if we restore the sizes of large pieces to their original sizes, in a bin 
total piece size cannot exceed 1 +  e.

Suppose no “no feasible packing” message is output when packing large pieces. 
In such a packing let S*' =  m — Pj denote the total slack. Due to our
assumption that in a nontrivial instance of the bin packing problem Y^jjejPi — 

m, > E .;, î JsmattPi' Moreover, in the packing of large pieces E i l i  1 —
^j.ç-piPj} >  where V' denotes the set of jobs packed on bin Bi (since after
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restoring the large piece sizes to their original sizes, some of the bins may be filled 
over the capacity). Hence the remaining slack max{0, 1 — —

Therefore, it is sufficient to check whether or not < m.
If it is, then small pieces can be packed within bins with at most 1 +  £ times 
their true capacity. The procedure is simple, choose a small piece and pack it 
into any bin with positive remaining slack. Clearly the complexity of the overall 
algorithm is due the first phase, large-pack, since the second phase takes O (n) 
time.

Although this result is theoretically appealing, it has less practical importance 
considering its space requirement and time complexity. More practical algorithms 
were developed for £ =  1/5 and £ =  1/6 which run in O {n[k log n)) 
and O {n[km^ -f- log n)) times for the O (k) iterations of the binary search, 
respectively.

In [Hochbaum and Shmoys, 1988] the same idea was applied to solve a uniform 
parallel machine scheduling problem, l\Q\\Cmax· In this problem, a set J  =  
{J iiJ ii-'-iJn } of independent jobs with processing times pi,p2 , ... ,Pn are to 
be scheduled nonpreemptively on a set Af =  {M i, M2, . . . ,  Mm} of non-identical 
machines. These machines run at different speeds si,S2, ... ,Sm· Hence, if job Jj 
is processed on machine M,·, it takes Pj/s,· time units to be completed. Consider 
the related question of deciding whether there exists a schedule in which all of 
the jobs are completed by time r. More precisely, in this decision problem we 

are looking for a schedule V in which J2jjeT'Pi/^i — ~  1, 2, . . . , m  or
equivalently J2jj -̂p'PJ — “  1,2, . . . , m.  Rescaling both the processing
requirements and the speeds by a factor 1/ r ,  we obtain the bin packing problem 
with variable bin sizes, Si,S2,. ■ · iSm- MP-completeness result of Theorem 2.3 
associated with the bin packing problem (with unit bin sizes) proves that the 
above decision problem is unary A'P-complete since the bin packing problem 
with variable bin sizes is an obvious generalization of the problem with unit 
sizes. This suggests that the existence of an efficient optimizing algorithm for 
this problem is highly unlikely. [Hochbaum and Shmoys 1988] have generalized



the idea of e-relaxed decision procedure to obtain good approximation algorithms. 
Suppose that for this problem we have a polynomial-time algorithm which either

(i) produces an e-relaxed packing, a feasible packing in which the size of each 
bin is extended to (1 -f- e)s,·, z =  1, 2, . . . ,  m; or

(ii) outputs “no feasible packing” indicating that there is no feasible packing.
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Although such an algorithm is not the same as the previous one, they refer to it 
as an £-relaxed decision procedure to emphasize the similarity. As before such 
an algorithm can be used in a binary search to solve l\Q\\Cmax· [Hochbaum and 
Shmoys 1988] have provided a family of such e-relaxed decision procedures with 
time complexity O For e =  1/2 they provided an algorithm to
solve the related bin packing problem with variable bin sizes which runs in O (n) 
(if the piece and bin sizes are sorted in advance). An algorithm along the same 
lines will be proposed in Section 3.2.1.



Chapter 3

A  Branch and Bound Algorithm

In Section 2.2.1, we have presented the branch and bound algorithm of [Bratley 
et al. 1975] which was developed to solve \\P\rj d̂j\Cmax· As mentioned before 
it can be used to solve a special case of the original problem, l\P\\Cmax· A 
general algorithm when applied to a special case, may not utilize some of the 
characteristics of the solution space. As a result the set of solutions that 
need to be enumerated to determine optimal solution and hence the size of the 
enumeration tree becomes unnecessarily large.

Let S be the set of schedules satisfying Lemma 2.1. Any schedule "P S S can be 

represented as an onto function f  : J  ^  M. since no machine remains idle. This 
is illustrated in Figure 3.1 for a 4-job \\PZ\\Cmax·

The Related Schedule:

Figure 3.1: A schedule represented as an onto function

34
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It can be shown that for n >  m the number of onto functions is

s(n, m) = ^ ( - l y  (m -  t)^
t=0

(3.1)

Consider the example in Figure 3.1. In this example there are 3̂  different 
functions from J  to M.. Considering subsets of Ad of size 2, there are 2  ̂
functions from J  to {M i,A Î2}) 2̂  functions from J  to {M 2^Mz}·, and 2̂

functions from J  to { M i , M3}. So we have (3)2“* =  (  ̂ )2  ̂ functions from

J  to A4 that are definitely not onto. However, it should be realized that 
3not all of these (  ̂ )2  ̂ functions are distinct. For when we consider all the

functions from ¿T to { M i , M2}, we are removing, among these, the function 
{ ( J i , M 2), (J2, M2), (J3, M2), {J4, M2)}· Then considering the functions from J  to 
{M 2, M3}, we remove the same function: { ( Ji, M2), (J2, M2), (J3, M2), {J4, M2)}.

3
Consequently, in the result 3“̂ — (  ̂ )2‘*, we have twice removed each of the

constant functions f  : J  ^  A4, where /(c7 ) is one of the sets {Mi } ,  { M 2}, 
or { M 3}. Hence for the above example the number of onto functions from to

Ad is 3  ̂ — (  ̂ )2  ̂ +  3 =  (  ̂ )3  ̂ — (  ̂)2  ̂+  (  ̂ )!'*· This intuitive explanation2 3 2 1
can be extended for a general case as shown in Equation 3.1.

Furthermore the cardinality of E is much less than s(n, m). Schedules represented 
by distinct onto functions may be same since the machines are identical. 

For example, consider two schedules =  {{J i,J 2} , { J3} , { J4}) and V2 = 
({J 4}, {J i, J2}, {>/3}) for a 4-job l\P3\\Cmax· [Lawler and Moore 1969] have 
referred to this type of schedules as symmetric schedules. Although these 
schedules are represented by two distinct onto functions, they refer to the same 

schedule, V  =  ({Ti, J2}, {•^}> { ‘ 4̂})· Thus the number of distinct schedules in S 
is S{n,m) =  s{n,m)/m\ since there are ml different ways to arrange m identical 
machines. This latter number is known as the Stirling number of the second 
kind. Table 3.1 shows the behavior of this number for some m and n values. 
An analysis of Tables 2.1 and 3.1 shows that the number of feasible schedules 
that need to be enumerated is substantially less as compared with the number
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Table 3.1: The Stirling number of the second kind

1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

1
3
7

15
31
63

127
‘ 255
511

1023
2047
4095
8191

16383

1
6

25
90

301
966

3025
9330

28501
86526

261625
788970

2375101

1
10
65

350
1701
7770

34105
145750
611501

2532530
10391745
42355950

1
15

140
1050
6951

42525
246730

1379400
7508501

1
21

266
2646

22827
179487

1323652
9321312

1
28

462
5880

63987
627396

5715424

1
36

750
11880

159027
1899612

40075035 63436373 49329280 20912320
210766920 420693273 408741333 216627840

that is enumerated by the branch and bound algorithm of [Bratley et ah 1975]. 
The cardinality of E may further be reduced due to Lemma 2.2. The number of 
feasible schedules satisfying both Lemma 2.1 and Lemma 2.2 is at most 5(n,m) 
since Lemma 2.2 may reduce the size of the set defined by Lemma 2.1 depending 
on the processing time data. Hereon we will refer to this set as the set of all 
solutions that are candidate for being optimal and we will denote it by E*.

The proposed branch and bound algorithm implicitly enumerates the feasible 
schedules in E*. In Section 3.1 we will explain the branching scheme and the 
enumeration tree generated by this scheme. Section 3.2 explains the bounding 
scheme we used. The strategy for searching the tree during enumeration process 
will be explained in Section 3.3. Finally results of our computer implementation 
will be presented in Section 3.4.

3.1 Branching Scheme

At a node Nk of the enumeration tree we are given a subproblem which is a 
partially solved version of the original l\P\\Cmax· With this node we associate
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• a partial schedule . . . ,  ) where Vl is the set of jobs scheduled
on machine M,· such that =  0 and, Vq =  9 at the root node Nq.

• a set Vk of unscheduled jobs where Vo = J  at the root node Nq.

• a set of discarded machines 6k =  {Mi \ 1{V{) > A  ¿ =  where
A =  (l/m)/(^7). For the ease of notation we assume that the last |ijt| machines 
are in the set of discarded machines. If this is not the case however, machines 
can be reindexed such that M{ £ 6k i = m — +  1 , . . . ,  |<5fc| since they are
identical. We let 6k denote the complement set of 6k so that 6k U 6k = A4.

• a set of captured machines pk =  {Mi }  U {Mi | 1{V{) ^  * =
2 , It can be observed that Mi ^ 6k V i =  l,...,|^jt| due to the 
definition of the set 6k. Clearly \pk\ <  |<̂A:| since there may be several machines 
with the same completion time. It is convenient to assume that Mi G pk V i =
l,...,|/i^| and l{Vl) >  . . .  > If the situation is dilferent, machines
can be reindexed accordingly.

Using the above notation, the subproblem at node Nk is defined as to schedule the 
set Vk of jobs on the set M  of machines such that the schedule length is minimized 
and each machine M i  processes the already allocated load 1 { V { )  nonpreemptively. 
Clearly an optimal schedule for this problem has the characteristics described 
by Lemmas 2.1 and 2.2. Therefore only the machines Mi G 6k need to 
be considered while solving the problem since in an optimal solution none 
of the jobs in Vk will be scheduled on the remaining machines. When we 
determine the optimal mdikespan C^^^{Vi ,̂6k) for this restricted problem, we 
can determine the optimal makespan for the original subproblem as C^^^{V,.) = 

max{maxMieSkK^k)j ^maxi^k^^k)}· Nevertheless even the restricted problem 
is still unary WP-complete (see Section 3.2). This result provides a formal 
justification to continue enumeration.

The branching mechanism decomposes the scheduling problem at node Nk into 
subproblems (descendants) with the property that solving all of them solves the
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original. However the mechanism may decide to stop generating new nodes. 
If none of the feasible schedules that can be obtained from the current partial 
schedule can have a makespan better than the best known so far, then there is no 
need to enumerate them. Similarly, if an optimal solution for the problem at node 
Nk is determined, related descendants will not be generated. We will approach the 
presentation of the branching scheme by explaining these fathoming conditions 
in detail.

We let LB{Vi^,Sk) and UB{Vf.,Sk) denote the lower and upper bounds on the 
restricted problem at node Nk, respectively. As we mentioned above, in this 
problem machines Mi € Sk are not considered when scheduling. An algorithm 
to determine these bounds and other related issues will be explained in Section
3.2. Once these bounds are determined the bounds on the original problem 
can easily be determined as LB[Vk) =  max{maxA/,.gi,^/(7 ,̂·), LB{V,^,Sk)} and 

UB(Vk) — max{maxMi€i* K^»)) ^^('^kj'^k)}· The lower bound LB{Vf.), refers 
to the makespan of the best (not necessarily feasible) solution and the upper 
bound UB{V]^) is the makespan of a feasible schedule in the descendants of 
node Nk· For the time being suppose node Nk is generated and the bounds 
on the scheduling problem are determined in the way we mentioned briefly. 
Let Z be the incumbent value (i.e. best makespan value determined among the 
enumerated feasible schedules) as before. Upon the generation of node Nk, this 
value is updated as Z :=  m\n{UB{'P^.),Z}. Below propositions describe the 
circumstances under which node Nk is fathomed.

P rop osition  3.1 If the condition LB(Vif) > Z is satisfied for some node Nk 
then the descendants of this node are not generated.

P roo f: None of the feasible schedules encountered among the descendants of the 
current node can have a makespan better than the best known. ■

P rop osition  3.2 At a node Nk, if the condition UB{Vk,Sk) <  K'^k) satisfied 
for some € Sk with =  maxMieSk descendants of this
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node are not generated.

P roo f: None of the descendants of the current node can have a makespan better 
than ■

P rop osition  3.3 At a node Nk, if the number of unscheduled jobs is two, that 
is \Vk\ =  2, then,the descendants of this node are not generated.

P roo f: In this case two jobs remain as unscheduled. Let Jmax be the one with the 
maximum processing time and Jmin be the other one. In an optimal schedule to 
the problem at node Nk, either both of them are scheduled on the same machine 
or on different machines. In both of these cases, the earliest start time of Jmax 
will be less than or equal to that of Jmin- When the jobs are scheduled on the 
same machine, the order is immaterial, thus without loss of generality assume 
that Jmax precedes Jmin· In the second case, if the earliest start time of Jmax 
is greater than that of Jmin, then simply interchanging the jobs decreases the 
makespan. Thus, the LPT heuristic (see Section 2.3.1) determines the optimal 
schedule for the problem at node Nk- Therefore after determining the makespan, 
Z, the incumbent value, is updated if necessary, and the current node is fathomed.

P rop osition  3.4 At a node Nk, if the number of idle machines is equal to one 
less than the number of unscheduled jobs, that is \Vk\ — T then the descendants 
of this node are not generated.

P roo f: Suppose at node Nk, the number of idle machines is equal to \Vk\ — 1- 
In an optimal solution to the scheduling problem at this node \Vk\ largest jobs 
in Vk are scheduled on idle machines and the remaining job is scheduled on 
the machine that becomes idle first (i.e. use LPT heuristic). This property is 
proved by interchange arguments as follows: suppose for a contradiction that 
there was an optimal schedule P , for the problem at node Nk in which one of
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the first \Vk\ largest jobs, is not scheduled on one of the idle machines but 
on some other machine Mt. Then some other job Jĵ  € Vk with pĵ  <  will 
be scheduled on one of these idle machines M,·, since in an optimal schedule 
no machine remains idle. By interchanging these two jobs we obtain another 
schedule 'P*, in which ^  Thus we obtain the contradiction
that Cmaxi'P»*) <  since /(P^) <  and none of the completion times
of the machines other than Mt and M,· have changed. Hence the LPT heuristic 
determines optimal schedule for the problem at node Nk. After determining the 
makespan, Z is updated if necessary, and the current node is fathomed. ■

P rop osition  3.5 At a node Nk, if all hut one of the machines are discarded, that 
is \8k\ = ra — \, then the descendants of this node are not generated.

P roo f: In this case due to Lemma 2.2, unscheduled jobs in P;t are scheduled on 
the remaining machine which is not discarded yet. After determining the related 
makespan, the incumbent value , Z, is updated if necessary, and the current node 
is fathomed. ■

Suppose that none of the conditions in Propositions 3.1 through 3.5 are satisfied 
at the node Nk- In this case the node Nk is placed in the active nodes list since it 
is not yet decided whether the optimal solution for \\P\\Cmax corresponds to one 
of its descendants or not. Suppose that after generating several other nodes of 
the enumeration tree, we select^ the node Nk for further enumeration and a job 
Jc € Vk to be scheduled (fixed). For this node Proposition 3.1 has to be applied 
once more since the incumbent value Z may be reduced when generating other 
nodes. Either of the following circumstances may be encountered if node Nk is 
not fathomed:

(i) The set of jobs scheduled on a machine M,·, VI, is not empty V i =
1,2, . . . , m .  In this case, we have \pk\ alternative machines on which Jc 
might be scheduled in an optimal solution. At each descendant node

^Selection rules are discussed in Section 3.3
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Nk̂  (J =  1 , . . . ,  |/iA:|) of node Nk, let = 'P t^  and Vİ̂  = V {  V z /  
d. Clearly \pk\ ^  since there may be several machines with the same 
completion time. In such a case, since these machines are identical, it is 
sufficient to consider only one of them while generating descendant nodes. 
After generating all of its descendants, node Nk is removed from the active 
nodes list.

(ii) The set of .jobs scheduled on a machine Mi, VI, is empty for some i =  
t,t +  1, . . .  ,m. Such a t is determined by reindexing machines in a way 
that the last m — t +  1 machines have no jobs yet assigned. Number of 
branches will be equal to the number of captured machines, |///;| which < t. 
A descendant node Nk̂  {d =  l , . . . , i )  of the node Nk is determined as, 
Vkj =  U {Jc} and V'k̂  =  'Pk i ^  d. Number of branches may 
be less than t since several machines may have the same completion time. 
After generating all of the descendants node Nk is removed from the active 
nodes list.

T heorem  3.1 The above branching scheme enumerates all feasible schedules that
are candidate for being optimal without any repetition.

P roo f: Suppose that the enumeration tree is generated as described above 
without making use of the fathoming conditions due to Propositions 3.1 through 
3.5. Let Y{Vk^) {d =  l,...,|/ifc|) denote the set of feasible schedules (i.e. leaf 
nodes) that can be generated from a descendant node Nk̂  of Nk. At a node 
Nk of the enumeration tree, Y{Vk,) H Y{Vk^) =  0 for all ki and ¿2 such that 
ki /  k2 since otherwise there exists two schedules V  ̂ and Pj such that P  ̂ =  VI 
for all i =  l , 2 , . . . , m  (choose any two descendant nodes Nk, and Nk2 ', due to 
the way we are branching, in the related partial schedules there exists a machine 
Mi such that n ,  ^  P|j). Hence no partial schedule is generated twice in the 
enumeration tree. Moreover a node is removed from the active nodes list once 

its descendants are generated. Thereby the branching scheme enumerates the 
feasible schedules without any repetition. Furthermore using Propositions 3.3
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through 3.5, the branching scheme generates the set of feasible schedules that 
are candidate for being optimal because only the set of captured machines is 
considered while branching (due to Lemmas 2.1 and 2.2) and the propositions do 
not allow a machine to be idle at the leaf node. Furthermore Propositions 3.1 
and 3.2 if applied, will reduce the size of the enumeration tree without destroying 
this property. ■

Figure 3.2 depicts the enumeration tree for a 6-job l\PZ\\Cmax problem with 
processing time of each job being equal to its job index and with job selections at 
each node as indicated. As shown in Table 3.1 the number of schedules that need 
to be enumerated is 90. In the branching scheme used, however, this number is 
reduced to 9 with the use of Propositions 3.3 through 3.5. Since the bounding 
scheme is not yet discussed. Propositions 3.1 and 3.2 are not applied in this 
example.

The size of an enumeration tree directly affects the performance of a branch and 
bound algorithm. In order to achieve a reduction in size we make use of the 
fathoming rules described above. These fathoming rules test the condition at the 
currently generated descendant node and decide whether or not to eliminate this 
node. On the other hand, it is possible to develop fathoming conditions that, 
given the situation at a generated node Ajt, (a descendant of Nk), eliminates rest 
of the descendants of Nk- One such condition will be presented in Section 3.3 
since it uses the bounding scheme (Section 3.2).

The bounding scheme and the search strategy used also affect the size of the 
enumeration tree. If a bounding scheme generates tight bounds, the size of the 
tree is likely to be reduced further due to the fathoming rules of Propositions
3.1 and 3.2. The bounding scheme will be discussed in Section 3.2. In order 
to illustrate how a search strategy affects the size of the enumeration tree 
consider the simple example in Figure 3.2. In this figure the optimal schedule 
is encountered at node N20- The earlier this node is selected, the sooner the 
enumeration terminates since rest of the nodes would then be fathomed with the 
use of Proposition 3.1. In this example it can also be seen that if we had used
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0̂ =(».».«>
A = 7; Jc = *7$; fio — {A/i}; So

T’ l = a - 7 6 } , 0 , 0 >

Jc =  Js', /^1 = {A/2.i.A7i ); ¿1 = I

7>2 =<{ 6̂, 5̂}. 0,0)
Jc = J4; M2 = {iW2}; «2 = {M}

7^8=(U},{J5},0)
Jc — {Ji ; M8 =  { A / 3 , M2, Ml} ;  5g =  I

7’3=({-76,^5),{,/4}.0)
J„ = J3 J ^ 3  = { M 3 , M 2 } ;  S3 =  { M l }

P l  =  {J e ,J 5}  
P l  =  { A , J z }  
V }  =  9

P l = U e , J s }  
P i  =  {A }
P I  = {^3 }

M4 = {M3 } M6 = { M 3 , M 2 }

Si = {Ml, M2 } So =  { M i }  

1

P i  = {-76,A }
P l  =  {J i ,J 3 }
P i  =  {J ^ ,J i}

1

P }  — {•76, A }  
T^ =  { J i ,J i }  
P l  =  { h , J 2 }

n  = {J6,JA
T’l = {j^}
7>| = 0 
Jc =  J3
M9 = {7W3,A/2}
¿9 = {Ml}

T’j'o={,/6.,/4}
-Pio =
PL· = 0

Mio = {M3}
Sio =  { M l ,  M 2 }

Pli={J6,JA
Pli={A,J3}
P{l=U^^Jl}

L Ph = {,7«}
PL· = {-̂ 5}
PL· = W
Jc =  J3

MI4 =  { M 3 , M 2 , M l }  

il4 = 0

P{2 = {Jt,JA
PL· = { - ^ s }
PL· =  { - ^ 3 }

M12 = {M3 , M2 } 
il2 = {Ml}

T’j‘3 = {-76,,74}
PL· = {Js,Ji} 
PL· =

B

Figure 3.2: The enumeration tree for a 6-job l\P3\\Cmax problem

different job selections at a node, we would have ended up with a larger tree. 
These issues will be discussed in Section 3.3.

The branch and bound procedure is summarized in Procedure 3.1. An analysis 
of this algorithm suggests that the computational burden involved at a node Nk 
of the tree is due to the procedures bounds, selectanode and selectajob. The 
remaining operations can be done in linear time. At a node Nk, these remaining
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pi = {J*}Ph =
Pi = {-/5}
P l ^ W  P lr iA }
fin = {M3,M2} iMn = {MsfMi} 
¿15 =  {Ail} ¿17 =  { M 2 }

Pi = {Jo,J3} 
Pi = {J3,Jx} 
PI = {A,JA

Pis = {J3,Ji} 
p l = {Ji.J3} 
PI = {JuJi}

Pi = {>̂ e}
P i  =  {- 5̂}
P i  = {•/4 ,^3 } 
M19 = {Af2. Ail}
¿19 = {Ais}

I
P l = { J 3 , J l }  
T’lo = { - / 5 .^2} 
T’lo ={^4,̂ 3}

A

Pi = {-̂ 6. 3̂}
Pi =
P i  =  0 /121 = {Ail}
¿21 ={Ail,Ai2}

p{2 = {Ĵ <JA
'p\̂ = {J3,JA
Pi = {Ĵ ’A}

Pi = {‘ ê}
Pi = {J3,J,}
P i  =  {-̂ 3}
/123 =  {Ail, Ail}
¿23 = {Ail}

I
PI = {-̂ 6}
P̂ i — {Jil <il}

{ 3̂, 2̂. l̂}

F igure 3.2: The enumeration tree for a 4-job l\P3\\Cmax problem (continued)

operations are

(i) generation of the descendants can be done in O (m) time since the number 
of the descendants is \pk\ <

(ii) determination of the set for each descendant can be done in O (m) 
time. We have defined the set of captured machines, pk, in such a way 
that Mi G pk V f and l{Vl) > . . .  >  We generate
descendants by fixing a selected job Jc on machines in the set pk in the order 
given above. At a descendant Nk̂ ·, we define a pointer, to the the smallest 
machine index i such that /('P^) > 1{V )̂ +Pc- Consider the first descendant 
at which job Jc is fixed on machine Mi. Without loss of generality we 

assume that at this descendant =  0 and /(P °) =  00 >  l{Vl) +Pc· Hence 
the set pki is same as the set pk assuming that l{Vl) 4 -Pc < A. Suppose 
at descendants Nk2 , · · ·, A*,_j for some i >  2, respective sets pk^,····, Pk,-x 
remain same as the set pk (i.e. > l{Vk) +Pc and l{Vk) +Pc < A for
d =  2 , . . . ,  t — 1 and for some t > 2 ) .  While generating the i-th descendant, 
the set Pk, may change since the position of l{Vk) +Pc in the original list
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P roced u re  3.1: The proposed branch and bound procedure for l\P\\Crt
argum ent
Ipms: an instance of l\P\\Cmax 

procedures called
bounds: given computes and UB{Vj^) (see Procedure 3.6)
selectanode: selects a node Nk__among the ones in the active nodes list (see Section 3.3)
selectajob: selects a jobs Jc G at a selected node Nk (see Section 3.3)

procedure Ipcmax (Ipms) 
begin

Initialize node N q

call bounds ('Pq» U B {V q))
if  L B {V q) =  U B {V q) then  

stop v r̂ith C^cLx ·=  1^B{Vq) and :=  
activenodeslist :=  {N q}
Z := UB(Vo)
while activenodeslist ^   ̂

begin
call selectanode {activenodeslist^ Nk) 
if  LB{Vk)<Zt\ien 

begin
call selectajob {Vk , Jc)
for each descendant node Nkd (d =  1 , . . . ,  |//jb|) 

begin
çalı bounds
if one of Propositions 3.1-3.5 is satisfied 

fathom the node Nkd 
else 

begin
if £ /5(P^,J =  L5(Po) then  

stop with C{^ax ·“  1^B{Vq) and P„ :=  Pĵ  ̂
Z:=mm{UB{r,^),Z]
Determine the set pkd 
activenodeslist :=  activenodeslist U 

end  
end

Remove Nk from activenodeslist 
end  

end
stop with C{^ax — Z  and related schedule 

end
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may change. This position will at least be Therefore we search
for the smallest position t' in the interval — 1] until /("Pf) <
/(P|) +  Pc- Once we determine the position f ,  we obtain yujt, =  
{ M l , M il,..., M t-i,M t+i, a s s u m i n g  that =
/(P {) +  Pc <  A and t' 1. Then we update =  t' for the next descendant. 
In this way the set pka for all d =  1 , . . . ,  is determined in O (m) time. 
Yet there are two cases in which the structure of is destroyed. If at some 
descendant Nk, 1{'PI) d- Pc ^  the related machine is removed from /î , 
and is placed in Sk,. Moreover if at some descendant Nk̂  1(^1)+ Pc < A and 
l{Vl) +  Pc — ^(Pjt) for some d < t, then the related machine will neither be 
in pkt rior in Skf In such a case we insert the machine at the d-th position 
of the list but we do not consider it while branching.

(iii) For the fathoming conditions due to Propositions 3.1 and 3.2 two 
comparisons are required. For the conditions due to Propositions 3.3 
through 3.5 we need to store number of unscheduled jobs, number of idle 
machines and number of discarded machines. At a node Nk these variables 
can be updated in linear time.

3.2 Bounding Scheme

In this section we will present a polynomial-time bounding scheme which yields 
tight lower and upper bounds on the scheduling problem encountered at a node 
Nk of the enumeration tree. The problem is to schedule all jobs J j  6 Vk, the 
set of unscheduled jobs, on machines M,· € 8k, the set of captured machines, 
such that the schedule length is minimized and each machine Mi processes the 
already allocated load /(P^) nonpreemptively. At a node Nk, \Pk\ < n (some of 
the jobs may already be fixed) and |i/t| ^  ^  (some of the machines may already 
be discarded). In spite of this fact, for the ease of notation we assume that n 
denotes \Vk\ and m denotes |i*|.
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A closely related decision problem is the bin packing problem with variable bin 
sizes, Ilyijp. In an instance Î ijp =  of this bin packing variant we are given

• a set JT” =  {Ji, J2, · · ·, Jn] of jobs (or, pieces) of sizes pj for each Jj £ J  ̂ and

• a set =  { ^ 1, Bii · · ·, Bm} of bins of sizes s,· for each B{ £ B.

The aim is to decide whether or not there exists a feasible packing. A feasible 
packing can be considered as a partition of the job set ¿7 into m disjoint sets, 
Bi, i =  l ,2 , . . . ,m  where the total processing requirement of jobs in B, is at 
most Si for i =  1 , 2 , If we let where each job J j  £ J  has a
size Pj equivalent to its processing time, and B  =  6k where each bin has a size 
Si =  T — 1 {V \ )  for some time r, then the scheduling problem at node Nk can be 
viewed as determining minimum r* for which a feasible packing can be obtained.

If we had an polynomial-time procedure for solving the variable-sized bin packing 
problem, we could use it in a binary search to determine the minimum makespan 
schedule for the problem at node Nk and we would eliminate the need for 
branching at this node. Unfortunately, neither the bin packing problem with 
variable bin sizes nor the scheduling problem at node Nk can be solved in 
polynomial time unless V  =  MV. This result directly follows from Theorems
2.3 and 2.4 where the special cases, the bin packing problem with unit bin sizes 
Expand l\P\\Cmax are shown to be unary A/”'P-hard, respectively. Nevertheless 
as before we can use the relation between the scheduling problem encountered 
at node Nk and the underlying variable-sized bin packing problem to determine 
tight bounds on the former.

For the bin packing problem with variable bin sizes [Hochbaum and Shmoys 
1988] have provided a family of algorithms each of which is an e-relaxed decision 
procedure (see Section 2.3.2.2). In their definition, a polynomial-time procedure, 
which given an instance Î î p =  (jT̂ , B) either

(i) produces an e-relaxed packing, a feasible packing in which the size of each 
bin 5,·, i = 1 ,2 , . . . ,  m is extended to (1 -f- e)5,·; or
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(ii) outputs “no feasible packing” indicating that there is no feasible packing.

is called as an e-relaxed decision procedure. Let e — relaxed be an e- 
relaxed decision procedure. Using the arguments presented in Section 2.3.2.2, 
it is straightforward to show that the procedure e — makespan (Procedure
3.2) determines sthedules with their makespan being arbitrarily close to (1 + 
e)C'^g^x{JiB) in O (log \uh — /6]) time. Suppose that the following trivial 
bounds are used to initialize the binary search: lb =  lmax\ uh — maxf/moj:, Imin +  
Y^jjejPi) where l în =  minAr.ge/(^¿) and l^ax =  maxA/jes/("P^). The lower 
bound lb is the maximum allocated load. The upper bound ub is the maximum 
of lb and the makespan of a schedule in which all jobs in J  are assigned to a 
machine with minimum load. As we will discuss in Section 3.2.2, it is possible to 
improve these bounds. Nevertheless they are sufficient to show that the algorithm 
runs in O (log 3. polynomial time in the binary encoding of the
input. Therefore provided that the procedure e — relaxed is polynomial, the 
procedure e — makespan is also polynomial in the binary encoding of the input. 
The following theorem formalizes this result.

T h eorem  3.2 If the procedure e — makespan is executed with O [i log m) 
iterations of the binary search, the resulting solution has makespan at most (1 T

P roo f:

Initially ub -  lb < Y^j.^jPj since Imax > Imin- After  ̂+  log m iterations

u b -lb  <  pj
Jj^J

<  P j / m
J je J

The schedule produced has makespan at most
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P roced u re  3.2: An approximate binary search procedure for solving the 
scheduling problem encountered at a node

argum ents
Ipms* instance of the scheduling problem encountered at a node 
lb: a lower bound on the scheduling problem encountered at a node 
ub: an upper bound on the scheduling problem encountered at a node

procedure called
£ — relaxed: an £-relaxed decision procedure

procedu re e — makespan (Ipms> 
begin

while ub — lb >  1 
begin

T :=  {ub +  lb)/2
Si : = T  -  1{VI) V f =  1 , 2 , . . . ,  m 
if  e — relaxed {J ,B )  outputs “no feasible packing” 

lb :=T  
else 

ub := T
end

s , :=  \ lb ]-l{V i) =
if  £ — relaxed (J ”, B) outputs “no feasible packing” 

begin
output ub,and related schedule 
output [/ft] +  1 as a lower bound

end 
else 

begin

end

output ("/6] and related schedule 
output [/6] as a lower bound

end
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{l +  e)ub =  {I +  e)(ub — lb + lb)

< (1+£ + 2-')C;„(J-,B) fore<l

In other words, after O {£+\og m) iterations, the resulting solution has makespan 
at most (1 +  c +  ■

The ^-approximation scheme (a family of e-relaxed decision procedures) proposed 
by [Hochbaum and Shmoys 1988] is not efficient both in terms of the large space 
requirements and the time complexity. As mentioned in Section 2.3.2.2, they 
provided a 1/2-relaxed decision procedure which runs in O (n) if the job sizes 
are sorted in advance. In Section 3.2.1, we will provide a 1/3-relaxed decision 
procedure which has the same time complexity as the above 1/2-relaxed decision 
procedure. Our algorithm is similar to the one due to [Hochbaum and Shmoys 
1988], but not identical. We define a polynomial-time procedure (for £ > 0) as 
an £-relaxed decision procedure if, given an instance Î ĵ p =  {J ,B ) of the bin 
packing problem with variable bin sizes, it either

(i) produces an £-relaxed packing, that is a feasible packing for the original 
instance in which the size of each bin B{, i =  1,2, . . . ,m  is extended to 
Si -|- ssyjid̂  for Sjjido; — max^j-^^s,', or

(ii) outputs “no feasible packing” indicating that there is no feasible packing.

Let e — relaxed — I  and e —relaxed— II  denote the e-relaxed decision procedures 
as defined in [Hochbaum and Shmoys 1988] and as above, respectively. Note that 
any procedure that is e — relaxed — I  is also an e — relaxed — I I  procedure, but 
not the vice versa. However our algorithm (e — relaxed — II)  has a better worst 
case bound than that of e —relaxed— I. Implementing this procedure in a binary 
search, the schedules with makespan being at most (4 /3 -f 5 ) can be
obtained after O {£ +  log m) iterations of the binary search in O [n{i -|- log n)) 
time. Furthermore, upon its termination, the procedure determines a lower bound
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which is likely to be tighter than an initial one. In Section 3.2.2 we will discuss 
the ways of obtaining initial lower and upper bounds for the scheduling problem 
at node Nk of the enumeration tree. Section 3.2.3 discusses further refinements 
made in the 1/3-relaxed decision procedure and in the determination of initial 
bounds. The bounding operations will also be summarized in this Section.

3.2.1 A  1/3-RelcLxed Decision Procedure

In the bin packing problem with variable bin sizes, the aim is to determine a 
feasible packing (if it exists). In a particular instance Î î p =  (J iB ) of this 
problem we are given

• a set =  {«̂ 1, «̂ 2) · · · )  Jn} oi jobs of sizes pj for each J j  G J ■, and

• asei B =  {B\, B2,. ■., Bjn} of bins of sizes s,· for each Bi G B.

In this section we present a 1/3-relaxed decision procedure which, given Î f̂ p =  
{J ,B )  either produces a 1/3-relaxed packing or, outputs “no feasible packing” 
in polynomial time. For some e > 0, an e-relaxed packing refers to a feasible 
packing in which each bin Bi {i — 1 ,2 ,.. . ,  m) is filled with jobs of sizes totaling 
at most Si +  esmax for s^ax =  maxB.eB-s,·. Suppose in an instance Î î p =  (J ,B ), 
all of the processing times and bin sizes are sorted such that pi >  P2 >  · · · > Pn 
and 5i >  S2 >  . . .  >  ¿m, respectively. Furthermore, without loss of generality, 
suppose that an instance Î ĵ p is scaled after dividing all processing times and 
bin sizes by Smax =  -Si. Let L[ui,. . .  ,Uk] denote the set of k distinct pieces 
{J j j , . . . ,  where Jj, {I = 1 ,... ,k) is the largest available job with pj, <  ut 
and, where «1 <  . . .  <  «jt and pĵ  <  . . .  <  Pj*.

Consider the recursive procedure 1/3 — relaxed below:
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P roced u re  3.3: A 1/3-relaxed decision procedure for the bin packing problem 
with variable bin sizes

arguments
J\ a set of unpacked jobs at the current level of recursion 
B\ a set of unpacked bins at the current level of recursion 
l\ the current level of recursion; initially t = m

procedures called
ordinarypack: a 1/3-relaxed decision procedure for the ordinary bin packing problem, 
n^p(see Procedure 3.4)
1/3 — relaxed: a recursive call

1 procedure 1/3 — relaxed
2 begin
3 if Pi ^ Z) then

Jj€J Bi€B
4 begin
5 if  > 2/3 then
6 call ordinarypack (J,B,£)
7 else
8 begin
9 Jiml ·= {Jj € J'\pj < Si/3}
10 Cfnew ^  \ ^am\
11 ^¡it \.dj G 3̂ ne'w\Pj ^
12 if Jjit 0 then
13 begin
14 jT'pcfc := X[0.5s ,̂s ]̂ (pack this set in bin Bt)
lb 3'ntw \ p̂ck
16 end
17 ^ n e u ,:= ^ \ W
18 if Jnem ^ 0 then
19 call 1 / 3 -relaxed {Jnew,Bnew,i-1)
20 while there exists unpacked job Jj G J
21 find bin Bi packed with <  s,· and add Jj to J5,·

22 end
23 end
24 else
25 output “no feasible packing”
26 end
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Suppose for the time being that the if  condition in the statement 5 never holds. 
That is, the difference between the size of a bin Bi {i =  2 , . . . ,  m) and the size 
of the largest bin Bi is >  1/3. The remaining program segment (statements 7 
through 25) intends to pack a single bin at each recursive call (level of recursion) 
of the procedure 1/3 — relaxed (Procedure 3.3). For example, at the first call 
the bin Bm is considered, at the second call the bin Bm-i is considered and so 
on. At a level of recursion we define three sets: (i) is the set of small jobs 
with respect to the bin considered, (ii) ¿dnew is the set of large jobs with respect 
to the bin considered, (iii) J/a is the subset of large jobs that can fit to the 
bin considered. Consider a level £ of the recursion. Suppose that the procedure 
1/3 — relaxed did not output “no feasible packing” at any one of the previous 
recursive calls. At this level, if the condition in the statement 3 is not satisfied, 
then the procedure outputs “no feasible packing” (statement 25) and returns back 
to the calling procedure. In such a case the calling procedure will also return to 
its calling procedure and so on. This fact is not indicated in the above procedure 
in order not to complicate the algorithm. But we assume that if the procedure 
encounters an output of “no feasible packing” in a return from the call statement 
(statement 19), it returns to the calling procedure with the same output. On the 
other hand, if the condition in the statement 3 is satisfied, then the current bin 

is packed as shown in statements 14 and 15 and another recursive call 
is made to pack bin Bm-i (the case in which the condition in the statement 18 
does not hold, will be explained later). As before this bin is either packed or 
“no feasible packing” is output. Suppose in the first m — 1 recursive calls, the 
procedure 1/3 — relaxed does not output “no feasible packing” (otherwise the 
algorithm stops as described before). In such a situation the bins Bm through 
have already been packed. Therefore in the current call the bin Bi is intended 
to be packed. If the condition in the statement 3 is not satisfied “no feasible 
packing” is output and the procedure terminates. On the other hand, if the 
condition satisfied, then the bin Bi is packed. Furthermore, in

the statement 15 Jnew =  0 since otherwise there would be no feasible packing at 
this level. Hence, at most m recursive calls are required before we start to pack
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the jobs in jTam/· Suppose that m recursive calls were necessary to pack all of 
the large items. Then the jobs in are packed on the bin Bi as described in 
statements 20 and 21. Afterwards the control returns to the statement 20 of the 
calling procedure and the related set ¿Ttmi of jobs is packed on bins Bi and B2 as 
described. The s6ts of each level are packed in the same manner. Finally, 
at the first level the related set J'ami of jobs is packed on bins B i,B 2, . . . ,  Bm and 
the procedure terminates.

Suppose that the previously ignored if  statement (statement 5) holds at some 
level of recursion. That is, the difference between the size of a bin Bi and the 
size of the largest bin Bi is <  1/3 for some i = 1 ,2 ,... ,m. In this case, the 
procedure ordinarypack, an e-relaxed decision procedure (for some e <  1/3) for 
the ordinary bin packing problem H^p, is called for the instance that consists of 
the remaining unpacked bins and jobs. Details of the procedure ordinarypack 
will be presented later in this section (see Procedure 3.4).

It is claimed that the procedure IfS —relaxed is a 1/ 3-relaxed decision procedure. 
In the proof we will consider two different cases that we mentioned when 
discussing the flow of the algorithm above. In the first case, we will assume that 
the condition in the statement 5 never holds, and in the second we assume it holds 
at some level of recursion. At the end we will state the main theorem combining 
the above cases. Throughout the proof we will make use of the following principle.

Lem m a 3.1 [Hochbaum and Shmoys 1987] In some feasible packing of an 
instance Î î p =  (J ,B ), if ■■ >Jik} pieces in a bin and
•/71 ^Jhi· · -1 Jjk distinct pieces such that pî  < pj, for all I = 1 ,... ,k, then the 
instance Iy[̂ p formed by removing Jj ,̂ J j j , . . . ,  from I, remains feasible for one 
less number of bins.

P roo f: Take a feasible packing where {Ji,,Ji2i---,J ik) are the only pieces in 
some bin. Let Jĵ  be some piece that is in the packing of the remaining bins. 
Replace Jĵ  with J,·,. Then the packing on the remaining bins must be feasible
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since pj, > pî . As a result, after a finite number of these replacements we get a 
feasible schedule for the instance using one less bin. ■

Case I: st <  2/3 at all levels of recursion

Lem m a 3.2 If ah instance Î î p =  {J  -,B) has a feasible packing then the instance 

^vbp “  {fJ^new,Bnew) Created by the procedure 1/3 — relaxed has a feasible packing.

P roo f; If {J ,B )  has a feasible packing, then certainly so does [J  \ JsmuB). 
Consider any such feasible packing. Since all of the pieces in »7 \ Tjmi are greater 
than 5m/3 only two pieces can fit in bin m. This, further implies that at least one 
of these pieces has the size < Sm/̂ . Hence, we can conclude that the decision 
given in the statement 14, packs two largest pieces that can be packed in any 
feasible packing of the bin Bm· Then due to Lemma 3.1, Î [̂ p =  {JnewiBnew) 
remains feasible. Clearly this proof will hold at all levels of recursion since at 
each level we will start with a feasible packing for the instance at that level. ■

Lem m a 3.3 If the procedure 1/3 — relaxed outputs “no feasible packing” then 
there is no feasible packing.

P roo f: Suppose for a contradiction that there were a feasible packing. Then, by 
Lemma 3.2, for each recursive call of 1/3 — relaxed there is a feasible packing of 
the specified instance. However, for the failure message to be printed, the last of 
these instances must have clearly a contradiction,
since no instance that has greater total piece size than total bin size can have a 
feasible packing. ■

Lem m a 3.4 If the procedure 1/3 —relaxed does not output “no feasible packing” 
then it successfully packs all pieces in a 1/S-relaxed packing.

P roo f; There is only one statement in which the procedure 1/3 — relaxed could 
conceivably fail. In the statement 21, why should it always be possible to find
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a bin that is packed within its true capacity? If this were not possible, then all 
bins are packed beyond their true capacity, and thus ^
this is precisely the situation we have excluded in the case of the if  statement 
(statement 3).

To show that the packing produced is 1/3-relaxed, consider two steps in the 
procedure in which pieces are packed. In the statement 14, we ensure that the size 
of the packing <  (3/2)s^ < (4/3)5x =  (4/3) due to the fact that (l/2)s^ < (1/3) 
(see the if  statement indicated by 5), 5i =  1 and S( < Si (by assumption). In 
the statement 21, we always add to some bin Bi a piece of size < $¿/3 < 5, / 3, 
and since bin Bi previously contained <  s,·, afterwards it contains no more than 
(4/3)5.·. ■

Case II: Si >  2/3 at a level of recursion

Suppose that the condition Se >  2/3 of the statement 5 holds at some level of 
recursion, £. At this level the bins B^^i,. . .  ,Bm are filled with the related large 
jobs as described in the previous case. An instance Î ĵ p =  B) for the related 
variable-sized bin packing problem consists of the remaining unpacked bins (i.e. 
bins B\ through Bi) and jobs Jj € J . Since it is assumed that the bin sizes are 
sorted as si >  ¿2 >  . . .  >  5m and normalized after dividing by the largest bin 
size 5i, the remaining unpacked bins have sizes 5,· > 2/3 V f =  1 ,2 , . . . ,  A

In a related problem, given a finite number (say 1) of bins with equal (unit) 
sizes and a set J  of jobs with sizes as before, it is aimed to determine a feasible 
packing if it exists. As introduced before, this is the (ordinary) bin packing 
problem II^p. Let ordinarypack be an e-relaxed decision procedure. Given an 
instance Î p =  {J^B) =  (»7,f) (the last notation is valid since the bin sizes are 
unit) of this problem, the procedure ordinarypack either outputs “no feasible 
packing” indicating that there is no feasible packing or determines an e-relaxed 
packing in which large jobs are packed feasibly (i.e. in a bin, sum of the sizes of 

jobs with pj > e does not exceed the bin capacity).
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Lem m a 3.5 At a level t  of the recursion, if S( > 1 — e (for some e > 0), then 
ordinarypack can be used as an e-relaxed decision procedure for the bin packing 
problem with variable bin sizes.

P roo f: Suppose that the procedure ordinarypack outputs “no feasible packing” 
for an instance Î p =  {J ,t }  of the ordinary bin packing problem. Consider the 
related instance Î |̂ p =  {J , B) in which we are given the same set J  of jobs and 
number of bins as before. If the instance has no feasible packing then so does 
the instance Î î p since in the latter a bin B, i = 1 ,... has a size s,· <  1. If the 
procedure ordinarypack outputs “no feasible packing” then there is no feasible 
packing for the instance Î ĵ p.

On the other hand, suppose that the procedure ordinarypack does not output 
“no feasible packing” . Then the condition Y^j.^jPj <  statement
3 is satisfied and the procedure ordinarypack produces an e-relaxed packing, 

for the instance I^p. Consider a set *7' =  {Ja,, · · · of artificial jobs with
processing times =  si — s¿, pâ  =  Si — .. ,pat_·, =  si — 52. For an
artificial job (* =  1, · · · ~  1)» fh® processing time Pa >  0 since we assume
that the bin sizes are ordered such that Si >  52 >  . . .  >  > . . .  s^· By adding
the processing times of all of the artificial jobs to the both sides of the condition 
of the statement 3 and by using the assumption that the bin sizes áre normalized 
such that Si =  1, we obtain Pj  < £· The last inequality implies
that in the packing V ,̂ artificial jobs will certainly find a bin containing < 1 since 
otherwise we obtain a contradiction that ^j^^jP j > £ >  Furthermore
Pai = Si — 5¿_,-+x =  1 — s¿-i+i < 1 — s ¿ < e V i  = l , . . . , £  — 1. As a result even 
if we pack artificial jobs, V¡. remains as an e-relaxed packing since each bin will 
contain no more than 1 -f- e =  (1 +  e)>si. Moreover artificial jobs can arbitrarily 
be packed on  ̂— 1 distinct bins since the procedure ordinarypack is assumed to 
pack large jobs feasibly. Hence the packing V¡. is also an e-relaxed packing for the 
instance Î |̂ p since a processing time pa¡ =  1 ,.. .  ,^ — 1) is the extra capacity 
provided for the bin B, in the instance Î p as compared with the capacity of the 

same bin in the instance Î î p. ■



Chapter 3. A Branch and Bound Algorithm 58

The above two cases are incorporated in the following theorem which is presented 
without proof since it is simply an application of previous cases.

T h eorem  3.3 Provided that the procedure ordinarypack is an e-relaxed decision 
procedure for some e <  1/3; the procedure 1/3 — relaxed is a 1/3-relaxed decision 
procedure for the bin packing problem with variable bin sizes.

The problem is then to find out a procedure ordinarypack as described in 
the above theorem. For such a procedure we could use one of the procedures 
developed by [Hochbaum and Shmoys, 1987] to solve the ordinary bin packing 
problem, II^p. However none of these algorithms guarantees a feasible packing of 
the large jobs which we require the procedure ordinarypack to do.

Procedure 3.4 is claimed to be a 1/3-relaxed decision procedure for the equal-sized 
bin packing problem. Suppose that we are given a normalized problem instance 
Î p in which the bin sizes are unity. For the ease of reference we repeat the 
statement 3 of the procedure l/Z—relaxed in the statement 3 of the ordinarypack 
(Procedure 3.4).

Lem m a 3.6 If an instance I  =  {J A ) has a feasible packing then the instance 
Inew — {JnewiI ~  1) Created by the procedure largepack has a feasible packing.

P roo f: Consider the procedure largepack. If has a feasible packing, then
certainly so does the instance (¿7 \ Jamiil)· Consider any such feasible packing. 
Since all of the pieces in \ Jsmi are greater than 1/3 only two pieces can fit in 
bin i. This further implies that at least one of these pieces has the size <  1/2. If 

the condition in the statement 5 is satisfied then we will have at least one piece Jj 
with pj >  0.5. In any feasible packing this piece can be packed with at most one 
other piece. L[1 — pf\ is the largest piece that Jj fits with. Then due to Lemma
3.1, Inew =  {Jnewif^ ~  1) remains feasible. If the condition in the statement 5 is 
not satisfied, the two largest jobs we can pack is L[0.5,0.5]. Again property 3.1 
shows that Inew =  {JnewifTi ~  1) remains feasible. Clearly this proof will hold at
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P roced u re  3.4: A 1/3-relaxed decision procedure for the ordinary bin packing 
problem, II p̂

argum ents
a set of unpacked jobs at the current level of recursion 

B: a set of unpacked bins at the current level of recursion 
£: the current level of recursion

called from  Procedure 3.3

procedure called
largepack: a recursive procedure which packs large pieces of the ordinary bin 
packing problem II^p, feasibly

1 procedure ordinarypack
2 begin
3 if Z) Pj Z)

j j ^ j  Bi&B

4 begin
5 Jsmi :=  { j j  e  J\Pi <  1/3}
6 3new '·— iJ \ Uami
7 if  Jntw ^  0 then call largepack {JnewA)
8 while there exists unpacked Jy € J
9 find Bi with <  1 and add Jj to Bi.
10 end
11 else
12 output “no feasible packing”
13 end

all levels of recursion since at each level we will start with a feasible packing for 
the instance at that level. ■
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P roced u re  3.5: A recursive procedure which packs large pieces of the ordinary 
bin packing problem H^p, feasibly

argum ents
J': a set of unpacked jobs at the current level of recursion 
£: the current level of recursion

called from  Procedure 3.4

procedu re called
largepack: a recursive call

1 procedure largepack { J .,£)
2 begin
3 if S  Pi ^  ̂ then

Jj€J
4 begin
5 if there exists J j  6 J  with p j  € (0.5,1] then
6 Jpck { J j }  U L [ 1  -  p j ]

7 else
8 Jp,, :=L[0.5,0.5]
9 JJnew ·”  JJnew \ kJpck

10 if Jnew 7̂  0 then call largepack {Jnew,£~ 1.)
11 end
12 else
13 output “no feasible packing”
14 end

Lem m a 3.7 If the procedure largepack outputs “no feasible packing” then there 
is no feasible packing.

P roo f: Same arguments as in Lemma 3.3 applies.
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Lem m a 3.8 If the procedure largepack does not output “no feasible packing” 
then it successfully packs all pieces in a feasible packing.

P roo f: In any one of the cases under the if  statement (statement 5), a packing 
cannot contain greater than 1. ■

C orollary  3.1 If the procedure ordinarypack does not output “no feasible 
packing” then it successfully packs all pieces in a 1/3-relaxed packing.

P roo f: Due to Lemma 3.5. ■

Given the bin and job sizes in sorted order, the procedure 1/3 — relaxed with 
the above procedure ordinarypack runs in O (n). Consider the pointers to the 
sorted list of job sizes: (i) one to the largest piece that can fit on the current bin,
(ii) one to the largest piece that is no longer than half of the current bin size,
(iii) one to the largest piece that is no longer than one third of the current bin 
size and (iv) one to the largest piece that is no longer than 1 minus the size of 
the item pointed by (i). Thus the procedure 1/3 — relaxed packs “large” pieces 
in bins of increasing bin size and packs “small” pieces in bins of-decreasing bin 
size. As a result O (n) is required to maintain above pointers (first three of which 
applies to 1/3 — relaxed and all applies to largepack). Given these pointers the 
procedure can easily be implemented in linear time.

3.2.2 Initial Bounds

As initial lower and upper bounds get tighter, the binary search requires less 
computation time. At a node Nk of the enumeration tree we determine an initial 
lower bound as the maximum of the three lower bounds. The first lower bound 
lbo(Vkj) refers to the lower bound determined at the parent node Nk. It is 
assumed that at the root No, lbo{Vk  ̂ > lb = max{l{J')/m,maxjj^jpj} which 
is the lower bound given by [McNaughton 1959]. In this bound, each term of the
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outer maximum requires O (n) time. Therefore it can be determined in O (n) 
time. This lower bound gives the average time required to finish all jobs. Hence 
it ignores the variation in the processing time data.

For the time being consider node Nq of the enumeration tree. The following lower 
bound is expected to be dominating when n mod m ^  0 and processing time data 
has less variation.'

Lem m a 3.9 Suppose that jobs are sorted in a nondecreasing order of their 
processing times.

[n/m]
№.(Po) =  E R

i= l

(3.2)

is a lower bound on lljPUCmai·

P roo f: In an optimal schedule to \\P\\Cmax at least [n/m ] jobs will be 
scheduled on at least one of the m machines. Then for some machine A/,·, the 

inequality /61(^ 0) ^  — ^max proves the statement of the lemma. ■

The main effort in determining the above lower bound is due to the sort step. 
Hence the time complexity of determining IbiifPf) is O (nlog n). Notice that 

< /i>whenn mod m =  0 since m (pi+p2+· · -+P(n/m)) < (P1+P2 +  · · •+Pn)·

In the lower bound below we intend to incorporate processing time variability. 
Let Jmin G Vo be the job with minimum processing time and lower be a lower 
bounding procedure.

Lem m a 3.10

lb2{Vo) =  jn ax { min {pj+pmin, lo w er {V o \ {J j},n -l,m -l) } } (3.3) 

is a lower bound on \\P\\Cmax·

P roo f: In an optimal schedule P . to l\P\\Cmax either at least one job Jt is 
scheduled on the same machine that a particular job Jj (Jj € Vo and Jt €
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'Po\{J j}) has been scheduled or none. In the former > pj +  Pmin whereas 
in the latter > lower{Vo \ {J j},n  -  l ,m  — 1). Hence is greater or
equal to the minimum of these two quantities. This in turn implies that /62(T*o) 
is a lower bound. ■

The computational effort required to determine /¿2(^ 0) depends on the time 
complexity of the lower bounding procedure lower. If the lower bounds proposed 
above are used then time complexity will be O (n log n) since only one sort will 
be enough.

Corollary 3.2 /¿('Pq) =  { ^̂ oi'Po), ¿̂i(Po)>· ^̂ 2(^0) }  ̂ lower bound on
l\P\\Cma..

Lower bound computations at node Nk (A: > 0) of an enumeration tree are 
similar. If we let Mmin be the machine with least completion time at node Nk, 
then a lower bound at node Nk can be determined as shown in the following 
theorem.

Theorem 3.4 Let A  =  {Ja, \ Jat ^ Pjfe with pa, =  1(^1) ~  7̂
Nlmin} with |.4| < m — 1 denote the set of artificial jobs at node Nk. Then

lb{Vk) =  l{V f'^ )A lb {V k^ A ) (3.4)

P roo f: Without loss of generality consider a partial schedule Vk for a three- 
identical parallel machine scheduling problem as shown in Figure 3.3. In this 
figure, shaded parts of Vl and Vl are the extra processing allocated to machines 
M2 and M3, respectively. If we define two new jobs and with processing 

times pai =  ~ K^l) Po2 =  K^k) ~ KPk)  ̂ then by treating the set
Pk U { Jci, Jaj} 3.S if it was Vo and by applying the previous corollary we obtain 
a lower bound IbfVk)· Hence Equation (3.4) is a lower bound at node Nk- ■

An upper bound ub[Vk) is assumed to be the incumbent value Z. Clearly ub{Vk) 
need not be an upper bound on the scheduling problem at node Nk· It only refers
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Ml

Mo

Ms

Figure 3.3: A partial schedule for a three-identical parallel machine problem

to a bin capacity for which no feasible packing may exist. For that reason at node 
Nk, the procedure 1/3 — relaxed (Procedure 3.3) is called to check whether it 
outputs “no” or not. If the answer is “no” then it is certain that we cannot obtain 
a schedule which finishes by time Z from any one of the descendants of the current 
node. Hence this node can be fathomed without applying the bounding procedure 
further. If else Z is assumed to be the initial upper bound for the binary search 
procedure. At node Nq we determine the incumbent value by applying the list 
scheduling heuristic LPT  (see Section 2.3.1).

3.2.3 Bound Computations at a Node

Procedure 3.6 determines the bounds on the scheduling problem encountered at 
node Nk. Clearly the run time of the procedure bounds is determined by that 
of £ — makespan which is O {n{k -k log n)) for O {k log m) iterations of the 
binary search.

The statement 3 of the procedure —relaxed is important in determining tight
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P roced u re  3.6: The bounding procedure used at a node of the enumeration 
tree

argum ents
Vk'. a set of jobs fixed (scheduled) at node Nk
LB{Vk)‘ a lower bound on the scheduling problem encountered at node Nk 
UB{Vk)· upper bound on the scheduling problem encountered at node Nk

called from  Procedure 3.1

procedures called
1/3 — relaxed: a 1/ 3-relaxed decision procedure for the bin packing problem with 
variable bin sizes (see Procedure 3.3)
e — makespan: an approximate binary search procedure for solving the scheduling 
problem encountered at node Nk (see Procedure 3.2)

procedu re hounds (Vk, LB(Vk),UB(Vk)) 
begin

S i := Z - l ( V i )  V i =  l ,2 , . . . ,m
if 1/3 — relaxed [J^B,m) outputs “no feasible packing” then 

fathom this node 
else

call e — makespan (Iprns>
end

lower bounds at a node Nk- The tighter the condition the better the quality of 
the lower bound on l\P\\Cmax· The reason is that if this condition is satisfied 
at an iteration of an binary search procedure e — relaxed, then the lower bound 
is updated and thus becomes tighter. The condition in this statement can be 
considered as a generalization of the lower bound lb for llPWCmax (see Lemma
2.3). To improve both the quality of the lower bound and the run time of the 
algorithm we have used the following conditions in statement 3 in addition to the 
current condition:

(i) at a recursive call, if there are > t  (referring to the number of unpacked
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bins) large jobs (with pj > 1/ 2) among unscheduled ones, then at least 
two large jobs have to be packed in one bin. Hence, there is “no feasible 
packing” . This condition decreases the computational time requirement of 
the procedure 1/3 — relaxed since it may determine an infeasibility that the 
original condition in statement 3 determines after packing several bins.

(ii) at a recursive call, if there are >  2£ unscheduled medium jobs (with 1/3 < 
Pj < 1/ 2), then at least three medium jobs will be packed in one bin. 
Hence, the output is “no feasible packing” . This condition decreases the 
computational time requirement of the procedure 1/3 —relaxed in the same 
way as before.

(iii) at a recursive call, determine Ihi (see Section 3.2.2) considering the 
remaining unscheduled jobs and unpacked bins. If lb\ exceeds the size of the 
largest bin (= 1), then in a packing at least one bin cannot have a feasible 
packing. Hence output “no feasible packing” . This condition increases the 
quality of the bound and decreases the computation time of the algorithm.

The use of the above rules does not affect the worst case bound of the algorithm 
e — makespan. Furthermore together with the original condition in .the statement 
3, they can be used to update the lower bound of the parent node or to fathom 
the remaining nodes (which have the same parent with node Nk) that are not 
generated yet. Suppose that at an iteration of the binary search where we were 
packing the bin B{, we have ended up with the message “no feasible packing” . In 
this case if the index i is less than the machine index we are currently branching 
on (i.e. if i is the index of a machine that is branched on previously) then on the 
remaining nodes we will have the same infeasibility message due to the same bin 
Bi. If bin sizes are set Z, the incumbent value, then we can fathom the remaining 
nodes. If else we can update the lower bound on the remaining nodes which is 
equivalent to updating the lower bound of the parent node.

To improve the quality of the upper bound that the procedure e — makespan 
produces, a refinement in the algorithm is necessary. Although the procedure
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e — makespan produces a schedule with makespan being arbitrarily close to (1 -f 
i^)i might not output a better schedule even it determines such a 

schedule at an iteration of the binary search. This is due to the fact that uh in 
the procedure e — makespan refers to a particular bin capacity at some packing 
attempt but not necessarily to the makespan of a feasible schedule. In fact for 
a a feasible schedule is obtained by the procedure e — relaxed and may have 
a makespan of at most (1 +  e)uh. For that reason, for some uh\ and ub2 (where 
ubi > «¿>2) that have been updated as such in two different iterations of the binary 
search, makespan of the schedule produced by ubi may be less than the one due 
to ub2. In such a case the binary search procedure outputs the schedule produced 
by ub2. However with a slight modification in the procedure e — makespan, the 
best schedule generated so far can be stored and updated without any additional 
computation time. This will increase the mean performance of the procedure.

3.3 Search Strategy

The strategy used when searching the enumeration tree affects the performance 
of the branch and bound procedure. As pointed out in Section 3.1 the size of the 
tree is affected by the selection of a particular job for branching at a level. As a 
matter of fact, the example in the Figure 3.2 can be generalized to show that the 
number of leaf nodes is minimized if at each level of the enumeration tree the job 
with the maximum processing time, among the unscheduled jobs, is selected for 
branching. Moreover the performance of the procedure 1/3 — relaxed decreases 
if large pieces (with pj >  1/2) and medium pieces (with 1/3 < pj <  1/2) exist 
at the same time to be packed into the same bin (see statement 14 of Procedure
3.3). For this reason selecting the job with maximum processing time among 
the unscheduled jobs, helps us to increase the quality of bounds at a node and 
to decrease the size of the enumeration tree. The procedure selectajob uses this 
rule.

After all of the descendant nodes is generated, a node has to be selected for further
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enumeration (at the beginning node No is selected). The procedure selectanode 
applies backtracking strategy with the following hierarchy of selection rules:

1. mmUB{Vi^), choose the node in descendants of which there is a feasible 
solution with its makespan being close to the incumbent value.

2. maxLB{Vk), break any tie in the first rule by choosing the node in 
descendants of which there is a feasible solution with its makespan being 
close to optimum.

3. choose the first node in the order that the branches were generated, break 
any tie in the second rule by choosing the node which has a more potential 
to generate optimal solution. The way we generate the nodes is such that 
the schedule associated with the first generated node has more chance to 
finish earlier.

3.4 Computational Experience

In \\P\\Cmax there are three factors which seem to be the most important in 
affecting the performance of the algorithm:

(i) the proper divisibility of the ratio of number of jobs to number of machines 
(n /m  ratio),

(ii) the magnitude of the n/m ratio,

(iii) the variability among processing times

The impact of the first factor is related with the deteriorating quality of the 
lower bound presented in Lemma 2.3. For problem instances in which n /m  is not 
divisible, the lower bound gets worse. As a matter of fact in the literature the 
examples that are given to show the worst case ratio of an algorithm is selected 
among those instances in which n /m  is non-divisible. For this factor what one
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may expect in terms of the performance of an optimizing algorithm is that the 
run time of the algorithm increases if this ratio becomes non-divisible since the 
algorithm will have a difficulty in proving the optimality.

The magnitude of the n/m ratio directly affects the size of an enumeration tree. 
In Table 3.1 it cari be seen that the size of the tree decreases as the n /m  ratio 
gets low or high. The problem becomes difficult as this ratio becomes medium. 
Hence, for instancois in which the n/m ratio is medium the performance of an 
optimizing algorithm is expected to deteriorate.

The last factor is the processing time variability. As the variability decreases 
many alternative solutions to a problem exist. If a lower bounding scheme 
cannot differentiate among these alternatives then surely the performance of an 
optimizing algorithm decreases. If on the other hand, high variability is present 
in an instance then any wrong selection of a node causes the optimizing algorithm 
to spend much time in searching irrelevant parts of the enumeration tree. Hence, 
we expect the performance of an optimizing algorithm to improve in medium 
processing time variability cases.

The factors and the related levels that we consider in this study are shown in 
Table 3.2. According to the notation given in the table, NDHL represents a 
problem structure in which n/m  is non-divisible, n/m ratio is high and process 
variability is low. Similarly DMH represents a structure in which n /m  is divisible, 
n/m ratio is medium and process variability is high. For each of the 18 different 
problem structures, 50 problem instances are considered. As shown in Table 3.2, 
the problem parameters are generated from uniform distributions. Considering 
real world examples, it may be argued that the uniform distribution is not suitable 
to generate some of the problem parameters. For instance, it can be claimed that 
in many cases processing times are distributed exponentially. However, the aim 
of this empirical analysis is to test the performance of the algorithm for any 
problem instance without any assumption on its structure.

To be able to measure the performance of the branch and bound algorithm, for
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Table 3.2: Factors and related levels considered in the experimental design

X  ~  Ud{a, b) shows that i  is a discrete random variable distributed uniformly between a and 6. 
X is generated a s a + [6  — a +  ljy  where y is a continuous random variable distributed uniformly 
between 0 and 1

In “n /m  divisible” case, if the generated n and m values are not divisible then n is increased 
till n /m  becomes divisible. If n exceeds b then new n and m are generated and the above 
procedure is applied ugain.

In “n /m  non-divisible” case if the generated n and m values are divisible then n is increased 
till n /m  becomes non-divisible. If n exceeds b then new n and m are generated and the above 
procedure is applied again.

Factors Levels
n/m divisibility divisible (D) non-divisible (ND)
n/m ratio low (L) high (H) medium (M) 

n -  i/rf(100,120) n ~ 17d(100,120) n -  Cfd(100,120) 
m -  Ud{50,80) m -  t/d(2,10) m ~ Ud{20,50)

processing variability low (L) high (H) medium (M) 
p,· ~ Ud(5,10) Pi ~ Ud(5,300) pj ~ 1/^(5,50)

each problem structure we collect statistics on the following indicators

1. First encountered time: the cpu time elapsed to determine the solution that 
the algorithm delivers upon its termination.

2. First encountered node: the number of nodes enumerated to determine the 
solution that the algorithm delivers upon its termination.

3. Total cpu time.

4. Total number of nodes enumerated.

5. Initial gap: The minimum of the relative difference between the upper 
bound ub, and the lower bound lb (i.e. (ub — lb)fib) determined at the root 
node and at the node Ni.

6. Ending gap: The relative difference between ub and lb upon the termination 
of the algorithm.
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Table 3.3; A sample output

N D M L
A verage: 4.72214 518.6818

S td .D ev .: 22.77753 688.9690
First E ncountered T im e (sec) T ota l T im e (sec)

10 48 10 27
40 1 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 1 190 1

0 22

The branch and bound algorithm has been coded in the computer language C. 
The experiments were conducted on the computer SUN SPARC SERVER 490 
(22 MIPS). Results of the analysis are shown in Appendix C (Tables C.l through 
C.3)

In these tables mean and standard deviation of each indicator are given. Moreover 
percentile-like information for each indicator is given. The information in Table
3.3 for example is read as, out of 50 problems, 48 times the first encountered time 
was less than 10 seconds, once it was between 10 and 40 seconds and, once it was 
between 160 and 190 seconds.

In summary, over 900 randomly generated problems

• 702 problems are solved in less than 10 seconds; in 15 problems the solution 
time (in cpu seconds) is in the range (10,40]; in 2 problems it is in (40,70]; 
in 4 problems it is in (70,100]; in 2 problems it is in (160,190] and in 7 
problems it exceeds 190 seconds. 168 (19%) problems remain unsolved 
(since the algorithm stops after 10® nodes are enumerated).

• upon the termination of the algorithm the relative difference between the 
upper and lower bounds computed is always less than 10%. In 732 problems 
it is zero; in 143 problems it is in the range (0,0.02]; in 17 problems it is 
in (0.02,0.06]; for 1 problem it is in (0.06,0.08] and in 3 problems it is in
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(0.08,0.1].

• upon the termination of the algorithm, the mean of the relative difference 
between the upper and lower bounds computed is at most 0.019 (the case 
NDML). Other than this case it is at most 0.0035.

• upon the termination of the algorithm the overall mean and standard 
deviation (for 900 problems) of the relative difference between the upper 
and lower bounds are 0.001935 and 0.008446, respectively.

• first encountered time is at most 505.263 cpu seconds (945,010 nodes). In 
831 problems first encountered time is less than 10 seconds; in 44 problems 
it is in the range (10,40]; in 3 problems it is in (40, 70] in 7 problems it is in 
(70,100]; for 1 problem it is in (100,130]; in 2 problems it is in (130,160]; 
in 3 problems it is in (160,190] and in 9 problems it exceeds 190.

• the first encountered time is at most in 38.55 seconds (the case DMH).

• the overall mean and standard deviation (for 900 problems) of the first 
encountered times are 6.33 and 32.23, respectively. The overall mean 
and standard deviation of the first encountered nodes are 13,273.07 and 
74,668.58, respectively.

At the beginning of this section, we have provided an intuitive explanation of 
how each of the problem parameters is expected to affect the performance of the 
algorithm. In identifying whether or not the performance of the algorithm is 
sensitive to varying problem parameters (and if so, the direction of trends) with 
respect to each indicator, we make use of the Three-Factor Fixed Effects ANOVA 
model [Montgomery, 1984]

Vijki =  +  +  {Tp)ij +  (r7)ii +  { h ) j k  +  (1-^7),jit +  tijki

where î =  1,2 (divisible, non-divisible); j  =  1,2,3 (low n/m,high n/m,medium 
nlm)\ k =  1,2,3 (low variability, high variability, medium variability) and / = 
1 ,2 . . . , 5 0  (sample size). ANOVA tables are presented in Appendix C (Tables
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Table 3.4: The percentage of the standardized residuals that fall within the 
limits

The error terms Cijki are N(0,cr^) (distributed normally with mean zero and variance a^). 
Hence, the standardized residuals €ijki/y/M S e  should be approximately normal with mean 
zero and unit variance. Thus, about 68% of the standardized residuals should fall within the 
limits ± 1 , about 95% of them should fall within ± 2 , and virtually all of them should fall within 
± 3 . Each entry below-shows the percentage that falls within the specified limit for each of the 
indicator.

Limits
Factors ±1 ±2 ±3
First Encountered Time 93.1 97.9 98.7
Total Time 48.9 92.1 98.1
Initial Gap 6 48.7 73.7
Ending Gap 71.2 94.7 95.2
First Encountered Node 92.8 97.8 98.4
Total Node 37.8 55 89.1

C.4 through C.6). It is seen that the normality and equal variance assumptions 
about the error terms (eijki) are not satisfied perfectly (see Tables 3.4 and C.l 
through C.3, respectively). Therefore, the results of the ANOVA should be loosely 
interpreted. However, as it is well-known, the i^-test of the ANOVA is quite 
robust to skewness of the error distributions and a balanced design (that is, an 
experimental design with equal sample sizes) protects against unequal variances. 
Plence, the analysis still provides an insight to the problem which is consistent 
with the results obtained in Tables C.l through C.3. In particular, the significant 
contrasts (which may be computed by using Tables C .l through C.6) among the 
treatment levels agree with the results summarized in Tables C .l through C.3. 
The following conclusions are drawn from these tables.

First encountered time (node) is insensitive to the changes in any one 
of the problem parameters. In fact, from Tables C.l and C.3, it is 
possible to observe that the first encountered time (node) is slightly
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affected by the varying problem parameters. For instance, medium- 
n/m-ratio case is definitely worse than the other cases. However, in 
most of the cases, the differences among cpu seconds (and the related 
number of nodes) are practically negligible.

In terms of the total execution time (number of nodes), the 
performance of the algorithm varies with the different problem 
structures. The effect of the magnitude of the n /m  ratio on the 
performance of the algorithm is summarized as low y  high y  
medium where x y  y shows that the execution time of the algorithm 
is shorter (and it enumerates less number of nodes) in case x than 
in y. The processing time variability affects the performance as 
medium y  low y  high. In terms of the n /m  divisibility, there is 
no significant difference between the cases n/m divisible and n/m  
non-divisible. Except the last observation, these results agree with 
the intuitive explanations provided at the beginning of this section.

In 290 problems, the list scheduling heuristic LPT  (see Section 
2.3.1) is successful in determining the solution that the algorithm 
delivers (see Table C.3. The number corresponding to zero-first- 
encountered-node shows the number of problems in which LPT  
determines the ending solution). In 264 problems (out of 290), the 
ending solutions are proved to be optimal (see zero-total-#-6f-nodes 
row of Table C.3). The performance of LPT  is better in \ovf-n/m- 
ratio and/or low-processing-time-variability cases (in 244 problems 
the ending solution is determined by LPT  and 220 of them are 
proved to be optimal). Moreover, in low-n/m-ratio cases, the 1/3- 
dual approximation algorithm is successful in improving the solutions 
determined by LPT  and in determining optimal solutions without 
any enumeration (see one-total-^-of-nodes row of Table C.3).

The initial gap is smaller in problems where n /m  is divisible than that 
in n/m-non-divisible problems (see Table C.2). This result indicates
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that the initial lower bound gets worse (that is, its percent deviation 
from the upper bound increases) in an n/m-non-divisible Ccise since 
as discussed above, no such tendency is observed in the initial upper 
bounds. Moreover, it is observed that the initial gap increases when 
the n /m  ratio is medium which may either be due to the deteriorating 
performances of upper or lower bounds.

In terms of the ending gap, the behavior of the algorithm is slightly 
better in n /m  divisible case. In n /m  divisible cases, the ending gap is 
insensitive to changes in the parameters n/m  ratio and/or processing 
variability. In n /m  non-divisible cases, the ending gap increases when 
n /m  is medium and/or when processing variability is low.

Considering the large (enough) number of jobs generated in a problem instance 
and, the results associated with the quality of solutions determined at the first 
encountered time and the length of this time, it can be concluded that the 
algorithm is robust and from the practical point of view, it solves the parallel 
machine scheduling problem in a reasonable time.



Chapter 4

Conclusions

The purpose of this study was to investigate the combinatorial aspects of a 
class of parallel machine scheduling problems, namely l\P\\Cmax·, and develop 
a computationally feasible branch and bound algorithm for its exact solution.

After a brief discussion of machine scheduling problems, in Chapter 1, the formal 
definition of the problem to be investigated in this study was given. This specific 
class of problems is \ \P\\Cmax·, in which n independent jobs have to be scheduled 
on m identical parallel machines with the objective of minimizing the schedule 
length. The characteristics of an optimum solution to l\P\\Cmax were presented 
in Chapter 2. These characteristics are crucial in developing a branch and bound 
algorithm. Also in Chapter 2, the previous approaches to this problem and 
their main drawbacks were discussed. The main chapter. Chapter 3, presented 
a detailed development of a branch and bound algorithm for l\P\\Cmax· The 
branching scheme was discussed in Section 3.1. It enumerates the set of all 
nonpreemptive schedules in which none of the machines are idle, without any 
repetition (see Theorem 3.1). Moreover due to Lemmas 2.2 and 2.4, the length 
of each schedule generated by the branching scheme is strictly less than twice the 
lower bound given in Lemma 2.3 even if none of the fathoming rules are applied. 
The bounding scheme, as discussed in Section 3.2, uses the relationship between

76



Chapter 4. Conclusions 77

l\P\\Cm.ax and the bin packing problem Il^p. The former problem can be viewed 
as the bin packing problem with the objective of determining the minimum bin 
size for which there is a feasible packing. Hence a binary search procedure, such as 
Procedure 3.2, can used to search a range of possible optimum makespan values. 
In Section 3.2.1, a ( l / 3)-relaxed decision procedure was developed to solve the 
bin packing problem associated with the subproblems that arise in each node of 
the enumeration free. This procedure, when used in a binary search, provides 
tight lower and upper bounds at a node of the tree. Furthermore, this algorithm 
has applications in its own right to a specific class of parallel machine scheduling 
problems which are discussed later in this chapter. The search strategy used 
for the branch and bound tree was presented in Section 3.3. It is basically the 
depth-first strategy applied with the selection rule: select a node among the ones 
in the deepest (active) level with the minimum upper bound. In this strategy, 
the size of the active nodes list remains constant since once a node is selected 
for branching it is removed from the list. This resolves the memory problem 
associated with the computer code of the algorithm. The motivation behind the 
selection of a node with the minimum upper bound is to determine the part 
of the tree in which the feasible schedule with its makespan being equal to the 
incumbent value lies. Since the initial incumbent value is determined by the list 
scheduling algorithm LPT  (see Section 2.3.1), the incumbent Z , is expected to 
be close to the minimum makespan. Hence by changing assignments of a few 
number of jobs in the LPT  schedule, which is done by the branching scheme, an 
optimum solution may be found. At a selected node, a job with the maximum 
processing time among the unscheduled jobs is scheduled (fixed) to reduce the 
size of the tree. A detailed empirical study was the concern of Section 3.4. In 
900 randomly generated problems, it has been observed that 168 (19%) problems 
remain unsolved. 702 problems were solved in less than 10 cpu seconds. In 831 
problems the ending solution (the solution that the algorithm returns upon its 
termination) was found in less than 10 cpu seconds. In 732 problems, the ending 
solution turned out to be optimal. In 143 problems, the relative deviation of 
the ending solution from the ending lower bound was less than 2% and only
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in 4 problems this deviation is in the interval [6%, 10%]. Further analysis of 
these results showed that the performance of the algorithm (both in terms of 
the solution time and the quality of the ending solution found) was not affected 
by a change in any one of the problem parameters. Hence, it can be concluded 
that for all practical purposes the branch and bound algorithm solves l\P\\Cmax· 
The classification scheme is given in Appendix A for deterministic scheduling 
problems. Appendix B provides a glossary of some of the complexity theoretic 
concepts that were used in the study. The summary of the computational results 
is given in Appendix C in tabular format.

This chapter mainly deals with the significance and the importance of the results 
of this study and possible directions for future research.

It is well documented that the classical job shop scheduling problem, J\\\Cmaxi 
is one of the most difficult combinatorial problems. In this problem we are 
given a set of jobs J  =  { Ji, each has to be processed on s machines
(stages) Ml, M2 , ■.. ,Ma. Each job Jj consists of a sequence of Oj operations 
{O ij, . . .  ,O ojj}‘, Oij being the processing of job Jj on machine m.-y (one of the 
machines Mi, M2 , . . . ,  M,, which is specified to perform the operation Oij) with 

7̂  rriij during an uninterrupted timep,j. Then the problem is to determine 
a processing order on each machine M  ̂ such that the makespan is.minimized.

[Conway et al. 1967] asserted that “many proficient people have considered this 
problem, and all have come away essentially empty-handed. Since this frustration 
is not reported in the literature, the problem continues to attract investigators 
who just cannot believe that a problem so simply structured can be so difficult 
until they have tried it” . In a similar pessimistic assertion, [Adams et al. 1988] 
stated that “job shop scheduling is among the hardest combinatorial optimization 
problems. Not only it is A/’P-hard [Garey and Johnson 1979], but even among 
members of the latter class it belongs to the worst in practice; we can solve 
exactly randomly generated traveling salesman problems with 300-400 cities 
(over 100,000 variables) or set covering problems with hundreds of constraints 
and thousands of variables, but we are typically unable to schedule optimally
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ten jobs on ten machines” . The history of the so called “notorious” 10 x 10 
job shop problem is quite interesting. The specific instance of this classical 
job shop problem was given in [Muth and Thompson 1963]. There are 10 jobs 
each having 10 different routings through 10 machines. This problem instance 
defied all solution attempts until 1989 when [Carlier and Pinson 1989] solved the 
problem in an unreasonably large computation time (about four hours).

At the present time the only viable approximation algorithm for the classical 
job shop problem seems to be the “shifting bottleneck” procedure of [Adams 
et al. 1988] which uses the one-machine lower bound of [Lageweg et al. 1978]. 
Such a bound is determined by relaxing the capacity constraints on all machines 
except the machine Afi, i =  1,2, . . . , s .  For each operation on machine M,· 
we can determine a head being the earliest start time of this operation, a 
tail being the earliest completion time of all the operations that follow the 
current operation and a body being the processing requirement of this operation. 
Then treating operations as jobs we obtain a three-stage flow shop problem 
F311 nonbottleneck 1st and 3rd stagesjCrnax which is equivalent to l\\rj,dj\Lmax 
[Lenstra 1977; Rinnooy Kan 1976]. This latter problem is usually referred as the 
one-machine scheduling problem. An optimal solution to the related 11\rj, dj\Lmax 
provides a lower bound LB{Mi) on the general problem class J\\\Cmax· Then a 
tighter bound can be determined each time by assuming a different machine 
as the bottleneck and letting LB — maxi<,<, X5(Af,·) (See [Roy and Sussmann 
1964; Lenstra 1977; Rinnooy Kan 1976; Adams et al. 1988] for details, specifically 
the disjunctive graph representation of J\\\CTnax and the related lower bounding 
issues). Unfortunately l||rj, dj |Lmax is known to be unary A/"7 -̂hard [Lenstra 
1977; Rinnooy Kan 1976]. However [Carlier 1982] has developed a branch and 
bound algorithm which solves this problem in a reasonable time. This branch 
and bound procedure is used in the shifting bottleneck procedure of [Adams et 
al. 1988]. If we let M j  denote the set of machines that are sequenced (initially 
A f /  =  0) then their procedure can be summarized as follows:

Step 1 Solve the one-machine scheduling problem for each Afi ^ M j.  Call
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the machine Mk with maximum objective (which is makespan for 
i^3||nonbottleneck 1st and 3rd stages jCmax or equivalently maximum late
ness for \\\rĵ dj\Lmax) the critical machine. Fix the optimum sequence 
on machine Mk- Let M/ := A4fU {Mk}. Go to step 2.

Step 2 Reoptimize the sequence of each critical machine Mi Q while keeping 
the other (previously fixed) sequences fixed. If A4/ =  M. then stop. 
Otherwise go to step 1.

Rather than identifying one machine as critical at each iteration of the algorithm, 
[Adams tt al. 1988] have considered the first k machines selected from a list 
sorted in nonincreasing order of the objective values of the related one machine 
problems. Performing this step for each of these k machines, an enumeration tree 
is obtained. The modified heuristic of [Adams et al. 1988] searches the truncated 
enumeration tree in which the number of critical machines k., considered at a 
level of the tree decreases as the level increases according to some function which 
depends on the problem size. This version of the shifting bottleneck heuristic is 
famous since it solves the 10x 10 problem in about five minutes (without proving 
the optimality).

Clearly, the realistic version of the classic job shop scheduling problem is the 
multi-stage (flow or job shop) parallel machine scheduling problem. In the 
contemporary manufacturing environment, CNC machining cells consisting of 
identical parallel machines (CNCs) and each cell functioning as a stage in a 
multi-stage manufacturing are common occurrences. Speed of operation and high 
investment in these modern manufacturing systems make it absolutely necessary 
to be able to schedule these systems in (almost) real time and with high machine 
utilization. In this respect, makespan minimization seems quite acceptable in 
these systems since it can be shown that minimizing makespan results in a 
maximization in machine utilization levels. Unfortunately none of these problems 
are solvable in polynomial-time unless V —AfV. Even for the simplest production 
environment flow shops, the following complexity results are obtained.
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• F2|P2,Pl|nonbottleneck 2nd stagelCmoj: is A/’P-hard [Akyel and Benli 
1988],

• F2\Pmi,Pm2\max{mi,m2} >  l|C,„aa: is unary A/'P-hard [Gupta 1988],

• F2\P2, Pl\pmtn\Cmax is AfV-hard [Lenstra 1988],

• P 2|Pmi,Pm2|no -  mj > 1 V j  = l,2\Cmax is unary A/'P-hard
[Sriskandarajah and Ladet 1986].

The solution procedures proposed in the literature for the multi-stage parallel 
machine scheduling problems indicate that the problem area is still open (see 
[Akyel and Benli 1988] for a review). The two conflicting aims require, if exact 
algorithms are timewise infeasible, good approximate algorithms with acceptable 
mean or worst case behaviors, that can operate in real time while giving good 
machine utilization levels.

On the other hand, availability of exact algorithms for multi stage parallel 
machine scheduling problems are essential for a number of reasons. For one, 
it is important to have a benchmark to empirically compare the heuristics being 
developed. Moreover any truncated search of the enumeration tree provides both 
lower and upper bounds on a particular problem instance using which we can 
rate the quality of the schedule determined.

The analysis of the solution methodologies for J\\\Cmax suggests that in any 
extension of the multi-stage single machine problem to identical parallel machines 
in each stage, the problem \\P\rj d̂j\Lmax becomes important. [Carlier 1987] 
has developed a branch and bound algorithm for this problem. From what 
has been reported, this procedure is not computationally promising. Hence 
computationally feasible means of determining bounds for \\P\rj,dj\Lmax are 
required. The algorithm developed in this study, we believe, provides such means.

Even when we consider the single stage identical parallel machine scheduling case, 
there are a number of important application areas. As it was mentioned earlier.
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in contemporary manufacturing systems it is common to come across machining 
cells consisting of identical CNC machines operating in parallel under the control 
of a central computer. At any given point in time, the central computer assigns 
(or, schedules) the jobs that are already in the queue of the cell to the CNCs 
under its control (usually using makespan minimization as the objective with the 
intent of improving machine utilization). Reassignment (or, rescheduling) of jobs 
to CNCs is required at least under two circumstances: when one or more new 
jobs join the queue, and when machine failure occurs in one or more of the CNCs. 
In either of the circumstances, the situation is basically the bin packing problem 
with variable bin sizes for which (l/3)-dual approximation algorithm presented 
in Section 3.2.1 gives, to our knowledge, the best worst case bound.

Assuming nonpreemptions, when new jobs arrive, the jobs already being 
processed on the CNCs must continue processing. That is, each CNC will become 
available at different times in the future. This corresponds to bins of different sizes 
in the corresponding bin packing problem. The situation is identical when one 
or more CNCs fail at any point in time. It is customary to assume deterministic 
repair times for CNCs. Hence, when the repair times are treated as pseudo jobs 
that tie up the failed CNCs, the problem reduces to the previous case (see Figure 
4.1).

Although the (l/3)-dual approximation algorithm gives the best worst case 
performance bounds for this problem, a rigorous computational study is needed 
in order to compare its mean behavior against possible other heuristics, such as 
LPT. It should also be noted that the makespan minimization is used only as a 
surrogate for maximization of machine utilizations. Hence, what we really want is 
not the optimum makespan, but avoid, possibly rare, worst case occurrences. This 
mode of operation is akin to the rolling horizon concept in production planning: 
we do not really expect the stated makespan value, computed at a particular 
point in time, to be realized, but long before that either new jobs will join the 
queue, or some CNCs will fail, or both.

In conclusion, the three significant aspects of this study are: (i) a rigorous
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remaining processing of jobs 
already started

processing resource availability 
for the jobs in queue

T corresponding value of the makespan

Figure 4.1: l\P\\Cmax with one or more jobs fixed

complexity theoretic treatment of the class of problems: l\P\\Cmax·, (ii) 
development of a (l/3)-dual approximation algorithm for a specific class of 
problems in l\P\\Cmaxi (iii) development of a computationally feasible exact 
algorithm that effectively utilizes the branching and bounding schemes, and the 
search strategies in a branch and bound procedure for the class of problems, 

l\P\\Cmax.
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Appendix A

A Classification Scheme for 
Machine Scheduling Problems

The development of formal scheduling models dates back to the time of the World 
War I. At that time H.L. Gantt invented a graphical tool, Ga,ntt Chart, which 
is used to represent which job is loaded on which machine and at what time, 
resulting in a schedule. A Gantt Chart can be used to compare two different 
schedules with respect to some criteria. It was the first work that helps to identify 
the benefits obtained from scheduling. Later [Roy and Sussmann 1964] proposed 
another representation tool, disjunctive graph representation, which is essentially 
same as the Gantt chart except that the graph notation introduced.

The development of formal scheduling models and the concern of the scheduling- 
theory can be followed chronologically in [Conway et al. 1967; Baker 1974; 
Rinnooy Kan 1976; Lenstra 1977; Graham et al. 1979; Bellman et al. 1982; 
French 1982; Lawler et al. 1982; Blazewicz et al. 1986; Lawler et al. 1989].

Scheduling problems may arise whenever n jobs J j  {j =  I , .. .  ,n) have to be 
processed on s stages Si {i = 1 ,... ,s) each of which may have m( parallel 
machines Mm (A; =  1 , . . . ,  m^). We assume that

89
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• machines of a stage are not shared with any other stage i.e., \i M.i denotes 
the set of machines at stage Si (where \M.i\ =  mi) then A4if]A4h  =
0 V A,

• each machine Mki of a stage Si can process at most one job Jj at a time 
and,

• unless otherwise stated each job Jj can be processed on at most one machine 
Mki E M l and stage Si at a time.

• following data can be specified for each job Jj:

— a number of operations Oj,

— a sequence of operations {O ij,.. .  where has to be
processed on one of m̂ .j parallel machines of a stage with ^

S{j V i =  2 , . . . ,  Ojj

— a processing requirement pkij of each Oij on k-th. (k — 
machine of S{j,

— a ready time or release date I'j on which Jj becomes available for 
processing,

— a due date dj by which Jj should ideally be completed,

— a deadline dj by which Jj must be completed,

— a weight Wj indicating the relative importance of Jj,

— a nondecreasing real function fj  of the completion time Cj, indicating 
the cost fj{C j) incurred if Jj is completed at Cj.

Given such an instance, a scheduling problem can be modeled as determining the 
schedule S that minimizes fmax or X) fj  such that in S

1. fmax =  max { f j { C j ) } and
l < j < n

2. prescribed { O i j , O o j , j }  for each job J j is preserved.



3. each of parallel machines in stage Sij processes one operation Oij at a 
time,

4. each operation Oij requiring the stage are processed on one and only 
one of parallel machines at a time,

5. some other characteristics of each job and/or shop are satisfied (the ones 
that are commonly used in the literature will be explained later in this 
section).

Variety of scheduling problems defined by the above formulation can be identified 
by the terminology similar to the one used in [Graham et al. 1979]. In this 
notation, each scheduling problem is represented by a 4-tuple a | | 7 |
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• a identifies the production environment. Following four different configu
rations are defined in the literature:

s and

— a =  1: a single stage problem.

— a — Fs: a flow shop problem in which Oj 
Si V Jj and Oij. If s is not given the general class of flow shop 
scheduling problems will be represented.

— a = Js: a job shop problem which is the general case defined at the 
beginning of this section.

— a = 0$: an open shop problem which is same as the flow shop 
problem except in this case the order of operations is immaterial, i.e. 
{ 0 \ j , . . . ,  O o j , j }  represents a set of operations but not necessarily their 

sequence.

• ^ identifies the machine environment at each stage of production. If we let 
o denote the empty symbol then the possible configurations are:

— /3 =  0: the problem with single machine at each stage of production.

— yd =  1: single machine at a particular stage of production; puj <— pij.
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— /3 =  Pmi: Identical parallel machines at stage 5V; Pkij ·<— 
Pij V Mke € A4t. If is not specified then the general class 
of problems in which there is an arbitrary number (m^) of parallel 
machines at stage Si, is implied.

— P =  Qmf. Uniform mt parallel machines at stage Si\ pkij <— Pij/tki 
for a given speed tke of machine Mki E Mi-

— ^ = Rmp. Unrelated parallel machines at stage Si.

7 identifies further assumptions of the scheduling problem such as;

— 7 =  pmtn: job preemption is allowed, i.e. the processing of any 
operation may be interrupted and resumed at a later time.

— 7 =  strm: lot streaming is allowed. It may occur in two different ways: 
(i). any operation of a job may be processed on different machines of a 
stage at the same time {in — stage strm), (ii). before an operation is 
entirely completed, some portion of the work can be moved ahead to 
begin next operation {inter — stage strm). Clearly strm· is different 
from pmtn and it violates the third assumption stated at the beginning 

of the section.

— 7 =  nonbottleneck i — th stage: stage Si is assumed to have an 

infinite capacity.

— 7 =  dominated i — th stage: processing times of operations 
requiring a stage Si are such that the stage Si can be considered as 
nonbottleneck, i.e. in any schedule for a given problem instance, stage 

Si will be nonbottleneck.

— ^ =  no — wait: no job is allowed to wait in between stages.

— 7 z= Tj·: ready times that may differ for each job are specified.

— 'y = Oj < o: constant upper bound on number of operations for all Jj 
is specified (valid only if a =  Js).

— If any one of the above characteristics is not possessed, o is used instead 

of it.
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• 6 identifies the optimality criterion of the scheduling problem. Commonly 
used performance measures are:

fiiC j) fmax E f i

Cj Cfnax Z w jC j

(makespan) (mean weighted Howtime)

C j - d r Lmax —

(maximum lateness)

max{0, Cj — dj} —

(mean weighted tardiness)

J 0 If Cj <  dj, 

1 1 otherwise.
— Y^WjUj

(mean weighted number of tardy jobs)

These performance measures are called regular in the sense that each S 
is a monotone function of the completion times Ci,C 2 , · · · ,Cn- That is
C j< c ;·  V j= ^s iC u C 2 , . . . ,C n )< s { c i ,C i , . . . , c : , ) .

A .l Examples

\\P\\Cmax’ refers to a class of scheduling problems in which n jobs are scheduled 
on m identical parallel machines so as to minimize makespan.

l\Pc\\Cmax'· refers to a class of l|P||C„iaar problems in which the number of 

machines is a constant c.

l\Q\\Cmax· refers to a class of scheduling problems in which n jobs are scheduled 
on m uniform parallel machines so as to minimize makespan.

l\P\rj,'dj\Cmax'· refers to a class of scheduling problems in which n jobs are to 
be scheduled on m identical parallel machines so as to minimize makespan. In a 
feasible schedule no job can start before its ready time Vj and each job must be 

completed by its deadline dj.

J\\\Cmax’ refers to a class of job shop scheduling problems in which the aim is to



minimize makespan. It is assumed that in the job shop there is a single machine 
at each stage.

A .2 Reducibility Among Scheduling Problems

Reducibility among scheduling problems have been showed in Lenstra (1977) and 
Rinnooy Kan (1976) and can easily be adapted for parallel machine multi-stage 
problems. The results can be summarized as in Figure A .l. In this figure each
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Figure A .l :  Reducibility among scheduling problems (excerpted from [Lawler 
et al. 1982]

graph Qi represents a different characteristic of a scheduling problem and a 7-tuple 

(uo, · · ·, I'e)) where V{ is a vertex of graph represents a particular scheduling 
problem. In Qi, the directed path from II' to 11 shows the reducibility in terms 

of the characteristic n,·. The computer program MSPCLASS due to [Lageweg 
et al. 1982] uses these reducibility graphs and the known complexity results to
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determine the complexity class of a problem. A recent study due to [Lawler et 
al. 1989] showed that over 4,536 scheduling problems (problem classes) defined 
in the literature, only 416 were solvable in polynomial-time. 3,817 problems were 
shown to be MV-hard (3,582 of them were unary A/'P-hard). The status of 303 
was unknown at the time the study was done.



Appendix B

Terminology

In this appendix, a glossary of the basic complexity theoretic concepts and 
definitions that are used in this study are presented. For details see [Garey 
and Johnson 1979].

B inary E ncoding Consider an instance of the bin packing problem II^p, 
defined in Section 2.1: n =  4, m =  2, =  5, p2 =  3, ps =  1, p4 =  4 and

the bin size r =  6. In a binary encoding, all numbers are written in binary and 
separated by commas in the following way: number of pieces, number of bins, size 
of a bin, sizes of pieces (At the end is used to specify the end of the input). 
Thus the above instance is represented as: “100,10,110,101,11,1,100.” The input 
length obtained from the above encoding scheme is

n

[log2 nj +  [log2 mj +  [log2 pj\ +  [log2 rj +  n +  m +  1 =  24
j=l

A binary encoding, as a reasonable encoding scheme, should be uniquely 
decodable and concise (that is, it should not allow artificial growth in the input 
length such as “100,10,,„,„110,,,101,11,1,100,,.” for the above e.xample).

96
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Fully Polynom ial e-A pproxim ation  Scheme A family of approximation 
algorithms each of which has the worst case bound 1 +  £ for some e >  0 
and each has the time polynomial-time complexity function. Furthermore the 
computational requirement of algorithms grow polynomially both in the input 
length and 1/e.

Input Length See Input Size.

Input Size is determined by the amount of input data needed to describe an 
instance (input length) u, and the magnitude of the numbers involved in an 
instance 0. Input data is assumed to be encoded in Binary Encoding (or in some 
other encoding scheme other than unary).

M ean B ehavior of an approximation algorithm refers to the expected 
deviation of the solution delivered by this algorithm from the optimal. It can 
either be determined by an empirical analysis or by a probabilistic analysis.

AfV Class consists of decision problems for which both a feasible solution can 
be guessed and checked whether or not it provides a “yes” answer in polynomial 
time. Clearly P  is a subset of jVV. The conjecture that jVV  is still open.

(B inary) ^VP-com plete The decision problem II2 is called A/’'P-complete if 
II2 G AfV and Hi a  II2 (that is, Hi is reducible to II2) for every Ei € AfV. 
U2 is the hardest problem in ^fV. This definition implies that when proving 
A^'P-completeness of E2, it is enough to find a A/’T’-complete problem Ei oc E2 
for E2 € AfT.

(B inary) A^P-hard The problem E2 is called ;V''P-hard if the .V'P-complete 
decision problem Ei a  E2 (that is Ei is reducible to E2). Informally, the
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optimization problem is called jW -hard  if the associated decision problem is 
jV̂ T’-complete.

V  Class consists of all problems for which algorithms with polynomial-time 
complexity function have been found.

P olynom ial-T im e A lgorithm  is defined to be the one with the time- 
complexity function being O (/(i^)) for some polynomial function /  and the 
input length u.

Polynom ial e-A pproxim ation  Schem e A family of approximation algo
rithms As such that for a fixed £ > 0 each has the worst case bound 1 -f £ 
and the polynomial-time complexity function. The computational requirement 
of algorithms grow polynomially in the input length but exponentially in l/£ .

P seudo P olynom ial-T im e A lgorithm  is defined to be the one with the time- 
complexity function O {f{v,9))  for some polynomial function / ,  input length i/ 
and an upper bound 0, on the magnitude of each of the data. That is, any 
algorithm which is polynomial in the unary encoding is a pseudo .polynomial. 
By definition, any polynomial-time algorithm is also a pseudo-polynomial time 
algorithm since it runs in time bounded by a polynomial in the input length.

R edu cib ility  A problem Hi is reducible to another problem II2 (Hi a  II2) if 
for any instance of Hi an instance of IT2 can be constructed in polynomial-time 
such that solving the instance of II2 will solve the instance of Hi as well. The 
reducibility of Hi to II2 implies that Hi can be considered as a special case of Il2.

T im e-C om plex ity  Function f { x )  of an algorithm gives the maximum 

number of operations that would be required to solve an instance of size x. / ( x )
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is O {g(x)) implies that there exists a constant c such that |/(x)| < c\g{x)\ for 
all values of a: >  0.

Turing R educib ility  Consider a search problem IT that consists of a set Dn 
of instances. For each instance I  G -Dn, the set Sn{I) is called solutions for / .  An 
algorithm A  is said to solve a search problem II if, given as input any instance 
I  € A i j  it returns the answer “no” whenever Sn{I) is empty and otherwise 
returns some solution s belonging to 5 n (/). A Turing reduction from a search 
problem Hi to a search problem II2 is an algorithms! that solves Hi by using a 
hypothetical subroutine S for solving IT2 such that, if S were a polynomial-time 
algorithm for II2, then A  would be a polynomial time algorithm for IIi.

U nary A/*'P-complete A decision problem II is called unary A/’P-complete if 
the subproblem IIp defined as the restriction of IT in which magnitudes of all data 
is bounded by a polynomial of the input length, is A/”'P-complete. If II is 
unary A/"'P-complete then it cannot be answ êred with a pseudo polynomial-time 
algorithm. In the literature decision problems in this class are sometimes referred 
to as MV-complete in the strong sense.

U nary A/”'P-hard Definition is similar to unary v'V”'P-complete, except that the 
restricted problem is AfV-hard.

U nary E ncoding Consider an instance of the bin packing problem Il^pdefined 
in Section 2.1; n =  4, m =  2, Pi =  5, P2 =  3, p3 =  1, P4 =  4 and the bin size r =  6. 

In a unary encoding, all numbers are based on 1 and separated by commas in the 
following way: number of pieces, number of bins, size of a bin, sizes of pieces (At 

the end is used to specify the end of the input). Thus the above instance is 

represented as: “1111,11,111111,11111,111,1,1111.” The input size obtained from
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the above encoding scheme is
n

n +  m +  Pj +  T +  n +  m +  1 =  32 
i= i

A unary encoding should be uniquely decodable and concise (that is it should not 
allow artificial growth in the input such as 
for the above example).

W orst-C ase B ound For a minimization problem II the worst-case bound of 
an approximation algorithm A  is defined as

/2^ =  inf {r  >  l\A{I)/OPT(I) < r for all instances /  of 11}

where for an instance I  of II, A(I)  denotes the solution value returned by the 
approximation algorithm A  and OPT{I)  denotes the minimum value. A worst- 

case bound is called tight if it is attainable.
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Table C .l ; First encountered time and total time

DLL
Average: 0.0017 0.00238

Std.Dev.: 0.0051 0.005898
First Encountered Time (sec) Total Time (sec)

10 50 10 50
' 40 0 40 0

70 0 70 0
100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 0

DLH
Average: 2.12692 107.9296

Std.Dev.: 3.134036 228.3357
First Encountered Time (sec) Total Time (sec)

10 49 10 39
40 1 40 1
70 0 70 0

100 0 100 1
130 0 130 0
160 0 160 0
190 0 190 0

0 9

DLM
Average: 0.98606 107.6828

Std.Dev.: 3.074165 367.9076
First Encountered Time (sec) Total Time (sec)

10 49 10 45
40 1 40 1
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 4



Appendix C. Computational Results in Tabular Form 103

Table C .l : First encountered time and total time (continued)

DHL
Average: 0.00034 0.00034

Std.Dev.: 0.00238 0.00238
First Encountered Time (sec) Total Time (sec)

10 50 10 50
' 40 0 40 0

70 0 70 0
100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 0

DHH
Average:
Std.Dev.:

2.33028
9.808269

89.04114
127.0046

First Encountered Time (sec) Total Time (sec)
10 49 10 33
40 0 40 0
70 0 70 0

100 1 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 17

DHM
Average:

Std.Dev.:
0.154

0.254839
0.15434

0.254645
P'irst Encountered Time (sec) Total Time (sec)

10 50 10 50
40 0 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 0
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Table C .l : First encountered time and total time (continued)

DML
Average: 0.03068 171.7558
Std.Dev.: 0.145388 593.2152
First Encountered Time (sec) Total Time (sec)

10 50 10 46
40 0 40 0

' 70 0 70 0
100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 4

DMH
Average: 38.5465 451.2136

Std.Dev.: 94.04424 146.6622
First Encountered Time (sec) Total Time (sec)

10 27 10 1
40 16 40 1
70 1 70 0

100 2 100 0
130 0 130 0
160 1 160 0
190 0 190 0

3 48

DMM
Average:

Std.Dev.:
7.83614

33.05876
33.49444
109.2993

First Encountered Time (sec) Total Time (sec)
10 48 10 45
40 0 40 0
70 1 70 1

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

1 4
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Table C .l :  First encountered time and total time (continued)

NDLL
Average: 0.00814 0.00814

Std.Dev.: 0.009092 0.009092
First Encountered Time (sec) Total Time (sec)

' 10 50 10 50
40 0 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 0

NDLH
Average: 0.12238 11.52626

Std.Dev.: 0.486959 80.03702
First Encountered Time (sec) Total Time (sec)

10 50 10 49
40 0 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 1

NDLM
Average:
Std.Dev.:

0.0434
0.277174

12.6719
88.58846

First Encountered Time (sec) Total Time (sec)
10 50 10 49
40 0 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 1
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Table C .l : First encountered time and total time (continued)

NDHL
Average: 25.67562 84.35964
Std.Dev.: 56.08327 134.1312
First Encountered Time (sec) Total Time (sec)

10 35 10 28
- 40 8 40 7

70 0 70 0
100 3 100 2
130 0 130 0
160 0 160 0
190 1 190 1

3 12

NDHH
Average: 1.90066 50.77232
Std.Dev.: 4.239113 106.1439
First Encountered Time (sec) Total Time (sec)

10 48 10 39
40 2 40 2
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 9

NDHM
Average:
Std.Dev.:

0.68638
0.362379

0.68704
0.363126

First Encountered Time (sec) Total Time (sec)
10 50 10 50
40 0 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 0
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Table C .l : First encountered time and total time (continued)

NDML
Average; 4.72214 518.6818

Std.Dev.: 22.77753 688.9690
First Encountered Time (sec) Total Time (sec)

- 10 48 10 27
40 1 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 1 190 1

0 22

NDMH
Average: 14.13172 392.9053

Std.Dev.: 27.24027 261.3126
First Encountered Time (sec) Total Time (sec)

10 32 10 7
40 15 40 3
70 0 70 0

100 1 100 0
130 1 130 0
160 0 160 0
190 1 190 0

0 40

NDMM
Average: 14.54648 53.25626

Std.Dev.: 47.76684 218.8059
First Encountered Time (sec) Total Time (sec)

10 46 10 44
40 0 40 0
70 1 70 1

100 1 100 1
130 0 130 0
160 0 160 0
190 0 190 0

2 4
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Table C.2: Initial gap and ending gap

DLL
Average: 0 0

Std.Dev.: 0 0
Initial Gap (relative) Ending Gap1 (relative)

0 50 0 50
0.02 0 0.02 0
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

DLH
Average: 0.015478 0.000960

Std.Dev.: 0.021945 0.002252
Initial Gap (relative) Ending Gap (relative)

0 28 0 41
0.02 5 0.02 9
0.06 14 0.06 0
0.08 3 0.08 0
0.1 0 0.1 0

0 0

DLM
Average: 0.020758 0.001429

Std.Dev.: 0.022477 0.004848
Initial Gap (relative) Ending Gap (relative)

0 21 0 46
0.02 11 0.02 4
0.06 17 0.06 0
0.08 0 0.08 0
0.1 1 0.1 0

0 0
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Table C.2: Initial gap and ending gap (continued)

DHL
Average: 0 0

Std.Dev.: 0 0
Initial Gap (ndative) Ending Gap (relative)

0 50 0 50
0.02 0 0.02 0
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 ____oj
DPIH
Average: 0.001292 0.000149

Std.Dev.: 0.001278 0.000252
Initial Gap (relative) Ending Gap (relative)

0 5 0 .33
0.02 45 0.02 17
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

DHM
Average:

Std.Dev.:
0.000724
0.001247

0
0

Initial Gap (relative) 
0 35

Ending Gap (relative) 
0 50

0.02 15 0.02 0
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0



Appendix C. Computational Results in Tabular Form n o

Table C .2: Initial gap and ending gap (continued)

DML
Average: 0.004978 0.003478

Std.Dev.: 0.013542 0.011795
Initial Gap (relative) Ending Gap (relative)

0 44 0 46
0.02 0 0.02 0
0.06 6 0.06 4
0.08 0 0.08 0
0.1 0 0.1 0

0 0

DMH
Average: 0.044103 0.003114

Std.Dev.: 0.027782 0.002117
Initial Gap (relative) Ending Gap (relative)

0 0 0 2
0.02 10 0.02 48
0.06 24 0.06 0
0.08 10 0.08 0
0.1 5 0.1 0

1 0
DMM
Average:

Std.Dev.·.
0.031864
0.021734

0.000571
0.002316

Initial Gap (relative) 
0 2

Ending Gap (relative) 
0 47

0.02 20 0.02 3
0.06 20 0.06 0
0.08 7 0.08 0
0.1 1 0.1 0

0 0
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Table C.2: Initial gap and ending gap (continued)

NDLL
Average:

Std.Dev.:
0
0

0
0

Initial Gap (relative) Ending Gap (relative)
0 50 0 50

0.02 0 0.02 0
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

NDLH
Average: 0.001331 0.000196

Std.Dev.: 0.005287 0.001372
Initial Gap (relative) Ending Gap (relative)

0 47 0 49
0.02 1 0.02 1
0.06 2 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

NDLM
Average: 0.001898 0.000384

Std.Dev.: 0.008769 0.002692
Initial Gap (relative) Ending Gap (relative)

0 47 0 49
0.02 2 0.02 1
0.06 1 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0
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Table C.2: Initial gap and ending gap (continued)

NDHL
Average: 0.20529 0.001696

Std.Dev.: 0.013552 0.003694
Initial Gap (relative) Ending Gap (relative)

0 2 0 41
0.02 26 0.02 9
0.06 22 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

NDHH
Average: 0.002064 0.000107

Std.Dev.: 0.001756 0.000241
Initial Gap (relative) Ending Gap (relative)

0 1 0 41
0.02 49 0.02 9
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

NDHM
Average: 0.005389 0

Std.Dev.: 0.003549 0
Initial Gap (relative) Ending Gap1 (relative)

0 1 0 50
0.02 49 0.02 0
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0
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Table C.2: Initial gap and ending gap (continued)

NDML
Average: 0.101193 0.019249

Std.Dev.: 0.058377 0.027030
Initial Gap (relative) Ending Gap (relative)

0 1 0 29
0.02 0 0.02 0
0.06 12 0.06 17
0.08 8 0.08 1
0.1 4 0.1 3

25 0

NDMH
Average: 0.040239 0.003032

Std.Dev.: 0.032811 0.002564
Initial Gap (relative) Ending Gap (relative)

0 5 0 10
0.02 13 0.02 40
0.06 16 0.06 0
0.08 9 0.08 0
0.1 6 0.1 0

1 0

NDMM
Average: 0.047070 0.000476

Std.Dev.: 0.033386 0.002391
Initial Gap (relative) Ending Gap (relative)

0 2 0 48
0.02 10 0.02 2
0.06 21 0.06 0
0.08 5 0.08 0
0.1 8 0.1 0

4 0
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Table C.3: First encountered node and total number of nodes

DLL
Average; 0.28 0.28

Std.Dev.: 0.448998 0.448998
First Encountered Node Total #  of Nodes

0 36 0 36
1 14 1 14

500 0 500 0
1000 0 1000 0
5000 0 5000 0

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 0

DLH
Average: 1818.22 186415.7

Std.Dev.: 2469.589 382978.6
First Encountered Node Total #  of Nodes

0 5 0 4
1 24 1 24

500 0 500 1
1000 0 1000 0
5000 12 5000 5

10000 9 10000 6
50000 0 50000 0

100000 0 100000 0
0 10

DLM
Average: 916.92 80879.48

Std.Dev.: 3035.137 271050.7
First Encountered Node Total #  of Nodes

0 8 0 0
1 21 1 21

500 1 500 9
1000 5 1000 3
5000 14 5000 12

10000 0 10000 0
50000 1 50000 1

100000 0 100000 0
0 4
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Table C.3: First encountered node and total number of nodes (continued)

DHL
Average: 0 0

Std.Dev.: 0 0
First Encountered Node Total #  of Nodes

0 50 0 50
1 0 1 0

500 0 500 0
1000 0 1000 0
5000 0 5000 0

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 0

DHH
Average: 8426.2 341147.2

Std.Dev.: 47840.91 472913.4
First Encountered Node Total #  of Nodes

0 6 0 5
1 0 1 0

500 15 500 11
1000 14 1000 8
5000 12 5000 8

10000 0 10000 0
50000 2 50000 1

100000 0 100000 0
1 17

DHM
Average:

Std.Dev.:
146.96

245.5789
146.96

245.5789
First Encountered Node Total #  of Nodes

0 35 0 35
1 0 1 0

500 9 500 9
1000 5 1000 5
5000 1 5000 1

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 0
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Table C.3: First encountered node and total number of nodes (continued)

DML
Average: 14.06 80014.06

Std.Dev.: 70.30801 271289.0
First Encountered Node Total ^  of Nodes

0 48 0 44
1 0 1 0

500 2 500 2
1000 0 1000 0
5000 0 5000 0

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 4

DMH
Average: 78228.68 960631.7

Std.Dev.: 202849.0 192874.3
First Encountered Node Total ^  of Nodes

0 0 0 0
1 0 1 0

500 0 500 0
1000 0 1000 0
5000 13 5000 0

10000 18 10000 1
50000 10 50000 1

100000 2 100000 0
7 48

DMM
Average: 15833.36 75763.88

Std.Dev.: 80493.70 246960.8
First Encountered Node Total #  of Nodes

0 3 0 2
1 0 1 0

500 0 500 0
1000 1 1000 1
5000 43 5000 41

10000 1 10000 1
50000 0 50000 0

100000 0 100000 0
2 5



Appendix C. Computational Results in Tabular Form 117

Table C.3: First encountered node and total number of nodes (continued)

NDLL
Average:

Std.Dev.:
0.94

0.237486
0.94

0.237486
First Encountered Node Total #  of Nodes

0
1

500
1000
5000

10000
50000

100000

3
47

0
0
0
0
0

0 
1

500 
1000 

5000 
10000 

50000 
0 100000 

0

3
47

0
0
0
0
0
0
0

NDLH
Average: 140.92 20091.5

Std.Dev.: 566.5401 139987.6
First Encountered Node Total #  of Nodes

0 43 0 43
1 4 1 4

500 0 500 0
1000 0 1000 0
5000 3 5000 2

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 1

NDLM
Average: 40.08 20012.88

Std.Dev.: 278.8460 139998.1
First Encountered Node Total #  of Nodes

0 37 0 37
1 12 1 10

500 0 500 2
1000 0 1000 0
5000 1 5000 0

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 1
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Table C.3: First encountered node and total number of nodes (continued)

NDHL
Average: 72989.32 245206.8

Std.Dev.: 161173.5 386581.6
First Encountered Node Total #  of Nodes

0 5 0 2
1 0 1 0

500 4 500 2
1000 8 1000 7
5000 10 5000 9

10000 2 10000 2
50000 11 50000 11

100000 1 100000 1
9 16

NDHH
Average: 4116.12 183514.4

Std.Dev.: 12743.18 382744.9
First Encountered Node Total #  of Nodes

0 1 0 1
1 0 1 0

500 11 500 11
1000 15 1000 12
5000 18 5000 13

10000 0 10000 0
50000 4 50000 3

100000 1 100000 1
0 9

NDHM
Average:

Std.Dev.:
632.44

353.8562
632.44

353.8562
First Encountered Node Total #  of Nodes

0 1 0 1
1 0 1 0

500 22 500 22
1000 18 1000 18
5000 9 5000 9

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 0
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Table C.3: First encountered node and total number of nodes (continued)

NDML
Average: 6375.32 432360.7

Std.Dev.: 36676.61 486516.8
First Encountered Node Total #  of Nodes

0 9 0 1
1 0 1 0

500 12 500 6
1000 21 1000 16
5000 6 5000 4

10000 0 10000 0
50000 1 50000 0

100000 0 100000 0
1 23

NDMH
Average: 28208.86 801755.7

Std.Dev.: 86223.19 396553.1
First Encountered Node Total #  of Nodes

0 0 0 0
1 5 1 5

500 0 500 0
1000 0 1000 0
5000 16 5000 1

10000 16 10000 1
50000 9 50000 2

100000 1 100000 1 ·
3 40

NDMM
Average: 21026.7 60979.36

Std.Dev.: 74892.32 205748.4
First Encountered Node Total #  of Nodes

0 0 0 0
1 2 1 2

500 0 500 0
1000 3 1000 2
5000 40 5000 39

10000 1 10000 1
50000 0 50000 0

100000 1 100000 1
3 5
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Table C.4: The Analysis of Variance Table for the Three-Factor Fixed Effects 
Model: CPU Time

Sdurce SS d.f. MS F
A 268.1024 1 268.1024 0.282195
B 25048.81 2 12524.40 13.18277“
C 5782.018 2 2891.009 3.042980“
AB 6752.673 2 3376.336 3.553819“
AC 13757.61 2 6878.808 7.240405“
BC 32728.07 4 8182.017 8.612119“
ABC 12414.47 4 3103.619 3.266766“
Error 837951.6 882 950.0585
TOTAL 934703.4 899

First Encountered Time

Source SS d.f. MS F
A 74341.71 1 74341.71 1.071978
B 10717654 2 5358827. 77.27217“
C 3419756. 2 1709878. 24.65576“
AB 1041565. 2 520782.7 7.509482“
AC 1832625. 2 916312.5 13.21286“
BC 5078385. 4 1269596. 18.30707“
ABC 827717.9 4 206929.4 2.983841“
Error 61166723 882 69350.02
TOTAL 84158769 899

Total Time

A stands for the n/m divisibility
B stands for the n/m ratio
C stands for the processing variability

“Significant at 5%
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Table C.5: The Analysis of Variance Table for the Three-Factor Fixed Eifects 
Model; Gap

Source SS d.f. MS F
A 0.028065 1 0.028065 59.49738“
B 0.306437 2 0.153218 324.8118“
C 0.002398 2 0.001199 2.542688
AB 0.083037 2 0.041518 88.01639“
AC 0.087998 2 0.043999 93.27521“
BC 0.019168 4 0.004792 10.15886“
ABC 0.063479 4 0.015869 33.64297“
Error 0.416053 882 0.000471
TOTAL 1.006639 899

Initial Gap

Source SS d.f. MS F
A 0.000662 1 0.000662 12.38346“
B 0.004193 2 0.002096 39.20675“
C 0.002142 2 0.001071 20.03270“
AB 0.001414 2 0.000707 13.22577“
AC 0.001897 2 0.000948 17.74290“
BC 0.004365 4 0.001091 20.40808“
ABC 0.002358 4 0.000589 11.02266“
Error 0.047171 882 0.000053
TOTAL 0.064206 899

Ending Gap

A stands for the n/m divisibility
B stands for the n/m ratio
C stands for the processing variability

“Significant at 5%
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Table C.6: The Analysis of Variance Table for the Three-Factor Fixed Effects 
Model: Number of Nodes

Source ss d.f. MS F
A 2.2E-b09 1 2.2E-H09 0.429117
B 9.0E-K0 2 4.5E-t-10 8.805632“
C 2.8E-blO 2 1.4E-M0 2.754640
AB 5.0E-H10 2 2.5E-blO 4.879816“
AC 7.7E-hlO 2 3.8E+10 7.469016“
BC l.SE -fll 4 4.5E-I-10 8.694404“
ABC 6.9E-M0 4 1.7E+10 3.370123“
Error 4.5E-f-12 882 5.1E4-09
TOTAL 5.0E-M2 899

First Encountered Node

Source SS d.f. MS F
A 4.3E-H09 1 4.3E-b09 0.055275
B 2.0E-1-13 2 1.0E-fl3 129.5529“
C 2.3E-bl3 2 1.2E+13 147.8270“
AB 7.6E+11 2 3.8E-M1 4.810473“
AC 5.0E+12 2 2.5E-M2 31.54767“
BC 1.7E+13 4 4.2E+12 53.86708“
ABC 9.3E+11 4 2.3E-K1 2.947135“
Error 6.9E+13 882 7.9E4-10
TOTAL 1.4E-K4 899

Total Number of Nodes

A stands for the n/m divisibility
B stands for the n/m ratio
C stands for the processing variability

“Significant at 5%



Vita

H. Cemal Akyel was born in Ankara, on 1 January 1961. He attended Department 
of Industrial Engineering, Middle East Technical University (METU) in August 
1978 and graduated with honors in September 1983. From that time to September 
1986 he was a research assistant at Department of Industrial Engineering, METU. 
During that period he worked with Professor Ömer S. Benli on Production 
Scheduling in Two-Stage Parallel Machine Flow Shops and got his M.Sc. degree 
in February 1986. In September 1986 he joined to Department of Industrial 
Engineering, Bilkent University as a research assistant to continue his graduate 
study with Professor Ömer S. Benli. In October 1989 he was appointed 
as an instructor at Department of Industrial Engineering, Bilkent University. 
Currently, he is an instructor at the same department.

123


