
MINIMIZING SCHEDULE LENGTH OIT
IDENTICAL EAEa LLBL .Ma CHLISS!

A N E X A C T A L G O R I T H M

; C·

T. li'viv’̂ te of Ex-gkiSe.!
, . .p 'p ‘ 1 i . T T .

lienee

MINIMIZING SCHEDULE LENGTH ON

IDENTICAL PARALLEL MACHINES:

AN EXACT ALGORITHM

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSPHY

By
H. Cemal Akyel

June 1991

taraiiudan l ; a j ilanaiişiır.

7
■Í57-5

c f

ß , ;) i l 4

T o т у f a m i l y . . .

I certify that I have read this thesis and that in
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Ömer S. Benli (Supervisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

PrOTT Dr. Halim Doğrusöz

I certify that I have read this thesis and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

u-
Prof Doğramacı

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scô De and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Prof. Dr. M. Akif Eyler

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Nesim Erkip

Approved for the Institute of Engineering and Science:

Prof. Dr. MehmeliiBaray,
Director of Institute of Engineering and Science

Abstract

MINIMIZING SCHEDULE LENGTH ON

IDENTICAL PARALLEL MACHINES:

AN EXACT ALGORITHM

H. Cemal Akyel
Ph. D. in Industrial Engineering

Supervisor: Assoc. Prof. Dr. Ömer S. Benli
June 1991

The primary concern of this study is to investigate the combinatorial aspects
of the single-stage identical parallel machine scheduling problem and to develop
a computationally feasible branch and bound algorithm for its exact solution.
Although there is a substantial amount of literature on this problem, most
of the work in this area is on the development and performance analysis of
approximation algorithms. The few optimizing algorithms proposed in the
literature have major drawbacks from the computer implementation point of
view. Even though the single-stage scheduling problem is known to be unary
A/’P-hard, there is still a need to develop a computationally feasible optimizing
algorithm that solves the problem in a reasonable time. Development of such
an algorithm is necessary for solving the multi-stage parallel machine scheduling
problems which are currently an almost untouched issue in the deterministic

scheduling theory.

In this study, a branch and bound algorithm for the single-stage identical parallel
machine scheduling problem is proposed. Promising results were obtained in
the empirical analysis of the performance of this algorithm. Furthermore,
the procedure that is developed to determine tight bounds at a node of the
enumeration tree, is an approximation algorithm that solves a special class
of identical parallel machine scheduling problems of practical interest. This
algorithm delivers a solution that is arbitrarily close to 4/3 times the optimum.
To our knowledge this is the best result obtained for this problem so far.

K eyw ords: Deterministic Machine Scheduling, Identical Parallel Machines,
Minimizing Makespan, Computational Complexity Theory,
Approximation Algorithms, Optimizing Algorithms, Perfor
mance Bounds.

11

özet

ÖZDEŞ PARALEL MAKİNALARDA

ÇİZELGE UZUNLUĞUNUN ENAZLANMASI:

BİR KESİN ÇÖZÜM ALGORİTMASI

H. Cemal Akyel
Endüstri Mühendisliği Doktora

Tez Yöneticisi: Doç. Dr. Ömer S. Benli
Haziran 1991

Tek aşamalı özdeş paralel makinalı çizelgeleme problemlerinin kombinatoryel
özelliklerinin incelenmesi ve hesap zamanı açısından uygulanabilir bir dal-
sınır yönteminin geliştirilmesi bu çalışmanın ana içeriğini oluşturmaktadır.
Çizelgeleme literatüründe bu problemle ilgili pek çok çalışma olmakla beraber, bu
çalışmaların çoğu yaklaşık algoritmalar geliştirilmesi ve yaklaşık algoritmaların
performans analizi ile ilgilidir. Literatürde önerilen kesin çözüm algoritmaları
ise bilgisayar uygulamaları açısından bir takım problemleri içerir. Tek-aşamalı
çizelgeleme problemleri için, MV-zox olmalarına rağmen, eniyi çözüm veren,
çalışma zamanı açısından uygulanabilir algoritmalara ihtiyaç vardır. Zira böyle
bir algoritma çok-aşamalı paralel makinalı çizelgeleme problemlerinin çözümü
için gereklidir ki bu son sınıftaki problemler çizelgeleme kuramında hemen hiç
dokunulmamış bir alanı belirlerler.

Bu çalışmada, tek aşamalı özdeş paralel makinalı çizelgeleme problemleri için bil

in

dal-smır algoritması önerilmiştir. Algoritmanın deneysel performans analizinden
elde edilen sonuçlar ümit vericidir. Buna ek olarak dal-smır ağacındaki bir
düğümdeki alt ve üst sınırları bulmak için geliştirilen algoritmanın kendi başına
uygulanabileceği pratik durumlar da söz konusudur. Bu algoritma eniyi çözüm
çarpı 4 /3 ’e istenen ölçüde yakın sonuçlar verebilmektedir. Bu da adı geçen
problem için bildiğimiz en iyi sınırdır.

A nahtar
Sözcükler: Deterministik Makina Çizelgelemesi, Özdeş Paralel Maki-

nalar, Çizelge Uzunluğunun Enazlanması, Hesap Karmaşıklığı
Teorisi, Yaklaşık Algoritmalar, Kesin Çözüm Algoritmaları,
Performans Sınırları.

IV

Acknowledgement

I would like to express my gratitude to Professor Ömer S. Benli for his supervision
to my graduate study. He introduced me the fascinating world of the parallel
machine scheduling theory at the beginning of my Master’s study eight years
ago. Since then, I have had the utmost pleasure playing with machines, jobs and
schedules. Professor Benli helped me through this playground in an enthusiastic
and friendly way. His encouraging and patient guidance allowed me to complete
this work in contentment. Moreover, I benefited a lot from his wisdom and
invaluable advices, which I believe will be useful in the rest of my life.

I am grateful to Professor Nesim Erkip for his support and encouragement in all
phases of this study. Chatting and discussing with him always gave me relief in
times of discomfort.

I owe a lot to Ceyda “Countess” Oğuz with whom I had many fruitful discussions.
She always gave me a hand in times of desperation. Especially, her efforts in
typing the draft copy of this thesis rescued me from missing the deadline.

Special thanks are due to my comrade Dr. Erkan Tekman for his understanding
and stimulating attention. We spent many sleepless nights discussing issues
ranging from the War in the Gulf to problems in dynamic programming. It
seems we should talk more on why our destinies are determined by stars.

I wish to thank to Dr. Ülkü Gürler for her help in the statistical analysis part of
this study.

Last but not the least, my sincere thanks are due to my family for their continuous
morale support.

Contents

Abstract i

Ozet iii

Acknowledgement v

Contents vi

List of Figures ix

List of Tables . x

List of Procedures xi

1 Introduction 1

1.1 Problem D efin ition .. 2

2 A Single-Stage Identical Parallel Machine Scheduling Problem 6

2.1 Problem C haracteristics... 7

2.2 Optimizing Algorithm s.. 1.3

vi

2.2.1 A Branch and Bound Algorithm ... 13

2.2.2 Dynamic Programming Approaches....................................... 18

2.2.2.1 Dynamic Programming Formulations for the
General C a s e ... 18

2.2.2.2 A Dynamic Programming Formulation for the
Special Case ... 21

2.3 Approximation Algorithms... 23

2.3.1 List Scheduling Algorithms... 23

2.3.2 Bin Packing Based Algorithms.. 26

2.3.2.1 Primal Algorithm s... 26

2.3.2.2 Dual A lgorithm s.. 28

3 A Branch and Bound Algorithm 34

3.1 Branching Scheme .. 36

3.2 Bounding Schem e... 46

3.2.1 A 1/ 3-Relaxed Decision P ro ce d u re 51

3.2.2 Initial Bounds... 61

3.2.3 Bound Computations at a N o d e .. 64

3.3 Search S trategy ... 67

3.4 Computational Experience... 68

4 Conclusions 76

References 84

vii

Appendix A: A Classification Scheme for Machine Scheduling
Problems 89

A .l Examples .. 93

A .2 Reducibility Among Scheduling Problem s.. 94

Appendix B: Terminology 96

Appendix C: Computational Results in Tabular Form 101

Vita 123

vm

List of Figures

2.1 A list schedule for the 7-job \\P̂ \\Cmax instance for L =

{J1 1 J2 ·, · · · 5 Jt) .. 25

2.2 An optimal schedule for the 7-job l\PZ\\Cmax instance for L =

(Ji, J2j · · ·, «/7) .. 25

3.1 A schedule represented as an onto function 34

3.2 The enumeration tree for a 6-job l|P3||C'maa; p rob lem 43

3.3 A partial schedule for a three-identical parallel machine problem . 64

4.1 \\P\\Cmax with one or more jobs fixed .. 83

A .l Reducibility among scheduling problems (excerpted from [Lawler
et al. 1982].. 94

IX

List of Tables

2.1 Number of leaf nodes in the enumeration tree proposed by [Bratley
et al. 1975].. 17

3.1 The Stirling number of the second k in d ... 36

3.2 Factors and related levels considered in the experimental design . 70

3.3 A sample o u t p u t .. 71

3.4 The percentage of the standardized residuals that fall within the
lim its.. 73

C.l First encountered time and total tim e 102

C .2 Initial gap and ending g a p .. 108

C.3 First encountered node and total number of n od es114

C.4 The Analysis of Variance Table for the Three-Factor Fixed Effects
Model: CPU T i m e ..120

C.5 The Analysis of Variance Table for the Three-Factor Fixed Effects
Model: G a p ...121

C .6 The Analysis of Variance Table for the Three-Factor Fixed Effects
Model: Number of N odes.. 122

List of Procedures

2.1 An exact binary search procedure for \\P\\Cmax............................. 9

2.2 A solution procedure for 3-PARTITION 11

2.3 A solution procedure for the bin packing problem П^р................... 12

2.4 An exact binary search procedure for solving l\\rj,dj\Lmax 15

2.5 A list scheduling heuristic for l\P\\Cmax 24

2.6 A primal bin packing based approximation algorithm for 11̂ 11(7̂ 01 27

2.7 FED heuristic for the bin packing problem, П^р............................. 28

2.8 A dual bin packing based approximation algorithm for 1|P|[Стах 30

3.1 The proposed branch and boupd procedure for 1\Р\\СтЛах............. 45

3.2 An approximate binary search procedure for solving the scheduling
problem encountered at a node 49

3.3 A 1/3-relaxed decision procedure for the bin packing problem with
variable bin s i z e s ... 52

3.4 A 1/3-relaxed decision procedure for the ordinary bin packing
problem, П̂ р .. 59

3.5 A recursive procedure which packs large pieces of the ordinary bin
packing problem ll^p, fea sib ly ... 60

xi

3.6 The bounding procedure used at a node of the enumeration tree 65

Xll

Chapter 1

Introduction

The theory of deterministic scheduling is concerned with the development and
analysis of mathematical models which are useful in real life. In practice,
scheduling problems may arise in a variety of situations. For example, consider a
production system in which a set of jobs, each requiring a sequence of operations
(routing) is to be performed by using a number of machining centers (stages).
To perform a job, each of its operations must be processed in the order given by
the routing. The processing of an operation requires the use of a particular stage
for a given duration. Each machine of a stage can process only one operation
at a time. Given a criterion to measure the quality of each possible (feasible)
schedule, the problem is to find a processing order on each machine.

From the practical point of view, it can be argued that most deterministic
scheduling models developed in the literature have certain restrictive assump
tions. The crucial assumption that is usual in these models is related with the
configuration of a production environment. In multi-stage scheduling problems
availability of several parallel machines at each stage of production increases the
routing flexibility and hence allows the greater possibility of generating “better”
schedules. Unfortunately, scheduling models developed for these problems
frequently assume the availability of a single machine at each stage of production.

Although the above assumption is unrealistic, it is enough to make most of the
scheduling problems MV-hard. A recent study due to [Lawler et al. 1989] showed
that over 4,536 scheduling problems (class of problems) defined in the literature,
only 416 were solvable in polynomial-time. 3,817 problems were shown to be
A7'P-hard (3,582 of them were unary MV-hard). The status of 303 was unknown
at the time the study was done. Perhaps these complexity results are the primary
reason why more general models without this assumption are not well-studied in
the literature. Nevertheless, these latter class of problems does exist and requires
solutions.

The purpose of this study is to investigate the combinatorial aspects of
a single-stage identical parallel machine scheduling problem, and develop a
computationally feasible branch and bound algorithm for its exact solution.
Undoubtedly, such an efficient algorithm is a basic requirement in solving the
general class of multi-stage parallel machine scheduling problems.

The following section formally defines the class of problems that is the main
concern of this study.

Chapter 1. Introduction 2

1.1 Problem Definition

Scheduling independent and nonpreemptable jobs on identical parallel machines
so as to minimize schedule length (makespan) is one of the fundamental problems
in deterministic scheduling theory. In an instance Ipms = (<7, M) of this problem,
we are given

• a set of independent jobs, each job Jj having a
processing time pj € 2'^, and

• a set Af = {Ml., M2, , Mm} of identical parallel machines.

In an instance Ipms, we assume that m > 2 and m < n since otherwise the
problem is trivial (if m = 1, the makespan is equal to for any sequence

Chapter 1. Introduction

of n jobs and if m > n, the makespan is equal to the processing time of the
longest job).

As described in [Coffman et al. 1978], a feasible (nonpreemptive) schedule is a
partition V = { . . . ,) oi J into m disjoint sets, one for each machine.
The machine M,· (i = 1, 2, . . . ,m) processes jobs in V\ The total completion time
of jobs in V' (i = 1, 2, . . . , m) is /(P ‘) where 1{X) — X C V
(for an empty set, /(0) = 0). Such a completion time is possible since we assume
that jobs are independent and thus a machine can process them consecutively
without any idle time. The makespan for the schedule P is then given by

CmaxiV) — max /(P ‘)
l<i<m

This abstract problem can be used to model a variety of problems in the real
world [Garey and Johnson 1981]. In a television station, machines could stand
for commercial breaks and jobs could stand for commercials themselves. Given
the duration of each commercial, the aim is to allocate the commercials into
breaks such that the durations of breaks are as equal as possible. This objective
can equivalently be stated as to minimize the maximum break-length that is,
the schedule length. In a computer system, machines could be identical parallel
processors and jobs could be independent tasks. Given the processing time of
each task, the aim is to distribute the load among the processors as uniformly
as possible. In the plumber’s pipe-cutting problem, a plumber needs a collection
of pipes of lengths pi,. . . ,pn, which can be obtained by cutting up purchased
pipes with a standard length C. The plumber wishes to buy minimum number
of these G-length pipes. Given an upper bound, ub, and a lower bound, lb, on
the number of pipes that are to be purchased, the plumber can form a related
single-stage identical parallel machine scheduling problem by treating pipes to
be cut as jobs and the midpoint of lb and ub as the number of identical parallel
machines. If the optimal makespan for the latter problem turns out to be greater
than C, then the current number of purchased pipes is not enough to cut the
needed pipes and hence lb is updated to the midpoint. If else ub is updated.
This way, in a binary search the plumber determines the minimum number of

purchased pipes. The same strategy can be used to solve several other problems.
In a classroom scheduling problem, given the duration of each class and the total
availability time, C of each room, the aim is to determine minimum number of
rooms required to schedule all of the classes. In a truck loading problem, items
with given weights have to be packed into minimum number of trucks each having
a finite capacity C.

Although the above interpretations are possible, we will be using the production
terminology throughout this study. The problem of determining an optimal m-
machine schedule P , with minimum = Cmax{V)̂ is denoted by \\P\\Cmax·,
using a notation similar to the one in [Graham et al. 1979]. In this notation
(see Appendix A for details) each scheduling problem is represented by a 4-tuple
a|^|7|i, where

• a identifies the production environment, such as single stage (1),

• ¡3 identifies the machine environment at each stage of production, such as
identical parallel machines (P),

• 7 identifies further assumptions of the scheduling problem, such as “job
preemption (pmtn) allowed” , “each job must be completed by its deadline
dj'\ etc.

• 8 identifies the optimality criterion of the scheduling problems, such as
makespan [Стах)·

Chapter 1. Introduction 4

In Chapter 2, the characteristics of an optimum solution to l\P\\Cmax are
analyzed and the previous approaches to solve this problem are reviewed. A
discussion on the major drawbacks of these approaches concludes that there is a
lack of an exact algorithm which solves \ \P\\Cmax in a reasonable time. The main
chapter. Chapter 3, presents a detailed development of the branch and bound
algorithm, including the computational results. In Chapter 4, the significance

and the importance of the results of this study and possible directions for future
research are discussed. In Appendix A, the details of the classification scheme for

Chapter 1. Introduction

deterministic scheduling problems are presented. Appendix B provides a glossary
of basic complexity theoretic concepts used in the study. Finally, the detailed
computational results are given in Appendix C in tabular format.

Chapter 2

A Single-Stage Identical Parallel
Machine Scheduling Problem

It is not difficult to be deceived by the apparent simplicity of the class of
scheduling problems \\P\\Cmax·, thus underestimating the complexity of the
problem. The scheduling of n independent jobs on m identical parallel machines
is among the hardest problems in the scheduling theory. A few number of
optimizing efforts, each failing to solve the problem, reported in the literature can
be considered as an indicator of this fact. However some of the characteristics of
the problem makes the development of “good” algorithms possible. In Section 2.1,
these characteristics will be discussed and the complexity class of the problem will
be identified. Section 2.2 reviews the optimizing algorithms developed to solve
\̂P\\Cmax and discusses their major drawbacks. In Section 2.3, we will briefly

review one of the promising research areas of the deterministic scheduling theory,
development of approximation algorithms for \ \P\\Cmax with “good” performance
guarantees.

2.1 Problem Characteristics

An analysis of problem characteristics provides an insight which may be useful
in developing efficient solution procedures. For l\P\\Cmax·, even the trivial
property stated in the following lemma leads to a substantial reduction in
the computational burden of the proposed implicit enumeration algorithm (see
Chapter 3).

Lem m a 2.1 There exists an optimal schedule for l\P\\Cmax in which at least
one job is assigned on machine M,· V f = 1, 2, . . . , m.

P roo f: Suppose the contrary, that is, there is an optimal schedule P , in which
no job is assigned on machine Af,j for some ii = 1, 2, . . . , m . Without loss of
generality, assume that C^^x — CmaxiV)̂ = for some ¿2 = 1, 2, . . . , m , is
the makespan of this schedule. By scheduling job Jj 6 Vp on machine M,·, we
obtain another schedule P ,. in which 1{VI\) < l{Vp). Furthermore, V £ ^ ii,

^ — CmaxiV*)· Thus we obtain a contradiction that Cmax{P»^) <

^max·

The following lemma provides a necessary condition that an optimal schedule for

l\P\\Cmax satisfies.

Lem m a 2.2 In an optimal schedule to \\P\\Craax> the earliest start time of job Jj
on machine Mi, E STji < \ = (l/m)/(j7 ’) V 7 = 1, 2, . . . ,n and i = 1,2 . . . ,m.

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 7

P roo f; Suppose for a contradiction that there is an optimal schedule in which
jFS'TjjVj > A for some job Jjj {ji = 1, 2, . . . , n) and some machine M,·, (¿1 =
l , 2, . . . , m) . Then there exists at least one other machine Mî (¿2 7̂ ¿1) with
ESTj î ̂ < ESTj^i, since ESTj^ ̂ < l(J) = mA. Thus by scheduling job Jj,
on machine we obtain a contradiction. ■

The well-known A/"P-hardness result due to [Garey and Johnson 1979] rules out
the possibility of finding necessary and sufficient conditions which can be used to

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 8

determine an optimal schedule for llPIIC^aa: in polynomial-time (since otherwise
V = AfV, which is extremely unlikely). In the remainder of this section, the
above complexity result will be discussed in detail. In this discussion (and in
the remainder of this study) we will use the relationship between the single-stage
identical parallel machine scheduling problem and the bin packing problem.

In an instance Î p = [J^m) of the bin packing problem, II^p, we are given

• a set 7̂ = {7 i, J2, . . . , 7„} of jobs (or, pieces) of size pj for each Jj G J^
and

• a set B = {B i, Bii - · ·, Bm] of bins with unit bin sizes.

The aim is to decide whether or not there exists a feasible packing. A feasible
packing can be considered as a feasible schedule V which finishes at (or, before)
time one (that is, the size of each bin). Such a packing may exist since we assume
that in a nontrivial instance I^p, Pj < 1 V Jj € J . Otherwise, the answer for
the above decision problem is always “no feasible packing” since at least one job
cannot fit into a bin.

\\P\\Cmax can now be viewed as determining minimum bin size r*, for which a
feasible packing exists. Suppose that we have a procedure exacthinpack which
given an instance Î p either outputs “no feasible packing” or determines a feasible
packing (that is, the procedure outputs “yes”) for the decision problem IT̂ p.
Procedure 2.1 uses the procedure exactbinpack in a binary search to determine
a minimum makespan schedule for the problem l\P\\Cmax· It is initialized with
lower {lb) and upper {ub) bounds on the optimum schedule length, For the
midpoint r of the current range of possible optimum makespan values, related
bin packing problem is exactly as defined before, except that the bin sizes r > 1.
Therefore, the binary search procedure determines the scaled instance I^p/r· after
dividing job and bin sizes by r. Clearly such a scaling does not affect the essential
structure of the original instance. The procedure exactbinpack is called for the
scaled instance if s. feasible packing (schedule) is determined, then the
upper bound is updated to the midpoint, otherwise the lower bound is updated.

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 9

P roced u re 2.1: An exact binary search procedure for \\P\\Cmax

argum ents
Ipms: an instance of \\P\\Cmax
lb: a lower bound for l\P\\Cmax
ub: an upper bound for \\P\\CTnax

procedu re called
exactbinpack: a hypothetical procedure that solves the bin packing problem IÎ p

procedure exactbinarysearch (lpms,lb,ub)
begin

while ub — lb > 1
begin

r := {ub + lb)/2
if exactbinpack (I^p/i") outputs “no feasible packing”

lb := r
else

ub := r
end

output and the schedule related with ub
end

Thus at each packing attempt (“iteration”) lb and ub are still lower and upper
bounds on the problem, respectively. Moreover, [lb] and [u6J are also respective
lower and upper bounds since all of the processing times are integer. Hence the
search can be terminated whenever ub—lb < 1 with C^^x ~ since [u6J < f/6]
is a lower bound

This search interval is called the interval of uncertainty. After £ iterations of
a binary search, the size of this interval is reduced by a factor of 2“ .̂ Thus
O (log \ub — lb~\) iterations are required to satisfy the stopping condition of
Procedure 2.1, ub — lb < 1. The initial lower and upper bounds are described in
the following lemmas.

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 10

Lem m a 2.3 [McNaughton 1959] A lower bound on \\P\\Cmax is

max{/(i7)/m, max pj}J j G JT"

P roo f: is at least maxj^^jpj since each job has to be processed in any
schedule for l\P\\Cmax· Furthermore the inequality 1{J) < must hold
since otherwise there is no way to finish all of the jobs by the time ■

The above lower bound is also an optimal makespan value for llPlpm^njCTOai:·

Lem m a 2.4 [Graham 1966] An upper hound on \\P\\Cmax is 2/6.

P roo f: Due to Lemma 2.2, in an optimal schedule, a job starts its processing on
a machine before (l /m) /(J ’) < lb. Hence — lb ^ naaxj^ejrPj < lb. Thus
C* < 2/6. ■max —

As it will be discussed in Section 2.3, it is possible to improve these bounds.
Nevertheless, it is sufficient to show that Procedure 2.1 is polynomial in the binary
encoding of the input provided that the procedure exactbinpack is polynomial.
Unfortunately, the latter possibility is extremely unlikely since the bin packing
problem H^pis unary A/’P-complete as shown in the following theorem.

T h eorem 2.1 [Garey and Johnson 1979] The bin packing problem H^p/s unary
MV-complete.

P roo f: Without loss of generality, we assume that in the bin packing problem the
size of each bin is r > 1. Consider the following unary A/’P-complete recognition
problem [Garey and Johnson 1979]:

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 11

3-PARTITION:

INSTANCE: A finite set S of 3m elements, a bound r G and a “size”
Pj G for each Jj G such that each pj satisfies r /4 < pj < r /2 and such
that Y,j.^jPj = mr.

QUESTION: Can ¿1 be partitioned into m disjoint sets . . . , such that,
for 1 < f < m, /(P ') = r?

An instance of the 3-PARTITION is a special case for the bin packing problem
in which piece sizes and the number of pieces are so restricted that in a feasible
packing each bin must contain exactly three pieces. Hence, we can directly use
the procedure exactbinpack to solve an instance of 3-PARTITION (see Procedure
2.2). Clearly if exactbinpack were a (pseudo) polynomial-time procedure then 3-

P rocedure 2.2: A solution procedure for 3-PARTITION

argum ent
I: an instance of 3-PARTITION

procedu re called
exactbinpack: a hypothetical procedure that solves the bin packing problem Ĥ p

procedu re 3 — partition (/)
begin

call exactbinpack t)
if 1{V') < T V i = 1, 2, . . . , m or

“no feasible packing” is output then
output “no”

else
output “yes”

end

PARTITION would be solved in (pseudo) polynomial time which is not possible
unless V=AfV. Therefore the bin packing problem is unary A/'P-complete. ■

T heorem 2.2 [Garey and Johnson 1979] The general problem class l\P\\Cmax,
is unary AfV-hard.

P roo f: Without loss of generality, we assume that in the bin packing problem
the size of each bin is r > 1. Suppose that we have a hypothetical subroutine,
Ipcmax, which solves l\P\\Cmax to optimality in (pseudo) polynomial-time.
Using Ipcmax we can solve the bin packing problem H^pas shown in Procedure
2.3.

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 12

P rocedure 2.3: A solution procedure for the bin packing problem IIlbp

argum ent
I^p: an instance of the bin packing problem, IT̂ p

procedure called
Ipcmax: a hypothetical subroutine that solves llPUGn

procedu re exactbinpack (I^p)
begin

call Ipcmax (Ipms)
if Стах > 1 then

output “no feasible packing”
else

output “yes” and the packing (schedule)
end

This shows bin packing problem is Turing-reducible to l\P\\Cmax· Hence the
latter problem is unary A/'P-hard since the former is unary WP-hard due to
Theorem 2.1. ■

Above complexity result provides a formal justification to use an implicit
enumeration algorithm to determine an optimal solution for the problem.

2.2 Optimizing Algorithms

A quick review of the scheduling literature suggests that there is a lack of efficient
optimizing algorithms for l\P\\Cmax (See for example [Lawler et al. 1982; Lawler
et al. 1989; Cheng and Sin 1990]). In the following sections we will analyze
the algorithms based on the two approaches: Branch and Bound and Dynamic
Programming.

2.2.1 A Branch and Bound Algorithm

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 13

In [Lawler et al. 1982] the only branch and bound algorithm for \\P\\Cmax is
reported as the algorithm due to [Bratley et al. 1975]. However this algorithm is
developed to solve l|P|rj, dj\Cmaxi a general case of \\P\\Cmax· In this section we
argue that the above algorithm, when applied to the special case fails to provide
an efficient solution procedure.

Consider a related scheduling problem \\P\rj,dj\Cmax· In an instance of this
problem we are given a set = { Ji, ^2» · · ·, of independent jobs and a
set M — {M l, M 2, . . . , of identical machines (m < n). Each job Jj
(j = 1, 2, . . . , n) becomes available for processing at a ready time rj > 0; has
a processing time pj € and must be completed by a deadline dj (in a
nontrivial instance dj > rj + Pj)· The aim is to determine a feasible schedule
(if any) that minimizes makespan. In this problem, if we let rj = 0 and
dj = ub V y = 1, 2 , . . . ,n, where ub is an upper bound on the optimal schedule
length, the problem reduces to l\P\\Cjnax· The implication of this observation
is twofold. First, \\P\rj d̂j\Cmax is unary MV-haxd since its restricted version
(i.e. l\P\\Cmax) is unary A7P-hard (see Theorem 2.2). Second, an optimizing

algorithm for l\P\rj,dj\Cmax can be used to solve l\P\\Cmax·

In l\P\rj,dj\Cmaxi a feasible schedule can be considered as a partition V =
() of J into m disjoint sets, one for each machine M,· [i =
1, 2 . . . , m), such that the completion time of a job Jj € V\ Cj{V') < dj. In other

words, a feasible schedule corresponds to an assignment of jobs to machines such
that (i) no job is processed on more than one machine, and (ii) the jobs assigned
on a machine must be completed before their deadlines. It is the second property
that makes the sequencing of jobs on a machine necessary. For instance, consider
jobs Jjj and Jjj that are somehow assigned on a machine M{ with = 2,
Tj-j = 3, pji = 1, pĵ — 2, djj = 6 and dĵ = 5 . In a feasible schedule, the sequence
of these jobs has to be Jjj — Jj, is processed before J j,”). The problem
of determining a feasible sequence of jobs on a machine (i.e. a sequence that
results in a feasible schedule) is denoted by \\\rj,dj\Cmax·, using the notation in
Appendix A. In this feasibility problem, although there is no need to specify an
objective, we arbitrarily choose Стах in order to be consistent with the overall
objective in 1|Р|г̂ , dj\Cmax· The sequencing problem l||rj, dj\Cmax is unary MV-
hard (complete) due to the following proposition.

P rop osition 2.1 The sequencing problem \\\rj,dj\Cmax is unary MV-hard.

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 14

P roo f: Suppose for a contradiction that there exists an (optimizing) algorithm
Irjdjcmax which solves l\\rj.,dj\Cmax in polynomial-time. In an instance I of
this problem we are given a set J oi n jobs. Each Jj € J becomes available for
processing at a ready time ry > 0; has a processing time pj G Z'̂ ·, and must be
completed by a deadline dj. Consider another sequencing problem \ \\rj,dj\Lmax

which is known to be unary A/'P-hard [Lenstra 1977; Rinnooy Kan 1976]. An
instance I' of this latter problem is same as / , except that a job Jj G J may
not be completed by its due date dj. The objective is to minimize the maximum
of the differences between the job completion times and their due dates (i.e.
Lmax)· Let lb and ub denote lower and upper bounds on the minimum Lmax-
Clearly lb = —dmax — —maxjj^j dj (none of the jobs are scheduled) and ub =

rmax + Y2jj€jPi ~ Scheduled after
maximum ready time rmax and dj = 0 V J j E ¿1) are the simple bounds on
this problem. Procedure 2.4 uses the procedure Irjdjcmax in a binary search to

determine a schedule which minimizes Lmax for the problem l\\rj.,dj\Lmax·

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 15

P rocedu re 2.4: An exact binary search procedure for solving l\\rj,dj\Lj,

argum ents
F: an instance of l\\rĵ dj\Lmax
lb: a lower bound for l\\rj,dj\L
uh: an upper bound for \\\rj,dj\L.

max
max

procedure called
Irjdjcmax: a hypothetical procedure that solves 1||г̂ , djlCn

procedure lrjdjlmax{I',lb,ub)
begin

while ub — lb > 1
begin

Lmax := {ub + /6)/2
dj := dj + Lmax V Jj E J
if Irjdjcmax (I) outputs no feasible schedule

lb := Lmax
else

u b L m a x
end

output and the schedule related with ub
end

Procedure 2.4 determines in О {u b-lb) = О {J2jjeJPi dmax) calls
of the procedure Irjdjcmax. Therefore, it would be polynomial in the binary
encoding of the input provided that the procedure Irjdjcmax were a polynomial

time subroutine for l\\rj.,dj\Cmax· Thus l||rj,djlTmax is Turing reducible to
l\\'’'j-,dj\Cmax· Thus the latter problem is unary A/^P-hard since the former is
known to be unary AfV-havd. ■

The above complexity result justifies the enumeration of all possible arrangements
of n jobs on m machines. The number of arrangements of n jobs on exactly m

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 16

machines is

(2.1)

This number can be verified as follows: suppose we have fixed a job on a machine
\

(say Ji on Ml). Then there are () different ways to assign the remaining

n — 1 jobs (selected from a given list) to m machines. Since there are (n — 1)!
• 72 __ \different ways of forming a list of remaining jobs, we obtain ()(n — 1)!

771— 1

distinct schedules provided that the job Ji is fixed on machine Mi. Each time

fixing one job Jj (j = 2 ,... ,n) on machine Mi we obtain ()(n — 1)! distinct

schedules provided that the job Jj is fixed on machine Mi. Since there are m!
different ways to arrange m identical machines, the number of distinct schedules
that uses exactly m machines will be (2.1).

To the best of our knowledge the only (optimizing) algorithm for l\P\rj,dj\Cmax
is due to [Bratley et al. 1975]. In their branch and bound algorithm, leaf nodes
of the enumeration tree correspond to all possible arrangements of n jobs on m
or less machines. Using (2.1), it is easy to see that the total number of leaf nodes
is

Table 2.1 shows how this number changes as n and m changes.

As opposed to the situation in l\P\f'j,dj\Cmaxi the ordering of the jobs that are
assigned on the same maclxine is immaterial in l\P\\Cmax· Therefore, the set of
schedules that the branch and bound algorithm of [Bratley et al. 1975] enumerates
is much larger than what is required for l\P\\Cmax· Moreover, the computational
results presented in [Bratley et al. 1975] suggest that the performance of the
algorithm is poor even for l\P\rj,dj\Cmax· The problem instances that were
generated in their empirical analysis are small and easy problems. In the largest
problem instance generated, n = 25 and m = 3. When the processing time
variability increases slightly, the branch and bound algorithm fails to solve 40% of
the generated problems to optimality. This failure is partly due to the redundant

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 17

Table 2.1: Number of leaf nodes in the enumeration tree proposed by fBratley
et al 1975]

m
1 2 3 4

1 1 - - -

2 2 3 - -

3 6 12 13 -

4 24 60 72 73
5 120 360 480 500
6 720 2520 3720 4020

n 7 5040 20160 32760 36960
8 40320 181440 322560 381360
9 362880 1814400 3507840 4354560

10 3628800 19958400 41731200 54432000
11 39916800 239500800 538876800 738460800
12 479001600 3113510400 7504358400 10797494400
13 6227020800 43589145600 112086374400 169167398400
14 87178291200 653837184000 1787154969600 2826029606400
15 1307674368000 10461394944000 30294456192000 50127517440000

m
5 6 7 8

1 - - - -

2 - - - -

3 - - - -

4 - - - -

5 501 - - -

6 4050 4051 - -

n 7 37590 37632 37633 -

8 393120 394296 394352 394353
9 4566240 4594464 4596480 4596552

10 58242240 58877280 58937760 58941000
11 808315200 822286080 823949280 824068080
12 12114748800 12422108160 12466016640 12469937040
13 194853859200 201703582080 202845202560 202967519040
14 3345466924800 3501298120320 3530980252800 3534690519360
15 61035701126400 64671762355200 65450918332800 65562226329600

enumeration of schedules in which no job is assigned on at least one machine.
It is trivial to show that in l\P\rĵ ,dj\Ĉ nax■ı there exists an optimal schedule (if
there exists a feasible solution) in which at least one job is scheduled on every
machine Mi (i = 1, 2, . . . , m). Furthermore the branch and bound algorithm
does not use an effective bounding scheme to cut the size of the tree.

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 18

2.2.2 Dynamic Programming Approaches

In the literature there are several dynamic programming formulations for the
general problem l\P\\Cmax or its restricted version in which the number of jobs
with distinct processing times is fixed. Dynamic programming formulations that
solve the general J.|i’ llC'mo® problem are due to [Rothkopf 1966; Lawler and Moore
1969; Blazewicz 1987]. First two of these formulations, [Rothkopf 1966; Lawler
and Moore 1969], were not originally developed to solve l\P\\Cmax but for more
general class of scheduling problems. The last formulation, [Blazewicz 1987], was
developed specifically for the l\P\\Cmax· In Section 2.2.2.1, these formulations
will be discussed. The algorithm due to [Sahni 1976] solves l\P\\Cmax by using
the above formulations in a straightforward manner and will not be discussed
in this section. In Section 2.2.2.2, we will present the work due to [Hochbaum
and Shmoys 1988], a polynomial-time dynamic programming formulation for the
special case of \ \P\\Cmax· This formulation plays an important role in developing
a polynomial e-approximation scheme for the problem (see Section 2.3.2).

2.2.2.1 Dynamic Programming Formulations for the General Case

The formulations due to [Rothkopf 1966; Lawler and Moore 1969] are quite
general providing a dynamic programming technique for a variety of scheduling
problems including l\P\\Cmax as a special case. As mentioned in [Rothkopf 1966;
Lawler et al. 1989], the technique is applicable to any parallel machine scheduling
problem (where the machines may not be identical and the objective may be of
the general form f j or fmax) if following condition is satisfied: it is possible
to index the jobs in such a way that the jobs assigned on a given machine can
be assumed to be processed in the order of their indices. In l\P\\Cmax this
assumption is certainly valid for any indexing of jobs since order of the jobs
scheduled on a machine is immaterial. However, the technique when applied for
a particular problem (in our case l\P\\Cmax) has some computer implementation
problems that makes it impractical (such as large space requirements, average

run-time being close to the time-complexity of an algorithm). In what follows we
first state the formulations developed for l\P\\Cmax by using this technique.

D ynam ic program m ing form ulation for l\P\\Cmax [R oth kop f 1966] Let
F j(ti,t2, . . . ,tm) denote the minimum makespan for the scheduling problem in
which jobs J i,. . . ,Jj are to be scheduled nonpreemptively on m machines without
an idle time such" that none of these jobs start on a machine M,· (i = 1, 2, . . . ,m)
before the time i,·. Then the recursive equation becomes:

F j{h ,t2, . . . , tm)= mm {max{i,· -f p j,. . . , i^) } }

where Fo{ti, ¿2, · · ·, tm) = 0.

F j(ti,t2,...,tm) is computed for ;■ = 0, 1, . . . ,n; = 0, 1, . . . , t/; i = 1, 2, . . . , m,
where U is an upper bound on the minimum makespan. The problem is solved
by the calculation of T’n(O) 0, . . . , 0).

D ynam ic program m ing form ulation for \\P\\Cm.ax [Lawler and M oore
1969] Let F j(ti,t2 , . . . itm) denote the minimum makespan for the scheduling
problem in which jobs are to be scheduled nonpreemptively on m
machines without an idle time such that no job is completed later than time
ti on machine Af,· (i = 1, 2, . . . ,m). Then the recursive equation becomes:

F j(ii,i2,...,tm) = mm {max{i,·, . . . , t,· - py,. . . , i ^) } }
K i< m

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 19

where

To(ii ,t2)··· , tjn) —
0 if ti = 0 for i = 1 ,2 ,..., m
-|-oo otherwise

F j{ti,i2, t m) is computed for ; = 0, 1, . . . , n; i,· = 0, 1, . . . , C/; i = 1, 2, . . . , m.
The problem is solved by the calculation of Fn{U, U ,.. . , U).

Although there is a slight difference between the above formulations, the time
required to solve the related recursive equations is the same. In each of these

formulations, we have O (U^) different states in a stage (simply each for some
Mi may take a value between 0 and U). For each state we spend O (m) time to
compute the outer minimization in , tm)· Then for n stages the total
effort is bounded by O [mnU'^).

D ynam ic program m ing form ulation for \\P\\Cma.x [B lazewicz 1987] In
this formulation the computational effort is reduced. Let

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 20

Fj{t\ , ¿2) · · · 1 tm) — ^

true if jobs J i,... ,Jj can be scheduled
on machines M i, M2, ■ ■ ■, Mm
in such a way that M,· is busy
in time interval [0, i,·] f = 1, 2, . . . , m

false otherwise

where

Fo{tl,t2, . . . , tm) —
true if = 0 for i = 1, 2, . . . ,m
false otherwise

Then the recursive relation is
m

^jit\i ¿2) · · · itm) — \J Fj^ilfi^ . . . ,t{ P jj.. . , tm)
t = l

After F j(ti,t2, . . . ,tm) is computed for j = 0, 1, . . . , n; ¿,· = 0 ,1 , . . . , 17; i =
1 ,2 ,... ,m, the minimum makespan is determined as

= m in{m ax{ii,t2, | Fn{ti,t2, . . . , t m) = true}

Time complexity of the above procedure is O inU'^) (effort spent in determining
the outer minimum of the recursive equations in the previous formulations is
eliminated since the value of Fj(ii, ¿2, · · ·, tm) can immediately be determined as
true whenever F}_i (i i , ¿2, · · · it i—p j,. . . , tm) turns out to be true at the previous
stage).

Observing that only m — 1 of the values t\,t2,...,tm in the equations
Fj{t\,t2, . ■ ■, tm) of the above formulations are independent (i.e. once a schedule

is determined for m — 1 machines, the schedule on the m-th machine can
be determined by simply scheduling the remaining jobs on this machine), we
improve the time bound to O (or to O in the formulation
of [Blazewicz 1987]). This bound can further be reduced to O (mn2^U).
In l|P||a,„a^, schedules V = (V \ V \ ,V^,.. .) and P " =
(P ^ P ^ . . . , P ^ . . . , P ^ . . . , P ' ") (i = l , 2, . . . , m ; ^ = l , 2, . . . , m) have the
same makespan yalue since the machines are identical. This type of schedules are
referred as symmetric schedules. Consider the dynamic programming formulation
of [Lawler and Moore 1969]. At any stage j of the dynamic programming, the
(redundant) enumeration of symmetric schedules can be avoided in O (t/m 2")
time as follows: (i) select a subset of the set { J j , . . . , Jj} (a subset has a length
between 0 and U), (ii) select m subsets one for each machine (the outer minimum
can be updated during this selection) and (iii) check whether or not the selected
subsets are distinct by searching O (2”) sets in the set of all subsets. Since the
above steps are repeated for each stage, the total effort becomes O (mn2"17).
Such a procedure has a storage requirement of at least O (2") (to store all
subsets of the set {Ji,· - ■ ,Jj}· This number excludes the storage requirement
for intermediate solutions at a stage). Clearly such a procedure is impractical
considering realistic problem instances. Furthermore any attempt to reduce the
storage requirement increases the computation time.

2.2.2.2 A Dynamic Programming Formulation for the Special Case

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 21

In this section we present a dynamic programming formulation for the bin packing
problem II^p, in which there is a fixed number Â; > 0 of piece sizes. An algorithm
that uses this formulation is polynomial if k is fixed. As we discussed in Section
2.1, an optimizing algorithm for this problem can be called polynomial number
of times to determine an optimal solution for \\P\\Cmax (see Procedure 2.1).

Consider an instance of the bin packing problem H^pin which we are given Uj
jobs having processing time pj for all j = 1, 2, . . . , ̂and for some A: > 0. For such

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 22

an instance, a packing V' of a bin Bi (i — 1 , 2 , , m) can be uniquely described
by an array of the distribution of piece sizes that are packed in that bin. Such
an array is called a configuration [Hochbaum and Shmoys 1987; Hochbaum and
Shmoys 1988]. In a configuration (xi,X 2, . . . ,Xk), an entry xj {j = 1,2, ...,A:)
shows the number of pieces with size pj that are packed in a bin. A configuration
is called feasible if each Xj > 0 and xjpj < 1 (the bin size).

Let the state vector F, = {un,Ui2, . . . ,Uik) be the distribution of the unpacked
pieces of each size before we pack the bin Bi. Then Uij (i = 1,2, . . . , m — 1;
j = 1, 2, . . . , Â;) is the number of unpacked pieces of size pj before we pack the
bin B{. Since each entry can take a value between 0 and n, total number of
possible state vectors when packing a bin is n*'. Consider a directed layered
graph where the nodes correspond to state vectors. Let Vo,. . . , Kn be the nodes
in the 0-th through m-th layers, respectively. V, {i = 1,2, . . . , m — 1) contains
a vertex Fi for each possible state vector. Vo and Vm are the dummy nodes;
the former corresponding to the initial distribution of piece sizes and the latter
corresponding to the “success” node where all the pieces are packed feasibly (that
is, Fm = (0 ,0 , . . . , 0)). From each node F{, there is an arc directed towards the
node F’.+i if and only if there is a feasible configuration {xi,X 2, · · ·, ^k) such that

(^(t-l-l)lî ^(i+l)2) · · · > (̂¿+1)/:) (^tlj '̂ ¿̂2) · · · > Uii · ■ · ■> ’̂ ik) ^ 1,2, ... ,k

In the directed layered graph, there exists a path from Vo to if and only if
there exists a feasible packing. The complexity of the algorithm is determined
as follows: at a layer of the graph we have O (n*) nodes for which O {n^)
configurations (arcs) have to be constructed. Since the feasibility of each node is
checked in O (n) time, time bound of an algorithm is O (n^^+)̂ for each layer.
Thus for O (m) layers, the complexity of the algorithm is O which is
polynomial when k is fixed.

As far as the real life scheduling problems are concerned, there may be cases
where the assumptions on the problem instance become realistic. Consider a
shop for example, where items are similar to each other and require almost the
same amount of processing. In this case the above formulation has practical

importance. Moreover, as it will be presented in next section, it can be used to
develop approximation algorithms with as small performance guarantees as we
wish to solve the general problem.

2.3 Approximation Algorithms

In the deterministic scheduling literature the most studied scheduling problem
from the viewpoint of approximation algorithms is l\P\\Cmax [Lawler et al. 1989].
The focus of the research is on the development of an approximation algorithm
and/or on the performance analysis of an approximation algorithm. In general
these algorithms can be classified as

(i). list scheduling algorithms, and

(ii). bin packing based algorithms, the algorithms that are using the relation
between l\P\\Cmax and the bin packing problem II^p(see Section 2.1).

In this section, we present the approximation algorithms which play a pioneering
role by giving rise to the development of several other algorithms in the same
category. Although we state the performance guarantee of each algorithm, the
details of their derivation are not presented. See [Coffman et al. 1988; Fisher
1982; Friesen 1978; Garey et al. 1978] for a review of the related research.

2.3.1 List Scheduling Algorithms

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 23

The motivation behind these algorithms is the observation that it is always
possible to find a (sorted) list L of jobs using which we can determine an optimal
schedule as in Procedure 2.5 in Ö (n) time.

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 24

P rocedure 2.5: A list scheduling heuristic for lIPIIC,,

argum ents
Ipms: an instance of \\P\\Cmax
L: a list of jobs

procedu re called
list schedule: a recursive call

procedu re listschedule (Ip ms, L)
begin

begin
pick job Jj from the top of the list L
assign Jj to the first available machine Mi

call listschedule {Ipmzi L)
end

else
output makespan and the related schedule

end

Consider the following 7-job l\P'i\\Cmax instance

1 2 3 4 5 6 7

Pj 1 1 1 1 1 1 3

Calling the procedure listschedule (L) for L = (Ji, J2, ■ ■ ■, Jr) we obtain the
schedule depicted in Figure 2.1. An optimal schedule is as shown in Figure 2.2.
It can easily be verified that interchanging the places of the jobs J7 and Ji in the
above list and calling the procedure listschedule {L) for this list we obtain the
schedule depicted in the Figure 2.2. If we let Cmax{LS) denote the makespan value
that can be determined by the procedure listschedule (L), then for the above
problem CmaxiLS)/C^^j. = 5/3 = 2 — (1/3). [Graham 1966] showed that the

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 25

Ml

M o

Mo

J i J a

J2 Jz

1

, 1

Jz Jz

Jj

Figure 2.1: A list schedule for the 7-job l\P“i\\Cmax instance for L
(Ji, J2,... ,/7)

Ml

Mo

M o

Js

Js

J7

J a

Jz

Jz

J i

Figure 2.2: An optimal schedule for the 7-job l\P'i\\Cmax instance for L =
(Ji, J2, . . . ,«̂ 7)

above result can be generalized as a list scheduling algorithm that uses arbitrary
list of jobs has the performance guarantee Cmax{LS)/C^^^ < 2 — (1/m). As it is
shown in the above example this bound is tight. This work was the first worst-case
analysis of a heuristic. Later [Graham 1969] showed that if the list is constructed

according to descending order of processing times, the list scheduling heuristic,
known as the Longest Processing Time (LPT) heuristic, has the performance
guarantee Cmax(LPT)IC*^^^ < § - 5̂ . The computational effort required by the
LPT heuristic is dominated by the effort required to form a list (sorting) which

is O (n log n).

2.3.2 Bin Packing Based Algorithms

The relation between the bin packing problem fl^pand l\P\\Cmax allows us to
solve the latter by using a procedure for the former in a binary search (see
Procedure 2.1). This principle can be used to determine an approximate solution
for \\P\\Cmax if we Call an approximation algorithm for H^pat each iteration of
the binary search. In this section we will present two approaches developed to

solve l\P\\Cmax based on this scheme.

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 26

2.3.2.1 Primal Algorithms

[Coffman et al 1978] were the first who have used the above principle. Their
MU LTI FIT algorithm is given in Procedure 2.6. At an iteration of the
binary search, the procedure FED (First Fit Decreasing Algorithm) is called
by M U LTIFIT to pack a bin (if it can). For a sorted list L of piece sizes (in
nonincreasing order of sizes), FFD works as shown in Procedure 2.7.

At each packing attempt if the procedure FFD outputs a feasible packing, then
the current bin size, r, becomes an upper bound for the minimum makespan
problem. Thus each time uh is updated, the new uh is still an upper bound on
the problem. On the other hand, if the procedure outputs “no feasible packing” ,
then for a particular bin size, t , a feasible packing may exist. Therefore lb may not
be a lower bound on the problem. But upon a termination of the binary seaich
procedure M ULTIFIT, we have a valid upper bound on the minimum makespan

for l\P\\Cmax· The time complexity of M ULTIFIT is O (n log n + nk log m)

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 27

P roced u re 2.6: A primal bin packing based approximation algorithm for
l\P\\C^ar

argum ents
Ipms: an instance of \\P\\Cmax
lb: a lower bound for \\P\\Cmax
ub: an upper bqund for l|P||Cma®·

procedure called
FFD : First Fit Decreasing heuristic for the bin packing problem (see Procedure
2.7).

p rocedure M ULTIFIT (lpmsTub,lb)
begin

while ub — lb > 1
begin

T := (ub + lb)/2
if FFD (I^p/r, i) outputs “no feasible packing”

lb :=T
else

ub := r
end

output [u6J and the schedule related with ub
end

time for k iterations of thé binary search. With the development of this algorithm
the question of “What is the worst-case performance bound of the MU LTIF IT?”
motivated many researchers. Although [Coffman et al. 1978] were able to show
that the bound is at most 1.22Cj^axf they could not show that this is the tightest
bound. After a decade and several attempts, [Minyi 1989] have proved (in thirty
seven pages) that the bound is exactly 13/11.

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 28

P rocedu re 2.7: FFD heuristic for the bin packing problem, IT̂bp

argum ents
I^p: an instance of the bin packing problem, ll^p
L: list of pieces sorted in nonincreasing order of their sizes

procedure called
FFD : a recursive call

procedure FFD
begin

if I ^ 0
begin

pick job Jj from the top of the list L
find the first bin Bi that Jj fits (assume bins are indexed)
if none

begin
I := 0
output “no feasible packing”

end
else

begin
assign Jj to Bi

call F F D { l i ^ , L)
end

end
else

output the packing
end

2.3.2.2 Dual A lgorithms

[Hochbaum and Shmoys 1987] have used the same principle of solving the bin
packing problem in a binary search to solve l\P\\Cmax· However their approach

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 29

differs from that of [Coffman et al. 1978] in the procedure they have used to solve
the underlying bin packing problem. An e-relaxed decision procedure, as termed
in [Hochbaum and Shmoys 1988], is a polynomial time procedure which, given
an instance Î p = (̂ 7 ,^) of the bin packing problem H^p, either

(i). produces an e-relaxed packing, that is a feasible packing for the original
instance in which size of each bin 5,·, e = 1, 2, . . . , m is extended to 1 -f e;
or

(ii). outputs “no feasible packing” indicating that there is no feasible packing.

Consider Procedure 2.8. At a packing attempt if the procedure e — relaxed
outputs “no feasible packing” then due to the definition of an e-relaxed decision
procedure there will be no feasible packing. Hence each time lb is updated, the
new lb is still a lower bound on the problem. On the other hand, if the procedure
e — relaxed does not output “no feasible packing” , then given a particular bin
size T a feasible packing may not exist. In such a case the only thing that an
£-relaxed decision procedure provides is an e-relaxed packing. Therefore, after
an update of ub, newly found ub may not be an upper bound on the problem.
But given a ub, the procedure e — relaxed computes an upper bound.

Since all of the processing times are integer, it is clear that [/fe] is a lower bound.
Hence the search can be terminated whenever ub—lb < 1. However, the procedure
£ — relaxed should be called once more, with bin sizes scaled by r = f/6]. If the
output is “no feasible packing” then [”/6] -|-1 will be a lower bound on the optimum
makespan and the schedule produced b y u 6 < [/ 6] - f - l can be used to determine
an upper bound on the minimum makespan. Otherwise [/6] will be a lower bound
and the schedule produced by \lb~\ can be used to determine an upper bound on
the minimum makespan. Thus at the termination of the binary search we obtain
a schedule whose length (1 + e) times the lower bound. Therefore the algorithm
has a worst case bound of 1 -|- e.

As mentioned before, the stopping condition of the binary search is satisfied in
O (log \ub — /6]) time. If we use the lower and upper bounds given in Lemmas

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 30

P rocedu re 2.8: A dual bin packing based approximation algorithm for
l\-P\\Cmax

argum ents
Ipms: an instance of l\P\\Cmax
lb: a lower bound for \\P\\Cmax
uh: an upper bound for \\P\\Cmax

procedure called
e — relaxed: a hypothetical e-relaxed decision procedure for the bin packing
problem, Ilgp

procedure e — makespan (Ipms> lb, ub)
begin

while ub — lb > 1
begin

r := {ub + lb)/2
if £ — relaxed (f^p/'^) outputs “no feasible packing”

lb:=T
else

ub := r
end

if e — relaxed (I^p/R^l) outputs “no feasible packing”
output ub and related schedule

else
output |’/6] and related schedule

end

2.3 and 2.4, respectively, then we will have a polynomial-time procedure which
produces schedules with lengths at most (1 -|- e)C'^aa:·

[Hochbaum and Shmoys 1987] have provided a family of approximation
algorithms Dc for £ > 0, such that for a fixed e, is an e-relaxed decision
procedure (hence a polynomial-time procedure) that runs in O ((m /£)(n/e)^/‘^̂).
Such a procedure can directly be obtained from the dynamic programming

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 31

formulation given in Section 2.2.2.2.

Suppose that the bin packing problem is scaled such that all bins have sizes
one and the piece sizes are less than one. Obviously, for such an instance if
^ j j ç jP j > rn, then there is no feasible packing. We exclude this trivial case by

assuming J2jjçjPj ^

arge ISLet Ĵ iarge denote the set of pieces for which pj > e. Any piece Jj G Ju
called as a large piece. Then the set Jamaii = J \ Jiarge denotes the set of small

pieces (that is, pieces with size pj < e). Consider only the pieces with pj > e
{j — 1, 2, . . . , n) for the time being. Partition the interval of large piece sizes
(e, 1] into f(l — e)/£^l equal length subintervals. Thus the size of each interval is
at most £̂ . Round the pieces sizes in an interval to the lower end of that interval.
As a result we obtain an instance with at most k = [(I — £)/e^] distinct piece
sizes. This problem can be solved by using the dynamic programming formulation
given in Section 2.2.2.2 in O ((m/£)(n/£)^A*) time. There is a clear reduction in
the computation time as compared with the dynamic programming formulation
given in Section 2.2.2.2. This is due to the fact that in a feasible configuration
each entry can take a value between 0 and [1/eJ whereas in the previous case
this value can be n. If the large pieces with rounded sizes cannot be packed by
the dynamic programming algorithm, then there is “no feasible .packing” for the
original instance where the processing times are larger and there are additional
small pieces. If on the other hand they are packed then there exists a path from
“initial” to “success” referring to a feasible packing for the restricted problem. In
a feasible packing there are at most [1/eJ large pieces with rounded piece sizes.
Therefore, if we restore the sizes of large pieces to their original sizes, in a bin
total piece size cannot exceed 1 + e.

Suppose no “no feasible packing” message is output when packing large pieces.
In such a packing let S*' = m — Pj denote the total slack. Due to our
assumption that in a nontrivial instance of the bin packing problem Y^jjejPi —

m, > E .;, î JsmattPi' Moreover, in the packing of large pieces E i l i 1 —
^j.ç-piPj} > where V' denotes the set of jobs packed on bin Bi (since after

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 32

restoring the large piece sizes to their original sizes, some of the bins may be filled
over the capacity). Hence the remaining slack max{0, 1 — —

Therefore, it is sufficient to check whether or not < m.
If it is, then small pieces can be packed within bins with at most 1 + £ times
their true capacity. The procedure is simple, choose a small piece and pack it
into any bin with positive remaining slack. Clearly the complexity of the overall
algorithm is due the first phase, large-pack, since the second phase takes O (n)
time.

Although this result is theoretically appealing, it has less practical importance
considering its space requirement and time complexity. More practical algorithms
were developed for £ = 1/5 and £ = 1/6 which run in O {n[k log n))
and O {n[km^ -f- log n)) times for the O (k) iterations of the binary search,
respectively.

In [Hochbaum and Shmoys, 1988] the same idea was applied to solve a uniform
parallel machine scheduling problem, l\Q\\Cmax· In this problem, a set J =
{J iiJ ii-'-iJn } of independent jobs with processing times pi,p2 , ... ,Pn are to
be scheduled nonpreemptively on a set Af = {M i, M2, . . . , Mm} of non-identical
machines. These machines run at different speeds si,S2, ... ,Sm· Hence, if job Jj
is processed on machine M,·, it takes Pj/s,· time units to be completed. Consider
the related question of deciding whether there exists a schedule in which all of
the jobs are completed by time r. More precisely, in this decision problem we

are looking for a schedule V in which J2jjeT'Pi/^i — ~ 1, 2, . . . , m or
equivalently J2jj -̂p'PJ — “ 1,2, . . . , m. Rescaling both the processing
requirements and the speeds by a factor 1/ r , we obtain the bin packing problem
with variable bin sizes, Si,S2,. ■ · iSm- MP-completeness result of Theorem 2.3
associated with the bin packing problem (with unit bin sizes) proves that the
above decision problem is unary A'P-complete since the bin packing problem
with variable bin sizes is an obvious generalization of the problem with unit
sizes. This suggests that the existence of an efficient optimizing algorithm for
this problem is highly unlikely. [Hochbaum and Shmoys 1988] have generalized

the idea of e-relaxed decision procedure to obtain good approximation algorithms.
Suppose that for this problem we have a polynomial-time algorithm which either

(i) produces an e-relaxed packing, a feasible packing in which the size of each
bin is extended to (1 -f- e)s,·, z = 1, 2, . . . , m; or

(ii) outputs “no feasible packing” indicating that there is no feasible packing.

Chapter 2. A Single-Stage Identical Parallel Machine Scheduling Problem 33

Although such an algorithm is not the same as the previous one, they refer to it
as an £-relaxed decision procedure to emphasize the similarity. As before such
an algorithm can be used in a binary search to solve l\Q\\Cmax· [Hochbaum and
Shmoys 1988] have provided a family of such e-relaxed decision procedures with
time complexity O For e = 1/2 they provided an algorithm to
solve the related bin packing problem with variable bin sizes which runs in O (n)
(if the piece and bin sizes are sorted in advance). An algorithm along the same
lines will be proposed in Section 3.2.1.

Chapter 3

A Branch and Bound Algorithm

In Section 2.2.1, we have presented the branch and bound algorithm of [Bratley
et al. 1975] which was developed to solve \\P\rj d̂j\Cmax· As mentioned before
it can be used to solve a special case of the original problem, l\P\\Cmax· A
general algorithm when applied to a special case, may not utilize some of the
characteristics of the solution space. As a result the set of solutions that
need to be enumerated to determine optimal solution and hence the size of the
enumeration tree becomes unnecessarily large.

Let S be the set of schedules satisfying Lemma 2.1. Any schedule "P S S can be

represented as an onto function f : J ^ M. since no machine remains idle. This
is illustrated in Figure 3.1 for a 4-job \\PZ\\Cmax·

The Related Schedule:

Figure 3.1: A schedule represented as an onto function

34

Chapter 3. A Branch and Bound Algorithm 35

It can be shown that for n > m the number of onto functions is

s(n, m) = ^ (- l y (m - t)^
t=0

(3.1)

Consider the example in Figure 3.1. In this example there are 3̂ different
functions from J to M.. Considering subsets of Ad of size 2, there are 2 ̂
functions from J to {M i,A Î2}) 2̂ functions from J to {M 2^Mz}·, and 2̂

functions from J to { M i , M3}. So we have (3)2“* = (̂)2 ̂ functions from

J to A4 that are definitely not onto. However, it should be realized that
3not all of these (̂)2 ̂ functions are distinct. For when we consider all the

functions from ¿T to { M i , M2}, we are removing, among these, the function
{ (J i , M 2), (J2, M2), (J3, M2), {J4, M2)}· Then considering the functions from J to
{M 2, M3}, we remove the same function: { (Ji, M2), (J2, M2), (J3, M2), {J4, M2)}.

3
Consequently, in the result 3“̂ — (̂)2‘*, we have twice removed each of the

constant functions f : J ^ A4, where /(c7) is one of the sets {Mi } , { M 2},
or { M 3}. Hence for the above example the number of onto functions from to

Ad is 3 ̂ — (̂)2 ̂ + 3 = (̂)3 ̂ — (̂)2 ̂+ (̂)!'*· This intuitive explanation2 3 2 1
can be extended for a general case as shown in Equation 3.1.

Furthermore the cardinality of E is much less than s(n, m). Schedules represented
by distinct onto functions may be same since the machines are identical.

For example, consider two schedules = {{J i,J 2} , { J3} , { J4}) and V2 =
({J 4}, {J i, J2}, {>/3}) for a 4-job l\P3\\Cmax· [Lawler and Moore 1969] have
referred to this type of schedules as symmetric schedules. Although these
schedules are represented by two distinct onto functions, they refer to the same

schedule, V = ({Ti, J2}, {•^}> { ‘ 4̂})· Thus the number of distinct schedules in S
is S{n,m) = s{n,m)/m\ since there are ml different ways to arrange m identical
machines. This latter number is known as the Stirling number of the second
kind. Table 3.1 shows the behavior of this number for some m and n values.
An analysis of Tables 2.1 and 3.1 shows that the number of feasible schedules
that need to be enumerated is substantially less as compared with the number

Chapter 5. A Branch and Bound Algorithm 36

Table 3.1: The Stirling number of the second kind

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
3
7

15
31
63

127
‘ 255
511

1023
2047
4095
8191

16383

1
6

25
90

301
966

3025
9330

28501
86526

261625
788970

2375101

1
10
65

350
1701
7770

34105
145750
611501

2532530
10391745
42355950

1
15

140
1050
6951

42525
246730

1379400
7508501

1
21

266
2646

22827
179487

1323652
9321312

1
28

462
5880

63987
627396

5715424

1
36

750
11880

159027
1899612

40075035 63436373 49329280 20912320
210766920 420693273 408741333 216627840

that is enumerated by the branch and bound algorithm of [Bratley et ah 1975].
The cardinality of E may further be reduced due to Lemma 2.2. The number of
feasible schedules satisfying both Lemma 2.1 and Lemma 2.2 is at most 5(n,m)
since Lemma 2.2 may reduce the size of the set defined by Lemma 2.1 depending
on the processing time data. Hereon we will refer to this set as the set of all
solutions that are candidate for being optimal and we will denote it by E*.

The proposed branch and bound algorithm implicitly enumerates the feasible
schedules in E*. In Section 3.1 we will explain the branching scheme and the
enumeration tree generated by this scheme. Section 3.2 explains the bounding
scheme we used. The strategy for searching the tree during enumeration process
will be explained in Section 3.3. Finally results of our computer implementation
will be presented in Section 3.4.

3.1 Branching Scheme

At a node Nk of the enumeration tree we are given a subproblem which is a
partially solved version of the original l\P\\Cmax· With this node we associate

Chapter 3. A Branch and Bound Algorithm 37

• a partial schedule . . . ,) where Vl is the set of jobs scheduled
on machine M,· such that = 0 and, Vq = 9 at the root node Nq.

• a set Vk of unscheduled jobs where Vo = J at the root node Nq.

• a set of discarded machines 6k = {Mi \ 1{V{) > A ¿ = where
A = (l/m)/(^7). For the ease of notation we assume that the last |ijt| machines
are in the set of discarded machines. If this is not the case however, machines
can be reindexed such that M{ £ 6k i = m — + 1 , . . . , |<5fc| since they are
identical. We let 6k denote the complement set of 6k so that 6k U 6k = A4.

• a set of captured machines pk = {Mi } U {Mi | 1{V{) ^ * =
2 , It can be observed that Mi ^ 6k V i = l,...,|^jt| due to the
definition of the set 6k. Clearly \pk\ < |<̂A:| since there may be several machines
with the same completion time. It is convenient to assume that Mi G pk V i =
l,...,|/i^| and l{Vl) > . . . > If the situation is dilferent, machines
can be reindexed accordingly.

Using the above notation, the subproblem at node Nk is defined as to schedule the
set Vk of jobs on the set M of machines such that the schedule length is minimized
and each machine M i processes the already allocated load 1 { V {) nonpreemptively.
Clearly an optimal schedule for this problem has the characteristics described
by Lemmas 2.1 and 2.2. Therefore only the machines Mi G 6k need to
be considered while solving the problem since in an optimal solution none
of the jobs in Vk will be scheduled on the remaining machines. When we
determine the optimal mdikespan C^^^{Vi ,̂6k) for this restricted problem, we
can determine the optimal makespan for the original subproblem as C^^^{V,.) =

max{maxMieSkK^k)j ^maxi^k^^k)}· Nevertheless even the restricted problem
is still unary WP-complete (see Section 3.2). This result provides a formal
justification to continue enumeration.

The branching mechanism decomposes the scheduling problem at node Nk into
subproblems (descendants) with the property that solving all of them solves the

Chapter 3. A Branch and Bound Algorithm 38

original. However the mechanism may decide to stop generating new nodes.
If none of the feasible schedules that can be obtained from the current partial
schedule can have a makespan better than the best known so far, then there is no
need to enumerate them. Similarly, if an optimal solution for the problem at node
Nk is determined, related descendants will not be generated. We will approach the
presentation of the branching scheme by explaining these fathoming conditions
in detail.

We let LB{Vi^,Sk) and UB{Vf.,Sk) denote the lower and upper bounds on the
restricted problem at node Nk, respectively. As we mentioned above, in this
problem machines Mi € Sk are not considered when scheduling. An algorithm
to determine these bounds and other related issues will be explained in Section
3.2. Once these bounds are determined the bounds on the original problem
can easily be determined as LB[Vk) = max{maxA/,.gi,^/(7 ,̂·), LB{V,^,Sk)} and

UB(Vk) — max{maxMi€i* K^»)) ^^('^kj'^k)}· The lower bound LB{Vf.), refers
to the makespan of the best (not necessarily feasible) solution and the upper
bound UB{V]^) is the makespan of a feasible schedule in the descendants of
node Nk· For the time being suppose node Nk is generated and the bounds
on the scheduling problem are determined in the way we mentioned briefly.
Let Z be the incumbent value (i.e. best makespan value determined among the
enumerated feasible schedules) as before. Upon the generation of node Nk, this
value is updated as Z := m\n{UB{'P^.),Z}. Below propositions describe the
circumstances under which node Nk is fathomed.

P rop osition 3.1 If the condition LB(Vif) > Z is satisfied for some node Nk
then the descendants of this node are not generated.

P roo f: None of the feasible schedules encountered among the descendants of the
current node can have a makespan better than the best known. ■

P rop osition 3.2 At a node Nk, if the condition UB{Vk,Sk) < K'^k) satisfied
for some € Sk with = maxMieSk descendants of this

Chapter 3. A Branch and Bound Algorithm 39

node are not generated.

P roo f: None of the descendants of the current node can have a makespan better
than ■

P rop osition 3.3 At a node Nk, if the number of unscheduled jobs is two, that
is \Vk\ = 2, then,the descendants of this node are not generated.

P roo f: In this case two jobs remain as unscheduled. Let Jmax be the one with the
maximum processing time and Jmin be the other one. In an optimal schedule to
the problem at node Nk, either both of them are scheduled on the same machine
or on different machines. In both of these cases, the earliest start time of Jmax
will be less than or equal to that of Jmin- When the jobs are scheduled on the
same machine, the order is immaterial, thus without loss of generality assume
that Jmax precedes Jmin· In the second case, if the earliest start time of Jmax
is greater than that of Jmin, then simply interchanging the jobs decreases the
makespan. Thus, the LPT heuristic (see Section 2.3.1) determines the optimal
schedule for the problem at node Nk- Therefore after determining the makespan,
Z, the incumbent value, is updated if necessary, and the current node is fathomed.

P rop osition 3.4 At a node Nk, if the number of idle machines is equal to one
less than the number of unscheduled jobs, that is \Vk\ — T then the descendants
of this node are not generated.

P roo f: Suppose at node Nk, the number of idle machines is equal to \Vk\ — 1-
In an optimal solution to the scheduling problem at this node \Vk\ largest jobs
in Vk are scheduled on idle machines and the remaining job is scheduled on
the machine that becomes idle first (i.e. use LPT heuristic). This property is
proved by interchange arguments as follows: suppose for a contradiction that
there was an optimal schedule P , for the problem at node Nk in which one of

Chapter 3. A Branch and Bound Algorithm 40

the first \Vk\ largest jobs, is not scheduled on one of the idle machines but
on some other machine Mt. Then some other job Jĵ € Vk with pĵ < will
be scheduled on one of these idle machines M,·, since in an optimal schedule
no machine remains idle. By interchanging these two jobs we obtain another
schedule 'P*, in which ^ Thus we obtain the contradiction
that Cmaxi'P»*) < since /(P^) < and none of the completion times
of the machines other than Mt and M,· have changed. Hence the LPT heuristic
determines optimal schedule for the problem at node Nk. After determining the
makespan, Z is updated if necessary, and the current node is fathomed. ■

P rop osition 3.5 At a node Nk, if all hut one of the machines are discarded, that
is \8k\ = ra — \, then the descendants of this node are not generated.

P roo f: In this case due to Lemma 2.2, unscheduled jobs in P;t are scheduled on
the remaining machine which is not discarded yet. After determining the related
makespan, the incumbent value , Z, is updated if necessary, and the current node
is fathomed. ■

Suppose that none of the conditions in Propositions 3.1 through 3.5 are satisfied
at the node Nk- In this case the node Nk is placed in the active nodes list since it
is not yet decided whether the optimal solution for \\P\\Cmax corresponds to one
of its descendants or not. Suppose that after generating several other nodes of
the enumeration tree, we select^ the node Nk for further enumeration and a job
Jc € Vk to be scheduled (fixed). For this node Proposition 3.1 has to be applied
once more since the incumbent value Z may be reduced when generating other
nodes. Either of the following circumstances may be encountered if node Nk is
not fathomed:

(i) The set of jobs scheduled on a machine M,·, VI, is not empty V i =
1,2, . . . , m . In this case, we have \pk\ alternative machines on which Jc
might be scheduled in an optimal solution. At each descendant node

^Selection rules are discussed in Section 3.3

Chapter 3. A Branch and Bound Algorithm 41

Nk̂ (J = 1 , . . . , |/iA:|) of node Nk, let = 'P t^ and Vİ̂ = V { V z /
d. Clearly \pk\ ^ since there may be several machines with the same
completion time. In such a case, since these machines are identical, it is
sufficient to consider only one of them while generating descendant nodes.
After generating all of its descendants, node Nk is removed from the active
nodes list.

(ii) The set of .jobs scheduled on a machine Mi, VI, is empty for some i =
t,t + 1, . . . ,m. Such a t is determined by reindexing machines in a way
that the last m — t + 1 machines have no jobs yet assigned. Number of
branches will be equal to the number of captured machines, |///;| which < t.
A descendant node Nk̂ {d = l , . . . , i) of the node Nk is determined as,
Vkj = U {Jc} and V'k̂ = 'Pk i ^ d. Number of branches may
be less than t since several machines may have the same completion time.
After generating all of the descendants node Nk is removed from the active
nodes list.

T heorem 3.1 The above branching scheme enumerates all feasible schedules that
are candidate for being optimal without any repetition.

P roo f: Suppose that the enumeration tree is generated as described above
without making use of the fathoming conditions due to Propositions 3.1 through
3.5. Let Y{Vk^) {d = l,...,|/ifc|) denote the set of feasible schedules (i.e. leaf
nodes) that can be generated from a descendant node Nk̂ of Nk. At a node
Nk of the enumeration tree, Y{Vk,) H Y{Vk^) = 0 for all ki and ¿2 such that
ki / k2 since otherwise there exists two schedules V ̂ and Pj such that P ̂ = VI
for all i = l , 2 , . . . , m (choose any two descendant nodes Nk, and Nk2 ', due to
the way we are branching, in the related partial schedules there exists a machine
Mi such that n , ^ P|j). Hence no partial schedule is generated twice in the
enumeration tree. Moreover a node is removed from the active nodes list once

its descendants are generated. Thereby the branching scheme enumerates the
feasible schedules without any repetition. Furthermore using Propositions 3.3

Chapter 3. A Branch and Bound Algorithm 42

through 3.5, the branching scheme generates the set of feasible schedules that
are candidate for being optimal because only the set of captured machines is
considered while branching (due to Lemmas 2.1 and 2.2) and the propositions do
not allow a machine to be idle at the leaf node. Furthermore Propositions 3.1
and 3.2 if applied, will reduce the size of the enumeration tree without destroying
this property. ■

Figure 3.2 depicts the enumeration tree for a 6-job l\PZ\\Cmax problem with
processing time of each job being equal to its job index and with job selections at
each node as indicated. As shown in Table 3.1 the number of schedules that need
to be enumerated is 90. In the branching scheme used, however, this number is
reduced to 9 with the use of Propositions 3.3 through 3.5. Since the bounding
scheme is not yet discussed. Propositions 3.1 and 3.2 are not applied in this
example.

The size of an enumeration tree directly affects the performance of a branch and
bound algorithm. In order to achieve a reduction in size we make use of the
fathoming rules described above. These fathoming rules test the condition at the
currently generated descendant node and decide whether or not to eliminate this
node. On the other hand, it is possible to develop fathoming conditions that,
given the situation at a generated node Ajt, (a descendant of Nk), eliminates rest
of the descendants of Nk- One such condition will be presented in Section 3.3
since it uses the bounding scheme (Section 3.2).

The bounding scheme and the search strategy used also affect the size of the
enumeration tree. If a bounding scheme generates tight bounds, the size of the
tree is likely to be reduced further due to the fathoming rules of Propositions
3.1 and 3.2. The bounding scheme will be discussed in Section 3.2. In order
to illustrate how a search strategy affects the size of the enumeration tree
consider the simple example in Figure 3.2. In this figure the optimal schedule
is encountered at node N20- The earlier this node is selected, the sooner the
enumeration terminates since rest of the nodes would then be fathomed with the
use of Proposition 3.1. In this example it can also be seen that if we had used

Chapter 3. A Branch and Bound Algorithm 43

0̂ =(».».«>
A = 7; Jc = *7$; fio — {A/i}; So

T’ l = a - 7 6 } , 0 , 0 >

Jc = Js', /^1 = {A/2.i.A7i); ¿1 = I

7>2 =<{ 6̂, 5̂}. 0,0)
Jc = J4; M2 = {iW2}; «2 = {M}

7^8=(U},{J5},0)
Jc — {Ji ; M8 = { A / 3 , M2, Ml} ; 5g = I

7’3=({-76,^5),{,/4}.0)
J„ = J3 J ^ 3 = { M 3 , M 2 } ; S3 = { M l }

P l = {J e ,J 5}
P l = { A , J z }
V } = 9

P l = U e , J s }
P i = {A }
P I = {^3 }

M4 = {M3 } M6 = { M 3 , M 2 }

Si = {Ml, M2 } So = { M i }

1

P i = {-76,A }
P l = {J i ,J 3 }
P i = {J ^ ,J i}

1

P } — {•76, A }
T^ = { J i ,J i }
P l = { h , J 2 }

n = {J6,JA
T’l = {j^}
7>| = 0
Jc = J3
M9 = {7W3,A/2}
¿9 = {Ml}

T’j'o={,/6.,/4}
-Pio =
PL· = 0

Mio = {M3}
Sio = { M l , M 2 }

Pli={J6,JA
Pli={A,J3}
P{l=U^^Jl}

L Ph = {,7«}
PL· = {-̂ 5}
PL· = W
Jc = J3

MI4 = { M 3 , M 2 , M l }

il4 = 0

P{2 = {Jt,JA
PL· = { - ^ s }
PL· = { - ^ 3 }

M12 = {M3 , M2 }
il2 = {Ml}

T’j‘3 = {-76,,74}
PL· = {Js,Ji}
PL· =

B

Figure 3.2: The enumeration tree for a 6-job l\P3\\Cmax problem

different job selections at a node, we would have ended up with a larger tree.
These issues will be discussed in Section 3.3.

The branch and bound procedure is summarized in Procedure 3.1. An analysis
of this algorithm suggests that the computational burden involved at a node Nk
of the tree is due to the procedures bounds, selectanode and selectajob. The
remaining operations can be done in linear time. At a node Nk, these remaining

Chapter 3. A Branch and Bound Algorithm 44

pi = {J*}Ph =
Pi = {-/5}
P l ^ W P lr iA }
fin = {M3,M2} iMn = {MsfMi}
¿15 = {Ail} ¿17 = { M 2 }

Pi = {Jo,J3}
Pi = {J3,Jx}
PI = {A,JA

Pis = {J3,Ji}
p l = {Ji.J3}
PI = {JuJi}

Pi = {>̂ e}
P i = {- 5̂}
P i = {•/4 ,^3 }
M19 = {Af2. Ail}
¿19 = {Ais}

I
P l = { J 3 , J l }
T’lo = { - / 5 .^2}
T’lo ={^4,̂ 3}

A

Pi = {-̂ 6. 3̂}
Pi =
P i = 0 /121 = {Ail}
¿21 ={Ail,Ai2}

p{2 = {Ĵ <JA
'p\̂ = {J3,JA
Pi = {Ĵ ’A}

Pi = {‘ ê}
Pi = {J3,J,}
P i = {-̂ 3}
/123 = {Ail, Ail}
¿23 = {Ail}

I
PI = {-̂ 6}
P̂ i — {Jil <il}

{ 3̂, 2̂. l̂}

F igure 3.2: The enumeration tree for a 4-job l\P3\\Cmax problem (continued)

operations are

(i) generation of the descendants can be done in O (m) time since the number
of the descendants is \pk\ <

(ii) determination of the set for each descendant can be done in O (m)
time. We have defined the set of captured machines, pk, in such a way
that Mi G pk V f and l{Vl) > . . . > We generate
descendants by fixing a selected job Jc on machines in the set pk in the order
given above. At a descendant Nk̂ ·, we define a pointer, to the the smallest
machine index i such that /('P^) > 1{V)̂ +Pc- Consider the first descendant
at which job Jc is fixed on machine Mi. Without loss of generality we

assume that at this descendant = 0 and /(P °) = 00 > l{Vl) +Pc· Hence
the set pki is same as the set pk assuming that l{Vl) 4 -Pc < A. Suppose
at descendants Nk2 , · · ·, A*,_j for some i > 2, respective sets pk^,····, Pk,-x
remain same as the set pk (i.e. > l{Vk) +Pc and l{Vk) +Pc < A for
d = 2 , . . . , t — 1 and for some t > 2) . While generating the i-th descendant,
the set Pk, may change since the position of l{Vk) +Pc in the original list

Chapter 3. A Branch and Bound Algorithm 45

P roced u re 3.1: The proposed branch and bound procedure for l\P\\Crt
argum ent
Ipms: an instance of l\P\\Cmax

procedures called
bounds: given computes and UB{Vj^) (see Procedure 3.6)
selectanode: selects a node Nk__among the ones in the active nodes list (see Section 3.3)
selectajob: selects a jobs Jc G at a selected node Nk (see Section 3.3)

procedure Ipcmax (Ipms)
begin

Initialize node N q

call bounds ('Pq» U B {V q))
if L B {V q) = U B {V q) then

stop v r̂ith C^cLx ·= 1^B{Vq) and :=
activenodeslist := {N q}
Z := UB(Vo)
while activenodeslist ^ ̂

begin
call selectanode {activenodeslist^ Nk)
if LB{Vk)<Zt\ien

begin
call selectajob {Vk , Jc)
for each descendant node Nkd (d = 1 , . . . , |//jb|)

begin
çalı bounds
if one of Propositions 3.1-3.5 is satisfied

fathom the node Nkd
else

begin
if £ /5(P^,J = L5(Po) then

stop with C{^ax ·“ 1^B{Vq) and P„ := Pĵ ̂
Z:=mm{UB{r,^),Z]
Determine the set pkd
activenodeslist := activenodeslist U

end
end

Remove Nk from activenodeslist
end

end
stop with C{^ax — Z and related schedule

end

Chapter 3. A Branch and Bound Algorithm 46

may change. This position will at least be Therefore we search
for the smallest position t' in the interval — 1] until /("Pf) <
/(P|) + Pc- Once we determine the position f , we obtain yujt, =
{ M l , M il,..., M t-i,M t+i, a s s u m i n g that =
/(P {) + Pc < A and t' 1. Then we update = t' for the next descendant.
In this way the set pka for all d = 1 , . . . , is determined in O (m) time.
Yet there are two cases in which the structure of is destroyed. If at some
descendant Nk, 1{'PI) d- Pc ^ the related machine is removed from /î ,
and is placed in Sk,. Moreover if at some descendant Nk̂ 1(^1)+ Pc < A and
l{Vl) + Pc — ^(Pjt) for some d < t, then the related machine will neither be
in pkt rior in Skf In such a case we insert the machine at the d-th position
of the list but we do not consider it while branching.

(iii) For the fathoming conditions due to Propositions 3.1 and 3.2 two
comparisons are required. For the conditions due to Propositions 3.3
through 3.5 we need to store number of unscheduled jobs, number of idle
machines and number of discarded machines. At a node Nk these variables
can be updated in linear time.

3.2 Bounding Scheme

In this section we will present a polynomial-time bounding scheme which yields
tight lower and upper bounds on the scheduling problem encountered at a node
Nk of the enumeration tree. The problem is to schedule all jobs J j 6 Vk, the
set of unscheduled jobs, on machines M,· € 8k, the set of captured machines,
such that the schedule length is minimized and each machine Mi processes the
already allocated load /(P^) nonpreemptively. At a node Nk, \Pk\ < n (some of
the jobs may already be fixed) and |i/t| ^ ^ (some of the machines may already
be discarded). In spite of this fact, for the ease of notation we assume that n
denotes \Vk\ and m denotes |i*|.

Chapter 3. A Branch and Bound Algorithm 47

A closely related decision problem is the bin packing problem with variable bin
sizes, Ilyijp. In an instance Î ijp = of this bin packing variant we are given

• a set JT” = {Ji, J2, · · ·, Jn] of jobs (or, pieces) of sizes pj for each Jj £ J ̂ and

• a set = { ^ 1, Bii · · ·, Bm} of bins of sizes s,· for each B{ £ B.

The aim is to decide whether or not there exists a feasible packing. A feasible
packing can be considered as a partition of the job set ¿7 into m disjoint sets,
Bi, i = l ,2 , . . . ,m where the total processing requirement of jobs in B, is at
most Si for i = 1 , 2 , If we let where each job J j £ J has a
size Pj equivalent to its processing time, and B = 6k where each bin has a size
Si = T — 1 {V \) for some time r, then the scheduling problem at node Nk can be
viewed as determining minimum r* for which a feasible packing can be obtained.

If we had an polynomial-time procedure for solving the variable-sized bin packing
problem, we could use it in a binary search to determine the minimum makespan
schedule for the problem at node Nk and we would eliminate the need for
branching at this node. Unfortunately, neither the bin packing problem with
variable bin sizes nor the scheduling problem at node Nk can be solved in
polynomial time unless V = MV. This result directly follows from Theorems
2.3 and 2.4 where the special cases, the bin packing problem with unit bin sizes
Expand l\P\\Cmax are shown to be unary A/”'P-hard, respectively. Nevertheless
as before we can use the relation between the scheduling problem encountered
at node Nk and the underlying variable-sized bin packing problem to determine
tight bounds on the former.

For the bin packing problem with variable bin sizes [Hochbaum and Shmoys
1988] have provided a family of algorithms each of which is an e-relaxed decision
procedure (see Section 2.3.2.2). In their definition, a polynomial-time procedure,
which given an instance Î î p = (jT̂ , B) either

(i) produces an e-relaxed packing, a feasible packing in which the size of each
bin 5,·, i = 1 ,2 , . . . , m is extended to (1 -f- e)5,·; or

Chapter 3. A Branch and Bound Algorithm 48

(ii) outputs “no feasible packing” indicating that there is no feasible packing.

is called as an e-relaxed decision procedure. Let e — relaxed be an e-
relaxed decision procedure. Using the arguments presented in Section 2.3.2.2,
it is straightforward to show that the procedure e — makespan (Procedure
3.2) determines sthedules with their makespan being arbitrarily close to (1 +
e)C'^g^x{JiB) in O (log \uh — /6]) time. Suppose that the following trivial
bounds are used to initialize the binary search: lb = lmax\ uh — maxf/moj:, Imin +
Y^jjejPi) where l în = minAr.ge/(^¿) and l^ax = maxA/jes/("P^). The lower
bound lb is the maximum allocated load. The upper bound ub is the maximum
of lb and the makespan of a schedule in which all jobs in J are assigned to a
machine with minimum load. As we will discuss in Section 3.2.2, it is possible to
improve these bounds. Nevertheless they are sufficient to show that the algorithm
runs in O (log 3. polynomial time in the binary encoding of the
input. Therefore provided that the procedure e — relaxed is polynomial, the
procedure e — makespan is also polynomial in the binary encoding of the input.
The following theorem formalizes this result.

T h eorem 3.2 If the procedure e — makespan is executed with O [i log m)
iterations of the binary search, the resulting solution has makespan at most (1 T

P roo f:

Initially ub - lb < Y^j.^jPj since Imax > Imin- After ̂+ log m iterations

u b -lb < pj
Jj^J

< P j / m
J je J

The schedule produced has makespan at most

Chapter 3. A Branch and Bound Algorithm 49

P roced u re 3.2: An approximate binary search procedure for solving the
scheduling problem encountered at a node

argum ents
Ipms* instance of the scheduling problem encountered at a node
lb: a lower bound on the scheduling problem encountered at a node
ub: an upper bound on the scheduling problem encountered at a node

procedure called
£ — relaxed: an £-relaxed decision procedure

procedu re e — makespan (Ipms>
begin

while ub — lb > 1
begin

T := {ub + lb)/2
Si : = T - 1{VI) V f = 1 , 2 , . . . , m
if e — relaxed {J ,B) outputs “no feasible packing”

lb :=T
else

ub := T
end

s , := \ lb]-l{V i) =
if £ — relaxed (J ”, B) outputs “no feasible packing”

begin
output ub,and related schedule
output [/ft] + 1 as a lower bound

end
else

begin

end

output ("/6] and related schedule
output [/6] as a lower bound

end

Chapter 3. A Branch and Bound Algorithm 50

{l + e)ub = {I + e)(ub — lb + lb)

< (1+£ + 2-')C;„(J-,B) fore<l

In other words, after O {£+\og m) iterations, the resulting solution has makespan
at most (1 + c + ■

The ^-approximation scheme (a family of e-relaxed decision procedures) proposed
by [Hochbaum and Shmoys 1988] is not efficient both in terms of the large space
requirements and the time complexity. As mentioned in Section 2.3.2.2, they
provided a 1/2-relaxed decision procedure which runs in O (n) if the job sizes
are sorted in advance. In Section 3.2.1, we will provide a 1/3-relaxed decision
procedure which has the same time complexity as the above 1/2-relaxed decision
procedure. Our algorithm is similar to the one due to [Hochbaum and Shmoys
1988], but not identical. We define a polynomial-time procedure (for £ > 0) as
an £-relaxed decision procedure if, given an instance Î ĵ p = {J ,B) of the bin
packing problem with variable bin sizes, it either

(i) produces an £-relaxed packing, that is a feasible packing for the original
instance in which the size of each bin B{, i = 1,2, . . . ,m is extended to
Si -|- ssyjid̂ for Sjjido; — max^j-^^s,', or

(ii) outputs “no feasible packing” indicating that there is no feasible packing.

Let e — relaxed — I and e —relaxed— II denote the e-relaxed decision procedures
as defined in [Hochbaum and Shmoys 1988] and as above, respectively. Note that
any procedure that is e — relaxed — I is also an e — relaxed — I I procedure, but
not the vice versa. However our algorithm (e — relaxed — II) has a better worst
case bound than that of e —relaxed— I. Implementing this procedure in a binary
search, the schedules with makespan being at most (4 /3 -f 5) can be
obtained after O {£ + log m) iterations of the binary search in O [n{i -|- log n))
time. Furthermore, upon its termination, the procedure determines a lower bound

Chapter 3. A Branch and Bound Algorithm 51

which is likely to be tighter than an initial one. In Section 3.2.2 we will discuss
the ways of obtaining initial lower and upper bounds for the scheduling problem
at node Nk of the enumeration tree. Section 3.2.3 discusses further refinements
made in the 1/3-relaxed decision procedure and in the determination of initial
bounds. The bounding operations will also be summarized in this Section.

3.2.1 A 1/3-RelcLxed Decision Procedure

In the bin packing problem with variable bin sizes, the aim is to determine a
feasible packing (if it exists). In a particular instance Î î p = (J iB) of this
problem we are given

• a set = {«̂ 1, «̂ 2) · · ·) Jn} oi jobs of sizes pj for each J j G J ■, and

• asei B = {B\, B2,. ■., Bjn} of bins of sizes s,· for each Bi G B.

In this section we present a 1/3-relaxed decision procedure which, given Î f̂ p =
{J ,B) either produces a 1/3-relaxed packing or, outputs “no feasible packing”
in polynomial time. For some e > 0, an e-relaxed packing refers to a feasible
packing in which each bin Bi {i — 1 ,2 ,.. . , m) is filled with jobs of sizes totaling
at most Si + esmax for s^ax = maxB.eB-s,·. Suppose in an instance Î î p = (J ,B),
all of the processing times and bin sizes are sorted such that pi > P2 > · · · > Pn
and 5i > S2 > . . . > ¿m, respectively. Furthermore, without loss of generality,
suppose that an instance Î ĵ p is scaled after dividing all processing times and
bin sizes by Smax = -Si. Let L[ui,. . . ,Uk] denote the set of k distinct pieces
{J j j , . . . , where Jj, {I = 1 ,... ,k) is the largest available job with pj, < ut
and, where «1 < . . . < «jt and pĵ < . . . < Pj*.

Consider the recursive procedure 1/3 — relaxed below:

Chapter 3. A Branch and Bound Algorithm 52

P roced u re 3.3: A 1/3-relaxed decision procedure for the bin packing problem
with variable bin sizes

arguments
J\ a set of unpacked jobs at the current level of recursion
B\ a set of unpacked bins at the current level of recursion
l\ the current level of recursion; initially t = m

procedures called
ordinarypack: a 1/3-relaxed decision procedure for the ordinary bin packing problem,
n^p(see Procedure 3.4)
1/3 — relaxed: a recursive call

1 procedure 1/3 — relaxed
2 begin
3 if Pi ^ Z) then

Jj€J Bi€B
4 begin
5 if > 2/3 then
6 call ordinarypack (J,B,£)
7 else
8 begin
9 Jiml ·= {Jj € J'\pj < Si/3}
10 Cfnew ^ \ ^am\
11 ^¡it \.dj G 3̂ ne'w\Pj ^
12 if Jjit 0 then
13 begin
14 jT'pcfc := X[0.5s ,̂s]̂ (pack this set in bin Bt)
lb 3'ntw \ p̂ck
16 end
17 ^ n e u ,:= ^ \ W
18 if Jnem ^ 0 then
19 call 1 / 3 -relaxed {Jnew,Bnew,i-1)
20 while there exists unpacked job Jj G J
21 find bin Bi packed with < s,· and add Jj to J5,·

22 end
23 end
24 else
25 output “no feasible packing”
26 end

Chapter 3. A Branch and Bound Algorithm 53

Suppose for the time being that the if condition in the statement 5 never holds.
That is, the difference between the size of a bin Bi {i = 2 , . . . , m) and the size
of the largest bin Bi is > 1/3. The remaining program segment (statements 7
through 25) intends to pack a single bin at each recursive call (level of recursion)
of the procedure 1/3 — relaxed (Procedure 3.3). For example, at the first call
the bin Bm is considered, at the second call the bin Bm-i is considered and so
on. At a level of recursion we define three sets: (i) is the set of small jobs
with respect to the bin considered, (ii) ¿dnew is the set of large jobs with respect
to the bin considered, (iii) J/a is the subset of large jobs that can fit to the
bin considered. Consider a level £ of the recursion. Suppose that the procedure
1/3 — relaxed did not output “no feasible packing” at any one of the previous
recursive calls. At this level, if the condition in the statement 3 is not satisfied,
then the procedure outputs “no feasible packing” (statement 25) and returns back
to the calling procedure. In such a case the calling procedure will also return to
its calling procedure and so on. This fact is not indicated in the above procedure
in order not to complicate the algorithm. But we assume that if the procedure
encounters an output of “no feasible packing” in a return from the call statement
(statement 19), it returns to the calling procedure with the same output. On the
other hand, if the condition in the statement 3 is satisfied, then the current bin

is packed as shown in statements 14 and 15 and another recursive call
is made to pack bin Bm-i (the case in which the condition in the statement 18
does not hold, will be explained later). As before this bin is either packed or
“no feasible packing” is output. Suppose in the first m — 1 recursive calls, the
procedure 1/3 — relaxed does not output “no feasible packing” (otherwise the
algorithm stops as described before). In such a situation the bins Bm through
have already been packed. Therefore in the current call the bin Bi is intended
to be packed. If the condition in the statement 3 is not satisfied “no feasible
packing” is output and the procedure terminates. On the other hand, if the
condition satisfied, then the bin Bi is packed. Furthermore, in

the statement 15 Jnew = 0 since otherwise there would be no feasible packing at
this level. Hence, at most m recursive calls are required before we start to pack

Chapter 3. A Branch and Bound Algorithm 54

the jobs in jTam/· Suppose that m recursive calls were necessary to pack all of
the large items. Then the jobs in are packed on the bin Bi as described in
statements 20 and 21. Afterwards the control returns to the statement 20 of the
calling procedure and the related set ¿Ttmi of jobs is packed on bins Bi and B2 as
described. The s6ts of each level are packed in the same manner. Finally,
at the first level the related set J'ami of jobs is packed on bins B i,B 2, . . . , Bm and
the procedure terminates.

Suppose that the previously ignored if statement (statement 5) holds at some
level of recursion. That is, the difference between the size of a bin Bi and the
size of the largest bin Bi is < 1/3 for some i = 1 ,2 ,... ,m. In this case, the
procedure ordinarypack, an e-relaxed decision procedure (for some e < 1/3) for
the ordinary bin packing problem H^p, is called for the instance that consists of
the remaining unpacked bins and jobs. Details of the procedure ordinarypack
will be presented later in this section (see Procedure 3.4).

It is claimed that the procedure IfS —relaxed is a 1/ 3-relaxed decision procedure.
In the proof we will consider two different cases that we mentioned when
discussing the flow of the algorithm above. In the first case, we will assume that
the condition in the statement 5 never holds, and in the second we assume it holds
at some level of recursion. At the end we will state the main theorem combining
the above cases. Throughout the proof we will make use of the following principle.

Lem m a 3.1 [Hochbaum and Shmoys 1987] In some feasible packing of an
instance Î î p = (J ,B), if ■■ >Jik} pieces in a bin and
•/71 ^Jhi· · -1 Jjk distinct pieces such that pî < pj, for all I = 1 ,... ,k, then the
instance Iy[̂ p formed by removing Jj ,̂ J j j , . . . , from I, remains feasible for one
less number of bins.

P roo f: Take a feasible packing where {Ji,,Ji2i---,J ik) are the only pieces in
some bin. Let Jĵ be some piece that is in the packing of the remaining bins.
Replace Jĵ with J,·,. Then the packing on the remaining bins must be feasible

Chapter 3. A Branch and Bound Algorithm 55

since pj, > pî . As a result, after a finite number of these replacements we get a
feasible schedule for the instance using one less bin. ■

Case I: st < 2/3 at all levels of recursion

Lem m a 3.2 If ah instance Î î p = {J -,B) has a feasible packing then the instance

^vbp “ {fJ^new,Bnew) Created by the procedure 1/3 — relaxed has a feasible packing.

P roo f; If {J ,B) has a feasible packing, then certainly so does [J \ JsmuB).
Consider any such feasible packing. Since all of the pieces in »7 \ Tjmi are greater
than 5m/3 only two pieces can fit in bin m. This, further implies that at least one
of these pieces has the size < Sm/̂ . Hence, we can conclude that the decision
given in the statement 14, packs two largest pieces that can be packed in any
feasible packing of the bin Bm· Then due to Lemma 3.1, Î [̂ p = {JnewiBnew)
remains feasible. Clearly this proof will hold at all levels of recursion since at
each level we will start with a feasible packing for the instance at that level. ■

Lem m a 3.3 If the procedure 1/3 — relaxed outputs “no feasible packing” then
there is no feasible packing.

P roo f: Suppose for a contradiction that there were a feasible packing. Then, by
Lemma 3.2, for each recursive call of 1/3 — relaxed there is a feasible packing of
the specified instance. However, for the failure message to be printed, the last of
these instances must have clearly a contradiction,
since no instance that has greater total piece size than total bin size can have a
feasible packing. ■

Lem m a 3.4 If the procedure 1/3 —relaxed does not output “no feasible packing”
then it successfully packs all pieces in a 1/S-relaxed packing.

P roo f; There is only one statement in which the procedure 1/3 — relaxed could
conceivably fail. In the statement 21, why should it always be possible to find

Chapter 3. A Branch and Bound Algorithm 56

a bin that is packed within its true capacity? If this were not possible, then all
bins are packed beyond their true capacity, and thus ^
this is precisely the situation we have excluded in the case of the if statement
(statement 3).

To show that the packing produced is 1/3-relaxed, consider two steps in the
procedure in which pieces are packed. In the statement 14, we ensure that the size
of the packing < (3/2)s^ < (4/3)5x = (4/3) due to the fact that (l/2)s^ < (1/3)
(see the if statement indicated by 5), 5i = 1 and S(< Si (by assumption). In
the statement 21, we always add to some bin Bi a piece of size < $¿/3 < 5, / 3,
and since bin Bi previously contained < s,·, afterwards it contains no more than
(4/3)5.·. ■

Case II: Si > 2/3 at a level of recursion

Suppose that the condition Se > 2/3 of the statement 5 holds at some level of
recursion, £. At this level the bins B^^i,. . . ,Bm are filled with the related large
jobs as described in the previous case. An instance Î ĵ p = B) for the related
variable-sized bin packing problem consists of the remaining unpacked bins (i.e.
bins B\ through Bi) and jobs Jj € J . Since it is assumed that the bin sizes are
sorted as si > ¿2 > . . . > 5m and normalized after dividing by the largest bin
size 5i, the remaining unpacked bins have sizes 5,· > 2/3 V f = 1 ,2 , . . . , A

In a related problem, given a finite number (say 1) of bins with equal (unit)
sizes and a set J of jobs with sizes as before, it is aimed to determine a feasible
packing if it exists. As introduced before, this is the (ordinary) bin packing
problem II^p. Let ordinarypack be an e-relaxed decision procedure. Given an
instance Î p = {J^B) = (»7,f) (the last notation is valid since the bin sizes are
unit) of this problem, the procedure ordinarypack either outputs “no feasible
packing” indicating that there is no feasible packing or determines an e-relaxed
packing in which large jobs are packed feasibly (i.e. in a bin, sum of the sizes of

jobs with pj > e does not exceed the bin capacity).

Chapter 3. A Branch and Bound Algorithm 57

Lem m a 3.5 At a level t of the recursion, if S(> 1 — e (for some e > 0), then
ordinarypack can be used as an e-relaxed decision procedure for the bin packing
problem with variable bin sizes.

P roo f: Suppose that the procedure ordinarypack outputs “no feasible packing”
for an instance Î p = {J ,t } of the ordinary bin packing problem. Consider the
related instance Î |̂ p = {J , B) in which we are given the same set J of jobs and
number of bins as before. If the instance has no feasible packing then so does
the instance Î î p since in the latter a bin B, i = 1 ,... has a size s,· < 1. If the
procedure ordinarypack outputs “no feasible packing” then there is no feasible
packing for the instance Î ĵ p.

On the other hand, suppose that the procedure ordinarypack does not output
“no feasible packing” . Then the condition Y^j.^jPj < statement
3 is satisfied and the procedure ordinarypack produces an e-relaxed packing,

for the instance I^p. Consider a set *7' = {Ja,, · · · of artificial jobs with
processing times = si — s¿, pâ = Si — .. ,pat_·, = si — 52. For an
artificial job (* = 1, · · · ~ 1)» fh® processing time Pa > 0 since we assume
that the bin sizes are ordered such that Si > 52 > . . . > > . . . s^· By adding
the processing times of all of the artificial jobs to the both sides of the condition
of the statement 3 and by using the assumption that the bin sizes áre normalized
such that Si = 1, we obtain Pj < £· The last inequality implies
that in the packing V ,̂ artificial jobs will certainly find a bin containing < 1 since
otherwise we obtain a contradiction that ^j^^jP j > £ > Furthermore
Pai = Si — 5¿_,-+x = 1 — s¿-i+i < 1 — s ¿ < e V i = l , . . . , £ — 1. As a result even
if we pack artificial jobs, V¡. remains as an e-relaxed packing since each bin will
contain no more than 1 -f- e = (1 + e)>si. Moreover artificial jobs can arbitrarily
be packed on ̂— 1 distinct bins since the procedure ordinarypack is assumed to
pack large jobs feasibly. Hence the packing V¡. is also an e-relaxed packing for the
instance Î |̂ p since a processing time pa¡ = 1 ,.. . ,^ — 1) is the extra capacity
provided for the bin B, in the instance Î p as compared with the capacity of the

same bin in the instance Î î p. ■

Chapter 3. A Branch and Bound Algorithm 58

The above two cases are incorporated in the following theorem which is presented
without proof since it is simply an application of previous cases.

T h eorem 3.3 Provided that the procedure ordinarypack is an e-relaxed decision
procedure for some e < 1/3; the procedure 1/3 — relaxed is a 1/3-relaxed decision
procedure for the bin packing problem with variable bin sizes.

The problem is then to find out a procedure ordinarypack as described in
the above theorem. For such a procedure we could use one of the procedures
developed by [Hochbaum and Shmoys, 1987] to solve the ordinary bin packing
problem, II^p. However none of these algorithms guarantees a feasible packing of
the large jobs which we require the procedure ordinarypack to do.

Procedure 3.4 is claimed to be a 1/3-relaxed decision procedure for the equal-sized
bin packing problem. Suppose that we are given a normalized problem instance
Î p in which the bin sizes are unity. For the ease of reference we repeat the
statement 3 of the procedure l/Z—relaxed in the statement 3 of the ordinarypack
(Procedure 3.4).

Lem m a 3.6 If an instance I = {J A) has a feasible packing then the instance
Inew — {JnewiI ~ 1) Created by the procedure largepack has a feasible packing.

P roo f: Consider the procedure largepack. If has a feasible packing, then
certainly so does the instance (¿7 \ Jamiil)· Consider any such feasible packing.
Since all of the pieces in \ Jsmi are greater than 1/3 only two pieces can fit in
bin i. This further implies that at least one of these pieces has the size < 1/2. If

the condition in the statement 5 is satisfied then we will have at least one piece Jj
with pj > 0.5. In any feasible packing this piece can be packed with at most one
other piece. L[1 — pf\ is the largest piece that Jj fits with. Then due to Lemma
3.1, Inew = {Jnewif^ ~ 1) remains feasible. If the condition in the statement 5 is
not satisfied, the two largest jobs we can pack is L[0.5,0.5]. Again property 3.1
shows that Inew = {JnewifTi ~ 1) remains feasible. Clearly this proof will hold at

Chapter 3. A Branch and Bound Algorithm 59

P roced u re 3.4: A 1/3-relaxed decision procedure for the ordinary bin packing
problem, II p̂

argum ents
a set of unpacked jobs at the current level of recursion

B: a set of unpacked bins at the current level of recursion
£: the current level of recursion

called from Procedure 3.3

procedure called
largepack: a recursive procedure which packs large pieces of the ordinary bin
packing problem II^p, feasibly

1 procedure ordinarypack
2 begin
3 if Z) Pj Z)

j j ^ j Bi&B

4 begin
5 Jsmi := { j j e J\Pi < 1/3}
6 3new '·— iJ \ Uami
7 if Jntw ^ 0 then call largepack {JnewA)
8 while there exists unpacked Jy € J
9 find Bi with < 1 and add Jj to Bi.
10 end
11 else
12 output “no feasible packing”
13 end

all levels of recursion since at each level we will start with a feasible packing for
the instance at that level. ■

Chapter 3. A Branch and Bound Algorithm 60

P roced u re 3.5: A recursive procedure which packs large pieces of the ordinary
bin packing problem H^p, feasibly

argum ents
J': a set of unpacked jobs at the current level of recursion
£: the current level of recursion

called from Procedure 3.4

procedu re called
largepack: a recursive call

1 procedure largepack { J .,£)
2 begin
3 if S Pi ^ ̂ then

Jj€J
4 begin
5 if there exists J j 6 J with p j € (0.5,1] then
6 Jpck { J j } U L [1 - p j]

7 else
8 Jp,, :=L[0.5,0.5]
9 JJnew ·” JJnew \ kJpck

10 if Jnew 7̂ 0 then call largepack {Jnew,£~ 1.)
11 end
12 else
13 output “no feasible packing”
14 end

Lem m a 3.7 If the procedure largepack outputs “no feasible packing” then there
is no feasible packing.

P roo f: Same arguments as in Lemma 3.3 applies.

Chapter 3. A Branch and Bound Algorithm 61

Lem m a 3.8 If the procedure largepack does not output “no feasible packing”
then it successfully packs all pieces in a feasible packing.

P roo f: In any one of the cases under the if statement (statement 5), a packing
cannot contain greater than 1. ■

C orollary 3.1 If the procedure ordinarypack does not output “no feasible
packing” then it successfully packs all pieces in a 1/3-relaxed packing.

P roo f: Due to Lemma 3.5. ■

Given the bin and job sizes in sorted order, the procedure 1/3 — relaxed with
the above procedure ordinarypack runs in O (n). Consider the pointers to the
sorted list of job sizes: (i) one to the largest piece that can fit on the current bin,
(ii) one to the largest piece that is no longer than half of the current bin size,
(iii) one to the largest piece that is no longer than one third of the current bin
size and (iv) one to the largest piece that is no longer than 1 minus the size of
the item pointed by (i). Thus the procedure 1/3 — relaxed packs “large” pieces
in bins of increasing bin size and packs “small” pieces in bins of-decreasing bin
size. As a result O (n) is required to maintain above pointers (first three of which
applies to 1/3 — relaxed and all applies to largepack). Given these pointers the
procedure can easily be implemented in linear time.

3.2.2 Initial Bounds

As initial lower and upper bounds get tighter, the binary search requires less
computation time. At a node Nk of the enumeration tree we determine an initial
lower bound as the maximum of the three lower bounds. The first lower bound
lbo(Vkj) refers to the lower bound determined at the parent node Nk. It is
assumed that at the root No, lbo{Vk ̂ > lb = max{l{J')/m,maxjj^jpj} which
is the lower bound given by [McNaughton 1959]. In this bound, each term of the

Chapter 3. A Branch and Bound Algorithm 62

outer maximum requires O (n) time. Therefore it can be determined in O (n)
time. This lower bound gives the average time required to finish all jobs. Hence
it ignores the variation in the processing time data.

For the time being consider node Nq of the enumeration tree. The following lower
bound is expected to be dominating when n mod m ^ 0 and processing time data
has less variation.'

Lem m a 3.9 Suppose that jobs are sorted in a nondecreasing order of their
processing times.

[n/m]
№.(Po) = E R

i= l

(3.2)

is a lower bound on lljPUCmai·

P roo f: In an optimal schedule to \\P\\Cmax at least [n/m] jobs will be
scheduled on at least one of the m machines. Then for some machine A/,·, the

inequality /61(^ 0) ^ — ^max proves the statement of the lemma. ■

The main effort in determining the above lower bound is due to the sort step.
Hence the time complexity of determining IbiifPf) is O (nlog n). Notice that

< /i>whenn mod m = 0 since m (pi+p2+· · -+P(n/m)) < (P1+P2 + · · •+Pn)·

In the lower bound below we intend to incorporate processing time variability.
Let Jmin G Vo be the job with minimum processing time and lower be a lower
bounding procedure.

Lem m a 3.10

lb2{Vo) = jn ax { min {pj+pmin, lo w er {V o \ {J j},n -l,m -l) } } (3.3)

is a lower bound on \\P\\Cmax·

P roo f: In an optimal schedule P . to l\P\\Cmax either at least one job Jt is
scheduled on the same machine that a particular job Jj (Jj € Vo and Jt €

Chapter 3. A Branch and Bound Algorithm 63

'Po\{J j}) has been scheduled or none. In the former > pj + Pmin whereas
in the latter > lower{Vo \ {J j},n - l ,m — 1). Hence is greater or
equal to the minimum of these two quantities. This in turn implies that /62(T*o)
is a lower bound. ■

The computational effort required to determine /¿2(^ 0) depends on the time
complexity of the lower bounding procedure lower. If the lower bounds proposed
above are used then time complexity will be O (n log n) since only one sort will
be enough.

Corollary 3.2 /¿('Pq) = { ^̂ oi'Po), ¿̂i(Po)>· ^̂ 2(^0) } ̂ lower bound on
l\P\\Cma..

Lower bound computations at node Nk (A: > 0) of an enumeration tree are
similar. If we let Mmin be the machine with least completion time at node Nk,
then a lower bound at node Nk can be determined as shown in the following
theorem.

Theorem 3.4 Let A = {Ja, \ Jat ^ Pjfe with pa, = 1(^1) ~ 7̂
Nlmin} with |.4| < m — 1 denote the set of artificial jobs at node Nk. Then

lb{Vk) = l{V f'^)A lb {V k^ A) (3.4)

P roo f: Without loss of generality consider a partial schedule Vk for a three-
identical parallel machine scheduling problem as shown in Figure 3.3. In this
figure, shaded parts of Vl and Vl are the extra processing allocated to machines
M2 and M3, respectively. If we define two new jobs and with processing

times pai = ~ K^l) Po2 = K^k) ~ KPk) ̂ then by treating the set
Pk U { Jci, Jaj} 3.S if it was Vo and by applying the previous corollary we obtain
a lower bound IbfVk)· Hence Equation (3.4) is a lower bound at node Nk- ■

An upper bound ub[Vk) is assumed to be the incumbent value Z. Clearly ub{Vk)
need not be an upper bound on the scheduling problem at node Nk· It only refers

Chapter 3. A Branch and Bound Algorithm 64

Ml

Mo

Ms

Figure 3.3: A partial schedule for a three-identical parallel machine problem

to a bin capacity for which no feasible packing may exist. For that reason at node
Nk, the procedure 1/3 — relaxed (Procedure 3.3) is called to check whether it
outputs “no” or not. If the answer is “no” then it is certain that we cannot obtain
a schedule which finishes by time Z from any one of the descendants of the current
node. Hence this node can be fathomed without applying the bounding procedure
further. If else Z is assumed to be the initial upper bound for the binary search
procedure. At node Nq we determine the incumbent value by applying the list
scheduling heuristic LPT (see Section 2.3.1).

3.2.3 Bound Computations at a Node

Procedure 3.6 determines the bounds on the scheduling problem encountered at
node Nk. Clearly the run time of the procedure bounds is determined by that
of £ — makespan which is O {n{k -k log n)) for O {k log m) iterations of the
binary search.

The statement 3 of the procedure —relaxed is important in determining tight

Chapter 3. A Branch and Bound Algorithm 65

P roced u re 3.6: The bounding procedure used at a node of the enumeration
tree

argum ents
Vk'. a set of jobs fixed (scheduled) at node Nk
LB{Vk)‘ a lower bound on the scheduling problem encountered at node Nk
UB{Vk)· upper bound on the scheduling problem encountered at node Nk

called from Procedure 3.1

procedures called
1/3 — relaxed: a 1/ 3-relaxed decision procedure for the bin packing problem with
variable bin sizes (see Procedure 3.3)
e — makespan: an approximate binary search procedure for solving the scheduling
problem encountered at node Nk (see Procedure 3.2)

procedu re hounds (Vk, LB(Vk),UB(Vk))
begin

S i := Z - l (V i) V i = l ,2 , . . . ,m
if 1/3 — relaxed [J^B,m) outputs “no feasible packing” then

fathom this node
else

call e — makespan (Iprns>
end

lower bounds at a node Nk- The tighter the condition the better the quality of
the lower bound on l\P\\Cmax· The reason is that if this condition is satisfied
at an iteration of an binary search procedure e — relaxed, then the lower bound
is updated and thus becomes tighter. The condition in this statement can be
considered as a generalization of the lower bound lb for llPWCmax (see Lemma
2.3). To improve both the quality of the lower bound and the run time of the
algorithm we have used the following conditions in statement 3 in addition to the
current condition:

(i) at a recursive call, if there are > t (referring to the number of unpacked

Chapter 3. A Branch and Bound Algorithm 66

bins) large jobs (with pj > 1/ 2) among unscheduled ones, then at least
two large jobs have to be packed in one bin. Hence, there is “no feasible
packing” . This condition decreases the computational time requirement of
the procedure 1/3 — relaxed since it may determine an infeasibility that the
original condition in statement 3 determines after packing several bins.

(ii) at a recursive call, if there are > 2£ unscheduled medium jobs (with 1/3 <
Pj < 1/ 2), then at least three medium jobs will be packed in one bin.
Hence, the output is “no feasible packing” . This condition decreases the
computational time requirement of the procedure 1/3 —relaxed in the same
way as before.

(iii) at a recursive call, determine Ihi (see Section 3.2.2) considering the
remaining unscheduled jobs and unpacked bins. If lb\ exceeds the size of the
largest bin (= 1), then in a packing at least one bin cannot have a feasible
packing. Hence output “no feasible packing” . This condition increases the
quality of the bound and decreases the computation time of the algorithm.

The use of the above rules does not affect the worst case bound of the algorithm
e — makespan. Furthermore together with the original condition in .the statement
3, they can be used to update the lower bound of the parent node or to fathom
the remaining nodes (which have the same parent with node Nk) that are not
generated yet. Suppose that at an iteration of the binary search where we were
packing the bin B{, we have ended up with the message “no feasible packing” . In
this case if the index i is less than the machine index we are currently branching
on (i.e. if i is the index of a machine that is branched on previously) then on the
remaining nodes we will have the same infeasibility message due to the same bin
Bi. If bin sizes are set Z, the incumbent value, then we can fathom the remaining
nodes. If else we can update the lower bound on the remaining nodes which is
equivalent to updating the lower bound of the parent node.

To improve the quality of the upper bound that the procedure e — makespan
produces, a refinement in the algorithm is necessary. Although the procedure

Chapter 3. A Branch and Bound Algorithm 67

e — makespan produces a schedule with makespan being arbitrarily close to (1 -f
i^)i might not output a better schedule even it determines such a

schedule at an iteration of the binary search. This is due to the fact that uh in
the procedure e — makespan refers to a particular bin capacity at some packing
attempt but not necessarily to the makespan of a feasible schedule. In fact for
a a feasible schedule is obtained by the procedure e — relaxed and may have
a makespan of at most (1 + e)uh. For that reason, for some uh\ and ub2 (where
ubi > «¿>2) that have been updated as such in two different iterations of the binary
search, makespan of the schedule produced by ubi may be less than the one due
to ub2. In such a case the binary search procedure outputs the schedule produced
by ub2. However with a slight modification in the procedure e — makespan, the
best schedule generated so far can be stored and updated without any additional
computation time. This will increase the mean performance of the procedure.

3.3 Search Strategy

The strategy used when searching the enumeration tree affects the performance
of the branch and bound procedure. As pointed out in Section 3.1 the size of the
tree is affected by the selection of a particular job for branching at a level. As a
matter of fact, the example in the Figure 3.2 can be generalized to show that the
number of leaf nodes is minimized if at each level of the enumeration tree the job
with the maximum processing time, among the unscheduled jobs, is selected for
branching. Moreover the performance of the procedure 1/3 — relaxed decreases
if large pieces (with pj > 1/2) and medium pieces (with 1/3 < pj < 1/2) exist
at the same time to be packed into the same bin (see statement 14 of Procedure
3.3). For this reason selecting the job with maximum processing time among
the unscheduled jobs, helps us to increase the quality of bounds at a node and
to decrease the size of the enumeration tree. The procedure selectajob uses this
rule.

After all of the descendant nodes is generated, a node has to be selected for further

Chapter 3. A Branch and Bound Algorithm 68

enumeration (at the beginning node No is selected). The procedure selectanode
applies backtracking strategy with the following hierarchy of selection rules:

1. mmUB{Vi^), choose the node in descendants of which there is a feasible
solution with its makespan being close to the incumbent value.

2. maxLB{Vk), break any tie in the first rule by choosing the node in
descendants of which there is a feasible solution with its makespan being
close to optimum.

3. choose the first node in the order that the branches were generated, break
any tie in the second rule by choosing the node which has a more potential
to generate optimal solution. The way we generate the nodes is such that
the schedule associated with the first generated node has more chance to
finish earlier.

3.4 Computational Experience

In \\P\\Cmax there are three factors which seem to be the most important in
affecting the performance of the algorithm:

(i) the proper divisibility of the ratio of number of jobs to number of machines
(n /m ratio),

(ii) the magnitude of the n/m ratio,

(iii) the variability among processing times

The impact of the first factor is related with the deteriorating quality of the
lower bound presented in Lemma 2.3. For problem instances in which n /m is not
divisible, the lower bound gets worse. As a matter of fact in the literature the
examples that are given to show the worst case ratio of an algorithm is selected
among those instances in which n /m is non-divisible. For this factor what one

Chapter 3. A Branch and Bound Algorithm 69

may expect in terms of the performance of an optimizing algorithm is that the
run time of the algorithm increases if this ratio becomes non-divisible since the
algorithm will have a difficulty in proving the optimality.

The magnitude of the n/m ratio directly affects the size of an enumeration tree.
In Table 3.1 it cari be seen that the size of the tree decreases as the n /m ratio
gets low or high. The problem becomes difficult as this ratio becomes medium.
Hence, for instancois in which the n/m ratio is medium the performance of an
optimizing algorithm is expected to deteriorate.

The last factor is the processing time variability. As the variability decreases
many alternative solutions to a problem exist. If a lower bounding scheme
cannot differentiate among these alternatives then surely the performance of an
optimizing algorithm decreases. If on the other hand, high variability is present
in an instance then any wrong selection of a node causes the optimizing algorithm
to spend much time in searching irrelevant parts of the enumeration tree. Hence,
we expect the performance of an optimizing algorithm to improve in medium
processing time variability cases.

The factors and the related levels that we consider in this study are shown in
Table 3.2. According to the notation given in the table, NDHL represents a
problem structure in which n/m is non-divisible, n/m ratio is high and process
variability is low. Similarly DMH represents a structure in which n /m is divisible,
n/m ratio is medium and process variability is high. For each of the 18 different
problem structures, 50 problem instances are considered. As shown in Table 3.2,
the problem parameters are generated from uniform distributions. Considering
real world examples, it may be argued that the uniform distribution is not suitable
to generate some of the problem parameters. For instance, it can be claimed that
in many cases processing times are distributed exponentially. However, the aim
of this empirical analysis is to test the performance of the algorithm for any
problem instance without any assumption on its structure.

To be able to measure the performance of the branch and bound algorithm, for

Chapter 3. A Branch and Bound Algorithm 70

Table 3.2: Factors and related levels considered in the experimental design

X ~ Ud{a, b) shows that i is a discrete random variable distributed uniformly between a and 6.
X is generated a s a + [6 — a + ljy where y is a continuous random variable distributed uniformly
between 0 and 1

In “n /m divisible” case, if the generated n and m values are not divisible then n is increased
till n /m becomes divisible. If n exceeds b then new n and m are generated and the above
procedure is applied ugain.

In “n /m non-divisible” case if the generated n and m values are divisible then n is increased
till n /m becomes non-divisible. If n exceeds b then new n and m are generated and the above
procedure is applied again.

Factors Levels
n/m divisibility divisible (D) non-divisible (ND)
n/m ratio low (L) high (H) medium (M)

n - i/rf(100,120) n ~ 17d(100,120) n - Cfd(100,120)
m - Ud{50,80) m - t/d(2,10) m ~ Ud{20,50)

processing variability low (L) high (H) medium (M)
p,· ~ Ud(5,10) Pi ~ Ud(5,300) pj ~ 1/^(5,50)

each problem structure we collect statistics on the following indicators

1. First encountered time: the cpu time elapsed to determine the solution that
the algorithm delivers upon its termination.

2. First encountered node: the number of nodes enumerated to determine the
solution that the algorithm delivers upon its termination.

3. Total cpu time.

4. Total number of nodes enumerated.

5. Initial gap: The minimum of the relative difference between the upper
bound ub, and the lower bound lb (i.e. (ub — lb)fib) determined at the root
node and at the node Ni.

6. Ending gap: The relative difference between ub and lb upon the termination
of the algorithm.

Chapter 3. A Branch and Bound Algorithm 71

Table 3.3; A sample output

N D M L
A verage: 4.72214 518.6818

S td .D ev .: 22.77753 688.9690
First E ncountered T im e (sec) T ota l T im e (sec)

10 48 10 27
40 1 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 1 190 1

0 22

The branch and bound algorithm has been coded in the computer language C.
The experiments were conducted on the computer SUN SPARC SERVER 490
(22 MIPS). Results of the analysis are shown in Appendix C (Tables C.l through
C.3)

In these tables mean and standard deviation of each indicator are given. Moreover
percentile-like information for each indicator is given. The information in Table
3.3 for example is read as, out of 50 problems, 48 times the first encountered time
was less than 10 seconds, once it was between 10 and 40 seconds and, once it was
between 160 and 190 seconds.

In summary, over 900 randomly generated problems

• 702 problems are solved in less than 10 seconds; in 15 problems the solution
time (in cpu seconds) is in the range (10,40]; in 2 problems it is in (40,70];
in 4 problems it is in (70,100]; in 2 problems it is in (160,190] and in 7
problems it exceeds 190 seconds. 168 (19%) problems remain unsolved
(since the algorithm stops after 10® nodes are enumerated).

• upon the termination of the algorithm the relative difference between the
upper and lower bounds computed is always less than 10%. In 732 problems
it is zero; in 143 problems it is in the range (0,0.02]; in 17 problems it is
in (0.02,0.06]; for 1 problem it is in (0.06,0.08] and in 3 problems it is in

Chapter 3. A Branch and Bound Algorithm 72

(0.08,0.1].

• upon the termination of the algorithm, the mean of the relative difference
between the upper and lower bounds computed is at most 0.019 (the case
NDML). Other than this case it is at most 0.0035.

• upon the termination of the algorithm the overall mean and standard
deviation (for 900 problems) of the relative difference between the upper
and lower bounds are 0.001935 and 0.008446, respectively.

• first encountered time is at most 505.263 cpu seconds (945,010 nodes). In
831 problems first encountered time is less than 10 seconds; in 44 problems
it is in the range (10,40]; in 3 problems it is in (40, 70] in 7 problems it is in
(70,100]; for 1 problem it is in (100,130]; in 2 problems it is in (130,160];
in 3 problems it is in (160,190] and in 9 problems it exceeds 190.

• the first encountered time is at most in 38.55 seconds (the case DMH).

• the overall mean and standard deviation (for 900 problems) of the first
encountered times are 6.33 and 32.23, respectively. The overall mean
and standard deviation of the first encountered nodes are 13,273.07 and
74,668.58, respectively.

At the beginning of this section, we have provided an intuitive explanation of
how each of the problem parameters is expected to affect the performance of the
algorithm. In identifying whether or not the performance of the algorithm is
sensitive to varying problem parameters (and if so, the direction of trends) with
respect to each indicator, we make use of the Three-Factor Fixed Effects ANOVA
model [Montgomery, 1984]

Vijki = + + {Tp)ij + (r7)ii + { h) j k + (1-^7),jit + tijki

where î = 1,2 (divisible, non-divisible); j = 1,2,3 (low n/m,high n/m,medium
nlm)\ k = 1,2,3 (low variability, high variability, medium variability) and / =
1 ,2 . . . , 5 0 (sample size). ANOVA tables are presented in Appendix C (Tables

Chapter 3. A Branch and Bound Algorithm 73

Table 3.4: The percentage of the standardized residuals that fall within the
limits

The error terms Cijki are N(0,cr^) (distributed normally with mean zero and variance a^).
Hence, the standardized residuals €ijki/y/M S e should be approximately normal with mean
zero and unit variance. Thus, about 68% of the standardized residuals should fall within the
limits ± 1 , about 95% of them should fall within ± 2 , and virtually all of them should fall within
± 3 . Each entry below-shows the percentage that falls within the specified limit for each of the
indicator.

Limits
Factors ±1 ±2 ±3
First Encountered Time 93.1 97.9 98.7
Total Time 48.9 92.1 98.1
Initial Gap 6 48.7 73.7
Ending Gap 71.2 94.7 95.2
First Encountered Node 92.8 97.8 98.4
Total Node 37.8 55 89.1

C.4 through C.6). It is seen that the normality and equal variance assumptions
about the error terms (eijki) are not satisfied perfectly (see Tables 3.4 and C.l
through C.3, respectively). Therefore, the results of the ANOVA should be loosely
interpreted. However, as it is well-known, the i^-test of the ANOVA is quite
robust to skewness of the error distributions and a balanced design (that is, an
experimental design with equal sample sizes) protects against unequal variances.
Plence, the analysis still provides an insight to the problem which is consistent
with the results obtained in Tables C.l through C.3. In particular, the significant
contrasts (which may be computed by using Tables C .l through C.6) among the
treatment levels agree with the results summarized in Tables C .l through C.3.
The following conclusions are drawn from these tables.

First encountered time (node) is insensitive to the changes in any one
of the problem parameters. In fact, from Tables C.l and C.3, it is
possible to observe that the first encountered time (node) is slightly

Chapter 3. A Branch and Bound Algorithm 74

affected by the varying problem parameters. For instance, medium-
n/m-ratio case is definitely worse than the other cases. However, in
most of the cases, the differences among cpu seconds (and the related
number of nodes) are practically negligible.

In terms of the total execution time (number of nodes), the
performance of the algorithm varies with the different problem
structures. The effect of the magnitude of the n /m ratio on the
performance of the algorithm is summarized as low y high y
medium where x y y shows that the execution time of the algorithm
is shorter (and it enumerates less number of nodes) in case x than
in y. The processing time variability affects the performance as
medium y low y high. In terms of the n /m divisibility, there is
no significant difference between the cases n/m divisible and n/m
non-divisible. Except the last observation, these results agree with
the intuitive explanations provided at the beginning of this section.

In 290 problems, the list scheduling heuristic LPT (see Section
2.3.1) is successful in determining the solution that the algorithm
delivers (see Table C.3. The number corresponding to zero-first-
encountered-node shows the number of problems in which LPT
determines the ending solution). In 264 problems (out of 290), the
ending solutions are proved to be optimal (see zero-total-#-6f-nodes
row of Table C.3). The performance of LPT is better in \ovf-n/m-
ratio and/or low-processing-time-variability cases (in 244 problems
the ending solution is determined by LPT and 220 of them are
proved to be optimal). Moreover, in low-n/m-ratio cases, the 1/3-
dual approximation algorithm is successful in improving the solutions
determined by LPT and in determining optimal solutions without
any enumeration (see one-total-^-of-nodes row of Table C.3).

The initial gap is smaller in problems where n /m is divisible than that
in n/m-non-divisible problems (see Table C.2). This result indicates

Chapter 3. A Branch and Bound Algorithm 75

that the initial lower bound gets worse (that is, its percent deviation
from the upper bound increases) in an n/m-non-divisible Ccise since
as discussed above, no such tendency is observed in the initial upper
bounds. Moreover, it is observed that the initial gap increases when
the n /m ratio is medium which may either be due to the deteriorating
performances of upper or lower bounds.

In terms of the ending gap, the behavior of the algorithm is slightly
better in n /m divisible case. In n /m divisible cases, the ending gap is
insensitive to changes in the parameters n/m ratio and/or processing
variability. In n /m non-divisible cases, the ending gap increases when
n /m is medium and/or when processing variability is low.

Considering the large (enough) number of jobs generated in a problem instance
and, the results associated with the quality of solutions determined at the first
encountered time and the length of this time, it can be concluded that the
algorithm is robust and from the practical point of view, it solves the parallel
machine scheduling problem in a reasonable time.

Chapter 4

Conclusions

The purpose of this study was to investigate the combinatorial aspects of a
class of parallel machine scheduling problems, namely l\P\\Cmax·, and develop
a computationally feasible branch and bound algorithm for its exact solution.

After a brief discussion of machine scheduling problems, in Chapter 1, the formal
definition of the problem to be investigated in this study was given. This specific
class of problems is \ \P\\Cmax·, in which n independent jobs have to be scheduled
on m identical parallel machines with the objective of minimizing the schedule
length. The characteristics of an optimum solution to l\P\\Cmax were presented
in Chapter 2. These characteristics are crucial in developing a branch and bound
algorithm. Also in Chapter 2, the previous approaches to this problem and
their main drawbacks were discussed. The main chapter. Chapter 3, presented
a detailed development of a branch and bound algorithm for l\P\\Cmax· The
branching scheme was discussed in Section 3.1. It enumerates the set of all
nonpreemptive schedules in which none of the machines are idle, without any
repetition (see Theorem 3.1). Moreover due to Lemmas 2.2 and 2.4, the length
of each schedule generated by the branching scheme is strictly less than twice the
lower bound given in Lemma 2.3 even if none of the fathoming rules are applied.
The bounding scheme, as discussed in Section 3.2, uses the relationship between

76

Chapter 4. Conclusions 77

l\P\\Cm.ax and the bin packing problem Il^p. The former problem can be viewed
as the bin packing problem with the objective of determining the minimum bin
size for which there is a feasible packing. Hence a binary search procedure, such as
Procedure 3.2, can used to search a range of possible optimum makespan values.
In Section 3.2.1, a (l / 3)-relaxed decision procedure was developed to solve the
bin packing problem associated with the subproblems that arise in each node of
the enumeration free. This procedure, when used in a binary search, provides
tight lower and upper bounds at a node of the tree. Furthermore, this algorithm
has applications in its own right to a specific class of parallel machine scheduling
problems which are discussed later in this chapter. The search strategy used
for the branch and bound tree was presented in Section 3.3. It is basically the
depth-first strategy applied with the selection rule: select a node among the ones
in the deepest (active) level with the minimum upper bound. In this strategy,
the size of the active nodes list remains constant since once a node is selected
for branching it is removed from the list. This resolves the memory problem
associated with the computer code of the algorithm. The motivation behind the
selection of a node with the minimum upper bound is to determine the part
of the tree in which the feasible schedule with its makespan being equal to the
incumbent value lies. Since the initial incumbent value is determined by the list
scheduling algorithm LPT (see Section 2.3.1), the incumbent Z , is expected to
be close to the minimum makespan. Hence by changing assignments of a few
number of jobs in the LPT schedule, which is done by the branching scheme, an
optimum solution may be found. At a selected node, a job with the maximum
processing time among the unscheduled jobs is scheduled (fixed) to reduce the
size of the tree. A detailed empirical study was the concern of Section 3.4. In
900 randomly generated problems, it has been observed that 168 (19%) problems
remain unsolved. 702 problems were solved in less than 10 cpu seconds. In 831
problems the ending solution (the solution that the algorithm returns upon its
termination) was found in less than 10 cpu seconds. In 732 problems, the ending
solution turned out to be optimal. In 143 problems, the relative deviation of
the ending solution from the ending lower bound was less than 2% and only

Chapter 4. Conclusions 78

in 4 problems this deviation is in the interval [6%, 10%]. Further analysis of
these results showed that the performance of the algorithm (both in terms of
the solution time and the quality of the ending solution found) was not affected
by a change in any one of the problem parameters. Hence, it can be concluded
that for all practical purposes the branch and bound algorithm solves l\P\\Cmax·
The classification scheme is given in Appendix A for deterministic scheduling
problems. Appendix B provides a glossary of some of the complexity theoretic
concepts that were used in the study. The summary of the computational results
is given in Appendix C in tabular format.

This chapter mainly deals with the significance and the importance of the results
of this study and possible directions for future research.

It is well documented that the classical job shop scheduling problem, J\\\Cmaxi
is one of the most difficult combinatorial problems. In this problem we are
given a set of jobs J = { Ji, each has to be processed on s machines
(stages) Ml, M2 , ■.. ,Ma. Each job Jj consists of a sequence of Oj operations
{O ij, . . . ,O ojj}‘, Oij being the processing of job Jj on machine m.-y (one of the
machines Mi, M2 , . . . , M,, which is specified to perform the operation Oij) with

7̂ rriij during an uninterrupted timep,j. Then the problem is to determine
a processing order on each machine M ̂ such that the makespan is.minimized.

[Conway et al. 1967] asserted that “many proficient people have considered this
problem, and all have come away essentially empty-handed. Since this frustration
is not reported in the literature, the problem continues to attract investigators
who just cannot believe that a problem so simply structured can be so difficult
until they have tried it” . In a similar pessimistic assertion, [Adams et al. 1988]
stated that “job shop scheduling is among the hardest combinatorial optimization
problems. Not only it is A/’P-hard [Garey and Johnson 1979], but even among
members of the latter class it belongs to the worst in practice; we can solve
exactly randomly generated traveling salesman problems with 300-400 cities
(over 100,000 variables) or set covering problems with hundreds of constraints
and thousands of variables, but we are typically unable to schedule optimally

Chapter 4. Conclusions 79

ten jobs on ten machines” . The history of the so called “notorious” 10 x 10
job shop problem is quite interesting. The specific instance of this classical
job shop problem was given in [Muth and Thompson 1963]. There are 10 jobs
each having 10 different routings through 10 machines. This problem instance
defied all solution attempts until 1989 when [Carlier and Pinson 1989] solved the
problem in an unreasonably large computation time (about four hours).

At the present time the only viable approximation algorithm for the classical
job shop problem seems to be the “shifting bottleneck” procedure of [Adams
et al. 1988] which uses the one-machine lower bound of [Lageweg et al. 1978].
Such a bound is determined by relaxing the capacity constraints on all machines
except the machine Afi, i = 1,2, . . . , s . For each operation on machine M,·
we can determine a head being the earliest start time of this operation, a
tail being the earliest completion time of all the operations that follow the
current operation and a body being the processing requirement of this operation.
Then treating operations as jobs we obtain a three-stage flow shop problem
F311 nonbottleneck 1st and 3rd stagesjCrnax which is equivalent to l\\rj,dj\Lmax
[Lenstra 1977; Rinnooy Kan 1976]. This latter problem is usually referred as the
one-machine scheduling problem. An optimal solution to the related 11\rj, dj\Lmax
provides a lower bound LB{Mi) on the general problem class J\\\Cmax· Then a
tighter bound can be determined each time by assuming a different machine
as the bottleneck and letting LB — maxi<,<, X5(Af,·) (See [Roy and Sussmann
1964; Lenstra 1977; Rinnooy Kan 1976; Adams et al. 1988] for details, specifically
the disjunctive graph representation of J\\\CTnax and the related lower bounding
issues). Unfortunately l||rj, dj |Lmax is known to be unary A/"7 -̂hard [Lenstra
1977; Rinnooy Kan 1976]. However [Carlier 1982] has developed a branch and
bound algorithm which solves this problem in a reasonable time. This branch
and bound procedure is used in the shifting bottleneck procedure of [Adams et
al. 1988]. If we let M j denote the set of machines that are sequenced (initially
A f / = 0) then their procedure can be summarized as follows:

Step 1 Solve the one-machine scheduling problem for each Afi ^ M j. Call

Chapter 4. Conclusions 80

the machine Mk with maximum objective (which is makespan for
i^3||nonbottleneck 1st and 3rd stages jCmax or equivalently maximum late
ness for \\\rĵ dj\Lmax) the critical machine. Fix the optimum sequence
on machine Mk- Let M/ := A4fU {Mk}. Go to step 2.

Step 2 Reoptimize the sequence of each critical machine Mi Q while keeping
the other (previously fixed) sequences fixed. If A4/ = M. then stop.
Otherwise go to step 1.

Rather than identifying one machine as critical at each iteration of the algorithm,
[Adams tt al. 1988] have considered the first k machines selected from a list
sorted in nonincreasing order of the objective values of the related one machine
problems. Performing this step for each of these k machines, an enumeration tree
is obtained. The modified heuristic of [Adams et al. 1988] searches the truncated
enumeration tree in which the number of critical machines k., considered at a
level of the tree decreases as the level increases according to some function which
depends on the problem size. This version of the shifting bottleneck heuristic is
famous since it solves the 10x 10 problem in about five minutes (without proving
the optimality).

Clearly, the realistic version of the classic job shop scheduling problem is the
multi-stage (flow or job shop) parallel machine scheduling problem. In the
contemporary manufacturing environment, CNC machining cells consisting of
identical parallel machines (CNCs) and each cell functioning as a stage in a
multi-stage manufacturing are common occurrences. Speed of operation and high
investment in these modern manufacturing systems make it absolutely necessary
to be able to schedule these systems in (almost) real time and with high machine
utilization. In this respect, makespan minimization seems quite acceptable in
these systems since it can be shown that minimizing makespan results in a
maximization in machine utilization levels. Unfortunately none of these problems
are solvable in polynomial-time unless V —AfV. Even for the simplest production
environment flow shops, the following complexity results are obtained.

Chapter 4. Conclusions 81

• F2|P2,Pl|nonbottleneck 2nd stagelCmoj: is A/’P-hard [Akyel and Benli
1988],

• F2\Pmi,Pm2\max{mi,m2} > l|C,„aa: is unary A/'P-hard [Gupta 1988],

• F2\P2, Pl\pmtn\Cmax is AfV-hard [Lenstra 1988],

• P 2|Pmi,Pm2|no - mj > 1 V j = l,2\Cmax is unary A/'P-hard
[Sriskandarajah and Ladet 1986].

The solution procedures proposed in the literature for the multi-stage parallel
machine scheduling problems indicate that the problem area is still open (see
[Akyel and Benli 1988] for a review). The two conflicting aims require, if exact
algorithms are timewise infeasible, good approximate algorithms with acceptable
mean or worst case behaviors, that can operate in real time while giving good
machine utilization levels.

On the other hand, availability of exact algorithms for multi stage parallel
machine scheduling problems are essential for a number of reasons. For one,
it is important to have a benchmark to empirically compare the heuristics being
developed. Moreover any truncated search of the enumeration tree provides both
lower and upper bounds on a particular problem instance using which we can
rate the quality of the schedule determined.

The analysis of the solution methodologies for J\\\Cmax suggests that in any
extension of the multi-stage single machine problem to identical parallel machines
in each stage, the problem \\P\rj d̂j\Lmax becomes important. [Carlier 1987]
has developed a branch and bound algorithm for this problem. From what
has been reported, this procedure is not computationally promising. Hence
computationally feasible means of determining bounds for \\P\rj,dj\Lmax are
required. The algorithm developed in this study, we believe, provides such means.

Even when we consider the single stage identical parallel machine scheduling case,
there are a number of important application areas. As it was mentioned earlier.

Chapter 4. Conclusions 82

in contemporary manufacturing systems it is common to come across machining
cells consisting of identical CNC machines operating in parallel under the control
of a central computer. At any given point in time, the central computer assigns
(or, schedules) the jobs that are already in the queue of the cell to the CNCs
under its control (usually using makespan minimization as the objective with the
intent of improving machine utilization). Reassignment (or, rescheduling) of jobs
to CNCs is required at least under two circumstances: when one or more new
jobs join the queue, and when machine failure occurs in one or more of the CNCs.
In either of the circumstances, the situation is basically the bin packing problem
with variable bin sizes for which (l/3)-dual approximation algorithm presented
in Section 3.2.1 gives, to our knowledge, the best worst case bound.

Assuming nonpreemptions, when new jobs arrive, the jobs already being
processed on the CNCs must continue processing. That is, each CNC will become
available at different times in the future. This corresponds to bins of different sizes
in the corresponding bin packing problem. The situation is identical when one
or more CNCs fail at any point in time. It is customary to assume deterministic
repair times for CNCs. Hence, when the repair times are treated as pseudo jobs
that tie up the failed CNCs, the problem reduces to the previous case (see Figure
4.1).

Although the (l/3)-dual approximation algorithm gives the best worst case
performance bounds for this problem, a rigorous computational study is needed
in order to compare its mean behavior against possible other heuristics, such as
LPT. It should also be noted that the makespan minimization is used only as a
surrogate for maximization of machine utilizations. Hence, what we really want is
not the optimum makespan, but avoid, possibly rare, worst case occurrences. This
mode of operation is akin to the rolling horizon concept in production planning:
we do not really expect the stated makespan value, computed at a particular
point in time, to be realized, but long before that either new jobs will join the
queue, or some CNCs will fail, or both.

In conclusion, the three significant aspects of this study are: (i) a rigorous

Chapter 4. Conclusions 83

remaining processing of jobs
already started

processing resource availability
for the jobs in queue

T corresponding value of the makespan

Figure 4.1: l\P\\Cmax with one or more jobs fixed

complexity theoretic treatment of the class of problems: l\P\\Cmax·, (ii)
development of a (l/3)-dual approximation algorithm for a specific class of
problems in l\P\\Cmaxi (iii) development of a computationally feasible exact
algorithm that effectively utilizes the branching and bounding schemes, and the
search strategies in a branch and bound procedure for the class of problems,

l\P\\Cmax.

References

1. Adams, J., E. Balas and D. Zawack (1988) “The Shifting Bottleneck
Procedure for Job Shop Scheduling” , Man. Sci, Vol.34, No.3

2. Akyel, C. and 6 .S. Benli (1988) “On Scheduling in Parallel Machine Flow
Shops” , Working paper, IEOR-8803, Department of Industrial Engineering,
Bilkent University

3. Baker, K.R. (1974) Introduction to Sequencing and Scheduling, John Wiley

4. Bellman, R., A.O. Esogbue and I. Nabeshima (1982) Mathematical Aspects
of Scheduling and Applications, Pergamon Press

5. Blazewicz, J. (1987) “Selected Topics in Scheduling Theory” , Ann. of Disc.
Mat., Vol.31

6. Blazewicz, J., W. Cellary, R. Slowinski and J. Weglarz (1986) Scheduling
Under Resource Constraints - Deterministic Models, Annals of Oper. Res.,
Vol.l7, J.C. Baltzer AG

7. Bratley, P., M. Florian and P. Robillard (1975) “Scheduling with Earliest
Start and Due Date Constraints on Multiple Machines” , Nav. Res. Log.
Quar., Vol.22

84

References 85

8. Bratley, P., M. Florian and P. Robillard (1971) “Scheduling with Earliest
Start and Due Date Constraints” , Nav. Res. Log. Quar., Vol.18

9. Carlier, J. (1982) “The One-Machine Sequencing Problem” , E.J.O.R.,
V ol.ll

10. Carlier, J. (1987) “Scheduling Jobs With Release Dates and Tails on
Identical Machines to Minimize the Makespan” , E.J.O.R., Vol.29

11. Carlier, J. and E. Pinson (1989) “An Algorithm for solving the Job Shop
Problem” , Man. Sci., Vol.35, No.2

12. Cheng, T.C.E. and C.C.S. Sin (1990) “A State-of-the-Art Review of
Parallel-Machine Scheduling Research” , E.J.O.R., Vol.47

13. Coffman, JR.E.G., M.R. Carey and D.S. Johnson (1978) “An Application
of Bin-Packing to Multiprocessor Scheduling” , SIAM J. Comput., Vol. 7,
No. 1

14. Coffman, JR.E.G., G.S. Lueker and A.H.G. Rinnooy Kan (1988) “Asymp
totic Methods in the Probabilistic Analysis of Sequencing and Packing
Heuristics” , Man. Sci., Vol.34, No.3

15. Conway, R.W., W.L. Maxwell and L.W. Miller (1967) Theory of Scheduling,
Addison Wesley

16. Fisher, M.L. (1982) “Worst-Case Analysis of Heuristic Algorithms for
Scheduling and Packing” , in: Dempster, M.A.H., J.K. Lenstra and A.H.G.
Rinnooy Kan (eds.). Deterministic and Stochastic Scheduling, Reidel

17. French, S. (1982) Sequencing and Scheduling: An Introduction to the
Mathematics of the Job Shop, Ellis Horwood

18. Friesen, D.K. (1978) “Sensitivity Analysis for Heuristic Algorithms” , Report
No. UIUCDCS-R-78-939, Department of Computer Science, University of
Illinois at Urban a-Champaign

References 86

19. Friesen, D.K. and M.A. Langston (1983) “Bounds for MULTIFIT Schedul
ing on Uniform Processors” , SIAM J. Comput., Vol. 12, No.l

20. Garey, M.R., R.L. Graham and D.S. Johnson (1978) “Performance
Guarantees for Scheduling Algorithms” , Oper. Res., Vol.26

21. Garey, M.R. and D.S. Johnson (1979) Computers and Intractability,
Freeman

22. Garey, M.R. and D.S. Johnson (1981) “Approximation Algorithms for
Bin Packing Problems: A Survey” , in: Ausiello, G. and M. Lucertini
(eds.). Analysis and Design of Algorithms in Combinatorial Optimization,
Springer-Verlag

23. Graham, R.L. (1966) “Bounds for Certain Multiprocessing Anomalies” , Bell
Syst. Tech. J., Vol.45

24. Graham, R.L. (1969) “Bounds on Multiprocessing Timing Anomalies” ,
SIAMJ. Appl. Math., Vol.l7, No.2

25. Graham, R.L., E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan
(1979) “Optimization and Approximation in Deterministic Sequencing and
Scheduling: A Survey” , Ann. Discrete Math., Vol. 5

26. Gupta, J.N.D. (1988) “Two-Stage Hybrid Flow Shop Scheduling Problem” ,
J. Opl. Res. Soc., Vol.39, No.4

27. Hochbaum, D.S. and D.B. Shmoys (1987) “Using Dual Approximation
Algorithm for Scheduling Problems: Theoretical and Practical Results” ,
J. ACM, Vol. 34, No. 1

28. Hochbaum, D.S. and D.B. Shmoys (1988) “A Polynomial Approximation
Scheme for Scheduling on Uniform Processors: Using the Dual Approxima
tion Approach” , SIAM J. Comput., Vol. 17

References 87

29. Lageweg, B.J., J.K. Lenstra and A.H.G. Rinnooy Kan (1978) “A General
Bounding Scheme for the Permutation Flow Shop Problem” , Oper. Res.,
Vol.26, No.l

30. Lageweg, B.J., J.K. Lenstra, E.L. Lawler and A.H.G. Rinnooy Kan (1982)
“Computer-Aided Complexity Classification of Combinatorial Problems” ,
Comm. ACM, Vol.25, No. 11

31. Lawler, E.L. and J. M. Moore (1969) “A Functional Equation and Its
Application to Resource Allocation and Sequencing Problems” , Man. Sei.,
Vol. 16

32. Lawler, E.L., J.K. Lenstra and A.H.G. Rinnooy Kan (1982) “Recent
Developments in Deterministic Sequencing and Scheduling: A Survey” ,
in: Dempster, M.A.H., J.K.L. Lenstra and A.H.G. Rinnooy Kan (eds.).
Deterministic and Stochastic Scheduling, Reidel

33. Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan, and D. Shmoys, (1989)
“Sequencing and Scheduling: Algorithms and Complexity” , to appear in:
Graves, S.C., Rinnooy Kan, A.H.G. and Zipkin, P. (eds.). Handbooks in
Operations Research Volume 4- Logistics for Production and Inventory,
North Holland

34. Lenstra, J.K. (1977) Sequencing by Enumerative Methods, Mathematisch
Centrum

35. Lenstra, J.K. (1988) Private Communication

36. McNaughton, R. (1959), “Scheduling with Deadlines and Loss Functions” ,
Man. Sei., Vol.12, No.l

37. Minyi, Y. (1989) “On the Exact Upper Bound for the MULTIFIT Processor
Scheduling Algorithm” , Report No. 88547-OT, Institut für Ökonometrie
und Operations Research, Universität Bonn

References 88

38. Montgomery, D.C. (1984) Design and Analysis of Experiments ̂ John Wiley
& Sons

39. Muth, J.F. and G.L. Thompson (1963) Industrial Scheduling, Prentice Hall

40. Rinnooy Kan, A.H.G. (1976) Machine Scheduling Problems, Martinus
Nijhoff

41. Rothkopf, M.H. (1966) “Scheduling Independent Tasks on Parallel Proces
sors” , Man. Sci., Vol. 12

42. Roy, B. and B.G. Sussmann (1964) “Les problèmes d’ordonnancement avec
constraintes disjonctives” . Note DS No.9 bis, SEMA, Montrouge

43. Sahni, S.K. (1976) “Algorithms for Scheduling Independent Tasks” , J.
ACM, Vol.23, No.l

44. Sriskandarajah, G. and P. Ladet (1986) “Some No-Wait Shops Scheduling
Problems: Complexity Aspect” , E.J.O.R., Vol.24

Appendix A

A Classification Scheme for
Machine Scheduling Problems

The development of formal scheduling models dates back to the time of the World
War I. At that time H.L. Gantt invented a graphical tool, Ga,ntt Chart, which
is used to represent which job is loaded on which machine and at what time,
resulting in a schedule. A Gantt Chart can be used to compare two different
schedules with respect to some criteria. It was the first work that helps to identify
the benefits obtained from scheduling. Later [Roy and Sussmann 1964] proposed
another representation tool, disjunctive graph representation, which is essentially
same as the Gantt chart except that the graph notation introduced.

The development of formal scheduling models and the concern of the scheduling-
theory can be followed chronologically in [Conway et al. 1967; Baker 1974;
Rinnooy Kan 1976; Lenstra 1977; Graham et al. 1979; Bellman et al. 1982;
French 1982; Lawler et al. 1982; Blazewicz et al. 1986; Lawler et al. 1989].

Scheduling problems may arise whenever n jobs J j {j = I , .. . ,n) have to be
processed on s stages Si {i = 1 ,... ,s) each of which may have m(parallel
machines Mm (A; = 1 , . . . , m^). We assume that

89

Appendix A. A CJassWcation Scheme for Machine Scheduling Problems 90

• machines of a stage are not shared with any other stage i.e., \i M.i denotes
the set of machines at stage Si (where \M.i\ = mi) then A4if]A4h =
0 V A,

• each machine Mki of a stage Si can process at most one job Jj at a time
and,

• unless otherwise stated each job Jj can be processed on at most one machine
Mki E M l and stage Si at a time.

• following data can be specified for each job Jj:

— a number of operations Oj,

— a sequence of operations {O ij,.. . where has to be
processed on one of m̂ .j parallel machines of a stage with ^

S{j V i = 2 , . . . , Ojj

— a processing requirement pkij of each Oij on k-th. (k —
machine of S{j,

— a ready time or release date I'j on which Jj becomes available for
processing,

— a due date dj by which Jj should ideally be completed,

— a deadline dj by which Jj must be completed,

— a weight Wj indicating the relative importance of Jj,

— a nondecreasing real function fj of the completion time Cj, indicating
the cost fj{C j) incurred if Jj is completed at Cj.

Given such an instance, a scheduling problem can be modeled as determining the
schedule S that minimizes fmax or X) fj such that in S

1. fmax = max { f j { C j) } and
l < j < n

2. prescribed { O i j , O o j , j } for each job J j is preserved.

3. each of parallel machines in stage Sij processes one operation Oij at a
time,

4. each operation Oij requiring the stage are processed on one and only
one of parallel machines at a time,

5. some other characteristics of each job and/or shop are satisfied (the ones
that are commonly used in the literature will be explained later in this
section).

Variety of scheduling problems defined by the above formulation can be identified
by the terminology similar to the one used in [Graham et al. 1979]. In this
notation, each scheduling problem is represented by a 4-tuple a | | 7 |

Appendix A. A ClassiHcation Scheme for Machine Scheduling Problems 91

• a identifies the production environment. Following four different configu
rations are defined in the literature:

s and

— a = 1: a single stage problem.

— a — Fs: a flow shop problem in which Oj
Si V Jj and Oij. If s is not given the general class of flow shop
scheduling problems will be represented.

— a = Js: a job shop problem which is the general case defined at the
beginning of this section.

— a = 0$: an open shop problem which is same as the flow shop
problem except in this case the order of operations is immaterial, i.e.
{ 0 \ j , . . . , O o j , j } represents a set of operations but not necessarily their

sequence.

• ^ identifies the machine environment at each stage of production. If we let
o denote the empty symbol then the possible configurations are:

— /3 = 0: the problem with single machine at each stage of production.

— yd = 1: single machine at a particular stage of production; puj <— pij.

Appendix A. A Classification Scheme for Machine Scheduling Problems 92

— /3 = Pmi: Identical parallel machines at stage 5V; Pkij ·<—
Pij V Mke € A4t. If is not specified then the general class
of problems in which there is an arbitrary number (m^) of parallel
machines at stage Si, is implied.

— P = Qmf. Uniform mt parallel machines at stage Si\ pkij <— Pij/tki
for a given speed tke of machine Mki E Mi-

— ^ = Rmp. Unrelated parallel machines at stage Si.

7 identifies further assumptions of the scheduling problem such as;

— 7 = pmtn: job preemption is allowed, i.e. the processing of any
operation may be interrupted and resumed at a later time.

— 7 = strm: lot streaming is allowed. It may occur in two different ways:
(i). any operation of a job may be processed on different machines of a
stage at the same time {in — stage strm), (ii). before an operation is
entirely completed, some portion of the work can be moved ahead to
begin next operation {inter — stage strm). Clearly strm· is different
from pmtn and it violates the third assumption stated at the beginning

of the section.

— 7 = nonbottleneck i — th stage: stage Si is assumed to have an

infinite capacity.

— 7 = dominated i — th stage: processing times of operations
requiring a stage Si are such that the stage Si can be considered as
nonbottleneck, i.e. in any schedule for a given problem instance, stage

Si will be nonbottleneck.

— ^ = no — wait: no job is allowed to wait in between stages.

— 7 z= Tj·: ready times that may differ for each job are specified.

— 'y = Oj < o: constant upper bound on number of operations for all Jj
is specified (valid only if a = Js).

— If any one of the above characteristics is not possessed, o is used instead

of it.

Appendix A. A Classification Scheme for Machine Scheduling Problems 93

• 6 identifies the optimality criterion of the scheduling problem. Commonly
used performance measures are:

fiiC j) fmax E f i

Cj Cfnax Z w jC j

(makespan) (mean weighted Howtime)

C j - d r Lmax —

(maximum lateness)

max{0, Cj — dj} —

(mean weighted tardiness)

J 0 If Cj < dj,

1 1 otherwise.
— Y^WjUj

(mean weighted number of tardy jobs)

These performance measures are called regular in the sense that each S
is a monotone function of the completion times Ci,C 2 , · · · ,Cn- That is
C j< c ;· V j= ^s iC u C 2 , . . . ,C n)< s { c i ,C i , . . . , c : ,) .

A .l Examples

\\P\\Cmax’ refers to a class of scheduling problems in which n jobs are scheduled
on m identical parallel machines so as to minimize makespan.

l\Pc\\Cmax'· refers to a class of l|P||C„iaar problems in which the number of

machines is a constant c.

l\Q\\Cmax· refers to a class of scheduling problems in which n jobs are scheduled
on m uniform parallel machines so as to minimize makespan.

l\P\rj,'dj\Cmax'· refers to a class of scheduling problems in which n jobs are to
be scheduled on m identical parallel machines so as to minimize makespan. In a
feasible schedule no job can start before its ready time Vj and each job must be

completed by its deadline dj.

J\\\Cmax’ refers to a class of job shop scheduling problems in which the aim is to

minimize makespan. It is assumed that in the job shop there is a single machine
at each stage.

A .2 Reducibility Among Scheduling Problems

Reducibility among scheduling problems have been showed in Lenstra (1977) and
Rinnooy Kan (1976) and can easily be adapted for parallel machine multi-stage
problems. The results can be summarized as in Figure A .l. In this figure each

Appendix A. A Classification Scheme for Machine Scheduling Problems 94

R
t

Q

t
P

O

1

Gi

pmtn rj 0

\ \
o 0 O j < 0

Gs G4 Gs

Figure A .l : Reducibility among scheduling problems (excerpted from [Lawler
et al. 1982]

graph Qi represents a different characteristic of a scheduling problem and a 7-tuple

(uo, · · ·, I'e)) where V{ is a vertex of graph represents a particular scheduling
problem. In Qi, the directed path from II' to 11 shows the reducibility in terms

of the characteristic n,·. The computer program MSPCLASS due to [Lageweg
et al. 1982] uses these reducibility graphs and the known complexity results to

Appendix A. A Classiijcation Scheme for Machine Scheduling Problems 95

determine the complexity class of a problem. A recent study due to [Lawler et
al. 1989] showed that over 4,536 scheduling problems (problem classes) defined
in the literature, only 416 were solvable in polynomial-time. 3,817 problems were
shown to be MV-hard (3,582 of them were unary A/'P-hard). The status of 303
was unknown at the time the study was done.

Appendix B

Terminology

In this appendix, a glossary of the basic complexity theoretic concepts and
definitions that are used in this study are presented. For details see [Garey
and Johnson 1979].

B inary E ncoding Consider an instance of the bin packing problem II^p,
defined in Section 2.1: n = 4, m = 2, = 5, p2 = 3, ps = 1, p4 = 4 and

the bin size r = 6. In a binary encoding, all numbers are written in binary and
separated by commas in the following way: number of pieces, number of bins, size
of a bin, sizes of pieces (At the end is used to specify the end of the input).
Thus the above instance is represented as: “100,10,110,101,11,1,100.” The input
length obtained from the above encoding scheme is

n

[log2 nj + [log2 mj + [log2 pj\ + [log2 rj + n + m + 1 = 24
j=l

A binary encoding, as a reasonable encoding scheme, should be uniquely
decodable and concise (that is, it should not allow artificial growth in the input
length such as “100,10,,„,„110,,,101,11,1,100,,.” for the above e.xample).

96

Appendix B. Terminology 97

Fully Polynom ial e-A pproxim ation Scheme A family of approximation
algorithms each of which has the worst case bound 1 + £ for some e > 0
and each has the time polynomial-time complexity function. Furthermore the
computational requirement of algorithms grow polynomially both in the input
length and 1/e.

Input Length See Input Size.

Input Size is determined by the amount of input data needed to describe an
instance (input length) u, and the magnitude of the numbers involved in an
instance 0. Input data is assumed to be encoded in Binary Encoding (or in some
other encoding scheme other than unary).

M ean B ehavior of an approximation algorithm refers to the expected
deviation of the solution delivered by this algorithm from the optimal. It can
either be determined by an empirical analysis or by a probabilistic analysis.

AfV Class consists of decision problems for which both a feasible solution can
be guessed and checked whether or not it provides a “yes” answer in polynomial
time. Clearly P is a subset of jVV. The conjecture that jVV is still open.

(B inary) ^VP-com plete The decision problem II2 is called A/’'P-complete if
II2 G AfV and Hi a II2 (that is, Hi is reducible to II2) for every Ei € AfV.
U2 is the hardest problem in ^fV. This definition implies that when proving
A^'P-completeness of E2, it is enough to find a A/’T’-complete problem Ei oc E2
for E2 € AfT.

(B inary) A^P-hard The problem E2 is called ;V''P-hard if the .V'P-complete
decision problem Ei a E2 (that is Ei is reducible to E2). Informally, the

Appendix B. Terminology 98

optimization problem is called jW -hard if the associated decision problem is
jV̂ T’-complete.

V Class consists of all problems for which algorithms with polynomial-time
complexity function have been found.

P olynom ial-T im e A lgorithm is defined to be the one with the time-
complexity function being O (/(i^)) for some polynomial function / and the
input length u.

Polynom ial e-A pproxim ation Schem e A family of approximation algo
rithms As such that for a fixed £ > 0 each has the worst case bound 1 -f £
and the polynomial-time complexity function. The computational requirement
of algorithms grow polynomially in the input length but exponentially in l/£ .

P seudo P olynom ial-T im e A lgorithm is defined to be the one with the time-
complexity function O {f{v,9)) for some polynomial function / , input length i/
and an upper bound 0, on the magnitude of each of the data. That is, any
algorithm which is polynomial in the unary encoding is a pseudo .polynomial.
By definition, any polynomial-time algorithm is also a pseudo-polynomial time
algorithm since it runs in time bounded by a polynomial in the input length.

R edu cib ility A problem Hi is reducible to another problem II2 (Hi a II2) if
for any instance of Hi an instance of IT2 can be constructed in polynomial-time
such that solving the instance of II2 will solve the instance of Hi as well. The
reducibility of Hi to II2 implies that Hi can be considered as a special case of Il2.

T im e-C om plex ity Function f { x) of an algorithm gives the maximum

number of operations that would be required to solve an instance of size x. / (x)

Appendix B. Terminology 99

is O {g(x)) implies that there exists a constant c such that |/(x)| < c\g{x)\ for
all values of a: > 0.

Turing R educib ility Consider a search problem IT that consists of a set Dn
of instances. For each instance I G -Dn, the set Sn{I) is called solutions for / . An
algorithm A is said to solve a search problem II if, given as input any instance
I € A i j it returns the answer “no” whenever Sn{I) is empty and otherwise
returns some solution s belonging to 5 n (/). A Turing reduction from a search
problem Hi to a search problem II2 is an algorithms! that solves Hi by using a
hypothetical subroutine S for solving IT2 such that, if S were a polynomial-time
algorithm for II2, then A would be a polynomial time algorithm for IIi.

U nary A/*'P-complete A decision problem II is called unary A/’P-complete if
the subproblem IIp defined as the restriction of IT in which magnitudes of all data
is bounded by a polynomial of the input length, is A/”'P-complete. If II is
unary A/"'P-complete then it cannot be answ êred with a pseudo polynomial-time
algorithm. In the literature decision problems in this class are sometimes referred
to as MV-complete in the strong sense.

U nary A/”'P-hard Definition is similar to unary v'V”'P-complete, except that the
restricted problem is AfV-hard.

U nary E ncoding Consider an instance of the bin packing problem Il^pdefined
in Section 2.1; n = 4, m = 2, Pi = 5, P2 = 3, p3 = 1, P4 = 4 and the bin size r = 6.

In a unary encoding, all numbers are based on 1 and separated by commas in the
following way: number of pieces, number of bins, size of a bin, sizes of pieces (At

the end is used to specify the end of the input). Thus the above instance is

represented as: “1111,11,111111,11111,111,1,1111.” The input size obtained from

Appendix B. Terminology 100

the above encoding scheme is
n

n + m + Pj + T + n + m + 1 = 32
i= i

A unary encoding should be uniquely decodable and concise (that is it should not
allow artificial growth in the input such as
for the above example).

W orst-C ase B ound For a minimization problem II the worst-case bound of
an approximation algorithm A is defined as

/2^ = inf {r > l\A{I)/OPT(I) < r for all instances / of 11}

where for an instance I of II, A(I) denotes the solution value returned by the
approximation algorithm A and OPT{I) denotes the minimum value. A worst-

case bound is called tight if it is attainable.

Appendix C

Computational Results in
Tabular Form

101

Appendix C. Computational Results in Tabular Form 102

Table C .l ; First encountered time and total time

DLL
Average: 0.0017 0.00238

Std.Dev.: 0.0051 0.005898
First Encountered Time (sec) Total Time (sec)

10 50 10 50
' 40 0 40 0

70 0 70 0
100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 0

DLH
Average: 2.12692 107.9296

Std.Dev.: 3.134036 228.3357
First Encountered Time (sec) Total Time (sec)

10 49 10 39
40 1 40 1
70 0 70 0

100 0 100 1
130 0 130 0
160 0 160 0
190 0 190 0

0 9

DLM
Average: 0.98606 107.6828

Std.Dev.: 3.074165 367.9076
First Encountered Time (sec) Total Time (sec)

10 49 10 45
40 1 40 1
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 4

Appendix C. Computational Results in Tabular Form 103

Table C .l : First encountered time and total time (continued)

DHL
Average: 0.00034 0.00034

Std.Dev.: 0.00238 0.00238
First Encountered Time (sec) Total Time (sec)

10 50 10 50
' 40 0 40 0

70 0 70 0
100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 0

DHH
Average:
Std.Dev.:

2.33028
9.808269

89.04114
127.0046

First Encountered Time (sec) Total Time (sec)
10 49 10 33
40 0 40 0
70 0 70 0

100 1 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 17

DHM
Average:

Std.Dev.:
0.154

0.254839
0.15434

0.254645
P'irst Encountered Time (sec) Total Time (sec)

10 50 10 50
40 0 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 0

Appendix C. Computational Results in Tabular Form 104

Table C .l : First encountered time and total time (continued)

DML
Average: 0.03068 171.7558
Std.Dev.: 0.145388 593.2152
First Encountered Time (sec) Total Time (sec)

10 50 10 46
40 0 40 0

' 70 0 70 0
100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 4

DMH
Average: 38.5465 451.2136

Std.Dev.: 94.04424 146.6622
First Encountered Time (sec) Total Time (sec)

10 27 10 1
40 16 40 1
70 1 70 0

100 2 100 0
130 0 130 0
160 1 160 0
190 0 190 0

3 48

DMM
Average:

Std.Dev.:
7.83614

33.05876
33.49444
109.2993

First Encountered Time (sec) Total Time (sec)
10 48 10 45
40 0 40 0
70 1 70 1

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

1 4

Appendix C. Computational Results in Tabular Form 105

Table C .l : First encountered time and total time (continued)

NDLL
Average: 0.00814 0.00814

Std.Dev.: 0.009092 0.009092
First Encountered Time (sec) Total Time (sec)

' 10 50 10 50
40 0 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 0

NDLH
Average: 0.12238 11.52626

Std.Dev.: 0.486959 80.03702
First Encountered Time (sec) Total Time (sec)

10 50 10 49
40 0 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 1

NDLM
Average:
Std.Dev.:

0.0434
0.277174

12.6719
88.58846

First Encountered Time (sec) Total Time (sec)
10 50 10 49
40 0 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 1

Appendix C. Computational Results in Tabular Form 106

Table C .l : First encountered time and total time (continued)

NDHL
Average: 25.67562 84.35964
Std.Dev.: 56.08327 134.1312
First Encountered Time (sec) Total Time (sec)

10 35 10 28
- 40 8 40 7

70 0 70 0
100 3 100 2
130 0 130 0
160 0 160 0
190 1 190 1

3 12

NDHH
Average: 1.90066 50.77232
Std.Dev.: 4.239113 106.1439
First Encountered Time (sec) Total Time (sec)

10 48 10 39
40 2 40 2
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 9

NDHM
Average:
Std.Dev.:

0.68638
0.362379

0.68704
0.363126

First Encountered Time (sec) Total Time (sec)
10 50 10 50
40 0 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 0 190 0

0 0

Appendix C. Computational Results in Tabular Form 107

Table C .l : First encountered time and total time (continued)

NDML
Average; 4.72214 518.6818

Std.Dev.: 22.77753 688.9690
First Encountered Time (sec) Total Time (sec)

- 10 48 10 27
40 1 40 0
70 0 70 0

100 0 100 0
130 0 130 0
160 0 160 0
190 1 190 1

0 22

NDMH
Average: 14.13172 392.9053

Std.Dev.: 27.24027 261.3126
First Encountered Time (sec) Total Time (sec)

10 32 10 7
40 15 40 3
70 0 70 0

100 1 100 0
130 1 130 0
160 0 160 0
190 1 190 0

0 40

NDMM
Average: 14.54648 53.25626

Std.Dev.: 47.76684 218.8059
First Encountered Time (sec) Total Time (sec)

10 46 10 44
40 0 40 0
70 1 70 1

100 1 100 1
130 0 130 0
160 0 160 0
190 0 190 0

2 4

Appendix C. Computational Results in Tabular Form 108

Table C.2: Initial gap and ending gap

DLL
Average: 0 0

Std.Dev.: 0 0
Initial Gap (relative) Ending Gap1 (relative)

0 50 0 50
0.02 0 0.02 0
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

DLH
Average: 0.015478 0.000960

Std.Dev.: 0.021945 0.002252
Initial Gap (relative) Ending Gap (relative)

0 28 0 41
0.02 5 0.02 9
0.06 14 0.06 0
0.08 3 0.08 0
0.1 0 0.1 0

0 0

DLM
Average: 0.020758 0.001429

Std.Dev.: 0.022477 0.004848
Initial Gap (relative) Ending Gap (relative)

0 21 0 46
0.02 11 0.02 4
0.06 17 0.06 0
0.08 0 0.08 0
0.1 1 0.1 0

0 0

Appendix C. Computational Results in Tabular Form 109

Table C.2: Initial gap and ending gap (continued)

DHL
Average: 0 0

Std.Dev.: 0 0
Initial Gap (ndative) Ending Gap (relative)

0 50 0 50
0.02 0 0.02 0
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 ____oj
DPIH
Average: 0.001292 0.000149

Std.Dev.: 0.001278 0.000252
Initial Gap (relative) Ending Gap (relative)

0 5 0 .33
0.02 45 0.02 17
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

DHM
Average:

Std.Dev.:
0.000724
0.001247

0
0

Initial Gap (relative)
0 35

Ending Gap (relative)
0 50

0.02 15 0.02 0
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

Appendix C. Computational Results in Tabular Form n o

Table C .2: Initial gap and ending gap (continued)

DML
Average: 0.004978 0.003478

Std.Dev.: 0.013542 0.011795
Initial Gap (relative) Ending Gap (relative)

0 44 0 46
0.02 0 0.02 0
0.06 6 0.06 4
0.08 0 0.08 0
0.1 0 0.1 0

0 0

DMH
Average: 0.044103 0.003114

Std.Dev.: 0.027782 0.002117
Initial Gap (relative) Ending Gap (relative)

0 0 0 2
0.02 10 0.02 48
0.06 24 0.06 0
0.08 10 0.08 0
0.1 5 0.1 0

1 0
DMM
Average:

Std.Dev.·.
0.031864
0.021734

0.000571
0.002316

Initial Gap (relative)
0 2

Ending Gap (relative)
0 47

0.02 20 0.02 3
0.06 20 0.06 0
0.08 7 0.08 0
0.1 1 0.1 0

0 0

Appendix C. Computational Results in Tabular Form 111

Table C.2: Initial gap and ending gap (continued)

NDLL
Average:

Std.Dev.:
0
0

0
0

Initial Gap (relative) Ending Gap (relative)
0 50 0 50

0.02 0 0.02 0
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

NDLH
Average: 0.001331 0.000196

Std.Dev.: 0.005287 0.001372
Initial Gap (relative) Ending Gap (relative)

0 47 0 49
0.02 1 0.02 1
0.06 2 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

NDLM
Average: 0.001898 0.000384

Std.Dev.: 0.008769 0.002692
Initial Gap (relative) Ending Gap (relative)

0 47 0 49
0.02 2 0.02 1
0.06 1 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

Appendix C. Computational Results in Tabular Form 112

Table C.2: Initial gap and ending gap (continued)

NDHL
Average: 0.20529 0.001696

Std.Dev.: 0.013552 0.003694
Initial Gap (relative) Ending Gap (relative)

0 2 0 41
0.02 26 0.02 9
0.06 22 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

NDHH
Average: 0.002064 0.000107

Std.Dev.: 0.001756 0.000241
Initial Gap (relative) Ending Gap (relative)

0 1 0 41
0.02 49 0.02 9
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

NDHM
Average: 0.005389 0

Std.Dev.: 0.003549 0
Initial Gap (relative) Ending Gap1 (relative)

0 1 0 50
0.02 49 0.02 0
0.06 0 0.06 0
0.08 0 0.08 0
0.1 0 0.1 0

0 0

Appendix C. Conaputational Results in Tabular Form 113

Table C.2: Initial gap and ending gap (continued)

NDML
Average: 0.101193 0.019249

Std.Dev.: 0.058377 0.027030
Initial Gap (relative) Ending Gap (relative)

0 1 0 29
0.02 0 0.02 0
0.06 12 0.06 17
0.08 8 0.08 1
0.1 4 0.1 3

25 0

NDMH
Average: 0.040239 0.003032

Std.Dev.: 0.032811 0.002564
Initial Gap (relative) Ending Gap (relative)

0 5 0 10
0.02 13 0.02 40
0.06 16 0.06 0
0.08 9 0.08 0
0.1 6 0.1 0

1 0

NDMM
Average: 0.047070 0.000476

Std.Dev.: 0.033386 0.002391
Initial Gap (relative) Ending Gap (relative)

0 2 0 48
0.02 10 0.02 2
0.06 21 0.06 0
0.08 5 0.08 0
0.1 8 0.1 0

4 0

Appendix C. Computational Results in Tabular Form 114

Table C.3: First encountered node and total number of nodes

DLL
Average; 0.28 0.28

Std.Dev.: 0.448998 0.448998
First Encountered Node Total # of Nodes

0 36 0 36
1 14 1 14

500 0 500 0
1000 0 1000 0
5000 0 5000 0

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 0

DLH
Average: 1818.22 186415.7

Std.Dev.: 2469.589 382978.6
First Encountered Node Total # of Nodes

0 5 0 4
1 24 1 24

500 0 500 1
1000 0 1000 0
5000 12 5000 5

10000 9 10000 6
50000 0 50000 0

100000 0 100000 0
0 10

DLM
Average: 916.92 80879.48

Std.Dev.: 3035.137 271050.7
First Encountered Node Total # of Nodes

0 8 0 0
1 21 1 21

500 1 500 9
1000 5 1000 3
5000 14 5000 12

10000 0 10000 0
50000 1 50000 1

100000 0 100000 0
0 4

Appendix C. Computational Results in Tabular Form 115

Table C.3: First encountered node and total number of nodes (continued)

DHL
Average: 0 0

Std.Dev.: 0 0
First Encountered Node Total # of Nodes

0 50 0 50
1 0 1 0

500 0 500 0
1000 0 1000 0
5000 0 5000 0

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 0

DHH
Average: 8426.2 341147.2

Std.Dev.: 47840.91 472913.4
First Encountered Node Total # of Nodes

0 6 0 5
1 0 1 0

500 15 500 11
1000 14 1000 8
5000 12 5000 8

10000 0 10000 0
50000 2 50000 1

100000 0 100000 0
1 17

DHM
Average:

Std.Dev.:
146.96

245.5789
146.96

245.5789
First Encountered Node Total # of Nodes

0 35 0 35
1 0 1 0

500 9 500 9
1000 5 1000 5
5000 1 5000 1

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 0

Appendix C. Computational Results in Tabular Form 116

Table C.3: First encountered node and total number of nodes (continued)

DML
Average: 14.06 80014.06

Std.Dev.: 70.30801 271289.0
First Encountered Node Total ^ of Nodes

0 48 0 44
1 0 1 0

500 2 500 2
1000 0 1000 0
5000 0 5000 0

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 4

DMH
Average: 78228.68 960631.7

Std.Dev.: 202849.0 192874.3
First Encountered Node Total ^ of Nodes

0 0 0 0
1 0 1 0

500 0 500 0
1000 0 1000 0
5000 13 5000 0

10000 18 10000 1
50000 10 50000 1

100000 2 100000 0
7 48

DMM
Average: 15833.36 75763.88

Std.Dev.: 80493.70 246960.8
First Encountered Node Total # of Nodes

0 3 0 2
1 0 1 0

500 0 500 0
1000 1 1000 1
5000 43 5000 41

10000 1 10000 1
50000 0 50000 0

100000 0 100000 0
2 5

Appendix C. Computational Results in Tabular Form 117

Table C.3: First encountered node and total number of nodes (continued)

NDLL
Average:

Std.Dev.:
0.94

0.237486
0.94

0.237486
First Encountered Node Total # of Nodes

0
1

500
1000
5000

10000
50000

100000

3
47

0
0
0
0
0

0
1

500
1000

5000
10000

50000
0 100000

0

3
47

0
0
0
0
0
0
0

NDLH
Average: 140.92 20091.5

Std.Dev.: 566.5401 139987.6
First Encountered Node Total # of Nodes

0 43 0 43
1 4 1 4

500 0 500 0
1000 0 1000 0
5000 3 5000 2

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 1

NDLM
Average: 40.08 20012.88

Std.Dev.: 278.8460 139998.1
First Encountered Node Total # of Nodes

0 37 0 37
1 12 1 10

500 0 500 2
1000 0 1000 0
5000 1 5000 0

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 1

Appendix C. Computational Results in Tabular Form 118

Table C.3: First encountered node and total number of nodes (continued)

NDHL
Average: 72989.32 245206.8

Std.Dev.: 161173.5 386581.6
First Encountered Node Total # of Nodes

0 5 0 2
1 0 1 0

500 4 500 2
1000 8 1000 7
5000 10 5000 9

10000 2 10000 2
50000 11 50000 11

100000 1 100000 1
9 16

NDHH
Average: 4116.12 183514.4

Std.Dev.: 12743.18 382744.9
First Encountered Node Total # of Nodes

0 1 0 1
1 0 1 0

500 11 500 11
1000 15 1000 12
5000 18 5000 13

10000 0 10000 0
50000 4 50000 3

100000 1 100000 1
0 9

NDHM
Average:

Std.Dev.:
632.44

353.8562
632.44

353.8562
First Encountered Node Total # of Nodes

0 1 0 1
1 0 1 0

500 22 500 22
1000 18 1000 18
5000 9 5000 9

10000 0 10000 0
50000 0 50000 0

100000 0 100000 0
0 0

Appendix C. Computational Results in Tabular Form 119

Table C.3: First encountered node and total number of nodes (continued)

NDML
Average: 6375.32 432360.7

Std.Dev.: 36676.61 486516.8
First Encountered Node Total # of Nodes

0 9 0 1
1 0 1 0

500 12 500 6
1000 21 1000 16
5000 6 5000 4

10000 0 10000 0
50000 1 50000 0

100000 0 100000 0
1 23

NDMH
Average: 28208.86 801755.7

Std.Dev.: 86223.19 396553.1
First Encountered Node Total # of Nodes

0 0 0 0
1 5 1 5

500 0 500 0
1000 0 1000 0
5000 16 5000 1

10000 16 10000 1
50000 9 50000 2

100000 1 100000 1 ·
3 40

NDMM
Average: 21026.7 60979.36

Std.Dev.: 74892.32 205748.4
First Encountered Node Total # of Nodes

0 0 0 0
1 2 1 2

500 0 500 0
1000 3 1000 2
5000 40 5000 39

10000 1 10000 1
50000 0 50000 0

100000 1 100000 1
3 5

Appendix C. Computational Results in Tabular Form 120

Table C.4: The Analysis of Variance Table for the Three-Factor Fixed Effects
Model: CPU Time

Sdurce SS d.f. MS F
A 268.1024 1 268.1024 0.282195
B 25048.81 2 12524.40 13.18277“
C 5782.018 2 2891.009 3.042980“
AB 6752.673 2 3376.336 3.553819“
AC 13757.61 2 6878.808 7.240405“
BC 32728.07 4 8182.017 8.612119“
ABC 12414.47 4 3103.619 3.266766“
Error 837951.6 882 950.0585
TOTAL 934703.4 899

First Encountered Time

Source SS d.f. MS F
A 74341.71 1 74341.71 1.071978
B 10717654 2 5358827. 77.27217“
C 3419756. 2 1709878. 24.65576“
AB 1041565. 2 520782.7 7.509482“
AC 1832625. 2 916312.5 13.21286“
BC 5078385. 4 1269596. 18.30707“
ABC 827717.9 4 206929.4 2.983841“
Error 61166723 882 69350.02
TOTAL 84158769 899

Total Time

A stands for the n/m divisibility
B stands for the n/m ratio
C stands for the processing variability

“Significant at 5%

Appendix C. Computational Results in Tabular Form 121

Table C.5: The Analysis of Variance Table for the Three-Factor Fixed Eifects
Model; Gap

Source SS d.f. MS F
A 0.028065 1 0.028065 59.49738“
B 0.306437 2 0.153218 324.8118“
C 0.002398 2 0.001199 2.542688
AB 0.083037 2 0.041518 88.01639“
AC 0.087998 2 0.043999 93.27521“
BC 0.019168 4 0.004792 10.15886“
ABC 0.063479 4 0.015869 33.64297“
Error 0.416053 882 0.000471
TOTAL 1.006639 899

Initial Gap

Source SS d.f. MS F
A 0.000662 1 0.000662 12.38346“
B 0.004193 2 0.002096 39.20675“
C 0.002142 2 0.001071 20.03270“
AB 0.001414 2 0.000707 13.22577“
AC 0.001897 2 0.000948 17.74290“
BC 0.004365 4 0.001091 20.40808“
ABC 0.002358 4 0.000589 11.02266“
Error 0.047171 882 0.000053
TOTAL 0.064206 899

Ending Gap

A stands for the n/m divisibility
B stands for the n/m ratio
C stands for the processing variability

“Significant at 5%

Appendix C. Computational Results in Tabular Form 122

Table C.6: The Analysis of Variance Table for the Three-Factor Fixed Effects
Model: Number of Nodes

Source ss d.f. MS F
A 2.2E-b09 1 2.2E-H09 0.429117
B 9.0E-K0 2 4.5E-t-10 8.805632“
C 2.8E-blO 2 1.4E-M0 2.754640
AB 5.0E-H10 2 2.5E-blO 4.879816“
AC 7.7E-hlO 2 3.8E+10 7.469016“
BC l.SE -fll 4 4.5E-I-10 8.694404“
ABC 6.9E-M0 4 1.7E+10 3.370123“
Error 4.5E-f-12 882 5.1E4-09
TOTAL 5.0E-M2 899

First Encountered Node

Source SS d.f. MS F
A 4.3E-H09 1 4.3E-b09 0.055275
B 2.0E-1-13 2 1.0E-fl3 129.5529“
C 2.3E-bl3 2 1.2E+13 147.8270“
AB 7.6E+11 2 3.8E-M1 4.810473“
AC 5.0E+12 2 2.5E-M2 31.54767“
BC 1.7E+13 4 4.2E+12 53.86708“
ABC 9.3E+11 4 2.3E-K1 2.947135“
Error 6.9E+13 882 7.9E4-10
TOTAL 1.4E-K4 899

Total Number of Nodes

A stands for the n/m divisibility
B stands for the n/m ratio
C stands for the processing variability

“Significant at 5%

Vita

H. Cemal Akyel was born in Ankara, on 1 January 1961. He attended Department
of Industrial Engineering, Middle East Technical University (METU) in August
1978 and graduated with honors in September 1983. From that time to September
1986 he was a research assistant at Department of Industrial Engineering, METU.
During that period he worked with Professor Ömer S. Benli on Production
Scheduling in Two-Stage Parallel Machine Flow Shops and got his M.Sc. degree
in February 1986. In September 1986 he joined to Department of Industrial
Engineering, Bilkent University as a research assistant to continue his graduate
study with Professor Ömer S. Benli. In October 1989 he was appointed
as an instructor at Department of Industrial Engineering, Bilkent University.
Currently, he is an instructor at the same department.

123

