
'4jï?JÿJ-iü5 ύ ίίίlili· s ii'îcfSï %ÿ|··
ffiî S i . î ?*·κ

,іЩ It''it I d .<< J lü . e ^̂ L̂·Ci· *, ШІ··· іІіимі vr %á«··
V ' ’ ' İ J S Ö S J I ? : 1
л '" ί · ι · :ύ Λ * 4 ΐΛ і і і ^ л ' · ' *’ ;

H Í : í
j J n , r s ? ' í ;

РІГШ?: i f ^ 4 h-iKi/' ІШ ІІ ІШ Ш
■5)1.'- ífi ·■' " , i ^ >^}j. «■-

i V » ·* ·<«#· ^;л*-л i í t í ' S

rçiâSftitîrr̂ tT.
îiiSf j*· 4w· · v‘

■ ζ: · #5|. à. ,ρ. . МДйійЙІ»¿•jfriiİfai. ü £ .ii чаР ■>< *'jİT ifa..

.■ ;.·;. :·* .i :·’““*·Γ?!~>̂· ·.

;>Ti ii.-:i.r, ;'if

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52928849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONSTRUCTION OF
TRIGGER AND DEPENDENCY GRAPHS USING

EVENT AND RULE DECLARATIONS OF AN

ACTIVE OBJECT-ORIENTED
DATABASE MANAGEMENT SYSTEM

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
All §aman Tosim

ь

-x>à
T é i

f Q f)
b >> ô O « ^

11

I certify that I have read this thesis cind that in rny opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

Asst. .Proi. Dr. Özgür Ulusoy(Principcil Advisor)

I certify that I have read this thesis and that in niy opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

1

Asst. Prof. Dr. Atilla Gürsoy

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

Asst. Prof. Dr. Ilyas Çiçekli

Approved for the Institute of Engineering cind Science:

Prof. Dr. Mehmet Bar ay y .
Director of Institute of Engineering and Science

Ill

ABSTRACT

CONSTRUCTION OF
TRIGGER AND DEPENDENCY GRAPHS USING

EVENT AND RULE DECLARATIONS OF AN
ACTIVE OBJECT-ORIENTED

DATABASE MANAGEMENT SYSTEM

All Şaman Tosun
M.S. in Computer Engineering and Information Science

Supervisor: Asst. Prof. Dr. Özgür Ulusoy
July, 1997

Traditional database systems are passive, meaning that they only react to
explicit requests by users or applications. An active database S3̂ stem on the
other hand, executes operations automatically when certain events occur and
certain conditions are met. A database management system becomes cictive
through the addition of rules. The main difficulties in the development of rule
applications is the lack of design methods and suitable design tools. Conflu

ence and termination are two important properties to be able to implement
rule applications correctly. In this thesis, the construction of trigger and de
pendency graphs using class and rule declarations of an active object-oriented
dcitabase system is described. The construction of these graphs provides that
termination can be checked and a confluent rule execution can be achieved. Im-
plementcition of a preprocessor that constructs trigger and dependency graphs
is cilso provided.

Key words·. Active Database Systems, Database Rule Processing, Static-
Analysis, Confluence, Termination.

IV

ÖZET

AKTİF BİR VERİTABANINDA TETİKLEME VE BAĞLILIK
ÇİZGELERİNİN EYLEM VE KURAL TANIMLAMALARI

KULLANILARAK OLUŞTURULMASI

Ali Şaman Tosun
Bilgisayar ve Enlbrmatik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Özgür Ulusoy
Temmuz, 1997

Klasik veri tabanları pasiftir ve sadece kullanıcılar veya uyguhunalar taraiin-
dcin yapılan açık isteklere cevap verebilirler. Aktif veri tabanhırı ise, belli
eylemler gerçekleştiğinde ve belli koşullar sağlandığında işlemleri otomatik ola
rak işleme koyar. Veri tabanları kuralların eklenmesi yoluyla aktif olur. Ku
ral uygulamaları geliştirilmesindeki en büyük problem tasarım yöntemlerinin
ve uygun tasarım araçlarının eksikliğidir. Birleşme ve bitim uygulamcilarm
doğru geliştirmesi için gerekli iki önemli özelliktir. Bu tezde, tetikleme ve
bağlılık çizgelerinin aktif bir veritabanmm sınıf ve kurcil tanımlamalarmdan
oluşturulması tartışılmaktadır. Bu çizgeler bitim'i kontrol edebilmemizi ve
birleşme kural işlemeyi sağlar. Bu çizgeleri oluşturacak bir önişleyicinin geliş
tirmesi de tezimizde gerçekleştirilmiştir.

Anahtar kelimeler: Aktif Veri Tabanları, Veri Tabanlarında Kural işleme.
Statik Analiz, Birleşme, Bitim.

To my parents and my sister

VI

ACKNOWLEDGMENTS

I am very grateful to my supervisor, Asst. Prof. Dr. Özgür Ulusoy for his
invaluable guidance and motivating support during this study. His instruction
will be the closest and most important reference in rny future research. I would
also like to thank Prof. Sharma Chakravarthy for his guidance, Jennifer Sung
for her technical support, my family for their moral support and patience during
the stressful moments of my work, and last but not the least, Tahsin Mertefe
Kurç, who was always ready for help with his priceless technical knowledge
cind experience.

Finally, I would like to thank the committee members Atilla Gürsoj ̂ and
Ilyas Çiçekli for their valuable comments, and everybody who has in some Wciy

contributed to this study by lending moral and technical support.

Contents

1 Introduction 1

2 Problem, Difficulties and Limits 4

3 Static Analysis of Active Rules 7

3.1 Definitions.. 7

3.2 Static Analysis of Active Rules 9

3.3 Dependencies.. 10

3.4 Dependency G ra p h .. i l

3.5 Trigger G raph .. 11

3.6 Related W o r k .. 11

4 Trigger and Dependency Graphs 13

4.1 S en tin e l... 13

4.2 Construction of Trigger and Dependency Graphs............................. 15

4.3 Event T y p e s .. 19

4.4 Input Processing 20

vn

4.5 Event List C onstruction ' 20

4.6 Condition List Construction.. 22

4.7 Action List Construction... 23

4.8 Incremental M ethods... 23

4.9 Detailed Conflict Detection 23

5 Implementation 27

5.1 Data Structures 27

5.2 Number of Comparisons to detect dependencies........................... 35

5.2.1 Number of Comparisons to Detect Action-Event Depen
dency 35

5.2.2 Number of Comparisons to Detect Action-Condition De
pendency 37

5.2.3 Number of Comparisons to Detect Action-Action Depen
dency 37

5.2.4 Total Cost of Conflict Detection... 37

5.3 User Interface.. 38

5.4 Usage of the t o o l ... 38

6 Conclusions and Future Work 41

6.1 C onclusions... 41

6.2 Possible Improvements on Implementation................................... 42

A Sample Input Files 43

CONTENTS viii

A.l Original P rogram ... 43

A.2 Sample Class cxnd CLR D eclaration... 45

A.2.1 Demo_employee.sh 45

A.2.2 Demo_employee.c... 46

A.2.3 Demo_company.sh... 47

A.2.4 D em o-com pany.c... 48

A.3 Snoop Preprocessed File D em o.c... 50

CONTENTS ix

List of Figures

2.1 Syntcix of Starburst R u le ... 5

2.2 Example of a Rule in Starburst 5

2.3 Example of a Rule Specification in Sentinel................................... 6

4.1 BNF for S n o o p ... 14

4.2 BNF for S n o o p ... 15

4.3 Example of R u le s ... 16

4.4 Excimple Nodes of Rulegraph 17

4.5 Rule G r a p h ... 19

4.6 Declaration of Conditions 22

4.7 Declaration of Condition Functions.. 22

4.8 Format of File for Incremental Methods... 23

4.9 Dependency Gi'ciph Without Detailed Conflict Detection 24

4.10 Detailed Conflict Detection File Demo_compcUiy.dcg................... 24

4.11 Nodes Of Rulegraph For Rules comprulel, comprule2, cornprule3 26

5.1 Algorithm to Construct Event Lists of Nested E ven ts............... 29

X

LIST OF FIGURES XI

5.2 Sample Run on a. Nested Event 30

5.3 Function to Detect Conflicts Between an ILR and a CLR 32

5.4 Function to Detect Conflicts Between two I L R 32

5.5 Algorithm to Detect Action-Event Dependencies.......................... 33

5.6 Function to Detect Dependency Conflicts...................................... 34

5.7 Algorithm to detect deiDendencies... 34

5.8 Select Rule Set 39

5.9 Trigger Graph 40

List of Tables

4.1 Eventlist Construction 21

5.1 Parameters Used in Determining Number of Comi^arisons'lo

Xll

Chapter 1

Introduction

Traditional database systems are passive, meaning that they only recict to
explicit requests by users or applications. An active database system, on the
other hand, executes operations automatically when certain events occur and
certain conditions are met. A database management system (DBMS) becomes
active through the addition of rules. Event-Condition-Action (ECA) rules ca.n
be considered as the most common rule format [DciySS]. An ECA rule is
composed of three parts: an event, a condition, and an action. An event
Ccin be a data manipulation or retrieval operation, a method invocation in
an object-oriented database management system (OODBMS), a signal from a
timer or a user, or a combiricition of these. Condition is a test on the database
state. When the siaecified event occurs, the condition pint is tested and if the
test is successful, the action part is executed.

ECA rules offer a flexible mechanism for common database tasks like con
straint enforcement and view maintenance. It is difficult to predict the behavior
of a set of active database rules. Three properties of rule behavior: termination,
confluence, and ob.servable determinism help the database rule programmer lor
the prediction of rule behavior. A brief description of each of these properties
can be provided as follows [AWH92]:

• Termination: A set of rules terminates if rules cannot continue to acti
vate each other indefinitely.

• Confluence: A set of rules is confluent if the final database state at
termination does not depend on the execution order of non-prioritized
rules.

• Observable Determinism: A set of rules is observable deterministic if
the appearance of actions visible to the environment does not depend on
the execution order of non-prioritized rules.

CHAPTER 1. INTRODUCTION 2

Termination, confluence and observable determinism can be very difficult
or impossible to achieve in most cases, therefore some conservative algorithms
have been developed for that purjjose [AHW95]. These algorithms either guar
antee that a set of rules terminates, is confluent, is observable deterministic or
say that they may not terminate, may not be confluent, may not be observcible
deterministic. In static rule analysis, we don’t have a priori knowledge about
the execution patterns of rules. A rule may or may not trigger another rule
depending on a condition on the database state. Future datcibase states that
Ccui affect the execution order of rules are not available to us in static analysis.

A new execution model along with priority specifications schemes is pro
posed in [KC95] to achieve confluent rule execution in active databases. In
this work it is assumed that trigger and dependency graphs that are used to
check confluence are available. Trigger graph is a directed graph representing
trigger relationships between rules. Dependency graph is an undirected graph
which represents data and untrigger dependencies [KC95]. Data dependency
between two rules indicates that they access the same object in their action
pcirts and at least one of the operations is a write operation. Untrigger depen
dency between two rules means that the same data object is written to in the
action part of one of the rules and read in the condition part of the other rule.
To our knowledge, it has not been attempted so far to construct trigger cuid
dependency graphs from class and rule declarations in an OODBMS.

In this thesis, we aim to construct trigger and dependency graphs using
the class and rule declarations of an application given as input to the Sentinel
Active OODBMS which was developed at the University of Fdorida. Snoop
[CM93] is the event specification language of Sentinel. By using the original
input files and the SNOOP preprocessed file, we construct an intermediate data

CHAPTER 1. INTRODUCTION

structure that we call rulegraph. Rulegraph is a linked list of'rules in which each
node has pointers to the action list, condition list, event list of that rule. These
lists represent the action, condition and event part of that rule respectiveljc
Trigger and Dependency graphs are constructed by examining the trigger and
data dependencies between the rules using event lists, condition lists and action
lists. Construction of these lists depends on the event types, condition format
and action format of Sentinel.

Once the graphs are ava.ilable, we can check for teimiination by performing
cycle detection on the trigger graph. If there is no cycle in the trigger graph
then the rules are guaranteed to terminate [AWH92]. We can achieve confluent
rule execution by processing the trigger and dependency graphs as described
in [KC95]. Our basic work is the construction of these graphs in an active
OODBMS. In the thesis, we provide the implementation details and cdso discuss
some samj l̂e rule executions. Our work provides the first implementation of a
preprocessor to construct these graphs using the class and rule declarations.

A detailed discussion of the issues introduced in this chapter is provided in
the following chapters. In Chapter 2, we discuss the problem, difficulties and
limits. In Chapter 3, we provide a detailed description of static rule analysis
in active DBMSs (ADBMSs). A brief description of Sentinel, SNOOP event
specification language, and a description of the preprocessor we have designed
is given in Chapter 4. Chapter 5 presents the implementation details. Finally
in Chapter 6, conclusions and future work are discussed.

Chapter 2

Problem, Difficulties and Limits

When designing an application using active rules, we must make sure that
confluence and termination properties hold. This is an important part of active
dcitabase application development. The problem is how we can detect these
properties using class and rule declarations. There exists some work on doing
this when trigger and dependency graphs are available, therefore the missing
part is to construct these graphs using class and rule declarations. Constructing
these graphs is difficult because we need the syntax and semantics of ECA rules.
Each active database has different syntax and semantics, so we need to restrict
our work to one of them. We have chosen Sentinel active OODBMS. Relational
and object-oriented active DBMSs have substantial differences regcu'ding this
matter. Below we provide a brief description of the rule syntax of an active
relational DBMS(Starburst) and the Sentinel active OODBMS to indicate the
differences between performing static rule analysis in each type of DBMSs.
The problem of rule analysis has already been dealt with on relational active
DBMSs [AHW95]. In relational active DBMSs there exists a limited number
of event types: inserted, deleted, and updated. In active OODBMSs, it is
possible to have rich event sets like Snoop that has about 10 event types. In
relational active DBMSs there are limited number of action types like insert,
delete, and ui^date but in active OODBMSs every method call is a potential
event. Another source of difficulties to analyze rules in crctive OODBMSs is tlie
object-oriented jDaradigm. We have to keep track of which object is an instance
of which class, and also we need additional information from user to provide

4

CHAPTER 2. PROBLEM, DIFFICULTIES AND LIMITS

create rule name on table
when triggering-operations
[if condition]
then action
[precedes rule-list]
follows rule-list]

Figure 2.1: Syntax of Starburst Rule

emp(id,rank,salary)
sales(emp-id,month,number)

create rule good-sales on sales
when inserted
then update emp

set salary = salary +10
where id in (select emp-id from inserted where number >50)

Figure 2.2: Example of a Rule in Starburst

a more precise analysis. We face certain limitations while constructing trigger
and dependency graphs using class and rule declarations. The information
required for the construction of graphs is not available at compile time. The
condition of a rule is a test on the database which Ccin dynamically change
during execution. When we detect a cycle in the trigger graph, we can only
say that the rule set may not terminate because after a number of executions
the condition of one of the rules in the cycle can become false and the cycle
Cell! be broken.

Starburst is an active relational DBMS. The syntax of a rule in Starburst is
provided in Figure 2.1. The triggering-operations are one of inserted, deleted,

CHAPTER 2. PROBLEM, DIEFICULTIES AND LIMITS

newco = new compcm.y("newco",40, 200000.00,6000.00,30,5);
event end(company_cel:newco) void incrementemployeeO;
event end(company_ce2:newco) void decrementemployeeC);
event company_ce_or = 0R(company_cel,company_ce2)
rule comprulel[company_ce_or, cond_ce_or, action_ce_or, RECENT];
int cond_ce_or(L_0F_L_LIST *nl_list)

if
(newco->getsalesperemployee() >200000)

return 1;
>
void action_ce_or(L_0F_L_LIST *nl_list)
{
newco->updatesalesperemployee();

>

F'igure 2.3: Example of a Rule Specification in Sentinel

and updated(a,b,..) where a,b,.. are columns of the rule’s table. The op
tional condition specifies an SQL predicate. The action specifies a sequence of
database operations to be executed when the rule is triggered and its condition
is true. These operations can be standcird SQL data modification operations
(insert, delete, update), SQL data retrieval operations (select) and transaction
abort (rollback). The optional precedes and follows clauses cire used to induce
a partial ordering on the set of defined rules database schema and cui example
of a rule in Starburst is shown in F'igure 2.2. This rule increcises an employee’s
salary by 10 whenever that employee posts sales greater than -50 for a month
[AHW95].

Sentinel is an active OODBMS developed using Open OODB. OpenOODB
is an open (i.e, extendible) object-oriented database management system [Tex93]
developed at Texas Instruments. In Sentinel events and rules are objects. An
examisle of a rule in Sentinel is given in Figure 2.3. In Sentinel condition and
ciction of a rule are represented as functions in which the specified methods can
be called. In condition function change to database state is not allowed.

Chapter 3

Static Analysis of Active Rules

3.1 Definitions

A rule execution sequence (RES) is a sequence of rules thcxt the system can
execute when a user transaction triggers at lecist one rule in the sequence
[KC95]. In the following definitions, R denotes a system rule set and D denotes
the set of all database states. (dj^Rk)^ where dj G D and /4 ^ R̂ denotes a
pair of a database stcite and a triggered rule set. Set of rules directly triggered
by a user transaction is called User-Triggered-Rule-Set (UTRS). UTRS is a
multiset since more than one instance of a rule can be in it.

The following definitions ¿ire adapted from [KC95].

Partial RES Given R and Z), for a nonempty set of triggered rules /4· ^ R
cind a database state dj G Z), a partial RES ̂ a is defined to be a sequence of

rules that connects pairs of a datcibase state and a triggered rule set ¿is follows:

where dj^i G Z)(l < / < rn) is a new d¿ıtab¿ıse st¿ıte obt¿ıined by the
execution of each rule 7\+/(0 < / < m) is in a triggered rule set Z4 -1-/7
¿ind eligible for execution in dj^i] i.e., dj^i evaliuites the rule’s condition test
to true. E¿ıch triggered rule set Rk^i C R(l < I < m) is built ¿is Z4-f/ =

{{Rk+i-i — {j'i+i-i}) — Ruf;+i)U Rtk+i, where Rub+i is a set ef rules untriggered
by r¿+/_i and Rtk+i is a set of rules triggered by

We are interested in Complete RES which is a partial RES that satisfies
certain conditions.

Complete RES Given R and D, for a nonempty set C R which is a
set of rules triggered by a user transaction and dj ^ D is a. database state
produced by operations in the user transaction, a comísete RES (or RES), a
is defined to be a partial RES:

CHAPTER 3. STATIC ANALYSIS OF ACTIVE RULES 8

(7 — Rfc) ̂ + RA:+1) ■'■i + I ’ ’ Í + 7 7 Í - 1

i ĵ+nit Rk+m ’■— 0) ^

where no triggered rules remain after execution of the last rule

Rule shuffling Given a partial RES cri, two rules r; and Vj in ai can
exchange their positions provided rj G Ry, yielding a different partial RES a-z
as below:

cTi = < {dx,Ry) {dk,Ri) '-A idu,Rv) >

<7-2 = < {dx,Ry) '-A [drŷ Rn) ^ {ds,Rt) >

If shuffiing two rules gives the result, then these rules are said to be com

mutative. Commutativity is an important property to show the confluence of
a rule set.

Rule commutativity Given R and D, two rules Vi,rj G R are defined to
be commutative, if for all Ry C R, where ri,Vj G Ry, and for all diitabase state
dx G D, the following two partial RESs can be defined:

< (dx,Ry) -A (^dk,Ri) -A {du,Rv) >

{dx,Ry^ > {dy,x,Rn) > {dyx, R̂ ') !>

where dx,dk,dm,du € D need not be distinct and likewi.se Ry,Ri,Rn,Ru ^ R
need not be distinct.

Equivalent partial RESs Two partial RESs ai and aj are defined to be
equivalent(=) if:

1. <7j· and aj begin with the same pair of database state and triggered rule
set, and end with the same pair of database stcite and triggered rule set,
and

2. in cTi and cr, the same set of rules is triggered, possibly in different orders.

Equivalence Class of partial RESs For a partial RES, a € the equiv

alence class of (7 is the set Sa defined as follows

Sa = {7 e S I 7 = cr}

All pcirtial RESs in an equivalence class have the same result.

Confluent Rule Set Given R cind Z), if there exists only one equivalence
class of complete RESs for every nonempty set R' C R cind every d G Z), R is
defined to be confluent.

CHAPTER 3. STATIC ANALYSIS OF ACTIVE RULES 9

3.2 static Analysis of Active Rules

Static analysis is the systematic examination of the rule structure for the pur
pose of showing that certain properties are satisfied, regardless of the execution
path. Static analysis can be performed without the execution of rules. The
most notable difference between this technique and dynamic analysis is the
presentation of actual rule behavior. Static cinalysis represents actiud behav
ior with a model based upon the rules semantic features and structure, while
dynamic analysis represents actual behavior with actual executions. All mod
els are simplifications built by discarding details. Thus static analysis results
are based upon simplifications, and cannot support probings of the rules to
arbitrary levels of detail [Ost96].

CHAPTER 3. STATIC ANALYSIS OF ACTIVE RULES 10

In active cUitabases, stcitic analysis techniques are used to deterniine termi
nation and confluence of rule sets. Detection of these properties is important
to be able to implement applications correctly.

Let us examine the termination and confluence problems in cictive rules.
Consider two rules Ri and Rj ̂ in which Rî s ¿iction can trigger Rj and Rj^s
action can trigger Ri. It is possil^le that Ri and Rj can keep triggerring each
other indeflnitely. This is the so called termiricition problem. To describe
the confluence problem, consider two rules Ri and Rj triggered and ready for
execution. We must select one of the rules to execute. If no priorities on rules
cire specified, the final databcise state may depend on the order in which the
rules are executed. If Ri’̂ s action changes the database state in a way that Ti/’s
condition evaluates to false, then first Rj ciiid then Ri can be executed; but
when Ri is executed first, then Rj will not be executed. Thus we niciy come
up with difterent database states. In this case, the rules are not commutative
and we have the confluence problem.

3.3 Dependencies

Two kinds of dependencies are defined on active rules [KC95].

• Data Dependency; Two distinct rules Ri and Rj have a data depen
dency if Ri writes in its action part to an object that Rj reads or writes
in its action part or vice versa.

• Untrigger Dependency: Two distinct rules Ri and Rj have an untrigger
dependency if R{ writes in its action part to a data object that Rj reiuls
in its condition part or vice versa.

If there is a data dependency between two rules, one rule can change what
the other rule reads or overwrite the data written by the other. In this case,
the final outcome depends on the execution order of the two rules. II there is
no data dependency between the rules, two rules are independent and the final
outcome of their execution is the same regardless of the execution order.

CHAPTER 3. STATIC ANALYSIS OF ACTIVE RULES 11

If there is an untrigger dependency between two rules, one rule’s ¿iction cun
change the condition and other rule may or niciy not execute depending on this
change. Therefore, the final database state depends on the execution order of
the two rules.

Absence of data and untrigger dependencies is a sufficient condition for two
rules to be commutative [КС95]. If there is a dependency between the rules,
they are said to be conflicting with each other.

3.4 Dependency Graph

A dependency graph [KC95] DG = (i2, Ed) is an imclirectecl graph where R is
the rule set and Ed is the dependency edge set. For each rule r, G R there is a
corresponding node i in the graph. There is a dependency edge (ti, n) between
two nodes u and v if and only if there is at least one of data dependency and
untrigger dependency between the rules r„ and Vy.

3.5 Trigger Graph

A trigger graph [AWH92] TG = (R ,E t) is an acyclic directed graph where R,
is the rule set and Et is the trigger edge set. There is a trigger edge (u, u)
between two nodes it and v if and only if the rule ?■„ denoted by node u can
trigger the rule r̂ denoted by node v. If there is no cycle in the trigger graph
TG then the rules in R are guaranteed to terminate.

3.6 Related Work

In [AWH92] and [AHW95], some static analysis methods are provided to de
termine whether a given set of rules terminate, confluent and observable de
terministic in the context of Starburst rule system. Starburst is a relational
database system [Wid96] so the static rule analysis problem is investigated in

CHAPTER 3. STATIC ANALYSIS OF ACTIVE RULES 12

the context of relational databases. [WH95] deals with th^ termination prob
lem in the OSCAR OODBMS model, and describes a set of algorithms that
allow efficient analysis of termination of a set of rules. [vdVS93] presents a de
sign theory for the static detection of confluence and termination in OODBMSs
and prove that the static detection of termination and confluence is a decidable
problem.

[BCW93] uses an extension of relational algebra for description of active
database rules, and provides an efhcient termination analysis. [BW95] uses a
propagation algorithm based on the extended relational algebra to determine
when the action of a rule can affect the condition of another, and to determine
when rule actions commute. This approach is widely aj^plicable to relational
active databases.

Researchers and developers agree that one of the main difficulties in the
development of rule api^lications is the lack of design methods <ind of suitable
design tools [CR96]. Several tools have been developed to help the user un
derstand the behavior of rules. [DJP93] provides a debugger for active rules
in object-oriented context. [BGB95] presents a tool which helps the user in
defining, tracing, and debugging a set of active rules. [JUD96] presents the pro
totype of cin active rule debugging environment. [BCFP96] describes another
tool for active rule generation, analysis, debugging, and browsing. [CTZ95]
provides a visualization tool developed for Sentinel Active OODBMS. [BCP96]
assuming the relational model introduces a modularization technique for de
signing active rules.

[KC95] proposes a new execution model along with priority specification
schemes to achieve confluent rule execution in active databases. It assumes
that trigger and dependency gi’aphs are available to the system. There is no
work to our knowledge that constructs the trigger and dependency graphs from
the class and rule declarations provided to an active OODBMS. The aim of
our work is to provide this construction on the Sentinel Active OODBMS.

Chapter 4

Trigger and Dependency
Graphs

4.1 Sentinel

Sentinel is an ADBMS implemented on top of Open OODB [Tex93]. Rules
of Sentinel are expressed in the IllCA format. Sentinel supports rules in both
centralized and distributed environments. Event and rule specifications in Sen
tinel cire incorporated into the C + + language. An event specification language
called Snoop was developed to specify events [CM93]. The grammar of Snoop
is described in Figure 4.1. In Sentinel, any invocation of a method is a poten
tiell primitive event. A set of operators are used to construct composite events
using primitive and composite events. Snoop supports both local events and
global events. Local event detector and global event detector were implemented
to monitor events in centralized and distributed environments [Lia97].

Three types of primitive events are supported by Sentinel [Lia97]:

1. Database Events, which correspond to database opercitions used to ma
nipulate data. Every method of an object is a potential primitive event,
and they are transformed into events using two event modifiers: begin-of
cind end-of.

13

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS

E begin-ofFii | end-of El | El
El·:= El AND E2 | El OR E2 | E2
E2:= E2 SEQ E3 | E3
E3:= ANY(Value,E4) | E5 | ANY(Value,E5)
E4-:= E4,E5 | E5
E.5t:= A(E1,E1,E1)

I A*(E1,E1,E1)
I P(El,[time string],El)
I P(El,[time string]:i)arameter,El)
I P*(El,[time string]:parameter,El)
I [absolutetimestring]
I (E l) + [relativetimestring]
I Explicit Events
I Database Events
I L:(E1) /* where L is a label * /
I (E l)

Value :;= integer j oo

Figure 4.1: BNF for Snoop

2. Temporal Events[Lee96], which include absolute and relative temporal
events. An absolute temporal event is specified as an absolute value of
time. A relative temporal event is specified by a reference event and a
time offset.

3. External Events, which denote events defined by users or apiDlication
progrcims and are registered with the system. They are also called global
events which support EGA rule processing in a distributed system. Exter
nal events are assumed to be detected outside the system but are signaled
to the system along with their parameters.

Events and rules can be defined at either class level or instance level. A
class level event/rule is applicable to every object of that class and declared
inside a class definition. An instance level event/rule is applicable to specific
object instances.

Sentinel supports four parameter contexts: recent, chronicle, continuous,

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 15

event-Spec event eventjmodifier metliocLsignkture
I event event_iiame = event.exp

event.modifiei' event mame
begin (event-name)
end (eventmame)
begin (eventmame) && end (event_nanie)
end (eventmame) && begin (event Jiame)

rulespec rule rule_name (event jiame,
condition-function, action-function
[, [pa ra mete r.cant ext], [coupling.mode]
\;priority]\ruIe.trigger.model\])

parameter.context ::= RECENT | CHRONICLE | CONTINUOUS
I CUMULATIVE

coupling.mode IMMEDIATE | DEFERRED | DETACHED
priority positive integer
rule.trigger.mode NOW | PREVIOUS

Figure 4.2: BNF for Snoop

and cum/ulative cind two coupling modes: immediate and deferred. Multiple rule
executions, nested rule execution, and prioritized rule execution are supported
in Sentinel.

The syntax of the Snoop event/rule specification [Lee96] is provided in Fig
ure 4.2.

4.2 Construction of Trigger and Dependency
Graphs

An example of class declaration and rule format in an OODBMS is given

in Figure 4.3F In this example, an employee class is declared. The class has
three class level rules (CLR): cla.ssrulel, classrule2 and classrule3. Mike, joe

InThis is a very simple rule format of a hypothetical system.

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 16

class employee;

employee mike;

class employee {
private:

real salary;
int rank;

public:
int getsalaryO {return salary; }
void setsalaryCreal x) { salary = x;}
void increasesalary(int percent) { salary = salary*(100+percent)/100;}
void salaryboundC) { salary = 100000;}
void increaserankO {rank++;}
void setrank(int y) { rank = y;}
void getrankO { return rank; }

rules:
classrulel (setsalaryO or increasesalary() , mike.getsalaryO > 100000,

mike.salaryboundC) ;);
classrule2 (salaryboundC) , mike.getrankC) > 5 ,

mike.increasesalaryC10) ;);
classruleS C salaryboundC) , mike.getrankC) > 7 ,

mike. increasesalairy C20) ;);
>;

employee joe ;
rule instancerulel C mike.setsalaryC) or mike.increasesalaryC) ,

mike.getsalaryC) > joe.getsalary0 ,
joe.increasesalaryClO) ;);

employee jane ;
rule instancerule2 C jane.setrankC) ,

jane.getrankC) > mike.getrankC) ,
mike. increaserankO ;);

Figure 4.3: Example of Rules

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 17

Name : classrulel
Type : 1
Base : employee
Eventlist:
(increasesalary) (setsalary)
Conditionlist:
(mike getsalary)
Actionlist:
(mike salarybound)

Name : instancerule2
Type : 2
Eventlist:
(jane setrank)
Conditionlist:
(jane getrank) (mike getrank)
Actionlist:
(mike increaserank)

Figure 4.4: Example Nodes of Rulegraph

cind jcine are three instcirices of the employee class object. Two instance level
rules (ILR) are declared: instancerulel and instancerule2. Each rule has event,
condition, and action parts separated by comnicis. The event part is composed
of method culls and opercitors. The condition part hcis a comparison opercitor
and the action part is composed of sequence of method calls.

In Sentinel, constructing trigger cind dependency graphs can be done con
servatively. Each method call is a potential event. If we assume that the ¿ictioii
part of rules consists of method calls only, constructing a trigger graph is easy.
Two nodes of the rulegraph for the example shown in Figure 4.3 is given in
Figure 4.4. If a method call is executed in the action part of a rule and an
event is defined in another rule on the same method Ccill, then there is a trig
ger dependency and a directed edge should be added to the trigger graph. To
detect these dependencies we can insert entries for the method calls executed
in the action part of a rule into a linked list and insert entries for the method
Ccills in the event part of a list into another linked list. If the two lists have

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 18

at least one common element, this means that there is a trigger dependency.
Constructing the eventlist is not trivial when the rich event set of Snoop is
used. This problem is addressed later in this chapter.

Constructing a dependency graph is similar. An edge is added to the de
pendency graph if there exists either data dependenc}' or untrigger dependency
between any two rules. An entry for every method call executed in the action
part of a rule is inserted into an action list constructed for that rule. Condition
of a rule is actually a test performed on the database state. In an OODBMS
these tests will be performed by means of method calls. Each method call ac
cessed in the condition part of a rule is inserted into a condition list associated
with that rule. To detect data dependencies between two rules, we find the
intersection of the action lists of these rules. If the intersection is not null,
then there exists a data dependency and an edge is inserted to the dependency
graph. To detect untrigger dependencies between two rules, we find the inter
section of the condition list of the first rule and the action list of the second
rule. If two lists intersect, then this means an untrigger dependency, and a
undirected edge is added from the node of the first rule to the node of the
second rule into the dependency graph.

The event list, condition list, and action list of rules, that are used to perform
dependency tests, are stored in the linked list of rule nodes as shown in Figure
4.5. Each rule node has a pointer to the lirdced list of each of the event,
condition, and action of the corresponding rule. A rule node also stores the
name, baseclass, and type of that rule. Both CLR cind ILR are represented by
this sti'ucture.

The process of detecting dependencies among rules is not trivial when both
CLR and ILR are allowed. If both rules that are checked for dependencies are
CLR and they access the same object, there may be data or untrigger depen
dency even if they call different methods. This is because different methods
can use the same variable. For this reason, we assume that two CLR that
access the same object are conflicting by default if detailed conflict detection,
explained later in the chapter, is not provided.

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 19

Method Calls

Figure 4.5: Rule Graph

4.3 Event Types

There are 10 types of events specified in Sentinel [Lee96],[CM93]. A brief
description of each of these events is given below.

1. AN D (E,F): Conjunction of two events E and F is raised when both
events are raised irrelevant of the order.

2. OR(E,F): Disjunction of two events E and F is raised when one of the
events is raised.

.3. SEQ(E,F) : Sequence of two events E and F is rai,sed when F'is rai.sed
provided that E has already been raised.

4. N O T (E)(F ,G) : The event is raised when E does not occur in the interval
formed by the occurrence of events F and G.

5. A N Y (m ,E ,F ,G ,...) : The event is rai.sed when m events out of the
specified list of events E,F,G.. occur irrelevant of the order.

6. A(E ,F ,G) : The event is raised each time the event F is raised in the
interval formed by the occurrence of events E and G.

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 20

7. A *(E ,F ,G) : Cumulative variant of A. The event is raised once when the
event G is raised if the event F is raised in the in the interval formed by
the occurence of events E and G,

8. P(E,F,G) : The event is raised every amount of time specified by the
event F in the interval formed by the occurence of events E and G.

9. P*(E,F,G) ; Cumulative variant of P. The event is raised once when the
event G is raised and accumulates the time of occurrences of the periodic
event whenever event F occurs.

10. PLUS(E,[TI]) : The event is raised after TI time units when the event
E is raised.

4.4 Input Processing

In constructing the rulegraph which contains information about the rules, we
process the class and rule declarations and the Snoop preprocessed file. The
aim in processing class and rule declarations is to find out which class level rule
belongs to which class. This information is not available in Snoop preprocessed
file. For detailed conflict detection we process the deg extension files and insert
the information into graphs for each class. The Snoop prerocessed file has cdl
the other necessary information. Events and rules are represented here using
Open OODB syntax. Condition and action parts of a rule are represented as
functions. When we construct the condition list cuid action list of a rule we
must access the information in these functions. For this purpose we use the
following strategy: when we proc<;ss a rule, we insert the name of the condition
cuid action functions of that rule into a binary tree structure with pointers to
associated rule node. When we process the function, by following that link we
find the corresponding rulegraph node and construct the condition and action
lists.

4.5 Event List Construction

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 21

Event Type Inserted Into Eventlist
AND(E,F) E,F
OR(E,F) E,F
SEQ(E,F)
NOT(E)(F,G) G
ANY(m,E,F,G·..) E,F,G„
A(E,F,G) F
A*(E,F,G) G
P(E,F,G) E
P*(E,F,G) G
PLUS(E,[TI]) E

Table 4.1: Eventlist Construction

Event list construction is based on the type of the events described in the
preceding section. As an example, the event AND(E,F) is raised when both
events E and F are raised. Since we don’t know the history of events we
can assume that the occurence of any of two events can lead to the raise of
AND(E,F) (considering the possibility that the other event might have alrecidy
been raised). Therefore we insert both E and F into the event list. As another
example, A(E,F,G) is raised each time the event F is raised in the interval
formed by the events E and G. Only the occurrence of event F can result in
the raise of A(E,F,G); therefore we insert F into the event list. Event list
construction of all types of events is siDecified in Table 4.1.

For composite events that can include more than one event type of those
described in Section 3.3, the event list can be constructed recursively as follows.
Let E = EVENTTYPE(F,G) be an event expression, where Fand G are event
expressions and EVENTTYPE is the highest precedency event in E. The event
lists of E and G are constructed on the basis of the Table 4.1 and then the
event list of E is constructed, again referring to Table 4.1 for the event type
of EVENTTYPE. If an event expression is a primitive event then the event
list contains only that primitive event. In construction of event list precedence
and associativity rules of SNOOP are iilso important.

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS

< expression >:: = < term >|< expression > or < term >
< term >:: = < item >|< term > and < item >
< item >:: = < methodcall >< comparator >< number >

|< methodcall >< comparator >< methodcall >
|< number >< comparator >< methodcall >

< comparator >::=<|>|<|>| = = |<>

Figure 4.6: Declaration of Conditions

iiit functionnarne(...)
{
if (condition)

return(l)
}

Figure 4.7: Declaration of Condition Functions

4.6 Condition List Construction

We assume that the condition part of a rule is expressed as shown in Figure 4.6.
In this declaration, method calls can have other method calls as parameters
which might be necessary in some applications. In Sentinel, condition cind
action parts of a rule are represejited as functions.

Each method call executed in the condition part of a rule is inserted into
the condition list of that rule. Conditions are functions in Sentinel. We assume
that a condition in Sentinel, which is represented as a function, is defined cis

given in Figure 4.7.

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 23

delete eventname
delete rulename

insert evendeclaration
insert ruledeclaration

modify eventdeclaration
modify ruledeclaration

Figure 4.8: Format of File for Incremental Methods

4.7 Action List Construction

We assume that the action of a rule consists of a sequence of method calls.
Each method call executed in the action pcirt of a rule is inserted into the
action list of that rule.

4.8 Incremental Methods

In our current implementation, dependency cind trigger graphs are constructed
cifter any change to the rule set. In fact, previous graphs are still valid and
only an incremental cinalysis needs to be performed. All our design and imple
mentation were performed such that any change in the rule set can be handled
through incremental methods. However, we require that at each update, the
deleted, inserted, and modified class and rule declarations should be given in
a file. The format of this file Ccin be as given in Figure 4.8

4.9 Detailed Conflict Detection

When two method calls operate on the same data item, they can be assumed
to be conflicting but this may not be the case in reality. Two method calls

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 24

DEPENDENCY GRAPH

comprulel : comprule2 compruleS insrule4
comprule2 : comprulel compruleS insrule4
compruleS :: comprulel comprule2 insrule4
insrulel : emptemp2 insrule2
insrule2 : emptempl emptemp2 insrulel
insruleS : emptempl insrule2
insrule4 :
insruleS :

comprulel comprule2 compruleS

emptempl : insrule2 insruleS
emptemp2 : insrulel insrule2

insruleS

Figure 4.9: Dependency Graph Without Detailed Conflict Detection

updatesalesperemployee setefficiency
incrementemployee setefficiency
updatesalesperemployee getsalesperemployee

Figure 4.10: Detailed Conflict Detection File Demo_company.dcg

can access different varicibles and they may not conflict. It is not possible to
determine the conflicts of such method calls without getting some information
from the user. In our implementation we require the user to specify tire methods
that do not conflict in a .deg extension file. The name of a file with .deg
extension will be the same as the file in which the class was declared. The more
number of nonconflicts provided by the user, the more accurate dependency
graph can be generated.

We use a graph structure to keep track of the list of nonconflicts of a. class.
Each class has an associated graph if its corresponding .deg file is specified. If
all noirconflicts of classes are specified, an accurate dependency graph can be
obtained by using this strategy. This will reduce the number of dependencies
in the dependency graph.

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 95

For the rule set given in Appendix, without detciiled conflict detection the
dependency graph is as shown in Figure 4.9. If we provide the .deg file shown in
Figure 4.10, we get the dependency graph where the dependencies (comprulel,
comprule2), (comprule2, comprulel), (comprulel, compruleS) and (compruleS,
comprulel) are removed.

We eliminated the existence of such edges between the nodes of comprulel
cind cornprule2, and the nodes of comprulel and cornpruled by providing the
information in Figure 4.10. The nodes corresponding to rules compruleO, com-
prule2, comprulel are given in Figure 4.11 to make this clear.

CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 26

Name : compruleS
Type : 1
Base : company
Events:
(updatesalesperemployee)
Conditions:

Actions:
(newco setefficiency)

Name : comprule2
Type : 1
Base : company
Events:
(updatesalesperemployee)
Conditions:
(newco getsalesperemployee)
Actions:
(newco setefficiency)

Name : comprule1
Type : 1
Base : company
Events:
(decrementemployee) (incrementemployee)
Conditions:

Actions:
(newco updatesalesperemployee)

Figure 4.11: Nodes Of Rulegraph For Rules cornprulel, coniprule2, coiiiprule3

Chapter 5

Implementation

111 this chapter, we discuss the implementation details of the construction of
the trigger and dependency graphs.

5.1 Data Structures

We construct trigger and dependency graphs using some information cibout
the rules of the system. In Sentinel, this information is provided in the header
files which contain class declarations, class level events, rules and the SNOOP
preprocessed file. See Appendix A for a sample input hie iuid the SNOOP
preprocessed form.

We refer to the SNOOP preprocessed form of the input hie as the mciin
file. In processing the main hie, we do not use the part preceding IniLcalL
Following this part we have class level event and rule declarations.

Our aim is to construct trigger and dependency graphs. Trigger graph is a
directed graph and dependency graph is undirected. We use a directed graph
that we call trigger for trigger gra])h and an undirected graph called dependency
for dependency graph.

It is not easy to hnd which class level rule operates on which class. We

27

CHAPTER 5. IMPLEMENTATION 28

process the header files and insert the name of a rule and the class it operates
on into a binary tree called ruleclass. A rule described in the header file operates
on the class in which it is declared.

VVe have to construct the event lists of a,ll specified events. We use a gi'ciph
structure in constructing the event lists. For each primitive event we just store
the name of the event in this graph. Comjsosite and nested events might cause
some problems. We call an event a nested event if at least one of its arguments^
is a composite event. In constructing the event list of a composite or nested
event it is necessary to find the eventlists of arguments. For this purpose, we
keep the eventlist of every event defined in an adjacency list graph structure
called eventgraph. The nodes of the graph contain the names of events and
a. pointer to the event list of the associcited rule. To construct the event list
of a nested event, we use the algorithm given in Figure 5.1. The function
Process-Primitive.Event inserts the event into the eventgraph and the function
Process-Basic-Event inserts the arguments of the event into the eventgraph
according to the rules given in Table 4.1. An event which has only one event
type is called a bcisic event. We assign a temporary name to the event whose
event list is constructed, and insert that name with the constructed event list
in the eventgraph. An example of the construction of the eventgraph for a
nested event is given in Figure 5.2. In this example, we first construct the
event lists of the arguments. We have a composite event AND as one of the
arguments of the nested event. We construct the eventlist of AND and insert
it into the eventgraph together with temporary name 1.

We assume that class level rule and event specifications appear before
OpenOODB^beginTransaction(p in the SNOOP preprocessed file. We keep
all the information about rules in rulegraph. rulegraph is constructed from the
event lists in the eventgraph. The baseclass of a CLR is found using rultclass
binary tree structure.

To determine which variable belongs to which class, we look for places where
constructors are called. Variables are kept in a binary tree called vartree.

^The arguments of an event EVENTTYPE(E,F) are E and F.
'Starts an Open OODB transaction.

CHAPTER 5. IMPLEMENTATION 29

for each event E
if E is primitive

Process-Primitive.Event(E)
else

while E is still a nested composite event do
Ei(XA^··) ^ FгndJnnermosL·Event(E)
ELx ^ eventlist of X in eventgrapli
ELy ^ eventlist of Yin eventgraph
EE ^ construct the eventlist of E using EL^^ELy ,̂
insert T^Finto eventgraph with name icIe,
Eoid ^ E
E ^ replace ..) with in Eoid

Process-Basic-Event

Figure 5.1: Algorithm to C^onstruct Event Lists of Nested Events

In Sentinel conditions and actions of rules are specified ¿is functions ¿ind ¿ire
declared after main(). We must keep tr¿ıck of which function belongs to which
rule and whether it is a condition or ¿in action. For this purpose, we use a
binary tree called functiontree. Each node in that tree has the mime of the
function, whether it is a condition or an action ¿ind a pointer to the rule node
that function belongs to. This way we can find the rule that function belongs
to in 0{logN) compcirisons where N is the number of rules.

In detailed conflict detection, the nonconflicts are specified in .deg extension
files. The .deg extension file must have the same name with the .sh extension
file. The file can have at most one class declaration and event ¿ind rule dec-
lai'citions associated with that chiss. We have to keep track of which class is
declared in which file because we label the detailed conflict graphs using chiss
n¿ıme. We keep this inform¿ıtion in a bin¿ıry tree called fileclass.

Dechiration of CLR is similar to that of ILR ¿ind declar¿ıtion of chiss level
events is similar to that of instance level events.

Each node in the linked list of rules has the following fields:

CHAPTER 5. IMPLEMENTATION 30

Example of a Nested Event
("ST0CK_e_C0MPl",new AND(ST0CK_e2, ST0CK_e3),ST0CK_rel5);

After 1 step
("ST0CK_e_C0MPl",l ,ST0CK_rel5);

EVENTGRAPH
1 : STOCK.buy_stock STOCK.sell_stock
ST0CK_e2 : STOCK.sell.stock
STOCK.eS : STOCK.buy.stock
ST0CK_rel5 : TEMPORAL.10 sec

Figure 5.2: Sample Run on a Nested Event

Field Type Meaning

type boolean CLR or ILR
name pointer to string name of the rule
bciseclass pointer to string the class for which CLRs are defined
eptr list object linked list to store events
cptr list object linked list to store conditions
ciptr list object linked list to store actions
next pointer to rulenode pointer to the next rule

Each node of the rule list has the following fields for ILR, in addition to the
fields specified above:

Field Type Meaning

fcname pointer to string name of the object

nncUTie pointer to string name of the method

next pointer to listnode pointer to the next element

CHAPTER 5. IMPLEMENTATION 31

For CLR, a node has the sam(j fields with different contents.

Field Type Meaning

fenarne pointer to string name of the method
nname pointer to string unused
next pointer to listnode pointer to the next element

We also keep n global linked list to store variables defined on classes and
their associated classes. This list is sorted on the basis of variable narnes. The
linked list nodes have the following fields:

Field Type Meaning

fename pointer to string name of the variable
nname pointer to string type of the variable
next ¡pointer to listnode pointer to the next element

The linked lists for events, conditions, and actions are kept in lexicogrciphical
order based on their first field. This makes the process of determining conflicts
easy: if both rules are of the same type, it is simply checked whether two lists
intersect or not. We assume that an ILR can span severed classes, but a CLR
spans only one class.

To detect conflicts between an ILR R{ having part list Li and a CLR Rj
having part list Lj, the algorithm in Figure 5.3 is used. Part list refers to either
one of an event list, a condition list, or an action list. The algorithm used to
detect conflicts between two ILR is presented in Figure 5.4. In the edgorithm,
first(L) denotes the first element of list L; next(x) denotes the element that
succeeds x in the list. Detecting conflicts between two ILR is achieved as
follows: first we find the objects that match, then find out if function names
also match. To detect conflicts between two CLR, the algorithm in Figure 5.4
can be used. If the length of the part list of a CLR is n and the length ol the

CHAPTER 5. IMPLEMENTATION 32

Trigger-Instance-Class(Ri^LiRj,Lj)
for each element x of Lj

if type of X = baseclass of Ri
for each element y of Li

if name of y = function name of Lj
/* there is a conflict */
return (i)

return(O)

Figure 5.3: Function to Detect Conflicts Between an ILR and a CLR

Trigger-Instance-Instance(Ri,LiRj,Lj)
X ^ first(Li)
y ^ first(Lj)
while X <> nil and y <> nil

if object name of x < object name of y
X <— next(x)

else if object name of x > object name of y
y V- next(y)

else while x <> nil and y <> nil and
object name of x = object name of y

if function name of x < function name of y
X <— next(x)

else if function name of x > function name of y
y ^ next(y)

else /* there is a conflict */
return(l)

return(O)

Figure 5.4: Function to Detect Conflicts Between two ILR

CHAPTER 5. IMPLEMENTATION 33

Action-Event-Dependencies()
for each node i of rulegraph

for each node j of rulegraph (j <> i)
if both i and j are ILR

if Trigger-Installce-Instance(i,i^aptrJJ ^eptr) = 1
Trigger-Insert-Edge(iJ)

else if i is an ILR and j is a CLR
if Trigger-Instance-Class(i,i^aptrJJ ^eptr) = 1

Trigger-Insert-Edgefi J)
else if i is a CLR and j is an ILR

if Trigger-Instance-ClassQj—>eptr,i,i ^aptr) = 1
Trigger-Insert-Edge(i J)

else if Trigger-Instance-Instance(i,i—̂ a p trjep tr) = 1
Trigger-Insert-Edge(i J)

Figure 5.5: Algorithm to Detect Action-Event Dependencies

pcirt list of a ILR is m, then detecting conflicts has a time complexity (9(77*7/7.).
If two rules are of the same type then the complexity is 0 {n + rn).

The trigger graph is a directed graph that keeps information about action-
event conflicts. The algorithm in Figure 5.5 is used to detect such conflicts.

Trigger-Insert-Edge(i^j) is a i)rocedure to insert an edge from node i to
node j in the trigger graph. The running time of the cilgorithrn in Figure 5.5
is (9(77 * 77) where n is the number of rules in the rule graph.

The dependency graph is an undirected graph that keeps information about
ciction-action and action-condition conflicts. Figure 5.6 shows the algorithm to
determine if two part lists operate on the same variable and therefore conflict.
The algorithm in Figure 5.7 is used to detect ciction-condition and ciction-
action conflicts. Dependency-Insert-Edge(iJ) is a procedure to insert ¿in edge
from node i to node j in the dependency grciph.

CHAPTER 5. IMPLEMENTATION 34

Dependency(Ri L̂iB.j L̂j)
X ^ first(Li)
y — first(Lj)
while X <> nil and y <> nil

if object name of x < object name of y
X ^ next(x)

else if object name of x > object name of y
y ^ next(y)

else there is a conflict
return(l)

return(O)

Figure 5.6: Function to Detect Dependency Conflicts

Action-Condition-Dependencies()
tempi ^ first(rulegraph)
while (tempi <> nil)

temp2 ^ next (tempi)
while (temp2 <> nil)

if(Dependency(i,i—̂ aptr J J—̂ cptr) = 1 or
(Dependency(i,i-^cptr J J-^aptr) = 1 or
(Dependency(i,i-^aptr,j,j—>aptr) = 1
Dependency-Insert-Edge(ij)

temp2 next(temp2)
tempi ^ next (tempi)

Figure 5.7: Algorithm to detect dependencies

CHAPTER 5. IMPLEMENTATION 35

Parameter Meaning
c Number of classes
V Number of variables
i CLR per class
11 N'limber of variables per class
j Number of ILR
ca Number of method calls in the action part of CLR
cc Number of method calls in the condition part of CLR
ce Number of method calls in the event part of CLR
ia Number of method calls in the action part of ILR
ic Number of method calls iri the condition part of ILR
ie Number of method calls in the event part of ILR

Table 5.1: Parameters Used in Determining Number of Comparisons

5.2 Number of Comparisons to detect depen
dencies

We can estimate the number of comparisons required for the implementation of
conflict-detection algorithms. This estimation can be helpful to determine the
bottlenecks of conflict-detection. Improvements on the parts that are identified
as bottlenecks can lead to more efhcient static rule analysis. Pcirameters used
in this estimation are given in Table 5.1.

5.2.1 Number of Comparisons to Detect Action-Event
Dependency

Class-class

c* i * c* i : Number of list operations
ca * u * (n * cejv + (1 — : Cost of one list operation
72/u: Probability that a node of CLR conflicts with CLR

CHAPTER 5. IMPLEMENTATION 36

V : Finding the type of a variable; using variable list
c * i * c * i * c a * v * { n * celv + (1 — njv)) : Total cost
TCcc = c * i * c * i * ia * {n * ce T V — n)

Instance-Instance

j * j : Number of list operations
ia + ie : Cost of one list operation
j * j * {ia + ie) : Total cost
TCii = j * j * {ia + ie)

Instance-class

j * c* i : Number of list operations
ia * V * {n * ce/v {1 — niv)) : Clost of one list operation
n/v: Probability that a node of ILR conflicts with CLR
V : Finding the type of a variable using variable list
j * c * i * i a * v * {n * cejv + (1 — n/v)) : Totcil cost
TCic = j * c * i * i a * (?i * ce V — n)

Class-instance

c* i * j : Number of list operations
ie + ca : Cost of one list operation
c* i * j * {ie + ca) : Total cost
TCci = c * i * j * {ie T ca)

CHAPTER 5. IMPLEMENTATION 37

Total Cost

The total cost can then be approximated as TCae = TCcc + TCu + TCic + TC'd
for ciction-event dependencies.

5.2.2 Number of Comparisons to Detect Action-Condition
Dependency

In determining action-condition dependency, two CLR are assumed to be con
flicting if they have the same baseclass. The total cost of detecting action-
condition dependencies can be specified as TCac — TCcc + TCu -|- TCic -|- TCd·,
where:
TCcc — c* i * c* i * (ca -j- ce)

TCii = j * j * (ia -b ic)
TCic = j * c* i * {ia + cc)

TCci = j * c* i * (ca + ic)

5.2.3 Number of Comparisons to Detect Action-Action
Dependency

Again in a similar manner, the cost of detecting action-ciction dependencies

can be given as TCaa = TCcc + TCii + TCic + TCci, where;
TCcc = c * i * c * z * {ca + ce)

TCii = j * j * (*« + ia)
TCic = j * c * i * {ia + ca)

TCci = j * c* i * {ca + ia)

5.2.4 Total Cost of Conflict Detection

The sum of all the above costs is

CHAPTER 5. IMPLEMENTATION 38

TC= 2 * TCae + 2 * TCac + TĈ o
= 2 * c * 2 * c *2* {ia ̂ {n ̂ce -\r V — n) 2 ̂ca 2 ̂ce)
+2 * j j * (4 * ia + ¿e + ic)

+2 * j * c * 2 * {ia * (n * ce + — 7̂) + 3 * za + 4 * ca + zc + cc + ze)

The total cost is mainly determined by the number of rules and the length of
event, condition, and action lists.

5.3 User Interface

We implemented a simple user interface for the preprocessor. We assume that
the rule set is si^ecified as a file with .data extension. Such a file contains
many .sh files in which class level event and rule declarations are made and
a .c extension snoop preprocessed file. The user interhice has the following
top level menus: files, ruleset, and graphs. The files menu has two submenus:
edit and quit. Edit calls an editor which can be used to see the contents of
the files. Quit quits the program. Ruleset menu has three submenus: select,
execute and release. Select allows us to change the current rule set. Elxecute
runs the preprocessor on that rule set and release closes the rule set. In the
graphs menu we have trigger and dependency submenus. Trigger displays the
trigger graph and a message indicating whether there exists a cycle or not.
Dependency displays the dependency graph. The snapshot of the preprocessor
is given in Figure 5.8 and a sample trigger graph is given in Figure 5.9.

5.4 Usage of the tool

This tool can be used by anyone who needs to design an active databcise appli
cation. The user writes the class and rule declarations, uses the Snoop j^repro-
cessor to obtain the Snoop preprocessed file and forms the file with extension
.data. In such a file, the last entry is the Snoop preprocessed file. Other entries
are the class declarations of user defined classes. Rules and events are defined

CHAPTER 5. IMPLEMENTATION 39

preprocessor J
Files RuieSet Graphs flle„seLpopup

F i l t e r ___
j' am an / MOTIF / *1

Directories
[d/saman/MOTIF/.
id/saman/MOTI F/..
id/saman/MOTIF/june6*

rt
Files

y

rulesi .data

Selection
/csg rad/saman/MOTI F/I

OK Filter Cancel

Help

J..··!

Figure 5.8: Select Rule Set

in this class declarations. Now the tool can be used. We open the ruleset by
using select on the ruleset menu, and then execute the preprocessor by execute
on ruleset menu. Now the trigger and dependency graphs are contructed. We
can display them by selecting trigger or dependency on the graphs menu. We
also perform cycle detection on tlie trigger graph. If there exists a cycle in the
trigger graph, the list of nodes involved in the cycle is printed. The user can
check if the rule set terminates or not because when there exists a cycle we can
only say that the rule set may not terminate. If rules do not terminate user
must ui^date the design of rules. To obtain a more accurate dependency graph
the user can apply the detailed conflict detection that we described in Section

4.9.

CHAPTER 5. IMPLEMENTATION 40

........... t

-1 preprocessor a··- J
Files RuleSet Graphs

V ■
HellP

ITRIGGER GRAPH

coinprulel
comprule2
coinprule3
insrulel :
insru1e2 :
insruleS :
insrule4 :
insruleS :
emptempl :
eiifiptemp2 :

coinprule2 conipru1e3

insrulel

comprule1
comprulel

insruleS

NO CYCLE IN TRIGGER GRAPH

FZ

Figure 5.9: Trigger Graph

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we describe how to construct trigger cind dependency graphs
using class and rule declarations of the Sentinel active OODBMS. The work
we hcive done is the essential part of static analysis of active rules. Once
we have trigger graph of an active rule set, we can check for termination by
performing cycle detection on that graph. No cycle indicates that termination
is guaranteed. Confluent rule execution can also be achieved by processing
trigger and dependency graphs. Another important feature of our work is that
we handle static analysis of active rules in an OODBMS environment. Stcitic
aucdysis algorithms are conservative, meaning that they either guarantee that
a set of rules terminate, is confluent, or say that they may not terminate,
or rncxy not be confluent. Therefore, we allow the user to provide cxdditional
information to be used in the construction of dependency graphs in order to
perform a more precise analysis of rules. We also provide a user interface of
the preprocessor that constructs trigger and dependency graphs. Our work is
easily adaptable to other systems. By appropriate changes to the processing of
declarations and construction of event lists from events, it can be used in other
active OODBMSs. Our work can accommodate incremental rule analysis if the
modifications are provided in the format specified.

41

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 42

6.2 Possible Improvements on Implementa
tion

An object accessed in the event part of a rule is more likely to be accessed in
condition and action parts. Similarly, an object that is accessed in the condition
part of a rule is more likely to be accessed in the action part. So we can reduce
the cost of determining the type of an object if we use an additional list field in
the rule nodes which contains information about the types of objects used in
that rule. This list can be secirched every time the type of cin object is needed.
We can make insertions to this list while consti-ucting the trigger gi’ciph, and
use it while constructing the dependency graph.

In detecting the conflicts, we use linked lists. Instead if this, we can insert
the variables into an extensible hash table. Each table entry can point to a
linked list where each node contains information about method name, rulename
and whether it represents an event, condition, or an action. We can test the
conflicts while inserting nodes into that data structure. For conflicts between
instance level rules (ILR) and class level rules (CLR), we can use a linked list
for each class type keeping information about variables of that class. Since we
also need to keep class names, a graph structure will be required to repi-esent
the equivalent of variable list in our implementation.

As far as we know, there is no work on analysis of active database rules that
can give us such information as the average number of objects an ILR uses,
the average number of ILR an object is accessed, and the average number ol
CLR per class. Once we implement the system, we can nicvke such aiicdysis and
improve the performance of the system accordingly.

Appendix A

Sample Input Files

A .l Original Program

#include "Sentinel.h"
#include "Demo_company.h"
#include "Demo_employee.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include <time.h>

int cond_emp_or(L_OF_L_LIST *nl_list);
void action_emp_or(L_OF_L_LIST *nl_list);

// Other Function Prototypes

employee *mike, *joe, *jane;
company *newco, *computerco;

main (int arge, char** argv)
{

OpenOODB->beginTrcinsaction() ;

43

APPENDIX A. SAMPLE INPUT PILES 44

mike = new employee("mike",40000,4);
joe = new employee("joe",40000,4);
jane = new employee("jcine",40000,4) ;

newco = new company("newco",40, 200000.00,5000.00,30,5);
computerco = new company("computerco",40, 200000.00,5000.00,30,5);

//INSTANCE EVENT definition
event end(e_mike:mike) void setsalary(float x);
event end(e_mike2:mike) void increasesalary(int percent);
event end(e_jane:jane) void setrank(int y);
event compmike = e_mike >> e_mike2; // SEQ operator
event ite = [22:54:00/07/09/96];
event e_plus = e_jane + [1 year]; //PLUS operator
event end(enewco:newco) void seteefficiency(int eff);
event end(enewco2:newco) void settaxrate(int percent);
event end(enewcoS:newco) void incrementemployeeO;
event e_Astar = A*(enewco,enewcoS ,enewco2);
event end(computerco:newco) void seteefficiency(int eff);
event end(computerco2:newco) void settaxrate(int percent);
event end(computerco3:newco) void incrementemployeeO;
event e_A = A(computerco,computerco3 ,computerco2);

event etl=[09:00:00/01/01/97];
event et2= [09:00:00/01/01/99];
event etempl = P(etl,[l year],et2); //operator P
event etemp2 = !(e_mike2,etl,et2); //operator NOT

//RULE definition
rule insrulel[compmike,inscondl,insactl,RECENT];
rule insrule2[e_j ane,inscond2,insact2,RECENT];
rule insruleS[e_plus,inscondS,insactS,RECENT];
rule insrule4[e_Astar,inscond4,insact4,RECENT] ;
rule insruleS[e_A,inscondS,insactS,RECENT];

APPENDIX A. SAMPLE INPUT PILES 45

rule emptempl[etempl, condtempl, actempl, RECENT];
rule emptemp2 [etemp2, condtemp2, actemp2, RECENT];

mike->setsalary(50000.00);
newco->settaxrate(35);

OpenOODB->commitTransaction();
delete oodb;

}
int cond_emp_or(L_OF_L_LIST *nl_list)
{
if
(mike->getsalary() > 100000)

return 1 ;
}
void action_emp_or(L_OF_L_LIST *nl_list)
{

mike->salarybound();
}

// Other Function Declarations

A .2 Sample Class and CLR Declaration

A .2.1 Demo_employee.sh

#include "Sentinel.h"
class REACTIVE;

class employee: public REACTIVE
{
private:
float salary;

APPENDIX A. SAMPLE INPUT PILES 46

int rank;

public:
employee(float initsal, int initrank);
int getsalary0;
void increaserankO ;
void setrankC int y);

//PRIMITIVE EVENT definition
event end(el) void setsalary(float x);
event end(e2) void increasesalary(int percent);
event end(e3) void salaryboundO ;
event end(e4) int getrankO;

//COMPOSITE EVENT definition
event emp.or = el I e2; //operator OR

//RULE definition
rule emprulel [emp_or, cond_emp_or, action_emp_or, RECENT];
rule emprule2[e3, cond_e3, action_e3, RECENT];
rule emprule3[e3, cond_e3_2, action_e3_2, RECENT];

} ;

A .2.2 Demo_employee.c

#include "Demo_employee.h"
#include <string.h>
#include <stdlib.h>

employee::employee(char *nl,float initsal, int initrank):REACTIVE("employee")
{

name = strdup(nl);
salary = initsal;
rank = initrank;

APPENDIX A. SAMPLE INPUT PILES 47

}
int employee::getsalary()
{
return salary;

>
void employee::setsalary(float x)

salary = x;
}
void employee::increasesalary(int percent)
{

salary = salary ♦ (100 + percent) / 100;
}
void employee::salaryboundO
{
salary = 100000.00;

}
void employee::setrank(int y)
{
rank = y;

}
int employee::getrank()
{
return rank;

}

A .2.3 Demo_company.sh

#include "Sentinel.h"
class REACTIVE;

class company: public REACTIVE
{
private :

APPENDIX A. SAMPLE INPUT PILES 48

int numberofemployees;
float sales;
float salesperemployee;
int taxrate;
int efficiency;

public:
companyC int num, float sal, float spe, int tax, int eff);
float getsalesO;
int getemployeesO ;
float getsalesperemployeeO;
void setefficiency(int eff);

//PRIMITIVE EVENT definition
event end(cel) void incrementemployeeO;
event end(ce2) void decrementemployeeO;
event end(ce3) void updatesalesperemployeeO;
event end(ce4) void settaxrate(int percent);

//COMPOSITE EVENT definition
event ce_or = cel I ce2; //operator OR
event ctempel = P*(ce4,[l month],ce3); //p_star operator

//RULE definition
rule comprulel[ce_or,cond_ce_or, action_ce_or, RECENT];
rule comprule2[ce3, cond_ce3, action_ce3, RECENT];
rule comprule3[ctempel, cond_ce4, action_ce4, RECENT];

A.2.4 Demo_company.c

#include "Demo_company.h"
#include <string.h>
#include <stdlib.h>

APPENDIX A. SAMPLE INPUT FILES 49

company::company(char *nl, int num, float sal, float spe, int tax,
int eff):REACTIVE("company")

{
comp = strdup(nl);
numberofemployees = num;
sales = sal;
salesperemployee = spe;
taxrate = tax;
efficiency = eff;

}
void company: : incrementemployeeO
{
numberofemployees++;

}
void company::decrementemployee()
{
numberofemployees— ;

}
void company::updatesalesperemployee()
{
salesperemployee = sales/numberofemployees;

}
float company::getsales()
{
return sales;

}
int company::getemployees()
{
return numberofemployees;

}
void company::settaxrate(int percent)
{
taxrate = percent;

}

APPENDIX A. SAMPLE INPUT PILES 50

float company::getsalesperemployee()
{
return salesperemployee;

}
void company::setefficiency(int eff)
{
efficiency = eff;

}

A.3 Snoop Preprocessed File Demo.c

#include "Sentinel.h"
#include "Demo_company.h"
#include "Demo_employee.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostreajn.h>
#include <time.h>

// Function Prototypes

employee *mike, *joe, *jane;
company *newco, *computerco;

#include "Sentinel.fn"
#include <thread.h>
#include <synch.h>
extern char APP_ID[128];
extern void Init_call();
int GFLAG = 0;
int PID;
char *APP_NAME;
char *H0ST;

APPENDIX A. SAMPLE INPUT FILES 51

char *GLOBAL_EVENT_FILE;
void load_dynamic_rules(char *host, char *port, char *sg)
{ }
main (int argc, char** argv)
{load_dynamic_rules("juice", "8600", "8604");
PRIMITIVE *company_cel = new PRIMITIVE("company_cel", "company",

"end" , "void incrementemployeeO ") ;
PRIMITIVE *company_ce2 = new PRIMITIVE("company_ce2", "company",

"end" , "void decrementemployeeO ") ;
PRIMITIVE *company_ce3 = new PRIMITIVE("company_ce3", "company",

"end" , "void updatesalesperemployeeO ") ;
PRIMITIVE *company_ce4 = new PRIMITIVE("company_ce4", "company",

"end","void settaxrate(int percent)");
OR *company_ce_or = new 0R("company_ce_or",compcOiy_cel, company_ce2);
PRIMITIVE *company_rell = new PRIMITIVE("company.rell", "TEMPORAL",

"","1 month");
P_star *company_ctempel = new P_star("company_ctempel",company_ce4,

company_rell,company_ce3);
RULE *comprulel = new RULE("comprulel", company_ce_or, cond_ce_or,

action_ce_or, RECENT);
RULE *comprule2 = new RULE("comprule2", company_ce3, cond_ce3,

action_ce3, RECENT);
RULE *comprule3 = new RULE("comprule3", company_ctempel, cond_ce4,

action_ce4, RECENT);

Notify(NULL,"OODB","beginT","begin",system.list);
OpenOODB->beginTrcinsaction() ;
Notify(NULL,"OODB","beginT","end",system_list);

mike = new employee("mike",40000,4);
joe = new employee("joe",40000,4);
jane = new employee("jane",40000,4);

newco = new company("newco",40, 200000.00,5000.00,30,5);
computerco = new company("computerco",40, 200000.00,5000.00,30,5);

APPENDIX A. SAMPLE INPUT PILES .52

PRIMITIVE *e_mike = new PRIMITIVE("e.mike", mike, "end",
"void setsalaryCfloat x)");

PRIMITIVE *e_mike2 = new PRIMITIVE("e_mike2", mike, "end",
"void increasesalary(int percent)");

PRIMITIVE *e_jane = new PRIMITIVE("e_jane", jane, "end",
"void setrank(int y)");

SEQ *compmike = new SEC)("compmike" ,e_mike, e_mike2) ;
PRIMITIVE *ite = new PRIMITIVE("ite", "TEMPORAL", "", "22:54:00/07/09/96");
PRIMITIVE *rell = new PRIMITIVE("rell", "TEMPORAL", "","1 year");
PLUS *e_plus = new PLUS("e_plus",e_jane,rell);
PRIMITIVE *enewco = new PRIMITIVE("enewco", newco, "end",

"void seteefficiency(int eff)");
PRIMITIVE *enewco2 = new PRIMITIVE("enewco2", newco, "end",

"void settaxrate(int percent)");
PRIMITIVE *enewco3 = new PRIMITIVE("enewcoS", newco, "end",

"void incrementemployeeO");
A_star *e_Astar = new A_star("e_Astar",enewco,enewcoS,enewco2);
PRIMITIVE *computerco = new PRIMITIVE("computerco", newco, "end",

"void seteefficiency(int eff)");
PRIMITIVE *computerco2 = new PRIMITIVE("computerco2", newco, "end",

"void settaxrate(int percent)");
PRIMITIVE *computerco3 = new PRIMITIVE("computercoS", newco, "end",

"void incrementemployeeO");
A *e_A = new A("e_A",computerco,computercoS,computerco2);
PRIMITIVE *etl = new PRIMITIVE("etl", "TEMPORAL", "", "09:00:00/01/01/97");
PRIMITIVE *et2 = new PRIMITIVE("et2", "TEMPORAL", "", "09:00:00/01/01/99");
PRIMITIVE *rel2 = new PRIMITIVE("rel2", "TEMPORAL", "","1 year");
P *etempl = new P("etempl",etl,rel2,et2);
NOT *etemp2 = new N0T("etemp2",e_mike2,etl,et2);
RULE *insrulel = new RULE("insrulel", compmike, inscondl, insactl, RECENT);
RULE *insrule2 = new RULE("insrule2", e_jane, inscond2, insact2, RECENT);
RULE *insrule3 = new RULE("insrule3", e_plus, inscondS, insactS, RECENT);
RULE *insrule4 = new RULE("insrule4", e_Astar, inscond4, insact4, RECENT);
RULE *insrule5 = new RULE("insrule5", e_A, inscondS, insactS, RECENT);

APPENDIX A. SAMPLE INPUT PILES 53

RULE *emptempl = new RULE("emptempl", etempl, condtempl, actempl, RECENT);
RULE *emptemp2 = new RULE("emptemp2", etemp2, condtemp2, actemp2, RECENT);

mike->setsalary(50000.00);
newco->settaxrate(35);

Notify(NULL,"OODB","commitT","begin",system_list);
□penOODB->commitTransaction();
Notify(NULL,"OODB","commitT","end",system_list);

delete oodb;
}
int cond_emp_or(L_0F_L_LIST *nl_list)

if
(mike->getsalary() > 100000)

return 1;
}
void action_emp_or(L_0F_L_LIST *nl_list)

mike->salarybound();
}
int cond_e3(L_0F_L_LIST *nl_list)
{
if
(mike->getrank() >5)

return 1;
}
void action_e3(L_0F_L_LIST *nl_list)
{

mike->increasesalary(10);
}
int cond_e3_2(L_0F_L_LIST *nl_list)
{
if

APPENDIX A. SAMPLE INPUT PILES 54

(joe->getrcink() >7)
return 1;

}
void action_e3_2(L_0F_L_LIST *nl_list)
{

joe->increasesalary(20);
}
int cond_ce_or(L_0F_L_LIST *nl_list)
{

return(1);
}
void action_ce_or(L_OF_L_LIST *nl_list)

newco->updatesalesperemployee();
}
int cond_ce3(L_0F_L_LIST *nl_list)

if
(newco->getsalesperemployee() >200000)

return 1;
}
void action_ce3(L_0F_L_LIST *nl_list)
{

newco->setefficiency(10) ;
}
int inscondl(L_0F_L_LIST *nl_list)
{
if
(mike->getsalary() > joe->getsalary())

return 1;
}
void insactl(L_0F_L_LIST *nl_list)
{

joe->increasesalary(lO);
}

APPENDIX A. SAMPLE INPUT PILES 00

int inscond2(L_0F_L_LIST *nl_list)
{
if
(jane->getrank() > inike->getrank())

return 1 ;
}
void insact2(L_0F_L_LIST *nl_list)
{

mike->increasesalary(l);
}
int condtempl(L_OF_L_LIST *nl_list)
{
if
(jane->getsalary() <200000)

return 1;
}
void actempl(L_0F_L_LIST *nl_list)
{
jane->increasesalary(lO);

}
int condteiap2(L_0F_L_LIST *nl_list)
{

if
(mike->getsalary() <100000)
return 1;

}
void actemp2(L_0F_L_LIST *nl_list)
{
inike->setsalary(100000) ;

}
int inscond3(L_0F_L_LIST *nl_list)
{
if (jane->getsalary()<100000)
return 1;

}

APPENDIX A. SAMPLE INPUT FILES 56

void insact3(L_0F_L_LIST *nl_list)
{
jane->setsalary(100000);

}
int cond_ce4(L_0F_L_LIST *nl_list)
{
return 1;

}
void action_ce4(L_0F_L_LIST *nl_list)
{
newco->setefficiency(8);

}
int inscond4(L_0F_L_LIST *nl_list)
{
if (newco->getsalesperemployee()>100000)
return 1;

}
void insact4(L_0F_L_LIST *nl_list)
{

newco->incrementemployee();
}
int inscondS(L_0F_L_LIST *nl_list)

if (computerco->getsalesperemployee()>100000)
return 1;

}
void insact5(L_0F_L_LIST *nl_list)
{

computerco->incrementeinployee() ;
}

Bibliography

[AHW95] Alexander Aiken, Joseph M. Hellerstein, and Jennifer Widorn.
Static analysis techniques for predicting the behcivior of active
database rules. ACM Transactions on Database Systems, 20(1):3-
41, March 1995.

[AWH92] Alexander Aiken, Jennifer Widorn, and Joseph M. Hellerstein. Be
havior of database production rules; Termination, confluence, and
observable determinism. In Proceedings of ACM-SIGMOD Confer
ence on Management of Data, pages 59-68, San Diego, California,
June 1992.

[BCFP96] E. Baralis, S. Ceri, P. Fraternali, and S. Paraboschi. A support en
vironment for active rule design. Journal of Intelligent Information
Systems, 7(2):129-150, October 1996.

[BCP96] Elene Baralis, Stefano Ceri, and Stefano Paraboschi. Modular
ization techniques for active rules design. ACM Transactions on
Database Systems, 21(l):l-29, March 1996.

[BCW93] Elena Baralis, Stefano Ceri, and Jennifer Widom. Better termina
tion analysis for active databases. In 1st International Workshop
on Rules in Database Systems, pages 163-179, September 1993.

[BGB95] Emmanuel Benazet, Herve Guehl, cind Mokrane Bouzeghaub. Vital:
A visual tool for analysis of rule behavior in active datal)ases. In
2nd International Workshop on Rules in Database Systems, pages

182-196, September 1995.

57

BIBLIOGRAPHY 58

[BW95] Elena Baralis and Jennifer Widoin. Better static rule cinalysis for
active database systems. Technical report, Stanford (Jniveristy, De
cember 1995.

[CM93] Sharma Chakravarthy and Deepak Mishra. Snoop: An e.xpressive
event specification language for active databases. Technical Report
UF-CIS-TR-93-007, University of Florida, 1993.

[CR96] Stefano Ceri and Raghu Ramakrishnan. R.ules in database systems.
ACA4 Computing Surveys, 28(1):109-111, March 1996.

[CTZ95] S. Chakravarthy, Z. Tamizuddin, and J. Zhou. A visualization and
explanation tool for debugging eca rules in active database. In 2nd
International Workshop on Rules in Database Systems, pages 197-
212, September 1995.

[Day88] Umeshwar Dayal. Active database management systems. In Pro

ceedings of the Third International Conference on Data and Knowl
edge Bases, pages 150-169, Jerusalem, June 1988.

[D.JP93] Oscar Diaz, Arturo Jaime, and Norman W. Patón. Dear: a debugger
for active rules in an object-oriented context. In 1st International
Workshop on Rules in Database Systems, pages 180-193, September
1993.

[JUD96] Alexander Jaime, Susan D. Urban, and Susanne W. Dietrich. Peard:
A prototype environment for active rule debugging. Journal of In

telligent Information Systems, 7(2):111-128, October 1996.

[KC95] S-K. Kim and S. Chakravarthy. A confluent rule execution model for
active databases. Technical Report UF-CIS-TR-95-032, University
of Florida, 1995.

[Lee96] Hyesun Lee. Support for temporal events in sentinel: Design, imple
mentation and preprocessing. Master’s thesis, University of Florida,

1996.

[Lia97] Hui Liao. Global events in sentinel: Design and implementation of
a global event detector. Master’s thesis. University of Florida, 1997.

BIBLIOGRAPHY 59

[Ost96] Leon Osterweil. Strategic directions in software quality. ACM Com

puting Surveys, 28(4):738-750, December 1996.

[Tex93] Texas Instruments. Open OODB C ++ API User Manual, 1993.

[vdVS93] Leonie van der Voort and Arno Siebes. Termination and conflu
ence of rule execution. Technical Report CS-R9309, Centrum voor
Wiskunde en Informática, Netherlands, 1993.

[WH95] Thomas Weik and Andreas Heuer. An algorithm for the amilysis
of termination of large trigger sets in an oodbms. In Proceedings of
the First International Workshop on Active and Real-Time Database
Systems, pages 170-189, Sweden, .June 1995.

[Wid96] Jennifer Widom. The starburst active database rule system. IEEE
Transactions on Knowledge and Data Engineering, 8(4):583-595,
August 1996.

