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ABSTRACT

CONSTRUCTION OF
TRIGGER AND DEPENDENCY GRAPHS USING 

EVENT AND RULE DECLARATIONS OF AN 
ACTIVE OBJECT-ORIENTED 

DATABASE MANAGEMENT SYSTEM

All Şaman Tosun
M.S. in Computer Engineering and Information Science 

Supervisor: Asst. Prof. Dr. Özgür Ulusoy 
July, 1997

Traditional database systems are passive, meaning that they only react to 
explicit requests by users or applications. An active database S3̂ stem on the 
other hand, executes operations automatically when certain events occur and 
certain conditions are met. A database management system becomes cictive 
through the addition of rules. The main difficulties in the development of rule 
applications is the lack of design methods and suitable design tools. Conflu

ence and termination are two important properties to be able to implement 
rule applications correctly. In this thesis, the construction of trigger and de
pendency graphs using class and rule declarations of an active object-oriented 
dcitabase system is described. The construction of these graphs provides that 
termination can be checked and a confluent rule execution can be achieved. Im- 
plementcition of a preprocessor that constructs trigger and dependency graphs 
is cilso provided.

Key words·. Active Database Systems, Database Rule Processing, Static- 
Analysis, Confluence, Termination.
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ÖZET

AKTİF BİR VERİTABANINDA TETİKLEME VE BAĞLILIK 
ÇİZGELERİNİN EYLEM VE KURAL TANIMLAMALARI 

KULLANILARAK OLUŞTURULMASI

Ali Şaman Tosun
Bilgisayar ve Enlbrmatik Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. Dr. Özgür Ulusoy 
Temmuz, 1997

Klasik veri tabanları pasiftir ve sadece kullanıcılar veya uyguhunalar taraiin- 
dcin yapılan açık isteklere cevap verebilirler. Aktif veri tabanhırı ise, belli 
eylemler gerçekleştiğinde ve belli koşullar sağlandığında işlemleri otomatik ola
rak işleme koyar. Veri tabanları kuralların eklenmesi yoluyla aktif olur. Ku
ral uygulamaları geliştirilmesindeki en büyük problem tasarım yöntemlerinin 
ve uygun tasarım araçlarının eksikliğidir. Birleşme ve bitim uygulamcilarm 
doğru geliştirmesi için gerekli iki önemli özelliktir. Bu tezde, tetikleme ve 
bağlılık çizgelerinin aktif bir veritabanmm sınıf ve kurcil tanımlamalarmdan 
oluşturulması tartışılmaktadır. Bu çizgeler bitim'i kontrol edebilmemizi ve 
birleşme kural işlemeyi sağlar. Bu çizgeleri oluşturacak bir önişleyicinin geliş
tirmesi de tezimizde gerçekleştirilmiştir.

Anahtar kelimeler: Aktif Veri Tabanları, Veri Tabanlarında Kural işleme. 
Statik Analiz, Birleşme, Bitim.
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Chapter 1

Introduction

Traditional database systems are passive, meaning that they only recict to 
explicit requests by users or applications. An active database system, on the 
other hand, executes operations automatically when certain events occur and 
certain conditions are met. A database management system (DBMS) becomes 
active through the addition of rules. Event-Condition-Action (ECA) rules ca.n 
be considered as the most common rule format [DciySS]. An ECA rule is 
composed of three parts: an event, a condition, and an action. An event 
Ccin be a data manipulation or retrieval operation, a method invocation in 
an object-oriented database management system (OODBMS), a signal from a 
timer or a user, or a combiricition of these. Condition is a test on the database 
state. When the siaecified event occurs, the condition pint is tested and if the 
test is successful, the action part is executed.

ECA rules offer a flexible mechanism for common database tasks like con
straint enforcement and view maintenance. It is difficult to predict the behavior 
of a set of active database rules. Three properties of rule behavior: termination, 
confluence, and ob.servable determinism help the database rule programmer lor 
the prediction of rule behavior. A brief description of each of these properties 
can be provided as follows [AWH92]:

• Termination: A set of rules terminates if rules cannot continue to acti
vate each other indefinitely.



• Confluence: A set of rules is confluent if the final database state at 
termination does not depend on the execution order of non-prioritized 
rules.

• Observable Determinism: A set of rules is observable deterministic if 
the appearance of actions visible to the environment does not depend on 
the execution order of non-prioritized rules.

CHAPTER 1. INTRODUCTION 2

Termination, confluence and observable determinism can be very difficult 
or impossible to achieve in most cases, therefore some conservative algorithms 
have been developed for that purjjose [AHW95]. These algorithms either guar
antee that a set of rules terminates, is confluent, is observable deterministic or 
say that they may not terminate, may not be confluent, may not be observcible 
deterministic. In static rule analysis, we don’t have a priori knowledge about 
the execution patterns of rules. A rule may or may not trigger another rule 
depending on a condition on the database state. Future datcibase states that 
Ccui affect the execution order of rules are not available to us in static analysis.

A new execution model along with priority specifications schemes is pro
posed in [KC95] to achieve confluent rule execution in active databases. In 
this work it is assumed that trigger and dependency graphs that are used to 
check confluence are available. Trigger graph is a directed graph representing 
trigger relationships between rules. Dependency graph is an undirected graph 
which represents data and untrigger dependencies [KC95]. Data dependency 
between two rules indicates that they access the same object in their action 
pcirts and at least one of the operations is a write operation. Untrigger depen
dency between two rules means that the same data object is written to in the 
action part of one of the rules and read in the condition part of the other rule. 
To our knowledge, it has not been attempted so far to construct trigger cuid 
dependency graphs from class and rule declarations in an OODBMS.

In this thesis, we aim to construct trigger and dependency graphs using 
the class and rule declarations of an application given as input to the Sentinel 
Active OODBMS which was developed at the University of Fdorida. Snoop 
[CM93] is the event specification language of Sentinel. By using the original 
input files and the SNOOP preprocessed file, we construct an intermediate data
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structure that we call rulegraph. Rulegraph is a linked list of'rules in which each 
node has pointers to the action list, condition list, event list of that rule. These 
lists represent the action, condition and event part of that rule respectiveljc 
Trigger and Dependency graphs are constructed by examining the trigger and 
data dependencies between the rules using event lists, condition lists and action 
lists. Construction of these lists depends on the event types, condition format 
and action format of Sentinel.

Once the graphs are ava.ilable, we can check for teimiination by performing 
cycle detection on the trigger graph. If there is no cycle in the trigger graph 
then the rules are guaranteed to terminate [AWH92]. We can achieve confluent 
rule execution by processing the trigger and dependency graphs as described 
in [KC95]. Our basic work is the construction of these graphs in an active 
OODBMS. In the thesis, we provide the implementation details and cdso discuss 
some samj l̂e rule executions. Our work provides the first implementation of a 
preprocessor to construct these graphs using the class and rule declarations.

A detailed discussion of the issues introduced in this chapter is provided in 
the following chapters. In Chapter 2, we discuss the problem, difficulties and 
limits. In Chapter 3, we provide a detailed description of static rule analysis 
in active DBMSs (ADBMSs). A brief description of Sentinel, SNOOP event 
specification language, and a description of the preprocessor we have designed 
is given in Chapter 4. Chapter 5 presents the implementation details. Finally 
in Chapter 6, conclusions and future work are discussed.



Chapter 2

Problem, Difficulties and Limits

When designing an application using active rules, we must make sure that 
confluence and termination properties hold. This is an important part of active 
dcitabase application development. The problem is how we can detect these 
properties using class and rule declarations. There exists some work on doing 
this when trigger and dependency graphs are available, therefore the missing 
part is to construct these graphs using class and rule declarations. Constructing 
these graphs is difficult because we need the syntax and semantics of ECA rules. 
Each active database has different syntax and semantics, so we need to restrict 
our work to one of them. We have chosen Sentinel active OODBMS. Relational 
and object-oriented active DBMSs have substantial differences regcu'ding this 
matter. Below we provide a brief description of the rule syntax of an active 
relational DBMS(Starburst) and the Sentinel active OODBMS to indicate the 
differences between performing static rule analysis in each type of DBMSs. 
The problem of rule analysis has already been dealt with on relational active 
DBMSs [AHW95]. In relational active DBMSs there exists a limited number 
of event types: inserted, deleted, and updated. In active OODBMSs, it is 
possible to have rich event sets like Snoop that has about 10 event types. In 
relational active DBMSs there are limited number of action types like insert, 
delete, and ui^date but in active OODBMSs every method call is a potential 
event. Another source of difficulties to analyze rules in crctive OODBMSs is tlie 
object-oriented jDaradigm. We have to keep track of which object is an instance 
of which class, and also we need additional information from user to provide

4
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create rule name on table 
when triggering-operations 
[if condition] 
then action 
[precedes rule-list] 
follows rule-list]

Figure 2.1: Syntax of Starburst Rule

emp(id,rank,salary) 
sales(emp-id,month,number)

create rule good-sales on sales 
when inserted 
then update emp

set salary = salary +10
where id in (select emp-id from inserted where number >50)

Figure 2.2: Example of a Rule in Starburst

a more precise analysis. We face certain limitations while constructing trigger 
and dependency graphs using class and rule declarations. The information 
required for the construction of graphs is not available at compile time. The 
condition of a rule is a test on the database which Ccin dynamically change 
during execution. When we detect a cycle in the trigger graph, we can only 
say that the rule set may not terminate because after a number of executions 
the condition of one of the rules in the cycle can become false and the cycle 
Cell! be broken.

Starburst is an active relational DBMS. The syntax of a rule in Starburst is 
provided in Figure 2.1. The triggering-operations are one of inserted, deleted,
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newco = new compcm.y("newco",40, 200000.00,6000.00,30,5);
event end(company_cel:newco) void incrementemployeeO;
event end(company_ce2:newco) void decrementemployeeC);
event company_ce_or = 0R(company_cel,company_ce2)
rule comprulel[company_ce_or, cond_ce_or, action_ce_or, RECENT];
int cond_ce_or(L_0F_L_LIST *nl_list)

if
(newco->getsalesperemployee() >200000) 

return 1;
>
void action_ce_or(L_0F_L_LIST *nl_list)
{
newco->updatesalesperemployee();

>

F'igure 2.3: Example of a Rule Specification in Sentinel

and updated(a,b,..) where a,b,.. are columns of the rule’s table. The op
tional condition specifies an SQL predicate. The action specifies a sequence of 
database operations to be executed when the rule is triggered and its condition 
is true. These operations can be standcird SQL data modification operations 
(insert, delete, update), SQL data retrieval operations (select) and transaction 
abort (rollback). The optional precedes and follows clauses cire used to induce 
a partial ordering on the set of defined rules database schema and cui example 
of a rule in Starburst is shown in F'igure 2.2. This rule increcises an employee’s 
salary by 10 whenever that employee posts sales greater than -50 for a month 
[AHW95].

Sentinel is an active OODBMS developed using Open OODB. OpenOODB 
is an open (i.e, extendible) object-oriented database management system [Tex93] 
developed at Texas Instruments. In Sentinel events and rules are objects. An 
examisle of a rule in Sentinel is given in Figure 2.3. In Sentinel condition and 
ciction of a rule are represented as functions in which the specified methods can 
be called. In condition function change to database state is not allowed.



Chapter 3

Static Analysis of Active Rules

3.1 Definitions

A rule execution sequence (RES) is a sequence of rules thcxt the system can 
execute when a user transaction triggers at lecist one rule in the sequence 
[KC95]. In the following definitions, R denotes a system rule set and D denotes 
the set of all database states. (dj^Rk)^ where dj G D and /4  ^ R̂  denotes a 
pair of a database stcite and a triggered rule set. Set of rules directly triggered 
by a user transaction is called User-Triggered-Rule-Set (UTRS). UTRS is a 
multiset since more than one instance of a rule can be in it.

The following definitions ¿ire adapted from [KC95].

Partial RES Given R and Z), for a nonempty set of triggered rules /4· ^ R 
cind a database state dj G Z), a partial RES  ̂ a is defined to be a sequence of 

rules that connects pairs of a datcibase state and a triggered rule set ¿is follows:

where dj^i G Z)(l < / < rn) is a new d¿ıtab¿ıse st¿ıte obt¿ıined by the 
execution of each rule 7\+/(0 < / < m) is in a triggered rule set Z4 -1-/7
¿ind eligible for execution in dj^i] i.e., dj^i evaliuites the rule’s condition test 
to true. E¿ıch triggered rule set Rk^i C R(l < I < m) is built ¿is Z4-f/ =



{{Rk+i-i — {j'i+i-i}) — Ruf;+i)U Rtk+i, where Rub+i is a set ef rules untriggered 
by r¿+/_i and Rtk+i is a set of rules triggered by

We are interested in Complete RES which is a partial RES that satisfies 
certain conditions.

Complete RES Given R and D, for a nonempty set C R which is a 
set of rules triggered by a user transaction and dj ^ D is a. database state 
produced by operations in the user transaction, a comísete RES (or RES), a 
is defined to be a partial RES:
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(7 — Rfc)  ̂ + RA:+1 ) ■'■i +  I  ’ ’ Í +  7 7 Í - 1

i ĵ+nit Rk+m ’■— 0) ^

where no triggered rules remain after execution of the last rule

Rule shuffling Given a partial RES cri, two rules r; and Vj in ai can 
exchange their positions provided rj G Ry, yielding a different partial RES a-z 
as below:

cTi = <  {dx,Ry) {dk,Ri) '-A idu,Rv) >

<7-2 = <  {dx,Ry) '-A [drŷ Rn) ^  {ds,Rt) >

If shuffiing two rules gives the result, then these rules are said to be com

mutative. Commutativity is an important property to show the confluence of 
a rule set.

Rule commutativity Given R and D, two rules Vi,rj G R are defined to 
be commutative, if for all Ry C R, where ri,Vj G Ry, and for all diitabase state 
dx G D, the following two partial RESs can be defined:

< (dx,Ry) -A (^dk,Ri) -A {du,Rv) >

{dx,Ry^ > {dy,x,Rn) > {dyx, R̂ ') !>

where dx,dk,dm,du € D need not be distinct and likewi.se Ry,Ri,Rn,Ru ^  R 
need not be distinct.



Equivalent partial RESs Two partial RESs ai and aj are defined to be 
equivalent(=) if:

1. <7j· and aj begin with the same pair of database state and triggered rule 
set, and end with the same pair of database stcite and triggered rule set, 
and

2. in cTi and cr, the same set of rules is triggered, possibly in different orders.

Equivalence Class of partial RESs For a partial RES, a € the equiv

alence class of (7 is the set Sa defined as follows

Sa =  {7  e  S I 7 =  cr}

All pcirtial RESs in an equivalence class have the same result.

Confluent Rule Set Given R cind Z), if there exists only one equivalence 
class of complete RESs for every nonempty set R' C R cind every d G Z), R is 
defined to be confluent.

CHAPTER 3. STATIC ANALYSIS OF ACTIVE RULES 9

3.2 static Analysis of Active Rules

Static analysis is the systematic examination of the rule structure for the pur
pose of showing that certain properties are satisfied, regardless of the execution 
path. Static analysis can be performed without the execution of rules. The 
most notable difference between this technique and dynamic analysis is the 
presentation of actual rule behavior. Static cinalysis represents actiud behav
ior with a model based upon the rules semantic features and structure, while 
dynamic analysis represents actual behavior with actual executions. All mod
els are simplifications built by discarding details. Thus static analysis results 
are based upon simplifications, and cannot support probings of the rules to 
arbitrary levels of detail [Ost96].
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In active cUitabases, stcitic analysis techniques are used to deterniine termi
nation and confluence of rule sets. Detection of these properties is important 
to be able to implement applications correctly.

Let us examine the termination and confluence problems in cictive rules. 
Consider two rules Ri and Rj  ̂ in which Rî s ¿iction can trigger Rj and Rj^s 
action can trigger Ri. It is possil^le that Ri and Rj can keep triggerring each 
other indeflnitely. This is the so called termiricition problem. To describe 
the confluence problem, consider two rules Ri and Rj triggered and ready for 
execution. We must select one of the rules to execute. If no priorities on rules 
cire specified, the final databcise state may depend on the order in which the 
rules are executed. If Ri’̂ s action changes the database state in a way that Ti/’s 
condition evaluates to false, then first Rj ciiid then Ri can be executed; but 
when Ri is executed first, then Rj will not be executed. Thus we niciy come 
up with difterent database states. In this case, the rules are not commutative 
and we have the confluence problem.

3.3 Dependencies

Two kinds of dependencies are defined on active rules [KC95].

• Data Dependency; Two distinct rules Ri and Rj have a data depen
dency if Ri writes in its action part to an object that Rj reads or writes 
in its action part or vice versa.

• Untrigger Dependency: Two distinct rules Ri and Rj have an untrigger 
dependency if R{ writes in its action part to a data object that Rj reiuls 
in its condition part or vice versa.

If there is a data dependency between two rules, one rule can change what 
the other rule reads or overwrite the data written by the other. In this case, 
the final outcome depends on the execution order of the two rules. II there is 
no data dependency between the rules, two rules are independent and the final 
outcome of their execution is the same regardless of the execution order.
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If there is an untrigger dependency between two rules, one rule’s ¿iction cun 
change the condition and other rule may or niciy not execute depending on this 
change. Therefore, the final database state depends on the execution order of 
the two rules.

Absence of data and untrigger dependencies is a sufficient condition for two 
rules to be commutative [КС95]. If there is a dependency between the rules, 
they are said to be conflicting with each other.

3.4 Dependency Graph

A dependency graph [KC95] DG  = (i2, Ed ) is an imclirectecl graph where R is 
the rule set and Ed is the dependency edge set. For each rule r, G R there is a 
corresponding node i in the graph. There is a dependency edge (ti, n) between 
two nodes u and v if and only if there is at least one of data dependency and 
untrigger dependency between the rules r„ and Vy.

3.5 Trigger Graph

A trigger graph [AWH92] TG  =  (R ,E t ) is an acyclic directed graph where R, 
is the rule set and Et is the trigger edge set. There is a trigger edge (u, u) 
between two nodes it and v if and only if the rule ?■„ denoted by node u can 
trigger the rule r̂  denoted by node v. If there is no cycle in the trigger graph 
TG then the rules in R are guaranteed to terminate.

3.6 Related Work

In [AWH92] and [AHW95], some static analysis methods are provided to de
termine whether a given set of rules terminate, confluent and observable de
terministic in the context of Starburst rule system. Starburst is a relational 
database system [Wid96] so the static rule analysis problem is investigated in
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the context of relational databases. [WH95] deals with th^ termination prob
lem in the OSCAR OODBMS model, and describes a set of algorithms that 
allow efficient analysis of termination of a set of rules. [vdVS93] presents a de
sign theory for the static detection of confluence and termination in OODBMSs 
and prove that the static detection of termination and confluence is a decidable 
problem.

[BCW93] uses an extension of relational algebra for description of active 
database rules, and provides an efhcient termination analysis. [BW95] uses a 
propagation algorithm based on the extended relational algebra to determine 
when the action of a rule can affect the condition of another, and to determine 
when rule actions commute. This approach is widely aj^plicable to relational 
active databases.

Researchers and developers agree that one of the main difficulties in the 
development of rule api^lications is the lack of design methods <ind of suitable 
design tools [CR96]. Several tools have been developed to help the user un
derstand the behavior of rules. [DJP93] provides a debugger for active rules 
in object-oriented context. [BGB95] presents a tool which helps the user in 
defining, tracing, and debugging a set of active rules. [JUD96] presents the pro
totype of cin active rule debugging environment. [BCFP96] describes another 
tool for active rule generation, analysis, debugging, and browsing. [CTZ95] 
provides a visualization tool developed for Sentinel Active OODBMS. [BCP96] 
assuming the relational model introduces a modularization technique for de
signing active rules.

[KC95] proposes a new execution model along with priority specification 
schemes to achieve confluent rule execution in active databases. It assumes 
that trigger and dependency gi’aphs are available to the system. There is no 
work to our knowledge that constructs the trigger and dependency graphs from 
the class and rule declarations provided to an active OODBMS. The aim of 
our work is to provide this construction on the Sentinel Active OODBMS.



Chapter 4

Trigger and Dependency 
Graphs

4.1 Sentinel

Sentinel is an ADBMS implemented on top of Open OODB [Tex93]. Rules 
of Sentinel are expressed in the IllCA format. Sentinel supports rules in both 
centralized and distributed environments. Event and rule specifications in Sen
tinel cire incorporated into the C + +  language. An event specification language 
called Snoop was developed to specify events [CM93]. The grammar of Snoop 
is described in Figure 4.1. In Sentinel, any invocation of a method is a poten
tiell primitive event. A set of operators are used to construct composite events 
using primitive and composite events. Snoop supports both local events and 
global events. Local event detector and global event detector were implemented 
to monitor events in centralized and distributed environments [Lia97].

Three types of primitive events are supported by Sentinel [Lia97]:

1. Database Events, which correspond to database opercitions used to ma
nipulate data. Every method of an object is a potential primitive event, 
and they are transformed into events using two event modifiers: begin-of 
cind end-of.

13
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E begin-ofFii | end-of El | El
El·:= El AND E2 | El OR E2 | E2
E2:= E2 SEQ E3 | E3
E3:= ANY(Value,E4) | E5 | ANY(Value,E5)
E4-:= E4,E5 | E5
E.5t:= A(E1,E1,E1)

I A*(E1,E1,E1)
I P(El,[time string],El)
I P(El,[time string]:i)arameter,El)
I P*(El,[time string]:parameter,El) 
I [absolutetimestring]
I (E l) + [relativetimestring]
I Explicit Events
I Database Events
I L:(E1) /* where L is a label * /
I (E l)

Value :;= integer j oo

Figure 4.1: BNF for Snoop

2. Temporal Events[Lee96], which include absolute and relative temporal 
events. An absolute temporal event is specified as an absolute value of 
time. A relative temporal event is specified by a reference event and a 
time offset.

3. External Events, which denote events defined by users or apiDlication 
progrcims and are registered with the system. They are also called global 
events which support EGA rule processing in a distributed system. Exter
nal events are assumed to be detected outside the system but are signaled 
to the system along with their parameters.

Events and rules can be defined at either class level or instance level. A 
class level event/rule is applicable to every object of that class and declared 
inside a class definition. An instance level event/rule is applicable to specific 
object instances.

Sentinel supports four parameter contexts: recent, chronicle, continuous,
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event-Spec event eventjmodifier metliocLsignkture 
I event event_iiame = event.exp

event.modifiei' event mame
begin ( event-name) 
end (eventmame)
begin (eventmame) && end (event_nanie) 
end (eventmame) && begin (event Jiame)

rulespec rule rule_name (event jiame,
condition-function, action-function 
[, [pa ra mete r.cant ext], [ coupling.mode] 
\;priority]\ruIe.trigger.model\])

parameter.context ::= RECENT | CHRONICLE | CONTINUOUS
I CUMULATIVE

coupling.mode IMMEDIATE | DEFERRED | DETACHED
priority positive integer
rule.trigger.mode NOW | PREVIOUS

Figure 4.2: BNF for Snoop

and cum/ulative cind two coupling modes: immediate and deferred. Multiple rule 
executions, nested rule execution, and prioritized rule execution are supported 
in Sentinel.

The syntax of the Snoop event/rule specification [Lee96] is provided in Fig
ure 4.2.

4.2 Construction of Trigger and Dependency 
Graphs

An example of class declaration and rule format in an OODBMS is given 

in Figure 4.3F In this example, an employee class is declared. The class has 
three class level rules (CLR): cla.ssrulel, classrule2 and classrule3. Mike, joe

InThis is a very simple rule format of a hypothetical system.
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class employee;

employee mike;

class employee { 
private:

real salary; 
int rank;

public:
int getsalaryO {return salary; } 
void setsalaryCreal x) { salary = x;}
void increasesalary( int percent) { salary = salary*(100+percent)/100;}
void salaryboundC) { salary = 100000;}
void increaserankO {rank++;}
void setrank( int y) { rank = y;}
void getrankO { return rank; }

rules:
classrulel ( setsalaryO or increasesalary() , mike.getsalaryO > 100000, 

mike.salaryboundC) ; );
classrule2 ( salaryboundC) , mike.getrankC) > 5 ,

mike.increasesalaryC10) ; ); 
classruleS C salaryboundC) , mike.getrankC) > 7 ,

mike. increasesalairy C20) ; );
>;

employee joe ;
rule instancerulel C mike.setsalaryC) or mike.increasesalaryC) ,

mike.getsalaryC) > joe.getsalary0  , 
joe.increasesalaryClO) ; );

employee jane ;
rule instancerule2 C jane.setrankC) ,

jane.getrankC) > mike.getrankC) , 
mike. increaserankO ; );

Figure 4.3: Example of Rules
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Name : classrulel 
Type : 1 
Base : employee 
Eventlist:
(increasesalary ) (setsalary ) 
Conditionlist:
(mike getsalary )
Actionlist:
(mike salarybound )

Name : instancerule2 
Type : 2 
Eventlist:
(jane setrank)
Conditionlist:
(jane getrank) (mike getrank) 
Actionlist:
(mike increaserank)

Figure 4.4: Example Nodes of Rulegraph

cind jcine are three instcirices of the employee class object. Two instance level 
rules (ILR) are declared: instancerulel and instancerule2. Each rule has event, 
condition, and action parts separated by comnicis. The event part is composed 
of method culls and opercitors. The condition part hcis a comparison opercitor 
and the action part is composed of sequence of method calls.

In Sentinel, constructing trigger cind dependency graphs can be done con
servatively. Each method call is a potential event. If we assume that the ¿ictioii 
part of rules consists of method calls only, constructing a trigger graph is easy. 
Two nodes of the rulegraph for the example shown in Figure 4.3 is given in 
Figure 4.4. If a method call is executed in the action part of a rule and an 
event is defined in another rule on the same method Ccill, then there is a trig
ger dependency and a directed edge should be added to the trigger graph. To 
detect these dependencies we can insert entries for the method calls executed 
in the action part of a rule into a linked list and insert entries for the method 
Ccills in the event part of a list into another linked list. If the two lists have
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at least one common element, this means that there is a trigger dependency. 
Constructing the eventlist is not trivial when the rich event set of Snoop is 
used. This problem is addressed later in this chapter.

Constructing a dependency graph is similar. An edge is added to the de
pendency graph if there exists either data dependenc}' or untrigger dependency 
between any two rules. An entry for every method call executed in the action 
part of a rule is inserted into an action list constructed for that rule. Condition 
of a rule is actually a test performed on the database state. In an OODBMS 
these tests will be performed by means of method calls. Each method call ac
cessed in the condition part of a rule is inserted into a condition list associated 
with that rule. To detect data dependencies between two rules, we find the 
intersection of the action lists of these rules. If the intersection is not null, 
then there exists a data dependency and an edge is inserted to the dependency 
graph. To detect untrigger dependencies between two rules, we find the inter
section of the condition list of the first rule and the action list of the second 
rule. If two lists intersect, then this means an untrigger dependency, and a 
undirected edge is added from the node of the first rule to the node of the 
second rule into the dependency graph.

The event list, condition list, and action list of rules, that are used to perform 
dependency tests, are stored in the linked list of rule nodes as shown in Figure 
4.5. Each rule node has a pointer to the lirdced list of each of the event, 
condition, and action of the corresponding rule. A rule node also stores the 
name, baseclass, and type of that rule. Both CLR cind ILR are represented by 
this sti'ucture.

The process of detecting dependencies among rules is not trivial when both 
CLR and ILR are allowed. If both rules that are checked for dependencies are 
CLR and they access the same object, there may be data or untrigger depen
dency even if they call different methods. This is because different methods 
can use the same variable. For this reason, we assume that two CLR that 
access the same object are conflicting by default if detailed conflict detection, 
explained later in the chapter, is not provided.



CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 19

Method Calls

Figure 4.5: Rule Graph

4.3 Event Types

There are 10 types of events specified in Sentinel [Lee96],[CM93]. A brief 
description of each of these events is given below.

1. AN D (E,F): Conjunction of two events E and F  is raised when both 
events are raised irrelevant of the order.

2. OR(E,F): Disjunction of two events E  and F  is raised when one of the 
events is raised.

.3. SEQ(E,F) : Sequence of two events E and F  is rai,sed when F'is rai.sed 
provided that E has already been raised.

4. N O T (E )(F ,G ) : The event is raised when E does not occur in the interval 
formed by the occurrence of events F  and G.

5. A N Y (m ,E ,F ,G ,...) : The event is rai.sed when m events out of the 
specified list of events E,F,G.. occur irrelevant of the order.

6. A(E ,F ,G ) : The event is raised each time the event F  is raised in the 
interval formed by the occurrence of events E and G.
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7. A *(E ,F ,G ) : Cumulative variant of A. The event is raised once when the 
event G is raised if the event F is raised in the in the interval formed by 
the occurence of events E and G,

8. P(E,F,G) : The event is raised every amount of time specified by the 
event F  in the interval formed by the occurence of events E and G.

9. P*(E,F,G ) ; Cumulative variant of P. The event is raised once when the 
event G is raised and accumulates the time of occurrences of the periodic 
event whenever event F  occurs.

10. PLUS(E,[TI]) : The event is raised after TI time units when the event 
E is raised.

4.4 Input Processing

In constructing the rulegraph which contains information about the rules, we 
process the class and rule declarations and the Snoop preprocessed file. The 
aim in processing class and rule declarations is to find out which class level rule 
belongs to which class. This information is not available in Snoop preprocessed 
file. For detailed conflict detection we process the deg extension files and insert 
the information into graphs for each class. The Snoop prerocessed file has cdl 
the other necessary information. Events and rules are represented here using 
Open OODB syntax. Condition and action parts of a rule are represented as 
functions. When we construct the condition list cuid action list of a rule we 
must access the information in these functions. For this purpose we use the 
following strategy: when we proc<;ss a rule, we insert the name of the condition 
cuid action functions of that rule into a binary tree structure with pointers to 
associated rule node. When we process the function, by following that link we 
find the corresponding rulegraph node and construct the condition and action 
lists.

4.5 Event List Construction
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Event Type Inserted Into Eventlist
AND(E,F) E,F
OR(E,F) E,F
SEQ(E,F)
NOT(E)(F,G) G
ANY(m,E,F,G·..) E,F,G„
A(E,F,G) F
A*(E,F,G) G
P(E,F,G) E
P*(E,F,G) G
PLUS(E,[TI]) E

Table 4.1: Eventlist Construction

Event list construction is based on the type of the events described in the 
preceding section. As an example, the event AND(E,F) is raised when both 
events E and F are raised. Since we don’t know the history of events we 
can assume that the occurence of any of two events can lead to the raise of 
AND(E,F) (considering the possibility that the other event might have alrecidy 
been raised). Therefore we insert both E and F into the event list. As another 
example, A(E,F,G) is raised each time the event F is raised in the interval 
formed by the events E and G. Only the occurrence of event F can result in 
the raise of A(E,F,G); therefore we insert F into the event list. Event list 
construction of all types of events is siDecified in Table 4.1.

For composite events that can include more than one event type of those 
described in Section 3.3, the event list can be constructed recursively as follows. 
Let E =  EVENTTYPE(F,G) be an event expression, where Fand G are event 
expressions and EVENTTYPE is the highest precedency event in E. The event 
lists of E and G are constructed on the basis of the Table 4.1 and then the 
event list of E is constructed, again referring to Table 4.1 for the event type 
of EVENTTYPE. If an event expression is a primitive event then the event 
list contains only that primitive event. In construction of event list precedence 
and associativity rules of SNOOP are iilso important.
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< expression >:: = < term >|< expression > or < term >
< term >:: = < item >|< term > and < item >
< item >:: = < methodcall >< comparator >< number >

|< methodcall >< comparator >< methodcall > 
|< number >< comparator >< methodcall >

< comparator >::=<|>|<|>| = = |<>

Figure 4.6: Declaration of Conditions

iiit functionnarne(...)
{
if (condition) 

return(l)
}

Figure 4.7: Declaration of Condition Functions

4.6 Condition List Construction

We assume that the condition part of a rule is expressed as shown in Figure 4.6. 
In this declaration, method calls can have other method calls as parameters 
which might be necessary in some applications. In Sentinel, condition cind 
action parts of a rule are represejited as functions.

Each method call executed in the condition part of a rule is inserted into 
the condition list of that rule. Conditions are functions in Sentinel. We assume 
that a condition in Sentinel, which is represented as a function, is defined cis 

given in Figure 4.7.
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delete eventname 
delete rulename

insert evendeclaration 
insert ruledeclaration

modify eventdeclaration 
modify ruledeclaration

Figure 4.8: Format of File for Incremental Methods

4.7 Action List Construction

We assume that the action of a rule consists of a sequence of method calls. 
Each method call executed in the action pcirt of a rule is inserted into the 
action list of that rule.

4.8 Incremental Methods

In our current implementation, dependency cind trigger graphs are constructed 
cifter any change to the rule set. In fact, previous graphs are still valid and 
only an incremental cinalysis needs to be performed. All our design and imple
mentation were performed such that any change in the rule set can be handled 
through incremental methods. However, we require that at each update, the 
deleted, inserted, and modified class and rule declarations should be given in 
a file. The format of this file Ccin be as given in Figure 4.8

4.9 Detailed Conflict Detection

When two method calls operate on the same data item, they can be assumed 
to be conflicting but this may not be the case in reality. Two method calls
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DEPENDENCY GRAPH

comprulel : comprule2 compruleS insrule4
comprule2 : comprulel compruleS insrule4
compruleS :: comprulel comprule2 insrule4
insrulel : emptemp2 insrule2
insrule2 : emptempl emptemp2 insrulel
insruleS : emptempl insrule2
insrule4 : 
insruleS :

comprulel comprule2 compruleS

emptempl : insrule2 insruleS
emptemp2 : insrulel insrule2

insruleS

Figure 4.9: Dependency Graph Without Detailed Conflict Detection

updatesalesperemployee setefficiency 
incrementemployee setefficiency 
updatesalesperemployee getsalesperemployee

Figure 4.10: Detailed Conflict Detection File Demo_company.dcg

can access different varicibles and they may not conflict. It is not possible to 
determine the conflicts of such method calls without getting some information 
from the user. In our implementation we require the user to specify tire methods 
that do not conflict in a .deg extension file. The name of a file with .deg 
extension will be the same as the file in which the class was declared. The more 
number of nonconflicts provided by the user, the more accurate dependency 
graph can be generated.

We use a graph structure to keep track of the list of nonconflicts of a. class. 
Each class has an associated graph if its corresponding .deg file is specified. If 
all noirconflicts of classes are specified, an accurate dependency graph can be 
obtained by using this strategy. This will reduce the number of dependencies 
in the dependency graph.



CHAPTER 4. TRIGGER AND DEPENDENCY GRAPHS 95

For the rule set given in Appendix, without detciiled conflict detection the 
dependency graph is as shown in Figure 4.9. If we provide the .deg file shown in 
Figure 4.10, we get the dependency graph where the dependencies (comprulel, 
comprule2), (comprule2, comprulel), (comprulel, compruleS) and (compruleS, 
comprulel) are removed.

We eliminated the existence of such edges between the nodes of comprulel 
cind cornprule2, and the nodes of comprulel and cornpruled by providing the 
information in Figure 4.10. The nodes corresponding to rules compruleO, com- 
prule2, comprulel are given in Figure 4.11 to make this clear.
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Name : compruleS 
Type : 1 
Base : company 
Events:
(updatesalesperemployee )
Conditions:

Actions:
(newco setefficiency)

Name : comprule2 
Type : 1 
Base : company 
Events:
(updatesalesperemployee )
Conditions:
(newco getsalesperemployee)
Actions:
(newco setefficiency)

Name : comprule1 
Type : 1 
Base : company 
Events:
(decrementemployee ) (incrementemployee ) 
Conditions:

Actions:
(newco updatesalesperemployee)

Figure 4.11: Nodes Of Rulegraph For Rules cornprulel, coniprule2, coiiiprule3
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Implementation

111 this chapter, we discuss the implementation details of the construction of 
the trigger and dependency graphs.

5.1 Data Structures

We construct trigger and dependency graphs using some information cibout 
the rules of the system. In Sentinel, this information is provided in the header 
files which contain class declarations, class level events, rules and the SNOOP 
preprocessed file. See Appendix A for a sample input hie iuid the SNOOP 
preprocessed form.

We refer to the SNOOP preprocessed form of the input hie as the mciin 
file. In processing the main hie, we do not use the part preceding IniLcalL 
Following this part we have class level event and rule declarations.

Our aim is to construct trigger and dependency graphs. Trigger graph is a 
directed graph and dependency graph is undirected. We use a directed graph 
that we call trigger for trigger gra])h and an undirected graph called dependency 
for dependency graph.

It is not easy to hnd which class level rule operates on which class. We

27
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process the header files and insert the name of a rule and the class it operates 
on into a binary tree called ruleclass. A rule described in the header file operates 
on the class in which it is declared.

VVe have to construct the event lists of a,ll specified events. We use a gi'ciph 
structure in constructing the event lists. For each primitive event we just store 
the name of the event in this graph. Comjsosite and nested events might cause 
some problems. We call an event a nested event if at least one of its arguments^ 
is a composite event. In constructing the event list of a composite or nested 
event it is necessary to find the eventlists of arguments. For this purpose, we 
keep the eventlist of every event defined in an adjacency list graph structure 
called eventgraph. The nodes of the graph contain the names of events and 
a. pointer to the event list of the associcited rule. To construct the event list 
of a nested event, we use the algorithm given in Figure 5.1. The function 
Process-Primitive.Event inserts the event into the eventgraph and the function 
Process-Basic-Event inserts the arguments of the event into the eventgraph 
according to the rules given in Table 4.1. An event which has only one event 
type is called a bcisic event. We assign a temporary name to the event whose 
event list is constructed, and insert that name with the constructed event list 
in the eventgraph. An example of the construction of the eventgraph for a 
nested event is given in Figure 5.2. In this example, we first construct the 
event lists of the arguments. We have a composite event AND as one of the 
arguments of the nested event. We construct the eventlist of AND and insert 
it into the eventgraph together with temporary name 1.

We assume that class level rule and event specifications appear before 
OpenOODB^beginTransaction(p in the SNOOP preprocessed file. We keep 
all the information about rules in rulegraph. rulegraph is constructed from the 
event lists in the eventgraph. The baseclass of a CLR is found using rultclass 
binary tree structure.

To determine which variable belongs to which class, we look for places where 
constructors are called. Variables are kept in a binary tree called vartree.

^The arguments of an event EVENTTYPE(E,F) are E and F. 
'Starts an Open OODB transaction.
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for each event E 
if E is primitive

Process-Primitive.Event(E) 
else

while E is still a nested composite event do 
Ei(XA^··) ^  FгndJnnermosL·Event(E)
ELx ^  eventlist of X  in eventgrapli
ELy ^  eventlist of Yin eventgraph
EE ^  construct the eventlist of E using EL^^ELy ,̂
insert T^Finto eventgraph with name icIe,
Eoid ^  E
E ^  replace ..) with in Eoid

Process-Basic-Event

Figure 5.1: Algorithm to C^onstruct Event Lists of Nested Events

In Sentinel conditions and actions of rules are specified ¿is functions ¿ind ¿ire 
declared after main(). We must keep tr¿ıck of which function belongs to which 
rule and whether it is a condition or ¿in action. For this purpose, we use a 
binary tree called functiontree. Each node in that tree has the mime of the 
function, whether it is a condition or an action ¿ind a pointer to the rule node 
that function belongs to. This way we can find the rule that function belongs 
to in 0{logN ) compcirisons where N is the number of rules.

In detailed conflict detection, the nonconflicts are specified in .deg extension 
files. The .deg extension file must have the same name with the .sh extension 
file. The file can have at most one class declaration and event ¿ind rule dec- 
lai'citions associated with that chiss. We have to keep track of which class is 
declared in which file because we label the detailed conflict graphs using chiss 
n¿ıme. We keep this inform¿ıtion in a bin¿ıry tree called fileclass.

Dechiration of CLR is similar to that of ILR ¿ind declar¿ıtion of chiss level 
events is similar to that of instance level events.

Each node in the linked list of rules has the following fields:
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Example of a Nested Event
("ST0CK_e_C0MPl",new AND(ST0CK_e2, ST0CK_e3),ST0CK_rel5); 

After 1 step
("ST0CK_e_C0MPl",l ,ST0CK_rel5);

EVENTGRAPH
1 : STOCK.buy_stock STOCK.sell_stock 
ST0CK_e2 : STOCK.sell.stock 
STOCK.eS : STOCK.buy.stock 
ST0CK_rel5 : TEMPORAL.10 sec

Figure 5.2: Sample Run on a Nested Event

Field Type Meaning

type boolean CLR or ILR
name pointer to string name of the rule
bciseclass pointer to string the class for which CLRs are defined
eptr list object linked list to store events
cptr list object linked list to store conditions
ciptr list object linked list to store actions
next pointer to rulenode pointer to the next rule

Each node of the rule list has the following fields for ILR, in addition to the 
fields specified above:

Field Type Meaning

fcname pointer to string name of the object

nncUTie pointer to string name of the method

next pointer to listnode pointer to the next element
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For CLR, a node has the sam(j fields with different contents.

Field Type Meaning

fenarne pointer to string name of the method
nname pointer to string unused
next pointer to listnode pointer to the next element

We also keep n global linked list to store variables defined on classes and 
their associated classes. This list is sorted on the basis of variable narnes. The 
linked list nodes have the following fields:

Field Type Meaning

fename pointer to string name of the variable
nname pointer to string type of the variable
next ¡pointer to listnode pointer to the next element

The linked lists for events, conditions, and actions are kept in lexicogrciphical 
order based on their first field. This makes the process of determining conflicts 
easy: if both rules are of the same type, it is simply checked whether two lists 
intersect or not. We assume that an ILR can span severed classes, but a CLR 
spans only one class.

To detect conflicts between an ILR R{ having part list Li and a CLR Rj 
having part list Lj, the algorithm in Figure 5.3 is used. Part list refers to either 
one of an event list, a condition list, or an action list. The algorithm used to 
detect conflicts between two ILR is presented in Figure 5.4. In the edgorithm, 
first(L) denotes the first element of list L; next(x) denotes the element that 
succeeds x in the list. Detecting conflicts between two ILR is achieved as 
follows: first we find the objects that match, then find out if function names 
also match. To detect conflicts between two CLR, the algorithm in Figure 5.4 
can be used. If the length of the part list of a CLR is n and the length ol the
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Trigger-Instance-Class( Ri^LiRj,Lj ) 
for each element x of Lj

if type of X =  baseclass of Ri 
for each element y of Li

if name of y = function name of Lj 
/* there is a conflict */ 
return (i)

return(O)

Figure 5.3: Function to Detect Conflicts Between an ILR and a CLR

Trigger-Instance-Instance( Ri,LiRj,Lj )
X ^  first( Li) 
y ^  first( Lj)
while X <> nil and y <> nil

if object name of x < object name of y 
X <— next(x )

else if object name of x > object name of y 
y V- next(y )

else while x <> nil and y <> nil and
object name of x = object name of y 

if function name of x < function name of y 
X <— next(x )

else if function name of x > function name of y 
y ^  next(y )

else /* there is a conflict */ 
return(l)

return(O)

Figure 5.4: Function to Detect Conflicts Between two ILR
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Action-Event-Dependencies()
for each node i of rulegraph

for each node j of rulegraph (j <> i) 
if both i and j are ILR

if Trigger-Installce-Instance(i,i^aptrJJ ^eptr ) = 1 
Trigger-Insert-Edge(iJ) 

else if i is an ILR and j is a CLR
if Trigger-Instance-Class(i,i^aptrJJ ^eptr ) = 1 

Trigger-Insert-Edgefi J) 
else if i is a CLR and j is an ILR

if Trigger-Instance-ClassQj—>eptr,i,i ^aptr ) = 1 
Trigger-Insert-Edge(i J)

else if Trigger-Instance-Instance(i,i—̂ a p trjep tr) = 1 
Trigger-Insert-Edge(i J)

Figure 5.5: Algorithm to Detect Action-Event Dependencies

pcirt list of a ILR is m, then detecting conflicts has a time complexity (9(77*7/7.). 
If two rules are of the same type then the complexity is 0 {n  +  rn).

The trigger graph is a directed graph that keeps information about action- 
event conflicts. The algorithm in Figure 5.5 is used to detect such conflicts.

Trigger-Insert-Edge(i^j) is a i)rocedure to insert an edge from node i to 
node j in the trigger graph. The running time of the cilgorithrn in Figure 5.5 
is (9(77 *  77) where n is the number of rules in the rule graph.

The dependency graph is an undirected graph that keeps information about 
ciction-action and action-condition conflicts. Figure 5.6 shows the algorithm to 
determine if two part lists operate on the same variable and therefore conflict. 
The algorithm in Figure 5.7 is used to detect ciction-condition and ciction- 
action conflicts. Dependency-Insert-Edge(iJ) is a procedure to insert ¿in edge 
from node i to node j in the dependency grciph.
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Dependency( Ri L̂iB.j L̂j )
X ^  first( Li) 
y — first( Lj)
while X <> nil and y <> nil

if object name of x < object name of y 
X ^  next(x )

else if object name of x > object name of y 
y ^  next(y ) 

else there is a conflict 
return(l)

return(O)

Figure 5.6: Function to Detect Dependency Conflicts

Action-Condition-Dependencies() 
tempi ^  first(rulegraph) 
while (tempi <>  nil)

temp2 ^  next (tempi) 
while (temp2 <>  nil)

if(Dependency(i,i—̂ aptr J J—̂ cptr) = 1 or 
(Dependency(i,i-^cptr J J-^aptr) = 1 or 
(Dependency(i,i-^aptr,j,j—>aptr) = 1 
Dependency-Insert-Edge(ij) 

temp2 next(temp2) 
tempi ^  next (tempi)

Figure 5.7: Algorithm to detect dependencies
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Parameter Meaning
c Number of classes
V Number of variables
i CLR per class
11 N'limber of variables per class
j Number of ILR
ca Number of method calls in the action part of CLR
cc Number of method calls in the condition part of CLR
ce Number of method calls in the event part of CLR
ia Number of method calls in the action part of ILR
ic Number of method calls iri the condition part of ILR
ie Number of method calls in the event part of ILR

Table 5.1: Parameters Used in Determining Number of Comparisons

5.2 Number of Comparisons to detect depen
dencies

We can estimate the number of comparisons required for the implementation of 
conflict-detection algorithms. This estimation can be helpful to determine the 
bottlenecks of conflict-detection. Improvements on the parts that are identified 
as bottlenecks can lead to more efhcient static rule analysis. Pcirameters used 
in this estimation are given in Table 5.1.

5.2.1 Number of Comparisons to Detect Action-Event 
Dependency

Class-class

c*  i * c*  i : Number of list operations
ca * u * (n * cejv  +  (1 — : Cost of one list operation
72/u: Probability that a node of CLR conflicts with CLR
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V : Finding the type of a variable; using variable list 
c * i * c * i * c a * v * { n *  celv  +  (1 — njv)) : Total cost 
TCcc =  c * i * c * i * ia * {n * ce T V — n)

Instance-Instance

j  * j  : Number of list operations 
ia + ie : Cost of one list operation 
j  * j  * {ia +  ie) : Total cost 
TCii =  j  * j  * {ia +  ie)

Instance-class

j  * c*  i : Number of list operations
ia * V * {n * ce/v {1 — niv)) : Clost of one list operation 
n/v: Probability that a node of ILR conflicts with CLR 
V : Finding the type of a variable using variable list 
j * c * i * i a * v *  {n * cejv  +  (1 — n/v)) : Totcil cost 
TCic =  j * c * i * i a *  (?i * ce V — n)

Class-instance

c*  i * j  : Number of list operations 
ie +  ca : Cost of one list operation 
c*  i * j  * {ie +  ca) : Total cost 
TCci =  c * i * j  * {ie T ca)
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Total Cost

The total cost can then be approximated as TCae =  TCcc +  TCu +  TCic +  TC'd 
for ciction-event dependencies.

5.2.2 Number of Comparisons to Detect Action-Condition 
Dependency

In determining action-condition dependency, two CLR are assumed to be con
flicting if they have the same baseclass. The total cost of detecting action- 
condition dependencies can be specified as TCac — TCcc +  TCu -|- TCic -|- TCd·, 
where:
TCcc — c*  i * c*  i * (ca -j- ce)

TCii =  j  * j  * (ia -b ic)
TCic =  j  * c*  i * {ia +  cc)

TCci =  j  * c*  i * (ca +  ic)

5.2.3 Number of Comparisons to Detect Action-Action 
Dependency

Again in a similar manner, the cost of detecting action-ciction dependencies 

can be given as TCaa =  TCcc +  TCii +  TCic +  TCci, where;
TCcc =  c * i * c * z * {ca +  ce)

TCii = j  * j  * (*« + ia)
TCic =  j  * c * i * {ia +  ca)

TCci =  j  * c*  i * {ca +  ia)

5.2.4 Total Cost of Conflict Detection

The sum of all the above costs is
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TC=  2 * TCae + 2 * TCac + TĈ o
=  2 * c * 2 * c *2* {ia  ̂ {n  ̂ce -\r V — n) 2  ̂ca 2  ̂ce)
+2 * j  j  * (4 * ia +  ¿e +  ic)

+2 * j  * c * 2 * {ia * (n * ce + — 7̂ ) +  3 * za +  4 * ca + zc +  cc +  ze)

The total cost is mainly determined by the number of rules and the length of 
event, condition, and action lists.

5.3 User Interface

We implemented a simple user interface for the preprocessor. We assume that 
the rule set is si^ecified as a file with .data extension. Such a file contains 
many .sh files in which class level event and rule declarations are made and 
a .c extension snoop preprocessed file. The user interhice has the following 
top level menus: files, ruleset, and graphs. The files menu has two submenus: 
edit and quit. Edit calls an editor which can be used to see the contents of 
the files. Quit quits the program. Ruleset menu has three submenus: select, 
execute and release. Select allows us to change the current rule set. Elxecute 
runs the preprocessor on that rule set and release closes the rule set. In the 
graphs menu we have trigger and dependency submenus. Trigger displays the 
trigger graph and a message indicating whether there exists a cycle or not. 
Dependency displays the dependency graph. The snapshot of the preprocessor 
is given in Figure 5.8 and a sample trigger graph is given in Figure 5.9.

5.4 Usage of the tool

This tool can be used by anyone who needs to design an active databcise appli
cation. The user writes the class and rule declarations, uses the Snoop j^repro- 
cessor to obtain the Snoop preprocessed file and forms the file with extension 
.data. In such a file, the last entry is the Snoop preprocessed file. Other entries 
are the class declarations of user defined classes. Rules and events are defined
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preprocessor J
Files RuieSet Graphs flle„seLpopup

F i l t e r ___
j' am an /  MOTIF /  *1

Directories
[d/saman/MOTIF/.
id/saman/MOTI F/.. 
id/saman/MOTIF/june6*

rt
Files

y

rulesi .data

Selection
/csg  rad/saman/MOTI F/I

OK Filter Cancel

Help

J..··!

Figure 5.8: Select Rule Set

in this class declarations. Now the tool can be used. We open the ruleset by 
using select on the ruleset menu, and then execute the preprocessor by execute 
on ruleset menu. Now the trigger and dependency graphs are contructed. We 
can display them by selecting trigger or dependency on the graphs menu. We 
also perform cycle detection on tlie trigger graph. If there exists a cycle in the 
trigger graph, the list of nodes involved in the cycle is printed. The user can 
check if the rule set terminates or not because when there exists a cycle we can 
only say that the rule set may not terminate. If rules do not terminate user 
must ui^date the design of rules. To obtain a more accurate dependency graph 
the user can apply the detailed conflict detection that we described in Section 

4.9.



CHAPTER 5. IMPLEMENTATION 40

........... t ............................................................................... ...................................................

-1 preprocessor a··- J
Files RuleSet Graphs

V ■
HellP

ITRIGGER GRAPH

coinprulel 
comprule2 
coinprule3 
insrulel : 
insru1e2 : 
insruleS : 
insrule4 : 
insruleS : 
emptempl : 
eiifiptemp2 :

coinprule2 conipru1e3

insrulel
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Figure 5.9: Trigger Graph



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we describe how to construct trigger cind dependency graphs 
using class and rule declarations of the Sentinel active OODBMS. The work 
we hcive done is the essential part of static analysis of active rules. Once 
we have trigger graph of an active rule set, we can check for termination by 
performing cycle detection on that graph. No cycle indicates that termination 
is guaranteed. Confluent rule execution can also be achieved by processing 
trigger and dependency graphs. Another important feature of our work is that 
we handle static analysis of active rules in an OODBMS environment. Stcitic 
aucdysis algorithms are conservative, meaning that they either guarantee that 
a set of rules terminate, is confluent, or say that they may not terminate, 
or rncxy not be confluent. Therefore, we allow the user to provide cxdditional 
information to be used in the construction of dependency graphs in order to 
perform a more precise analysis of rules. We also provide a user interface of 
the preprocessor that constructs trigger and dependency graphs. Our work is 
easily adaptable to other systems. By appropriate changes to the processing of 
declarations and construction of event lists from events, it can be used in other 
active OODBMSs. Our work can accommodate incremental rule analysis if the 
modifications are provided in the format specified.

41
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6.2 Possible Improvements on Implementa
tion

An object accessed in the event part of a rule is more likely to be accessed in 
condition and action parts. Similarly, an object that is accessed in the condition 
part of a rule is more likely to be accessed in the action part. So we can reduce 
the cost of determining the type of an object if we use an additional list field in 
the rule nodes which contains information about the types of objects used in 
that rule. This list can be secirched every time the type of cin object is needed. 
We can make insertions to this list while consti-ucting the trigger gi’ciph, and 
use it while constructing the dependency graph.

In detecting the conflicts, we use linked lists. Instead if this, we can insert 
the variables into an extensible hash table. Each table entry can point to a 
linked list where each node contains information about method name, rulename 
and whether it represents an event, condition, or an action. We can test the 
conflicts while inserting nodes into that data structure. For conflicts between 
instance level rules (ILR) and class level rules (CLR), we can use a linked list 
for each class type keeping information about variables of that class. Since we 
also need to keep class names, a graph structure will be required to repi-esent 
the equivalent of variable list in our implementation.

As far as we know, there is no work on analysis of active database rules that 
can give us such information as the average number of objects an ILR uses, 
the average number of ILR an object is accessed, and the average number ol 
CLR per class. Once we implement the system, we can nicvke such aiicdysis and 
improve the performance of the system accordingly.
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Sample Input Files

A .l Original Program

#include "Sentinel.h"
#include "Demo_company.h"
#include "Demo_employee.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include <time.h>

int cond_emp_or(L_OF_L_LIST *nl_list); 
void action_emp_or(L_OF_L_LIST *nl_list);

// Other Function Prototypes

employee *mike, *joe, *jane; 
company *newco, *computerco;

main ( int arge, char** argv)
{

OpenOODB->beginTrcinsaction() ;

43
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mike = new employee("mike",40000,4); 
joe = new employee("joe",40000,4); 
jane = new employee("jcine",40000,4) ;

newco = new company("newco",40, 200000.00,5000.00,30,5); 
computerco = new company("computerco",40, 200000.00,5000.00,30,5);

//INSTANCE EVENT definition 
event end(e_mike:mike) void setsalary(float x); 
event end(e_mike2:mike) void increasesalary(int percent); 
event end(e_jane:jane) void setrank(int y); 
event compmike = e_mike >> e_mike2; // SEQ operator 
event ite = [22:54:00/07/09/96];
event e_plus = e_jane + [1 year]; //PLUS operator 
event end(enewco:newco) void seteefficiency(int eff); 
event end(enewco2:newco) void settaxrate(int percent); 
event end(enewcoS:newco) void incrementemployeeO; 
event e_Astar = A*(enewco,enewcoS ,enewco2); 
event end(computerco:newco) void seteefficiency(int eff); 
event end(computerco2:newco) void settaxrate(int percent); 
event end(computerco3:newco) void incrementemployeeO; 
event e_A = A(computerco,computerco3 ,computerco2);

event etl=[09:00:00/01/01/97]; 
event et2= [09:00:00/01/01/99];
event etempl = P(etl,[l year],et2); //operator P 
event etemp2 = !(e_mike2,etl,et2); //operator NOT

//RULE definition
rule insrulel[compmike,inscondl,insactl,RECENT]; 
rule insrule2[e_j ane,inscond2,insact2,RECENT]; 
rule insruleS[e_plus,inscondS,insactS,RECENT]; 
rule insrule4[e_Astar,inscond4,insact4,RECENT] ; 
rule insruleS[e_A,inscondS,insactS,RECENT];
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rule emptempl[etempl, condtempl, actempl, RECENT]; 
rule emptemp2 [etemp2, condtemp2, actemp2, RECENT];

mike->setsalary(50000.00); 
newco->settaxrate(35);

OpenOODB->commitTransaction(); 
delete oodb;

}
int cond_emp_or(L_OF_L_LIST *nl_list)
{
if
(mike->getsalary() > 100000) 

return 1 ;
}
void action_emp_or(L_OF_L_LIST *nl_list)
{

mike->salarybound();
}

// Other Function Declarations

A .2 Sample Class and CLR Declaration

A .2.1 Demo_employee.sh

#include "Sentinel.h" 
class REACTIVE;

class employee: public REACTIVE
{
private: 
float salary;
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int rank; 

public:
employee(float initsal, int initrank); 
int getsalary0; 
void increaserankO ; 
void setrankC int y);

//PRIMITIVE EVENT definition
event end(el) void setsalary(float x);
event end(e2) void increasesalary(int percent);
event end(e3) void salaryboundO ;
event end(e4) int getrankO;

//COMPOSITE EVENT definition
event emp.or = el I e2; //operator OR

//RULE definition
rule emprulel [emp_or, cond_emp_or, action_emp_or, RECENT]; 
rule emprule2[e3, cond_e3, action_e3, RECENT]; 
rule emprule3[e3, cond_e3_2, action_e3_2, RECENT];

} ;

A .2.2 Demo_employee.c

#include "Demo_employee.h" 
#include <string.h>
#include <stdlib.h>

employee::employee(char *nl,float initsal, int initrank):REACTIVE("employee")
{

name = strdup(nl); 
salary = initsal; 
rank = initrank;
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}
int employee::getsalary()
{
return salary;

>
void employee::setsalary(float x) 

salary = x;
}
void employee::increasesalary(int percent)
{

salary = salary ♦ (100 + percent ) / 100;
}
void employee::salaryboundO
{
salary = 100000.00;

}
void employee::setrank(int y)
{
rank = y;

}
int employee::getrank()
{
return rank;

}

A .2.3 Demo_company.sh

#include "Sentinel.h" 
class REACTIVE;

class company: public REACTIVE
{
private :
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int numberofemployees; 
float sales; 
float salesperemployee; 
int taxrate; 
int efficiency;

public:
companyC int num, float sal, float spe, int tax, int eff);
float getsalesO;
int getemployeesO ;
float getsalesperemployeeO;
void setefficiency(int eff);

//PRIMITIVE EVENT definition 
event end(cel) void incrementemployeeO; 
event end(ce2) void decrementemployeeO; 
event end(ce3) void updatesalesperemployeeO; 
event end(ce4) void settaxrate(int percent);

//COMPOSITE EVENT definition 
event ce_or = cel I ce2; //operator OR 
event ctempel = P*(ce4,[l month],ce3); //p_star operator

//RULE definition
rule comprulel[ce_or,cond_ce_or, action_ce_or, RECENT]; 
rule comprule2[ce3, cond_ce3, action_ce3, RECENT]; 
rule comprule3[ctempel, cond_ce4, action_ce4, RECENT];

A.2.4 Demo_company.c

#include "Demo_company.h" 
#include <string.h> 
#include <stdlib.h>
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company::company(char *nl, int num, float sal, float spe, int tax, 
int eff):REACTIVE("company")

{
comp = strdup(nl); 
numberofemployees = num; 
sales = sal; 
salesperemployee = spe; 
taxrate = tax; 
efficiency = eff;

}
void company: : incrementemployeeO
{
numberofemployees++;

}
void company::decrementemployee()
{
numberofemployees— ;

}
void company::updatesalesperemployee()
{
salesperemployee = sales/numberofemployees;

}
float company::getsales()
{
return sales;

}
int company::getemployees()
{
return numberofemployees;

}
void company::settaxrate(int percent)
{
taxrate = percent;

}
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float company::getsalesperemployee()
{
return salesperemployee;

}
void company::setefficiency(int eff)
{
efficiency = eff;

}

A.3 Snoop Preprocessed File Demo.c

#include "Sentinel.h"
#include "Demo_company.h"
#include "Demo_employee.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostreajn.h>
#include <time.h>

// Function Prototypes

employee *mike, *joe, *jane; 
company *newco, *computerco;

#include "Sentinel.fn" 
#include <thread.h> 
#include <synch.h> 
extern char APP_ID[128]; 
extern void Init_call(); 
int GFLAG = 0; 
int PID; 
char *APP_NAME; 
char *H0ST;
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char *GLOBAL_EVENT_FILE;
void load_dynamic_rules(char *host, char *port, char *sg)
{ }
main ( int argc, char** argv)
{load_dynamic_rules("juice", "8600", "8604");
PRIMITIVE *company_cel = new PRIMITIVE( "company_cel", "company", 

"end" , "void incrementemployeeO ") ;
PRIMITIVE *company_ce2 = new PRIMITIVE( "company_ce2", "company", 

"end" , "void decrementemployeeO ") ;
PRIMITIVE *company_ce3 = new PRIMITIVE( "company_ce3", "company", 

"end" , "void updatesalesperemployeeO ") ;
PRIMITIVE *company_ce4 = new PRIMITIVE( "company_ce4", "company", 

"end","void settaxrate(int percent)");
OR *company_ce_or = new 0R("company_ce_or",compcOiy_cel, company_ce2);
PRIMITIVE *company_rell = new PRIMITIVE( "company.rell", "TEMPORAL", 

"","1 month");
P_star *company_ctempel = new P_star("company_ctempel",company_ce4, 

company_rell,company_ce3);
RULE *comprulel = new RULE("comprulel", company_ce_or, cond_ce_or, 

action_ce_or, RECENT);
RULE *comprule2 = new RULE("comprule2", company_ce3, cond_ce3, 

action_ce3, RECENT);
RULE *comprule3 = new RULE("comprule3", company_ctempel, cond_ce4, 

action_ce4, RECENT);

Notify(NULL,"OODB","beginT","begin",system.list);
OpenOODB->beginTrcinsaction() ;
Notify(NULL,"OODB","beginT","end",system_list);

mike = new employee("mike",40000,4); 
joe = new employee("joe",40000,4); 
jane = new employee("jane",40000,4);

newco = new company("newco",40, 200000.00,5000.00,30,5); 
computerco = new company("computerco",40, 200000.00,5000.00,30,5);
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PRIMITIVE *e_mike = new PRIMITIVE( "e.mike", mike, "end",
"void setsalaryCfloat x)");

PRIMITIVE *e_mike2 = new PRIMITIVE( "e_mike2", mike, "end",
"void increasesalary(int percent)");

PRIMITIVE *e_jane = new PRIMITIVE( "e_jane", jane, "end",
"void setrank(int y)");

SEQ *compmike = new SEC)("compmike" ,e_mike, e_mike2) ;
PRIMITIVE *ite = new PRIMITIVE("ite", "TEMPORAL", "", "22:54:00/07/09/96"); 
PRIMITIVE *rell = new PRIMITIVE( "rell", "TEMPORAL", "","1 year");
PLUS *e_plus = new PLUS("e_plus",e_jane,rell);
PRIMITIVE *enewco = new PRIMITIVE( "enewco", newco, "end",

"void seteefficiency(int eff)");
PRIMITIVE *enewco2 = new PRIMITIVE( "enewco2", newco, "end",

"void settaxrate(int percent)");
PRIMITIVE *enewco3 = new PRIMITIVE( "enewcoS", newco, "end",

"void incrementemployeeO");
A_star *e_Astar = new A_star("e_Astar",enewco,enewcoS,enewco2);
PRIMITIVE *computerco = new PRIMITIVE( "computerco", newco, "end",

"void seteefficiency(int eff)");
PRIMITIVE *computerco2 = new PRIMITIVE( "computerco2", newco, "end",

"void settaxrate(int percent)");
PRIMITIVE *computerco3 = new PRIMITIVE( "computercoS", newco, "end",

"void incrementemployeeO");
A *e_A = new A("e_A",computerco,computercoS,computerco2);
PRIMITIVE *etl = new PRIMITIVE("etl", "TEMPORAL", "", "09:00:00/01/01/97"); 
PRIMITIVE *et2 = new PRIMITIVE("et2", "TEMPORAL", "", "09:00:00/01/01/99"); 
PRIMITIVE *rel2 = new PRIMITIVE( "rel2", "TEMPORAL", "","1 year");
P *etempl = new P("etempl",etl,rel2,et2);
NOT *etemp2 = new N0T("etemp2",e_mike2,etl,et2);
RULE *insrulel = new RULE("insrulel", compmike, inscondl, insactl, RECENT); 
RULE *insrule2 = new RULE("insrule2", e_jane, inscond2, insact2, RECENT); 
RULE *insrule3 = new RULE("insrule3", e_plus, inscondS, insactS, RECENT); 
RULE *insrule4 = new RULE("insrule4", e_Astar, inscond4, insact4, RECENT); 
RULE *insrule5 = new RULE("insrule5", e_A, inscondS, insactS, RECENT);
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RULE *emptempl = new RULE("emptempl", etempl, condtempl, actempl, RECENT); 
RULE *emptemp2 = new RULE("emptemp2", etemp2, condtemp2, actemp2, RECENT);

mike->setsalary(50000.00); 
newco->settaxrate(35);

Notify(NULL,"OODB","commitT","begin",system_list); 
□penOODB->commitTransaction();
Notify(NULL,"OODB","commitT","end",system_list);

delete oodb;
}
int cond_emp_or(L_0F_L_LIST *nl_list) 

if
(mike->getsalary() > 100000) 

return 1;
}
void action_emp_or(L_0F_L_LIST *nl_list) 

mike->salarybound();
}
int cond_e3(L_0F_L_LIST *nl_list)
{
if
(mike->getrank() >5) 

return 1;
}
void action_e3(L_0F_L_LIST *nl_list)
{

mike->increasesalary(10);
}
int cond_e3_2(L_0F_L_LIST *nl_list)
{
if
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(joe->getrcink() >7) 
return 1;

}
void action_e3_2(L_0F_L_LIST *nl_list)
{

joe->increasesalary(20);
}
int cond_ce_or(L_0F_L_LIST *nl_list)
{

return(1);
}
void action_ce_or(L_OF_L_LIST *nl_list) 

newco->updatesalesperemployee();
}
int cond_ce3(L_0F_L_LIST *nl_list) 

if
(newco->getsalesperemployee() >200000) 

return 1;
}
void action_ce3(L_0F_L_LIST *nl_list)
{

newco->setefficiency(10) ;
}
int inscondl(L_0F_L_LIST *nl_list)
{
if
(mike->getsalary() > joe->getsalary()) 

return 1;
}
void insactl(L_0F_L_LIST *nl_list)
{

joe->increasesalary(lO);
}
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int inscond2(L_0F_L_LIST *nl_list)
{
if
(jane->getrank() > inike->getrank()) 

return 1 ;
}
void insact2(L_0F_L_LIST *nl_list)
{

mike->increasesalary(l);
}
int condtempl(L_OF_L_LIST *nl_list)
{
if
(jane->getsalary() <200000) 

return 1;
}
void actempl(L_0F_L_LIST *nl_list)
{
jane->increasesalary(lO);

}
int condteiap2(L_0F_L_LIST *nl_list)
{

if
(mike->getsalary() <100000) 
return 1;

}
void actemp2(L_0F_L_LIST *nl_list)
{
inike->setsalary(100000) ;

}
int inscond3(L_0F_L_LIST *nl_list)
{
if (jane->getsalary()<100000) 
return 1;

}
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void insact3(L_0F_L_LIST *nl_list)
{
jane->setsalary(100000);

}
int cond_ce4(L_0F_L_LIST *nl_list)
{
return 1;

}
void action_ce4(L_0F_L_LIST *nl_list)
{
newco->setefficiency(8);

}
int inscond4(L_0F_L_LIST *nl_list)
{
if (newco->getsalesperemployee()>100000) 
return 1;

}
void insact4(L_0F_L_LIST *nl_list)
{

newco->incrementemployee();
}
int inscondS(L_0F_L_LIST *nl_list)

if (computerco->getsalesperemployee()>100000) 
return 1;

}
void insact5(L_0F_L_LIST *nl_list)
{

computerco->incrementeinployee() ;
}
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