
^ . ^ • 9

■ Щ * f »' Sn af! î" S'·: 7 i % a'·' ̂ Äi »e/ .’-a· C ÏÏ WÍ V
|| Щ Ψ ·ί5ί>·?ΐ:51%;:̂ .î

C|lf| Ι*ΪΠΓj·-?! ş
M> ¿ ·* ¿'.C . J J 4*iJ 4·^ 3 ~«» ·*ΐ'Ϊί '» !'jf !**’>' lif I* ^ ·· i? ІЬй

м трій?: rastrasv)iJ? it U ̂ íi ч Lí? i ; W wi sH /I ü i'4

^ ·'; í í Vi. .nj •̂■'' ■ -’“S' .jV·, *T̂ Ä ··' ,4ΐί;ΐ̂ϊ̂.λ Т·̂ •‘̂ ' ‘V- ¿. Ч

^íí*’’ ’ ··! . ' '.^ ‘· y·"*** "*' 'Vv *^': ·’”··> '''""■' ' y t "i Г ' ·Χ'**'·'·“ .Λ · '·■ ΐ ?■■ ''*.;

itÀJ: •VI »«.ií ν ; ; . ·ω · >‘y \ ' ' , \ . ¡ f

> · Ί ..^L. ti'4 /:;^ 1,· -;í* j t : ¿ · ;· ·ν ; ^y. ̂ < 'í ·'■ .■ ■ ' ■'·■ ,··* .■',.

OBJECTIVE: A BENCHMARK
FOR OBJECT-ORIENTED ACTIVE

DATABASE SYSTEMS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Ugur Cetintemel

July, 1996

.......

о н

■ ЬЗ
с:-48
'іа з б

11

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

<~s
V -

Asst. Prof. Özgür Ulusoy (Principal Advisor)

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

Asst. Prof. Hakan Karaata

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmetuiiray
Director of Institute of Engineering and Science

ABSTRACT
OBJECTIVE; A BENCHMARK FOR

OBJECT-ORIENTED ACTIVE DATABASE SYSTEMS

Uğur Çetintemel

M.S. in Computer Engineering and Information Science

Supervisor: Asst. Prof. Özgür Ulusoy
July, 1996

Although much work in the area of Active Database Management Systems
(ADBMSs) has been done, there have been only a few attempts to evaluate
the performance of these systems, and it is not yet clear how the performance
of an active DBMS can be evaluated systematically.

In this thesis, we describe the OBJECTIVE Benchmark for object-oriented
ADBMSs, and present experimental results from its implementation in an ac
tive database system prototype. OBJECTIVE can be used to identify per
formance bottlenecks and active functionalities of an ADBMS, and compare
the performance of multiple ADBMSs. The philosophy of OBJECTIVE is to
isolate components providing active functionalities, and concentrate only on
the performance of these components while attempting to minimize the effects
of other factors.

Key words: Active database systems, database benchmarks, object-oriented
database systems.

I ll

ÖZET
OBJECTIVE: NESNE YÖNELİMLİ AKTİF

VERİ TABANI SİSTEMLERİ İÇİN BİR
DEĞERLENDİRME

Uğur Çetintemel

Bilgisayar ve Enformatik Mühendisliği

Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Özgür Ulusoy
Temmuz, 1996

Aktif veri tabanı yönetim sistemleri alanında pek çok çalışma yapılmış olmasına
karşın, bu sistemlerin performanslarının değerlendirilmesine dair sadece bir kaç
çalışma vardır, ve halen bir aktif veri tabanı yönetim sistemi performansının
değerlendirmesinin sistematik olarak nasıl yapılacağı açık değildir.

Bu tezde nesne yönelimli aktif veri tabanı yönetim sistemleri için OBJEC
TIVE Değerlendirmesi’ni tanımlıyoruz, ve bu değerlendirmenin bir aktif veri
tabanı sisteminde gerçekleştirilmesinden elde edilen sonuçları sunuyoruz. OB
JECTIVE bir aktif veri tabanı yönetim sisteminin performans dar boğazları
nı ve aktif fonksiyonlarını belirlemek, ve birden çok aktif veri tabanı yöne
tim sisteminin performanslarını karşılaştırmak için kullanılabilir. OBJEC-
TIVE’in amacı aktif fonksiyonları sağlayan parçaları ayırmak, ve diğer faktör
lerin etkilerini en aza indirgeyerek sadece bu parçaların performansları üzerinde
yoğunlaşmaktır.

Anahtar sözcükler: Aktif veri tabanı sistemleri, veri tabanı değerlendirmesi,
nesne yönelimli veri tabanı sistemleri.

IV

ACKNOWLEDGEMENTS

I am grateful to my supervisor, Assistant Professor Özgür Ulusoy, for his
guidance and motivating support. It was a real pleasure to work with him.

I would like to thank Jurgen Zimmermann for helping me implement the
benchmark in REACH. The implementation would not be possible without his
help. I also would like to thank Prof. A. Buchmann and A. Deutsch for their
valuable comments and suggestions during the development of the thesis.

I would like to thank Prof. Erol Arkun and Asst. Prof. Hakan Karaata for
reading and commenting about the thesis.

Last, but definitely not least, I want to thank my colleagues G. Tunali, Y.
Saygın, T. Kurç, and K. Yorulmaz for their moral support.

Finally, I want to express my deepest gratitue to my family, for everything
they did to bring me to this position. I dedicate this thesis to them.

Contents

1 Introduction 1

1.1 The Need for Reactive Behavior in Database System s................ 1

1.2 Motivation and Outline of the T h e s is ... 2

2 Background 5

2.1 Active Database Management S ystem s.. 5

2.1.1 Event-Condition-Action (EGA) Rules 5

2.1.2 E ven ts ... 6

2.1.3 Conditions.. 8

2.1.4 Actions ... 8

2.1.5 Execution M o d e l ... 9

2.1.6 Architectural Aspects... 10

2.2 State-of-the-Art of Object-Oriented Active Database Systems 11

2.2.1 A C O O D ... 11

2.2.2 N A O S .. 12

2.2.3 Ode .. 12

2.2.4 S A M O S ... 13

2.2.5 S en tin e l... 14

2.3 The Benchmarking of Database S ystem s....................................... 14

vi

CONTENTS Vll

3 Related Work 16

3.1 The BEAST Benchm ark... 16

3.2 The ACT-1 Benchmark.. 17

3.3 Other ADBMS Benchmarking Related W o r k 18

4 The OBJECTIVE Benchmark 19

4.1 The OBJECTIVE O perations.. 20

4.2 Description of the OBJECTIVE D ata ba se 22

4.3 The OBJECTIVE Benchmark Implementation............................. 24

5 The OBJECTIVE Results for REACH 35

5.1 R E A C H .. 35

5.2 Results... 36

5.2.1 Results for the Method Wrapping Operation 37

5.2.2 Results for the Event Detection Operations...................... 37

5.2.3 Results for the Rule Firing O perations............................. 38

5.2.4 Results for the Event Parameter Passing Operations . . . 39

5.2.5 Results for the Garbage Collection O p era tion 39

5.2.6 Results for the Rule Administration O perations............. 39

6 Conclusions and Future Work 42

A The Complete Results for REACH 48

B A Sample Event Creation Program 64

C A Sample Rule Creation Program 68

List of Figures

4.1 A class exam ple... 23

4.2 The events related to event detection operations.......................... 25

4.3 The OBJECTIVE Benchmark ru les .. 26

4.4 An example dummy class 27

4.5 The Method Wrapping program ... 29

4.6 The Primitive Event Detection program . ' 30

4.7 The Composite Event Detection program 30

4.8 The Rule Firing program............................. ,..................................... 31

4.9 The Event Parameter Passing p rogram .. 32

4.10 The Garbage Collection p ro g ra m ... 33

vm

List of Tables

4.1 The OBJECTIVE operations .. 21

4.2 The OBJECTIVE database configurations.................................... 28

5.1 The OBJECTIVE results for REACH .. 41

A .l The Method Wrapping results (EMPTY and SMALL Database
Configurations)... 48

A.2 The Method Wrapping results (MEDIUM Database Configura
tion) ... 49

A.3 The Method Wrapping results (LARGE Database Configuration) 49

A.4 The Primitive Event Detection results (EMPTY and SMALL
Database Configurations)... 50

A.5 The Primitive Event Detection results (MEDIUM Database Con
figuration) ... 51

A.6 The Primitive Event Detection results (LARGE Database Con
figuration) ... 51

A.7 The Composite Event Detection results (EMPTY and SMALL
Database Configurations)... 52

A.8 The Composite Event Detection results (MEDIUM Database
Configuration).. 53

A.9 The Composite Event Detection results (LARGE Database Con
figuration) .. ‘..................................... 54

A .10 The Rule Firing results (EMPTY and SMALL Database Con
figurations) ... 55

ix

A. 11 The Rule Firing results (MEDIUM Database Configuration) . . 56

A. 12 The Rule Firing results (LARGE Database Configuration) . . . 57

A .13 The Event Parameter Passing results (EMPTY and SMALL
Database Configurations).. 58

A .14 The Event Parameter Passing results (MEDIUM Database Con
figuration) .. 59

A .15 The Event Parameter Passing results (LARGE Database Con
figuration) .. 59

A .16 The Garbage Collection results (EMPTY and SMALL Database
Configurations).. 60

A .17 The Garbage Collection results (MEDIUM Database Configu
ration) .. 61

A .18 The Garbage Collection results (LARGE Database Configuration) 61

A .19 The Rule Administration results (EMPTY and SMALL Database
Configurations)... , 62

A.20 The Rule Administration results (MEDIUM Database Configu
ration) .. 63

A.21 The Rule Administration results (LARGE Database Configura
tion) ... 63

LIST OF TABLES x

Chapter 1

Introduction

1.1 The Need for Reactive Behavior in Data
base Systems

Active database systems have recently been proposed eis an alternative to pas
sive (conventional) database systems which can only provide unsatisfactory
solutions to a number of monitoring applications. These applications include
integrity control, access control, derived data handling, workflow management,
network management, and computer-integrated manufacturing. Common to
all these applications is the necessity to react to certain situations of interest—
with almost unpredictable occurrence patterns— in a timely manner.

Passive database systems can support such applications by using either
polling or embedding monitoring code in applications. Polling indicates the
running of situation monitoring code periodically. This method allows for the
detection of monitored situations only at discrete points in time determined by
the frequency of polling. If the frequency is set too low, then timely response
may not be achieved as event occurrences will not be detected till the next
poll. On the other hand, if the frequency is set too high, then the system may
be overloaded by queries that do not detect any interesting situations.

The alternative to polling is to embed monitoring code in applications. Un
fortunately, this method is poor in terms of modularity and maintainability.
Any modifications done to the situations being monitored, or to the reac
tions to situations require that all relevant application programs be modified
accordingly. Furthermore, there will be repeated— and possibly inconsistent—
specifications of the same situation monitoring and reaction code, making the
application programs hard to maintain.

1

CHAPTER 1. INTRODUCTION

In order to overcome these problems, active database management systems
(ADBMSs) are proposed to provide timely response and modularity by ex
tending passive DBMSs with the ability to specify and implement reactive
behavior.

1.2 Motivation and Outline of the Thesis

An ADBMS detects certain situations and performs corresponding user de
fined actions typically in the form of Event-Condition-Action (EGA) rules [16].
ADBMSs have received great attention lately, and several prototypes of object-
oriented ADBMSs are already available (e.g., ACOOD [4], NAOS [14], Ode [1],
REACH [7], SAMOS [23], SENTINEL [13]). We are currently in a position to
evaluate the performance of ADBMSs by concentrating on

• the performance requirements of different architectural approaches; i.e.,
integrated versus layered,

• different techniques used for standard tasks of an ADBMS; i.e., rule main
tenance, event detection, and

• a variety of functionalities provided by an ADBMS; e.g., garbage collection
and parameter passing.

Benchmarking is a very important process in the sense that database users base
their purchasing decisions partially relying on benchmark results, and database
designers measure the performance of their systems by using an appropriate
benchmark. There has been much work in the area of database benchmarking;
e.g., the Wisconsin Benchmark [5], the 0 0 1 Benchmark [10], and the 0 0 7
Benchmark [8]. However, there have been only a few attempts to evaluate
the performance of ADBMSs, the most important of which are the BEAST
Benchmark [26], and the ACT-1 Benchmark [37].

In this thesis, we describe the OBJECTIVE^ Benchmark which is a simple
but comprehensive test of active functionalities provided by an object-oriented
ADBMS, and give performance results of its implementation in an ADBMS
prototype. OBJECTIVE can be used to identify performance bottlenecks and
active functionalities of an ADBMS, and compare the performance of multiple
ADBMSs. The philosophy of OBJECTIVE is to isolate components providing
active functionalities, and concentrate only on the performance of these compo
nents while attempting to minimize the effects of other factors (e.g., underlying
platform). OBJECTIVE operates on a very simple databcise structure consist
ing of completely synthetic classes, events, and rules. Although the design is

‘ OBJECT-oriented actIVE database systems benchmark

very simple (for ease of reproducibility and portability), this simplicity does
not contribute negatively to the benchmark in any manner.

The OBJECTIVE Benchmark addresses the following issues with respect
to object-oriented ADBMS performance and functionality:

• method wrapping penalty,

• detection of primitive and composite events,

• rule firing,

• event-parameter passing,

• treatment of semi-composed events, and

• rule administration tasks.

CHAPTER 1. INTRODUCTION 3

The OBJECTIVE Benchmark comprises a number of operations that evaluate
the issues stated above, and those operations were first run on REACH [7].
REACH is a full-fledged operational object-oriented ADBMS which is tightly
integrated in Texas Instruments’ Open OODB [34]. The results reported in
this thesis reveal that REACH combines the most advanced features of current
ADBMS proposals from the functionality point of view. As for its performance,
a single bottleneck operation is identified.

The remainder of the thesis is organized as follows. Chapter 2 presents
background information about this work to an extent which is necessary for
the comprehension of the rest of the text. In particular, main issues related to
ADBMSs, important features of several object-oriented ADBMS prototypes,
and the concept of database benchmarking are discussed in respective sections
of this chapter.

Chapter 3 discusses previous research on the performance of ADBMSs em
phasizing the BEAST Benchmark and the ACT-1 Benchmark for object-oriented
ADBMSs.

Chapter 4 describes the OBJECTIVE Benchmark (operations, database,
and implementation) in full detail.

Chapter 5 gives an overview of the REACH ADBMS prototype, and reports
the results obtained from the implementation of the OBJECTIVE Benchmark
in REACH.

Finally, Chapter 6 concludes the thesis and gives directions for future re
search.

CHAPTER 1. INTRODUCTION

In addition, Appendix A presents the complete set of OBJECTIVE results
for REACH. Appendix B and Appendix C present sample programs used for
the creation of benchmark events and rules, respectively.

Chapter 2

Background

2.1 Active Database Management Systems

2.1.1 Event-Condition-Action (ECA) Rules

EGA rules have become a standard to specify reactive behavior. The general
form of an ECA rule is;

on event
if condition
do action

The semantics of such a rule is that when the event occurs, the condition is
checked, and if\i is satisfied then the action is executed. Therefore, an ADBMS
has to monitor events (of interest) and detect their occurrences. After an event
is detected, it is signalled. This signalling is a notification that an event of
interest has occurred, and rule execution should take place.

ECA rules require, at least, the operations insert, delete, and fire. These
operations are used to insert a new rule into the database, delete an existing
rule from the database, and trigger a rule, respectively. For some applications
it may be useful to disable rules temporarily, which can afterwards be enabled
when necessary [17].

CHAPTER 2. BACKGROUND

2.1.2 Events

EGA rules are triggered on the occurrence of particular events. An event can
be either primitive or composite.

Primitive Events

Primitive events are atomic events which can be associated with a point in
time. The most commonly referred primitive event types are [7, 21, 12]:

• method events
A method invocation can be defined as an event of interest. In such a
case, an event occurs when its corresponding method is executed. Since a
method execution corresponds to an interval rather than a point in time,
usage of time modifiers like BEFORE or AFTER is mandatory. The
semantics of BEFORE and AFTER modifiers, respectively, is that the
method event is to be raised just before the invocation of the method,
and immediately after the execution of the method.

• state transition events
A change in the state of the object space can be an event; e.g., modification
of an object attribute. It is necessary to define operators to access old and
new values of relevant entities.

• temporal events
Basically, two types of temporal events exist; absolute and relative. Abso
lute temporal events are defined by giving a particular point in time (e.g.,
01.10.1996, 11:23), whereas relative temporal events are defined relative
to other events (e.g., 10 minutes after commit of a particular transac
tion). The latter type can also include events which occur periodically
(e.g., every day at 17:30).

• transaction events
Transaction events correspond to standard transaction operations like be
gin of transaction (ВОТ), end of transaction (EOT), abort of transaction
(ABORT), and commit of transaction (COMMIT).

• abstract events
Abstract events are user-defined events whose occurrences are directly
signalled. Therefore, the underlying system does not need to monitor
abstract events; i.e., they are explicitly raised by the user and associated
with a point in time.

Several techniques are used for the detection of method events. A straight
forward approach is to modify the body of the method for which an event is to

CHAPTER 2. BACKGROUND

be defined with an explicit raise of an event [21]. Another technique, method
wrapping, is to replace the original method with a method wrapper that con
tains an explicit event raise operation and a call to the original method [7].

Composite Events

Unlike primitive events which are atomic, composite events are defined as a
combination of primitive (and possibly other composite) events. The mean
ingful ways to build composite events from its constituent events are usually
specified through an event algebra that defines certain event constructors. Some
useful event constructors are [17, 23):

• The disjunction of two events, eventl and event2, is raised when either of
event 1 or event2 occurs.

• The conjunction of two events, eventl and event2, is raised when both
eventl and event2 occur.

• The sequence of two events, eventl and event2, is raised when eventl and
event2 occur in that order.

• The closure of an event, eventl, is raised exactly once regardless of the
number of times eventl occurs (provided that eventl occurs at least once).

• The negation of an event, eventl, is raised if eventl does not occur in a
given time interval.

• The history of an event, eventl, is raised if eventl occurs a given number
of times.

For the last three event constructors, it is appropriate to define time intervals
in which composition of events should take place. The definition of a time
interval is mandatory for negation, and optional for history and closure.

Composite events can further be grouped into aggregating composite events
and non-aggregating composite events [38]. The former group contains compos
ite events that are constructed with the operators sequence, disjunction, and
conjunction, whereas the latter group comprises composite events constructed
with history, negation, and closure.

Several different approaches are used for composite event detection including
syntax graphs [18, 11], Petri nets [22], finite state automata [24], and arrays
[20].

An event composition policy identifies which event occurrence of a partic
ular event type will be used in the event composition process. Consider the

CHAPTER 2. BACKGROUND

composite event defined as the sequence of event types event 1 and event2, and
the sequence of event occurrences Cu, e^, 62 (first two events are instances of
event 1 and the last one is an instance of event2) in this order. In this case, a
choice must be made about whether to use en or Ci2 as the initiator event of the
composite event under consideration. Motivated by a number of application
types, four useful parameter contexts are proposed [12]:

• In recent context, the most recent occurrence of a primitive event is used.

• In chronicle context, the occurrences are used in chronological order; i.e.,
in the order they are generated.

• In continuous context, each occurrence of an initiator event marks the
beginning of a different composite event, and the occurrence of a single
terminator event is sufficient to signal all of these composite events.

• In cumulative context, all occurrences of a primitive event till the occur
rence of the respective composite event are consumed.

2.1.3 Conditions

The condition part of a rule is usually a boolean expression, a predicate, or a set
of queries, and it is satisfied if the expression evaluates to true, the predicate is
satisfied, or all the queries return non-empty results, respectively. In addition
to the current state of the database, the condition may access the state of the
database at the time of event occurrence by the use of event parameters.

2.1.4 Actions

The action part of a rule is executed when the condition is satisfied. In general,
actions can be database operations, transaction commands (e.g., abort trans
action), or arbitrary executable routines. Therefore, during the execution of
an action some events may also occur. This may lead to the triggering of other
rules which is called cascaded rule triggering. The action may access, besides
the current database state, the database state at the time of event occurrence
and the time of condition evaluation which can be accomplished by parameter
passing.

CHAPTER 2. BACKGROUND

2.1.5 Execution Model

An execution model specifies the semantics of rule execution in a transaction
framework. A transaction which triggers rules is called a triggering transaction,
and the (sub-)transaction which executes the triggered rule is called the trig
gered (sub-)transaction. An important issue determined by an execution model
is the coupling between the triggered transaction and the triggering transac
tion. Additionally, an execution model also describes concurrency control and
recovery mechanisms used to achieve correct and reliable rule execution. These
two issues are discussed in more detail in the rest of this subsection.

Coupling Modes

Coupling modes determine the execution of rules with respect to the trans
action which triggers them. The Event-Condition (EC) and Condition-Action
(CA) coupling modes, respectively, determine when the rule’s condition is eval
uated with respect to the triggering event, and when the rule’s action is ex
ecuted with respect to the condition evaluation. Three basic coupling modes
were introduced in [15]: immediate, deferred, and decoupled.

For EC coupling, the intended meaning of each mode is:

• In immediate EC coupling mode, the condition is evaluated in the trigger
ing transaction, immediately after the detection of the triggering event.

• In deferred EC coupling mode, the condition is evaluated at the end but
before the commit of the triggering transaction.

• In detached EC coupling mode, the condition is evaluated in a separate
transaction which is independent from the triggering transaction.

For CA coupling, the semantics of each mode can be given as (provided that
the condition is satisfied):

• In immediate CA coupling mode, the action is executed right after the
condition evaluation within the same transaction.

• In deferred CA coupling mode, the action is executed at the end but before
the commit of the triggering transaction. •

• In detached CA coupling mode, the action is executed in a separate inde
pendent transaction.

CHAPTER 2. BACKGROUND 10

If several triggered rules have to be executed at the same point in time,
they form a conflict set [29]. In this case, some sort of conflict resolution (e.g.,
priorities) must be employed to control their execution order. The ability to
do such a resolution is especially desirable if we want to impose a particular
serial order of execution.

Transaction Model

Since condition and action parts of a rule may act on database objects, the ex
ecution of rules must be done in a transaction framework. The nested transac
tion model [32] is the most prevalent approach for rule execution in ADBMSs,
primarily due to the fact that it captures the semantics of (cascaded) rule
triggering well. In this model, the triggered rules are either executed as sub
transactions of the triggering transaction, in case of immediate and deferred
coupling modes, or as an independent transaction in case of detached coupling
mode.

2.1.6 Architectural Aspects

Three architectural approaches for implementing ADBMSs are [27]:

• implementation from scratch
All the passive components as well the active ones are implemented from
the beginning. Although this implementation approach is very costly in
terms of development time and effort, all the required functionality can
be implemented without restrictions rooted from the usage of existing
software. Ode [1] is a very good example of an ADBMS that is developed
from scratch.

• integrated architecture
An existing passive DBMS is modified and customized to offer active func
tionality. This approach seems to be a compromise between development
cost and functionality. REACH [7] and SENTINEL [13] are two object-
oriented ADBMS prototypes that have integrated architectures. Both
utilize the extensible DBMS Open OODB [34] as the underlying passive
database system. NAOS [14] is another prototype ADBMS which is inte
grated in the O2 object-oriented database system [3]. •

• layered architecture
An existing passive DBMS is used as a black-box and active function
ality is implemented on top using the external interfaces of the system.
This approach is the least costly one, however there are arguments about
the level of active functionality that can be provided by such a system.

CHAPTER 2. BACKGROUND 11

SAMOS [23] is an ADBMS that is implemented as a layer on top of Ob-
jectStore [31]. ACOOD [4] also has a layered architecture; i.e., it is built
on top of ONTOS object database [2].

2.2 St ate-of-the-Art of Object-Oriented Ac
tive Database Systems

Recently, a lot of work has been done in the area of incorporating reactive
behavior into database systems, and restricted reactive capability, typically
in the form of simple trigger mechanisms, is already being offered by some
commercial products [33, 35], all of which are based on the relational model.

HiPAC project [16] pioneered most of the de-facto standard features of
object-oriented ADBMSs, e.g., EGA rules, coupling modes, composite events.
Since that project (which has not been fully implemented), a large number of
object-oriented ADBMS prototypes have emerged [7, 13, 23, 14].

This section presents a number of object-oriented ADBMS prototypes, em
phasizing the distinguishing features of each, with the aim to give a state-of-
the-art overview of reactive processing in those systems. Another operational
object-oriented ADBMS prototype, REACH, which is of special interest to our
work is discussed in Section 5.1.

2.2.1 AC O O D

ACOOD [4, 19] was built as a layer on top of ONTOS [2] at the University of
Skovde, Sweden. Event definitions and rules are treated as first-class objects,
and ECA rules are adopted to specify reactive behavior.

ACOOD currently supports method and abstract event types as its prim
itive event types, and conjunction, disjunction, sequence, negation, and iter
ation as its composite event constructors. It is possible to create, delete, or
modify events and rules at runtime (by using the programmatic type interface
of ONTOS which facilitates access to database schema at runtime).

In order to optimize rule checking when an event occurs, a subscription
mechanism is employed. This mechanism associates each event with a list of
rules that are subscribed to it, restricting the search space of rules in case of
event occurrence.

CHAPTER 2. BACKGROUND 12

2.2.2 NAOS

NAOS [14] is the active rule component of the O2 object-oriented DBMS [3].
The current implementation of NAOS supports primitive events (excluding
temporal events) but not composite events. Primitive event types include
entity manipulation event types (e.g., creation, deletion, or modification of
objects), and application event types which are related to the execution of ap
plications, programs, or transactions (e.g., begin/end of an application). Rules
triggered by entity manipulation events can be executed either in immediate or
deferred coupling mode, whereas rules triggered by application events can only
be executed in immediate coupling mode (deferred execution is meaningless in
such a case). In addition to these primitive event types, NAOS also provides
user-defined (abstract) events that are defined as stand-alone event objects.

In NAOS, rules are executed in cycles ̂ i.e., regardless of its coupling mode,
a triggered rule is executed in a new cycle different from the one which con
tains the triggering operation. More specifically, rules triggered in immediate
mode are executed with the initial cycle comprising the operations executed up
to the first rule triggering, and the following cycles are determined similarly.
For deferred rules, the initial cycle contains the operations of the transaction,
whereas all rules triggered in this cycle will be executed in the next cycle, and
so on. This cycling mechanism for cascading rule execution was first introduced
in the HiPAC project.

Delta elements (for immediate rules) and delta collections (for deferred
rules) are used to realize the execution environment for rules. A delta ele
ment contains, besides the object related to the event occurrence, the inserted,
deleted, or updated data, or the actual parameters of a method or program
(depending on the event type). A delta collection is basically a set of delta
elements used for deferred rules. A single delta element is insufficient for a
deferred rule, because such a rule may correspond to multiple events of the
same type, as regardless of the number of occurrences of a particular event,
the corresponding deferred rule is executed only once. Therefore data related
to each of these events should be stored. The operators new, old, current,
delta, and arg are proposed to access the contents of these delta elements and
collections so as to provide event-condition-action binding.

2.2.3 Ode

Ode [1] was developed at AT&T Bell Laboratories. It uses O-f-f- for definition,
querying, and manipulation of the underlying database. extends C-f-+
with facilities for the creation and manipulation of persistent objects.

Ode implements active functionality in terms of constraints and triggers.

CHAPTER 2. BACKGROUND 13

Both are associated with class definitions and are not regarded as objects.
Events are not defined explicitly in Ode, i.e., constraints and triggers are spec
ified by conditions and actions. Only object updates caused by public member
functions are regarded as events.

A constraint in Ode consists of a predicate and a handler (action), and the
handler of the constraint is executed when the predicate is not satisfied. Hard
and soft constraints are supported: Hard constraints are checked immediately
after event occurrence, and the checking of the soft constraints are delayed till
the end of transaction. If a constraint is not satisfied and no handler is specified
for that constraint, or a handler is provided but the execution of the handler
does not result in the fulfillment of the constraint (i.e., condition is re-evaluated
after the execution of the handler), then the transaction is aborted.

Like constraints, triggers are also defined by condition-action pairs. Al
though triggers are also specified inside class definitions, they must be explic
itly activated for particular instances of their classes. In this respect, triggers
are different from constraints as constraints are defined for all instances of their
classes. Two basic types of triggers, onct-only and perpetual, are provided by
Ode. If a trigger is defined once-only, then it will be automatically deactivated
after it fires. On the other hand, perpetual triggers do not need explicit re
activation after each firing. In addition timed triggers can be specified, which
must fire within a given period. The condition of a trigger is checked immedi
ately after the event occurrence, and its action (unlike a constraint handler) is
always executed in a separate transaction which is started after the commit of
the current transaction.

2.2.4 SAMOS

SAMOS [23] is an object-oriented ADBMS prototype built on top of Object-
Store [31]. It was developed at the University of Zurich, Switzerland.

SAMOS employs EGA rules for specification and implementation of active
behavior, and treats them as first-class objects. One of the noteworthy fea
tures of SAMOS is its complex event algebra. SAMOS supports the composite
event constructors conjunction, negation, and times, along with disjunction,
sequence, and closure which were inherited from the HiPAC project [16, 17].

SAMOS allows for the passing of a fixed set of event parameters which (par
tially) allows it to see the state of the database at the time of event occurrence.
These parameters include event occurrence time, transaction identifier of the
transaction in which the event occurred, the owner of the transaction, and the
object whose method has been invoked (in case of method events).

CHAPTER 2. BACKGROUND 14

2.2.5 Sentinel

Sentinel [13] was developed at the University of Florida by extending the exten
sible object-oriented DBMS Open OODB [34]. Its design was heavily influenced
by the HiPAC project.

Sentinel has a comprehensive event specification language called Snoop.
Snoop defines four parameter contexts: recent, chronicle, continuous, and cu
mulative, in order to specify the order in which successive event occurrences of
a particular event are consumed as constituents of a composite event. These
contexts are defined within a rule rather than within an event, primarily to
maintain the reusability of events which are defined as stand-alone objects.

Sentinel supports concurrent and nested rule execution, and the order of
rule execution is determined by using priorities. Priority classes are defined
for global conflict resolution, and rules of the same priority class are executed
concurrently.

2.3 The Benchmarking of Database Systems

Benchmarking, broadly speaking, is a systematic evaluation of the system un
der consideration. In that sense, DBMS benchmarks can be considered as a way
to measure performance and/or functionality of a DBMS. In general, a bench
mark is designed to examine DBMS performance in a specific domain of appli
cations, or to evaluate the performance of particular components of a DBMS.
Typically, users are interested in the former type of domain-specific bench
marks as they reflect end-to-end performance. On the other hand, database
designers and implementors are more interested in isolating certain compo
nents and focusing on the performance of each separately. This helps highlight
problematic components of the system which can then be optimized, or, at the
worst case, be reimplemented to become more performant.

A good domain-specific benchmark must meet four important criteria [2

• A domain-specific benchmark should be relevant to its domain, i.e., it
should evaluate the system performance when performing operations that
are typical of the target domain.

• A benchmark must be portable to several different systems, i.e, it should
be easy to implement the benchmark on different systems. •

• A benchmark should be scalable to small and large computer systems. It
is necessary that the benchmark be scalable as the capabilities of systems
increase.

CHAPTER 2. BACKGROUND 15

A benchmark should be simple to understand and implement.

When considering non domain-specific benchmarks, the first criteria, namely
relevance, is not applicable; thus, portability, scalability, and simplicity should
be taken into account when evaluating such benchmarks.

Chapter 3

Related Work

Although much work in the area of ADBMSs has been done, it is not yet clear
how the performance of an ADBMS can be evaluated systematically. In fact,
there have been very few attempts (e.g., [26, 37, 6, 30]). In this chapter, we
discuss these efforts in some detail.

3.1 The BEAST Benchmark

BEAST is a benchmark for testing the performance of active object-oriented
database management systems [26]. It is presented as a designer’s benchmark;
i.e., the designers of an ADBMS can use it to determine performance bottle-,
necks of their systems. It uses the database and schema of the 0 0 7 Benchmark
[8].

The BEAST Benchmark focuses on event detection, rule management, and
rule execution aspects of an ADBMS. These three aspects represent the whole
active behavior and should be covered by any ADBMS.

The BEAST Benchmark runs a series of tests to determine the functionality
of each component. It consists of: •

• Tests for event detection
These tests concentrate on the time to detect particular events. A set
of primitive and composite events are tested. Tests for primitive event
detection consist of the detection of value modification, the detection of
message sending, the detection of transaction events, and the detection of
a set of primitive events.

16

CHAPTER 3. RELATED WORK 17

The BEAST tests for composite event detection comprise the detection
of a sequence of primitive events, the detection of a non-occurrence of
an event within a transaction, the detection of a repeated occurrence of
a primitive event, the detection of a sequence of composite events, the
detection of a conjunction of method events sent to the same object, and
the detection of a conjunction of events belonging to the same transaction.

• Tests for rule management
The BEAST Benchmark tests the rule management component of an
ADBMS by mea.suring the retrieval time of rules.

• Tests for rule execution
The tests for rule execution consider both the execution of single and
multiple rules. For the execution of single rules, a rule is executed with
different coupling modes. In the case of multiple rule execution, the tests
concentrate on the overhead of enforcing an ordering on the triggered
rules, optimization of condition evaluation and raw rule execution power
of the underlying system.

In all these tests response time was accepted as the sole performance metric.
In the experiments, the number of defined events (primitive and composite),
and the number of rules were used as benchmark parameters, and a set of quan
titative results were obtained for each particular setting of these parameters.
To date, BEAST has been run on four object-oriented ADBMS prototypes,
namely SAMOS, ACOOD, ODE and REACH, and the performance results
are presented in [25].

3.2 The ACT-1 Benchiricirk

The ACT-1 Benchmark [37] concentrates on the minimal features of object-
oriented ADBMSs. Four basic issues are addressed in this benchmark:

1. Method wrapping penalty measures the useless overhead of method wrap
ping for the detection of method events.

2. Rule firing cost measures the cost of raising an event and firing the corre
sponding rule.

3. Minimal event composition cost aims to cisses the cost of a simple event
composition (the sequence of two events).

4. Sequential rule firing cost concentrates on the overhead of serialization of
a set of rules that have to be executed at the same time (two rules that
are triggered by the same event at the same coupling mode).

CHAPTER 3. RELATED WORK 18

ACT-1 uses a simple database with objects and rules modeling the operation
of a power plant. Four operations, WRAPPING PENALTY, FIRING COST, BUILD
UP, and SEQ EXEC, are implemented in REACH, and some preliminary results
based on response times of these operations are presented [37].

3.3 other ADBMS Benchmarking Related
Work

There are several other performance evaluation studies on ADBMSs. Actually,
these are not devoted performance evaluation works; rather, they present a
rule (sub)system and then evaluate its performance.

For instance; [6] mainly addresses the problem of handling large rule sets. It
argues that the techniques used in current active database prototypes are not
appropriate for handling large rulebases. It proposes a novel indexing technique
for rule activation and gives performance results of DATEX, a database rule
system, which uses this particular technique. Storage size and number of disk
accesses are used as the cost metrics in this evaluation.

[30] presents another performance study on active functionality in DBMSs.
It gives a performance evaluation of the rule system of MONET (a parallel
DBMS kernel aimed to be used as a database back-end) by using a simple
benchmark. This simple core benchmark is designed mainly for testing the
implementation of MONET, and it consists of three basic experiments.

• The countdown experiment tries to asses the cost of handling a single event
and subsequent firing of a single rule. In this experiment, an abstract event
is signalled and a rule is fired by this event. This fired rule notifies the
same event which further leads to the triggering of the same rule. This is
repeated a predetermined number of times.

• The dominoes experiment is aimed to determine the cost of isolating a
firable rule instance. •

• The pyramid experiment has the purpose of investigating the performance
of the system under high active workloads.

Chapter 4

The OBJECTIVE Benchmark

The aim of the OBJECTIVE Benchmark is to identify the bottlenecks and
functionalities of an object-oriented ADBMS, and to create a level-playing field
for comparison of multiple object-oriented ADBMSs. The BEAST Benchmark
is a very good initial step towards a benchmark which will cover a bigger set of
functionalities of an ADBMS. However, we require a more generic benchmark
to be able to test both performance and functionality.

Typically, a system with little functionality can be implemented more ef
ficiently than a system with more functionality. As an example, consider the
(useless) overhead of method wrapping. At one extreme, there are systems
that hand-wrap only those methods on which a rule is defined, and at the
other extreme there are systems that do automatic wrapping of all the meth
ods. The latter systems allow the definition of new rules without requiring the
recompilation of classes, but pay for the wrapping when a method that is not
an event type for any rule is invoked. Likewise, a system that allows event
parameters to be passed to condition and action parts of rules will be much
more flexible than the one which does not support such a functionality, but at
the same time it will face an overhead in event composition and rule execu
tion in non-immediate coupling modes. Therefore, in order not to skew results
in favor of systems with less functionality, OBJECTIVE also concentrates on
some critical functionality of ADBMSs besides performance.

After introducing the operations of the OBJECTIVE Benchmark along with
a requirements analysis in Section 4.1, we describe the synthetic database of
OBJECTIVE in Section 4.2. In Section 4.3, we describe the implementation
of the benchmark operations.

19

CHAPTER 4. THE OBJECTIVE BENCHMARK 20

4.1 The OBJECTIVE Operations

The OBJECTIVE Benchmark addresses the following issues [38] by the oper
ations which are described briefly in Table 4.1:

1. Method wrapping penalty
In an object-oriented database system where method wrapping is used for
method event detection, there is a useless overhead which is generated
when a method which does not generate any event or which generates
an event that does not contribute to the triggering of any rule is invoked
(i.e., such an event is neither a primitive event for a rule, nor a part of a
composite event for a rule). Ideally, the introduction of active capabilities
should not deteriorate the performance when they are not in effect. In
other words, ADBMS users should not pay for active functionality when
they do not use it. Therefore, an ADBMS must keep such a (useless)
overhead minimal.

2. Event detection
An ADBMS should support primitive and composite events and response
times for event detection, both primitive and composite, are crucial for the
performance of an ADBMS. The primitive event types should minimally
include method events and transaction events. For composite events, at
least, the detection time for an aggregating event and a non-aggregating
event should be measured.

3. Rule firing
Rules typically reside in secondary storage and have to be fetched into
main memory for execution. Therefore, efficient retrieval of rules whose
events are signalled is indispensable for an ADBMS. As well as for captur
ing the semantics of some applications, (non-immediate) coupling modes
are introduced primarily for increased performance with respect to execu
tion of rules. If different coupling modes cannot be supported effectively,
then there will hardly be any point in keeping them. Therefore, efficient
firing of rules in different coupling modes is a crucial issue. Different ap
proaches can be taken in the storage of condition/action parts of a rule
(e.g., compiled code). Regardless of their internal representation, efficient
access and execution of these parts is mandatory. Another pragmatic is
sue is the conflict resolution of a set of rules that are to be executed at
the same point in execution flow. In addition, the ability to treat applica-
tion/program execution and rule execution uniformly is also significant.
Extra overhead should not be introduced for detection of events and firing
of rules during rule execution.

4. The handling o f event parameters
For some applications, e.g., consistency-constraint checking and rule-based
access control, event parameters must be passed to the condition-action

CHAPTER 4. THE OBJECTIVE BENCHMARK 21

TEST DESCRIPTION
MWl Method wrapping penalty
PEDl Detection of a method invocation event
PED2 Detection of a ВОТ event
PED3 Detection of a COMMIT event
CEDI Detection of a sequence of primitive events
CED2 Detection of a conjunction of primitive events
CED3 Detection of a negation of a primitive event
CED4 Detection of a history of a primitive event
CED5 Detection of a closure of a primitive event
RFl Retrieval of a rule
RF2 Rule firing in deferred coupling mode
RF3 Rule firing in decoupled coupling mode
RF4 Rule execution
RF5 Conflict resolution of triggered rules
RF6 Cascaded rule triggering

EPPl The passing of event parameters in immediate coupling mode
EPP2 The passing of event parameters in deferred coupling mode
EPP3 The passing of event parameters in decoupled coupling mode
GCl The garbage collection of semi-composed events
RAl Creating a rule
RA2 Deleting a rule
RA3 Enabling a rule
RA4 Disabling a rule
RA5 Modifying a rule

Table 4.1: The OBJECTIVE operations

CHAPTER 4. THE OBJECTIVE BENCHMARK 22

part of the rule. Otherwise, expressing conditions and actions with proper
bindings is not possible. This requires the usage of some intermediate
storage in case the rule is executed in either deferred or detached coupling
mode. In immediate coupling mode it may be sufficient to pass a pointer
to the parameters instead of passing the parameters themselves. However,
this approach may not be applicable in deferred and detached coupling
modes, because the parameters to be passed might be transient objects
rather than persistent ones. The way event parameters are handled, thus,
has a great impact on the performance of the system.

5. Garbage collection of semi-composed events
The problem of garbage collection exists for some composite events that
are not fully composed, and whose extents have expired [7]. If no garbage
collection is done for such semi-composed events, the database size will
increase unnecessarily which will lead to a further increase in response
time. So, an efficient mechanism for garbage collection of semi-composed
events must be employed from the performance point of view.

6. Rule administration
An ADBMS should be able to create, destroy, enable and disable rules on
line. The ability to maintain rules dynamically is very important because
of well-known reasons of availability and extensibility. Although execu
tion speeds of these tasks are not of great importance, a comprehensive
benchmark should take them into account.

4.2 Description of the OBJECTIVE Database

Generation of a synthetic database is an important issue in all benchmarks for
database systems [28]. In a benchmark for active database systems, the most
interesting part of database specification is the specification of events and rules,
because tests of the benchmark will typically concentrate more on rules and
events than particular objects in the database.

The database for the OBJECTIVE Benchmark consists of completely syn
thetic object classes with the same methods and attributes (see Figure 4.1 for
a generic class definition^), and it has a very simple schema. The rationale for
this decision is twofold: First, a benchmark should be easily reproducible and
portable, and second OBJECTIVE is designed to be a generic benchmark, not
a domain-specific benchmark; i.e., the aim of OBJECTIVE is to test impor
tant aspects of system performance and functionality, not to model a particular *

*We use a notation for our class definitions and test routines which is the de facto standard
for object-oriented languages, namely the notation of C-I--I- programming language.

CHAPTER 4. THE OBJECTIVE BENCHMARK 23

class Name{
int attribute;
double data;

public:
void doNothingO
void setAttribute(int i)
int getAttribute()
void setData(double dl, double d2)
void setMinData()

{;}
{attribute = i;}
{return attribute;}
{data = dl - d2;}
{data = 0.0;}};

Figure 4.1: A class example

application. Thus, we do not want to add extra complexity which will not con
tribute to the benchmark in any manner, but will make the implementation
more difficult.

Several events and rules are defined (Figure 4.2 and Figure 4.3) to be used
in the benchmark operations. The rules are defined in the rule programming
language REAL (REAch rule Language) [36]. Rules in REAL consist of parts
for defining a rule’s event, condition and action along with EC and CA coupling
modes and priorities. The default value for a coupling mode is imm(ediate) and
the default values for method event modifiers and priorities (priority range is
{1, 2, ...,10}) are after and 5, respectively. In addition, there is a dec/(laration)
section in which variables are specified in a C + + manner. The benchmark.
events, however, are defined in a hypothetical language based on the event
definition notation of REAL^.

The naming convention used for objects, events, and rules are based on the
name of the relevant operation; e.g., the objects, events, and rules of name
EPPl are the ones that will be utilized in operation EPPl.

In addition to these events, rules, and classes which are used in the bench
mark tests, we also utilize dummy event, rule, and class types. By changing
the number of instances of these dummy types, we can run our operations for
different database configurations, and see their effects on system performance.

The dummy objects, events, and rules are generated as follows:

• Dummy objects:
Dummy classes (e.g.. Figure 4.4) with the same methods and attributes

^REAL does not consider the definition of stand-alone event types.

CHAPTER 4. THE OBJECTIVE BENCHMARK 24

are generated, and the instances of these dummy classes form the (dummy)
database objects.

• Dummy primitive events:
The methods of the dummy classes are used to generate before/after
(dummy) method events.

• Dummy composite events:
The event constructors sequence and history are used to generate non
aggregating and aggregating (dummy) composite event types, respec
tively. For each composite event, the number of component events is
selected at random^ from the set {2, 3, 10}. Likewise, the component
event types for a composite event are selected randomly from the already
generated (dummy) primitive event types.

• Dummy rules:
A dummy rule chooses its event type at random from the already gen
erated dummy primitive and composite event types. Both the condition
and action parts of dummy rules are defined as empty.

4.3 The OBJECTIVE Benchmark Implemen
tation

In this section, we discuss and illustrate the implementation of the benchmark
operations which are described briefly in Section 4.1 by using simplified codes.

In all the operations described in this section, we assume that access to
the internals of an ADBMS is not possible. This assumption is made due to
two primary reasons: First, this is generally the case in reality, and second we
want our benchmark to be a general one so that it can be applied to different
ADBMSs through their external interfaces. Although this assumption makes
accurate time measurement impossible for certain tests, we can circumvent it
to a certain extent by keeping all the other non-interesting phases as small as
possible by using appropriate events and rules. Actually, we assume that we
can run our operations by just using the application programming interface of
an ADBMS.

We make use of two time mecisures for the OBJECTIVE operations (when
ever appropriate); cold and hot times representing the elapsed times when a
measurement is done beginning with empty buffer, and beginning with com
pletely initialized buffer, respectively. However, we do not present both cold

^Uniform distribution is used in all random selections.

CHAPTER 4. THE OBJECTIVE BENCHMARK 25

event PEDl { PEDl::doNothing(); };

event PED2 { B 0T (’PED2’); };

event PED3 { C0MMIT(’PED3’); };

event CEDI { ABSTRACT(CEDl.l) then ABSTRACT(CEDl^); };

event CED2 { ABSTRACT(CED2.1) and ABSTRACT(CED2J2); };

event CED3 { not ABSTRACT(CED3^) in
(ABSTRACT(CED3J) , ABSTRACT(CED3JÎ)); };

event CED4 { 1 times ABSTRACT(CED4^) in
(ABSTRACT(CED4.1) , ABSTRACT(CED4J)); };

event CED5 { all ABSTRACT(CED5_2) in
(ABSTRACT(CED5-1) , ABSTRACT(CED5.3)); };

Figure 4.2: The events related to event detection operations

CHAPTER 4. THE OBJECTIVE BENCHMARK 26

rule RF1{
decl ;
event A BSTR ACT(RF1);
cond FALSE;
action ;

};

rule RF3{
decl ;
event ABSTRACT(RF3);
cond dep FALSE;
action ;

};

rule R F5-l{
decl ;
event ABSTRACT(RF5);
cond FALSE;
action ;
prio 1;

};

rule RF6{
decl RF6 *obj;

int i;
event obj->setAttribute(i)
cond obj->getAttribute() > 0;
action obj->setAttribute(i—1);

};

rule EPP2{
decl EPP2 =̂ =obj;

double dl;
double d2;

event obj- >set Data(d 1 ,d2);
cond def dl < d2;
action obj->setMinData();

}:

rule GC1{
decl ;
event 1000 times ABSTRACT(GCl) in

BOT(’G C r) ,
COMMIT(’G C r);

cond FALSE;
action ;

}:

rule RF2{
decl ;
event ABSTRACT(RF2);
cond def FALSE;
action ;

};

rule RF4{
decl ;
event ABSTRACT(RF4);
cond TRUE;
action ;

};

rule RF5-2{
decl ;
event A BSTRACT(RF5);
cond FALSE;
action ;
prio 2;

};

rule EPP1{
decl EPPl *obj;

double dl;
double d2;

event obj->setData(dl,d2);
cond .dl < d2;
action obj->setMiiiData();

};

rule EPP3{
decl EPP3 *obj;

double dl;
double d2;

event obj->setData(dl,d2);
cond dep dl < d2;
action obj->setMinData();

};

Figure 4.3: The OBJECTIVE Benchmark rules

CHAPTER 4. THE OBJECTIVE BENCHMARK 27

class DummyO{
double data[125];

public:
void doNothingO { ; }
void doNothingl { ; }

void doNothing9

Figure 4.4: An example dummy cla^s

and hot time results for all operations. Instead, we prefer to present the more
meaningful and informative time measure for a given operation according to
the focus of that operation. As a case in point, it is more meaningful to con
centrate on the cold times for an operation concerned with rule retrieval, while
one should emphasize the hot time results for conflict resolution of triggered
rules.

We consider the CPU time used by the process running an operation instead
of wall-clock time, because we do not want to include the effects of certain
operating system tasks in our results. Another important point to note is that
we always use transient objects rather than persistent ones in order to exclude
any database overhead“*.

The following general order of execution is used for the implementation of
each operation:

1. clear the system buffer,

2. open the database,

3. perform cold and hot time measurements, and

4. close the database.

We include four parameters for the OBJECTIVE Benchmark:

NumEvents denotes the number of (dummy) events.

“*Only exceptions are the operations that require the passing of objects as event parameters
in non-immediate modes. In such a case, it only makes sense to pass persistent objects, not
transient ones, as parameters.

CHAPTER 4. THE OBJECTIVE BENCHMARK 28

Parameter Empty Small Medium Large
NumEvents 0 100 500 1000
FracCompEvents 0.3,0.6,0.9 0.3,0.6,0.9 0.3,0.6,0.9
NumRules 0 100 500 1000
NumObjects 0 5000 25000 50000

Table 4.2: The OBJECTIVE database configurations

• FracCompEvents denotes the ratio of the number of composite events to
the number of all events (i.e., NumEvents).

• NurnRules denotes the number of (dummy) rules.

• NumObjects denotes the number of (dummy) data objects.

The database configurations based on these parameters are summarized in
Table 4.2.

We do not include every step of the implementation in our codes which
illustrate the benchmark operations; as they may vary widely from system to
system, cind will not contribute much to the understanding of the benchmark.
In particular, we skipped the code for handling the database, flushing the
system buffer and measuring the elapsed time. For ease of illustration, all the
tests of a particular group are shown in the same main program, although each
is implemented as an independent operation comprising all the implementation
steps outlined above. Each block of statements written in bold font indicates
the interesting parts of a particular test and is wrapped around by the code for
time measurement. In the implementation, each such block is executed eleven
times; we take the cold time to be the time elapsed for the first iteration and
the hot time to be the average of the elapsed time for the last ten iterations.

Method Wrapping

The purpose of operation MWl (Figure 4.5) is to asses the cost of the (useless)
overhead generated by the invocation of a method which is wrapped to provide
active functionality whenever required. In operation MWl, a method is invoked
which does not generate any event.

Event Detection

The primitive event detection operations (Figure 4.6) examine how efficiently
an ADBMS detects primitive events of interest. The aim of operation PEDl is

CHAPTER 4. THE OBJECTIVE BENCHMARK 29

void main(){
M W l *objectM W l=new M W l;

Transaction: :begin();
objectMWl->doNothing();

Transaction::commit(); }
\\ no event generation

Figure 4.5: The Method Wrapping program

to measure the time it takes to detect a method event. We invoke a method
which generates a primitive event which is not an event type for any rule. In
this way, we try to discard the time for rule execution, and concentrate on event
detection only. Operation PED2 tries to measure the time it takes to detect a
transaction event. Unfortunately, in any transaction operation the underlying
system does certain bookkeeping operations which is not interesting to us. We
chose the ВОТ operation since it seems to contain minimum irrelevant opera
tions when compared with the other transaction operations. This transaction
operation generates an event which does not trigger any rule. On the other
hand, operation PED3 considers the COMMIT operation which, we believe, is
the most representative of all transaction operations. The primary focus of this
operation, unlike that of PED2, is not only on the detection of a transaction
event, but also on getting an insight about the influence of the support for
some active functionalities (e.g., event history® management).

The composite event detection operations (Figure 4.7) examine the event
composition of an ADBMS. In order to concentrate on composition costs only,
we used minimum (meaningful) number of component primitive events for test
ing different composition types. It would be just as easy to use a larger number
of component events, but then it would be very hard to justify a particular
number, and more importantly there would be a relatively high risk that the
composition costs be overshadowed. To stress the composition costs even more,
abstract events are used as component events to exclude event detection and
parameter passing time. As in the case of primitive event detection operations,
the composite event detection operations generate composite events which are
not event types for any rules. It is important to note here that, in all the event
detection operations, there is also an overhead for looking up rules to be fired.
The primitive and composite event types relevant to event detection operations
are defined in Figure 4.2.

®Event history is the log of all event occurrences since system startup.

CHAPTER 4. THE OBJECTIVE BENCHMARK 30

void main(){
PEDI *objectPEDl=new PEDI;

Transaction: :begin();

objectPEDl->doNothing();
Transaction:;commit();

Transaction::begin(’PED2’);
Transaction: :commit();
Transaction::begin(’PED3’);

Transaction::commit(); }

\\ generate event PEDI

\\ generate event PED2

\\ generate event PED3

Figure 4.6: The Primitive Event Detection program

void main(){
Transaction::begin();

AbstractEvent:: raise (’CED1 -1 ’);
AbstractEvent::raise(’CEDl_2’);

AbstractEvent::raise(’CED2_l’);
AbstractEvent::raise(’CED2_2’);

AbstractEvent: :raise(’CED3_l’);
AbstractEvent::raise(’CED3_3’);

AbstractEvent::raise(’CED4_l’);
AbstractEvent::raise(’CED4_2’);
AbstractEvent::raise(’CED4_3’);

AbstractEvent::raise(’CED5_l’);
AbstractEvent::raise(’CED5_2’);
AbstractEvent::raise(’CED5_3’);

Transaction::commit(); }

\\ generate event CEDI

\\ generate event CED2

\\ generate event CED3

\\ generate event CED4

\\ generate event CED5

Figure 4.7: The Composite Event Detection program

CHAPTER 4. THE OBJECTIVE BENCHMARK 31

void mairi(){
RF6 *objectRF6=new RF6;

Transaction:; begin ();

AbstractEvent::raise(’R F l’);

AbstractEvent::raise(’RF2’);

AbstractEvent::raise(’RF3’);

AbstractEvent::raise(’RF4’);

AbstractEvent::raise(’RF5’);

objectRF6->setAttribute(l);
Transaction::commit(); }

\\ trigger rule RFl

\\ trigger rule RF2

\\ trigger rule RF3

\\ trigger rule RF4

\\ trigger rules RF5-1
\\ and RF5-2

\\ trigger rule RF6 twice

Figure 4.8: The Rule Firing program

Rule Firing

The rule firing operations (Figure 4.8) of the OBJECTIVE Benchmark focus
, on different aspects of rule firing in an ADBMS. Operation RFl measures the
cost of fetching a rule from the rulebase by triggering a rule in immediate
coupling mode. In order to keep the elapsed time for rule execution (which is
not interesting to us in this operation) minimal, the triggered rule has a FALSE
condition part, so that condition evaluation is relatively cheap, and no action
is executed. Operations RF2 and RF3 trigger rules in deferred and decoupled
coupling modes, respectively. These operations do not measure the time to
fire and execute rules in different coupling modes; rather, they examine the
cost of storing the information that the triggered rule will be fired just before
commit, and in a new transaction, respectively. Although the task measured
by RF3 is similar to that measured by RF2 (i.e., abstract event signalling and
notification of the current transaction to store a particular bit of information),
the contribution of operation RF3 is mainly with respect to functionality (i.e.,
is decoupled coupling mode supported?).

The focus of operation RF4 is on determining how efficiently a rule’s con-
dition/action parts are accessed and executed (or interpreted). This operation
triggers a rule with a TRUE condition part, so that its action part (though

CHAPTER 4. THE OBJECTIVE BENCHMARK 32

void main(){
EPPl *objectEPPl=new EPPl
EPP2 *objectEPP2=new EPP2
EPP3 *objectEPP3=new EPP3

Transaction::begin();
\\ trigger rule EPPl

o b je c tE P P l-> se tD a ta (1 .0 , 2 .0);
\\ trigger rule EPP2

o b je ctE P P 2 -> se tD a ta (1 .0 , 2 .0);
\\ trigger rule EPP3

o b je ctE P P 3 -> se tD a ta (1 .0 , 2 .0);
Transaction::commit(); }

Figure 4.9: The Event Parameter Passing program

empty) is executed. Operation RF5 reveals the overhead when an event occurs
and two rules have to be fired. Different priorities are assigned to these rules to
force a particular serialization order. Operation RF6 invokes a method event
which triggers a rule that generates the same event in its action part. Therefore
the same rule is triggered a second time, but with a condition which evaluates
to FALSE; stopping this cascading rule firing. The rules which are triggered
by the rule firing operations are defined in Figure 4.3.

Event P aram eter Passing

The event parameter passing operations (Figure 4.9) test how efficiently an
ADBMS passes event parameters to the condition and action parts of the rules
in different coupling modes. The operation EPPl measures the cost of param
eter passing as well as rule execution in immediate coupling mode, whereas
the operations EPP2 and EPP3 measure just the cost of using an intermediate
storage for passing event parameters. From the point of view of the triggered
rules, there is a similar overhead due to the retrieval of the event parameters
from the storage where they reside temporarily; but this overhead is not mea
sured by our operations. The rules triggered by the event parameter passing
operations are defined in Figure 4.3.

CHAPTER 4. THE OBJECTIVE BENCHMARK 33

void main(){
Transact ion:: begi n (’ G C r);

\\ create a semi-composed event
for(int i=0; i < 999; i+-l·)

AbstractEvent::raise(’G C r);
T ra n saction ::com m it(); } * •

Figure 4.10: The Garbage Collection program

G arbage C ollection o f S em i-C om posed Events

The purpose of operation GCl (Figure 4.10) is to examine the overhead of flush
ing an event composition structure that is used in the detection of a composite
event. In this operation, we first produce garbage (i.e., create a semi-composed
event), and then try to measure the time for collecting the garbage. Such a
garbage collection can typically be accomplished at two different points (from
a black-box point of view):

• immediately after the monitoring interval is finished, or

• at commit time.

In the former case, the time for the operation generating the end-of-interval
event, and in the latter case, the time for commit operation should be measured.
For generality of the test, we take COMMIT to be also the end-of-interval event
so that garbage collection can only be accomplished during commit for this
operation. Unfortunately, isolation of garbage collection inside commit is not
possible by using the results of this operation only. However, we can circumvent
this problem to a certain extent by using the difference of the results of this
operation and those of operation PED3 (i.e., detection of COMMIT) in which
no time for garbage collection is involved. In this manner, we may have an
estimation of the times indicating the duration of the garbage collection task,
which is the best we can do with our black-box view of the system.

R ule A dm in istration

The rule administration operations are somewhat different from the other OB
JECTIVE operations in the sense that they are more likely to be included in
a feature benchmark. However, we deem the functionalities examined by these
operations so important from the functionality point of view that they must
be included in a comprehensive benchmark for ADBMSs.

CHAPTER 4. THE OBJECTIVE BENCHMARK 34

Operation RAl creates a new rule and stores it in the rulebase, and operation
RA2 deletes an existing rule from the rulebase. Operation RA3 and RA4,
enables and disables a rule, respectively. Operation RA5 changes the action part
of a rule. Note here that we do not illustrate the rule administration operations,
because the implementation of these operations may change radically from
system to system. The important thing is that, in all these operations, the
relevant rules should be kept very simple, e.g., rule RFl (Figure 4.3), in order
to focus on the efficiency of the provided rule administration facility.

Chapter 5

The OBJECTIVE Results for
REACH

In this chapter, first the basic features of the REACH object-oriented active
database system prototype are given in Section 5.1, and then the results of
the application of the OBJECTIVE Benchmark to this system are presented
in Section 5.2.

5.1 REACH

REACH (REaltime, ACtive and Heterogeneous mediator system) [7] is an
object-oriented ADBMS prototype which is being developed at the Technical
University of Darmstadt, Germany. It is one of the first operational prototypes
which combines the most advanced features of ADBMSs. REACH is imple
mented as an extension of Texas Instruments’ Open OODB [.34]. Open OODB
is an extensible object-oriented database system, and it uses EXODUS [9] as
its storage manager.

REACH expresses ECA rules in REAL (REAch rule Language) which al
lows for the specification of the event, condition, action, EC and CA coupling
modes, and priority of a rule. When a rule is defined, two C functions (one for
the condition and one for the action) are stored in a shared library. GRANT
(Graphical Rule AdmiNistration Tool) is a graphical user interface which sim
plifies the definition and maintenance of rules (see [36] for more about definition
and maintenance of rules in REACH).

REACH supports both primitive and composite events. As primitive events,

35

CHAPTER 5. THE OBJECTIVE RESULTS FOR REACH 36

it supports method events, transaction events, abstract events, and temporal
events. Inline method wrapping technique is used for the detection of method
events.

For the definition of composite events, REACH takes the sequence, disjunc
tion, and closure composite event constructors from HiPAC [16], and negation,
conjunction, and history from SAMOS [23]. In addition, the notion of valid
ity interval of a composite event is also inherited from SAMOS. REACH uses
syntax graphs, more specifically extended syntactic trees [18], for composite
event detection. Two alternative contexts are provided for event consumption;
recent and chronicle.

REACH supports immediate, deferred, and detached coupling modes which
determine the semantics of rule execution. A distinguishing feature of REACH
is that it does not allow rules to be triggered in immediate coupling mode
by composite events. This decision was made to make sure that the event
composition process does not delay normal execution of an application.

The current implementation of REACH allows sequential rule execution, but
the transaction model is being extended to incorporate parallel rule execution.
Priority mechanism is used for conflict resolution of & set of rules, and in the
case of a tie, the oldest rule first (default) or the newest rule first (optional)
tie-break policies that utilize the creation time of rules can be employed.

5.2 Results

During the implementation of OBJECTIVE in REACH, we were not able to
follow our assumption of using just the external interfaces of a system to be
tested. This is mainly because of the fact that REACH does not allow the
definition of stand-alone event types (i.e., events that do not take part in the
event type of any rule) through its rule definition interface. Such stand-alone
event types (Figure 4.2) are utilized in event detection operations. For this
reason, we created these events manually (see Appendix B for a sample program
used to create a stand-alone event). REACH takes a different approach in this
respect, because almost all object-oriented ADBMSs (e.g., SAMOS, NAOS,
SENTINEL, and ACOOD) encourage the stand-alone definition of events for
reusability reasons.

In addition, we had to define the benchmark rules (Figure 4.3) manually (see
Appendix C for a sample program used to create a rule), because at the time
of the benchmark implementation, the rule compiler of REACH was not able
to support the definition of rules with coupling modes other than immediate.

CHAPTER 5. THE OBJECTIVE RESULTS FOR REACH 37

Another difference between the benchmark specification and its implemen
tation in REACH was in the way database objects were used in benchmark
operations. In Section 4.3, we require that the database objects to be used in
the benchmark operations be transient rather than persistent to exclude any
database overhead. In REACH, this was not possible for certain reasons, so we
had to make each such object persistent. However, as we created the objects
right in the beginning of each test (e.g.. Figure 4.9), and then make them per
sistent by using the persist{) member function (which is added to every class by
the Open OODB preprocessor); no database access was made (i.e., although
the objects were persistent, they were already created and known to be in main
memory).

The environment in which we benchmark REACH is a SUN-SPARC 10/512
with 112 MB of RAM under Solaris 2.5, Open OODB 0.2.1, and the EXODUS
Storage Manager 2.2. Each operation was run about 50 times for the same
setting of database parameters in a normal operating user environment (i.e.,
not in an isolated machine).

Table 5.1 depicts the mean values ̂ of the OBJECTIVE Benchmark results
for REACH. All the values are given in milliseconds. In order to keep the
exposition manageable and clear, we skip some of the’ results in this chapter.
All results along with 90% confidence intervals and standard deviations are
presented in Appendix A.

5.2.1 Results for the Method Wrapping Operation

The useless overhead paid by REACH is quite acceptable (Figure 5.1), because
REACH minimizes this overhead by assigning a global variable to each method
indicating the presence/absence of a detector for that method in the database;
thereby reducing it to a memory look-up rather than a database access. Nev
ertheless, the database must be scanned for the relevant event detectors and
the corresponding variables must be set in the memory before the start of an
application program.

5.2.2 Results for the Event Detection Operations

REACH optimizes useful overhead of method event detection as well as its use
less overhead. This is accomplished by using a prefetching mechanism. This
mechanism, by examining the relevant application programs and header files,
prefetches the necessary primitive method event detectors, composite event de
tectors containing those primitive event types as constituents, and the rules to

T̂he subscripts c anJ a represent cold and hot time results, respectively.

CHAPTER 5. THE OBJECTIVE RESULTS FOR REACH 38

be triggered by the occurrences of these event types. However, this prefetching
is done only for method event types, not for transaction or abstract events.
This explains why the PED2 results are worse than the PEDl results. The
comparison of results of operation PED2 and those of operation PED3 reveals
that the COMMIT operation itself, not its detection, shows very poor perfor
mance. A more through investigation leads us to the fact that this behavior
is primarily a consequence of REACH’S poor event history maintenance; i.e.,
at commit time REACH updates the event history with the events occurred in
that transaction. However, it is also evident (from the dependency of the re
sults on database configuration) that this update is implemented inefficiently.
In addition, it can be inferred from the large standard deviations of PED3 re
sults (see Table A.4, Table A.5, and Table A.6) that, duration of the event
history maintenance task (thus duration of the commit operation) depends on
the size of the event history which increases at each run of the benchmark oper
ations. Another contributing factor is the underlying platform. Open OODB,
which always writes back the whole buffer at commit time.

Results for the composite event detection operations show almost no de
pendency on database configuration. This is a direct consequence of the use
of extended syntactic trees for event composition. For each composite event
type, a specialized event detector object is constructed; hence, the overhead of
using more generic models (e.g., Petri Nets) is eliminated; making the event
composition process very fast. The results for operations CEDI and CED2 are
slightly better, since they do not require the confirmation of a validity interval
as is done in operations CED3, CED4, and CED5. In general, composite event
detection process scales very well; even the most crucial parameters for this
test, NumEvents and FracCompEvents, do not have a notable effect on the
results.

5.2.3 Results for the Rule Firing Operations

As REACH treats rules as first-class objects, rules are fetched just like ordi
nary objects by using their names. The (cold time) results for operation RFl
suggest a dependency of rule retrieval time on database configuration. It is
important to emphasize here that cold times make sense for this operation as
no prefetching mechanism is used for abstract events. Results for operations
RF2 and RF3 show that it is somewhat slower to initialize the triggering of a
rule in decoupled mode than to initialize it in deferred mode. Such a behavior
is not surprising at all, since operation RF3 contains the initialization of a new
transaction to execute the rule. The results for operation RF4 indicate mainly
the time for accessing and executing the action part of the rule. These results
are almost constant for all database configurations, because the condition and
action parts of a rule are stored as compiled code in a shared library allowing
very fast access and execution independent of database parameters. The figures

CHAPTER 5. THE OBJECTIVE RESULTS FOR REACH 39

for operation RF6 are slightly worse than those for operation RF5. Although
both operations contain two rule triggerings, RF6 generates two method event
occurrences, whereas in RF5 rules are triggered by a single abstract event.

5.2.4 Results for the Event Parameter Passing Opera

tions

REACH supports the ability to pass all arguments of a method invocation that
triggers a rule to condition and action parts of that rule. In immediate mode
all arguments are stored in a bag (i.e., bytestring) and access to the arguments
is accomplished by using an array of pointers that store the addresses of the ar
guments. The same mechanism is used in deferred mode, but the dereferenced
value of a pointer argument is stored in the array instead of the pointer itself.
In detached mode, as the execution of the rule will take place in a different
address space, the bag and the pointer array are written in a file.

Different requirements for the implementation of these approaches show
their effects in the results, making parameter passing somewhat expensive in
detached mode due to the inevitable use of intermediate secondary storage.

5.2.5 Results for the Garbage Collection Operation

As in the case of operation PED3, we encounter very poor results for operation
GCl. It is suggested in Section 4.3 that results of operation PED3 be used in
the interpretation of the results of GCl. Unfortunately, it is out of question to
get an understanding of the performance of the system under the intended task
even by using results of PED3. The reason is that, as mentioned in Section
5.2.2, commit time is dependent on the size of the event history in REACH,
and the size of the event history is not the same in respective runs of operation
PED3 and operation GCl; making it impossible to interpolate the time for
garbage collection by using the results of these two operations.

5.2.6 Results for the Rule Administration Operations

All of the rule administration operations are implemented using the rule man
agement commands of REACH from its command line interface [36]. These
commands are programs with names resembling well-known UNIX commands.
In addition, they have a prefix indicating the context in which they are to be
used.

CHAPTER 5. THE OBJECTIVE RESULTS FOR REACH 40

The implementation of operation RAl in REACH consists of the creation
of a rule and compilation of the shared library containing the condition/action
parts of rules in the form of two C functions by using the REACH command
r l_ c c (the prefix r l stands for rule library) . The other operations, RA2, RA3,
and RA4, are implemented using REACH commands r_d e le te , r .en ab le ,
and r_ d isa b le (the prefix r stands for rule), respectively. Unfortunately,
we were not able to get results for operation RA5 (although it is possible
modify rules dynamically in REACH) because of a bug in the system. The
results for the presented rule administration operations, except RAl, show a
constant behavior under all database configurations. The exceptional results
for operation RAl are possibly due to the compilation time of the shared library
whose size is directly proportional to the number of rules.

CHAPTER 5. THE OBJECTIVE RESULTS FOR REACH 41

T E S T C O N F IG U R A T IO N
E M P T Y SM A L L M E D IU M L A R G E

0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9
M W lh 0.03 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03
P E D l^ 2.04 2.19 2.27 2.15 2.31 2.57 3.07 3.50 3.80 3.70
PED 2c 12.72 13.79 14.67 14.19 13.37 13.22 15.03 16.97 17.70 17.37
PED 3c 318 1005 1062 5447 10069 20921 42758 35436 46321 74865
C ED\fi 3.50 3.72 3.77 3.56 4.01 3.82 4.45 5.42 5.49 5.35
CED2h 4.16 4.31 4.30 4.37 4.48 4.51 5.31 6.43 6.80 6.39
CEDZh 3.60 3.68 3.69 3.56 3.97 3.91 4.53 5.52 5.81 5.50
CEDAh 4.69 4.86 4.84 4.84 5.17 5.21 6.15 7.47 7.50 7.49
CEDSh 4.73 4.87 4.88 4.79 5.11 5.12 6.13 7.02 7.36 7.68
R F lc 10.58 12.21 12.38 12.79 13.37 13.77 14.64 16.48 16.54 16.84
R F 2 h 1.68 1.92 1.94 1.92 2.48 2.47 2.60 3.31 3.20 3.26
RFZh 2.38 2.61 2.65 2.66 2.54 2.75 3.08 3.95 3.71 4.26
R F 4/i 1.50 2.04 2.02 1.91 2.11 2.53 2.70 2.48 2.59 2.53
RF^H 1.46 2.44 2.44 2.33 2.21 2.71 3.17 3.03 3.84 3.48
RF&H 2.40 3.02 3.04 2.96 3.28 3.84 4.05 4.09 4.58 4.37
EPPiH 2.12 2.86 2.84 2.75 2.89 3.05 3.58 3.81 3.86 3.78
EPP2h 2.84 3.07 3.05 2.96 3.44 3.73 4.06 5.16 5.18 5.90
EPP3h 3.40 3.44 3.84 3.57 3.66 3.96 4.53 5.81 5.93 6.32
G Clc 19712 19423 19785 26483 18981 26010 48674 102149 171610 272112
RAlc 4.48 4.53 4.60 4.57 4.63 4.71 5..39 7.64 7.92 8.85
RA2c 2.18 2.13 2.25 2.27 2.22 2.21 2.41 2.23 2.34 3.71
RA3c 2.07 2.05 2.17 2.08 2.17 2.16 2.40 2.52 2.39 2.55
RA4c 2.24 2.14 2.22 2.07 2.07 2.48 2.58 2.46 2.51 2.66

Table 5.1: The OBJECTIVE results for REACH

Chapter 6

Conclusions and Future Work

We presented the OBJECTIVE Benchmark for object-oriented ADBMSs, and
illustrated it with the results obtained from its implementation in REACH.
Although OBJECTIVE is designed to be very simple in nature, it is also very
comprehensive in its coverage of active functionalities.

The results obtained from the implementation of OBJECTIVE on REACH
reveal that REACH supports a high level of active functionality efficiently.
Almost all components of REACH perform and scale well. The only exception
we encountered is the problematic commit operation of REACH. This operation
is a real bottleneck as it is a must operation for all applications running inside
a transaction framework, and this bottleneck must be surmounted to achieve
acceptable overall system performance. The implementation phase also helped
to disclose a number of bugs in the system. The results of REACH alone are
sufficient to identify its bottleneck components. However, results to be taken
from different systems (with possibly different approaches and architectures
for supporting ADBMS tasks) would be highly welcome to make an objective
judgment about the degree of efficiency with which these tasks are supported
by a particular ADBMS.

We believe that the OBJECTIVE operations cover an important subset of
issues with respect to ADBMS performance and functionality. The remaining
issues are mainly the ones related to event consumption policies, condition
optimization, and parallel rule execution.

An open related research area is the evaluation of ADBMS performance in
multi-user environments. There is considerable performance difference between
single-user and multi-user environments which results ,from issues of optimal
system resource utilization. Therefore, the results obtained from a single-user
benchmark do not necessarily represent the real performance of the system. It

42

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 43

is especially interesting to investigate the effects of the number of concurrently
running transactions to event detection and rule execution.

An interesting thing to note here is that all the benchmarks that have been
proposed so far for ADBMSs, including OBJECTIVE, are generic benchmarks.
This is a consequence of the lack of adequate information about the charac
teristics of ADBMS tasks (even the notion of an ADBMS task is elusive for
now). As the application areas for ADBMSs mature, we expect to see the de
velopment of domain-specific benchmarks to evaluate end-to-end performance
in order to have a better understanding of ADBMS performance.

As a final remark, we hope that the OBJECTIVE Benchmark finds accep
tance as a useful yardstick for evaluating ADBMS performance and function
ality.

Bibliography

[1] R. Agrawal and N. H. Gehani. ODE (object database and environment):
The language and the data model. In Proc. 1989 ACM-SIGMOD Confer
ence on Management of Data, Portland, Oregon, June 1989.

[2] T. Andrews. The ONTOS object database, manuscript.

[3] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented
Database - The story of O2 · Morgan Kaufmann, 1992.

[4] Mikael Berndtsson. ACOOD: An approach to an active object oriented
DBMS. Master’s thesis. University of Skovde, Department of Computer
Science, Skovde, Sweden, September 1991.

[5] H. Boral and D. J. DeWitt. A methodology for database system per
formance evaluation. In Proc. of the 1984 SIGMOD Conference, pages
176-185, Boston, June 1984.

[6] D. A. Brant and D. P. Miranker. Index support for rule activation. In ACM
SIGMOD Conference on Management of Data, pages 42-48, Washington
D.C., May 1993.

[7] A. P. Buchmann, J. Zimmermann, J. Blakeley, and D. L. Wells. Building
an integrated active OODBMS: Requirements, architecture and design
decisions. In Proceedings of Data Engineering Conference, pages 117-128,
1995.

[8] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The 0 0 7 benchmark. In
ACM SIGMOD Conference, pages 12-21, May 1993.

[9] M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J. Shekita. Object
and file management in the EXODUS extensible database system. In
Proceedings of the 12th International Conference on Very Large Databases,
1986.

[10] R. Catell and J. Skeen. Object operations benchmark. ACM Transactions
on Database Systems, 17(1): 1-31, March 1992.

44

BIBLIOGRAPHY 45

[11] S. Chakravarthy, V. Krishnaprasad, E. Abwar, and S. K. Kim. Anatomy
of a composite event detector. Technical Report UF-CIS-TR-93-039, CIS
Department, University of Florida, December 1993.

[12] S. Chakravarthy and D. Mishra. SNOOP: an expressive event specification
language for active databases. Technical Report UF-CIS-TR-93-007, CIS
Department, University of Florida, March 1993.

[13] S. Chakravarthy, Z. Tamizuddin V. Krishnaprasad, and R. H. Badani.
ECA rule integration into an OODBMS: Architecture and implementation.
Technical Report 94-023, CIS Department, University of Florida, 1994.

[14] C. Collet, T. Coupaye, and T. Svensen. NAOS: Efficient and modular
reactive capabilities in an object-oriented database system. In Proceedings
of the 20th International Conference on Very Large Databases, Santiago,
Chile, September 1994.

[15] U. Dayal. Active database management systems. In Proc. 3rd In
ternational Conference on Data and Knowledge Bases, pages 150-169,
Jerusalem, June 1988.

[16] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ladin,
D. McCarthy, and A. Rosenthal. The HIPAC prpject: Combining active
databases and timing constraints. ACM SIGMOD Record, 17(l):51-70,
March 1988.

[17] U. Dayal, A. Buchmann, and D. McCarthy. Rules are objects too: a knowl
edge model for an active, object-oriented database system. In Proceedings
of 2nd International Workshop on Object-Oriented Database Systems, Lec
ture Notes in Computer Science 33j. Springer, 1988.

[18] Alin Deutsch. Detection of method and composite events in the active
DBMS REACH. Master’s thesis. Technical University Darmstadt, July
1994.

[19] Andreas Eklund. Performance evaluation of an active database system.
Master’s thesis. University of Skovde, Department of Computer Science,
Skovde, Sweden, September 1995.

[20] J. Eriksson. Cede: Composite event detector in an active object-oriented
database. Master’s thesis. Department of Computer Science, University
of Skovde, 1993.

[21] S. Gatziu and K. R. Dittrich. Events in an active object-oriented database
system. In Proc. o f the 1st International Workshop on Rules in Database
Systems. Springer, September 1993.

[22] S. Gatziu and K. R. Dittrich. Detecting composite events in active
database systems using Petri nets. In IEEE RIDE Proc. jth International

BIBLIOGRAPHY 46

Workshop on Research Issues in Data Engineering, Houston, Texas, USA,
1994.

[23] S. Gatziu, A. Geppert, and K. R. Dittrich. The SAMOS active DBMS
prototype. Technical Report 94.16, CS Department, University of Zurich,
1994.

[24] N. Gehani, H. V. Jagadish, and 0 . Shumeli. Composite event specification
in active databases: Model and implementation. In Proc. 18th Interna
tional Conference on Very Large Data Bases, Vancouver, Canada, August
1992.

[25] A. Geppert, M. Berndtsson, D. Lieuwen, and J. Zimmermann. Per
formance evaluation of active database management systems using the
BEAST benchmark. Technical Report 96.01, CS Department, University
of Zurich, February 1996.

[26] A. Geppert, S. Gatziu, and K. R. Dittrich. A designers benchmark for
active database management systems: 0 0 7 meets the BEAST. Technical
Report 95.18, Dept, of Computer Science, University of Zurich, 1995.

[27] A. Geppert, S. Gatziu, K. R. Dittrich, H. Fritschi, and A. Vaduva. Archi
tecture and implementation of the active object-oriented database manage
ment system SAMOS. Technical Report 95.29, CS Department, University
of Zurich, 1995.

[28] Jim Gray. The Benchmark Handbook for Database and Transaction Pro
cessing. Morgan Kaufmann, 1991.

[29] E. Hanson and J. Widom. An overview of production rules in database
systems. Technical Report 92-031, CIS Department, University of Florida,
1992.

[30] M. L. Kersten. An active component for a parallel database kernel. In
Rules in Database Systems, Workshops in Computing, pages 277-291.
Springer, September 1995.

[31] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore
database system. Communications o f the ACM, 34(10), 1991.

[32] J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed
Computing. MIT Press, 1985.

[33] M. Stonebraker and G. Kennitz. The POSTGRES next-generation
database management system. Communications of the ACM, 34(10):78-
92, October 1991.

[34] D. L. Wells, J. A. Blakeley, and C. W. Thompson. Architecture of an
open object-oriented database management system. IEEE Computer,
25(10):74-81, October 1992.

BIBLIOGRAPHY 47

[35] J. Widom and S. Finkelstein. Set-oriented production rules in relational
database systems. In Proceedings of ACM-SIGMOD, pages 259-270, May
1990.

[36] J. Zimmermann, H. Branding, A. P. Buchmann, A. Deutsch, and A. Gep-
pert. Design, implementation and management of rules in an active
database system. In Proceeedings of Database and Expert System Ap
plication, 1996. To be published.

[37] J. Zimmermann, A. Buchmann, and A. Deutsch. The ACT-1 benchmark.
Technical report, Technical University Darmstadt, Germany, 1995.

[38] J. Zimmermann and A. P. Buchmann. Benchmarking active database
systems: A requirements analysis. In OOPSLA ’95 Workshop on Object
Database Behavior, Benchmarks, and Performance, Austin, Texas, 1995.

Appendix A

The Complete Results for
REACH

T E S T C O N F IG U R A T IO N
E M P T Y SM A L L

0.3 0.6 0.9
M W U average 0.03 0.04 0.03 0.04

std. dev. 0.01 0.02 0.01 0.02
conf. int. [0.02,0.05] [0.02,0.06] [0.02,0.05] [0.03,0.06]

Table A .l: The Method Wrapping results (EMPTY and SMALL Database
Configurations)

48

APPENDIX A. THE COMPLETE RESULTS FOR REACH 49

T E S T C O N F IG U R A T IO N
M E D IU M

0.3 0.6 0.9
MWl h average 0.03 0.03 0.03

std. dev. 0.01 0.02 0.01
conf. int. [0.02,0.04] [0.02,0.05] [0.02,0.04]

Table A .2: The Method Wrapping results (MEDIUM Database Configuration)

T E S T C O N F IG U R A T IO N
L A R G E

0.3 0.6 0.9
M W I h average 0.03 0.03 0.03

std. dev. 0.01 0.02 0.01
conf. int. [0.03,0.05] [0.02,0.05] [0.03,0.04]

Table A.3: The Method Wrapping results (LARGE Database Configuration)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 50

T E S T C O N F IG U R A T IO N
E M P T Y SM A LL

0 . 3 0 . 6 0 . 9

P E D l h average 2.04 2.19 2.27 2.15
std. dev. 0.05 0.14 0.05 0.06
conf. int. [1.97,2.15] [1.87,2.40] [2.19,2.38] [2.08,2.27]

P E D 2 c average 12.72 13.79 14.67 14.19
std. dev. 0.7 1.01 1.18 1.07
conf. int. [11.67,13.67] [11.32,15.44] [12.75,17.37] [12.12,15.31]

P E D Z c average 318 1005 1062 5447
std. dev. 4 203 1907 13219
conf. int. [313,325] [333,1097] [1036,1093] [993,45106]

Table A.4: The Primitive Event Detection results (EMPTY and SMALL
Database Configurations)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 51

T E S T C O N F IG U R A T IO N
M E D IU M

0.3 0,6 0.9
P E D l h average 2.31 2.57 3.07

std. dev. 0.87 0.16 0.10
conf. int. [0.37,3.31] [2.44,2.63] [2.98,3.24]

P E D 2 c average 13.37 13.22 15.03
std. dev. 1.81 0.75 1.17
conf. int. [11.17,15.98] [12.02,13.85] [13.75,17.34]

P E D 3 c average 10069 20921 42758
std. dev. 1268 23190 70541
conf. int. [329,23601] [4484,70043] [4615,207086]

Table A .5: The Primitive Event Detection results (MEDIUM Database Con
figuration)

T E S T C O N F IG U R A T IO N
L A R G E

0.3 0.6 0.9
P E D l h average 3.50 3.80 3.70

std. dev. 0.20 0.03 0.12
conf. int. [3.32,3.87] [3.77,3.84] [3.61,3.99]

P E D 2 c average 16.97 17.70 17.37
std. dev. 0.82 0.65 0.58
conf. int. [15.88,18.35] [17.28,19.00] [16.71,18.52]

P E D S c average 35436 46321 74865
std. dev. 32020 16039 77360
conf. int. [10572,97230] [30302,73728] [9013,222630]

Table A.6: The Primitive Event Detection results (LARGE Database Config
uration)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 52

TE ST C O N F IG U R A T IO N
E M P T Y SM A LL

0.3 0.6 0.9
C E D h average 3.50 3.72 3.77 3.56

std. dev. 0.10 0.21 0.21 0.12
conf. int. [3.35,3.7.3] [3.51,4.17] [3.65,4.40] [3.40,3.82]

CED2h average 4.16 4.31 4.30 4.37
std. dev. 0.14 0.18 0.09

1
0.27

conf. int. [3.99,4.51] [4.08,4.71] [4.17,4.46] [4.11,5.05]
CEDZh average 3.60 3.68 3.69 3.56

std. dev. 0.10 0.12 0.14 0.11
conf. int. [3.46,3.76] [3.61,3.80] [3.50,3.95] [3.38,3.82]

CEDih average 4.69 4.86 4.84 4.84
std. dev. 0.20 0.10 0.09 0.10
conf. int. [4.50,5.24] [4.62,4.99] [4.74,4.99] [4.70,5.03]

CEDbh average 4.73 4.87 4.88 4.79
std. dev. 0.10 0.15 0.19 0.20
conf. int. [4.59,4.94] [4.62,5.24] [4.59,5.25] [4.56,5.33]

Table A.7: The Composite Event Detection results (EMPTY and SMALL
Database Configurations)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 53

T E S T C O N F IG U R A T IO N
M E D IU M

0.3 0.6 0.9
CEDlh average 4.01 3.82 4.45

std. dev. 0.22 0.16 0.14
conf. int. [3.70,4.23] [3.77,3.94] [4.25,4.67]

CED 2 h average 4.48 4.51 5.31
std. dev. 0.44 0.15 0.11
conf. int. [3.95,5.24] [4.44,4.58] [5.14,5.44]

CED^h average 3.97 3.91 4.53
std. dev. 0.36 0.12 0.15
conf. int. 3.39,4.24] [3.75,4.08] [4.33,4.71]

CEDAh average 5.17 5.21 6.15
std. dev. 0.45 0.16 0.14
conf. int. [4.52,5.62] [5.04,5.51] [5.96,6.25]

CEDbh average 5.11 5.12 6.13
std. dev. 0.43 0.13 0.10
conf. int. [4.51,5.49] [5.02,5.40] [5.98,6.25]

Table A.8: The Composite Event Detection results (MEDIUM Database Con
figuration)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 54

T E S T C O N F IG U R A T IO N
L A R G E

0.3 0.6 0.9
CEDlh average 5.42 5.49 5.35

std. dev. 0.32 0.16 0.11
conf. int. [5.00,5.97] [5.22,5.71] [5.22,5.49]

CED2h average 6.43 6.80 6.39
std. dev. 0.21 0.39 · 0.39
conf. int. [6.16,6.71] [6.08,7.28] [6.02,7.08]

CEDSh average 5.52 5.81 5.50
std. dev. 0.19 0.36 0.26
conf. int. [5.36,5.88] [5.12,6.11] [5.26,5.92]

CEDih average 7.47 7.50 7.49
std. dev. 0.44 0.42 0.24
conf. int. [6.84,8.05] [6.75,7.99] [7.19,7.81]

CEDbh average 7.02 7..36 7.68
std. dev. 0.31 0.25 0.2
conf. int. [6.61,7.42] [6.98,7.74] [7.38,8.07]

Table A.9: The Composite Event Detection results (LARGE Database Con
figuration)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 55

T E S T C O N F IG U R A T IO N
E M P T Y SM A LL

0.3 0.6 0.9
R FU average 10.58 12.21 12.38 12.79

std. dev. 0.24 0.10 0.38 0.64
conf. int. [10.24,10.94] [10.35,14.24] [11.80,12.96 [11.72,14.02]

RF2h average 1.68 1.92 1.94 1.92
std. dev. 0.01 0.03 0.01 0.01
conf. int. [1.63,1.72] [1.82,1.94] [1.91,1.98] [1.91,1.99]

RFZh average 2.38 2.61 2.65 2.66
std. dev. 0.15 0.28 • 0.18 0.22
conf. int. [2.00,2.50] [2.01,2.89] [2.16,2.82] [2.11,2.88]

RF^h average 1.50 2.04 2.02 1.91
std. dev. 0.04 0.24 0.08 0.02
conf. int. [1.46,1.55] [1.48,2.56] [1.96,2.10] [1.89,1.95]

RFbh average 1.46 2.44 2.44 2.33
std. dev. 0.05 0.32 0.07 0.15
conf. int. [1.39,1.54] [2.01,2.97] [2.33,2.55] [2.21,2.78]

RF6h average 2.40 3.02 3.04 2.96
std. dev. 0.03 0.20 0.04 0.19
conf. int. [2.-34,2.44] [2.39,3.21] 2.97,3.12] [2.82,3.51]

Table A. 10; The Rule Firing results (EM PTY and SMALL Database Config
urations)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 56

T E S T C O N F IG U R A T IO N
M E D IU M

0.3 0.6 0.9
R F C average 13.37 13.77 14.64

std. dev. 1.12 0.70 0.39
conf. int. [11.67,14.55] [13.24,15.18] [14.11,15.06]

RF2h average 2.48 2.47 2.60
std. dev. 0.09 0.08 0.04
conf. int. [2.41,2.62] [2.33,2.54] [2.52,2.64]

RF3h average 2.54 2.75 . 3.08
std. dev. 0.31 0.05 0.10
conf. int. [2.42,2.68] [2.72,2.78] [3.01,3.20]

RFik average 2.11 2.53 2.70
std. dev. 0.11 0.18 0.05
conf. int. [2.01,2.22] [2.31,2.76] [2.68,2.74]

RF5h average 2.21 2.71 3.17
std. dev. 0.63 0.03 0.02
conf. int. [1.45,2.86] [2.67,2.75] [3.11,3.31]

RF6h average 3.28 3.84 4.05
std. dev. 0.54 0.04 0.08
conf. int. [2.43,3.79] [3.81,3.86] [3.97,4.21]

Table A .11: The Rule Firing results (MEDIUM Database Configuration)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 57

T E S T C O N F IG U R A T IO N
L A R G E

0.3 0.6 0.9
RFlc average 16.48 16.54 16.84

std. dev. 0.46 0.75 0.35
conf. int. [15.86,16.95] [15.51,17.53] [16.59,17.44]

RF2, average 3.31 3.20 3.26
std. dev. 0.18 0.09 0.16
conf. int. [3.15,3.66] [3.10,3.30] [3.08,3.47]

RFSh average 3.95 3.71 ■ 4.26
std. dev. 0.16 0.02 0.07
conf. int. [3.82,4.19] [3.69,3.73] [4.12,4.31]

RF4h average 2.48 2.59 2.53
std. dev. 0.07 0.12 0.18
conf. int. [2.41,2.59] [2.47,2.70] [2.32,2.78]

RFbh average 3.03 3.84 3.48
std. dev. 0.18 0.54 0.06
conf. int. [2.87,3.28] [3.51,4.93] [3.41,3.55]

RF6h average 4.09 4.58 4.37
std. dev. 0.09 0.28 0.01
conf. int. [3.99,4.21] [4.36,5.12] [4.36,4,38]

Table A. 12: The Rule Firing results (LARGE Database Configuration)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 58

T E S T C O N F IG U R A T IO N
E M P T Y SM ALL

0.3 0.6 0.9
E P P h average 2.12 2.86 2.84 2.75

std. dev. 0.14 0.37 0.18 0.05
conf. int. [2.03,2.50] [2.17,3.47] [2.70,3.35] [2.69,2.84]

E P P 2 h average 2.84 3.07 3.05 2.96
std. dev. 0.19 0.10 0.07 0.06
conf. int. [2.75,3.40] [2.81,3.17] [2.95,3.19] [2.91,3.10]

EPP3h average 3.40 3.44 3.84 3.57
std. dev. 0.19 0.02 0.10 0.08
conf. int. [3.22,3.93] [3.38,3.44] [3.80,3.91] [3.51,3.61]

Table A. 13: The Event Parameter Pcissing results (EMPTY and SMALL
Database Configurations)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 59

T E S T C O N F IG U R A T IO N
M E D IU M

0.3 0.6 0.9
EPPlh average 2.89 3.05 3.58

std. dev. 0.48 0.05 0.15
conf. int. [2.10,3.39] [3.00,3.13] [3.49,3.90]

EPP2h average 3.44 3.73 4.06
std. dev. 0.42 0.10 0.07
conf. int. [2.82,3.87] [3.65,3.87] [3.99,4.19]

E P P \ average 3.66 3.96 4.53
std. dev. 0.37 0.13 0.20
conf. int. [3.33,4.17] [3.88,4.11] [4.35,4.67]

Table A. 14: The Event Parameter Passing results (MEDIUM Database Con
figuration)

T E S T C O N F IG U R A T IO N
L A R G E

0.3 0.6 0.9
E P P U average 3.81 3.86 3.78

std. dev. 0.28 0.06 0.05
conf. int. [3.39,4.17] [3.80,3.95] [3.73,3.85]

EPP2h average 5.16 5.18 5.90
std. dev. 0.14 0.12 0.06
conf. int. [5.03,5.43] [5.10,5.38] [5.82,5.98]

EPPSh average 5.81 5.93 6.32
std. dev. 0.10 0.32 0.17
conf. int. 5.66,5.93] [5.59,6.45] [6.12,6.49]

Table A. 15: The Event Parameter Passing results (LARGE Database Config
uration)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 60

T E S T C O N F IG U R A T IO N
E M P T Y SM A L L

0.3 0.6 0.9
GCU average 19712 19423 19785 26483

std. dev. 1780 1238 1032 22577
conf. int. [16953,22963] [17829,21327] [17926,72951] [17677,92111]

Table A. 16; The Garbage Collection results (EMPTY and SMALL Database
Configurations)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 61

T E ST C O N F IG U R A T IO N
M E D IU M

0.3 0.6 0.9
GClc average 18981 26010 48674

std. dev. 2582 34177 36241
conf. int. [16579,24199] [22206,28280] [31481,129709]

Table A .17: The Garbage Collection results (MEDIUM Database Configura
tion)

T E S T C O N F IG U R A T IO N
L A R G E

0.3 0.6 0.9
GClc average 102149 171610 272112

std. dev. 62925 75462 89994
conf. int. [43224,169073] [37115,228039] [40254,449263]

Table A. 18: The Garbage Collection results (LARGE Database Configuration)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 62

T E S T C O N F IG U R A T IO N
E M P T Y S M A L L

0.3 0.6 0.9
RAlc average 4.48 4.53 4.60 4.57

std. dev. 1.03 1.22 1.76 0.37
conf. int. [3.79,6.88] [3.83,6.95] {3.22,7.08] [4.22,5.04]

RA2c average 2.18 2.13 2.25 2.27
std. dev. 0.05 0.07 0.02 0.10
conf. int. [2.15,2.29] [2.02,2.21] [2.22,2.27] [2.17,2.42]

RA3c average 2.07 2.05 2.17 2.08
std. dev. 0.07 0.06 0.18 0.04
conf. int. [1.97,2.19] [1.99,2.16] [2.00,2.27] [2.03,2.16]

RAic average 2.24 2.14 2.22 2.07
std. dev. 0.15 0.12 0.02 0.05
conf. int. [2.09,2.50] [2.03,2.33] [2.18,2.23] [2.02,2.15]

Table A. 19: The Rule Administration results (EM PTY and SMALL Database
Configurations)

APPENDIX A. THE COMPLETE RESULTS FOR REACH 63

T E S T C O N F IG U R A T IO N
M E D IU M

0.3 0.6 0.9
RA lc average 4.63 4.71 5.39

std. dev. 0.33 0.05 0.17
conf. int. [4.20,5.01] [4.67,4.78] [5.23,5.57]

RA2c average 2.22 2.21 2.41
std. dev. 0.13 0.15 0.16
conf. int. [2.07,2.39] [2.01,2.64] [2.26,2.58]

RA3c average 2.17 2.16 2.40
std. dev. 0.04 0.05 0.01
conf. int. [2.12,2.21] [2.10,2.21] [2.39,2.41]

RAic average 2.07 2.48 2.58
std. dev. 0.10 0.06 0.03
conf. int. [1.97,2.20] [2.41,2.58] [2.56,2.61]

Table A .20: The Rule Administration results (MEDIUM Database Configura
tion)

T E S T C O N F IG U R A T IO N
L A R G E

0.3 0.6 0.9
RAlc average 7.64 7.92 8.85

std. dev. 0.12 0.08 0.21
conf. int. [7.51,7.76] [7.83,8.02] [8.61,8.99]

RA2c average 2.23 2.34 3.71
std. dev. 0.02 0.13 0.17
conf. int. [2.21,2.25] [2.23,2.45] [3.52,3.90]

RA3c average 2.52 2.39 2.55
std. dev. 0.43 0.20 0.35
conf. int. [2.08,2.95] [2.27,2.56] [2.21,2.81]

RAic average 2.46 2.51 2.66
std. dev. 0.02 0.22 0.14
conf. int. [2.44,2.48] [2.33,2.69] [2.42,2.79]

Table A .21: The Rule Administration results (LARGE Database Configura
tion)

Appendix B

A Sample Event Creation
Program

As mentioned in Section 5.2, REACH does not support the definition of stand
alone event types. In order to circumvent this exceptional design decision, we
wrote small programs, and created the benchmark events (Figure 4.2) manu
ally.

Here, we present the event creation program written to create the event
type CEDI (a composite event; i.e., a sequence of two abstract events) for
illustration.

64

APPENDIX B. A SAMPLE EVENT CREATION PROGRAM 65

/ / ---
/ / U G U R C E T I N T E M E L

/ / I m p l e m e n t a t i o n o f O B J E C T I V E o n R E A C H
/ / ---
/ / d e f i n i t i o n o f e v e n t C E D I

/ / e v e n t C E D 1 {

/ / e v e n t : A B S T R A C T (C E D I 1) t h e n A B S T R A C T (C E D 1 2)

/ / }
/ / ---

« i n c l u d e " R e a c h . h h "

« i n c l u d e < s t d l i b . h >

« i n c l u d e < s t d i o . h >

i n t m a i n (i n t a r g e , c h a r * * a r g v)

R C R E A C H r c ;

C o m p o s i t e D e t e c t o r * c o m p D e t e c t o r C E D l ;

T h e n N o d e R e c e n t * t h e n N o d e ;

A b s t r a c t D e t e c t o r * a b s t r a c t C E D l l ;

C o m p o s i t i o n S t a r t * a b s t r a c t C E D l l S t a r t ;

A b s t r a c t D e t e c t o r * a b s t r a c t C E D 1 2 ;

C o m p o s i t i o n S t a r t * a b s t r a c t C E D 1 2 S t a r t ;

R u l e * C E D I ;

« i f d e f _ _ 0 3 D B _ _

i n t d b = 0 0 D B _ D E F A U L T _ S G ;

« e n d i f

i f (a r g e > 2)

{
p r i n t f (" u s a g e : '/ ,s [d b] \ n " , a r g v [0]) ;

e x i t (- 1) ;

}

i f (a r g e = = 2)

d b = a t o i (a r g v [l]) ;

S E T . T R A C E L E V E L ;

T R A C E . (R U L E _ A D M I N _ R E A C H , B E G I N . , a r g v [0] , N U L L) ;

R e a c h : : i n i t (d b , B . F A L S E) ;

APPENDIX B. A SAMPLE EVENT CREATION PROGRAM 66

R e a c h T r a j i s a c t i o n : : b e g i n () ;

/ / c r e a t e d e t e c t o r f o r a b s t r a c t e v e n t C E D I
/ / --
r c = A b s t r a c t D e t e c t o r : : c r e a t e (f t a b s t r a c t C E D l l , " C E D l l ") ;

i f ((r c ! = R E A C H O K) & & (r c ! = A B S T R A C T D E T E C T O R _ C R E A T E _ N A M E _ E X I S T S))

M s g R e a c h : : p r i n t (r c , f a t a l E r r o r , " a b s t r a c t C E D l l ") ;

/ / c r e a t e d e t e c t o r f o r a b s t r a c t e v e n t C E D 2
/ / --
r c = A b s t r a c t D e t e c t o r : : c r e a t e (& a b s t r a c t C E D 1 2 , " C E D 1 2 ") ;

i f ((r c ! = R E A C H O K) & & (r c ! = A B S T R A C T D E T E C T O R . C R E A T E _ N A M E _ E X I S T S))

M s g R e a c h : : p r i n t (r c , f a t a l E r r o r , " a b s t r a c t C E D 1 2 ") ;

/ / c r e a t e t h e c o m p o s i t e e v e n t d e t e c t o r f o r s e q u e n c e
/ / --

c o m p D e t e c t o r C E D l = C o m p o s i t e D e t e c t o r : : c r e a t e (B . T R U E) ;

/ / c r e a t e t h e t h e n n o d e
/ / --

t h e n N o d e = T h e n N o d e R e c e n t : : c r e a t e (N U L L , N U L L) ;

i f ((r c = C o m p o s i t i o n S t a r t : : c r e a t e (& a b s t r a c t C E D l l S t a r t ,

c o m p D e t e c t o r C E D l ,

t h e n N o d e ,

c n . L e f t ,

a b s t r a c t C E D l l)) ! = R E A C H O K)

M s g R e a c h : : p r i n t (r c , f a t a l E r r o r , N U L L) ;

}

i f ((r c = C o m p o s i t i o n S t a r t : : c r e a t e (& a b s t r a c t C E D 1 2 S t a r t ,

c o m p D e t e c t o r C E D l ,

t h e n N o d e ,

c n . R i g h t ,

a b s t r a c t C E D 1 2)) ! = R E A C H O K)

{
M s g R e a c h : : p r i n t (r c , f a t a l E r r o r , N U L L) ;

}

/ / s e t t h e c o m p o s i t e e v e n t d e f i n i t i o n c o m p D e t e c t o r C E D I

APPENDIX B. A SAMPLE EVENT CREATION PROGRAM 67

/ /

c o m p D e t e c t o r C E D l - > s e t C o m p o s i t i o n N o d e T r e e (t h e n N o d e) ;

R e a c h T r e i n s a c t i o n ; : c o m m i t () ;

R e a c h : : s t o p () ;

T R A C E , (R U L E _ A D M I N _ R E A C H , E N D _ , a r g v [0] , N U L L) ;

r e t u r n 0 ;

Appendix C

A Sample Rule Creation
Program

As mentioned in Section 5.2, the rule compiler of REACH was not able to
support the definition of rules with non-immediate coupling modes at the time
of benchmark implementation. Therefore, all the benchmark rules depicted in
Figure 4.3 are created by hand.

Here, we give a sample program written to create rule EPPl for illustration.

68

APPENDIX a A SAMPLE RULE CREATION PROGRAM 69

/ / --
/ / U G U R C E T I N T E M E L

/ / I m p l e m e n t a t i o n o f O B J E C T I V E o n R E A C H
/ / --
/ / d e f i n i t i o n o f r u l e E P P l

/ / r u l e E P P 1 {

/ / e v e n t : c l a s s E P P l - > s e t D a t a (d o u b l e d l , d o u b l e d 2) ;

/ / c o n d i t i o n : I m m , (d l < d 2)

/ / a c t i o n : I m m , c l a s s E P P l - > s e t M i n D a t a () ;

/ / p r i o r i t y : 5

/ / }
/ / --

i n c l u d e " R e a c h . h h "

i n c l u d e < s t d i o . h >

i n t m a i n (i n t a r g c , c h a r * * a r g v)

{
R C R E A C H r c ;

M e t h o d D e t e c t o r * m d E P P l ;

A r g u m e n t D e s c r i p t o r * d e s c ;

R u l e * E P P l ;

i f d e f _ _ 0 3 D B _ .

i n t

e n d i f

d b = 0 0 D B _ D E F A U L T _ S G ;

if (arge > 2)

printf("usage: */,s [db]\n", argv[0]);
exit(-l);

}

if (arge == 2)
db = atoi(argv[l]);

SET.TRACELEVEL;
TRACE.(RULE_ADMIN_REACH, BEGIN., argv[0], NULL);

R e a c h : : i n i t (d b , B . F A L S E) ;

R e a c h T r a n s a c t i o n : : b e g i n () ;

APPENDIX a A SAMPLE RULE CREATION PROGRAM 70

/ / d e s c r i b e s t h e w h o l e a r g u m e n t s e t

d e s c = n e w A r g u m e n t D e s c r i p t o r (3) ;

/ / 1 s t p a r a u n e t e r : d o u b l e

d e s c - > a d d (a t _ v a l u e , s i z e o f (d o u b l e)) ;

/ / 2 n d p a r a m e t e r : d o u b l e

d e s c - > a d d (a t _ v a l u e , s i z e o f (d o u b l e)) ;

/ / c r e a t e t h e m e t h o d d e t e c t o r f o r t h e m e t h o d
/ / --
r c = M e t h o d D e t e c t o r : : c r e a t e (

& m d E P P l , / / o u t : m e t h o d d e t .

" c l a s s E P P l " , / / c l a s s n a m e

" s e t D a t a " , / / m e t h o d n a m e

P T R _ S I Z E + s i z e o f (d o u b l e) + s i z e o f (d o u b l e) , / / b a g s i z e

d e s c , / / a r g u m e n t d e s c r i p t o r

" s e t D a t a ___ c l a s s E P P l _ v F d d _ R E A C H ^ A ___ ") ;

i f ((r c ! = R E A C H O K) && (r c ! = M E T H O D D E T E C T O R _ C R E A T E _ N A M E _ E X I S T S))

M s g R e a c h : : p r i n t (r c , f a t a l E r r o r ,

" s e t D a t a _ _ c l a s s E P P l _ v F d d _ R E A C H _ A _ _ ") ;

/ / c r e a t e r u l e E P P l
/ / --
r c = R u l e i n c l u d e s : : a p p e n d F i l e (" \ " o b j e c t i v e . h \ " ") ;

i f ((r c ! = R E A C H O K) & & (r c ! = I N C L _ F I L E _ A L R E A D Y _ I N S E R T E D))

M s g R e a c h : : p r i n t (r c , e r r o r , " o b j e c t i v e . h ") ;

rc = Rule::create(&EPP1,
"/OBJECTIVE/EPPl",
mdEPPl,
cm_Imm,
cm_Imm,
5 ,

B_TRUE,
"obj ectEPPl->setData(dl
"dl < d2",
"obj ectEPPl->setMinData

"obj ectEPPl;classEPPl*;
d2;double;;;;",

NULL,

/ / o u t : r u l e o b j e c t

/ / r u l e n e i m e

/ / d e t e c t o r

/ / c o u p l i n g m o d e e v e n t - c o n d i t i o n

/ / c o u p l i n g m o d e c o n d i t i o n - a c t i o n

/ / p r i o r i t y

/ / r u l e i s e n a b l e d

, d 2) " , / / e v e n t d e f

/ / c o n d

; " , / / a c t i o n

/ / v a r i a b l e s

; s e t D a t a ; b o o l e a n _ t ; ; d l ; d o u b l e ; ;

/ / m e t h o d s

APPENDIX C. A SAMPLE RULE CREATION PROGRAM 71

/ / ------------------------------------
/ / a c t i o n f u n c t i o n
/ / ---

" b o o l e a n _ t _ 0 B J E C T I V E _ E P P 1 (E v e n t * e v e n t) \ n \

{ \ n \

R U L E _ A C T I 0 N (\ " / 0 B J E C T I V E / E P P 1 \ " , N U L L) ; \ n \

r e t u r n B _ T R U E ; \ n \

\ n \

c l a s s E P P l * o b j e c t E P P l ; \ n \

((M e t h o d E v e n t *) e v e n t) - > g e t A r g u m e n t (0 , f t o b j e c t E P P l ,

s i z e o f (o b j e c t E P P l)) ; \ n \

o b j e c t E P P l - > s e t M i n D a t a () ; \ n \

} \ n " .

/ / -
/ / c o n d i t i o n f u n c t i o n
/ / ---

" b o o l e a n _ t _ 0 B J E C T I V E _ E P P 1 _ (E v e n t * e v e n t) \ n \

•C\n\

d o u b l e d l ; \ n \

d o u b l e d 2 ; \ n \

((M e t h o d E v e n t *) e v e n t) - > g e t A r g u m e n t (1 , & d l , s i z e o f (d l)) ; \ n \

((M e t h o d E v e n t *) e v e n t) - > g e t A r g u m e n t (2 , & d 2 , s i z e o f (d 2)) ; \ n \

i f (d l < d 2) \ n \

r e t u r n B _ T R U E ; \ n \

r e t u r n B _ F A L S E ; \ n \

} \n ··);

i f (r c ! = R E A C H O K)

M s g R e a c h : : p r i n t (r c , e r r o r , " / O B J E C T I V E / E P P l ") ;

R e a c h T r a n s a c t i o n : : c o m m i t () ;

R e a c h : : s t o p O ;

T R A C E . (R U L E _ A D M I N _ R E A C H , E N D . , a r g v [0] , N U L L) ;

r e t u r n 0 ;

