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ABSTRACT

PARAMETER OPTIMIZED CONTROLLER DESIGN 
BASED ON FREQUENCY DOMAIN IDENTIFICATION

Hakan Köroğlu
M.S. in Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Ömer Morgiil 
September 1995

Recently, there has been a great tendency towards the development of itera
tive design methodologies combining identification with control in a mutually 
supportive fashion. In this thesis, we develop such an algorithm utilizing non- 
parametric frequency domain identification methods in order to realize the 
online iterative design of parameter optimized controllers for a system of un
known dynamics. The control design is based on the minimization of LQG 
(Linear Quadratic Gaussian) cost criterion with a two-degree of freedom con
trol system. This is achieved by the approximation of an optimality relation, 
which is derived for a particular parametrization of one of the controllers, us
ing the frequency domain transfer function estimates and application of this 
together with a numerical optimization algorithm. It is shown that, if the first 
controller is a FIR filter of length greater than or equal to two times the num
ber of frequencies present in the reference input, the designed control system 
is optimal independent of the stabilizing second controller.

Keywords : System identification, adaptive control, parameter optimized con
trollers, LQG (Linear Quadratic Gaussian) cost.
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ÖZET

FREKANS KÜMESİ TANIMLAMASI YOLUYLA EN İYİ 
PARAMETRELİ KONTROL SİSTEMİ TASARIMI

Hakan Köroğlıı
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Ömer Morgül 
Eylül 1995

Son zamanlarda, tanımlama ve kontrol etme işlemlerini birbirlerini destek
leyici mahiyette biraraya getiren ardışık tasarım metodolojilerinin geliştirilmesi 
yönünde büyük bir eğilim oluşmuştur. Bu tezde, tanınmayan sistemler için, 
en iyi parametreli kontrol sistemlerinin, ardışık olarak ve çalışma esnasında 
tasarımı amacıyla, parametreye dayalı olmayan frekans kümesi tanımlama 
yöntemleri kullanılarak böyle bir algoritma geliştirilmiştir. Kontrol tasarımı, 
iki kontrol edicili bir kontrol sistemi ile DKG (Doğrusal Kuadratik Gausiyen) 
bedel kriterinin en düşük değerinin elde edilmesini hedeflemektedir. Bu da, 
birinci kontrol edicinin belli bir tarzdaki parametre bağımlılığı için elde edilen 
bir optimalité bağıtısının, frekans kümesi transfer fonksiyonu tahminleri kul
lanılarak sağlanması ve bunun bir sayısal optimizasyon algoritmasıyla beraber 
uygulanması yoluyla gerçekleştirilmiştir. Ayrıca, birinci kontrol edicinin, refer
ans sinyalindeki frekans sayısının iki katı kadar ya da daha fazla uzunlukta 
bir SDC (sonlu dürtü cevaplı) süzgeç olması durumunda, kararlı olarak tasar
lanan kontrol sisteminin ikinci kontrol ediciden bağımsız olarak optimal olduğu 
gösterilmiştir.

Anahtar Kelimeler : Sistem tanımlaması, uyarlamalı kontrol, en iyi parame
treli kontrol ediciler, DKG (Doğrusal Kuadratik Gausiyen) bedel kriteri.
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Chapter 1

INTRODUCTION

Many control design techniques rest on the availability of the model of the plant 
to be controlled. If the model is not present, a model is estimated through the 
processing of input/output data, and the controller design is based on this 
estimate. Adaptive control is the area in which the model based design of 
feedback controllers is combined with the on-line estimation of process models 
based on input/output data measurements.

Though there is not a generally accepted definition of the terms ‘adaptive’ 
and ‘self tuning’, adaptive control systems are distinguished by their ability to 
adjust their behaviour to the changing properties of the controlled processes 
and their signals [16]. There are various types of adaptive control systems 
(see [15] and [16] for different classifications), however each possess an adap
tation mechanism which adjusts the controller according to a certain rule. If 
the adaptation mechanism includes the identification of the process using in
put/output data and the determination of the controller parameters is based 
on this identified model, then the system is a model identification based adap
tive system which is also referred to as a self tuning or a self optimizing system 
[16]. These terms also describe the automatic adjustment of the controllers 
when the process has stationary behaviour.



Adaptive controllers with model identification can be designed using para
metric or nonparametric models. It is important that the model describes the 
system well enough such that the performance of the designed controller is not 
much different than that would be obtained with the e.xact system description. 
This brings into picture the effect of the identified model upon the controller 
and hence on the closed loop performance of the system. Similarly, the closed 
loop control action will affect the estimation of the model of the plant. This 
interplay between the identification and control design is the focal point of 
[6] and it is analyzed in the context of least squares identification and Linear 
Quadratic Gaussian Optimal Control.

It is argued in [28] that identification and control design have to be treated 
as a joint problem rather than two individual problems. Solution of this joint 
problem during online operation is to be realized using an iterative scheme. 
Moreover the collection of the data from the closed loop is indicated to be 
useful for control relevant identification in various studies (see e.g. [.33], [2], 
[29], [5], [13], [14]). In fact the concept of optimal identification for control 
originated from [11]. The need for the use of a performance enhancement data 
filter operating on the identifier signals was advocated in [6]. The dual idea of 
incorporating the model error information into the control design criterion was 
proposed in [33]. For further information on the joint design of identification 
and control, refer to [10] which is a survey paper. As the most recent related 
sudies, see [9], [13], [14], [34]. Besides these, [14] is an interesting work , pre
senting an indirect iterative scheme, which estimates the controller parameters 
directly without the intermediate model identification step.

The iterative scheme developed by these studies aims at designing the iden
tification and control in a supportive fashion. The use of a nonparametric 
model for the plant therefore seems to be more rational. The nonparametric 
methods are adventageous also because they require no assumptions for the 
model structure, order, etc., of the system.

Hence in our study, we will develop a similar iterative design algorithm 
utilizing the frequency domain transfer function representation of the system. 
VVe will study the controller design based on the minimization of the linear 
quadratic cost criterion. Then we will try to present a general algorithm for 
the design of an optimum control system. The outline of the thesis will be as



follows. In the next chapter, we will analyze the nonparametric identification in 
the frequency domain. Estimation of the transfer function of the system based 
on certain signal processing techniques will be presented. Various methods 
for the improvement of the estimate will also be discussed. In Chapter 3, 
we will study the design of parameter optimized controllers. We will fust 
summarize the linear quadratic gaussian optimal control. Then we will present 
the design method for the minimization of the linear quadratic gaussian cost 
criterion with certain types of controllers. Results will be presented for special 
cases. In Chapter 4, we will propose an iterative design algorithm and discuss 
various alternatives. Chapter 5 contains some simulation examples in which the 
iterative algorithm is put into practice. The final chapter gives the conclusions 
of the thesis and discussions about the future work that can be done.



Chapter 2

NONPARAMETRIC 

FREQUENCY DOMAIN 

IDENTIFICATION

Identification is the experimental determination of the dynamical behaviour of 
processes and their signals [16]. This is to be done in order to estimate the 
future behaviour of the system, or in order to design a controller such that the 
system behaves in a desired manner.

System identification is based on a representation of the system. For differ
ent representations there may be different identification techniques. However in 
each case, the representation (whose structure is predetermined) will be found 
(or guessed) through the processing of input/output data. If the identifica
tion type aims at determining the best value of a finite dimensional parameter 
vector representing the system, then it is called a parametric identification 
method. The methods in which there is no preselection of a confined set of 
possible models are called nonparametric methods.



In this chapter we will analyze the nonparametric identification methods for 
linear time invariant systems, which are based on frequency domain analysis. 
The study will basically deal with the determination of the transfer function of 
the system. Then certain ways for the improvement of the estimate will be pre
sented. A relation will also be formed with spectral analysis. The development 
given will be applicable during online operation.

2.1 Linear Time Invariant Systems : Some 

Terminology and Notation

A system is said to be linear if the response of it to a linear combination of 
certain inputs is equal to the same linear combination of the responses to the 
individual inputs [21]. It is said to be time invariant if a time shift applied to 
the input results in a corresponding time shift of the output [35]. Moreover a 
system is a causal system if the output at any time depends only on the present 
and past values of the input.

In this work, we will confine ourselves to linear time-invariant (LTI) 
discrete-time causal systems. We can denote such systems by

y{t) =  P{q)u{t) + v{t) (2 . 1)

where t is the discrete time index, ic is the input sequence, y is the output 
sequence and v is an unmeasured disturbance acting on the output. With q 
denoting the forward shift operator (i.e. qu{t) = u{t -f 1)), P{q) is a strictly 
proper rational transfer function of q representing the system, as given below.

P{i) = Y
b\q  ̂ +  · · · +  bn̂ q— Tin

T ®i9  ̂ +  o,2q  ̂ -h



Thus Eqri. 2.1 describes the discrete input-output relation of the system which 
is of the form

y{t) +  aij/(t — 1) H-------— Ud) — bxu{t — 1) H-------------------h b„^u(t — n„) -f u (i) .

Because of the linearity and time-invariance, we can also express the output 
of an LTI system as a weighted sum of the responses to shifted unit impulses. 
That is

!/(*) =  S  -  t ) + v(t) , (2 .2 )

where p{r) is the impulse response sequence of the system. This is called 
the convolution sum [35]. For causal systems, p(r) =  0 , Vr < 0, hence the 
summation starts from r =  0.

If we replace q with 2 in the transfer function, we obtain the z-transform 
of the impulse response of the system.

i ’ (2) =  £  p(f)^ ‘ (2.3)
t = —oo

If the impulse response sequence is absolutely summable, the system is said 
to be BIBO stable (this means that a bounded input will result in a bounded 
output). With causality which causes the summation to start from r =  0, this 
assures that the summation in Eqn. 2.3 is convergent for all \z\ >  1. Then 
P{z) is analytic on and outside the unit circle, which means it has no poles 
outside the unit circle.

There are other ways of representing linear systems as well. State space 
models and the difference equations also determine the behaviour of a linear 
system completely. However our development in this work is not related with 
these representations. For a thorough analysis of all types of models of LTI 
systems, see [21, 30]. And for further analysis on LTI systems , refer to [24, 
23, 35].



2.2 Fourier Analysis

Sinusoidal sequences are extremely valuable in the analysis of LTI systems. If 
the system is stable , a sinusoid of frequency u) will result in a sinusoid of the 
same frequency, but with a change in magnitude and phase, at steady state in 
case of no disturbance. The complex number P(e^“ ) (which is P{z) evaluated 
at z =  ê ‘̂ ) determines the change in magnitude and phase therefore giving full 
information about the steady state behaviour of the system. Thus the function 

0 <  cu < 2TT, represents the system without disturbance completely at 
steady state and is called the transfer function (or frequency function) of the 
system [21]. Thus we can write

where

Y{lo) =  P ie^ U iu )  +  V{lo) , (2.4)

oo

t= -o o
(2.5)

oo

t= —oo
(2.6)

oo

v(ui) = E  «(O c·"" ' ■
i = —OO

(2.7)

oo

P { e n  =  X ; p(i)e-^“ ' ,
i= —OO

(2.8)

are the discrete-time fourier transforms (DTFT) of the input, output and 
disturbance sequences respectively [23]. The DTFTs exist for absolutely 
surnrnable sequences. If P{z) has no poles outside the unit circle, P{e '̂ )̂ will 
converge and it will be P{z) evaluated at z — ê '̂ . The time domain signals 
can be recovered using the inverse DTFT relations (see [23]).



2.2.1 Periodograms of Finite Duration Signals

The above representation of LTI systems includes infinite duration signals. In 
practice, all signals will somehow be of finite duration. In that case there is 
an appropriate representation of signals known as discrete Fourier transform 
(DFT).

Consider a finite duration sequence u{t) ■, t = — 1. Let Uk be
defined as

2tt
cufc =  — k = 0 , l , . . . ,N  - 1 . (2.9)

Then the DFT sequence is defined as, ([35])

N - l
UN{k) =  u(i)e"^‘̂ *‘ ; A; =  0, 1, . . . ,  -  1.

t = 0
(2.10)

Given the DFT sequence, it is easy to find that, ([21])

(0  =  4  E  i =  0, 1, . . . ,  iV -  1.
A;= 0

U (2.11)

Comparing the DFT of u with its DTFT, it is immediately observed that DFT 
is the sequence of equally spaced (a separation of ^ )  samples of DTFT, that 
is

UN{k) = U{u:)l=^,·, A: =  0, 1, . . , A ^ - 1.

The value \UN{k)\'̂  is therefore a measure of the energy contribution of fre
quency tUfc and is known as the periodogram of u.



2.2.2 The Empirical Transfer Function Estimate 

(ETFE)

In a linear system, different frequencies pass through the system independently 
of each other. The frequency function determines the output behaviour at each 
frequency. Motivated by Eqn. 2.4, an estimate of the transfer function of the 
system can be made, based on the processing of input and output sequences.

When the input and output are not of finite duration (or if they are ex
tremely long), we have to observe them on an interval of length N and use 
these observations in the estimation procedure. At this point we have to state 
a theorem showing the relation between the input and output DFTs when the 
observation is done in an interval of length N.

T heorem  2.1  : Let P be a LTI, causal and stable system which is represented 
by Eqn. 2.1. With Uj!j{k) , Y^{k) and V^{k) denoting the N-point DFT se
quences of u(t), y{t) and v{t) ending with time index n (i.e. DFTs of the 
signals observed between n — N + I and n), we have

YS{k) = P(e>">)UÍ,{k) + EÍ,{k).^V;l(ky, k = 0 , l , . . . , N -1 .  (2. 12)

oo
=  t  =  0, l , . . . , i v - l .  (2.13)

T = 1

Proof : This theorem is the same as Theorem 1 of [18] except that here the 
disturbance acting on the system is also taken into account. We will present 
the same proof with some simple modifications coming from the addition of 
the disturbance term.

The frequency domain representation of the system behaviour is given by 
Eqn. 2.4. From the definitions we have

n-/V CO
UJl,{k) =  U{0Jk) -  E  -  E  ,

t=z — oo

n-N
Yjl}(k) =  Y(co,) -  E  2/(<)e-jwkt E -juJkt

t = —oo

10



From Eqri. 2.4 we have

n-N
Yj îh) = P(e^“ ‘ )( S  + E

¿= — 00 i= n + l

00 n — N  00

+ x :  -  x :  -  x :  ■
t— — oo ¿ = —00 i — 71-f* 1

On the other hand from Eqn. 2.2 and with the fact that p(r) is zero for r <  0 
as the system is causal, we find

n —N n—N  00

t = —oo t= — 00 T=0

= X] p(r)e- ‘̂̂ ‘=̂ X^ n(< -  + x f
T=0 ¿ = —00 t = —oo
00 n — N — T n — N

= X^ p(r)e~·^“ *’’ X^ + X^ .
r= 0 ¿ = —00 t= -o o

So
n—/V n—N
E «(Oe - E i/(0e

t = —oo t= —oo
00 n—yV n—N — T n—N

= E P(r)e-̂ ""‘̂ ( E - E - E
T=0 t = —oo t= —oo ¿ = —00

00 71—yV n—N

=  E E .
T=1 ¿=71—yV—T+1 ¿= -0 0

(Note that for r =  0, the term in paranthesis becomes zero, so summation 
starts from r =  1.)

Similarly we can find
00 00

¿ =  71+1
00

¿ =  71+1

= -E p(^K'  ̂ E - E
r =  l ¿ =  7 l-r  +  l ¿ =  71+1

11



Inserting these in the equation for Y'^̂ {k), we end up with Eqn. 2.11 where
г-Л /

5 ^ u{t)e -  J2 w(0 e , 
i=n —/V —r-fl  ¿=n —r+1r =  l

which can be shown to be equivalent to Eqn. 2.12. □

Here E'^(k) comes into picture due to the use of finite length data. Thus 
increasing N reduces its magnitude. Moreover a bound can be found on its 
magnitude in case of certain assumptions. This is examined in the following 
theorem.

T heorem  2.2  : Let the input be bounded as |u(i)| < U, Vi. Under the
asumptions of Theorem 2.1, the magnitude of E^{k) is bounded for each k. 
Moreover if the input is periodic with period To and if N is an integer multiple 
of To, then E^{k) =  0 , Ук.

P ro o f : This theorem is closely related with Theorem 2 of [18]. We will 
present a similar proof. First we should remember from the proof of the pre
vious theorem that

oo n—N n

£ n(4  = E  E  •‘ (t)e ·'“ * ' -  E  “ (О с-'"“ ) .
r = l  ¿ =  71 —Л/ —r -fl ¿ =  7l-r  +  l

Then using the triangle inequality we get
OO n—N n

|Ek(*)I<EŴ )II E E
T=1 t = n - N  — ¿=71—r+1

Since

I I < Y  |ii(0 l+  Y
¿=n—yV-T-f-1 t=n —T+l  ¿=71-Л/’—T+1 ¿=тг-T +  l

we conclude that

=  2tU ,

| Я Х ( Ц |  <  b  =  2 U ' £ t Ip ( t )
r = l

12



Note that, since the system is (exponentially) stable, p(r) decays exponentially, 
hence the surtirnation given above remains finite.

If the input is periodic with period To = ^ where a iponentially, hence the 
summation given above remains finite.

If the input is periodic with period To =  -̂  where a is an integer, then it 
will also be periodic with period N. We will then have

n -N

t = n —N —r ^ \

u{t -
¿= n —T -fl

t=n—T-f-1

Inserting this result in the expression for E^{k), we see that the error becomes 
zero for all k. □

Motivated by the two theorems above, we can introduce the following esti
mate for the transfer function of the system.

p  n ^ . jL _  f| I A/· — 1 (2.14)

This estimate is called the empirical transfer function estimate (ETFE), [21]. 
Note that we must have U' {̂k) ^  0, otherwise the ETFE is simply undefined. 
The estimation error is then

=  P A: =  0 , 1, . . . ,  iV -  1. (2.15)

For our estimate at the frequency wjt to be reasonable, it is obvious that we 
must use a high enough N such that E^{k) is small. Moreover the disturbance 
power at that frequency must be small when compared with the input power.

Once the ETFE is determined at certain points (at a group of u>k for 
k G C { 0, 1, . . ,W — 1}), the value of the transfer function at other
frequencies can be estimated through interpolation. In fact the transfer func
tion can then be found through curve fitting based on these finite number of 
data. Of course these procedures will be applicable for the case where P{e^^) 
is a smooth function of w (i.e. its magnitude and phase), and this is already 
the case when P{q) is a rational polynomial.

13



2.2.3 Smoothing the ETFE

Smoothness means that there is some correlation between the values of the 
transfer function at the neighbouring frequencies. That is the value of the 
transfer function at a frequency o;o is related to the values of it at a;o — and 
uiQ +  6, and the relation decreases as S becomes larger. If this is the case, then 
the value of the transfer function at o;o can be estimated as a linear combination 
of the estimates at the neighbouring frequencies, in which the larger effect of 
the nearer frequencies is taken into account. Moreover it is also important to 
decrease the effect of the estimates whose deviations from the true values are 
large. In other words, if is large, then the weight of in the
combination should be small. From Eqn. 2.15 we see that the estimation error 
at a certain frequency is large if the ratio of the input power to the disturbance 
power at that frequency is small. Thus if the disturbance power is a slowly 
varying function of w, then the ETFE can be improved as

P i(e«) = ( 2. 16)

where
O'TT

ak =  W{k -  ko) I Û {̂k) p; =  0 , 1 , . . . ,  yV -  1; =  — A:o , (2.17)

and W  is a symmetric weighting function concentrated around origin [21]. In 
signal processing it is the well known frequency window. There are various 
windows such as Bartlett, Parzen and Hamming. Refer to [21, 23] for more 
information on windowing.

Note that a similar formula is applicable in the determination of the esti
mate of the transfer function at any frequency value other than the discrete 
frequencies at hand.

14



2.3 Spectral Analysis

Spectral analysis is an important tool in engineering. It is discussed widely 
especially in the textbooks on time series anlysis ( see e.g. [26] ). Here we will 
present the use of spectral estimation techniques in the identification of the 
transfer function of a system.

The spectral analysis is based on random signal analysis in which the basic 
definitions of the correlation and other functions include the expectation of the 
random signals (see [8]). However in control systems, we generally assume that 
the input is (at least partly) deterministic and the disturbance is stochastic. For 
this reason, the stationarity assumption, which is a key assumption in spectral 
analysis is not valid for these systems. So we have to adapt an appropriate 
framework for the analysis [21].

Let u(t) be a signal such that

E{u{t)} = mu{t) where ]m„(f)] < U,Vt,

E{u{t)u{t — t ) }  = Ru{t,T) where |/?„(i,r)] < R

and lim^/^oo E ili  Ru{t,T) =  i?„(r), Vt .

These are the conditions for quasi-stationarity. Here expectation is with re
spect to the stochastic terms. If the signal is deterministic then it simply 
disappears. The function

1 N
K M  = ^  y ; E{u(t)u(t -  t)) , (2.18)

is called the autocorrelation function of u. Similarly the signals u(t) and y(t) 
are called jointly quasi-stationary signals if both are quasi-stationary and if 
additionaly the cross-correlation function defined following limit exists.

N
(2.19)

1
Ryu(r) =  J i ^  — X )F ;{ î/ (0 w( < - ^ ) }

15



2.3.1 Spectral Representation

Even if the signal u(t) does not have finite energy, the correlation sequence 
is deterministic and usually has finite energy. Thus Fourier and z-transforins 
of the correlation sequence can be defined and used in certain regions. The 
transforms

r = —oo 
oo

(2 .2 0 )

(2.21)

are called the power spectrum (or power spectral density) and cross spectrum 
respectively [21]. If u is real, then and are both real and even. However 

is in general not real for real y and u. The correlation functions can be 
recovered from the spectra by use of the inverse DTF'T relations (see [23]).

Ru{r) =

Ryu{T) =

1
27T V

roo
f-OO

(2.22)

2x .
roo 

' —OO
(2.23)

2.3.2 Transformation of Spectra by Linear Systems

The signals passed through the linear systems change according to the transfer 
function of the system. The relations between the spectra are presented in the 
following theorem.

Theorem 2.3 : Let u[t) be a quasi-stationary signal with spectrum $u(c' ‘̂̂ ) 
and let it pass through the system defined by Eqn. 2.1 where the system is 
stable. Then the output y{t) is also quasi-stationary and the spectra are related 
as follows if u and v are uncorrelated.

$ „ (6^̂ )̂ =  \P{e^‘̂ )\'^^u{en + ^ v {e n  
% u {e n  = P i e n ^ e n

(2.24)

(2.25)

Proof : For an involved proof, see [21].
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2.3.3 The Use of Power Spectrum Estimates in Trans

fer Function Estimation

Equations 2.23 and 2.24 show that a system can be identified through the use of 
power spectra. However the power spectra involve infinite summations which 
is not practical. Similar to the Fourier analysis case the spectra should be esti
mated using finite length data. In fact the power spectrum of a signal is related 
to its periodogram in an interesting way (see [21]) which brings into picture 
the estimation of the power spectrum through the use of the periodogram.

Let denote the power spectrum estimate of u{t) and Ĵfyu denote the 
cross-spectrum of y{t) with u{t), based on the data from ri — A^-f-1 to n. Then

A f - l

E
A:=0

1 v"„(k) p , (2.26)

yV-1
E - ko)YS(k)Urik) . (2.27)
¿=0

are the standard estimates suggested in the literature, [21]. Here W  is the 
weighting function described previously. This way the transfer function of the 
system can be estimated as

p(gjwo) _  N̂yy-\ ) (2.2S)

This approach is known as the Blackman-Tuckey procedure, [21, 8] and a sim
ple analysis shows that it is equivalent to the improved form of the ETFE in 
Ecpi. 2.16.

17



2.4 Improvement of the ETFE Based on the 

Estimates Obtained from Different Data

Sets

During an online operation, the transfer function will be estimated through 
the use of the data of length .V. In other words a window of length N will 
determine the data to be used and it will shift one (or preferably more than 
one ) right in each step. Now the transfer function estimates obtained in each 
step have to be joined somehow such that the resulting estimate is better than 
all of them.

One immediate combination is the followdng standard average [21].

1
(2.29)

However this does not take into account the quality of the different es
timates. Remembering the relation of the estimation error with the input 
periodogram we can argue that the estimates for which the input power at the 
frequency under consideration is small should be given less importance in the 
combination. This brings the idea of the use of input power as weights in the 
combination. Thus

V * .  I i'.WJ-o) 1̂  Pfiic’ “ ")
u : :\f-l CViA'o) P

(2.30)

is expected to be a better combination (see [21]).
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Chapter 3

PARAMETER OPTIMIZED 

LINEAR QUADRATIC 

GAUSSIAN CONTROL

A control system is the interconnection of certain functional units in such a 
way to produce a desired result. It is generally realized by the operation of a 
controller in open or closed loop with a system to be controlled.

Control theory is often regarded as a branch of the more general subject 
of system theory. The procedure of control system design is based on the 
mathematical representation (model) of the system. The exact form of this 
model is determined through system identification techniques. The transfer 
function representation of a system and the related identification techniques 
were analysed in the previous chapter.

Transfer function and frequency domain techniques were dominant in the 
classical control theory. However in the last 40 years the time domain state 
variable description based approaches have came into the picture [7]. These 
are especially useful in optimal control theory whose aim is to determine the
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best controller according to a predetermined criterion. However this existing 
theory of optimal control is not applicable to the cases where the controller 
type is also predetermined.

Today there are various types of controller design methods such as cancel
lation controllers, predictive controller, minimum variance controller, etc. For 
a thorough treatment of these methods, see [16, 15]. In this chapter we will 
deal with parameter optimized control. We will develop an approach for the 
minimization of the linear quadratic cost criterion through the use of certain 
types of controllers such as FIR filter and PID controller. The development is 
performed for LTI causal, stable and single input single output systems and is 
based on the frequency domain representation of the system.

3.1 Parameter Optimized Controller Design

There are two major groups of controllers in the sense of optimality : struc
ture optimized control systems and parameter optimized control systems [15]. 
A control system is said to be structure optimal if both the controller struc
ture and the controller parameters are determined optimally according to the 
structure and parameters of the process (such as the optimal state feedback 
determined through the methods of optimal control theory). In the case of pa
rameter optimized control, the controller (its type, order etc.) is given and the 
designer is expected to determine the controller parameters giving the optimum 
performance.

The performance of the controllers is generally evaluated according to a 
performance criterion (a cost function). By optimality, it is meant that the 
controller is designed such that this cost function achieves its minimum pos
sible value. The mostly used cost functions are given in terms of integral 
(summation) criteria. They include summation of control errors, squares of 
control errors or absolute value of the control errors (see [15]).

In analytical design, the preferred performance criteria are quadratic cost
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lunctions, because of their mathematical adventages. However analytical so
lutions exist for only simple cases (for systems and controllers of very low 
order). So in general, numerical optimization methods are to be used. Though 
these are rather time consuming, microcomputer based implementations can 
be useful (see [27]).

3.2 LQG Optimal Control

Linear quadratic (LQ) control (or with Gaussian stochastic disturbances as
sumed in the process model, linear quadratic gaussian (LQG) control) is a 
general control problem, which is based on the state space description of linear 
systems. The design aims at minimizing a cost criterion which is a quadratic 
function (including finite or infinite summation over time) of states, control 
signals and (possibly) reference inputs.

In case of no reference inputs the problem is called LQG regulation problem. 
The solution to this problem is given by linear, generally time-varying state 
feedback, which is determined by the solution of an equation called the Riccati 
difference equation. For the case of infinite time horizon, the solution (which 
exists under certain conditions) is time-invariant for time-invariant systems 
and is found by solving the Algebraic Riccati equation. The stability of the 
system under this state feedback is also a topic of analysis.

The inclusion of certain reference inputs into the problem transforms it to 
a tracking problem, which can be reformulated as a regulation problem via the 
use of state augmentation [6].

If all the states are not measurable , the implementation of LQ control laws 
requires the use of a state estimator. This is constructed dually to the LQ 
control law (i.e. it requires the solution of a dual difference equation) and is 
called the Kalman predictor (or Kalman filter (KF)). The LQG controller is 
formed through the combination of LQ linear state feedback and KF predictor. 
For thorough treatment of LQG control based on state space representation of 
systems, see [6, 17] and other texts on optimal control.
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3.3 Parameter Optimized Control Based on 

LQG Performance Criterion

As noted in the previous section , the formulation of the LQG control prob
lem is based on the state space model of the system rather than the simple 
input/output representation. In this section we will formulate the problem 
without using the state space representation and develop an algorithm in or
der to determine the optimal parameters of the given type of controllers which 
are used in the formation of the control system. We will assume an LTI single 
input single output, stable and causal system subject to a zero mean Gaussian 
disturbance. The simple input/output representation of such a system is given 
by Eqn. 2.1, which is repeated here.

y{t) =  P{q)u{t) + v{t) . (3.1)

The LQG cost function is based on this input output representation and defined 
as the limit

Jlqg =  ^  S [ ( 2/(i) -  -b A[u(Q]2; 0 <  A <  1 , (3.2)
i=l

where u is the input to the plant, r is the reference input to be tracked and y 
is the output of the plant (see Figure 3.1). Minimization of this cost function 
forces the output to track the reference input, while keeping the power of the 
control input small according to the given A, which is usually nearer to zero.

We will use a two degree of freedom controller in the configuration shown 
in Figure 3.1. This will supply a control input of the form

« (0  = Ci(q)r{t) -  C2 (q)y(l) (3.3)

Here Ci{q) and 6*2(9) controllers of predetermined type such as FIR filter 
or PID controller and the design procedure involves the determination of the 
parameters of these controllers giving the best performance in terms of the 
LQG cost function Jlqg-
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. 1

Figure 3.1: LQG Control System.

Now inserting the control input expression in Eqn. 3.1, we obtain

1
1 +  P { q ) C 2{q )   ̂  ̂ 1 +  P { q ) C , { q )

Similarly inserting this in Eqn. 3.3 we get

v ( t ) (3.4)

^  C M  , 
1 +  P { q ) C 2{q )

---------- ---------------
1 +  P ( q ) C 2{ q )

v { t )  . (3.5)

Based on these equations the following lemma will give the frequency domain 
evaluation of Jlqg, which will be crucial in the development.
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Lem m a 3.1 : F o r  th e  c o n f ig u r a t io n  o f  F ig u r e  3 .1 ,  i f  th e  t r a n s f e r  f u n c t i o n s  

b e t w e e n  a n y  t w o  o f  th e  s ig n a ls  in  th e  s y s t e m  a r e  a l l  s t a b l e  a n d  i f  r  a n d  v  a re  

u n c o r r e l a t e d ,  t h e n  th e  L Q G  c o s t  f u n c t i o n  c a n  be f o u n d  a s

11 P C 2 - \ \ ‘ +  \ \ C , W  ,  . l +  A|C2p ^ ,
II + PC2I2 II +  PC 2I2

P r o o f  : With the error signal defined as

1 + P(l)Cii<l) 1 +  P { 3 i ) C 2 { q )
v { t ) ,

we have

=  J™ , V  E  >:"(') +  ^  E  -'•‘" (0  ■
N

N ^oo N t=l t - l

Referring to Eqn. 2.18, we see that

J l q g  — ^ e ( O )  +  A R „0  ,

which is equivalent to

1 /■2’r 1
Jlqg =  ^  7o ’

remembering that the autocorrelation is the inverse fourier transform of the 
power spectrum (see Eqn. 2.22). With the help of the relations given in 
Theorem 2.3 and the fact that r and v  are uncorrelated (which allows us to 
treat the summation of r  and v  terms independently) we can find that

^ , | P C i-P C 2 - i p ^  , , , 1 ^ ,
|l + PC'2l2 II +  P C 2P

Inserting these we can easily obtain the expression given in Eqn. 3.6. □
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R em ark : In Chapter 2, we used as an index in the transfer function of 
the system. In the previous lemma, we used a; rather than e·'*̂  as an index of 
the transfer functions. This is only a simplification of notation and it will be 
used in the present and next chapters. □

Denoting the parameter vectors of the controllers by 0 i  and O 2, we can 
formulate the problem as the minimization of J l q g  with respect to 61 and 62 . 

We assume that the controller transfer functions can be expressed as

C(q) = c'(q)» , (3.7)

where 9  is the parameter vector of the controller and and c(^)is the vector 
showing the structure of it. For PID controllers and F̂ IR filters we have

Cpwiq) =  Kp +  IQ{1 -  q-^) +  Ki{l -  

CpiRiq) =  ^1 +  02q * +  ··· +  Onq ·

(3.8)

(3.9)

Hence we can use Eqn. 3.7 for PID and FIR type controllers with

c p i o i q )  --

1

l - q - ^

1
- 1-7“ *

(3.10)

cf//?(?)
, 1

(.3.11)

There may be other types of pararnetrizations for the other types of controllers. 
In this work we will develop our ideas for the types of controllers which can be 
represented through the use of Eqn. 3.7. For these types of controllers utilized 
in the control system, the following lemma states the main result of this work.
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Lem m a 3.2 : L e t  th e  a s s u m p t i o n s  o f  L e m m a  3 .1  h o ld .  A s s u m e  t h a t  th e  

f i r s t  c o n t r o l l e r  c a n  be e x p r e s s e d  th r o u g h  th e  u s e  o f  E q n .  3 . 7 .  T h e n  th e  o p t i m a l  

p a r a m e t e r  v e c t o r  o f  th e  f i r s t  c o n t r o l l e r  9°̂  is  r e l a t e d  to  th e  o p t i m a l  p a r a m e t e r  

o f  th e  s e c o n d  c o n t r o l l e r  62 a s

w h e r e

A { 9 ° )  9 \  =  Ц Ѳ І )  , (3.12)

A  =
1 /*2̂  Л -f"

I2тг Jo |1 +  P { u } ) C 2 {^ ) \^
Фг(о;) Ci(a;)Ci (w) do: , (.3.13)

b =
1 /‘2’frZTT

Jo T
Р{ш)

Ф г{и!) Cl(w) duj .
2тг Уо 1 +  P { u ) C 2 (oj)

H e n c e  th e  m i n i m i z a t i o n  p r o c e d u r e  i s  e q u iv a l e n t  to  m i n i m i z i n g

(3.14)

I C” PCiiS,)
Р Р С 2 { Ѳ , у

1 +  \ \ C 2 { 9 2 ) \ ‘ 

|i +  ^ ^ ’2(^2)!'
(3.15)

w i th  r e s p e c t  to  $ 2, w h e r e  C i { 92) i s  th e  t r a n s f e r  f u n c t i o n  o f  th e  f i r s t  c o n t r o l l e r  

w h o s e  p a r a m e t e r s  a r e  d e t e r m i n e d  a c c o r d in g  to  E q n .  3 . 1 2 .

Proof : The optimal solution is found through the use of the equations

; ^ І е г о 
ву using Eqii. 3.7, the following can easily be obtained,

dC(q)

д\С Щ
дѳ

дѲ

дС(д)
дѲ

=  Ф )

СЧ?) + дв

=  2» { с ( , )С " ( « ) }
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where denotes the real part. Then we can determine the gradients using 
Eqn. 3 .6. However initially, it will be useful to see that,

\ P C i  -  P C \  -  Ip { P C i  -  P C 2 -  1 ) { P ’ C :  -  P ^ c :  -  n
{ I  +  P C 2 ) { \  +  p - c ^ )|i +  PC2I2

 ̂ P C \  p - c i

II + PC2I2 I + PC2 l + P’Q ·
Hence, Eqn. 3.6 is equivalent to

,  _  L  r r n  _ .  g  +  i m i C i p . ^ , , 1 +  A|C,P ,
2 n J a  **h +  P C 2 * ’  ̂ II +  PC 2P * |1 + P C 2P *"*“  ‘

Then we can obtain the first gradient as

d J ,LQG

8 0 1

Equating to zero and noting that the integrals are already real (because of 
the conjugate symmetry of the transfer functions), we end up with Eqn. 3.12. 
Note that the second derivative of Jlqg with respect to 6 \ is equal to the 
matrix A , which is a positive definite matrix for a reference input of continuous 
spectrum. If the reference input has nonzero power at finitely many frequencies, 
then it will again be positive definite if the number of parameters of the first 
controller is less than two times the number of different frequencies of the 
reference signal. This is because the positive definiteness condition drops down 
to the condition that the unique solution of a homogenous system of equations 
should be the zero vector, and this is the case under the mentioned situation 
(for the other case, the problem is analysed explicitly in the next section). This 
result guarantees that the solution of Eqn. 3.12 gives the minimum. Thus given 
that the optimal parameter vector of the second controller is solution of 
Ecjn. 3.12 gives the optimal parameter 6 \  of the first controller.

Then premultiplying Eqn. 3.12 with 0j, we see that

/•2TT

L 1

P C I  

+  P C ,
div'

- L
(A +  | P n iQ

I1 +  PC212

o|2
do; .
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Using these equations we can reduce the cost function to J i q q - O

Lemma 3.2 is useful as it reduces the optimization with respect to and 
02 to an optimization with respect to $2 only. Thus a numerical optimization 
algorithm, searching only the optimum value of B i  can be utilized to design the 
optimal control system. Such a method will be presented in the next chapter.

3.4 Tracking the Reference Signals of Finite 

Frequency Content

As observed from Eqn. 3.12, the power spectrum of the reference input deter
mines the exact form of the optimality relation between the parameter vectors. 
It is an immediate study to search for certain results for the cases of special 
types of reference inputs. The following theorem gives a result for the case of 
reference inputs which have nonzero power at finite number of frequencies and 
is one of the mains contributions of this thesis.

T heorem  3.1 : L t t  P  be a  s ta b l e  s y s t e m  r e p r e s e n t e d  b y  E q n .  3 .1  in  w h ic h  

v [ t )  — 0,Vi ( z e r o  d i s t u r b a n c e  c a s e ) .  L e t  C \  be a n  F I R  f i l t e r  o f  le n g th  n \ .  

A s s u m e  t h a t  th e  r e f e r e n c e  i n p u t  h a s  n o n z e r o  p o w e r  a t  I d i f f e r e n t  f r e q u e n c ie s  

( e s s e n t i a l  f r e q u e n c i e s  a r e  in  [0,7t] f o r  r e a l  s i g n a l s  b e c a u se  o f  th e  s y m m e t r y  o f  

th e  p o w e r  s p e c t r u m ) .  I n  t h i s  c a se ,  i f  n \  > 21 th e n  f o r  a n y  s t a b i l i z i n g  c o n t r o l l e r  

C 2, th e  s o l u t i o n  o f  E q n .  3 . 1 2  r e s u l t s  in  a c o n t r o l  s y s t e m  w h ic h  i s  o p t i7 n a l  a n d  

th e  o p t i m a l  c o s t  i s

Jmin —
A

2 i r ^ ^ X  +  \P {u J k W

Here denotes the weigths of the impulses at ujk.

cko (.3.16)

P ro o f  : If a reference input has nonzero power at u>k, then it has the same
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amount of power at 27t — uJk- Hence, Eqn. 3.12 reduces to

where

'Y^[(f){i^k)cFlR{^k) +  <?i>(27r -  o:k)cFiii{2Tr -  u;̂ )] =  0 , 
k=i

I1 + PC2I2 1 + PC2·

Using the conjugate symmetry of the transfer functions we obtain

i

^ ^ { ( f > { u k ) c F r R ( i ^ k ) }  — 0 ,
k=l

which can be organized as the following system of equations.

1 0

C O S U > i  s i n w i

1 0

COS (JL>1 sin U>1

cos(ni—2)u;i sin(ni—2)o;i · · · cos(ni—2 )o;/ sin(ni—2)oj; 

cos(ni—Ijwi sin(ni—l)u;i ··· cos(ni—l)u;/ sin(ni—l)u;;

0

0

0

0

where 3? and 5  denote the real and imaginary parts respectively. This is a 
homogenous sytem with 21 unknown and ri i equations. The equations are in
dependent because of the eigenfunction property of the functions This
can also be seen by noting that the complex form of the matrix above is related 
to the Vandermonde matrix (see [22]) with A, =  e·'"·. It can be easily seen that 
this matrix has full column rank as w,s are different. Hence the unique solution 
of this system is the zero vector if ni >  21 [22]. Thus for rii >  2/, (f>{u>k) will 
be zero for all k  which means for each u,'k we will have

p  I _  (A +  |FP)Q  I

l+PC2'"''‘ II + PC2P
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Manipulating this we can find

P *(1 +  PC ,)
U  Л + |pp ■

Hence
P C ,  |pp .

1 + P C 2 A +  |P|2 ·

Using Eqn. 3.15 we conclude that the value of the cost function is given by 
Eqn. 3.16, which is independent of C 2· This means that for any stabilizing C 2·, 

Eqn. 3.12 gives an optimal solution which results in a minimum cost given by 
Eqn. 3.16. □

R em ark : For the special cases where u>k =  0  or тг, the 2 -̂th column can be 
removed together with ^ ф { и к )  from the system of equations. Thus the min
imum number of parameters needed for the optimality situation described in 
Theorem 3.1 should be found by counting one for frequencies 0, ж and two for 
the other. □

The result of Theorem 3.1 reduces the minimization problem, to the mini
mization of

J dr
LQG

1 C -  Х +  \С 2 {в 2 ) \ ‘_  1
~ ^  Jo IT+  P C 2 İ 0 2 W

Фи duj , (3.17)

with respect to 62 , for the case where the disturbance acting on the system is 
nonzero.

Periodic signals have nonzero power at finitely many frequencies related 
with the period of the signal. Thus Theorem 3.1 is applicable to the tracking 
of periodic reference inputs.

For smaller n ,  than needed, there is an optimal 62 which gives the best 
result. Intuitively a value of 02 resulting in a transfer function whose
real part is near to 1 at the essential frequencies of the reference input will 
give a good result. This may be a useful observation especially in a numerical 
algorithm, to start from a good enough initial estimate.
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Chapter 4

ONLINE DESIGN OF 

IDENTIFICATION AND

CONTROL

As noted previously, many control design techniques are based on the model 
of the plant to be controlled. For plants of unknown dynamics a model is 
estimated (possibly with a bound on the magnitude of the estimation error) 
and a controller is designed accordingly. Robust control and robust stability 
theory deals with the performance of the designed controller when applied on 
the actual plant.

In most practical applications of modern control, an initial controller is to 
be refined using online performance measurements in order to achieve better 
results in terms of the predetermined control purpose. Thus identification and 
control design have to be treated as a joint problem instead of two individual 
problems [10, 28]. Solution of this problem during online operation necessitcvtes 
the use of an iterative scheme composed of approximate identification and 
model based control design stages [28].
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There are several iterative schemes proposed in the literature. In [.33] and 
the related works [25, 34], a paradigm is developed for LQG control design 
together with prediction error identihcation. In the proposed algorithms, the 
modelling error is taken into account during the control design through fre- 
ciuency weighting the LQG criterion and the identification is performed using 
the filtered versions of the identifier signals in order to match the requirements 
of the closed loop controller. The scheme of [29] is composed of a robust con
trol design method and a frequency domain identification technique based on 
coprime factorization. Alternatively in [19], identification and control design 
are based on covariance data and the q-Markov cover theory is utilized.

In this chapter we will present our scheme, which is the combination of 
frequency domain identification through the use of the ETFE and parameter 
optimized design of controllers through numerical optimization and the opti
mality relation found in the previous chapter.

4.1 Iterative Design of Identification and

Control

P rob lem  S ta tem en t: Let P be a stable and causal LTI system described 
by Eqn. 3.1. The dynamics of the system is unknown and we are to design 
controllers C \  and C 2 (see Figure 3.1) during online operation such that J l q g  

given by Eqn. 3.2 is minimized, for a given reference signal with power spectral 
density $r·

P roposed  A lgorithm  : The algorithm we will present is basically an it
erative search algorithm, composed of the estimation of the transfer function of 
the plant and utilization of this transfer function in the design of the controllers 
based on the optimality relation (3.12). It can be described as follows.

32



Initially the system is operated with C \  =  \  and C 2 =  0 and input/output 
data are collected. The controllers are updated after each N  steps of operation. 
The identification and control design steps and update rules can be summarized 
as follows.

Identification :

The idea is based on the smoothing method described in Section 2.4. Based 
on

=  Vn - ' W  u H - ' ' { k ) · , (4.1)

1

K ( i ^ )  =  (4.3)
( ¿ + l ) i V - l

K { k ) - y : ^ [ i г N - N  +  l ) K , . d k )  +  E  \ U h \ k ) \ ^ ]  (4.4)
 ̂ t= iN

yt = 0, l , . . . , fV  -  1.

the transfer function estimate at the ¿th step is

h M  =
^ u . { k )

A; =  0 , l , . . . , A f - l . (4.5)

Note that this estimate is an improved estimate according to Eqn. 2.29. 
On the other hand, ^ y u i { k )  and ^ u i { k )  are the estimates of the cross spectrum 
of y  with u  and spectrum of u  at the fth step respectively. So the estimate can 
also be seen as an application of Blackman-Tuckey procedure without the use 
of a frequency window.
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Control Design and Update Rules :

The update of the second controller is performed according to the kept 
record of the cost function estimate based on the system data observed in the 
intervals of length N .

Ji =
I (i+l)/v-l

N E  [ » W - ’- i o r  +  A U w r
t= iN

(4.6)

J °  is the optimal value of J '  that occured till the current time and $2 is the 
corresponding parameter vector of the second controller. They are updated 
according to

i f  J i  < J °  e °2 =  02, a n d  J °  =  J '

The parameter vector of the second controller that will be used in the next 
step of operation is then determined as

^2. =  2̂ +  ^^2.+i (4.7)

where is a disturbance vector whose norm is equal to a percent of 62
(plus a small value for B 2 equal to the zero vector). This disturbance can be 
a random disturbance as well as a deterministic one, based, for example, on 
the estimate of the gradient at the present parameter values (gradient descent 
algorithm). Similarly it can also be adjusted according to the performance 
of the previous controller with respect to the optimal controller determined 
till that time. Initially J °  =  Jo and B 2 =  0. The disturbance vector can be 
assigned to zero with the achievement of an acceptable J °  or it can be reduced 
to zero gradually with time, expecting convergence to the optimal value of the 
second controller.

The controller C \  is determined according to an approximate version of 
Eqn. 3.12.

Ai+l =  b,q.i (4.8)

Ai'+i

bi+l

N - l

=  E
\  + \Pi(LOk)\"

k=o +  P i { ^ k ) C 2i^i{u:k)\"
Â -1

=  E
Pi{<^k)

k=0 i +  ¿̂(Wfc)C'2i+i(î A:)
^r(wA:) Ci (u;A:) (4.10)
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In case of the loss of stability and with a (necessarily) large N ,  the algoritrn 
will have a problem. Thus a stability check should be added. A simple one is 
to check the ratio of the absolute value of the output to the maximum value of 
the absolute value of the reference input. If the ratio becomes greater than a 
predetermined value (this should be large enough such that the stable loops are 
not determined as unstable and it should be small enough such that the system 
is not destroyed), the algorithm should be reset (or the controllers should be 
updated realizing the optimal ones that have been determined till that time).

4.2 Alternative Algorithms

Dealing with real signals, we are assured that the DFTs are conjugate symmet
ric around N / 2  (with N  even). So the formulae can be reorganized and new 
ones utilizing only the N / 2  -f 1 essential values of the transfer functions can be 
obtained. This is a quite important reduction for practical applications.

Moreover, with different length of adaptation intervals the transfer func
tions (transfer fuction from C i { q ) r  to y )  and (transfer friction
from Ci(<3')r to u) can be estimated and the optimality relation can be realized 
through the use of these estimates.

As noted, all of these involve the calculation of the N  point DFTs of the 
signals. An alternative algorithm can be offered if the optimality relation (3.12) 
is carefully analysed.The following lemma gives the basic idea.

L em m a : W i t h  th e  s y s t e m  o p e r a t i n g  w i th  Ci =  1 a n d  C 2, a n d  w i th  z e r o

d i s t u r b a n c e  a s s u m e d ,  A  a n d  b o f  E q n .  3 . 1 2  c a n  be f o u n d  a s

A  =  [a m n ] \  amn =  >^Ru{n -  m )  +  R y { n  -  m )  ■, m, n = 1, . . . ,  Ui.(4.11)

b — \bm\ 5 — R y r (1 ^ ) i  ^  l , . . . , n i . (4.12)

3.5



P r o o f  : With Cl =  1, we have from Eqns. 3.4 and 3.5 that

y(i) =  j-
+  P C 2

“<'> = rTW”·''’ ■
Hence using Eiqns. 2.24 and 2.25, we can find

'̂•|1 +  PC'2|2 +

p
— -------  =  $

’̂ l +  PC'2

Note that Ci(i<;)cj’ ('iu) is a matrix [cmn] with Cmn =  Hence the inte
grals in Eqns. 3.13 and 3.14 give the elements of A  and b as

11
amn =  7 T  ( A $ „ ( i x ; ) - I - ; m,n =  1, . . . ,  Uj. 

Ztt J0

bm = ^  r  m = l , . . . , m .
Z7T 0̂

These are the inverse Fourier transforms according to Eqns. 2.22 and 2.23, 
hence the statement of the lemma follows. □

Lemma 4.1 gives the basic idea of a method omitting the explicit identifica
tion step. Instead, the optimality relation can be realized through the estimates 
of A  and b based on the correlation function estimates obtained from the data 
of the closed loop operated with C \  =  1 . Thus in an alternative algorithm, the 
closed loop can be operated with Cj =  1 for A  steps in order to determine the 
optimal C l  for the current C 2 and this optimal value can be used in the closed 
loop in the following N  steps of operation for the realization of the numerical 
optimization algorithm.

There can also be different approaches to the numerical optimization part. 
One immediate approach is the utilization of the frequency domain evaluation 
of the cost function. In this case also, the stability of the closed loop has to be 
tracked, because this evaluation is valid for the case of stability. The aventage 
of this approach is that one can use shorter adaptation intervals. However the 
practical evaluation of the cost function in the frequency domain can have large 
errors which can cause certain problems.
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Chapter 5

SIMULATIONS

In this chapter, we will present the results of some simulation studies. The sim
ulations are performed through the realization of the iterative design algorithm 
presented in the previous chapter.

The plant is chosen as a fifth order system whose transfer function is given
by

P { q )  =
q -^  -  1.29-2 -  0.39-3 -h 0 .1569- “ -F O.O8459-®

1 - 1 . 2 5 9 - 1  +  0.45759-2 +  0.02799-3 -  0.04919-“ 0.00779-5
· (5.1)

This is an example from [33]. It is a stable and nonminimum phase system with 
single delay. The disturbance acting on the system is chosen as a white gaussian 
noise with mean zero and variance 0.01. Moreover the system is started from 
zero initial conditions. For each simulation the reference input, system output 
and the cost index is plotted against time, for two time intervals. The first 
is a time interval from the beginning of the operation and the other is a time 
interval from the end of the operation. The cost index is the function

j(<) = [¡/(0 -  ’■(01  ̂ + (5.2)

The controllers are taken as FTR filters of length ri\ and U2 respectively. The
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utilized values of these are listed below the figures. The DF'T size N  is chosen 
to be 100. The algorithm is applied for the tracking of the following reference 
inputs : a sinusoid of a single frequency, a square wave, a sawtooth wave, a 
signal which is the linear combination of different sinusoids of single frequency 
with different weights and a sine function having another sine function as an 
index. For each reference input, simulations are performed with A =  0 and 
A =  0.4. In the first group of simulations, the number of parameters of the 
first controller is taken large enough such that the resulting system is optimal 
independent of the second controller. The second group of simulations are 
done in order to check the operation of the optimization algorithm and they 
are performed with less number of parameters.

The plots of various simulation results are presented in the following pages. 
Here we give analytic expressions of the reference signals that are used in the 
simulations.

Single frequency sinusoid: r(i) =  sin(0.0628i)

Square wave : a square wave of period 50

Sawtooth wave : a sawtooth wave of period 50

Multifrequency sinusoid : r { t )  =  0.0642sin(0.0628i)+ 0.1284sin(0.1885t) +  
0.2569 sin(0.3142i) +  0.4496 sin(0.5655i) +  0.3211 sin(1.25660

The modulated signal : r { t )  =  sin(^^3j;Ĵ 2̂T7y)
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Figure 5.1: Tracking of a single frequency sinusoid : A =  0, n i = 2 , ri2 =  2 .

9700 9750 9800 9850 9900 9950 10000

Figure 5.2: Tracking of a single frequency sinusoid : A = 0.4, u i  — 2^ ri2 =  2 .
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Figure 5.3: Tracking of a single frequency sinusoid :A  =  0 , n i  =  l , n 2 =  l

Figure 5.4: Tracking of a single frequency sinusoid : A = 0.4 , nj =  1, « 2  =  1
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Figure 5.5: Tracking of a square wave : A =  0, rii =  30, ri2 =  2 .

9700

1r--------------- 11----------------i1------- ----------------11----------------

\---- L J
9750 9800 9850

t
9900 9950 10000

Figure 5.6: Tracking of a square wave : A = 0.4, rii  =  30, ri2 =  2 ,
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Figure 5.7: Tracking of a square wave : A =  0, ni = 20, ri2 =  2 ,

9700 9750 9800 9850 9900 9950 10000

Figure 5.8: Tracking of a square wave : A = 0.4, ni = 20, ri2 =  2.
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Figure 5.9: Tracking of a sawtooth wave : A =  0 , rii =  50 , ri2 =  1.

Figure 5.10: Tracking of a sawtooth wave : A = 0.4, ni = 50, U2 = 1.

43



9700

9700

9750

9750

9800 9850 9900 9950 10000

9800 9850 
t

9900 9950 10000

Figure 5.11: Tracking of a sawtooth wave : A = 0. uj = 30. H2 =  2 .

Figure 5.12: Tracking of a sawtooth wave : A = 0.4. Hi = 30. ri2 =  2 .
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Figure 5.13: Tracking of a multifrequency sinusoid : A =  0, ni =  10, ri2 =  I

Figure 5.14: Tracking of a multifrequency sinusoid : A = 0.4 , ni = 10, ^ 2  = 1
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Figure 5.15: Tracking of a multifrequency sinusoid : A =  0 , n i = 5 ,  ri2 =  2 .

9800 9820 9840 9860 9880 9900 9920 9940 9960 9980 10000

Figure 5.16: Tracking of a rnultifrequency sinusoid : A = 0.4 , ni = 5 , ri2 =  2 .
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Figure 5.17: Tracking of a modulated signal : A =  0, nx =  40, «2 =  1

Figure 5.18: Tracking of a modulated signal : A = 0.4, «i = 40, « 2  = 1
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Figure 5.19: Tracking of a modulated signal : A =  0, nj =  35 , U2 =  2 ,

Figure 5.20: Tracking of a modulated signal : A = 0.4, ni = 35, U2 =  2.
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Chapter 6

CONCLUSION

In this work, we addressed the problem of LQG cost criterion based parameter 
optimized controller design for a system of unknown dynamics. The system 
is represented by its frequency domain transfer function and this function is 
estimated through the use of nonparametric frequency domain methods. The 
contributions of the thesis are the following :

(i) A simple optimality relation is found between the controllers of a two 
degree of freedom control system, for a stated type of parametrization of one 
of the controllers.

(ii) A simple result is found for the optimal tracking of the reference in
puts containing nonzero power at finitely many frequencies, for the case of no 
disturbance acting on the system.

(iii) Finally, a general iterative design algorithm is proposed for the mini
mization of the LQG cost criterion with given types of controllers at hand and 
several alternative algorithms are discussed.

It is also noted in this thesis that the utilization of nonparametric models 
automatically supplies the supportive structure in the iterative identification 
and control design. Because, in the control design, the system is needed to be 
known well enough at the frequencies where the reference input has nonzero
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power if the disturbance acting on the system is negligible. On the other hand, 
it is seen in Chapter 2 that at those frequencies the value of the transfer function 
of the system can be estimated with a bounded and reducible error. Hence it 
will be unnecessary to know the system behaviour everywhere (in the sense of 
frequency) if the reference input does not have a continuos nonzero spectrum. 
This means that the parametric identification which aims at determining the 
exact structure of the system is not necessary. This is an important result 
especially for the cases where the reference input has nonzero power at several 
frequencies.

The study can be brought further and the identification stage can be com
pletely removed, as discussed in Section 4.2. Thus a direct design methodology 
is a futher topic of study. Moreover the disturbance acting on the system can 
be taken into account and related treatment can be done (such as a study 
on disturbance rejection). Moreover the quasi-analytic solution methods ap
proximating an exact analytic solution of the optimality equations can also 
be searched. All of these studies can be done for other (guessably more gen
eral) types of controller parametrizations as well as for different configuration 
control systems.
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