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ABSTRACT 

A SIMULATION OPTIMIZATION FOR BREAST 

CANCER SCREENING IN TURKEY 
 

Dilek Keyf 

M.S. in Industrial Engineering 

Advisor: Asst. Prof. Dr. Özlem Çavuş 

Co-Advisor: Prof. Dr. İhsan Sabuncuoğlu 

February, 2015 

 

Breast cancer is the most common cancer type among women in the world. 6.3 million 

women were diagnosed with breast cancer between 2007 - 2012 and 25% of cancers in 

women are breast cancer. Early diagnosis and early detection has an important role in 

survival from breast cancer. Mammographic screening is proved to be the only screening 

method that can reduce breast cancer mortality. Even though mammographic screening 

has this significant benefit, it is expensive and it can decrease life quality and it can 

generate false positive results. As a consequence, recommending an effective and cost-

efficient mammographic screening policy in terms of starting and ending ages and 

screening frequencies has high importance. This study aims to optimize Ada’s Breast 

Cancer Simulation Model using Simulated Annealing. This model was run for Turkish 

women born in 1980 during their lifetime.  The purpose of this study is to obtain an 

optimal or near optimal policy in terms of life years gained and cost for Turkish women. 

This study also aims to demonstrate the outcomes in terms of effectiveness and cost 

when different combinations of policy variables are used.  

Keywords: Breast cancer, simulated annealing, simulation optimization, screening policy 
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ÖZET 

TÜRKİYE’DE MEME KANSERİ TARAMASI İÇİN 

SİMULASYON OPTİMİZASYONU  

 

Dilek Keyf 

Endüstri Mühendisliği Yüksek Lisans 

Tez Danışmanı: Yrd. Doç Dr. Özlem Çavuş  

Tez Eş -Danışmanı: Prof. Dr. İhsan Sabuncuoğlu  

Şubat, 2015    

Meme kanseri dünyada kadınlar arasında en yaygın kanser tipidir.  2007 ile 2012 yılları 

arasında 6,3 milyon kadına meme kanseri teşhisi konmuştur. Kadınlarda görülen 

kanserin %25’ini meme kanseri oluşturmaktadır. Erken teşhis, hayatta kalmak için 

büyük bir öneme sahiptir.  Mamografi taraması, meme kanseri kaynaklı ölümleri 

azaltabildiği kanıtlanan tek tarama yöntemidir. Mamografi taraması bu açıdan çok 

yararlıdır; ancak pahalıdır, yaşam kalitesini düşürebilir ve yanlış pozitif sonuçlar 

çıkarabilir. Bunlardan dolayı etkin bir tarama politikası önermek önem taşımaktadır. 

Tarama politikası başlangıç yaşı, bitiş yaşı ve bu iki yaş arası tarama sıklığından 

oluşmaktadır.  Bu çalışma Ada’nın Meme Kanseri Simülasyon Modeli’ni Simulated 

Annealing ile optimize etmeyi amaçlamaktadır. Bu simülasyon modeli 1980 doğumlu 

Türk kadınlarının ömürleri boyunca çalışır.  Çalışmanın hedefi Türk kadınları için 

kazanılan yılları ve maliyeti göz önüne alarak en iyi veya en iyiye yakın tarama 

politikaları elde etmektir.  Bir diğer hedef ise, farklı politika değişkenlerinin 

kombinasyonlarının etkinlik açısından göstermektedir.   

Anahtar Kelimeler: Meme kanseri, simulated annealing, simulasyon optimizasyonu, 

tarama politikası  
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Chapter 1 

 

Introduction 

 

Breast cancer is a potentially dangerous tumor generated from breast cells [1].  Common 

breast cancer symptoms and signs can be listed as follows: 

 A new lump or mass 

 Swelling of all or part of a breast 

 Skin irritation or dimpling 

 Breast or nipple pain 

 Nipple retraction  

 Redness, scaliness, or thickening of the nipple or breast skin 

 Nipple discharge  

 Swollen lymph nodes [2] 

Considering all types of cancers, breast cancer is the most common cancer type among 

women in the world. Some established risk factors of breast cancer among women are 

presented in Figure 1.  
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Figure 1: Factors Increasing the Risk of Breast Cancer (reproduced from [3]) 

 

1.7 million women were diagnosed with breast cancer and there were 522,000 breast 

cancer deaths among women in 2012. Furthermore, 6.3 million women were diagnosed 

with breast cancer between 2007 - 2012 and 25% of cancers in women are breast cancer 

[4].  

Incidence and prevalence rates have increased dramatically (three times) in the last 

decades in Turkey [5]. Incidence is a measure of new cases arising in a population over a 

given period. Prevalence is the proportion of actual population found to have a 
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condition. It is calculated by comparing the number of people having the same condition 

with the total number of people studied.   

The extent of cancer in the body affects the stage of cancer.  The cancer stage is 

determined considering the following: cancer being invasive or not, size of the tumor, 

number of lymph nodes affected and whether the cancer is spread to other parts of the 

body or not. The stage of the cancer has a significant role in prognosis and treatment 

alternatives. Staging is a process in which how widespread the cancer is at diagnosis is 

examined. Staging occurs after physical exam, biopsy, chest x-ray, mammograms of 

breasts, bone scans, computed tomography (CT) scans, magnetic resonance imaging 

(MRI), and/or positron emission tomography (PET) scans and sometimes blood tests [6].  

Stages of breast cancer are numbered from 1 to 4 as explained in Figure 2. 

 

Figure 2: Stages of Breast Cancer (reproduced from [7]) 

 

27% of breast cancers is diagnosed in its early stage (stage 1), 53% is diagnosed in stage 

2, 9% is diagnosed in stage 3 and 6% is diagnosed in stage 4 [5]. 

The value of early diagnosis and early detection of breast cancer is presented in studies 

[8] and [9]. Mammographic screening is proved to be the only screening method that can 

reduce mortality from breast cancer [10] [11]. Even though mammographic screening 

has this significant benefit, it is expensive and it can have ramifications such as 
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decreasing life quality and generating false positive results [11]. As a consequence, 

recommending an effective and cost-efficient mammographic screening policy has high 

importance.  

Recommendations for women to have mammographic screening vary across countries 

and organizations. These recommendations differ in the age at which the screening 

should start and how frequent it should be performed among women at average risk for 

having breast cancer. Table 1 demonstrates some of these screening guidelines for 

women with average risk. Average-risk women satisfy the following conditions: 

 having no symptoms 

 having no history of invasive breast cancer 

 having no family history in a first-degree relative, or no suggestion/evidence of 

hereditary syndrome 

 no history of mantle radiation [12] 

Above-average risk women refers to satisfying the opposite of the above conditions. 
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Table 1:  Some Mammographic Screening Guidelines for Women at Average Risk 

 

Organization/Country 

 

Mammography Screening 

Guideline 

 

U.S Preventive Services 

Task Force 

Informed decision-making 

with a health care provider 

ages 40-49 [13] 

ages 50-74 once every 2 

years [14] 

American Cancer Society Every year starting at age 

40 [13] 

National Comprehensive 

Cancer Network 

Every year starting at age 

40 [13] 

England Once every 3 years starting 

at age 50 [15] 

Turkey Every 2 years for ages 40-

69 [16] 

Ireland (BreastCheck The 

National Breast Screening 

Programme) 

Once every 2 years between 

ages 50-64  [17] 

Australia (BreastScreen 

Breast Cancer Network) 

Once every 2 years for ages 

40 and over [18] 

International 

Agency for Research on 

Cancer (IARC) 

Once every 2 years ages 

between 50-69 [19] 

EUROPA DONNA – The 

European Breast Cancer 

Coalition 

Once every 2 years ages 

between 50-69 [19] 

National Cancer Institute Every 1 to 2 years for ages 

between 40-49 

Every year starting at age 

50 [20] 

 

As it can be understood from Table 1, recommending a screening guideline is a 

controversial issue in which a global consensus has not been achieved. 
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Turkey also has a guideline which recommends screening once every 2 years for ages 

40-69 [16]. However, this guideline is not followed by Turkish women and there is no 

legal consequence to avoid this situation. Because of that, the effectiveness in terms of 

life years gained from screening and cost of screening to Turkish women can be 

questionable. The aim of this study is to find an optimal or near optimal policy that suits 

Turkish women at average-risk considering the life years gained by screening and the 

total cost of the policy.  

In this study, a mammographic screening policy consists of the following information:  

 starting age of screening 

 ending age of screening 

 screening frequencies for every decade of woman's life until she becomes 80.  

The main reason for single/double frequencies recommended in Table 1 is to make the 

guideline easily memorable among women. However, benefits of mammographic 

screening vary by age. Considering this, screening frequencies are defined differently for 

every decade in this study. By having different frequencies, these benefits are aimed to 

be maximized.  

The purpose of this study is to obtain an optimal or near optimal policy in terms of life 

years gained and cost for Turkish women using Simulated Annealing (SA). Furthermore, 

this study aims to demonstrate the outcomes in terms of effectiveness and cost when 

different combinations of policy variables are used. These outcomes can be significant to 

policy makers. SA is chosen to be the optimization tool because it is widely used in 

simulation optimization applications. This study utilizes Ada’s Breast Cancer Simulation 

Model [21] in SA. Ada’s model starts simulating a cohort of cancer-free women when 

they become 30 until they become 100 or they die. Ada's model is used to run screening 

policies for Turkish women between ages 30-79 in this cohort. Literature, SEER 

databases [76], World Health Organization [77], the Ministry of Health of Turkey [78], 
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Turkish Institute of Statistics [78] and heath record systems of Cancer Early Diagnosis 

and Treatment Centers [80] are the sources of input data [21]. 
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Chapter 2 

 

Literature Review about Simulation 

Optimization 

 

Simulation model is a mathematical model of a system constructed using simulation. By 

executing the simulation model, the impact of input variables on the system can be 

assessed [22]. 

With enhancements in computer technology, simulation is gaining an important role as a 

decision making tool. Most of the systems in real world are complicated and because of 

that obtaining optimal values of the decision variables analytically can be highly 

challenging. Simulation is a common tool to evaluate and optimize such systems [23], 

[24]. Simulation optimization refers to the process of finding the best input variable 

values without explicitly evaluating all possible values [22]. 

The objective function of a simulation optimization problem with respect to its 

constraints is as follows: 

       
                  

(max)min ( ),
X

H X
 

                                                         (1) 
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Where  ( ) [ ( , )] H X E L X   is the performance measure, ( , )L X   is the sample 

performance.   represents the stochastic effects in the system.  X  denotes a p-vector of 

controllable factors and   denotes the constraint set on the p-dimensional vector of 

controllable factors. [ ( , )] E L X  denotes the expected value of the sample performance. 

The problem has a single objective if ( )H X  is a one-dimensional vector. Otherwise, the 

problem is multi-objective [24].  

Simulation optimization can be classified into two main categories: local optimization 

and global optimization [24]. Figure 3 demonstrates this classification structure.  
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Figure 3: Classification Structure for Simulation Optimization Problems (adapted from 

[24]) 
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to this, the literature overview in this chapter gives more attention to global optimization 

techniques.  

2.1 Local Optimization 

Local optimization can be applied to problems with discrete decision space (finite 

parameter space and infinite parameter space) and continuous decision space. Most 

frequently used methodologies for finite case problems are ranking-and-selection and 

multiple comparison methods. As indicated in [24], Bechhofer et al. [90] and Goldsman 

and Nelson [91] review these methodologies. Random Search [92] [93] [94], Nelder-

Mead Simplex/Complex Search [95], Single Factor Method [96], Hooke-Jeeves Pattern 

Search [97] can be used for cases considering infinite parameter space. Fu [25] evaluates 

the use of simulation in optimization of stochastic discrete-event systems by focusing 

more on the continuous parameter case such as gradient-based methods including 

perturbation analysis [98], and frequency domain analysis [99].    

2.2 Global Search Methods 

2.2.1 Evolutionary Algorithms (EAs) 

EAs benefit from ideas related to the evolution process.  EAs study set of solutions in a 

way that bad solutions become extinct and good solutions go through evolution in order 

to obtain an optimal solution. EAs do not need limiting assumptions or knowledge on 

the shape of the response surface. Because of this advantage, it is a frequently used 

method for simulation optimization [24]. Possible usages of EAs in the field of 

simulation optimization and their comparison with the local optimization methods can 

be found in [24]. The general EA steps used for simulation optimization are as follows. 

Firstly, a population of solutions is created. Secondly, these solutions are assessed using 

the simulation model. Then, new solutions are obtained by performing selection and 

applying genetic operators. New solutions are added to the population. These steps are 

repeated until the stopping condition is met.  
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Genetic Algorithms (GAs) [26], Evolutionary Programming (EP) [27] and Evolutionary 

Strategies (ES) [28] are the most commonly used EAs in the literature. The difference 

between these algorithms can be listed as demonstration of individuals, the creation of 

variation of operators, and the choice of their reproduction mechanisms.  Reviews of the 

EAs in terms of purpose, structure and working principles can be found in [24]. Detailed 

evaluations of several techniques used in applying GAs are provided in Liepins and 

Hillard [29], Davis [30] and Muhlebein [31].  

Simulation optimization using EP and ES are not common in literature. However, GAs 

have received attention for the optimization of complex systems due to their robustness 

in searching complex spaces and their suitability for combinatorial problems [22] [24].  

Works related to simulation optimization using GAs can be found in Bowden and 

Bullington [32], Dengiz et al. [33], Azadivar and Tomkins [34], Dümmer [35], Wellman 

and Gemmill [36], McHaney [37], Lee et al. [38], Fontalini et al. [39], Suresh et al. [40].   

2.2.2 Simulated Annealing (SA) 

SA is proposed by Kirkpatrick et al. [41] and Černý [42]. The algorithm begins with an 

initial solution which is generally generated randomly. Using a neighborhood structure, 

a neighbor of this initial solution is obtained. The objective function value of the 

neighbor solution is calculated. If this solution leads to a better objective function value, 

then this solution becomes the current solution. If it does not, the neighbor solution is 

accepted with some probability in order not to get stuck on a local optimum. This 

acceptance function (i.e.,  / kxp Te C  where C  represents the difference of 

objective function value between the current and neighbor solution and 
kT  is the 

temperature at 
thk  iteration) is calculated. The probability of accepting a worse solution 

is less than the value of acceptance function value. 
0T  is set a high value and it stays the 

same for a number of iterations and it is gradually decremented until a final temperature 

is obtained. The initial and final temperatures and the number of iterations at each 
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temperature have to be determined a priori in order to apply the SA algorithm [24]. This 

algorithm is explained in detail in Chapter 4.  

Van Laarhoven and Aarts [43], Johnson et al. [44], Eglese [45] and Koulamas et al. [46] 

evaluates the theory and presents SA applications. Collins et al. [47], Hajek [48] and 

Fleisher [49] demonstrate several cooling schedules. General working principles of SA 

algorithms are also explored.  Haddock and Mittenthal [50] show that better solutions 

can be obtained using lower final temperature, slower cooling schedule and more 

iterations at each temperature. Catoni [51] creates finite-time estimates for cooling 

schedules. Alkhamis et al. [52] implement Monte Carlo simulation to find objective 

function value to a stochastic optimization problem using SA. They conclude that 

modified SA converges with probability of one to an optimal solution given that random 

error fulfils some conditions. Alrefaei and Andradottir [53] present a SA algorithm with 

a fixed temperature. They implement two approaches in order to estimate an optimal 

solution. They demonstrate that these approaches converge to the set of global optimal 

solutions.  

Bulgak and Sanders [54], Gelfand and Mitter [55], Gutjahr and Pflug [56], Fox and 

Heine [57], and Alrefaei and Andradottir [53] come up with heuristic SA methods for 

discrete simulation optimization applications.  

Yücesan and Jacobson [58] apply local search procedure and five different variations of 

the SA algorithm to the problem of accessibility of states in a simulation model. They 

conclude that SA with modified annealing schedule specific to the problem performs 

better than local search.  

Works on optimizing manufacturing systems using SA algorithms are common in the 

literature. Manz et al. [59] study automated manufacturing system by applying SA 

algorithm.  Brady and McGarvey [60] work on optimizing employee schedules in a 

pharmaceutical manufacturing laboratory using SA, Tabu Search, GA and a frequency-
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based heuristic.  Baretto et al. [61] study steelworks simulation model based on SA by 

implementing a version of the Linear Move and Exchange Move (LEO) optimization 

algorithm.   

 Zeng and Wu [62] combine perturbation analysis techniques with SA for simulation 

optimization purposes. Andradottir [63] creates a version of SA for discrete-event 

simulation optimization. He demonstrates its convergence to a global optimal solution 

when some conditions are satisfied.  

Fu et al. [64] review main simulation optimization approaches, algorithmic and 

theoretical developments. They conclude that SA applications are successful in 

simulation optimization. Azadivar [65] studies the optimization of complex stochastic 

systems using simulation optimization and concludes that SA shows promise in 

application of simulation optimization. 

2.2.3 Tabu Search 

Tabu search is a search procedure with constraints. A subset of solution space is 

eliminated from the search space at each step. As the algorithm goes on, this subset 

which is constructed by the previous solutions differs [66] [24].  

Hu [67] indicates that tabu search performs better than random search and GA for some 

problems using some standard test functions.  

Tabu search is used for simulation optimization. Garcia and Bolivar [68] work on 

optimization of the simulation model of stochastic inventory with different demand and 

lead time probability distributions using tabu search. Lutz et al. [69] apply tabu search to 

optimize the location of buffer and size of the storage in a manufacturing line. Martin et 

al. [70] work on finding an optimal number of kanbans and lot sizes by implementing 

versions of tabu search. They show that same outputs can be obtained with less 

computational time. They indicate that their algorithm can be utilized to find optimal or 
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near-optimal solutions for different industrial problems. Dengiz and Alabas [71] seek an 

optimal number of kanbans by optimizing the simulation model of a just-in-time system 

using tabu search. Their results show that tabu search leads to better results than random 

search. 

2.2.4 Bayesian/Sampling Algorithms 

In Bayesian/Sampling methodology, the next point is selected in a way that it maximizes 

the probability of not surpassing the previous point’s value by some positive constant     

( n ) at each iteration [24].  

This technique finds points in locations in which the mean performance of the 

simulation   is low for a minimization problem. At the beginning, n has a small value 

but it increases as the optimization search gets more local in order the algorithm to 

converge more rapidly. [24]. Applications of this method for multi-dimensional solution 

spaces can be found in Lorenzen [72] and Easom [73].  Stuckman and Easom [74] 

present an overview of existing Bayesian/Sampling methods, such as methods developed 

by Stuckman [100], Mockus [101], Perttunen [102], Zilinskas [103] and Shaltenis [104]. 

They also provide comparisons of these methods with methods such as clustering 

algorithm, SA algorithm and Monte Carlo method. They use a number of test functions 

with continuous variables.  SA in this study has Boltzmann distribution with a constant 

search radius and a logarithmic annealing schedule. Monte Carlo and SA outperform 

Bayesian/Sampling methods in terms of computation time. However, they do not 

perform well in terms of convergence.   

 

2.2.5 Gradient Surface Method (GSM) 

GSM is offered by Ho et al. [75] for optimization of discrete-event dynamic systems. 

GSM uses local search methods to globally investigate a response surface. Considering 
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this, GSM is different from other global search methods. It uses both RSM and efficient 

derivative estimation techniques and stochastic approximation algorithms [24].   

GSM is classified as a global search algorithm since it benefits from information 

gathered from all solutions in each iteration. Advantageously, a single run is enough for 

the algorithm to generate gradient estimates. GSM senses the proximity of an optimal 

solution because of its global orientation [24]. Ho et al. [75] address queuing networks 

by implementing this algorithm. 
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Chapter 3 

 

Ada’s Breast Cancer Simulation Model 

 

Ada’s simulation model tracks a cohort of cancer-free women at the age of 30 in 2010. 

The simulation keeps track of a woman until she reaches the age of 100 or she dies. 

Model inputs are taken from the literature, from the databases of SEER [76], World 

Health Organization [77], the Ministry of Health of Turkey [78], Turkish Institute of 

Statistics [79] and from the health record systems of Cancer Early Diagnoses and 

Treatment Centers [80].  The aim of Ada’s simulation model is to assess and compare 

the outputs of some breast cancer screening policies (30-79 annual, 30-79 biennial, 30-

79 triennial, 40-69 annual etc.) [21]. 

Flowchart of the model is presented in Figure 4. The flow of a single entity, which is 

women, is as follows. At the beginning of the simulation, cancer-free 30 year old women 

in 2010 are created. The attributes such as age, life status (being dead or alive), and 

cancer stages are assigned.  There are two ways for breast cancer detection, 

mammography screening and clinical breast examination [21].  

With some death probability estimated using the data from Turkish Institute of Statistics 

[79] for 2000 - 2010, the woman dies because of non-breast cancer related reasons. The 
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woman is either disposed from the model because of non-breast cancer related death or 

with some probability she is sent to clinical breast examination. An abnormal finding in 

clinical diagnosis results in sending the woman to treatment [21].  

When no such finding occurs or clinical breast examination is not required, the woman 

is re-sent to the mammography screening considering the mammography screening 

policy. If she goes through screening and gets a positive result, this means that an 

abnormal result is obtained and she is sent to treatment.  Under the case of no screening 

or she gets a negative screening result, her tumor progresses. Tumor progress means that 

the woman’s cancer status changes. Tumor progresses according to a Markov Chain. 

The Markov Chain of Fryback et al. [81] is taken as an initial data and it is modified in 

order to cover the situation in Turkey. If the woman is diagnosed with a breast cancer, 

her stage of the disease may stay the same or it can progress to a later stage or she may 

die. If the woman is not diagnosed with a breast cancer, she may stay healthy or she may 

have a breast cancer later [21].  

The woman who is sent to treatment is removed from the system because of breast 

cancer or other reasons [21].   

At the end of each year, each entity’s age attribute is increased by one and the following 

counters are calculated: total incidence rates for each year, incidence by stage for each 

year, breast cancer mortality rates, other causes mortality rates, the number of 

mammograms for each year, the number of true positive and false positive results for 

mammography, the number of clinical diagnosis, total life year for each year, Quality 

adjusted life years (QALY) for the corresponding year, and total cost for each year. 

Total cost includes screening cost, treatment cost and false positive cost [21]. 

The objective function consists of QALYs and total cost. Ten replications are performed 

and their average values of QALY and total cost are used to calculate the objective value 

of each policy in SA. 
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Figure 4:  Flow Chart of Ada’s Simulation Model (adapted from [21]) 
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Chapter 4 

 

Simulated Annealing (SA) 

 

SA is similar to metallurgical annealing. Metallurgical annealing involves heating the 

metal and cooling it off slowly so that the crystals get larger and the defects decrease at 

the same time. Atoms are dissolved out from their initial positions by the heat. This can 

be considered as energy level’s local optimum. These atoms have the ability to move 

freely. They can locate in places with lower energy levels than their previous places due 

to slowly cooling off. Choosing appropriate cooling procedure is important because 

cooling off too fast can result in atoms not finding better energy levels and cooling off 

too slow can take a lot of time [82]. 

SA is a robust and general metaheuristics method capable to find global optimum 

because it can avoid getting stuck in local optima and it can remember the best objective 

value obtained from iterations performed [83]. It is demonstrated that when some 

conditions are hold SA converges with probability of one to a global optimal solution 

[82].  

Constructing exact solution methods can be challenging for some optimization 

problems. For example, for cases in which no exact solution method are applicable or 
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applying exact solution methods are computationally complicated or information about 

the problem are not enough to build an existing model. For those cases, SA can be 

highly beneficial [84].  SA can also be applied to problems involving nonlinear models, 

disorganized and noisy inputs and problems with numerous constraints [83]. A 

mathematical model is not necessary to implement SA. Being able to design a solution 

in a way that it can be perturbed and evaluated is enough to use SA to solve the 

optimization problem [84].  

SA is independent of any restrictive features of the model. Because of that it is more 

flexible than the local search methods. Therefore, tuning SA to enhance its performance 

takes less effort than tuning local search methods. To tune local search methods, being 

familiar with the code is required which takes time and effort [83]. 

Because of the above advantages, SA is evaluated to be a promising [65], successful 

[64] and frequently used heuristic method for simulation optimization [22]. Some 

studies in which SA is applied for simulation optimization is as follows:  Bulgak and 

Sanders [54], Haddock and Mittenthal [50], Gelfand and Mitter [55], Gutjahr and Pflug 

[56], Fox and Heine [57], and Alrefaei and Andradottir [53], Eglese [45], Andradottir 

[63], Yücesan Jacobson [58], Manz et al. [59]. 

Because of its advantages, its frequent usage in simulation optimization and its premise, 

SA is chosen to be the solution method in this study.   

In all iterations, SA compares the objective function value of the current solution with 

the objective function value of the newly generated solution. SA moves to the newly 

generated solution with better objective function value (improving move). It also moves 

to newly generated solution with worse objective function value (non-improving move) 

with a probability. It performs these non-improving moves in order to go away from 

local optimal solutions. The SA algorithm for the maximization case is presented as 

Algorithm 1. 
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Here, X  denotes the feasible solution set, 
nowx  is the previously accepted solution 

(current solution). 
0T  represents the initial temperature,  iteration count  counts the 

number of iterations performed by the algorithm. nrep  is the number of iterations 

performed at each temperature. fT  denotes the final temperature which is set at the 

beginning of the algorithm. The temperature reduction function is 
1 1k k kT T    where

(0,1)k   is the temperature decrement rate. 
bestx  is the solution with the best objective 

value found so far.  ( )Objective function x  is the function utilized to calculate the 

objective function value of the corresponding solution. ( )nowN x  is the neighborhood of 

the current solution and
nextx  is the solution obtained from the neighborhood of the 

current solution. C  denotes the difference between the objective function values of the 

current and next solution.  
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Algorithm 1 SA for Maximization 

0

 

      

Step 1: Initialization

1.1 Choose an initial solution 

1.2 Choose an initial temperature 0

      Set    0 and 0

      Set 0 and final temperature 

   Choose a temperat

now

f

x X

T

iteration count k

nrep T





 



1 1

1 1

ure reduction function ( ) 

1.3  

Step 2: Choice and Termination

2.1 If  , then set  1,

      reduce the temperature ( ) and set   0

2.2 

k k k

best now

k k k

T T

x x

iteration count nrep k k

T T iteration count





 

 





  

 

Terminate when , return 

2.3 If , increase   by one

      Randomly choose  from ( )

      Set  ( ) -  ( )

2.4 If 0 proceed

k f best

k f

next now

now next

T T x

T T iteration count

x N x

C objective function x objective function x

C





 

   to Step 3 (Accepted)

     Else, generate  uniformly in the range (0,1)

2.5 If exp(- / ) then proceed to Step 3 (Accepted)

      Else proceed to Step 2.1 (Rejected)

Step 3: Update

3.1 Set  

 

k

now next

R

R C T

x x

 



       

     If  ( )  ( )

          

3.2 Go to Step 2

 

now best

best now

objective function x objective function x

x x





 

The temperature parameter has a significant role on the probability of accepting non-

improving moves [82].  
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4.1 Representation of a Policy and Feasible Policies  

The solution consists of 7 components, which are
1 2 3 4 5 6 7, , , , , ,x x x x x x x . 

1x  represents the 

starting screening age. It is an integer between 30 and 49 (30 and 49 are included).  
2x  

represents the frequency of screening when the woman is in her 30s. 
3x  represents the 

frequency of screening when the woman is in her 40s. 
4x  represents the frequency of 

screening when the woman is in her 50s. 
5x  represents the frequency of screening when 

the woman is in her 60s. 
2 3 4 5, , ,x x x x  are integers between 0 and 5 (0 and 5 are 

included). 
6x  represents the frequency of screening when the woman is in her 70s. 

6x  is 

an integer between 1 and 5. 
7x  is the stopping screening age. It is between 70 and 79 (70 

and 79 are included).   

For example, the following solution  30,5,0,5,4,1,71x   corresponds to screening at 

the following ages: 30, 35, 50, 55, 60, 64, 68, 70 and 71. 

The possible starting and ending screening ages are chosen as above because Ada’s 

Breast Cancer Simulation Model uses data compatible with these ages.  The screening 

frequencies are chosen dynamically as above to include most of the possible 

combinations.  

All combinations of 
1 2 3 4 5 6 7, , , , , ,x x x x x x x  are not feasible because there are intuitive 

connections between 
1 2 3, ,x x x  and

6 7,x x .  For example  30,0,1,1,1,1,70x   is not 

feasible because if starting age is 30, then there should be at least one screening between 

ages 30 to 39. However, in this solution the screening frequency for 30s is given as 0. 

The feasible solution set X is the set of 
1 2 3 4 5 6 7( , , , , , , )x x x x x x x x  vectors satisfying the 

following conditions:   
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The quality of the initial solution has an impact on the performance of the SA algorithm 

[82]. To reduce this dependency, initial solutions are randomly generated from the 

feasible set.  

4.2 Parameters of SA Algorithm   

Parameters of SA can be categorized as generic parameters and problem specific 

parameters as presented in Figure 5.  Generic parameters include initial temperature, 

final temperature, cooling schedule and number of iterations. Problem specific 

parameters are neighborhood structure, objective function and acceptance function.   

Literature on these parameters and their choices in this study are explained in this 

section. 

 

Figure 5: Parameters of SA Algorithm 

SA Parameters 

Generic 
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Initial  
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Final Temperature 

Cooling Schedule 
(Temperature 
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Several combinations with different initial and final temperatures, cooling schedules and 

number of iterations at temperatures can be tried to choose good parameter settings. 

However, for practical applications, this may not be possible [85]. The approaches 

applied in literature to choose generic parameters are reviewed in the following section. 

4.2.1 Generic Parameters 

A schedule resulting in near optimal solutions within reasonable computation time can 

be found in [85]. The initial temperature 
0T  and the temperature decrement k  between 

the temperatures 
kT  and 

1kT 
. 

kT is the temperature at k
th
 iteration and 

1kT 
 is the 

temperature at (k+1)
st
 iterations. 

kT  and 
1kT 
 are chosen considering the mean value c  

and standard deviation   of the cost function using equations in (2). 

                                                

0

1

exp
( )

k
k

k

k k k

T c

T

T

T T












 
  

 



                                                   (2) 

The starting temperature 
0T  is chosen in a way that makes the probability of accepting a 

solution in the interval of  [ -3 , 3 ]c c   high. (0,1]  effects the speed of temperature 

decrease.  It is found out that 0.7   is a good choice [85]. 

Alrefaei and Diabat [86] address a multi-objective inventory problem using SA. Their 

algorithm uses constant temperature and it accepts a solution according to their rule. 

This rule is related to the estimated objective function values. 

Manz et al. [59] focuses on an automated manufacturing system for assembling of three 

products. Several values of initial and final temperatures, temperature decrements and 

number of iterations at each temperature are combined and assessed.  
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Uhlig and Rose [87] introduce an approach to create schedules for tool groups in 

semiconductor manufacturing using SA. They begin with a very high temperature and 

perform many iterations. The temperature decrement ( ) is chosen in a way that the 

final temperature is nearly 0.  

A more complicated way uses certain desired acceptance probabilities. P  is the 

probability of accepting objective function value ( C ) difference.  

                                           
( , ) exp   

ln( )

C C
P C T T

T P

  
    

 
                                       (3) 

Then, (3) can be used to define initial temperature, 
0T  and temperature value at k

th
 

iteration 
kT  in the annealing schedule. Standard deviation of a sample of random 

solutions can be used to make estimations for possible difference values. After defining 

these two temperature values, the whole schedule can be obtained by using (4) [87]. 

 (1/k)

0

k
k

T

T


 
  
 

                                                             (4) 

Busetti [83] chooses an initial temperature 
0T   in a way that there is an 80% chance that 

a worse solution is accepted. He suggests doing an initial search in which all worse 

solutions are accepted in order to come up with an estimate of 
0T  and then calculating 

the average objective difference observed ( C ). 0p is the initial acceptance probability. 

0T  is then calculated by (5). 

                                                  0

0ln( )

C
T

p


                                                           (5) 
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An empirical rule is suggested to find an initial temperature 
0T  and perform some 

transitions. The rule is to multiply the 
0T by 2 and perform the same procedure as long 

as (6) is less than a previously defined 
0w  value. 

                                       
number of accepted transitions

number of proposed transitions
w                                               (6)                                                                     

(6) is referred as the acceptance ratio. Kirkpatrick et al. [105] take 
0w  as 0.8 [88].   

This rule is adopted in some studies with a few modifications. 
0T  can be set by 

observing the average change in objective function value ( )C  of numerous random 

solutions and using (6) to find 
0w  for a minimization problem and using (7) for 

0T . 

( )C   denotes the positive difference of objective values [88]. 

                                                
( )

0

0

exp
C

w
c

 
  

 
                                                             (7) 

                                      
( )

0

0ln(w 1)

C
T





                                                                 (8)                                                                                                 

As indicated in [88], similar formula are used in works of Leong et al. [106] [107], 

Skiscim and Golden [108] [109], Morgenstern and Shapiro [110], Aarts and Van 

Laarhoven [111], Lundy and Mees [112], and Otten and Van Ginneken [113].  

Bulgak and Sanders [54] generate a discrete event simulation model to search for an 

optimal buffer sizes for a manufacturing system. Their SA algorithm stops after reaching 

a maximum number of solutions generated.  

Apart from setting a final temperature and executing the algorithm until it reaches this 

temperature, one can terminate the execution when amount of improvements decrease. 

Lack of improvement can be defined as no improvement (no new best solution at one 
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temperature) and/or the acceptance ratio falling below defined value [83]. The algorithm 

can stop when the best objective function value fails to improve by at least a defined 

percent after some number of cool offs. Another stopping condition can be to end the 

algorithm when the number of accepted moves in some predefined number of 

temperature decreases is less than a defined percent [82].  

The temperature decrement can change the ability of SA to converge to the global 

optimum. This convergence is proven when there is a logarithmic temperature 

decrement. A low cooling rate may result in an increase in computation time, whereas a 

high cooling rate may lead to getting stuck in a local optimum [82]. 

Nahar et al. [114] fix the number of temperature decrement steps into K  and they 

choose 1,kT k K  , the corresponding temperature values. They use 6 temperature 

values [88]. 

Skiscim and Golden [108] [109] split the interval  00,T   into a constant number of K  

subintervals and 
kT  is chosen using (9).  

        
 

0

  ,   1, ,k

K k
T k K

KT


       (9)                              

     

In Huang et al. [115], the decrement ratio k  is chosen in such a way that the expected 

mean value of the objective function at 1kT   is in a range of   around the attained mean 

value at kT  [85].  

The cooling rule presented in (10) was first proposed by Kirkpatrick et al. [105].  

                                            1 ,  0,1,2,3,...k kT T k                                                        (10)  
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where   is a constant smaller than but close to 1 and  take as 0.95 .   

This cooling schedule is also used in other SA applications such as Johnson et al. [116], 

Bonomi and Lutton [117] [118], Burkard and Rendl [119], Leong et al. [106] [107], 

Morgenstern and Shapiro [110], and Sechen and Sangiovanni-Vincentelli [120], with 

values of  ranging from 0.5 to 0.99 [88]. 

As in (3), we set the initial temperature and final temperature using initial acceptance 

and final acceptance probabilities. Initial acceptance probability is taken as 0.99  and the 

final acceptance probability is taken as 1510 .  Sample of 100 solutions is considered to 

make estimations for objective value difference.                                                                                                         

Cooling rule in (10) with 0.99   is used. At each temperature one iteration is 

performed. As explained in Section 4.2.2.2, objective value consists of Willingness to 

Pay (WTP) value, which corresponds to extra money that can be paid to gain one 

QALY.  Several WTP values are considered in computational studies. The temperatures 

are set for each WTP value, separately.  

The other abovementioned methods to set generic parameters are tried in the study. The 

best performance is obtained from the utilized method. 

 

4.2.2 Problem Specific Parameters 

4.2.2.1 Neighborhood Structure 

Neighborhood structure is an important component of all metaheuristics. In order to 

define a proper neighborhood structure, efficiency and effectiveness of the neighborhood 

have to be taken into consideration. Efficiency refers to the quality of neighborhood 

structure’s performance to cover the feasible solutions. Speed, computational effort and 

number of neighbors can be significant factors that can have an impact on the efficiency. 

Effectiveness is the ability of the neighborhood structure to cover feasible solutions [82].  
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Using different neighborhoods in a systematic manner can be useful to avoid getting 

stuck in local optimal solutions. The Variable Neighborhood Search (VNS) is the only 

metaheuristic that considers changing neighborhood structures in iterations [82]. VNS is 

introduced by Hansen and Mladenović [89]. VNS takes increasingly further 

neighborhood structures into account until a better solution compared to the incumbent 

solution is found. Benefitting from this structure, some favorable properties of the 

incumbent solution can be maintained. For example, some variables may already be at  

their optimal values and this incumbent solution is used to obtain good neighbor 

solutions [89].  

 The following facts are used systematically in VNS. 

 A local minimum of one neighborhood structure may not be a local minimum to 

another neighborhood structure.  

 A global minimum is a local minimum for all possible neighborhood structures. 

 Local minima of one or more neighborhoods are relatively close to each other for 

several problems [89]. 

There are some different types of VNS. In this study, we use Reduced VNS which is 

presented as Algorithm 2. 
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Algorithm 2 Reduced VNS [89]                                                                                            

max

Step 1: Initialization

Choose the set of neighborhood structures ,  for 1,...,  

Choose an initial solution 

Choose a stopping condition

Step 2: Repeat the following steps until the stopping con

i

now

N i i

x



max

th

dition is met

            2.1 Set  =1

            2.2 Repeat the following steps until 

                  a. Shaking

                      Generate a point  randomly from the  neighborhood of 

i

i i

x i





                      (  ( ))

                  b. Move or not

                      If this point is better than the incumbent, move there ( )

                      and continue the sea

now

i now

now

x

x N x

x x





1rch with ( 1), otherwise set 1

                    

                 

N i i i  

  

The set of neighborhoods      
m1 ax2

,  , , i xNN x N x   regarded around the current point 

x  are often nested. This means that each neighborhood includes the previous one [89]. 

Algorithm 2 chooses a point at random in the first neighborhood. If its objective function 

value is better than that of the incumbent, the search is recentered around x . Otherwise, 

the algorithm proceeds to the next neighborhood. After considering all neighborhoods, 

the algorithm returns to the first neighborhood until the stopping condition is achieved 

[89].  

Taking 
maxi as one in Algorithm 2 corresponds to having a single neighborhood structure, 

as used in other search heuristics [89].  

Upper limit on execution time allowed and upper limit on the number of iterations 

between two improvements can be possible stopping conditions for Algorithm 2.  
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To prevent getting stuck at a local optimum, taking the union of neighborhoods of any 

feasible solution x should lead to reaching the whole feasible set. This means that (11) 

holds.  

                                    
1 2 max
( ) ( ) ... ( ) ,         iX N x N x N x x X                                 (11) 

The neighborhood definitions may contain X  without partitioning it. Covering X  can 

easily be implemented using nested neighborhoods, satisfying (12) [89].  

                       
1 2 max max
( ) ( ) ... ( )    and   X ( ) ,        i iN x N x N x N x x X                        (12) 

Considering the above neighborhood structures and the factors affecting the efficiency 

and effectiveness of the neighborhood, problem specific neighborhood structures are 

generated. In all neighborhood structures, all neighbor solutions have equal probability 

to be the next solution. Let the current solution be  1 2 3 4 5 6 7
  , , , , , ,  , .x x x x x x x x x X   

The neighborhoods of this point according to the structures 

       
ma1 3 1 5 x3

, , , ( ), iNBH x NBH x NBH x NBH x NBH x


 are presented in (13). The 

neighborhood definitions are common for the frequencies (i.e.,
2 3 4 5 6, , , ,x x x x x ). The 

neighbor solution can maintain the current solution’s frequency or it can increase or 

decrease it by one for each frequency with equal probabilities. The neighbors differ for 

the starting and stopping ages (i.e., 
1 7 and x x ). In  1

NBH x , the neighbor solution can 

maintain the current solution’s starting age or it can increase or decrease it by one with 

equal probabilities. The same holds for the stopping age. In  3 1
NBH x


, the neighbor 

solution can maintain the current solution’s starting age or it can increase or decrease it 

by three at maximum with equal probabilities. The neighbor solution can maintain the 

current solution’s stopping age or it can increase or decrease it by one with equal 

probabilities. In  5
NBH x  the neighbor solution can maintain the current solution’s 

starting age or it can increase or decrease it by five years at maximum with equal 
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probabilities. The same holds for the stopping age. 
max

( )iNBH x  is defined as the entire 

feasible set, .X   

     

     

   

1 1 2 3 4 5 6 7 1 1 1 2 2 2

3 3 3 4 4 4 5 5 5

6 6 6 7 7 7

 { =( , , , , , , ) : 1, 1 , 1, 1 ,  

                         1, 1 ,  1, 1 , 1, 1 ,   

                        

 

 1, 1 ,  1, 1 ,  

=NBH x x x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x X

              

          

         }

           

   

   

   

3 1 1 2 3 4 5 6 7 1 1 1

2 2 2 3 3 3

4 4 4 5 5 5

  { ( , , , , , , ),  3, 3 ,

                                      1, 1 ,  1, 1 ,  

                                      1, 1 , 1, 1 ,   

     

NBH x x x x x x x x x x x x

x x x x x x

x x x x x x


           

      

      

   6 6 6 7 7 7
                                 1, 1 ,  1, 1 ,  }x x x x x x x X        

                        (13) 

     

     

   

1 2 3 4 5 6 7 1 1 1 2 2 2

3 3 3 4 4 4 5 5 5

6 6 6 7 7 7

3  { = , , , , , , },  3, 3 , 1, 1 ,  

                        1, 1 ,  1, 1 , 1, 1 ,   

                        1, 1 ,  3, 3 ,  }

{NBH x x x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x X

              

          

        

     

     

     

   

1 2 3 4 5 6 7 1 1 1 2 2 2

3 3 3 4 4 4 5 5 5

6 6 6 7 7 7

5  { = , , , , , , },  5, 5 , 1, 1 ,  

                        1, 1 ,  1, 1 , 1, 1 ,   

                        1, 1 ,  5, 5 ,  }

{NBH x x x x x x x x x x x x x x x

x x x x x x x x x
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max
( )iNBH x X  

These neighborhoods are nested, satisfying (14). 

                  
max

1 3 1 3 5 ( )iNBH x NBH x NBH x NBH NBH x Xx    
               (14)
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4.2.2.2 Objective Function 

SA compares the objective function value of the current solution and a newly created 

solution and then makes the move.  Simulation model can be used to obtain the objective 

function value [34].  

The objective function used in this study is constructed from Ada’s Breast Cancer 

Simulation Model’s outputs. QALY is a measure to evaluate the benefits of healthcare 

interventions. It is based on number of years of life that would be added if the healthcare 

intervention is done. Using some Willingness to Pay (WTP) values, total cost is 

converted into QALY in order to have a single objective which is in terms of life years.  

WTP represents the amount of money that can be spent in order to gain a QALY. 

At each iteration (15) is calculated for the newly generated solution.  

                                  

2080

2080
2010

2010

 

maximize 

i

i

i

i

Total Cost

QALY
WTP





 
 
 




                                (15)                                                                

The objective function, presented in (15) consists of three components. QALY, total cost 

and WTP. The calculation of QALY and total cost are presented in Ada [21]. QALY and 

total cost values are added for years 2010 - 2080 for the women who were born in 1980. 

These women become 30 in 2010 and since the starting screening age is between 30 and 

49 (30 and 49 are included), the summation begins from 2010. WTP value is not fixed. 

Because of that eleven different WTP values are used in SA. These are 0 TL; 100 TL; 

500 TL; 1,000TL; 2,000 TL; 3,000 TL; 4,000 TL; 5,000 TL; 10,000 TL; 25,000TL and 

5,0000 TL. The objective function is in terms of QALY, so the objective is to maximize 

this value.  
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4.2.2.3 Acceptance Function 

SA accepts worse solutions considering the acceptance function. Because of that it has 

an important role to obtain better solutions [82].  The acceptance function used in this 

study is offered by Kirkpatrick et al. [41] and it is presented in (16).  

                                                        exp /  kR C T                                             (16)                                                

R  is a uniformly generated number and (0,1)R . C  is the objective function 

difference between the current and the newly generated solution.  is the temperature 

value at k
th 

iteration. If the objective function value of the new solution is worse than 

the current solution. SA generates a R value and checks (16). If it holds, then the worse 

solution is accepted [68]. In this study, approximation of acceptance function proposed 

by Johnson et al. [121], presented in (17), is used.  Johnson et al. [121] found that 

acceptance calculation take nearly one third of the computation time. This 

approximation is useful in terms reducing computation time. 

                                                       1 /  kTR C                                                        (17) 

4.3 Applied Methods Using SA 

With the parameter selections presented in Section 4.2, SA algorithm is applied in the 

following methods. Pure SA, presented as Algorithm 1, with 

     1 3 1 3
, , ,NBH x NBH x NBH x


 and  

max5
, ( )iNBHN H x xB  neighborhood structures. 

SA can be combined with the Reduced VNS heuristic. Reduced VNS with SA is 

presented as Algorithm 3.  

kT
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Algorithm 3 Reduced VNS with SA 
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Like Pure SA, the algorithm begins with setting initial solution, initial temperature and 

temperature reduction function. In addition to these, the neighbor structures are also 

defined. Difference between Pure SA and Reduced VNS with SA is that neighborhood 

structure to be used in the next iteration to find the next solution depends on whether a 

good solution is reached or not in the current iteration.  

The search for next solution begins in the first neighborhood. If the solution gives better 

result, then the search continues in this neighborhood. If it is not better but if it is 

accepted, the search continues in the second neighborhood which is larger than the first 

neighborhood. Performing the search in the second neighborhood also occurs if the 

solution is rejected.  

During the search, moving to a better solution results in narrowing the search region to 

first neighborhood and finding a worse next solution leads to enlarging the 

neighborhood by using the next neighborhood structure. When the largest neighborhood 

is reached, then the search returns to the first neighborhood. This is repeated until the 

final temperature is larger than the current temperature. 

Random Search, presented as Algorithm 4, is also applied in order to assess the 

performances of Pure SA and Reduced VNS with SA.   
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Algorithm 4 Random Search 
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Chapter 5 

 

Computational Results 

 

5.1 Inputs 

The computational results are obtained from Pure SA, Reduced VNS with SA and 

Random Search.   

Pure SA is used with four different neighborhood structures. These are

       1 3 1 3 5, , .,NBH x NBH x NBH x NBH x  In addition to these; Reduced VNS with 

SA has
max

( )iNBH x , the entire feasible set as the last neighborhood structure.  

Eleven WTP values are used. In computations 0.1 is used for the cases in which 

0.WTP  Since WTP affects the objective function value, for each WTP value, equation 

(3) is applied. To obtain the initial temperature the P value which is the acceptance 

probability is taken as 0.99 and to obtain the final temperature it is taken as -1510 .  

                                           
( , ) exp   

ln( )

C C
P C T T

T P

  
    

 
                                       (3) 
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To come up with estimations for the objective value difference, sample of 100 solutions 

are taken into consideration. Cooling rule provided in equation (10) with 0.99  is 

used. At each temperature one iteration is performed. 

The initial and final temperature values are presented in Table 2. Although these 

temperature values are different, the total number of iterations performed turns out to be 

the same for all. Other input data are presented in Table 3. 

Table 2:  Temperature Values Used for SA with Different WTP Values 

 Temperatures 

WTP (TL) Initial Temperature Final Temperature 

0 222,076,569,194.06 64,621,400.60 

100 505,844,692.40 147,194.24 

500 60,067,354.22 17,478.82 

1,000 35,556,695.46 10,346.54 

2,000 14,520,608.77 4,225.31 

3,000 17,209,770.52 5,007.82 

4,000 18,000,585.55 5,237.94 

5,000 21,595,748.96 6,284.08 

10,000 20,638,877.04 6,005.65 

25,000 23,816,217.16 6,930.21 

50,000 18,553,146.37 5,398.72 
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Table 3: Other SA Inputs 

Initial solution Generated randomly from the 

feasible set 

Temperature decrement 

function 
1 0.99k kT T  , where 

kT is the 

temperature at 
thk  iteration  

Number of iterations at each 

temperature value  ( nrep )  
1 

Total number of iterations 811 

 

5.2. Results and Analysis 

The algorithms are coded in the integrated development environment Dev C.  

No screening is not an element of the feasible policy set. Therefore, no screening is not 

considered in SA. Because of that, best solution obtained from the methods is compared 

with no screening result for all methods. The computational results are presented from 

Table 4 to Table 7.   

Per person cost and per person QALY values are also presented in the following tables 

in order to observe their impact on the objective value. 

Objective function defined in equation (15) consists of QALY, total cost and WTP. 

Table 4 to Table 7 includes the components of objective function. WTP is used to 

convert total cost into QALY. By definition WTP is extra money that can be paid to gain 

one QALY. Therefore, the objective function (18) is to maximize QALY. 

 According to Tables 4 to 9, as WTP increases the impact of total cost on reducing the 

QALY decreases. As WTP goes to infinity, this impact goes to zero and hence the 

objective function becomes (18).  
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2080

2010

maximize i

i

QALY


                                                           (18) 

As WTP increases, increases in total cost results in less decrease in the objective 

function value. Screening many times increases the total cost, however, this may lead to 

increase in QALY since more cancers can be detected and sent to treatment. Therefore, 

as WTP increases, in order to maximize the objective function, number of screenings 

may be increased. However, this cannot be generalized since increase in the numbers of 

screenings may sometimes lead to decrease in QALY since excessive mammographic 

screening may decrease the quality of health.  

According to Tables 4 to 9 increasing the number of screenings results in increase in per 

person QALY. This shows that increasing the number of screening has more benefits 

than disadvantages because the policy continues to detect and treat cancers more than it 

does harm because of frequent screening. Increasing number of screenings results in 

increase in screening cost, false positive cost and treatment cost. Hence, Tables 4 to 9 

demonstrate that as number of screenings increase, cost per person increases.  

For all methods, no screening yields a better result when WTP is 0 TL, 100 TL and 500 

TL.  Generally, the methods result in two screenings (at starting age which is in late 40s 

and stopping age which is in early 70s) for these WTP values. As WTP value becomes 

more than 500 TL, the starting age decreases to early 30s and the stopping age increases 

to late 70s with many screenings in between. 
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Table 4: Computational Results of Pure SA with  1NBH x   

WTP 

 

No Screening 

 

Best Solution 

Objective Value 

Per 

Person 

Cost 

Per 

Person 

QALY 

x  

Number 

of 

Screening 

Objective Value 

Per 

Person 

Cost 

Per 

Person 

QALY 

0 -2,909,261,928.21 478.89 41.04 (48, 0, 2, 0, 0, 1, 70) 2 -3,403,566,991.19 559.57 41.12 

100 22,201,401.77 479.64 41.03 (45, 0, 5, 0, 0, 1, 70) 2 21,766,070.49 560.23 41.12 

500 24,554,924.03 479.24 41.03 (49, 0, 1, 0, 0, 1, 70) 2 24,512,085.90 558.95* 41.12 

1,000 24,847,014.18 481.64 41.03 (44, 0, 3, 3, 0, 5, 75) 8 24,881,088.03 781.71 41.39 

2,000 24,990,641.60 480.59 41.02 (32, 4, 2, 2, 3, 1, 70) 17 25,159,566.57 1,087.58 41.60 

3,000 25,043,610.87 479.68 41.03 (41, 0, 2, 2, 2, 3, 73) 17 25,257,439.53 1,070.87* 41.58** 

4,000 25,060,495.32 479.65 41.02 (32, 2, 2, 1, 2, 3, 76) 27 25,336,277.08 1,409.41 41.70 

5,000 25,077,037.06 478.86 41.02 (30, 2, 1, 1, 2, 2, 72) 32 25,378,426.53 1,580.72 41.73 

10,000 25,111,314.51 479.13 41.03 (32, 2, 1, 1, 2, 1, 77) 37 25,475,704.82 1,696.66 41.75 

25,000 25,122,290.15 481.00 41.02 (30, 2, 1, 1, 1, 1, 72) 38 25,544,813.37 1,747.40 41.76 

50,000 25,131,163.57 478.35 41.02 (32, 2, 1, 1, 1, 1, 78) 43 25,570,696.97 1,855.99 41.77 

       *Exceptional case in which increase in WTP decreases per person cost 

       **Exceptional case in which increase in WTP decreases per person QALY  
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Table 5: Computational Results of Pure SA with  3 1NBH x
         

WTP 

 

No Screening 

 

Best Solution 

Objective Value 

Per 

Person 

Cost 

Per 

Person 

QALY 

x 

Number  

of 

Screening 

Objective Value 

Per 

Person 

Cost 

Per 

Person 

QALY 

0 -2,919,170,292.76 480.51 41.03 (48, 0, 2, 0, 0, 1, 70) 2 -3,405,340,661.11 559.86 41.12 

100 22,205,925.02 479.13 41.03 (49, 0, 1, 0, 0, 1, 70) 2 21,759,887.72 561.04 41.12 

500 24,554,532.62 478.86 41.03 (47, 0, 3, 0, 0, 1, 70) 2 24,515,138.26 559.18* 41.13 

1,000 24,848,156.73 480.74 41.03 (42, 0, 4, 5, 5, 1, 71) 8 24,878,486.26 779.68 41.38 

2,000 24,993,902.83 480.69 41.03 (36, 4, 2, 2, 5, 1, 70) 14 25,157,406.43 989.96 41.55 

3,000 25,040,372.74 479.96 41.03 (31, 3, 2, 2, 2, 4, 74) 20 25,273,360.29 1,189.26 41.64 

4,000 25,064,205.82 479.67 41.02 (32, 3, 1, 1, 2, 2, 78) 33 25,334,193.10 1,584.84 41.74 

5,000 25,078,510.66 479.98 41.02 (30, 3, 1, 1, 2, 2, 74) 32 25,377,805.54 1,574.44* 41.73** 

10,000 25,111,412.54 479.63 41.03 (31, 4, 1, 1, 1, 2, 78) 38 25,482,097.56 1,723.78 41.76 

25,000 25,130,328.62 480.57 41.03 (31, 1, 1, 1, 1, 1, 75) 45 25,550,309.28 1,979.01 41.78 

50,000 25,132,754.63 479.04 41.03 (30, 1, 1, 1, 1, 1, 79) 50 25,587,609.59 2,100.39 41.80 

       *Exceptional case in which increase in WTP decreases per person cost 

       **Exceptional case in which increase in WTP decreases per person QALY  
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Table 6: Computational Results of Pure SA with 
3( )NBH x           

WTP 

 

No Screening 

 

Best Solution 

Objective Value 

Per 

Person 

Cost 

Per 

Person 

QALY 

x   

Number 

of 

Screening 

Objective Value  

Per 

Person 

Cost 

Per 

Person 

QALY 

0 -2,914,078,439.85 479.68 41.03 (49, 0, 1, 0, 0, 1, 70) 2 -3,410,427,461.18 560.69 41.12 

100 22,202,677.31 479.70 41.03 (45, 0, 5, 0, 0, 2, 72) 4 21,587,990.29 590.26 41.13 

500 24,555,974.49 478.51 41.03 (48, 0, 2, 0, 0, 1, 70) 2 24,507,902.89 561.06* 41.12** 

1,000 24,846,229.79 481.11 41.03 (45, 0, 5, 4, 0, 1, 70) 5 24,891,697.91 677.65 41.30 

2,000 24,997,511.79 478.51 41.03 (37, 3, 2, 2, 4, 2, 72) 16 25,150,982.42 1,050.35 41.57 

3,000 25,044,571.44 479.49 41.03 (34, 4, 2, 2, 2, 3, 76) 20 25,265,659.96 1,177.87 41.63 

4,000 25,067,049.20 479.95 41.03 (31, 3, 2, 1, 2, 2, 74) 26 25,334,127.68 1,371.25 41.69 

5,000 25,080,096.94 479.78 41.03 (30, 2, 1, 1, 2, 1, 77) 38 25,376,629.65 1,734.07 41.76 

10,000 25,110,616.15 480.63 41.03 (31, 1, 1, 1, 2, 1, 79) 44 25,481,973.37 1,924.90 41.78 

25,000 25,129,428.41 479.64 41.03 (31, 1, 1, 1, 1, 1, 79) 49 25,559,391.81 2,062.81 41.80 

50,000 25,133,592.41 478.56 41.03 (31, 1, 1, 1, 1, 1, 77) 47 25,582,570.74 2,024.24* 41.79** 

       *Exceptional case in which increase in WTP decreases per person cost 

       **Exceptional case in which increase in WTP decreases per person QALY  
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Table 7: Computational Results of Pure SA with 
5( )NBH x           

WTP 

 

No Screening 

 

Best solution 

Objective Value 

Per 

Person 

Cost 

Per 

Person 

QALY 

x 

Number  

of 

Screening 

Objective Value 

Per 

 Person 

Cost 

Per 

Person 

QALY 

0 -2,914,833,799.75 479.80 41.03 (46, 0, 4, 0, 0, 1,70) 2 -3,400,013,017.65 558.99 41.12 

100 22,206,073.35 479.28 41.03 (48, 0, 2, 0, 0, 1,70) 2 21,763,018.09 560.68 41.12 

500 24,549,871.61 479.21 41.02 (48, 0, 2, 0, 0, 1,70) 2 24,511,934.77 560.63* 41.12 

1,000 24,847,430.11 480.04 41.03 (42, 0, 4, 4, 5, 1,70) 8 24,890,756.95 783.71 41.41 

2,000 24,992,275.91 479.08 41.03 (36, 4, 2, 2, 2, 1,71) 18 25,150,766.39 1,107.41 41.60 

3,000 25,046,293.49 478.22 41.03 (30, 5, 2, 2, 2, 1,70) 18 25,270,248.22 1,117.28 41.61 

4,000 25,063,121.86 480.36 41.02 (31, 3, 2, 2, 3, 2,78) 22 25,333,268.56 1,233.22 41.65 

5,000 25,080,779.42 480.32 41.03 (32, 3, 2, 1, 2, 2,78) 28 25,375,806.67 1,419.85 41.70 

10,000 25,110,812.01 478.87 41.03 (30, 2, 1, 1, 1, 1,79) 45 25,487,366.11 1,912.54 41.79 

25,000 25,127,940.19 479.72 41.03 (31, 2, 1, 1, 1, 1,77) 43 25,550,879.58 1,873.93* 41.77** 

50,000 25,134,211.52 478.69 41.03 (30, 2, 1, 1, 1, 1,79) 45 25,578,607.50 1,910.59 41.78 

       *Exceptional case in which increase in WTP decreases per person cost 

       **Exceptional case in which increase in WTP decreases per person QALY  
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Table 8: Computational Results of Reduced VNS with SA 

WTP 

 

No Screening 

 

Best Solution 

Objective Value 

Per 

Person 

Cost 

Per 

Person 

QALY 

x   

Number 

of 

Screening 

Objective Value  

Per  

Person 

Cost 

Per 

Person 

QALY 

0 -2,916,914,704.61 480.14 41.03 (47, 0, 3, 0, 0, 1, 70) 2 -3,399,924,932.31 558.97 41.12 

100 22,204,536.47 479.28 41.03 (39, 1, 0, 0, 0, 1, 70) 2 21,743,016.91 559.81 41.08** 

500 24,554,484.09 478.93 41.03 (45, 0, 5, 0, 0, 1, 70) 2 24,517,096.51 559.47* 41.13 

1,000 24,847,880.46 478.73 41.03 (42, 0, 3, 4, 5, 1, 70) 9 24,885,305.87 817.87 41.43 

2,000 24,990,449.58 479.05 41.02 (33, 5, 2, 2, 2, 4, 74) 19 25,156,692.97 1,151.87 41.63 

3,000 25,040,326.64 479.17 41.03 (31, 4, 2, 2, 2, 4, 78) 21 25,270,552.80 1,214.29 41.65 

4,000 25,064,675.87 480.44 41.03 (31, 2, 2, 1, 2, 3, 73) 27 25,330,663.59 1,418.18 41.69 

5,000 25,081,482.85 481.45 41.03 (31, 2, 2, 1, 2, 2, 78) 30 25,374,395.87 1,495.74 41.71 

10,000 25,107,055.89 478.96 41.02 (30, 2, 1, 1, 2, 2, 78) 35 25,485,039.92 1,658.50 41.76 

25,000 25,130,846.09 480.64 41.03 (30, 1, 1, 1, 1, 2, 78) 45 25,557,648.74 1,986.70 41.79 

50,000 25,131,503.19 479.91 41.02 (31, 1, 1, 1, 1, 1, 79) 49 25,580,256.89 2,063.71 41.79 

       *Exceptional case in which increase in WTP decreases per person cost 

       **Exceptional case in which increase in WTP decreases per person QALY  
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Table 9: Computational Results of Random Search 

WTP 

 

No Screening 

 

Best Solution 

Objective Value 

Per 

Person 

Cost 

Per 

Person 

QALY 

x   

Number 

of 

Screening 

Objective Value  

Per 

Person 

Cost 

Per 

Person 

QALY 

0 -2,913,653,723.26 479.61 41.03 (49, 0, 1, 0, 0, 2, 72) 3 -3,602,485,169.46 592.03 41.13 

100 22,208,231.73 479.19 41.04 (43, 0, 4, 0, 0, 1, 70) 3 21,576,172.97 596.49 41.18 

500 24,557,221.29 479.19 41.04 (43, 0, 4, 0, 0, 1, 70) 3 24,500,180.22 596.49 41.18 

1,000 24,850,844.98 479.19 41.04 (42, 0, 3, 4, 0, 1, 70) 7 24,890,890.74 747.33 41.37 

2,000 24,997,656.83 479.19 41.04 (30, 5, 2, 2, 5, 1, 70) 15 25,155,020.26 1,028.64 41.57 

3,000 25,043,645.66 480.40 41.03 (31, 3, 2, 2, 2, 3, 73) 20 25,274,252.84 1,188.09 41.64 

4,000 25,064,061.48 479.94 41.02 (32, 3, 1, 2, 2, 1, 72) 26 25,328,095.17 1,377.52 41.68 

5,000 25,081,580.35 479.55 41.03 (31, 3, 1, 1, 3, 3, 73) 29 25,370,924.72 1,477.96 41.70 

10,000 25,110,669.69 480.16 41.03 (31, 2, 2, 1, 1, 1, 77) 38 25,470,928.31 1,710.09 41.74 

25,000 25,127,521.86 480.12 41.03 (36, 2, 1, 1, 2, 1, 77) 35 25,516,687.36 1,621.81* 41.71** 

50,000 25,129,258.78 481.46 41.02 (33, 5, 1, 1, 1, 1, 78) 41 25,560,247.25 1,781.33 41.75 

      *Exceptional case in which increase in WTP decreases per person cost 

      **Exceptional case in which increase in WTP decreases per person QALY  
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Table 10: Best Results Found by the Methods When WTP is 0 TL 

Method 

Best Solution 

x   

Number 

of 

Screening 

Objective Value  

Per 

Person 

Cost 

Per 

Person 

QALY 

Pure SA with 

 1NBH x  (48, 0, 2, 0, 0, 1, 70) 2 -3,403,566,991.19 559.57 41.12 

Pure SA with 

 3NBH x  (49, 0, 1, 0, 0, 1, 70) 2 -3,410,427,461.18 560.69 41.12 

Pure SA with 

 5NBH x  (46, 0, 4, 0, 0, 1, 70) 2 -3,400,013,017.65 558.99 41.12 

Pure SA with 

 3 1NBH x  (48, 0, 2, 0, 0, 1, 70) 2 -3,405,340,661.11 559.86 41.12 

Reduced VNS 
with SA (47, 0, 3, 0, 0, 1, 70) 2 -3,399,924,932.31 558.97 41.12 

Random Search (49, 0, 1, 0, 0, 2, 72) 3 -3,602,485,169.46 592.03 41.13 

 

By definition a policy has a starting and stopping age. Because of that when WTP is 0 

TL, most of the best solutions performs screening two times corresponding to these ages 

as presented in Table 10. Screening is done at a late starting age and an early stopping 

age. However, no screening turns out to be a better policy in this case. This shows that 

paying an additional 0 TL is not beneficial to maximize the objective value when 

screening occurs. Among the solutions in Table 10, Reduced VNS with SA performs 

better than the others. The worst solution is obtained from Random Search. 
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Table 11: Best Results Found by the Methods When WTP is 100 TL 

Method 

Best Solution 

x   

Number 

of 

Screening 

Objective Value  

Per 

Person 

Cost 

Per 

Person 

QALY 

Pure SA with 

 1NBH x  
(45, 0, 5, 0, 0, 1, 70) 2 21,766,070.49 560.23 41.12 

Pure SA with 

 3NBH x  
(45, 0, 5, 0, 0, 2, 72) 4 21,587,990.29 590.26 41.13 

Pure SA with 

 5NBH x  
(48, 0, 2, 0, 0, 1, 70) 2 21,763,018.09 560.68 41.12 

Pure SA with 

 3 1NBH x  

(49, 0, 1, 0, 0, 1, 70) 2 21,759,887.72 561.04 41.12 

Reduced 

VNS with SA 
(39, 1, 0, 0, 0, 1, 70) 2 21,743,016.91 559.81 41.08 

Random 
Search 

(43, 0, 4, 0, 0, 1, 70) 3 21,576,172.97 596.49 41.18 

 

As presented in Table 11, on the average, screening is performed three times when WTP 

is 100 TL. The solutions have late starting ages (except Reduced VNS with SA) at 40s 

and early stopping ages at 70s. No screening leads to a better choice for this case. This 

shows that paying an additional 100 TL is not enough to maximize the objective value 

when screening occurs. Among the solutions in Table 11, Pure SA with  1NBH x  

performs better than the others. The worst solution is obtained from Random Search. 
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Table 12: Best Results Found by the Methods When WTP is 500 TL 

Method 

Best Solution 

x   

Number 

of 

Screening 

Objective 

Value  

Per 

Person 

Cost 

Per 

Person 

QALY 

Pure SA with 

 1NBH x  (49, 0, 1, 0, 0, 1, 70) 2 24,512,085.90 558.95 41.12 

Pure SA with 

 3NBH x  (48, 0, 2, 0, 0, 1, 70) 2 24,507,902.89 561.06 41.12 

Pure SA with 

 5NBH x  (48, 0, 2, 0, 0, 1, 70) 2 24,511,934.77 560.63 41.12 

Pure SA with 

 3 1NBH x  (47, 0, 3, 0, 0, 1, 70) 2 24,515,138.26 559.18 41.13 

Reduced VNS with 

SA (45, 0, 5, 0, 0, 1, 70) 2 24,517,096.51 559.47 41.13 

Random Search (43, 0, 4, 0, 0, 1, 70) 3 24,500,180.22 596.49 41.18 

 

As shown in Table 12, on the average, screening is performed two times when WTP is 

500 TL. The solutions have late starting ages and early stopping ages. No screening 

solution outperforms the best solutions generated by the methods. This shows that 

paying an additional 500 TL is still not enough to maximize the objective value when 

screening occurs. In Table 12, Reduced VNS with SA yields a better solution than the 

others while Random Search gives the worst solution.  
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Table 13: Best Results Found by the Methods When WTP is 1,000 TL 

Method 

Best Solution 

x   

Number 

of 

Screening 

Objective 

Value  

Per 

Person 

Cost 

Per 

Person 

QALY 

Pure SA with 

 1NBH x  (44, 0, 3, 3, 0, 5, 75) 8 24,881,088.03 781.71 41.39 

Pure SA with 

 3NBH x  (45, 0, 5, 4, 0, 1, 70) 5 24,891,697.91 677.65 41.30 

Pure SA with 

 5NBH x  (42, 0, 4, 4, 5, 1, 70) 8 24,890,756.95 783.71 41.41 

Pure SA with 

 3 1NBH x  (42, 0, 4, 5, 5, 1, 71) 8 24,878,486.26 779.68 41.38 

Reduced VNS with 

SA (42, 0, 3, 4, 5, 1, 70) 9 24,885,305.87 817.87 41.43 

Random Search (42, 0, 3, 4, 0, 1, 70) 7 24,890,890.74 747.33 41.37 

 

As presented in Tables 4 - 9, when WTP is 1,000 TL, the methods produce better 

solutions than the no screening solution. This means that screening becomes effective 

and efficient in terms of total cost and QALY at a WTP value 1,000 TL. 

As presented in Table 13, on the average eight screenings are performed. Unlike the 

previous WTP cases, screening is also done at ages between starting and stopping ages. 

Generally, screening starts at early 40s and ends at early 70s. No solution performs 

screening at 30s. Screening in 50s with low frequencies is suggested in all solutions. No 

screening or screening at 60 and 65 is suggested for 60s. The given policies suggest 

screening one or two times in 70s.  QALY values of solutions are close to each other. 

Among the methods, Pure SA with  3NBH x  gives the best solution. It performs less 

screening and it has the least cost compared to other solutions. Its QALY is slightly less 
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than the others. So, screening at 45, 50, 54, 58 and 70 is the best solution when 1,000 TL 

is paid for an extra QALY. Pure SA with  3 1NBH x   results in the worst solution.  

Table 14: Best Results Found by the Methods When WTP is 2,000 TL 

Method 

Best Solution 

 

x 

Number 

of 

Screening 

Objective Value 

Per 

Person 

Cost 

Per 

Person 

QALY 

Pure SA with 

 1NBH x  
(32, 4, 2, 2, 3, 1, 70) 17 25,159,566.57 1,087.58 41.60 

Pure SA with 

 3NBH x  
(37, 3, 2, 2, 4, 2, 72) 16 25,150,982.42 1,050.35 41.57 

Pure SA with 

 5NBH x  
(36, 4, 2, 2, 2, 1, 71) 18 25,150,766.39 1,107.41 41.60 

Pure SA with 

 3 1NBH x  

(36, 4, 2, 2, 5, 1, 70) 14 25,157,406.43 989.96 41.55 

Reduced VNS 
with SA 

(33, 5, 2, 2, 2, 4, 74) 19 25,156,692.97 1,151.87 41.63 

Random Search (30, 5, 2, 2, 5, 1, 70) 15 25,155,020.26 1,028.64 41.57 

 

When WTP is 2,000 TL, all solutions found by the methods are better than the no 

screening solution. QALY values are close to each other.  

As demonstrated in Table 14, the solutions perform 17 screenings on the average. 

Starting screening ages are 30s and stopping ages are early 70s. For all solutions, 

screening occurs with high frequency at every decade in women’s life. Best solution is 

found with Pure SA with  1NBH x . This solution has neither the least cost nor the most 

QALY. However it produces the best objective value. So when WTP is 2,000 TL, it is 

beneficial to screen at 32, 36, one in every two ages between 40 and 58, one in every 
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three ages between 60 and 69, and at 70.   1NBH x is the smallest neighborhood 

structure. The worst solution is obtained by Pure SA with  5NBH x which is the largest 

neighborhood structure among methods with SA. This shows that small movements can 

lead to better points than large jumps for this objective function. 

Table 15: Best Results Found by the Methods When WTP is 3,000 TL 

Method 

Best Solution 

x   

Number  

of 

Screening 

Objective Value  

Per 

Person 

Cost 

Per 

Person 

QALY 

Pure SA with 

 1NBH x  (41, 0, 2, 2, 2, 3, 73) 17 25,257,439.53 1,070.87 41.58 

Pure SA with 

 3NBH x  (34, 4, 2, 2, 2, 3, 76) 20 25,265,659.96 1,177.87 41.63 

Pure SA with 

 5NBH x  (30, 5, 2, 2, 2, 1, 70) 18 25,270,248.22 1,117.28 41.61 

Pure SA with 

 3 1NBH x  (31, 3, 2, 2, 2, 4, 74) 20 25,273,360.29 1,189.26 41.64 

Reduced VNS 

with SA (31, 4, 2, 2, 2, 4, 78) 21 25,270,552.80 1,214.29 41.65 

Random Search (31, 3, 2, 2, 2, 3, 73) 20 25,274,252.84 1,188.09 41.64 

 

When WTP is 3,000 TL, all solutions found by the methods are better than the no 

screening solution. QALY values are close to each other.  

As shown in Table 15, starting ages are generally the early 30s. At every decade in 

women’s life, screening occurs with high frequencies in all solutions. Nineteen 

screenings are offered by the methods on the average.  Methods with SA fail in this case. 

Random Search gives the best result with screening at 31, 34, 37, one in every two ages 
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between 40 and 70, and at 73 when an additional 3,000 TL are paid for a QALY. 

Random Search picks next solutions randomly from the feasible set. The worst solution 

is generated by Pure SA with  1 .NBH x  These suggest that large and random jumps are 

better compared to restricted jumps. The objective function may have many local optima 

in which the methods with neighborhood structures get stuck in.  Moving randomly may 

avoid this case.   

Table 16: Best Results Found by the Methods When WTP is 4,000 TL 

Method 

Best Solution 

x   

Number  

of 

Screening 

Objective Value  

Per 

Person 

Cost 

Per 

Person 

QALY 

Pure SA with 

 1NBH x  (32, 2, 2, 1, 2, 3, 76) 27 25,336,277.08 1,409.41 41.70 

Pure SA with 

 3NBH x  (31, 3, 2, 1, 2, 2, 74) 26 25,334,127.68 1,371.25 41.69 

Pure SA with 

 5NBH x  (31, 3, 2, 2, 3, 2, 78) 22 25,333,268.56 1,233.22 41.65 

Pure SA with 

 3 1NBH x  (32, 3, 1, 1, 2, 2, 78) 33 25,334,193.10 1,584.84 41.74 

Reduced VNS 

with SA (31, 2, 2, 1, 2, 3, 73) 27 25,330,663.59 1,418.18 41.69 

Random 

Search (32, 3, 1, 2, 2, 1, 72) 26 25,328,095.17 1,377.52 41.68 

 

When WTP is 4,000 TL, all solutions found by the methods are better than the no 

screening solution. QALY values are close to each other.  

As demonstrated in Table 16, starting ages are early 30s. Women go through screening 

at their 30s, 40s, 50s, 60 and 70s with high frequencies in all solutions. Twenty seven 
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screenings are recommended by the methods on the average. Pure SA with  1NBH x

gives the best solution with screening at 1 in every 2 ages between 32 and 48, every age 

between 50 and 59, one in every two ages between 60 and 68, one in every three ages 

between 70 and 76. Random Search yields the worst solution.  This shows that small 

jumps are more beneficial than large jumps when WTP is 4,000 TL. 

Table 17: Best Results Found by the Methods When WTP is 5,000 TL 

Method 

Best Solution 

x 

 

   

Number 

of 

Screening 

 

Objective Value  

 

Per 

Person 

Cost 

Per 

Person 

QALY 

Pure SA with 

 1NBH x  (30, 2, 1, 1, 2, 2, 72) 32 25,378,426.53 1,580.72 41.73 

Pure SA with 

 3NBH x  (30, 2, 1, 1, 2, 1, 77) 38 25,376,629.65 1,734.07 41.76 

Pure SA with 

 5NBH x  (32, 3, 2, 1, 2, 2, 78) 28 25,375,806.67 1,419.85 41.70 

Pure SA with 

 3 1NBH x  (30, 3, 1, 1, 2, 2, 74) 32 25,377,805.54 1,574.44 41.73 

Reduced VNS 

with SA (31, 2, 2, 1, 2, 2, 78) 30 25,374,395.87 1,495.74 41.71 

Random 
Search (31, 3, 1, 1, 3, 3, 73) 29 25,370,924.72 1,477.96 41.70 

 

When WTP is 5,000 TL, all solutions found by the methods are better than the no 

screening solution. QALY values are close to each other.  

As shown in Table 17, in all solutions screening starts at early 30s and screening is 

performed when women are in their 30s, 40s, 50s, 60 and 70s with high frequencies. 

Thirty two screenings are recommended by the methods on the average.  Pure SA with
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 1NBH x generates the best solution with screening one in every two ages between 30 

and 38, every age between 40 and 59, one in every two ages between 60 and 72. 

Random Search gives the worst solution.  This suggests that moving within a small 

neighborhood is more beneficial than large jumps when WTP is 5,000 TL. 

Table 18: Best Results Found by the Methods When WTP is 10,000 TL 

Method 

Best Solution 

x   

Number 

of 

Screening 

Objective Value  

Per 

Person 

Cost 

Per 

Person 

QALY 

Pure SA with 

 1NBH x  (32, 2, 1, 1, 2, 1, 77) 37 25,475,704.82 1,696.66 41.75 

Pure SA with 

 3NBH x  (31, 1, 1, 1, 2, 1, 79) 44 25,481,973.37 1,924.90 41.78 

Pure SA with 

 5NBH x  (30, 2, 1, 1, 1, 1, 79) 45 25,487,366.11 1,912.54 41.79 

Pure SA with 

 3 1NBH x  (31, 4, 1, 1, 1, 2, 78) 38 25,482,097.56 1,723.78 41.76 

Reduced VNS 
with SA (30, 2, 1, 1, 2, 2, 78) 35 25,485,039.92 1,658.50 41.76 

Random 

Search (31, 2, 2, 1, 1, 1, 77) 38 25,470,928.31 1,710.09 41.74 

 

When WTP is 10,000 TL, all solutions found by the methods are better than the no 

screening solution. QALY values are close to each other.  

As shown in Table 18, in all solutions screening starts at early 30s and ends at late 70s. 

In every decade in women’s life, screen occurs in all solutions with very high 

frequencies. 40 screenings are recommended by the methods on the average.  Pure SA 

with  5NBH x generates the best solution with screenings at 30, 32, 34, 36, 38, 40 and 
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every age after that until 79.  It has the best QALY value. Random Search gives the 

worst solution.  

Table 19: Best Results Found by the Methods When WTP is 25,000 TL 

Method 

Best Solution 

x 

Number 

of 

Screening 

Objective Value 

Per 

Person 

Cost 

Per 

Person 

QALY 

Pure SA with 

 1NBH x  (30, 2, 1, 1, 1, 1, 72) 38 25,544,813.37 1,747.40 41.76 

Pure SA with 

 3NBH x  (31, 1, 1, 1, 1, 1, 79) 49 25,559,391.81 2,062.81 41.80 

Pure SA with 

 5NBH x  (31, 2, 1, 1, 1, 1, 77) 43 25,550,879.58 1,873.93 41.77 

Pure SA with 

 3 1NBH x  (31, 1, 1, 1, 1, 1, 75) 45 25,550,309.28 1,979.01 41.78 

Reduced VNS 

with SA (30, 1, 1, 1, 1, 2, 78) 45 25,557,648.74 1,986.70 41.79 

Random 

Search (36, 2, 1, 1, 2, 1, 77) 35 25,516,687.36 1,621.81 41.71 

 

When WTP is 25,000 TL, all solutions found by the methods are better than the no 

screening solution. QALY values are close to each other.  

As presented in Table 19, in all solutions, screening generally starts at early 30s and 

ends at late 70s. In every decade in women’s life, screening occurs in all solutions with 

very high frequency. Forty three screenings are recommended by the methods on the 

average. Pure SA with  3NBH x generates the best solution with screenings every age 

from 31 to 79. It has the highest cost and slightly higher QALY. This slightly better 

QALY has more impact than the high cost on the objective value. The amount of 

increase in objective value because of high QALY is more than the amount of decrease 
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because of the high cost when WTP is 25,000 TL. Random Search gives the worst 

solution.  

Table 20: Best Results Found by the Methods When WTP is 50,000 TL 

Method 

Best Solution 

x   

Number 

of 

Screening 

Objective Value  

Per 

Person 

Cost 

Per 

Person 

QALY 

Pure SA with 

 1NBH x  (32, 2, 1, 1, 1, 1, 78) 43 25,570,696.97 1,855.99 41.77 

Pure SA with 

 3NBH x  (31, 1, 1, 1, 1, 1, 77) 47 25,582,570.74 2,024.24 41.79 

Pure SA with 

 5NBH x  (30, 2, 1, 1, 1, 1, 79) 45 25,578,607.50 1,910.59 41.78 

Pure SA with 

 3 1NBH x  (30, 1, 1, 1, 1, 1, 79) 50 25,587,609.59 2,100.39 41.80 

Reduced 
VNS with SA (31, 1, 1, 1, 1, 1, 79) 49 25,580,256.89 2,063.71 41.79 

Random 

Search (33, 5, 1, 1, 1, 1, 78) 41 25,560,247.25 1,781.33 41.75 

 

When WTP is 50,000 TL, all solutions found by the methods are better than the no 

screening solution. QALY values are close to each other.  

As demonstrated in Table 20, in all solutions, screening starts at early 30s and ends at 

late 70s. In every decade in women’s life, screening occurs in all solutions with very 

high frequency. Forty six screenings are recommended by the methods on the average.  

Pure SA with  3 1NBH x , which has second smallest neighborhood structure, generates 

the best solution with screenings every age from 30 to 79. It has the highest cost and 

slightly higher QALY. This slightly better QALY has more impact than the high cost on 

the objective value. The amount of increase in objective value because of high QALY is 
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more than the amount of decrease due to the high cost. Random Search gives the worst 

solution.  

The best solutions are summarized in Table 21. Reduced VNS with SA performs worse 

than the other methods in every case. However, since it uses different neighborhood 

structures for improving and non-improving points, a better performance was expected 

for this method.   

Table 21: Summary of Best Solutions for each WTP Value 

WTP (TL) Best Solution x Used Method 

0 No screening - 

100 No screening - 

500 No screening - 

1,000 (45, 0, 5, 4, 0, 1, 70) Pure SA with  3NBH x  

2,000 (32, 4, 2, 2, 3, 1, 70) Pure SA with  1NBH x  

3,000 (31, 3, 2, 2, 2, 3, 73) Random Search 

4,000 (32, 2, 2, 1, 2, 3, 76) Pure SA with  1NBH x  

5,000 (30, 2, 1, 1, 2, 2, 72) Pure SA with  1NBH x  

10,000 (30, 2, 1, 1, 1, 1, 79) Pure SA with  5NBH x  

25,000 (31, 1, 1, 1, 1, 1, 79) Pure SA with  3NBH x  

50,000 (30, 1, 1, 1, 1, 1, 79) 
Pure SA with 

 3 1NBH x   

 

 Screening every two years from the age of 40 to 69 is the recommended screening 

policy in Turkey.  The result of this policy with different WTP values is demonstrated in 

Table 22. 
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Table 22: Screening Policy in Turkey for Different WTP Values 

WTP 

(TL) 
Objective Value  

Per 

Person 

Cost 

Per 

Person 

QALY 

0 -6,149,268,008.73 1,007.71 41.55 

100 19,281,946.35 1,008.08 41.55 

500 24,226,721.63 1,007.68 41.55 

1,000 24,841,083.62 1,007.60 41.55 

2,000 25,149,473.90 1,008.61 41.55 

3,000 25,253,608.50 1,007.92 41.55 

4,000 25,303,402.62 1,008.76 41.55 

5,000 25,333,924.26 1,008.53 41.55 

10,000 25,391,933.34 1,009.10 41.54 

25,000 25,433,618.79 1,007.48 41.55 

50,000 25,443,013.21 1,008.05 41.54 
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Table 23: Comparison Between Recommended  Policy and the Best Solutions Found by 

the Methods 

WTP 

(TL) 

Increase in 

Objective Value 

When Best 

Solution Found 

by the Method is 

Used   

Increase in Per 

Person Cost 

When Best 

Solution Found 

by the Method 

is Used   

Increase in Per 

Person QALY 

When Best 

Solution Found 

by the Method 

is Used   

1,000 0.20% -32.75% -0.60% 

2,000 0.04% 7.83% 0.13% 

3,000 0.08% 17.88% 0.23% 

4,000 0.13% 39.72% 0.37% 

5,000 0.18% 56.74% 0.45% 

10,000 0.38% 89.53% 0.59% 

25,000 0.49% 104.75% 0.60% 

50,000 0.57% 108.36% 0.62% 

 

Table 23 compares the best solution found by the methods and the policy of screening 

every two years from 40 to 69 under the case of several WTP values. No screening is a 

better solution when WTP is 0 TL, 100 TL and 500 TL. For the other considered WTP 

values, the methods generate better solutions compared to the recommended policy. The 

methods improve the objective value.  Ada’s model starts simulating a cohort of cancer-

free women when they become 30 until they become 100 or they die.  This cohort is 

considered to calculate the objective value which is in terms of QALY. The 

improvements may seem small because of the population size. However, the 

improvements can have significant value since QALY is based on number of years of 

life that would be added if the policy is applied.  As the population size increases, the 

methods can find much better solutions compared to the recommended policy. Since 
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Turkey is a developing country, increase in population size can be the case in the future.  

Therefore, the gains obtained by the best solutions in terms of additional life years can 

be highly significant. 
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Chapter 6 

 

Conclusion  

 

Considering all types of cancers, breast cancer is the most common cancer type among 

women in the world. 1.7 million women were diagnosed with breast cancer and there 

were 522,000 breast cancer deaths among women in 2012 [4].  

The value of early diagnosis and early detection of breast cancer is presented in the 

literature [8], [9]. Mammographic screening is proved to be the only screening method 

that can reduce mortality from breast cancer [10], [11]. Even though mammographic 

screening has this significant benefit, it is expensive and it can have ramifications such 

as decreasing life quality and generating false positive results [11]. As a consequence, 

recommending an effective and cost-efficient mammographic screening policy has high 

importance.  

Recommendations for women to have mammographic screening vary across countries 

and organizations. These recommendations differ in the age at which the screening 

should start and end, and how frequent it should be performed among women at average 

risk for having breast cancer.   
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The aim of this study is to find an optimal or near optimal policy that suits Turkish 

women at average-risk considering the life years gained by screening and the total cost 

of the policy. A policy includes the following information; the starting screening age, the 

ending screening age and screening frequencies for decades. Furthermore, this study 

aims to demonstrate the outcomes in terms of effectiveness and cost when different 

combinations of policy variables are used. These outcomes can be significant to policy 

makers.  

SA is chosen to be the optimization tool because it is widely used in simulation 

optimization applications. This study optimizes Ada’s Breast Cancer Simulation Model. 

Ada’s model starts simulating a cohort of cancer-free women when they become 30 until 

they become 100 or they die. 

The computational results are obtained using Pure SA, Reduced VNS with SA and 

Random Search. Pure SA is used with four different neighborhood structures. These are

       1 3 1 3 5, , .,NBH x NBH x NBH x NBH x  In addition to these neighborhoods, 

Reduced VNS with SA has the entire feasible set as the last neighborhood structure. 

Eleven WTP values are used. These are 0 TL, 100 TL, 500 TL, 1,000 TL, 2,000 TL, 

3,000 TL, 4,000 TL, 5,000 TL, 10,000 TL, 25,000 TL and 50,000 TL.  

The computations demonstrate that paying extra money up to 500 TL under the case of 

screening does not generate a better solution than the case of no screening. For WTP 

values larger than 1,000 TL, the methods obtain better results than the no screening case.  

When WTP value is larger than 25,000 TL, the impact of QALY becomes more than the 

impact of the cost on the objective function value.  Increase in QALY leads to a better 

objective value even if the cost is also high.  

The best solutions obtained by the methods are compared to the recommended policy 

which suggests screening in every two years from the age of 40 to the age of 69. 
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Comparisons are made between the best solutions obtained using the methods and the 

recommended policy. The methods yield better results than the recommended policy. 

The improvements can have significant value since QALY is based on number of years 

of life that would be added if the policy is applied.  Since the objective function is 

calculated for a specific cohort simulated in the model, as the population size increases, 

the improvements made by the methods can increase.  Turkey is a developing country. 

Therefore, increase in population size can be the case in the future.  Therefore, the gains 

obtained by the best solutions in terms of additional life years can be highly significant. 

The methods have some limitations due to the Ada’s Breast Cancer Simulation Model. 

The simulation model includes data from SEER and literature due to the fact that some 

data are not available in Turkey.  Data for Turkish women can improve the simulation 

and therefore the SA methods can generate better solutions specifically for Turkish 

women.  

The results of economic assessments of medical interventions and health programs are 

generally expressed as cost per unit, whereas, health outcomes are increasingly being 

reported as QALYs.  Converting cost into QALY raises the question of the value of life 

[122].  Generally through the outcomes of questionnaires, the estimations are made 

[123].  The estimated WTP values vary from study to study. Since there is no consensus 

on the value of life [122], eleven WTP values are considered in this study separately. 

Accurately estimating the WTP value for Turkey can enhance the results of this study. 

 

 

 

 

 



 

69 
 

 

 

Bibliography 

 

[1] What is Breast Cancer? 2014, accessed July 2014, 

<http://www.breastcancer.org/symptoms/understand_bc/what_is_bc> 

[2] Breast Cancer: Reducing Your Risk, 2014, accessed July 2014, 

<http://www.wholehealthinsider.com/newsletter/breast-cancer-reducing-risk-

2/?campaign=Hlifetime> 

[3] Breast Cancer Risk Factors, 2014, accessed July 2014, 

<http://www.breastcancer.org/risk/factors> 

[4] International Agency for Research on Cancer Press Release No:223 Latest world 

cancer statistics 2014, accessed July 2014, <http://www.iarc.fr/en/media-

centre/pr/2013/pdfs/pr223_E.pdf> 

[5] V. Özmen, “Breast Cancer in the World and Turkey”, The Journal of Breast Health, 

vol. 4, pp. 6 - 12, 2008. 

[6] How is breast cancer staged?, 2014, accessed July 2014, 

<http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-staging> 

[7] Treatment of invasive breast cancer, by stage, 2014, accessed July 2014, 

<http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-treating-by-

stage> 

http://www.wholehealthinsider.com/newsletter/breast-cancer-reducing-risk-2/?campaign=Hlifetime
http://www.wholehealthinsider.com/newsletter/breast-cancer-reducing-risk-2/?campaign=Hlifetime


 

70 
 

[8] R. A. Smith, V. Cokkinides, H. J. Eyre, “American Cancer Society guidelines for the 

early detection of cancer”, CA Cancer Journal for Clinicians, No. 53(1), pp. 27 - 43, 

2003. 

[9] U.S. Preventive Services Task Force, “Screening for Breast Cancer: 

Recommendations and Rationale”, Annals of Internal Medicine, No. 137 (5 Part 1), pp. 

344 - 346, 2002. 

[10] L. Nyström, L. E. Rutqvist, S. Wall et al., “Breast cancer screening with 

mammography: overview of Swedish randomised trials”, Lancet, No. 341(8851), pp. 

973 - 978, 1993. 

 

[11] R. A. Smith, S. W. Duff, R. Gabe et al., “The randomized trials of breast cancer 

screening: what have we learned?” Radiologic Clinics of North America, No. 42(5), pp. 

793 - 806, 2004. 

 

 [12] Breast Cancer Screening Guidelines, 2014, accessed July 2014, 

<http://www.mskcc.org/cancer-care/adult/breast/screening-guidelines-breast> 

[13] Women at Average Risk, 2014, accessed July 2014, 

<http://ww5.komen.org/BreastCancer/GeneralRecommendations.html>  

[14] U.S. Preventive Services Task Force, "Screening for breast cancer: U.S. Preventive 

Services Task Force recommendation statement", Annals of Internal Medicine, 

No. 151 (10), pp. 716 - 726, 2009. 

 [15] NHS Breast Cancer Screening Programme Why are women under 50 not routinely 

invited for breast screening?, 2014, accessed May 2014, 

<http://www.cancerscreening.nhs.uk/breastscreen/under-50.html> 



 

71 
 

[16] Meme Kanseri Tarama Programı Ulusal Standartları, 2014, accessed July, 2014, 

<http://thsk.saglik.gov.tr/2013-10-01-11-00-51/halk-sagligina-yonelik-bilgiler/424-

meme-kaner-tarama-standartlari.html#sthash.Zecux7Xt.dpuf>  

[17] BreastCheck The National Breast Screening Programme Welcome to BreastCheck, 

2014, accessed July, 2014, < http://www.breastcheck.ie/> 

[18] BreastScreen Australia, 2014, accessed July, 2014, <http://www.bcna.org.au/about-

bcna/advocacy/position-statements/breastscreen-australia> 

[19] A Short Guide to the European Guidelines for quality assurance in breast screening 

and diagnosis. 2014, accessed July, 2014, <http://www.europadonna.org/wp-

content/uploads/shortguide-EG-English.pdf> 

 [20] AMA Updates Mammogram Policy, Says Screening Should Start at 40. 2014, 

accessed July, 2014, <http://www.breastcancer.org/research-news/20120621> 

 [21] K. Ada, “A simulation model for Breast Cancer Epidemiology in Turkey”. M.S. 

Thesis, Department of Industrial Engineering and the Graduate School of Engineering 

and Science, Bilkent University, Ankara, 2014. 

 [22] Y. Carson, and A. Maria, “Simulation Optimization: Methods and Applications”, 

in Proceedings of the 1997 Winter Simulation Conference, IEEE Press, Piscataway, N.J., 

pp. 118 - 126, 1997. 

[23] M. C. Fu, “Optimization for Simulation: Theory vs. Practice”, INFORMS Journal 

on Computing, No. 14 (3), pp. 192 - 215, 2002. 

[24] E. Tekin, and İ. Sabuncuoğlu, “Simulation optimization: A comprehensive review 

on theory and applications”, IIE Transactions, 36, pp. 1067 - 1081, 2004. 



 

72 
 

[25] M. C. Fu, “Optimization via Simulation: a review,” Annals of Operations Research, 

53, pp. 199 - 247, 1994. 

 [26] D. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine 

Learning”, Addison-Wesley, Reading, MA, 1989. 

[27] D. B. Fogel, “Evolving Artificial Intelligence”, Ph.D. thesis, University of 

California, San Diego, CA, 1992. 

[28] H. P. Schwefel, “Numerical Optimization of Computer Models”, Wiley. Chichester, 

U.K., 1981. 

 [29] G. E. Liepins, and M. R. Hillard, “Genetic algorithms: foundations and 

applications”, Annals of Operations Research, 21, 31 - 58, 1989. 

[30] L. Davis, “Handbook of Genetic Algorithms”, Nostrand, Reinhold, New York, 

N.Y., 1991. 

[31] H. Muhlebein, “Genetic algorithms” in Local Search in Combinatorial 

Optimization,  E. Aarts, and J. K. Lenstra, (eds.), Wiley, New York, pp. 137 - 172, 1997. 

[32] R. Bowden, and S. F. Bullington, “Development of manufacturing control strategies 

using unsupervised learning”, IIE Transactions, 28, pp. 319 - 331, 1996. 

[33] B. Dengiz, F. Sen, and A. Bulgak, “Optimization of stochastic systems using 

genetic algorithms”, Transactions on Operational Research, 9, pp. 43 - 62, 1997. 

[34] F. Azadivar, and G. Tomkins. “Simulation optimization with qualitative variables 

and structural model changes: a genetic algorithm approach”, European Journal of 

Operations Research, 113, pp. 169 - 182, 1999. 



 

73 
 

[35] M. A. Dümmer. “Using simulation and genetic algorithms to improve cluster tool 

performance”, in Proceedings of the 1999 Winter Simulation Conference, IEEE Press, 

Piscataway, N.J., pp. 875 - 879, 1999. 

[36] M. A. Wellman, and D. D. Gemmill, “A genetic algorithm approach to optimization 

of asynchronous automatic assembly systems”, International Journal of Flexible 

Manufacturing Systems, 7, pp. 27 - 46, 1995. 

[37] R. McHaney, “Integration of the genetic algorithm and discrete event computer 

simulation for decision support”, Simulation, 72, pp. 401 - 411, 2000. 

[38] S. G. Lee, L. P. Khoo, and X. F. Yin, “Optimizing an assembly line through 

simulation augmented by genetic algorithms”, International Journal of Advanced 

Manufacturing Technology, 16, pp. 220 - 228, 2000. 

[39] F. Fontalini, A. Vincent and R. Ponsonnet, “Flow simulation and genetic algorithm 

as optimization tools”, International Journal of Production Economics, 64, pp. 91 - 100, 

2000. 

[40] G. Suresh, V. V. Vinod, and S. Sahu, “A genetic algorithm for facility layout”, 

International Journal of Production Research, 33, pp. 3411- 3423, 1995. 

[41] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by Simulated 

Annealing”, Science, 220, pp. 671 - 680, 1983. 

[42] V. Černý, “Thermodynamical approach to the travelling salesman problem: an 

efficient simulation algorithm”, Journal of Optimization Theory Applications, 45, pp. 41 

- 51, 1985. 

[43] P. J. M. Van Laarhoven, and E. H. L. Aarts, “Simulated Annealing: Theory and 

Applications”, Reidel,  Dordrecht, The Netherlands, 1987. 



 

74 
 

[44] D. S. Johnson, C. R. Aragon, K. A. McGeoch, and C. Schevon, “Optimization by 

simulated annealing: an experimental evaluation; part 1, graph partitioning”, Operations 

Research, 37, pp. 865 - 893, 1989. 

[45] R. W. Eglese, “Simulated annealing: a tool for operational research”, European 

Journal of Operational Research, 46, pp. 271 - 281, 1990. 

[46] C. Koulamas, S. R. Antony, and R. Jaen, “A survey of simulated annealing 

applications to operations research problems”, International Journal of Management 

Sciences, 22, pp. 41 - 56, 1994. 

[47] N. E. Collins, R. W. Eglese, and B. L. Golden, “Simulated annealing - an annotated 

bibliography”, American Journal of Mathematical Management Sciences, 8, pp. 209 - 

308, 1988. 

[48] B. Hajek, “Cooling schedules for optimal annealing”, Mathematics of Operations 

Research, 13, 311 - 329, 1988. 

[49] M. A. Fleischer, “Simulated annealing: past, present and future”, in Proceedings of 

the 1995 Winter Simulation Conference, IEEE Press, Piscataway, N.J., pp. 155 - 161, 

1995. 

 [50] J. Haddock, and J.  Mittenthal, “Simulation optimization using simulated 

annealing”, Computers & Industrial Engineering, 22, pp. 387 - 395, 1992. 

[51] O. Catoni, “Rough large deviation estimates for simulated annealing application to 

exponential schedules”, Annals of Probability, 20, pp. 1109 - 1146, 1992. 

[52] T. M. Alkhamis, M. A. Ahmed, and V. K. Tuan, “Simulated annealing for discrete 

optimization with estimation”, European Journal of Operational Research, 116, pp. 530 

- 544, 1999.  



 

75 
 

[53] M. H. Alrefaei, and S. Andradottir, “A simulated annealing algorithm with constant 

temperature for discrete stochastic approximation”, Management Science, 45, pp. 748 - 

764, 1999. 

[54] A. A. Bulgak and J. L. Sanders, “Integrating a modified simulated annealing 

algorithm with the simulation of a manufacturing system to optimize buffer sizes in 

automatic assembly systems”, in Proceedings of the 1988 Winter Simulation 

Conference, IEEE Press, Piscataway, N.J., pp. 684 - 690, 1988.   

[55] S. B. Gelfand, and S. K. Mitter, “Simulated annealing with noisy or imprecise 

energy measurements”, Journal of Optimization Theory and Applications, No.62, (1), 

pp. 49 - 62, 1989. 

[56] W. Gutjahr, and G. C. Pflug, “Simulated annealing for noisy cost functions”, 

Journal of Global Optimization, 8, pp. 1 - 13, 1996. 

[57] B. L. Fox and G. W. Heine, 1996, “Probabilistic search with overrides”, Annals of 

Applied Probability, 6, pp. 1087 - 1094, 1996. 

[58] E. Yücesan, and S. H. Jacobson, “Computational issues for accessibility in discrete 

event simulation”, ACM Transactions on Modeling and Computer Simulation, 6, pp. 53 

- 75, 1996. 

[59] E. M. Manz, J. Haddock, and J. Mittenhal, “Optimization of an automated 

manufacturing system simulation model using simulated annealing”, in Proceedings of 

the 1989 Winter Simulation Conference, IEEE Press, Piscataway, N.J., pp. 390 - 395, 

1989. 

[60] T. Brady, and B. McGarvey, “Heuristic optimization using computer simulation: a 

study of staffing levels in a pharmaceutical manufacturing laboratory”, in Proceedings 



 

76 
 

of the 1998 Winter Simulation Conference, IEEE Press, Piscataway, N.J., pp. 1423 - 

1428, 1998. 

[61] M. R. P. Baretto, T. Eldabi, L. Chwif, and J. R. Paul, “Simulation optimization with 

the linear move and exchange move optimization algorithm”, in Proceedings of 1999 

Winter Simulation Conference, IEEE Press, Piscataway, N.J., pp. 806 - 811, 1999. 

[62] J. Zeng and J. Wu, “DEDS (discrete event dynamic systems) simulation-

optimization algorithm using simulated annealing combined with perturbation analysis”, 

Zidonghua Xuebao Acta Automatica Sinica, 19, pp. 728 - 731, 1993. 

[63] S. Andradottir, “A review of simulation optimization Techniques”,  in Proceedings 

of the 1998 Winter Simulation Conference, IEEE Press, Piscataway, N. J. , pp. 151 - 158, 

1998.  

 [64] M. C. Fu, F. W. Glover, J. April, “Simulation Optimization: A Review, New 

Developments, and Applications”, in Proceedings of the 2005 Winter Simulation 

Conference, IEEE Press, Piscataway, N. J., pp. 83 - 95, 2005.  

[65] F. Azadivar, “A tutorial on simulation optimization”, in Proceedings of the 1992 

Winter Simulation Conference, IEEE Press, Piscataway, N. J., pp. 198 - 204, 1992. 

[66] F. Glover, and M. Laguna, “Tabu Search”, Kluwer, Norwell, M.A., 1997. 

[67] N. F. Hu, “Tabu search method with random moves for globally optimal design”, 

International Journal for Numerical Methods in Engineering, 35, pp. 1055 - 1070, 1992. 

[68] L. L. Garcia, and A. P. Bolivar, “A simulator that uses tabu search to approach the 

optimal solution to stochastic inventory models”, Computers & Industrial Engineering, 

37, pp. 215 - 218, 1999. 



 

77 
 

[69] C. M. Lutz, K. R. Davis, and M. H. Sun, “Determining buffer location and size in 

production lines using tabu search”, European Journal of Operational Research, 106, 

pp. 301 - 316, 1998. 

[70] A. D. Martin, T. M. Chang, Y. Yih, and R. K. Kincaid, “Using tabu search to 

determine the number of kanbans and lotsizes in a generic kanban system”, Annals of 

Operations Research, 78, pp. 201 - 217, 1998. 

[71] B. Dengiz, and C. Alabas, “Simulation optimization using tabu search”, in 

Proceedings of the 2000 Winter Simulation Conference, IEEE Press, Piscataway, N.J., 

pp. 805 - 810, 2000. 

[72] T. J. Lorenzen, “Minimum cost sampling plans using Bayesian methods”, Naval 

Research Logistics, 32, pp. 57 - 69, 1985. 

[73] E. Easom, “A survey of global optimization techniques”, M.S. thesis, University of 

Louisville, Louisville, K.Y.,1990. 

[74] B. Stuckman, E. E. Easom, “A comparison of Bayesian/ sampling global 

optimization techniques”, IEEE Transactions on Systems, Man and Cybernetics, 22, pp. 

1024 - 1032, 1992.   

[75] Y. C. Ho, L. Shi, L. Dai, and W. B. Gong, “Optimization discrete event dynamic 

system via the gradient surface method”, Discrete Event Dynamic Systems, 2, pp. 99-

120, 1992. 

[76] Previous Version: SEER Cancer Statistics Review, 1975-2010, accessed July 2014,  

<http://seer.cancer.gov/archive/csr/1975_2010/results_merged/sect_04_breast.pdf> 

 

[77] Cancer 2014, accessed July 2014, 

<http://www.who.int/mediacentre/factsheets/fs297/en/> 

http://seer.cancer.gov/archive/csr/1975_2010/results_merged/sect_04_breast.pdf
http://www.who.int/mediacentre/factsheets/fs297/en/


 

78 
 

 

[78] Cancer Control in Turkey, the Data of the Ministry of Health of Turkey 2013, 

accessed July 2014, <http://kanser.gov.tr/bilgi-dokumanlar/sunum/699-cancer-control-

in-turkey.html> 

[79]Death Statistics: Province and District Centers, Turkish Statistical Institute, 2008. 

[80] Health Statistics Yearbook, 2010. 

[81] D. G. Fryback, N. K. Stout, M. A. Rosenberg, A. Trentham-Dietz, V. 

Kuruchittham, P. L. Remington, “The Wisconsin Breast Cancer Epidemiology 

Simulation Model”, Journal of the National Cancer Institute Monographs, no.36, Ch.7, 

2006. 

[82] S. Alizamir, S. Rebennack, and P. M. Pardolos, “Improving the Neighborhood 

Selection Strategy in Simulated Annealing using the Optimal Stopping Problem, in 

Simulated Annealing”, Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 

978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and Publishing, Vienna, 

Austria. 

[83] F. Busetti, “Simulated Annealing Overview.” 

[84] S. Ledesma, G. Avina, and R. Sanchez, “Practical Considerations for Simulated 

Annealing Implementation”, accessed July 2014, < http://cdn.intechopen.com/pdfs-

wm/4631.pdf> 

[85] V. V. R. Vidal, “Problem Independent Distributed Simulated Annealing and its 

Applications”, Lecture Notes in Economics and Mathematical Systems, Applied 

Simulated Annealing, 1993.  

http://kanser.gov.tr/bilgi-dokumanlar/sunum/699-cancer-control-in-turkey.html
http://kanser.gov.tr/bilgi-dokumanlar/sunum/699-cancer-control-in-turkey.html


 

79 
 

[86] M. Alrefaei, and A. H. Diabat, “A simulated annealing technique for multi-

objective simulation optimization”, Applied Mathematics and Computation, 215, 3029 - 

3035, 2009. 

[87] T. Uhlig, O. Rose, “Simulation-based optimization for groups of cluster tools in 

Semiconductor manufacturing using simulated annealing”, in Proceedings of the 2011 

Winter Simulation Conference, IEEE Press, Piscataway, N.J., pp. 1857 - 1868. 

[88] P. J. M. Van Laarhoven, E. H. L. Aarts, Simulated Annealing Theory and 

Applications, Springer, Dordrecht, Netherlands, 1987. 

 

[89] P. Hansen, N. Mladenović, Chapter 8 Variable Neighborhood Search, accessed 

July 2014, <http://inf.ufpr.br/aurora/disciplinas/topicosia2/livros/search/VNS.pdf> 

[90] R. E. Bechhofer, T. J. Santner and D. Goldsman, “Design and Analysis of 

Experiments of Statistical Selection, Screening, and Multiple Comparisons”, Wiley, 

New York, NY, 1995. 

 

[91] D. Goldsman and B. L. Nelson, “Comparing systems via simulation, in Handbook 

of Simulation”,  Banks, J. (ed.), Wiley, New York, N.Y., ch.8, 1998. 

 [92] R. L. Anderson, “Recent Advances in Finding Best Operating Conditions”, J. 

Amer. Statist.Assoc. 48, pp. 789 - 798, 1953. 

[93] L. A. Rastrigin, “The convergence of the random search method in the extremal 

control of a many parameter system”, Automation and Remote Control, 24 (10),pp. 1337 

- 1342, 1963. 

 [94] D. C. Karnopp, “Random Search Techniques for Optimization Problems”, 

Automatica, 1, pp. 111 - 121, 1963. 

http://library.alibris.com/search/books/author/P-J-M-Van-Laarhoven
http://library.alibris.com/search/books/author/E-H-L-Aarts
http://inf.ufpr.br/aurora/disciplinas/topicosia2/livros/search/VNS.pdf


 

80 
 

[95] J. A. Nelder and R. Mead, “A simplex method for function minimization”, 

Computation Journal, 7, pp. 308 - 313, 1965. 

[96] M. Friedman and L. J. Savage, “Techniques of statistical analysis”, in C. Eisenhart, 

M. Hastay and W.Wallis (eds.), McGraw Hill, New York, NY, ch.13, 1947. 

[97] R. Hooke and T. A. Jeeves, “A direct search solution of numerical and statistical 

problems”, Journal of the Association for Computing and Machinery, 8, pp. 212 - 229, 

1961.  

[98] Y. C. Ho, A. Eyler and T. T. Chien, “A gradient technique for general buffer-

storage design in a serial production line”, International Journal of Production 

Research, 17, 557 - 580, 1979. 

[99]  L. W. Schruben and V. J. Cogliano, “Simulation sensitivity analysis: a frequency 

domain approach”,  in Proceedings of the 1981 Winter Simulation Conference, IEEE 

Press, Piscataway, N.J., pp. 455 - 459.   

[100] B. E. Stuckman, “A search method for optimizing nonlinear systems”, IEEE 

Trans. Syst. Man Cybern., vol. 18, no. 6, pp. 965 - 977, 1988. 

[101] J. B. Mockus, “Bayesian Approach to Global Optimization”, New York: Kluwer 

Academic, 1989. 

[102] C. D. Perttunen, “Global optimization using nonparametric statistics”, Ph.D. 

dissertation, the Graduate School, Univ. Louisville, Louisville, KY,1990. 

[103] A. Zilinskas, “The use of statistical models for construction of multimodal 

optimization algorithms”, in Proc. Third Czechoslovak-Soviet- Hungarian Seminar 

Inform, Theory, Czechoslovak Acad. Sci., Prague, pp. 219 - 224, 1980. 



 

81 
 

[104] V. R. Shaltenis and G. Dzemyda, “The structure analysis of extrema1 problems 

using some approximation of characteristics”, in Optimal Decision Theory, Inst. of 

Math. and Cybernetics, Vilnius, Lithuania, vol. 8, pp. 115 - 123, 1982. 

[105] S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, “Optimization by Simulated 

Annealing”, IBM Research Report RC 9355, 1982. 

[106] H. W. Leong, and C. L. Liu, “Permutation Channel Routing”, in Proc. IEEE Int. 

Conference on Computer Design, Port Chester, pp. 579 - 584, 1985. 

[107] H. W. Leong, D. F. Wong and C. L. Liu, “A Simulated-Annealing Channel 

Router”, in Proc. IEEE Int. Conference on Computer-Aided Design, Santa Clara, pp. 

226 - 229, 1985. 

[108] C. C. Skiscim, and B. L. Golden, “Optimization by Simulated Annealing: A 

Preliminary Computational Study for the TSP”, presented at the N.I.H.E. Summer 

School on Combinatorial Optimization, Dublin, 1983.  

[109] B. L. Golden, and C. C. Skiscim, “Using Simulated Annealing to Solve Routing 

and Location Problems”, Naval Logistics Research Quarterly, 33, pp. 261 - 279, 1986. 

[110] C. A. Morgenstern, and H. D. Shapiro, “Chromatic Number Approximation Using 

Simulated Annealing”, Department of Computer Science, The University of New 

Mexico, Albuquerque, Technical Report No. CS86-1, 1986. 

[111] E. H. L. Aarts, and P. J. M. Van Laarhoven, “Statistical Cooling: A General 

Approach to Combinatorial Optimization Problems”, Philips  J. of Research, 40, pp. 193 

- 226, 1985. 

[112] M. Lundy, and A. Mees, “Convergence of an Annealing Algorithm”, Math. Prog., 

34, pp. 111 - 124, 1986. 



 

82 
 

[113] R. H. J. M. Otten, and L. P. P. P. Van Ginneken, “Floorplan Design using 

Simulated Annealing”, in. Proc. IEEE Int. Conference on Computer-Aided Design, 

Santa Clara, pp. 96 - 98, 1984. 

[114] S. Nahar, S. Sahni and E. Shragowitz, “Experiments with Simulated Annealing”, 

in Proc. 22
nd

 Des. Automation Conf., Las Vegas, pp. 748 - 752, 1985. 

[115] M. D. Huang, F. Romeo, A. Sangiovanni-Vincentelli, “An Efficient General 

Cooling Schedule for Simulated Annealing”, in IEEE Int. Conference on Computer 

Aided Design, pp. 381 -384, 1989.  

[116] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Schevon, “Optimization by 

Simulated Annealing: An Experimental Evaluation, Parts I and II”, AT&T Bell 

Laboratories, a preprint, 1987.  

[117] E. Bonomi and J. L. Lutton, “The N-city Travelling Salesman Problem: Statistical 

Mechanics and the Metropolis Algorithm”, SIAM Rev., 26, pp. 551 - 658, 1984. 

[118] E. Bonomi and J. L. Lutton, “The Asymptotic Behaviour of Quadratic Sum 

Assignment Problems: A Statistical Mechanics Approach”, European J. of Oper. Res., 

26, pp. 295 - 300, 1986. 

[119] R. E. Burkard and F. Rendl, “A thermodynamically motivated simulation 

procedure for combinatorial optimization problems”, European J. of Oper. Res., 17, pp. 

169 - 174, 1984. 

[120] C. Sechen and A. L. Sangiovanni-Vincentelli, “The Timber Wolf Placement and 

Routing Package”, IEEE J. Solid State Circuits, SC-20, pp. 510 - 522, 1985.  

[121] D. S. Johnson, C. R. Aragon, L. A. M. McGeoch, and C. Schevon, “Optimization 

by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and 

Number Partitioning”, Operations Research, 39, pp. 378 - 406, 1991.  



 

83 
 

[122] R. A. Hirth,  M. E. Chernew,  E. Miller, A. M. Fendrick, W. G. Weissert, 

“Willingness to Pay for a Quality-adjusted Life Year: In Search of a Standard”, Medical 

Decision Making, 20, pp. 332 - 342, 2000. 

[123] A. A. Shafie, Y. W. Lim, G. N. Chua, M. Azmi, A. Hassali, “Exploring the 

willinggess to pay for a quality adjusted life-year in the state of Penang, Malaysia”, 

ClinicoEconomics and Outcomes Research, 6, pp. 473 - 481, 2014.  


