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ABSTRACT
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Gökçen Çimen

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Tolga Kurtuluş Çapın

July, 2014

In real world, it is crucial to learn biomechanical strategies that prepare the

body in kinematics and kinetics terms during the interception tasks, such as kick-

ing, throwing and catching. Based on this, we presents a real-time physics-based

approach that generate natural and physically plausible motions for a highly com-

plex task- ball catching. We showed that ball catching behavior as many other

complex tasks, can be achieved with the proper combination of rather simple

motor skills, such as standing, walking, reaching. Since learned biomechanical

strategies can increase the conscious in motor control, we concerned several is-

sues that needs to be planned. Among them, we intensively focus on the concept

of timing. The character learns some policies to know how and when to react

by using reinforcement learning in order to use time accurately. We demonstrate

the effectiveness of our method by presenting some of the catching animation

results executed in different catching strategies.In each simulation, the balls were

projected randomly, but within a interval of limits, in order to obtain different

arrival flight time and height conditions.

Keywords: Ball Catching Simulation, Physics-Based Character Animation, Rein-

forcement Learning.
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ÖZET

BECERİ ÖĞRENME BAZLI YAKALAMA HAREKET
KONTROLÜ

Gökçen Çimen

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Tolga Kurtuluş Çapın

Temmuz, 2014

Gerçek hayatta, tekmeleme, atış ve yakalama gibi çarpışma gerektiren ac-

tiviteler sırasında vücudu kinematik ve kinetik açıdan hazırlayan biyomekanik

stratejiler öğrenmek oldukça önemlidir. Buna dayanarak, son derece karmaşık

bir görev olan top yakalama görevi için doğal ve fiziksel açıdan makul hareketler

oluşturabilen gerçek zamanlı ve fizik tabanlı bir yaklaşım sunuyoruz. Biz diğer

birçok karmaşık görevler gibi yakalama activitesinin, ayakta durma, yürüme,

uzanmak gibi oldukça basit motor becerilerinin doğru bir şekilde birleşimi ile

elde edilebilir olduğunu gösterdik. Öğrenilen biyomekanik stratejilerin motor kon-

trolünde bilinçli davranışları artırabiliceğinden dolayı, planlama gerektirebilen

çeşitli konular ile ilgilendik. Bunların arasında, zamanlama kavramının yoğun

orarak üzerinde duruyoruz. Karakter zamanı doğru bir şekilde kullanabilmek için

pekiştirmeli Öğrenme tekniği ile nasıl ve ne zaman davranabiliceğini gösteren bazı

politikalar öğrenir. Farklı yakalama stratejileri ile gerçekleştirilen bazı animasyon

sonuçları sunarak yöntemimizin etkinliğini gösterilmektedir. Her bir simülasyon

sırasında, toplar farklı uçuş süreleri ve yükseklik kouşullarını göz önünde bulun-

durmak için rasgele bir biçimde, ancak belirli limitler aralığında, fırlatıldı.

Anahtar sözcükler : Top Yakalama Simulasyonu, Fizik Tabanlı Karakter Ani-

masyonu, Pekiştirmeli Öğrenme.
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Chapter 1

Introduction

For almost all daily activities, such as performing of standing, walking, holding

objects, the human body both resists against forces and generates forces. In

general, these forces can be categorized as internal forces and external forces.

While external forces are resulted from the interaction of the human body with

the environment, internal forces are produced by the musculoskeletal system. In

a predictable way, the internal forces enable us to move body parts, but external

forces are needed in order to move the center of mass of the human body. For

example, the walking movement is performed using the internal forces in order

to manipulate the external forces, such as, gravity, friction and contact forces.

Therefore, the difficulty of generating physics-based character animations comes

from the fact that we need to control properly the internal forces with the help of

the external forces in order to interact with the virtual environment in a physically

accurate way.

Even though the past few decades, promising results are achieved in physics-

based character animation, including the simulation of most ordinary behaviors,

such as standing, walking and running, physically simulating the highly dynamic

motions, such as throwing, catching or striking are still one of the great challenges.

The major reason is that these behaviors require predictions about the target,

necessary velocity and time in order to respond to the impact correctly. The

common features of these behaviors are that the movements of the character
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should be coordinated accurately over time and handle safely the shock at the

impact time to minimize the possible injury risk. These controls increase the

believability and the quality of the performance.

1.1 Motivation

The key point that should be considered in such studies is to get the benefit

of various principles based on physics and bio-mechanics while conserving the

nature of human characteristics. Because of the intuitive non-determinism and

complexity of the human motion, data-driven approaches are popular since they

allow us to reach easily the low-level features of the motion. In that way, motion

sequences are readily generated from pre-recorded motion databases. On the

other hand, collecting these large databases that cover all variations of a human

behavior is rather challenging and most of the time finding a specific motion that

compensates the required constraints is very difficult. Supporting interactions

with environment like reaching to a pre-defined target location in accurate time

with end-effectors adds additional difficulties in the context of both data-driven

approaches and physics-based approaches. These outcomes create a compelling

reason for exploiting motor control strategies based on learning motor primitives

for complex behaviors, such as, catching a flying ball which is the main component

of this thesis.

For physically simulating the interaction with the environment of a character,

motor control models can allow us to create realistic human animations. In

dynamic environments where the character should adjust its movements to the

changing environment, it is required to alter the motor control models to adapt

itself according to the varying target within the required time and velocity. In

sports science literature, behaviors such as striking, catching show similar phases

[1]. This indicates that it is possible to define motor control models related to

these phases and learn how to control them in such a way that it includes different

interception points and arbitrary time and velocities. In this way, the character

learns how to plan its behavior by knowing which motor control model should be
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triggered or modified without changing the overall structure of the motion.

1.2 Approach Overview

It is almost impossible to develop a single model that controls the whole body for

a specific task while creating robust interaction with the environment in physics-

based animation. Therefore, one intuitive approach would be dividing one control

strategy into partly task-oriented motor control models in such a way that com-

bining these models, which are responsible for controlling rather simple tasks, can

generate the required behavior. Standing, walking to a specific location, moving

your hands to a predefined target are just a few examples for these control mod-

els. For any complex behaviors that require transporting your body while trying

to reach to a target with your hand, such as ball catching, can be achieved by

properly managing these simple control models.

With the light of these findings and additional inspirations from interdisci-

plinary areas, such as robotics and bio-mechanics, we present a new method that

allow us to generate natural and physically plausible human catching motions in

real time using physical simulation. The method does not require any motion

capture data or pre-scripted motion sequence, and the approach can be used for

other behaviors, which require interaction with environment where adaptation in

timing and positioning needs to be planned.

We can summarize the three important steps for a successful catching pro-

cess: (1) It requires developing a strategy that determines final pose in order to

absorb safely the shock at impact while maintaining the balance of the character.

(2) There is a need for a proper system for controlling the intermediate poses

while trying to reach the desired pose targets for the character defined in the

first step. This also ensures the character is driven to the pre-defined impact

pose in accurate time. Lastly (3) The character should be able to learn using

and managing the motor control skills, such as reaching, standing, stepping, in

different circumstances and other specifications. The approach presented in this
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thesis uses reinforcement learning in order to learn when and where to use motor

control skills. During modeling these steps, our method is inspired from catching

principles that are structured in recent biomechanics researches.

In this section, the overall system framework and the interaction between its

components are presented. Figure 1.1 shows the general framework of the system

in a brief diagram. There are three important components- high-level controllers,

policy-based phase planning, final strategy planing.
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Figure 1.1: General system framework.

During a catching task, the first step of the system after the ball is thrown is to

decide a catching strategy with an interception hand position and an interception

com position according to the trajectory of the ball. Then, this final catching

strategy including interception positions are send to the phase planner which is

responsible to defining high-level inter poses of the character that drives it to

this interception position with given strategy. Based on this, the phase planner
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uses pre-trained policy in order to select the best action which decides which

phase the character should be in according to the current state to be able to

catch the ball right on time. The pre-trained policy is obtained after a number of

ball catching sessions by trial and error. The movements of the character during

the catching task are achieved with high-level controllers, such as walking and

reaching. According to the current catching phase decided by phase planner, a

combination of the high-level controllers are used to bring the character to the

corresponding pose described in each catching phase.

During the process of learning the timing policy, balls were projected ran-

domly, but within a interval of limits, in order to obtain different arrival flight

time and height conditions.

1.3 Thesis Structure
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Figure 1.2: The overview of the thesis. The Strategy Planning Mechanism works
almost independent from High-Level Controllers and the Pose Planning System.
On the other hand, High-Level Controllers and the Pose Planning System are
loosely related to each other such that there is a continuous interaction between
them.

In this thesis, we introduce a real-time physics-based technique to simulate
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strategic catching behavior, which combines three different mechanisms: (1) A

human-like strategy planning system decides a target final pose, which defines

the goal for the other controllers and planners to reach at the same time. (2)

High-level motor controllers which are dedicated to simple behaviors, such as

walking, standing, reaching, etc., defines the repertoire of motor skills for the

character. (3) A policy-based pose planning system controls the inner poses that

drive the character to the goal within the specified constraints by managing these

controllers. The structure of the thesis examines these three distinct mechanisms

in separate chapters. Figure 1.2 provides an overview of the structure of the

thesis.

Rest of the thesis is organized as follows. In Chapter II, we begin with infor-

mation about some related work in the fields of data-driven, physics-based and

reinforcement learning based approaches. In Chapter III, the simple and robust

High-Level Motor Controllers are presented in detail, as the starting point of

the work. In Chapter IV, the process of defining specifications of final pose for

ball-catching problem is presented. In Chapter V, the inner pose planning mech-

anism and its integration with the Reinforcement Learning (RL) is introduced.

In Chapter VI, the simulation results of our approach are demonstrated and the

findings based on our approach are examined. Finally, we the thesis is concluded

in Chapter VI with discussion and suggestions for the future work.
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Chapter 2

Related Work

This chapter presents an extensive summary of earlier related works that use

control based character animation techniques, which is relevant to our work.

There are several other methods in the field of control based character animation.

We present the most common and relevant techniques- data-driven approaches,

physics-based approaches and reinforcement learning-based approaches.

We first begin with a review of recent data-driven approaches, which are based

on using existing joint trajectories obtained from motion capture technique to gen-

erate character animation. We then focus on fundamentally different approaches

in the literature, physics-based approaches, which create all motions as a result

of a physics simulation process instead of directly manipulating the trajectories.

Finally, we present the most relevant reinforcement learning-based approaches

which are based on character controllers that use optimized control policies.

2.1 Data-Driven Approaches

As a result of the increasing popularity of the motion capture solutions, data-

driven approaches have become more relevant in the recent years. The fundamen-

tal idea behind the data-driven based motion generation is that new motions can
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be created by simply editing, concatenating and interpolating the pre-recorded

clips of motion.

The most common method which is based on directly using motion clips is

motion graphs (e.g. [2], [3], [4], [5], [6]). A motion graph structure is constructed

of the nodes, the motion clips, and the edges, the transitions between the motion

clips. Arbitrarily traversing the motion graphs gives a new continuous motion

different from the original motions in the graph. Although motion graphs provide

an efficient way of reusing motion clips, they have several limitations. The most

important drawback of the motion graph technique is that the generation of a

motion sequence that accomplishes a desired task using the available combination

of motions may never be achieved. In addition, motion graphs do not allow

significant diversity among the generated motions.

Notably, since the graph-based representation, such as motion graphs, can-

not generalize motion data, many researchers started to explore the data-driven

approaches which benefit statistical models The main reason is that statistical

models are based on analysis of kinematic data, and synthesis of a new motion

that is not in prerecorded motion database is not applicable. In general, these

methods construct different low-dimensional spaces on the motion capture data

and synthesize motions using optimization. (e.g. [7], [8], [9]). The most common

methods used for dimension reduction are PCA [10] and GPLVM ([11], [12]).

Among the statistical data-driven approaches, several works investigated cre-

ating animations of character performing various tasks that include the interac-

tion with objects using biomechanical rules. For example, the approach in [13]

uses motor control mechanism in order to produce specific reaching task. In an-

other work, [14] also exploit various biomechanical strategies in order to generate

life-like reaching motion, and [15] presents a technique that relies on motion cap-

ture for data manipulation tasks, such as locomotion, reaching and grasping in

real time.

Unfortunately, the approaches based on motion capture data have several

important weaknesses. (1) The ability to produce good-quality motions strictly

dependent on the size of the mocap data set. (2) The motions synthesized are
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limited since collecting a database that comprises a full range of human motions,

including the ones that require interaction with environment, is almost impossible.

(3) In addition, It is well accepted that utilizing the knowledge of human motor

control is very important for realistic motions, such as balance control.

2.2 Physics-Based Approaches

On the other side, physics-based approaches emerged as a promising strategy

for creating more realistic motion as it occurs for humans in a real world since

the motions are produced with intelligently managing the internal joint torques

and forces. The main advantage of physics-based approaches is that they allow

producing a wide range of diverse motions, including the interaction with objects

by using no additional, or minimal amount of motion data.

The key challenge in physics-based character animation is to model motions

and develop control solutions in order to make the character behave and respond

realistically to the unforeseen circumstances in virtual environments. Despite

this, it has been investigated across numerous tasks, such as balancing, standing,

walking, etc., but no doubt the great amount of work has been released in walking

and dynamic balance strategies (e.g. [16], [17], [18], [19]).

The important components used in this thesis share common features of the

method used in SIMBICON [20] and the more recent work of Coros et al. [21].

SIMBICON is a robust and simple locomotion controller that employs feedback

strategy for keeping balance under control while walking even in unforeseen dis-

turbances. We employ a simplified inverted pendulum strategy similar to the

strategy used in Coros et al. [21] to guarantee balancing by predicting foot place-

ment in our walking controller. There is other components of our controllers in

our study that is inspired from this work, such as canceling the gravity effect over

body parts using Jacobian Transpose method.

Some researchers also investigated the simulation of reactive and responsive

motions integrated with walking or standing behaviors with or without the help

9



of biomechanic strategies ([22], [23], [24], [25]). Furthermore, there other studies

that control the flight-based rotational behaviors, such as falling and rolling ([26],

[27]). Among them, our study is similar to the work of Ha et al. [26] in such a

way that it divides the falling process into meaningful biomechanical phases and

tries to control and plan the motions of the character to prepare it for the impact.

Since generating animation of physics-based characters is a complex process,

it requires consideration of many different disciplines, such as biomechanics and

optimization theory. Based on this, there are a number of physics-based studies

supplemented with motion capture data in order to increase the stylistic charac-

teristics of the motions. For example, trajectory tracking is one of the common

techniques used in this context. To maintain balance while walking, some studies

presented a strategy of driving upper body by tracking reference motion capture

data while using some conventional balance control for lower-body (e.g. [28],

[19]). Among them, the work in [29] uses a method that modifies continuously

the reference motion capture data before tracking in order to maintain balance.

Even though the physics-based strategies mentioned here are successful for

controlling the characters to react realistically. The purposeful characters that

involve interactions with their environments to achieve a predefined task, however,

may require more than react. They can benefit from a mechanism for anticipating

and accordingly planning their movements. For example, the character should be

able to learn under which circumstances transitioning to a different state in order

to achieve the goal on time. Based on this, the work, presented in this thesis,

attempt to integrate such a learning system in order to plan low-level control

strategies using reinforcement learning.

2.3 Learning-based Approaches

In the previous section, it is mentioned that a number of control strategies that

can perform various physically simulated motions, including walking, running,

falling and standing is studied. Many of them leave the decision regarding when
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the transition happens between different controllers to the user. Based on this,

reinforcement learning is a promising approach that enables to formulate higher-

level goals and develops control policies in order to plan behaviors that achieve the

goals. There is no need to define manually the transitions for different conditions,

instead, the character learns the transitions by itself.

There are a number of studies proposed to utilize reinforcement learning to

learn policies for choosing best actions based on data-driven models ([30], [31],

[32]) for interactive avatar control [33] to perform locomotion [34]. They are

based on specifying best motion clips to continue from the current motion clip

regarding to the task. Unfortunately, many of them are limited such that many

of them do not allow physical interaction with the environment.

Reinforcement learning has also been studied in the field of robotics, mainly

for controlling walking ([35], [36]). They are based on learning motor primitives

for acquiring new behaviors for the robots by reinforcement learning. In robotics,

there are also many works studied that learn motor primitives for more complex

behaviors, such as playing table tennis ([37], [38], [39]).

Some approaches that have been proposed presents systems that control the

switches between the physics-based controllers to carry out locomotion ([34]

by optimizing control strategies ([40], [41]). Among them, the method in [42]

presents a muscle-based control for locomotion of bipedal creatures. Coros et al.

[43] developed a method that achieves robust gaits for quadrupeds. The approach

presented in [44] creates a realistic swimming behavior for an articulated creature

with a learning process through offline optimization for appropriate maneuvers.

Recently, Tan et al. [45] presents an approach for controlling a character while

riding a bicycle. It has two main components similar to our work- offline learning

and online simulation. In the paper, the rider is controlled by an optimal policy

which is learned through an offline learning process.

Many of these methods search for mapping between the state space and the

action space by learning optimal control policy for the optimization through the

low-level controllers using reinforcement learning. Our approach complements

11



especially to the works which investigate methods that capable of making tran-

sitions, since we focus on learning to plan between low-level controllers.
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Chapter 3

High-Level Controllers

3.1 Introduction

Physics-based character animation offers movements that are physically accurate

which obey the laws of the physics ( angular momentum) and as a result appear

realistic. Similar to the real world, the physics-based character is controlled via

forces and torques. This creates a challenge in achieving simple human behaviors,

such as balance, walking.

The fundamental components for the physics-based character animation are

a physics simulator or physics engine, a physics-based character and a motion

controller. A physics simulator predicts the kinematics of objects in the virtual

environment and controls them through external forces and torques for every

step of the simulation. Physical characters are most of the times simplified into

low dimensional models which have small number of degrees-of-freedom (DOF)

for performance issues and simplicity. A physics-based character are composed

of a number of body segments which are usually modeled as primitive shapes,

such as boxes or cylinders, and joints which connect two bodies. Figure 3.2(a)

shows the simplified physics based character that used in our framework. It is

constructed from 15 rigid bodies and 14 joints. Motion Controller forms the core

of the concept of the physics-based control. It is responsible of generating the

13



 

 

 

 

    

  

 

 

    

  

  

  

  

  

  

Motion 

Controller 

Kinematic 

State 

Joints, Torques 

Control 

Parameters 

Physics 

Simulator 

(a) (b) 

Figure 3.1: (a) Simplified physics based character. (b) Motion Controller and
Physics Simulator.

necessary torques and forces to drive the character to perform predefined tasks,

such as, walking, running, balancing etc. Figure 3.2(b) shows the flow between

Motion controller and Physics simulator.

The Bullet Physics Engine is used as the physics simulator which is an open-

source physical simulation library for collision detection and rigid-body dynamics.

There are other popular other libraries, such as Open Dynamics Engine (ODE),

PhysX, Newton and Havok. The reason of choosing Bullet Physics Engine is that

it is very well supported by the community recently.

This chapter presents high-level controller responsible of controlling specific

task, such as walking to target location in the environment. The high-level con-

trollers developed for this work are Walking Controller, Standing Controller and

Reaching Controller. Each of these controllers are composed of a number of low-

level controllers. Therefore the chapter begins by explaining the fundamental

control concepts behind these low-level controllers. Then it presents how these

concepts are integrated to low-level and high-level controllers in detail.
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3.1.1 Proportional Derivative (PD) Control

The proportional derivative controllers, also angular spring servos, are most

widely used control loop feedback mechanism. They are basically used to generate

joint torques. A PD controller computes the torque, τ , of a joint by calculating

the error between the current state and desired state of the joint. The controller

is responsible of minimizing this error.

τ = kp(θd − θ) + kd(θ̇d − θ̇) (3.1)

In the equation, θd and θ̇d are the desired orientation and desired angular

velocity. The control is also combined with a spring constant kp and a damping

kd constant, also known as control gains. Tuning kp and kd into correct values is a

crucial process since they effect how responsive the character is to the proportional

and derivative error. That is, very high controller gains of a joint make the joint

movement very stiff and rigid; very low controller gains make joint responses very

weak to follow the desired orientation and the angular velocity. Besides, if the

spring constant is kept very low while the damping constant is high, the joint

movements become very slow and very stiff.

3.1.2 Jacobian Transpose Control

The Jacobian Transpose method is used to calculate the necessary internal joint

torques in order to create the effect of virtual external force at a specific body

segment. Directly applying an external force over a body segment can create

unnatural and puppet-like motions, so that is something undesirable. Creating

necessary force effect on a body segment by applying internal torques causes more

natural and realistic animations.

Jacobian Transpose method defines the relation between the joint orientations

and the position that the external force is applied, J = dP
dθ

. This relation can be

extended to the relation between joint torques and external force applied.
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τ = J(p)TF (3.2)

In the equation, τ is a vector of torques applied to a chain of bodies when a

virtual force F is applied at a point p. J(p) represents the rate of change of a

point p with the rotation αi about DOF i.

J(p)T =


dpx
dα1

dpy
dα1

dpz
dα1

.̇ .̇ .̇

dpx
dαk

dpx
dαk

dpx
dαk

 (3.3)

3.2 Low Level Controllers

Animating physics based characters as the product of internal joint torques offers

the opportunity of creating human-like motions, but it requires low-level control

which is very difficult. There are some control strategies that should be taken into

consideration. (1) The characters should be able to maintain their balance while

performing an action, otherwise they fall over. In the physical environment, the

gravity creates an extra issue to be controlled. (2) They should be able to move to

any specific location without losing their balance. (3) They should be able to use

their end-effectors (i.e., feet and hands) in order to reach and manipulate objects

in the environment. In this section, we introduce some low-level controllers which

are the necessary components for the high-level controllers that are responsible

to perform these strategies.

3.2.1 Stance Swing State Controller

One walking loop can basically be divided into two states by taking into account

the stance and swing legs. These states can be modeled as a Finite State Machine

where state variables are s ∈ {left, right, double} according to the current stance

leg for a single step. Stance Swing Controller is dedicated to keep track of the
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Figure 3.2: Stance Swing Controller.

transitions between these states. For walking motion, the transitions between

states happens when the corresponding swing foot contacts the ground or the

duration that is dedicated to that state is exceeded. The controller also holds

information about how much of the current state has been completed with state

phase parameter φ ∈ [1, 0) as t/T where t is the total time elapsed in the current

state. The double stance state is different from left stance and right stance

states such that the transition to other states from that state is not dependent

to the step duration. It depends on an external command that comes from a

different controller. The transition from any other states to the double stance

state happens when the reaching controller sends the signal to Stance Swing

State Controller to make the character stop moving and stand. For example, the

reaching controller may send this signal when the center of mass (COM) of the

character is close enough to the target location.

Stance Swing Controller is one of the common controller that is used by high-

level controllers especially dominated with lower body movements, such as walk-

ing, standing. The usage of this controller also will be examined in detail in the

other sections when explaining the high-level controllers.
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3.2.2 Swing Foot Placement Controller

Carefully choosing step locations is one of the key tasks for the human walking

behavior in order to restore balance. There is a direct relation between the foot

placement and the balance restoration since we know that walking is a process of

falling over and catching yourself just in time. During walking, we constantly try

not to fall over by placing our swing foot down. If we lean forward with our upper

bodies, we need to throw out a leg just in time to catch ourselves. Therefore,

for this work, we use a simplified Inverted Pendulum Model in order to find the

position that the swing foot should be placed for the next step.
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Figure 3.3: Swing Foot Placement Controller

Inverted Pendulum Model allow us to find the displacement landingd =

(xd, zd) of the swing foot from the COM of the character (Figure 3.4). We can

find landingd by equalizing the sum of potential and kinetic energy of the current

COM with the sum of potential and kinetic energy of the the COM in balanced

state where the character is upright position on its stance leg.

1

2
mv2 +mgh =

1

2
mv′

2
+mgh′ (3.4)

In the equation, v′ = 0 and h′ = L =
√
h2 + x2d since we want the velocity of

the character’s COM to be zero and we assume L is constant. If we modify the

Eq. 3.4 according to this, we can solve it for d as given in Eq. 3.5.
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xd = v

√
h

g
+

v2

4g2
(3.5)

As a result, xd gives the displacement of the foot in the sagittal plane to make

the velocity of the character’s COM zero. We can find the zd which gives the

displacement of the swing foot in the coronal plane in the same manner.

Defining the movement of the swing foot from the leavingd which is the posi-

tion that it leaves the ground to the landing position landingd found by inverted

pendulum model is also important for a natural walking behavior. If we define

the ground leaving position of the swing foot (x0, 0, z0) and the landing position

(xd, 0, zd), there is also a need for an extra third point in order to give an arc

movement to the foot. We define this third point from the maximum swing foot

height as (x0+xd
2

, hd,
z0+zd

2
). The step height hd is one of the parameters that can

be tuned for the Swing Foot Placement Controller. The trajectory of the swing

foot is calculated with simple Catmull spline interpolation between these three

points (Figure 3.4).

3.2.3 Virtual Anti-gravity Controller

Working in physical environment brings additional issues related to gravity. All

body segments are affected from the gravity force proportional to their mass.

Even though the torques can be calculated with PD controller in order to drive

the character to the desired pose, the gravity force pulls down the body segments

so that the desired pose can never be reached. This problem can be solved by

giving high values to the control gains, kp, kd, in the PD control model, but it

would create very stiff and rigid character movements. In addition, increasing

control gains makes the character unstable to the contact forces.

While keeping the control gains, kp, kd, considerably optimum values, Virtual

Anti-gravity Controller allows us to cancel the gravity effect on the body segments

by creating negative virtual force that neutralizes the gravity force on them. If the

gravity force on a body is mg, the virtual force that should be created on it should
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Figure 3.4: (a) Virtual Anti-gravity Controller. (b) Torque distribution Con-
troller.

be −mg. In order to create this virtual force on the body, Jacobian Transpose

Control can be used which calculates the necessary internal joint torques. To

cancel the gravity effect on the whole body, this process is applied to all body

segments separately. While applying Jacobian Transpose Control on a body, the

chain of body segments from the corresponding segment to the root segment is

used as the Jacobian Transpose Chain.

3.2.4 Virtual COM-Force Controller

A skillful simulated character should be able to move successfully to any desired

position in the physical environment. Even if stepping toward a place is a very

common action in daily life, it requires sophisticated control of body dynamics

for physically simulated characters. In order to move the body a target, a force

should be generated whose the direction is toward the target location. However,

as mentioned in the previous sections, applying a direct external force will create

unnatural motions such that the character is being pushed. Therefore, the Ja-

cobian Transpose technique is used to create a virtual COM force which of the

pivot point of the chain is the character’s stance ankle.
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Fcom = kpcom(P ′com − Pcom) + kdcom(V ′com − Vcom) (3.6)

In the equation, while Pcom, Vcom are the current position and the velocity of

the center of mass of the character, P ′com, V
′
com are the desired COM position and

velocity respectively. The Virtual COM-Force Controller allows the character to

move to any pre-defined location in the environment by calculating a virtual force

(Eq. 3.6), and converting it into internal joint torques.

3.2.5 Virtual Hand-Force Controller

Another important skill that the character should have is that of being able to

reach a specific point in the environment. This fundamental skill is rather crucial

to allow the character to interact with the object in the environment. The similar

approach is used with the one used in the COM-force controller, but the calculated

virtual force here applied only end-effectors, hands.

Fhand = kphand(P
′
hand − Phand) + kdhand(V

′
hand − Vhand) (3.7)

In this framework, once the necessary virtual force is computed, the desired

joint torques for the shoulder, elbow and the hand are found by Jacobian Trans-

pose Method if the character is within the reachable distance. Virtual Hand-Force

Controller has two processors for two hands separately. Usage of the processors

changes according to the strategy - left hand only, right only, or both hands.

3.2.6 Torque Distribution Controller

It has been studied that there is a relation between the torque that will be applied

to the pelvis, and the stance hip and swing hip torques (e.g. [20], [21]). This

simple relation is very crucial for the control of balance. In Torque Distribution

Controller, Stance hip torque is calculated in a similar way as the one proposed in
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SIMBICON. First of all, the torques of the swing hip and the torso are computed,

then a virtual pelvis torque is calculated via a virtual PD controller. This torque

is virtual because it is not applied directly, instead it is used to calculate the

stance hip torque (Eq. 3.8).

τstance = −τpelvis − τswing − τtorso (3.8)

3.3 Walking Controller

The walking behavior is the core part of most of the motions, and it is most funda-

mental behavior for a skillful simulated character. Unfortunately, it is challenging

to simulate a robust motion since physically simulated characters are mostly un-

stable and underactuated such that requires controlling high-dimensional actions.

In this section, a high-level walking controller is presented which allows the

character to walk to a specific location. The idea behind the controller is to

calculate the internal joint torques for the stance leg to drive the character to the

target location while computing the internal torques of the swing leg that enable

the character to maintain balance by using inverted pendulum model (Figure

3.5).

The starting point of the controller is a simple finite state machine, Swing-

Stance State Controller. It defines the current swing foot and the current stance

as well as the duration of one step cycle. Knowing which one is the swing foot

and which one is the stance foot is crucial for a walking controller because each

foot has different tasks during the walking behavior. While swing foot involves

the processes that are responsible of keeping the character balance, the stance

foot is the pivot point of the chain that drives the character to any specific

location. Therefore, Swing-Stance State Controller is a global controller that can

be reached by all other controllers.

The walking controller introduced here concerns only about the lower body
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Figure 3.5: General structure of walking controller

joint torques. That is, the torques applied to the upper body joints do not affect

the controller and balance of the character. The second process in the controller

is the Swing foot placement. First, the landing position (xd, zd) of the swing

foot which is taken from the Swing-Stance State Controller is calculated using

inverted pendulum model. Then, the desired swing foot position (xd, yd, zd) is

found using an interpolator. At the end of the Swing Foot Placement process,

the desired joint orientation of the swing ankle, swing knee and swing hip are

found with the help of a simple Inverse Kinematic (IK) solver from the desired

swing foot position. Next, these desired orientations are converted to desired

torques for swing ankle, knee and hip using Proportional Derivative Controller.

All torques including upper body torques are strengthened with the anti-gravity

torques that are calculated in the Virtual Anti-Gravity Controller.
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The torques of stance ankle, knee and hip are calculated in the Virtual COM-

Force Controller given the target center of position. At the same time torque

distributor computes the stance hip torque given the swing hip, pelvis and torso

torques. Finally, the stance hip torque from COM-Force Controller and the stance

hip torque from Torque distributor are summed up. At the end, the internal joint

torques are found that allow the character walk to any specific location.

3.4 Standing Controller
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Figure 3.6: General structure of standing controller

Maintaining a natural standing posture is one of the simplest actions for the

humans. In biomechanics, the standing control phenomenon depends on some

factors, such as the position of the center of gravity over the base of support.

Basically the strategy the humans employ is to instinctively move the rest of

your body to adjust the position of your center of gravity. The center of gravity

(CG) is the average of the character’s weight distribution. Since the gravity is
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constant, the center of gravity is the center of mass at the same time. While

standing, the base of support of a human is the area under his/her feet. Based

on this, if the center of mass of the character is inside of the character’s base

of support, then the character maintains its balance. The closer the character’s

COM is to the center of the base of support, the more balanced the character

becomes.

In this section, a standing controller which is responsible for maintaining a

standing pose is presented (Figure 3.6). It is based on calculating the internal

joint torques that keep the center of mass of the character closer to the cen-

ter of the support base of the character. In a similar way as in the walking

controller, the global Swing-Stance Machine is the starting point of the con-

troller. When the state machine shows the double stance state, the virtual

COM-force controller calculates the internal leg joint torques that create the

virtual force that keep the character’s center of mass closer to the base of sup-

port. The internal joint torques for the left leg, τleftAnkle, τleftKnee, τleftHip, and

for the right leg, τrightAnkle, τrightKnee, τrightHip, are calculated separately by us-

ing Jacobian transpose. At the same time, the torque distributor distributes the

torques coming from τPelvis and τTorso to the right and left hip equally such that

τleftHip = τPerlvis+τTorso

2
and τrightHip = τPerlvis+τTorso

2
. The torques calculated by

the virtual COM force controller and the torque distributor are summed up to-

gether that form the lower body torques. As same as the walking controller, the

standing controller is not affected from the upper body torques.

3.5 Reaching Controller

In contrast to lower limbs, the upper extremity (UE) tasks, such as reaching,

require executing fine movements due to its extensive functionality. Therefore,

an ordinary task in daily life of a human, reaching, is still a challenge to synthesize

with inverse kinematic based models or data-driven methods. The main reason is

that there are possibly many poses. Sometimes, it may require only moving your

arms to a target position while standing, but there may be cases that requires
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complex whole body motions, such as taking a step to reach while keeping balance.
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Figure 3.7: General structure of reaching controller. It dependent on the standing
and walking controller.

In this section, a high-level controller for generating reaching motions is ex-

plained that conforms the flexibility of the human reaching behavior. The main

component of the reaching controller is the virtual hand force controller. It calcu-

lates the necessary arm torques τshoulder, τelbow, τwrist by computing a virtual force

according to the desired hand positions. There are three important inputs for

these controller- target left hand position, target right hand position and target

COM position as shown in Figure 3.7. While target hand positions contribute

the computation of the upper body torques, target COM position contributes

the lower body internal joint torques. The lower body torques are either coming

from the standing controller or walking controller as explained in the previous

sections. After combining the upper body torques with lower body torques, all

final body torques are obtained by canceling gravity effect over them by using

Virtual anti-gravity controller.
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Chapter 4

Planning of a Ball Catching

4.1 Introduction

After developing computational models of motor control as examined in the previ-

ous sections, getting the initial conditions correct in kinematics and kinetics terms

is the key to be able to use these models in many sport activities. This requires

a research that is collaborated with the literature which describes best biome-

chanical strategies. In Interception tasks, such as kicking, throwing, catching,

the learned strategies increase the consciousness in motor control which allows

the performer to achieve the goal successfully. At the same time, they prepare

the body to adjust the time accurately which enables the performer to prevent

possible injuries.

In this work, we focus on modeling a highly complex task that requires the

combination of important motor skills - ball catching. We study the movements

during ball catching motions and present a system that imitates the human move-

ments while performing a ball catching behavior.

The reason behind choosing ball catching behavior is that it requires accurate

planning of the usage of several elementary motor primitives, time optimization.
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We model the human movements in a ball catching behavior using discrete move-

ment phases in the light of Biomechanics studies. For such a complex behavior,

the human central system has a little time to plan and react. Hence, we propose a

system such that the character anticipates the interception point and the amount

of time needed to reach the desired hitting position, and adjusts its movements

accordingly.

The remainder of this chapter is organized as follows. For the following sec-

tion, we introduce the ball catching problem, which is the central topics of this

chapter. Then the phase analysis of a ball catching task and its details are pre-

sented which involve bio-mechanically breaking down the movement into distinct

phases. Then, the approach used for predicting the target interception positions

based on the naturalness and efficiency concerns are explained. In the last section

of this chapter, the control parameter assigned for each phase are presented.

4.2 Ball Catching Behavior

In real world situations, ball catching is a challenging task which requires spatio-

temporal control. It requires locating the ball and determining the proper in-

terception place as well as timing by identifying the speed of the ball. Humans

are able to successfully predict the ball trajectory in order to move hands to the

right place at the right time after some training. This behavior can be adapted

to the physically simulated characters such that they can learn to move to a

target position at the right time by anticipating the interception point from ball

trajectory. On the other hand, there are two important problems that should be

addressed at this point: (1) infinitely many different interception points can be

found along the trajectory of the ball, (2) infinitely many different body motions

can be found to reach this target position in a specific flight time of the ball. The

solution to these problems is to define tasks to reduce the redundancy in spatial

position and timing, such as, energy minimization, trajectory smoothness, time

accuracy, etc.
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Based on these findings, in this work, we exploit some specific cost functions

to achieve the redundancy in spatial interception position. Besides, the timing

of interception is controlled by scaling temporal window using a control strategy.

This control strategy is based on dividing up the movement into relevant phases

and controlling them.

4.2.1 Phases of Ball Catching

In phase analysis, ballistic movements, such as throwing, kicking, hitting, can

be divided biomechanically into three phases: preparation, action and recovery.

Each phase is defined different biomechanical features and boundaries. In prepa-

ration phase, the performer gets ready for the performance. The action phase

is the end of the preparation phase and is the part where the main effort of the

performer takes place. After action phase, the recovery phase takes under control

the deceleration of the movement.

 

Adapting Reaching 

  

    

  

Ready 

 

  

  

  

  

  

  

  

  

  

  
  

  

  

 

    

Figure 4.1: The three phases of catching motion.

According to phase analysis, as other many ballistic movements, the catching

movement exhibits similar phases independent of the location and the velocity of

the ball. Inspired by this, we divides a regular catching movement into following

four phases which are labeled related to their functionality (Figure 4.1).
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Ready Phase The ready phase starts when the ball is thrown, and the inter-

ception hand position and center of mass position of the character is de-

termined. The character slowly starts to step to the target COM position

while hands that are responsible of catching the ball begin to move to a

position that is above the waist, slightly in front of the chest. Even though

the interception hand position is decided before the ready phase, the hands

move independent from that position. The main goal of the ready phase is

to prepare the character to reaching movement by slightly accelerating the

body and bringing the hands to a location that can optimally reach any

position in the reachable arm space.

Reaching Phase The reaching phase comes after the ready phase. In reaching

phase, the character starts to extend its arms towards virtual interception

hand positions that are at the same distance from the COM of the character

in the desired final pose at the interception moment. In this phase, the

character increases its COM speed to reach the desired interception position

for the center of mass of the character. For a successful and realistic catching

behavior, the reaching phase should start to execute when the character is

optimally close to the interception position, or ball in order to give an

impression that the character can track the ball in a more healthy way

when the vision system is more comfortable to see the ball.

Adapting Phase After the reaching phase, the adapting phase is important for

the character to accurately reach to the interception hand positions. In

this phase, while the COM velocity of the character starts to decelerate,

the hands starts to move directly to the interception hand position that

is found on the ball trajectory. As comparison to the reaching phase, the

character should be more close to the interception COM position and the

interception hand position such that there is no need to step toward the

interception point anymore. If the character executes the adapting phase

when it is not close enough, the movement of the character seems as the

hands drives the character to the interception point.

Catching Phase The catching phase comprises the movements where the char-

acter meets the ball and the recovery from the impact. The reason for
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Figure 4.2: The force and displacement relation of catching. The longer displace-
ment reduce the effect of high force.

naming this phase as ’catching phase’ comes from that it controls the re-

duction of the speed of the ball.

In a typical catching behavior, humans tend to extend the time to make

the ball stop in order to reduce the risk of hurting themselves. This is

because the hands are responsible of applying negative force to decrease

the momentum of the ball to zero in order to bring the ball to stands

still. Choosing smaller force to apply over a longer time makes the catching

motion more comfortable because it decreases the pressure on the hands

and the stress on the joints.

Since increasing the time gives the same effect as increasing the displace-

ment after the ball hits the hand, the work-energy principle is used to

calculate the necessary displacement to reduce the ball’s kinetic energy to

zero while reducing the potential damageable stress on the joints. The dif-

ference between the final kinetic energy and the initial kinetic energy of

the ball gives the work as the multiplication of a constant force and the

displacement.

1

2
MbVbfinal −

1

2
MbVbinitial = Fmaxds (4.1)

In the equation, Fmax represents the the maximum force that can be applied

without any damage. Since the final kinetic energy of the ball is required
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to be zero, the work is equal to the initial kinetic energy of the ball in

magnitude. Therefore, the necessary displacement for the hand with the

ball can be calculated for a natural and realistic catching movement.

ds = −1

2
MbVbinitial

1

Fmax
(4.2)

Increasing Fmax decreases the displacement and increases stress of the arm

joints, while decreasing the value of Fmax increases the displacement, but

reduces the stress on the joints (Figure 4.2).

The phases, ready, reaching, adapting, catching are consecutive. Among these

phases, the only phase that we cannot control the transition to is the catching

phase because starting to execute catching phase is strictly dependent on the

condition that the ball is touching, or almost touching, the hand. The remaining

phases, ready, reaching, adapting are very important to achieve desired final

catching position. The condition for a successful catching relies on the control of

the transitions between these phases. The process that the character learns how

to control the transitions for a better timing and successful catching is explained

in the chapter 4.

4.2.2 Catching Strategy

At the beginning of a catching process, just after the ball is thrown, the char-

acter first decides an appropriate catching strategy. Generally, the strategies

in catching can be divided into three categories: left-handed, right-handed and

two-handed catching. Deciding the catching strategy is the first step because it

describes the body parts that will be used during the execution of the catching

phases. Figure 4.3 shows the process of deciding catching strategy according to

the trajectory of the ball.

In general, one-handed catching strategies are chosen in order to save time

while reaching to the interception position. Whether the left-handed or the right-

handed strategy is chosen depends on the direction of the ball. The reason for this
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Figure 4.3: The process of the character’s decision making for choosing an ap-
propriate catching strategy.

catching a ball using left-handed strategy while the ball is coming towards the

right side of the character would be unrealistic and challenging. For aesthetic and

realistic purposes, the two-handed catching strategy is chosen in some occasions,

especially when the ball flies directly over the character.

4.3 Interception Point Prediction

Parallel to the process of choosing an appropriate catching strategy, the charac-

ter determines an ideal hitting point on the ball trajectory, called Interception

Hand Position, and a standing position for the center of mass while the hands are

extended to the interception hand position, called interception COM position.

Determining an optimal interception hand position and interception COM posi-

tion is substantial because they are two important ingredients for the reaching

controller (Figure 4.4).
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Considering the purposes of naturalness and efficiency, we make the following

assumptions while selecting optimal interception hand position by taking into

account a typical human ball catching behavior.

Reachability During a catching behavior, people make judgements on reach-

ability of the ball, and give up making an effort if they think they could

probably miss the ball.

Maximum time People tend to reach a position over the ball path where the

flight time of the ball is possibly maximum. This instinct comes from the

fact that how much the flight time is, is there enough time to reach the

interception point in time.

Minimum displacement For energy minimization, people are also tend to se-

lect positions that require minimum displacement for the body, and as a

result minimum effort.

Based on these assumptions, we set up a simple quadratic optimization for

finding an optimal interception hand position q∗.

q∗ = arg min
q∈T

αEd︸︷︷︸
displacement

+ βEt︸︷︷︸
time

subject to
qy ≤ Pmaxy

qy ≥ Pminy

(4.3)

In the energy function, the minimum displacement criterion is considered with

Ed by calculating the quadratic distance of the character to the point.

Ed = ||Pc − q||2

where Pc is the center of mass position of the character. The maximum time

criterion is taken into account with Et which calculates the time required for ball

to reach to the point from the current position and the velocity of the ball.
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Et = −(Pb − q)/Vb

where Pb, Vb are the position and velocity of the ball, respectively. Each of the

position vectors in the overall energy function is projected on the x−z plane, and

for the convenience, the velocities are horizontal. The constants, α and β, are

used to control the weights of two criteria on the process of selecting interception

hand position.

 

  

  

  

  

Interception hand position 

Interception com position 

Ball 

Trajectory 

Figure 4.4: The target interception points. The red point in the ball trajec-
tory shows the interception hand position. The claret red color area under the
character shows interception com position.

The reachability factor is integrated into the optimization process by defin-

ing constants that limit the minimum and maximum reachable height for the

interception point search.

The interception COM position is estimated after the interception hand posi-

tion is found in a way that puts the body into an advantageous position for the

catching phase and increases the deceleration path of the ball to be catched. The

key point of determining the interception COM position is that it should provide

an area which allows the hand to move freely while dissipating the energy of the

ball.
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4.3.1 Catching Phase Parameters

As described in the previous sections, we employ a catching strategy that breaks

down the movement into phases.

Phases COMKp COMKd
HandKp HandKd

Ready 340 40 200 30
Reaching 200 20 120 12
Adapting 100 10 400 40

Table 4.1: Control parameters of catching phases.

Each phase has control parameters, including Kp, Kd for center of mass of

the character and Kp, Kd for hands according to the catching strategy. While

control parameters for the COM, COMKp , COMKd
, describe how fast the char-

acter can reach to the interception position, the control parameters for hands,

HandKp , HandKd
, indirectly describe the duration of the phases to reach to the

target posture specifically defined for each phase. Table 4.1 shows the control

parameters the catching phases, ready phase, reaching phase and adapting phase.

The high-level reaching controller takes different hand positions and COM

speed according to the current catching phase. Therefore, controlling the flow

of these phases changes the overall timing and structure of a catching task since

each phase has a specific timing related to these control parameters. Correctly

planning when the character should be in which phase is also very crucial to catch

the ball just on time.
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Chapter 5

Learning Timing in Motor Skills

5.1 Introduction

A key challenge of interception based tasks, as catching, is the process of planning

how to choose an optimal sequence of sub-actions in order to generate natural-

looking motions. In such a dynamic motion, learning action planning using a

trial-and-error approach is a solution to this problem. Here, as the trial-and-

error approach, the reinforcement learning is used. Reinforcement learning is a

promising framework for controlling difficult behaviors that require planning for a

distant goal by enabling us to formulate higher-level targets and generate control

policies in order to achieve them.

The timing is very crucial in interception based motions because using time

accurately enables more control over the impact force. Therefore, in this part, the

character learns policies to know how and when to react by using reinforcement

learning. The policy plans the phases of the ball catching behavior, which is

explained in the previous chapter, to provide correct timing during the activity.

The correct timing not only helps the character reach to the right place at the

right time, but also makes movements of the character more reliable.

The Reinforcement Learning Toolbox. After a comprehensive search
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for an available and open-source reinforcement learning toolkit, the reinforce-

ment toolbox (RL Toolbox) is chosen since its repertoire includes many standard

reinforcement learning algorithms and it is easy to extend for new additional algo-

rithms. The RL Toolbox is a c++ based framework that presents most common

RL algorithms and user-friendly interface for implementing new algorithms. It

provides a rich variety of learning algorithms, such as Q-learning, TD learning,

Actor critic learning, etc. The tool also employs a logging and error recognition

system. On the other hand, it is limited to the choices of reinforcement learning

functionality that can be used. Some specific features are selected because that

the toolbox supports, even if it is not the best solution.

This chapter starts with introducing the key elements of the reinforcement

learning framework in a broad sense. Then, the following section focuses on the

process of adapting the ball catching behavior to an action planning problem

whose goal is to optimize the timing using reinforcement learning.

5.2 Reinforcement Learning

Reinforcement Learning is one of the Machine learning approaches that use a

process of learning from interactions with environment to achieve a goal. The

learner, called agent, interacts with its environment and observes the results in a

similar way of humans or animals.

The trial-and-error based interactions take place such that the agent senses

the environment, and then uses this sensory input, also called state, in order to

choose an action to perform. After performing an action in a state, the agent

receives some reward in a form of scalar value. In this way, the system learns a

mapping from state/action pairs by trying to maximize the long-term reward from

some initial state to a final state. This learned mapping from states to actions

is called policy. That is, the policy tells which action should be performed in

a particular state. Based on these findings, there are three basic requirements

of a reinforcement learning system designer based on the goal: defining reward
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function, states and devising learning algorithm to estimate value functions.

value Function gives the value of the states, or the expected return value

for an action performed in that state. This defines how good a particular action

is in a given state. There are two common notations for value functions - V π(s)

which gives the value of a state under policy π, Qπ(s, a) which gives the value of

the performed action a in a state s under policy π.
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Figure 5.1: (a) Simplified physics based character. (b) Motion Controller and
Physics Simulator.

5.2.1 Reinforcement Learning Algorithms

The Reinforcement learning algorithms that have been introduced in the litera-

ture can be categorized into three groups: actor-only, critic-only and actor-critic

methods.

Critic-only methods are based on deriving optimal policy from the optimal

value function that is found earlier. There are a number of different critic-only

reinforcement learning algorithms, but Q-learning, SARSA are well known among

them. These learning algorithms derives an optimal policy from estimated value

function based on observation of the transitions from one state to another state

when taking an action and the returning reward.

The algorithm of Q-learning method which is one of the famous learning
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technique in this category. In the algorithm, there are two important parameters

should be carefully set. α is the learning rate such that giving a high value leads

to learning quickly. γ is the discount factor which is used to adjust how the future

rewards will worth less than current rewards.

Algorithm 1 Q-Learning

1: procedure Q-Learning
2: Initialize Q(s, a) arbitrarily
3: for all episode do
4: Initialize s
5: for all steps in episode do
6: Choose a from s using policy derived from Q
7: Take action a, observe reward r, and next state s′

8: Q(s, a) = Q(s, a) + α(r + γmaxQ(s′, a′)−Q(s, a))
9: s← s′

10: end for
11: end for
12: end procedure

The main disadvantage of the critic-only methods is that they usually need

to discretize the continuous action space because the optimization process to find

the action is computationally expensive. Therefore, this discretization causes

problems for finding the true optimal policy.

Actor-only methods, in contrast to Critic-only methods, directly use op-

timization procedures to search for an optimal policy without trying to find an

optimal value function beforehand. Policy gradient methods are an example for

actor-only methods. The biggest advantage of actor-only methods over the critic-

only methods is that in actor-critic only methods, the policy can create actions

in continuous action space.

Actor-Critic methods combine the advantages of the actor-only and critic-

only methods together where the actor and critic are represented separately. Fig-

ure 5.1b shows the schematic structure of an actor-critic architecture and the

interaction of the actor and the critic. In the system, the agent is divided into two

separate parts. The actor, also known as policy, is responsible of selecting actions.

The critic, also known as value function, monitors and criticizes the these actions
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by processing the rewards. The critic is also responsible of evaluating the policy

and determining when the policy should change. That is, the critic evaluates the

new state after an action selection in the context of Temporal Difference (TD)

error by using current value function. This TD error is estimated as,

δt = rt+1 + γV (st+1)− V (st) (5.1)

In the equation, V is the value function and st+1 is the new state. In this

way, the critic can evaluate the action at taken in state st. The positive result of

the equation suggests that this action should be selected more next time, while

negative result suggests that the selection of this action should be avoided more

in the future.

The main advantage of Q-learning over actor-critic learning is that it is not

required to follow a current policy. However, Q-learning can only be considered

when the states and the actions are both discrete. On the other hand, many

problems in real world, the states and the actions are both continuous variables.

Based on this, the actor-critic approach has numerous advantages over actor-

only and critic-only methods. The major advantage is that they can learn with

continuous state variables and continuous valued actions and require minimum

computation while selecting actions since the policy can be explicitly stored.

5.3 Planning with Reinforcement Learning

The ball catching, as an interception task, requires a correct timing for reaching

to the right place at the right time. Even though the goal, in this case catching

the ball, and the phases that are required for a successful catching are well known,

the character should learn how to achieve the goal by planning these phases. In

this case, the reinforcement learning is a useful framework for learning with a

critic similar to a human learning system.

For such a complex task like catching a ball, it would be tedious to produce
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a model for the character that performs in every possible situations. Therefore,

reinforcement learning makes it easy by evaluating the results of many random

actions, and learning the best actions from any state at the end. In this section,

we introduce the reinforcement learning system used in our work, and we explain

the process of designing the components of the reinforcement learning for our

problem.

The system consists of two distinct process - training and using, as shown

in Figure 5.2. The training process corresponds to the part where the learning

happens. In this part, the character learns a policy that defines which actions are

best by interacting with the environment. As mentioned in the previous section,

there are different algorithms to learn policy. In our system, we preferred to use

Actor-critic method. In general architecture for actor critic learning, there are

two learners. A value function learner, Critic, which critiques the actor’s actions,

and an Actor which learns the policy.
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Figure 5.2: Reinforcement Learning system overview. It has two distinct parts:
offline training process and online simulation process.
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5.3.1 State Variables

The ’State’ in a reinforcement learning system is a parameter or a set of parame-

ters that are used to describe the specific situation the agent is in. For example,

the coordinates of a ball can be used as a state variable in our case. It is very

important to determine state variables tightly associated with the goal of the

learning system. Otherwise, the unrelated state variables would only increase

the dimensionality of the system. The size of the state space, and hence the

complexity of the problem, grows exponentially with the number of state vari-

ables. Therefore, the optimal number of state variables are determined for the

ball catching problem as follows:

Distance of ball dball - Since ball catching behavior is directly related to the

current state of the ball, one of the state variables are considered as the

distance of the current position of the ball to the calculated interception

position. This state corresponds to the behavior of a person tracking the

ball position while catching.

Time of ball tball - One another state variable related to the ball is the remaining

time of the ball to the interception position. This state variable gives the

information about not only the remaining time for the character but also

the dynamics of the ball (i.e., velocity) together with the state variable dball.

Distance to interception hand position dhand - One of the state variables

associated with the character’s current posture is the distance between the

current hand position of the character and the interception hand position

according to the catching strategy.

Distance to interception COM position dcom - One another state variable

related to the character’s current posture is the distance of the character’s

current center of mass position to the interception COM position.

There is no doubt that there possibly exist different state variables that can

give better results, but for our problem, these state variables are found acceptable.
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Even though the number of state variables are kept to be small, all of the state

variables, in our case, are continuous data which increase the complexity of the

model. Discretization is one of the applicable approaches when the state space is

large due to the continuous state variables in order to reduce the size of the state

space. Discretization is the process of dividing the state space into many small

chunks. On the other hand, a discrete state representation can be problematic.

If the state discretization is too coarse, the agent cannot distinguish between the

states. In order to compensate for this problem, a function approximator for the

value function is used which combines dividing the state space and saving the

generalization between states.

5.3.2 Action Variables

The action defines what the agent can do in the current state. For our case, the

motion of the character can be controlled by defining actions. After learning best

actions from each state, the character should be able to decide the sequence of

actions that make it reach to the target state from any arbitrary state.
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Figure 5.3: Actions and possible results of them in a FSM structure.

There are two high-level actions for our system that are described as (see

Figure 5.3):

(1) Stay This action make the character stay in the current catching phase.

(2) Move-On This action is chosen if the character is expected to be move on

another catching state.
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These two simple actions enable us to plan the motions of the character by

controlling transitions between the catching phases. By determining which state

the character should be in at right time, the character can manage to control the

timing that is making it to reach to target interception position on time.

5.3.3 Reward

In Reinforcement learning system, the goal of the agent is formalized in terms of

the rewards. It describes the way of saying to the agent what is wanted from it to

achieve. Designing the rewards correctly is very important due to the fact that

agent should learn to reach to the goal by trying to maximize the total amount

of reward it receives.

In our case, we designed the rewards by taking into account several consid-

erations. There are two types of reasons for the termination of current catching

trial during the learning process. The character takes a reward based on the type

of termination as a simple number, Rt ∈ R.

Rt =

−20000 if result ≡ case1

1000− 200dcom
2 − 800dball

2 if result ≡ case2

Case1 Failed - The first case happens when the ball passed through the inter-

ception point before the hands of the character reach to the interception

hand position. In this case the character considered to be failed and get a

negative reward.

Case2 Succeeded - This case refers to the situation where the character reaches

the interception position with hand before the ball. In this case, the char-

acter is granted with a positive reward, but not completely. Arriving to the

interception point with the hands when the ball is very far away from it

is an unwanted situation. It creates an unnatural look because the human

vision system cannot foresee the position of the impact accurately when the
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ball is so distant. In addition, even though the hands reach to the intercep-

tion hand position accurately, if the center of mass position is still not close

enough to the interception COM position, this creates an unrealistic mo-

tion, and gives an impression that the body is under control of the hands.

Therefore, we added negative reward related to the distance of the ball the

COM to the positive reward.
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Chapter 6

Results

In order to evaluate the generality of our approach, we simulates a number of

catching motions with various different initial conditions and catching strategies

(left-handed catching, rigth-handed catching, two-handed catching). In this sec-

tion, we describe the results of our system.

Figure 6.1 summarizes the choices of catching phases for one catching trial

of every 20 iterations during learning process.

Figure 6.1: Distribution of catching phases during learning period.

The learning time changes according to the number of iterations and the

conditions of trials. We perform 100 steps per iteration and 600 iterations for

47



 

 

 

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Phases 

Ready Reaching Adapting

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Adapting

Reaching

Ready

Figure 6.2: Distribution of catching phases for several simulation results.

offline learning process. All simulation results were produced on a computer with

a 2.00GHz CPU and 6GB of memory.

Figure 6.2 shows the usage of the catching phases of the trained policy over

30 catching simulation samples, after learning sessions is completed. Compared

to data in the offline learning diagram, this diagram demonstrates a more regular

behavior. We observe that for the catching trials that require more body transla-

tions, the ready phase is chosen more, while the adapting phase is preferred more

when the less body translations are necessary and when there is less time.

Some of the catching animation results executed in different catching strate-

gies are demonstrated in Figure 6.3, 6.4 and 6.5. We use Bullet Physics Engine

to simulate the character. The time step is 0.1 milliseconds.

48



Figure 6.3: Simulation result of left-handed catching.

Figure 6.4: Simulation result of right-handed catching.

Figure 6.5: Simulation result of two-handed catching.
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In the first sequence of actions, the character performs a left-handed catching.

Figure shows the frames of the animation. In the first frame, the process of

determining the interception hand position and the interception com position

are demonstrated. The green dotted line shows the trajectory of the ball. The

red point in the trajectory is the visual representation of the optimal interception

hand position. The center of the red cylindrical region represents the interception

COM position that the character should step into.

In all example animation results, each frame represents an illustration from

ready phase, reaching phase, adapting phase and catching phase in the last frame,

respectively. After the step of planning catching strategy, the character starts

stepping into the interception COM position during the ready, reaching and

adapting phase. If the character reaches to the interception COM position, it

stops walking and switches to the standing behavior in the catching phase.

Figure 6.6: Our simulation results compared with a reference motion capture
data.
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We also compares our simulated motion with a reference motion capture data

frame-by-frame. The catching simulation is based on the same catching strategy

and the initial conditions as far as our guess from the data. Even though the two

motions are not identical, results show that our simulation is qualitatively similar

to the reference motion capture data (Figure 6.6).

51



Chapter 7

Conclusion

7.1 Conclusions

Due to the unstable nature of the physical characters, creating appropriate inter-

actions with the environment, such as ball catching, is a challenging problem. In

this thesis, we show that such a complex task can be achieved by dividing it into

smaller phases and simpler task-oriented motor control models. We presented

three different controllers including standing and walking controllers for stepping

to a specific location and standing there, and reaching controller for reaching a

specific target location with hands.

We show that properly planning the phases of the task and managing these

high-level controllers according to the phases creates natural-looking and accu-

rate ball catching animations. The usage of reinforcement learning for planning

the transitions between the phases increases the accuracy in timing in catching

while properly designing the control parameters for each specific catching phase

increases the realistic looking in animations because these control parameters

directly affect the inputs of the high-level controllers.

Simulation results indicate that the character can perform reasonable accurate

and realistic catching of the randomly projected balls with different catching
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strategies. The character appropriately controls the speed (timing) and plans the

phases in order to reach on time to catch the ball accurately even if each thrown

ball has different arrival flight time and height.

7.2 Discussion

The same approach used in this thesis can be applicable for physically simu-

lated characters to perform different variety of high-level skills and tasks, such as

throwing, striking, etc., where the skill requires controlling timing. This chapter

outlines the important points of the thesis and suggests possible improvements.

Brief introduction in Chapter I, some important related works are mentioned

in the fields of data-driven approaches, physics-based methods and reinforcement

learning adapted works in Chapter II. In Chapter III, some high-level controllers

with their own low-level modules for different purposes including standing, walk-

ing and reaching are presented, as the starting point of the thesis. In Chapter IV,

ball catching problem is explained in detail and different catching phases (ready

reaching, adapting and catching phase) are introduced developed from a phase

analysis. The Chapter V presents the approach planning the catching phases

using reinforcement learning in order to achieve proper timing in catching. In

addition, some catching animation results with different catching strategies are

demonstrated.

The proposed method has its own strengths and weaknesses. Some limitations

of the system are given as follows:

(1) The reaching controller proposed here does not consider other human reach-

ing strategies such as jumping for higher ball trajectories, bending for lower

ball trajectories and tiptoeing, which requires raising over the tips of the

feet. These different catching strategies can be achieved defining additional

controllers.

(2) The phases defined for ball catching are task-specific so that different tasks,
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such as striking, may require different phases and different control param-

eters. This is one of the biggest weakness of the approach.

(3) The control parameters specifically defined for each catching phase should

be better optimized. The learning algorithm is so sensitive to the different

control parameters that if they are not properly tuned, it affects the per-

formance of the learning algorithm and the results of the training process.

7.3 Future Works

The work presented in this thesis provides different directions for future studies

and it can be extended for different specific applications. We presented an ap-

proach that try to emulate the learning process in some sense that humans go

through as they learn skills in a similar process.

As an extension, more complex policies can be learned for learning low-level

control parameters in the high-level controllers by considering the strategies the

humans use in their day-to-day activities and other biomechanical observations.

To extend that even further, data from motion capture information can be inte-

grated during the process of the learning process in order to improve the creation

of stylistic human-like motions. In addition, there is a wide body of work study-

ing the integration of biomechanical models and kinesiology investigating human

reaching strategies. Finally, one future direction to pursue would be more ex-

ploiting these models for our control methods.
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