
MODEL-BASED CAMERA TRACKING FOR
AUGMENTED REALITY

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Aytek Aman

August, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52928757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Uğur Güdükbay(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Bülent Özgüç

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Veysi İşler

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

MODEL-BASED CAMERA TRACKING FOR
AUGMENTED REALITY

Aytek Aman

M.S. in Computer Engineering

Supervisor: Prof. Dr. Uğur Güdükbay

August, 2014

Augmented reality (AR) is the enhancement of real scenes with virtual entities. It

is used to enhance user experience and interaction in various ways. Educational

applications, architectural visualizations, military training scenarios and pure

entertainment-based applications are often enhanced by augmented reality to

provide more immersive and interactive experience for the users. With hand-held

devices getting more powerful and cheap, such applications are becoming very

popular.

To provide natural AR experiences, extrinsic camera parameters (position

and rotation) must be calculated in an accurate, robust and efficient way so that

virtual entities can be overlaid onto the real environments correctly. Estimating

extrinsic camera parameters in real-time is a challenging task. In most camera

tracking frameworks, visual tracking serve as the main method for estimating

the camera pose. In visual tracking systems, keypoint and edge features are

often used for pose estimation. For rich-textured environments, keypoint-based

methods work quite well and heavily used. Edge-based tracking, on the other

hand, is more preferable when the environment is rich in geometry but has little

or no visible texture.

Pose estimation for edge based tracking systems generally depends on the

control points that are assigned on the model edges. For accurate tracking, vis-

ibility of these control points must be determined in a correct manner. Control

point visibility determination is computationally expensive process. We propose

a method to reduce computational cost of the edge-based tracking by prepro-

cessing the visibility information of the control points. For that purpose, we use

persistent control points which are generated in the world space during prepro-

cessing step. Additionally, we use more accurate adaptive projection algorithm

iii

iv

for persistent control points to provide more uniform control point distribution

in the screen space.

We test our camera tracker in different environments to show the effectiveness

and performance of the proposed algorithm. The preprocessed visibility informa-

tion enables constant time calculations of control point visibility while preserving

the accuracy of the tracker. We demonstrate a sample AR application with user

interaction to present our AR framework, which is developed for a commercially

available and widely used game engine.

Keywords: Camera localization, augmented reality, vision-based camera tracking,

edge-based camera tracking.

ÖZET

ARTIRILMIŞ GERÇEKLİK İÇİN

MODEL TABANLI KAMERA TAKİBİ

Aytek Aman

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Uğur Güdükbay

Ağustos, 2014

Artırılmış gerçeklik (AG), gerçek ortamların sanal nesnelerle zenginleştirilmesidir.

AG kullanıcı deneyimi ve etkileşimini geliştirmek için çeşitli şekillerde kul-

lanılmaktadır. Eğitim uygulamaları, mimari görselleştirmeler, askeri eğitim

senaryoları ve eğlence amaçlı uygulamalar çoğu zaman daha gerçekçi bir tecrübe

yaşatmak amacıyla artırılmış gerçeklik yöntemleriyle desteklenir. Taşınabilir ci-

hazların gelişmesi ve ucuzlamasıyla birlikte bu tarz uygulamalar oldukça yaygın

hale gelmiştir.

Daha doğal AG tecrübesi yaşatmak adına dışsal kamera parametrelerinin

hatasız, güvenilir ve hızlı bir biçimde hesaplanması gerekir. Böylece, sanal

nesneler gerçek ortam görüntülerinin üzerine isabetli bir şekilde yerleştirilebilir.

Dışsal kamera parametrelerinin gerçek zamanlı tespiti zordur. Birçok kamera

takip çatısında, kamera parametrelerinin hesaplanması için temel yöntem olarak

görsel takip algoritmaları kullanılmaktadır. Görsel takip sistemlerinde anahtar

nokta ve kenar özellikleri poz hesabı için sıkça kullanılır. Zengin kaplamalı ortam-

larda anahtar nokta tabanlı metotlar iyi sonuçlar vermektedir ve yaygınca kul-

lanılmaktadır. Buna karşılık, kenar tabanlı takip yöntemleri geometri bakımından

zengin fakat kaplama açısından zengin olmayan ortamlarda daha çok tercih edilir.

Kenar tabalı takip yöntemiyle yapılan poz hesabı genel olarak model ke-

narlarında belirlenen kontrol noktalarını kullanır. Hatasız takip için bu nok-

taların görünürlüğü doğru bir şekilde hesaplanmalıdır. Kontrol noktalarının

görünürlüğünün belirlenme süreci hesaplama açısından masraflıdır. Kontrol nok-

talarının görünürlüğünü önceden hesaplayarak kenar tabanlı takip yönteminin

hesaplama masrafını düşürmek için bir yöntem öneriyoruz. Bu amaçla, ön

v

vi

işleme aşamasında dünya koordinat düzleminde belirlenmiş kalıcı kontrol nokta-

ları kullanmaktayız. Ek olarak, kalıcı kontrol noktalarının ekranda daha düzenli

dağılımını sağlayabilmek adına daha isabetli olan uyarlanabilir bir izdüşüm

yöntemi kullanıyoruz.

Önerdiğimiz algoritmanın performans ve kalitesini ölçmek için kamera

takipçimizi çeşitli ortamlarda test ettik. Önceden işlenmiş görünürlük değerleri,

takip kalitesinden ödün vermeden sabit zamanlı görünürlük hesabını mümkün

kılmıştır. Geliştirdiğimiz AG çatısı kullanıcı etkileşimi bulunan bir uygulamayla

sunulmuştur. Bahsi geçen uygulama çatısı, yaygın olarak kullanılan ticari bir

oyun motoru için geliştirilmiştir.

Anahtar sözcükler : Kamera konumlandırma, artırılmış gerçeklik, bilgisayarla

görüye dayalı kamera takibi, kenar tabanlı kamera takibi.

Acknowledgement

I would like to thank Prof. Dr. Uğur Güdükbay for his invaluable guidance

throughout my research. I am grateful to Prof. Dr. Bulent Özgüç and Prof.

Dr. Veysi İşler for kindly accepting to be in my thesis jury and for their valuable

comments and suggestions.

I would also like to thank my family and Dilara Albayrak for their continuous

support and encouragement.

Finally, I would like to thank The Scientific and Technological Research Coun-

cil of Turkey (TÜBİTAK) for providing me financial support for my M.S. studies.

The research described in this thesis is supported by The Scientific and Technolog-

ical Research Council of Turkey (TÜBİTAK) under grant no. EEEAG 112E110.

vii

Contents

1 Introduction 1

1.1 Motivation and Scope . 1

1.2 Contributions . 2

1.3 Thesis Organization . 3

2 Background and Related Work 4

2.1 Augmented Reality . 4

2.1.1 Interaction . 4

2.1.2 Rendering and Occlusions 5

2.1.3 Scene Preparation . 6

2.1.4 Sound and Haptic Feedback 6

2.2 Camera Localization . 7

2.2.1 Vision-based Methods . 7

2.2.2 Inertial Measurement Units 12

2.2.3 Hybrid Approaches . 12

viii

CONTENTS ix

2.2.4 Markers . 13

3 Tracking System 15

3.1 Preprocessing . 15

3.2 Initialization . 16

3.3 Real-time Tracking . 16

3.3.1 Model Projection and Control Point Generation 16

3.3.2 Locating Edges in the Video Feed 17

3.3.3 Formulating the Least Squares Problem 20

4 Improved Tracking 24

4.1 Persistent Control Point Generation and Projection 24

4.2 Exploiting View-dependent Information for Camera Tracking . . . 28

4.2.1 Visibility Information . 28

4.3 Additional Details of the Tracking System 30

4.3.1 View Frustum and Occlusion Culling 30

4.3.2 Silhouette - Non silhouette Edges 31

4.3.3 Motion Prediction . 31

4.3.4 System Overview . 32

5 Evaluation 34

5.1 Cached Visibility Tests . 34

CONTENTS x

5.1.1 Preprocessing . 34

5.1.2 Tracking . 35

5.2 Sample AR Application . 36

6 Experimental Results 37

6.1 Test Environment . 37

6.2 Cached Visibility Tests . 38

6.2.1 Preprocessing . 38

6.2.2 Tracking . 40

7 Conclusion 43

Bibliography 45

Appendices 50

A Software Packages Used in the Implementation 50

A.1 Unity Game Engine . 50

A.2 ALGLIB . 51

List of Figures

2.1 Types of markers: active marker (left), passive marker (right) . . 14

3.1 Sample 3D model: all edges (left), salient edges (right) 16

3.2 Locating edges in the video feed: model edges (blue), sample points

(red), sample point - located edge pairs (green) 19

4.1 The control points generated for two marker objects at the prepro-

cessing stage. 25

4.2 Control points generated using the persistent control point gener-

ation scheme and their storage in the array. The numbers below

the points are the depth of the points in the tree structure and the

numbers in the boxes indicate the order of generation. 25

4.3 Control points projected using using fixed marker edge length (top)

and control points projected using adaptive approach (bottom) . . 26

4.4 A subset of the control points are projected onto the video feed

and used for tracking. 27

4.5 Various types of edges for a cylinder object. Blue: non-salient, non-

silhouette edges; green: non-salient, silhouette edges; red: salient

edges. 32

xi

LIST OF FIGURES xii

4.6 The flow diagram of the improved camera tracking system. 33

5.1 Sample augmented reality application with physics interaction and

occlusion handling. 36

6.1 The scenes used to test the camera tracker. 38

6.2 3D models of the scenes that are used as natural markers for cam-

era tracking. 38

6.3 Estimation errors (in meters) of the first scene calculated with

respect to the baseline for varying 3D grid cell sizes. 40

6.4 Estimation errors (in meters) of the second scene calculated with

respect to the baseline for varying 3D grid cell sizes. 41

List of Tables

6.1 Visibility caching preprocessing times (in seconds) for the first

scene with respect to different 3D grid cell sizes and minimum

world sampling interval values . 39

6.2 Memory requirements of visibility caching (in megabytes) for the

first scene with respect to different 3D grid cell sizes and minimum

world sampling interval values . 39

6.3 Visibility caching preprocessing times (in seconds) for the second

scene with respect to different 3D grid cell sizes and minimum

world sampling interval values . 39

6.4 Memory requirements of visibility caching (in megabytes) for the

second scene with respect to different 3D grid cell sizes and mini-

mum world sampling interval values 39

6.5 MSE of trackers using visibility caching for the first scene with

different cell sizes . 40

6.6 MSE of trackers using visibility caching for the first scene with

different cell sizes . 41

6.7 Average processing times (in seconds) per frame using different

visibility testing methods. 42

xiii

LIST OF TABLES xiv

6.8 Average processing times (in seconds) per frame using different

visibility testing methods. 42

Chapter 1

Introduction

1.1 Motivation and Scope

Augmented Reality (AR) is the enhancement of real scenes by overlaying virtual

entities. It is mostly used for entertainment, education and architectural visual-

ization. High computational power of the modern hardware makes it possible to

run AR applications even in mobile devices such as cellphones and tablet com-

puters. With AR, it is possible to create and animate virtual characters in real

world environments, prepare educational and instructional applications where vi-

sual instructions directly appear on the devices, create complete visualizations of

historical buildings.

In order to provide immersive AR experiences, virtual entities should be cor-

rectly registered to the real world objects. To this end, intrinsic and extrinsic

camera parameters should be determined in a robust and accurate way. Camera

pose estimation process is often called as camera tracking. For camera tracking,

vision-based methods and Inertial Measurement Units (IMUs) are used exten-

sively. Edge-based and keypoint-based tracking are popular vision-based meth-

ods for camera tracking. Additionally, new tracking systems use depth based

tracking methods but such systems are less popular since most consumer type

mobile devices lack depth cameras.

1

In the presence of rich textured entities in the environment, keypoint-based

tracking methods can be employed for camera tracking. If the objects are geo-

metrically complex but contains little or no texture, edge-based tracking methods

can be used for pose estimation. Edge-based tracking systems rely on the con-

trol points that are defined on the model edges. For correct pose estimation,

visibility of these control points should be determined correctly. Visibility de-

termination process for control points requires extra computation time. With

limited resources of popular AR devices (tablets, mobile phones), this becomes a

problem. In this thesis, we propose a technique to perform constant time visibil-

ity determination for the control points in the simulation environment to reduce

computational cost of the tracking algorithm.

1.2 Contributions

The main contributions of this thesis are given as follows.

We use more accurate adaptive projection scheme for persistent control

points that are generated during preprocessing. This allows more evenly

distributed control points in the screen space along the projected marker

edges, thus, giving equal importance to the measurements across projected

edges. Such projection scheme is especially useful in cases where trackable

environment surrounds the camera and contain long edges.

We extend the previously proposed persistent control point scheme to pre-

compute visibility values of the persistent control points. We store visibility

values of the control points in spatial indexing structure which is a uniform

3D grid. In this way, visibility tests can be performed in constant time per

control point.

2

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 summarizes the works

related to augmented reality and camera tracking. Chapter 3 describes the edge-

based tracking process in detail. Chapter 4 elaborates the proposed methods

to improve the edge-based trackers. Chapter 5 explains the evaluation methods

that are used to assess the performance of the proposed methods, along with

the system parameters. Chapter 6 presents the test results for the proposed ap-

proaches using different configurations of the tracking system. Finally, Chapter 7

concludes with the discussion of the results and provides some possible directions

for future research.

3

Chapter 2

Background and Related Work

2.1 Augmented Reality

Augmented Reality (AR) is very active research field. High computational power

of modern hardware makes it possible to provide AR content on standard desk-

top computers and recent mobile devices like tablets and cell phones. In the

following sections, fundamental research areas related to the augmented reality

is summarized.

2.1.1 Interaction

Interaction in AR environments is a challenging research area. Interaction tech-

niques in many AR applications depend on the capabilities of touch screens on

mobile devices. Using touch inputs on the screen in which the real scene and

synthetics objects are displayed, users are expected to interact with the world.

Depth cameras that are used to detect human motion provide more immersive

interaction mechanism for AR environments. Recently, thermal touch input de-

vices are introduced. In thermal touch devices, users directly interact with the

real environment. Special cameras attached to the mobile devices detect user

input from the amount of heat transferred to the surface after the touch.

4

2.1.2 Rendering and Occlusions

Realistic rendering of virtual entities onto real-world imagery is still a challenge.

Real scenes exhibit complex surface characteristics due to illumination and ma-

terial properties. Local illumination models, such as Phong illumination model,

make the virtual objects look unnatural. Furthermore, in order to use even a

simple illumination model, light source information must be extracted from the

scene, such as the light position, color, and intensity. Similarly, realistic looking

shadows, ambient effects and diffuse light interactions provide enhanced immer-

sion for AR applications yet the existence of such effects depend on the correct

lighting parameters.

Extracting the illumination information received great amount of interest from

researchers. This problem is often called Inverse Illumination Problem, intro-

duced by Schoeneman et al. [1]. Wang et al. [2] estimate multiple directional

light sources from the objects with Lambertian reflectance. Their work relies on

the existence of the three dimensional (3D) model of the objects in the scene. For

light source estimation, surface shading and shadows are used. Xing et al. [3] use

a user-assisted approach to estimate lighting parameters. Their methods work

in real-time and adapts to changes in the illumination but it assumes that the

camera movement is limited to rotations. Lopez-Moreno et al. [4] estimate the

light parameters of the scene using a single image.

As a simple alternative, lighting setup of the AR scene can be constructed

manually. In this case, real world lighting can be approximated by tweaking the

parameters of the lighting setup, considering the light sources in the environment.

Additionally, for outdoor AR scenarios, position of the Sun can be detected with

the help of a Global Positioning System (GPS) receiver and compass.

Typical AR scenarios often contain motion blur due to fast camera movement.

In such cases, rendering (assuming camera tracking is successful) is more chal-

lenging. With standard rendering methods, virtual entities look detached from

the real environment due to blur in the background. Youngmin and Lepetit [5]

apply the perspective correct motion blur effect to the virtual entities to provide

5

a more realistic AR experience where the camera is moving rapidly.

In order to increase the realism in AR environments, physical phenomena,

such as reflections and refractions, can be utilized. Kan et al. [6] use ray tracing-

based techniques to render effects, such as caustics, refraction, reflection, and

depth of field, in an AR framework.

Occlusions are another important issue that must be handled for AR applica-

tions. Without proper occlusion information with respect to the camera, correct

overlaying of the virtual entities is impossible. 3D models of the environment is

often used to handle occlusions in AR frameworks. In its simplest form, these 3D

models are used as a depth mask and their depth value is recorded to a z-buffer.

After that, the virtual entities are drawn using a depth test.

2.1.3 Scene Preparation

Augmented reality scenes require varying amount of preparation beforehand.

For some frameworks, the 3D model of the environment has to be extracted

beforehand in order to use the system. The 3D model can be used for

tracking, handling occlusions, and it acts as a physical environment, for

example, to detect and resolve collisions with the virtual objects.

Many methods (e.g., keypoint based), require texture information of the

scene. Textures on the objects, along with the simple geometric information

about the scene, have to be provided. These textures are processed offline

and the keypoints are extracted. The extracted keypoints are used by the

vision-based tracker to estimate the camera pose.

2.1.4 Sound and Haptic Feedback

AR is not limited to the visual augmentation. Ideally, full-fledged AR scenario

must provide extra immersion to the user through sound and haptic feedback.

6

Haptic feedback is especially important and necessary for some AR applications,

including medical training and military education.

2.2 Camera Localization

Camera localization is the process of determining the extrinsic parameters of the

camera. The extrinsic camera parameters are the position and orientation of

the camera. The camera parameters can be represented using a transformation

matrix where R is the 3×3 rotation matrix and T is the 1×3 translation matrix.

M =

[

R T

0 0 0 1

]

The camera parameters can be computed using vision-based methods and

Inertial Measurement Units (IMUs). In this section, we will describe the existing

camera localization methods.

2.2.1 Vision-based Methods

Vision-based methods make use of the camera image that is available to locate

the camera in the scene. RGB cameras are widely used for this task. RGB-

D cameras are becoming increasingly popular due to their low costs. RGB-D

cameras provide additional depth information along with the color information.

Depth information can be used in different ways to locate the camera in the scene.

In order to locate the camera in the scene, markers can be placed in the

environment. These markers contain discriminative properties that make the

tracking process fast and accurate. This type of tracking is called marker-based

tracking. Tracking can be performed without markers where the environment

itself has discriminative features like edges, key points, and rich geometry. Such

tracking methods are called markerless (or natural marker-based) methods.

7

2.2.1.1 Edge-based Tracking

Edge-based methods rely on edges that can be detected in the video feed.

Most approaches need an actual edge information of the objects to be tracked.

RAPID [7] is one of the earliest model-based tracking system. In each frame,

using the prior camera pose, control points on model edges are projected on the

camera image. Then, the nearest edge is searched in the image in the direction of

the corresponding edge normal and the distance of the nearest edge is recorded

per control point. The transformation matrix that will minimize these set of

distances can be calculated using a least squares solver. Rapid uses very small

number of control points thus it can run on very modest hardware. Additionally,

edge polarity is used to minimize the false detection of the edges and unreli-

able control points can be ignored to make the tracker robust in the presence of

occlusions. Gennery [8] also developed a method in the same spirit as RAPID.

Gennery elaborates on weight assignment to the tracking points that are sampled

from the model edges. It is stated that the tracking points that are easily and

uniquely detectable are more reliable, and hence, their associated weight values

must be higher.

After RAPID, different edge-based tracking systems are developed. Com-

port et al. [9] use a very similar edge-based method for tracking. In order to

detect edges in the image, they use the moving edge detector developed by

Bouthemy [10]. They emphasize that tracking with moving edges are more re-

liable because sample-point-based trackers might falsely follow different features

or noise in the video feed. The tracker developed by Petit et al. [11] uses edge

features to improve robustness. The color statistics around the edge are gath-

ered dynamically and used for verification in the successive frames to prevent

mismatches between the model edges and the actual edges.

Wuest et al. [12] propose an adaptive learning strategy for edge features to

eliminate edges detected incorrectly. Learning is carried out at sample point level

and each sample point stores its appearance on the one-directional search path.

To make their system work properly, they generate sample points adaptively in

a tree-like manner. Sample points are directly assigned in the 3D model itself

8

and they are projected onto the image until a relatively equal distribution on

the projected edge is accomplished. The system selects the best edge location

based on the prior appearance information when multiple edges are detected on

the search path of the sample point. The accurate detection of edge locations

increases the accuracy of the tracker.

2.2.1.2 Keypoint-based Tracking

Keypoint-based tracking involves detecting points that have distinctive proper-

ties. Such keypoints are invariant to rotation, scaling and illumination changes

to a certain degree. Therefore, keypoints can be detected over different frames

and the camera motion can be estimated using the correspondences between the

frames.

In the literature, there are different keypoint detection algorithms. Scale-

Invariant Feature Transform (SIFT) is one of the standard keypoint detection

methods [13]. Difference of Gaussians (DoG) are used to locate the keypoints

in the image. Then, a set of orientation histograms are calculated around each

keypoint. Using these histograms, a highly descriptive feature vector of 128 el-

ements are formed. Speeded Up Robust Features (SURF) is another keypoint

detector (and descriptor) [14]. It is faster than SIFT yet still very robust. Im-

age operations are performed on precalculated integral images; this increases the

performance dramatically. Features from Accelerated Segment Test (FAST) is a

feature detector based on a very simple mechanism [15]. It uses pixels that form

a ring around the keypoint with a small radius, thus, very few pixels have to be

queried. FAST performs faster (only for keypoint detection) than both SIFT and

SURF and it is very suitable for real time applications. Features from Acceler-

ated Segment Test-Enhanced Repeatability (FAST-ER) [16] is an enhancement

over FAST, which increases the repeatability rate of the FAST detector. Ferns

is a keypoint classification technique that is used to classify points that exhibits

a planar structure [17, 18]. Using Ferns, keypoints are classified using binary

intensity comparison tests with the points around the keypoint specified by two

9

random offsets. It provides a scalable solution for keypoint matching. The accu-

racy of the method can be increased by performing more binary tests with the

expense of computational cost and vice versa. Binary Robust Independent Ele-

mentary Features (BRIEF) [19] is a feature descriptor that is inspired by Ferns.

The classification depends on the efficient binary tests as in Ferns, yet in BRIEF,

the feature descriptor is encoded using a bit vector.

Wagner et al. [20] state that the SIFT and Ferns features can be combined

for efficient and robust tracking. They use modified versions of SIFT and Ferns,

which is more suitable for devices with low computational power. Template-based

tracking is another approach that they fuse into their tracker. It is stated that the

orthogonal strengths and weaknesses between the template-based tracking with

SIFT and Ferns makes the combination of three even more robust for tracking

purposes.

Frame-to-frame correspondences that are calculated using keypoints can be

used to estimate the camera motion. RANSAC [21] is a fundamental technique to

remove outlier measurements that is the result of falsely matched keypoint pairs

among the frames. Keypoints can be used to calculate the optical flow among

frames. The optical flow is then used to estimate the camera motion.

Commercial AR frameworks such as Vuforia [22] and Metaio [23] extract fea-

tures on texture-rich objects with a well-defined structure, e.g., cubes, cylinders,

planes. Because the geometry of the objects are known beforehand, the keypoints

that are extracted can be located in the 3D scene. These systems then estimate

the camera pose by searching and matching these feature points in the video

feed. It should be noted that the keypoints may not be detectable in some en-

vironments. Feature extraction on textureless environments is not possible; the

tracking methods that depend on the existence of keypoints fail in such scenes.

2.2.1.3 Depth-based Tracking

Recently, depth sensors become widely available and cheap as consumer prod-

ucts. As a result, depth sensors become an effective tool for camera localization.

10

A typical depth sensor provides the depth information for a scene. The depth

information can be used for both camera localization and for environment map-

ping. With high computational power of the modern hardware, it is possible

to perform environment mapping and camera localization simultaneously. Such

methods are called Simultaneous Localization and Mapping (SLAM). In a typ-

ical SLAM scenario, the depth camera is moved and rotated around the scene

slowly. With the incoming depth data, the parts of the scene are constructed.

As the camera moves around, the new depth data arrives. Because the camera

movement is slow, the new depth data partly overlaps with the old data. Similar

depth data is processed so that the correspondences are found between successive

frames. These correspondences are used to find the relative camera transforma-

tion across frames. The depth data that does not resemble the depth data of the

previous frame is considered as new data and added to the environment data.

This method facilitates the reconstructon of the real scenes.

During SLAM, the depth information is often processed as a point cloud. The

correspondences between the two point clouds can be calculated using the Iter-

ative Closest Point (ICP) algorithm or other similar algorithms. Robust tools

are available for SLAM. Kinect Fusion [24] is such a tool that is used for scene

reconstruction. Six DOF camera parameters are tracked in real-time using Graph-

ics Processor Unit (GPU) supported ICP algorithm while the 3D scene is con-

structed. Kinect Fusion can export the underlying scene data as a triangular

mesh, which can be used for various purposes.

SLAM approach can also be employed using a standard RGB camera. Davi-

son [25] uses Structure-from-Motion (SFM) approach for this purpose. Starting

with a small number of keypoints, the camera is tracked and the new features

are added to the environment. As opposed to the previous approaches, Davison’s

method works in real-time, thus very suitable for interactive AR applications.

Newcombe et al. [26] extend this work by generating a simple mesh represen-

tation of the environment and constructing a high resolution mesh of the same

environment. High resolution mesh generation makes it possible to handle oc-

clusions and physical interactions accurately. Salas-Moreno et al. [27] extend the

SLAM paradigm to the object level. Pre-existing 3D object database is used to

11

locate the objects and track the camera in real-time.

2.2.2 Inertial Measurement Units

Modern tracking systems often use extra sensory devices for more accurate and

robust tracking. Accelerometer measures acceleration, which can be used to lo-

cate the camera in an AR scene. Gyroscope measures the rotation rate, which

is useful to determine the orientation of the camera for AR applications. GPS

sensor is another device that helps locating the camera. The positioning accuracy

of the GPS is relatively low, thus it is only used in applications that does not

require the exact location information. Many mobile devices are equipped with

similar sensory devices; the tracking systems depend on them for accurate and

robust camera localization along with the vision-based methods. The majority

of these devices do not provide absolute position and orientation values. The po-

sition and orientation information is often calculated through integration of the

relative values supplied by the sensory devices. This causes drift in measurements

as the tracking continues. Such characteristics of the sensory devices make them

inaccurate. To alleviate this issue, the measurements of the sensory devices are

combined with the measurements of the vision-based methods.

2.2.3 Hybrid Approaches

Hybrid approaches combine different tracking techniques to provide robust and

efficient tracking. Rosten et al. [28] combine edge and keypoint-based tracking

methods so that the resulting tracker becomes more reliable. They use FAST

keypoint detector for high performance detection of the features. State et al. [29]

combine the magnetic tracking and the vision-based tracking. Their tracking

system uses magnetic tracking devices for rough pose estimation. The accuracy

of the estimation is further improved by using a vision-based tracker. Their

vision-based tracker use simple circular shaped and colored markers.

12

Hybrid approaches use different methods to combine the measurements of dif-

ferent trackers and devices. One of the most popular algorithms for this purpose

is the Kalman filter [30]. Essentially, the Kalman filter combines different input

measurements and produces a more reliable output measurement. Every input

measurement is given a weight, thus have a varying effect on the final measure-

ment. The input measurement weights are dynamically adjusted according to

the variance in the input measurements. The Kalman filter is a linear filter; its

Non-linear variant is called the Extended Kalman Filter (EKF). The EKF is used

in many tracking methods to combine different sensory inputs for robust and ac-

curate camera localization. Reitmayr et al. [31] use edge-based tracker along with

the gyroscope, gravity, and magnetic field measurements. The measurements are

combined using an EKF for robust and accurate tracking. Similar to the previous

approaches, Klein et al. [32] combine the inertial measurement units and visual

tracking. However, their method differs on the usage of the inertial sensor. They

use inertial sensor output to predict motion blur. They adjust the edge search

method according to the motion blur direction so that the edge localization is

robust and accurate under blurry video feed.

2.2.4 Markers

Markers are gizmos or textures that can be detected and identified easily by the

sensors. Most AR systems needs markers to be placed in the environment so

that the camera pose can be estimated. Active markers are simple and compact

devices that emits light. Special cameras designed for that purpose can detect

and identify these markers. Passive markers are generally feature-rich objects or

simple colorful objects that can be detected and tracked easily. Passive markers

are tracked by the vision-based systems. In some cases, passive markers may need

to be placed in the environment. Alternatively, the scene itself can be used as a

marker (natural marker). Such systems are more preferable because the resulting

AR experience is more natural.

13

Figure 2.1: Types of markers: active marker (left), passive marker (right)

14

Chapter 3

Tracking System

Our tracking system is based on the methods described in [7, 8], which uses

visible edges as features to be tracked. In a very broad sense, the screen space

algorithm is used to minimize the distance between the projected edges of the

model and the edges that are located in the image retrieved from the video feed.

The minimization is performed using a least squares solver. The following sections

describe the tracking system in detail.

3.1 Preprocessing

We assume that the coarse 3D model of the environment is available as a collection

of triangular faces. The 3D model is analyzed and edges are extracted from

the model. Edge detectability in the video feed is often correlated with angle

difference of the normals of the neighboring faces. Thus, the edges that are

shared among faces can be ignored if these faces are on the same plane or the

angle between normals of these faces are below a certain threshold. This angle

threshold is denoted as Amin. Additionally, edges that are too short or too long

can be ignored using the threshold values Lmin and Lmax. Extracted edges are

then used by the tracking algorithm for camera pose estimation. Figure 3.1 shows

a sample 3D model where all edges of the model are shown in green and the salient

15

edges that are extracted in the preprocessing step are shown in red.

Figure 3.1: Sample 3D model: all edges (left), salient edges (right)

3.2 Initialization

Model edges are not directly associated with their counterparts in the video feed.

Additionally, the edge search is performed in a small range in the direction of

the projected edge normal. Thus, camera must be positioned and oriented before

tracking so that the projected edges of the model should coarsely match their

counterparts in the image.

3.3 Real-time Tracking

The camera pose is recalculated every time a video feed is updated. Upon arrival

of a new image through the video camera, the steps followed are as follows.

3.3.1 Model Projection and Control Point Generation

When a new image is retrieved from the video feed, the 3D model is projected

onto the image using the last estimated position and orientation of the camera.

The matrix M for this transformation is calculated using Equation 3.1.

16

M = WP V, (3.1)

where V is the view matrix (the inverse transformation matrix of the camera).

This matrix is calculated using the previous estimate of the camera parameters

(position and rotation). P is the projection matrix that transforms points in the

view-space to the normalized device coordinate space. W is the viewport matrix

that converts normalized coordinates into the coordinates in the screen space.

It should be noted that some edges of the model will be outside of the viewing

frustum of the camera. Such edges need to be culled and clipped before projection.

For this purpose, edges that are completely outside of the viewing frustum are

culled. Edges that are partially outside the viewing frustum are clipped. Clipping

and culling can be performed by using simple intersection tests.

After the edges in the viewing frustum are determined, they are projected onto

the camera image with the matrix M . The projected edges are then sampled at

regular intervals as control points and the visibility of these points are determined

by using raycasting, which is performed on the available 3D model of the scene.

Once all visible control points are determined, the algorithm proceeds with the

edge localization.

3.3.2 Locating Edges in the Video Feed

For each control point, an intensity discontinuity is searched in the image. Let Ci

be the ith control point that is projected. The search direction for control point

Ci is denoted as ~Ni. The search direction for a control point is the normal vector

of the edge (in screen space) that contains control point Ci. Starting from the

location of control point Ci, pixel intensity discontinuities are searched along the

path in the direction of the vector ~Ni. The intensity of a pixel is the weighted sum

of its RGB components. The intensity for pixel p is calculated using Equation 3.2.

Ip = 0.29Rp + 0.59Gp + 0.12Bp. (3.2)

17

For performance considerations, we use an approximation of Equation 3.2, as

given in Equation 3.3.

Ip = 0.25Rp + 0.5Gp + 0.25Bp. (3.3)

Equation 3.3 can be realized using bit shift and add operations; this leads to a

performance gain in the implementation. Before searching for an edge, the RGB

pixel buffer (three element per pixel) can be converted into pixel intensity buffer

(one element per pixel) or pixel intensities can be calculated on demand. Both

approaches have small performance implications with respect to the parameters

such as the number of control points and the resolution of the video feed. Since

the normals are not necessarily parallel to the x or y axes in the image coordinates,

the queried locations might not fall exactly on the center of a pixel. Different

methods can be used to handle this issue:

The naive approach is to directly use the pixels that contain the sampled

points along the search path. In this approach, the pixel intensity values

might be duplicated because successive points that are sampled along the

search path may fall on the same pixel.

Another approach is to start from the center of a pixel of the initial sample

point and to use the search direction that is rounded to the nearest 45 de-

grees. This method guarantees that the points that are sampled along the

search path will fall exactly on the pixel centers [33].

Alternatively, the bilinear interpolation can used to calculate the pixel inten-

sity around the point. The bilinear interpolation averages four neighboring

pixels, therefore it eliminates image noise to some extent. This method is

computationally more expensive than the previous two approaches because

four pixels are fetched instead of one and a weighted averaging is performed.

The image noise in the video feed can interfere with the edge detection. To

alleviate this issue, smoothing filters are used. After the image is processed with

18

a smoothing filter, edge search is performed in the smoothed image. Since only

the pixels that are on the search paths are queried, a full frame smoothing can

be avoided. For that purpose, the filtering is only performed while querying a

pixel. However, when a control point is projected to a large area, full frame filter

can be more efficient since such filters benefit from cache locality during image

processing.

For better localization of the edges in the video feed, only local peaks of the

intensity differences are taken into the account. For this purpose, the previous

intensity differences have to be recorded during edge search. To make the edge

localization process robust to image noise and other features that may be reported

as intensity discontinuities, a threshold value is used. The intensity difference

values below this threshold are ignored.

Once such an intensity discontinuity is found between two consecutive points

on the search path, the halfway point between these two points is recorded as a

intensity discontinuity position for the corresponding control point. This point is

denoted by Ti. If such a discontinuity cannot be found, then the corresponding

control point is excluded from further consideration. Figure 3.2 shows the model

edges, control points and the located edges in a video feed.

Figure 3.2: Locating edges in the video feed: model edges (blue), sample points
(red), sample point - located edge pairs (green)

19

3.3.3 Formulating the Least Squares Problem

The correct camera pose can be represented by a transformation matrix relative

to the previous camera pose, which align all control points with their target

discontinuity points detected in the video feed. Thus, the correct camera pose

will minimize the expression in Equation 3.4.

n
∑

i=1

|Si − Ti|
2, (3.4)

where n is the number of control points that have a valid intensity discontinu-

ity position associated with it. The camera pose is represented with a column

matrix (X) of six parameters. The matrix X is the combination of the relative

translation and rotation values:

X =

Tx

Ty

Tz

Rx

Ry

Rz

.

Each parameter is associated with a transformation of the control points along

the principal axes in a certain amount. For six different unit motions of the

camera, these transformations have to be calculated and stored in a different

matrix. For example, the unit translation along the y axis can be represented as

follows.

20

X =

0

1

0

0

0

0

.

The new transformation matrix is formed using the relative transformation

matrix X. The translation amount of the control point in the direction of the

corresponding edge normal is calculated using Equation 3.5.

M j
i = (Cj

i − Ci) · ~Ni, (3.5)

where Cj
i is the new location of the ith control point under the transformation

generated by the jth unit camera motion (only the jth element of the matrix X

is one and the remaining elements are zero). It should be noted that these trans-

formations are not linear with respect to the elements in the camera parameter

matrix X. However, it is assumed that they are linear for small motions of the

camera. This assumption enables us to use the simple least squares solver to

estimate the camera parameters.

Equation 3.4 is used to populate the measurements matrix A, which is given

below. Mi,j stands for the ith control point motion that is generated by the jth

unit camera motion where n is the total number of control points that are sampled

on the projected edges.

A =

M1,1 M1,2 M1,3 M1,4 M1,5 M1,6

M2,1 M2,2 M2,3 M2,4 M2,5 M2,6

· · · · · ·

· · · · · ·

· · · · · ·

Mn,1 Mn,2 Mn,3 Mn,4 Mn,5 Mn,6

.

21

Signed distances between the sample point positions and the corresponding

intensity discontinuity positions are used to populate the matrix B. The distance

Di for a control point Ci is calculated as follows.

Di = (Ti − Ci) · ~Ni. (3.6)

The matrix B then can be expressed as follows:

B =

D1

D2

·

·

·

Dn

,

where n is the number of sample points that have a valid intensity discontinuity

position associated with it. After matrices A, X, and B are populated, the

following linear system needs to be solved.

AX = B. (3.7)

Since the system is overdetermined (n > 6) there will not be an exact solution.

Therefore, the objective function given in Equation 3.4 should be minimized.

Additionally, weights can be incorporated to this linear system. The weights

determine the effect of the measurements on the solution. Measurements with

larger weights have more impact on the final solution and measurements that

have a zero weight are ignored. To use the weighted least squares, Equation 3.4

should be modified as follows:

n
∑

i=1

wi|Si − Ti|
2, (3.8)

22

where wi is the weight of the i
th measurement. Now, the system of linear equations

to be solved becomes

A WX = WB, (3.9)

where W is the diagonal matrix populated with the weights assigned to the mea-

surements. The matrix W is given as follows.

W =

w1 0 0 · · ·

0 w2 0 · · ·

0 0 w3 · · ·

· · · · · ·

· · · · · ·

· · · · · wn

.

Weights can be assigned using different methods. It is often convenient to

assign weights according to the reliability of the measurements. As it is described

in Drummond’s work [34], measurement weights can be linearly reduced to zero

as they approach to the image boundaries. This prevents rapid changes to the

estimation of the camera pose due to appearing/disappearing edges near image

borders.

23

Chapter 4

Improved Tracking

The system described in the previous chapter is the bare bones of the edge-

based tracking system. In the following section, persistent control point scheme is

explained in detail and a method for projecting persistent control points in screen

space is given. After that, constant time visibility determination mechanism is

proposed which makes use of persistent control point scheme.

4.1 Persistent Control Point Generation and

Projection

Many typical edge-based tracking systems use on-the-fly control point generation.

Control points are assigned to the edges in screen space at regular intervals during

runtime and measurements are made for these points. Such control points are not

persistent across frames. We use an persistent control point generation scheme

for reasons that will be described. This mechanism is first proposed by [12]. The

persistent control point generation scheme relies on preassigned control points

in the world space. In the preprocessing step, after salient marker edges are

identified, edges are sampled in recursive manner until distance between two

control point is below a certain threshold. This threshold is called as minimum

24

world sampling interval, which is defined in the world space units. Figure 4.1

shows the control points generated for two marker objects. The control points

are then stored in an array, starting from the root control point, similar to a heap

array storage scheme (see Figure 4.2).

Figure 4.1: The control points generated for two marker objects at the prepro-
cessing stage.

Figure 4.2: Control points generated using the persistent control point generation
scheme and their storage in the array. The numbers below the points are the
depth of the points in the tree structure and the numbers in the boxes indicate
the order of generation.

During tracking, the precomputed control points are projected onto the video

feed using an adaptive strategy so that control points are evenly distributed along

the projected marker edge. Wuest et al.[12] determine the number of control

points that are to be projected considering the projected length of the marker

edge. Different from their approach, we use an adaptive projection scheme so

that the control points are evenly distributed when distortions due to perspective

projection are prominent. These approaches are demonstrated in figure 4.3.

25

Figure 4.3: Control points projected using using fixed marker edge length (top)
and control points projected using adaptive approach (bottom)

The effects of such distortions depend on the tracking environment. If the

camera is focused on a small marker object which is centered on the screen, the

adaptive projection strategy is not needed. However, when the environment is

used as a marker surrounds the camera (e.g., the room as a natural marker), this

approach generates more evenly distributed control points. We project a subset

of the control points onto the video feed to be used for tracking (see Figure 4.4).

The adaptive control point projection algorithm uses a threshold value in pix-

els called minimum screen sampling interval. The algorithm starts by calculating

the projected length of the initial marker edge. If the projected edge length is

above this value, the first control point is projected and stored for further calcu-

lations and the marker edge is divided into two equal pieces. The algorithm then

continues in a recursive manner for these edges until the termination criteria is

met (all of the projected subdivision edge lengths are below the threshold). If no

precomputed control point exists for the line segment, the algorithm terminates

26

Figure 4.4: A subset of the control points are projected onto the video feed and
used for tracking.

for that node. Additionally, if start and end points of the line segment lies in

the same region in space which is defined by the frustum planes, the algorithm

terminates since none of the control points in that segment will be visible on

screen.

The persistent control point generation scheme has some advantages over an

on-the-fly control point projection scheme:

Precomputed control points are permanent and extra information can be

stored along these control points. Extra information can be used to increase

the performance, accuracy, and robustness of the tracker.

Precomputed control points have fixed positions in the world space. This

property allows view dependent information to be stored easily. For exam-

ple, visibility tests can be cached using this approach. This can be achieved

by storing visibility state of the points in some space subdivision structures

like 3D grid or spatial trees.

27

4.2 Exploiting View-dependent Information for

Camera Tracking

Control points have view-dependent features that can be used to improve camera

tracking. We cache the view dependent properties of the control points by using

a simple axis aligned 3D grid. The boundaries of the 3D grid are specified by

the user (application developer) by considering the expected movement limits of

the camera. Similarly, the cell size of the grids can be specified by the user but

it is possible to adjust grid cell size automatically with respect to the memory

requirements. Below, visibility determination process for a control point is given

which is used to reduce computational cost of the camera tracker.

4.2.1 Visibility Information

Visibility tests are performed at every frame for the candidate control points

for projection. For a small number of control points, this operation has little

overhead. However, when number of control points is high, it has a detrimental

effect on the system performance. To make visibility tests faster, the visibility

state of each control point can be cached for different camera configurations.

After the construction of the 3D grid, a ray is cast from the center of each

cell to all control points originating from that cell. If the ray hits a surface before

arriving at the position of the control point, that control point is marked as

invisible. Otherwise, the control point is marked as visible. Because the visibility

tests are performed for all control points, a bit mask of n bits is allocated for each

cell where n is the total number of control points generated for the marker during

the preprocessing stage. Each control point is assigned a unique id between 0

and n − 1. The size of the grid cell determines the accuracy of the visibility

caching. Small cells provide more accurate visibility information while increasing

the memory usage and computation time. To reduce the memory consumption,

the bit masks that store the visibility information can be merged. The cells that

are close to each other have often identical bit masks. By detecting these bit

28

masks, duplicate ones can be removed, thus reducing the memory consumption.

Such merging procedure can be performed in a similar way as the bottom-up

octree construction. During the 3D grid construction, some cells overlap with

the scene geometry that is used as a marker. These cells are ignored during

the 3D grid construction to avoid additional memory usage because the visibility

information in these cells are invalid.

During tracking, visibility information can be queried by first finding the cell

that the camera belongs to, and then querying the bit associated with the control

point. Finding the cell that contains the camera location is a constant time

operation because a uniform 3D grid is used. Cell indices i, j, k can be calculated

using Equation 4.1.

i = ⌊(Cx −Ox)/s⌋

j = ⌊(Cy −Oy)/s⌋

k = ⌊(Cz −Oz)/s⌋

(4.1)

where C is the position of the camera, O is the origin of the 3D grid, and s is the

cell size. If the camera is out of the boundaries of the 3D grid, cached visibility

tests cannot be performed. In this case, we use online raycasting as a fallback

method to determine the visibility of a control point.

In an AR simulation environment, some extra occluders can be defined. These

occluders are not treated as natural markers (due to their characteristics, such as

lack of trackable edges). Such objects are also included in the visibility calcula-

tions and contribute to the visibility determination for the control points.

Once 3D grid is constructed to store visibility states of the control points, it

can be used for tracking purposes multiple times until scene configuration (3D

grid parameters and control point generation parameters) is changed. Otherwise,

visibility states for the control points must be calculated again.

29

4.3 Additional Details of the Tracking System

We discuss some methods concerning the real-time tracking process, which are

used to improve camera tracking.

4.3.1 View Frustum and Occlusion Culling

Before control points are projected onto the video feed, invisible parts of the edges

should be determined. A visibility of an edge is affected by two factors.

Frustum culling: Edges that are outside of the view frustum are ignored. If an

edge is party visible in the view frustum, it is clipped to the view frustum.

Then, only the control points which are in the visible part of the edge are

projected onto the video feed.

Occluder geometry: Edges can be occluded by marker geometry and extra oc-

cluder geometry. For such cases, visible edge parts are not calculated. In-

stead, visibility tests are carried out for control points directly.

Additionally, the edges that connect two back-facing triangles are ignored

because they are invisible to the camera. These edges satisfy the following in-

equalities (Equation 4.2).

(
−−−−−→
PE − Pc) · ~Na > 0,

(
−−−−−→
PE − Pc) · ~Nb > 0,

(4.2)

where Pc is the position of the camera, PE is the center of edge E in the world

coordinates, and ~Na and ~Nb are the normals of the faces that meet on edge E.

30

4.3.2 Silhouette - Non silhouette Edges

Silhouette edges separate the object from its background. The edges that form

the silhouette of a polygonal object is the subset of the edges of the polygonal

object. An edge is a part of the silhouette, if it satisfies the following inequality

(Equation 4.3).

((
−−−−−→
PE − Pc) · ~Na) ((

−−−−−→
PE − Pc) · ~Nb) < 0, (4.3)

where Pc is the position of the camera, PE is the center of edge E in the world

coordinates, and ~Na and ~Nb are the normals of the faces that share edge E. Note

that Equation 4.3 may not be valid if the object is not convex.

In most cases, silhouette edges can be detected reliably because they separate

the object from the background. Therefore, control points that belong to silhou-

ette edges can be assigned with higher weight values. For silhouette edges, weight

value of the corresponding control points are set as 1 while for non-silhouette

edges, weight value is set to 0.5.

It should be noted that some edges that do not pass the saliency threshold

in the preprocessing stage can still be a silhouette edge in a different camera

configuration. Thus, during the projection stage, all edges must be considered

as a candidate for the control point generation. If an edge is both non-salient

and non-silhouette, it is ignored. But, if it is a silhouette edge, regardless of its

saliency value, the control points of the edge are projected onto the video feed

and used in the camera pose estimation. Figure 4.5 illustrates various types of

edges for a cylinder object.

4.3.3 Motion Prediction

During camera pose estimations, the camera position and orientation can be used

to calculate the linear and angular velocity of the camera. The linear and angular

velocities are then used to predict the camera parameters in the next frame. This

31

Figure 4.5: Various types of edges for a cylinder object. Blue: non-salient, non-
silhouette edges; green: non-salient, silhouette edges; red: salient edges.

is beneficial when the camera moves and rotates at a high speed, which may cause

the tracker to fail because the edge search in the video feed is limited to the local

neighborhood.

4.3.4 System Overview

The flow diagram of the camera parameter estimation process with persistent

control point generation and exploiting view-dependent information is depicted

in Figure 4.6.

32

Figure 4.6: The flow diagram of the improved camera tracking system.

33

Chapter 5

Evaluation

We evaluate the proposed camera tracking approach in terms of cached visibility

determination during the preprocessing and runtime tracking stages.

5.1 Cached Visibility Tests

Cached visibility testing method is evaluated for its preprocessing cost, tracking

accuracy and performance. Details of these evaluation methods are given in the

following sections.

5.1.1 Preprocessing

In order to evaluate the preprocessing cost of the cached visibility tests, differ-

ent marker setups are prepared with varying minimum world sampling intervals.

The 3D grid for visibility caching is constructed using different cell sizes and

preprocessing times are measured for different setups. Additionally, memory re-

quirements of these setups that are built with different parameters are calculated.

34

5.1.2 Tracking

To measure camera tracking accuracy, two videos are recorded where the camera

is moved and rotated in the AR environment and tracking is performed on pre-

recorded video sets. Then, estimated camera parameters are recorded for each

frame without using cached visibility tests and considered as a baseline measure-

ment. After that, camera tracking is performed with cached visibility tests on

a 3D grid constructed with different cell sizes and estimated camera parameters

are recorded for each frame. Estimation errors are recorded per frame with re-

spect to the baseline measurement. Additionally, mean square errors (MSE) are

calculated for these measurements with respect to the baseline measurement. Fi-

nally, the average processing costs per frames are presented for both online and

offline visibility determination methods. The parameters that affect the cost and

accuracy of the cached visibility tests are summarized below.

Marker and occluder geometry: Marker geometry determines the number of

salient edges thus have an effect on the number of generated control points.

Preprocessing time and memory usage increase as number of generated

control points increases since visibility tests are performed for each control

point.

Minimum world sampling interval: The number of generated control points are

determined by the minimum world sampling interval, thus has an effect on

the preprocessing time and memory usage.

3D grid and cell size: Visibility tests are performed for each cell and number

of cells are determined by the 3D grid and the cell size. Smaller cells yield

more accurate camera tracking but increases the preprocessing time and

memory usage.

35

5.2 Sample AR Application

To demonstrate camera tracker’s performance and usability in AR environments,

we developed an augmented reality application within our framework where the

user can interact with the environment by creating virtual entities which physi-

cally interact with the environment. For this purpose, marker geometry is defined

as a collision geometry. Similarly, to handle occlusions for rendering, marker ge-

ometry is also defined as an occluder.

Figure 5.1: Sample augmented reality application with physics interaction and
occlusion handling.

36

Chapter 6

Experimental Results

6.1 Test Environment

The videos used in the experiments are recorded using a standard web-cam with

display resolution of 640 ×480 at 30 fps. Tests are performed on a machine

with Intel i7-3840QM (8Mb Cache, 2.8Ghz Clock) processor, 16Gb Ram, Nvidia

Quadro K3000 Graphics Processing Unit (GPU). The Augmented Reality frame-

work is completely built on the Unity Game Engine.

For evaluation purposes, two scenes with natural markers are prepared. The

first scene contains two simple objects (a triangular prism and a cube) on a

table. The marker objects in the first scene contain 36 triangles. In the salient

edge extraction stage, 30 edges are extracted. The second scene contains five

miniature building models on a base. The marker objects in the second scene

contain 92 triangles. In the salient edge extraction stage, 72 edges are extracted.

These scenes are shown in Figure 6.1. The 3D models of these environments that

are used as a natural markers are shown in Figure 6.2. The size of the 3D grid

constructed for visibility caching in both scenes is 1.0 × 0.5 × 1.0.

37

Figure 6.1: The scenes used to test the camera tracker.

Figure 6.2: 3D models of the scenes that are used as natural markers for camera
tracking.

6.2 Cached Visibility Tests

6.2.1 Preprocessing

Table 6.1 presents the preprocessing times of visibility caching for the first scene.

Table 6.2 shows memory requirements for the first scene. Table 6.3 presents the

preprocessing times of visibility caching for the second scene. Table 6.4 shows

memory requirements for the second scene.

38

minimum world sampling interval

0.0050 0.0750 0.0100 0.0125 0.0150

cell size

0.025 45.197 23.743 22.343 12.025 11.351
0.050 5.583 3.061 2.758 1.489 1.431
0.750 2.005 1.052 0.959 0.537 0.492
0.100 0.706 0.369 0.348 0.187 0.182

Table 6.1: Visibility caching preprocessing times (in seconds) for the first scene
with respect to different 3D grid cell sizes and minimum world sampling interval
values

minimum world sampling interval

0.0050 0.0750 0.0100 0.0125 0.0150

cell size

0.025 55.2 28.6 27.1 14.4 13.8
0.050 6.9 3.5 3.3 1.8 1.7
0.750 2.3 1.2 1.1 0.6 0.5
0.100 0.8 0.4 0.4 0.2 0.2

Table 6.2: Memory requirements of visibility caching (in megabytes) for the first
scene with respect to different 3D grid cell sizes and minimum world sampling
interval values

minimum world sampling interval

0.0050 0.0750 0.0100 0.0125 0.0150

cell size

0.025 47.985 28.055 22.785 14.886 12.485
0.050 6.088 3.508 2.922 1.886 1.593
0.750 2.026 1.172 0.981 0.646 0.547
0.100 0.739 0.427 0.359 0.235 0.199

Table 6.3: Visibility caching preprocessing times (in seconds) for the second scene
with respect to different 3D grid cell sizes and minimum world sampling interval
values

minimum world sampling interval

0.0050 0.0750 0.0100 0.0125 0.0150

cell size

0.025 40.8 23.3 19.4 13.0 10.6
0.050 5.1 2.9 2.4 1.6 1.3
0.750 1.7 0.9 0.8 0.5 0.4
0.100 0.6 0.3 0.3 0.2 0.1

Table 6.4: Memory requirements of visibility caching (in megabytes) for the sec-
ond scene with respect to different 3D grid cell sizes and minimum world sampling
interval values

39

6.2.2 Tracking

Figure 6.3 depicts the camera position estimation errors across frames for the

first scene. The errors are calculated with respect to the baseline measurement.

Figure 6.3: Estimation errors (in meters) of the first scene calculated with respect
to the baseline for varying 3D grid cell sizes.

Table 6.5 gives the mean square error (MSE) of the estimated camera positions

for the first scene with respect to the camera position estimates that are calculated

using online visibility tests.

cell size 0.1 0.15 0.2
mean square error 1.08 ×10−4 1.76824 ×10−4 7.08205 ×10−4

Table 6.5: MSE of trackers using visibility caching for the first scene with different
cell sizes

40

Figure 6.4 depicts the camera position estimation errors across frames for the

second scene. The errors are calculated with respect to the baseline measurement.

Figure 6.4: Estimation errors (in meters) of the second scene calculated with
respect to the baseline for varying 3D grid cell sizes.

Table 6.6 gives the mean square error (MSE) of the estimated camera posi-

tions for the second scene with respect to the camera position estimates that are

calculated using online visibility tests.

cell size 0.1 0.15 0.2
mean square error 1.04506 ×10−5 8.05839 ×10−6 3.27426 ×10−5

Table 6.6: MSE of trackers using visibility caching for the first scene with different
cell sizes

Table 6.7 gives a comparison of visibility testing methods in terms of the

computation times per frame for the first scene. The camera parameters are

41

estimated in two iterations. The minimum world sampling interval is 0.005.

minimum screen sampling interval

5 7.5 10 12.5 15

Online visibility 0.00347 0.00286 0.00229 0.00205 0.00175
Cached visibility 0.00304 0.00249 0.00204 0.00181 0.00155

Table 6.7: Average processing times (in seconds) per frame using different visi-
bility testing methods.

Table 6.8 gives a comparison of visibility testing methods in terms of the

computation times per frame for the second scene. The camera parameters are

estimated in two iterations. The minimum world sampling interval is 0.005.

minimum screen sampling interval

5 7.5 10 12.5 15

Online visibility 0.00626 0.00455 0.00364 0.00284 0.00240
Cached visibility 0.00530 0.00399 0.00312 0.00252 0.00209

Table 6.8: Average processing times (in seconds) per frame using different visi-
bility testing methods.

As expected, the memory and preprocessing costs increase when the minimum

world sampling interval and the cell size decrease due to the increasing number

of control points and 3D grid cells. Experiments also show that the 3D grid with

smaller cells provide better approximation for the visibility states of the control

points.

42

Chapter 7

Conclusion

We propose methods to increase the performance and effectiveness of the model-

based camera trackers. To this end, we use the persistent control points approach.

We cache visibility states of the control points from different viewing positions

using a uniform 3D grid structure and provide constant time access to the vis-

ibility state at run-time. Additionally, we use an accurate adaptive projection

mechanism so that the persistent control points are more evenly distributed in

the screen space.

In our experiments, we show that visibility caching can be used to provide

constant time access to the visibility state of each control point. The tracking

tests confirm that cached visibility tests perform similar to the online visibility

calculations in terms of accuracy at the expense of a reasonable memory overhead,

which is due to the 3D grid that is constructed. Conveniently, such 3D grid does

not need to be calculated over and over again unless scene parameteres that is

related to the control point generation or grid construction are changed.

It is observed that the adaptive control point projection mechanism generates

more evenly distributed control points in the screen space. This effect is especially

noticeable when the marker edges are long and lie parallel to the camera viewing

direction. Finally, we demonstrated a sample AR application where the user

can interact with AR environment using the mouse and generate virtual entities.

43

These entities can collide with the marker geometry (and extra geometry that

can be defined by the user) and occlusions are handled automatically.

Several extensions and improvements can be considered to improve the camera

tracker. Firstly, different view-dependent information can be introduced to the

tracking system. Example of such information would be control point reliability.

Each control points have different reliability value depending on the camera po-

sition and its position with respect to the environment. Such information can be

preprocessed for different camera configurations and stored in a 3D grid structure

for constant time access. These reliability points then can be used to determine

weights for the pose estimation process.

As a result of the 3D grid that is used, visibility states of the control points

change only on cell borders. These rapid changes may cause jitter. In order

to provide smoother transitions across the cell borders, visibility of a control

point can be regarded as a continuous value which can be calculated by trilinear

interpolation between eight neighboring cells.

Finally, adaptive control point projection mechanism can be improved. Cur-

rently, control points can appear/disappear rapidly when visible length of the

marker edge changes. Such change can happen even with small camera move-

ment and can result in jitter. To alleviate this issue, time based interpolation

can be employed. With such approach, measurement weight of the control point

should be increased gradually as it becomes active and decreased gradually as it

becomes inactive.

44

Bibliography

[1] C. Schoeneman, J. Dorsey, B. Smits, J. Arvo, and D. Greenberg, “Painting

with Light,” in Proceedings of the 20th Annual Conference on Computer

Graphics and Interactive Techniques (SIGGRAPH ’93), (New York, NY,

USA), pp. 143–146, ACM, 1993.

[2] Y. Wang and D. Samaras, “Estimation of Multiple Directional Light Sources

for Synthesis of Augmented Reality Images,” Graphical Models, vol. 65,

pp. 185–205, 2003.

[3] G. Xing, Y. Liu, X. Qin, and Q. Peng, “A Practical Approach for Real-

time Illumination Estimation of Outdoor Videos,” Computers & Graphics,

vol. 36, no. 7, pp. 857–865, 2012.

[4] J. Lopez-Moreno, E. Garces, S. Hadap, E. Reinhard, and D. Gutierrez, “Mul-

tiple Light Source Estimation in a Single Image,” Computer Graphics Forum,

vol. 32, no. 8, pp. 170–182, 2013.

[5] Y. Park, V. Lepetit, and W. Woo, “Handling motion-blur in 3d tracking

and rendering for augmented reality,” Visualization and Computer Graphics,

IEEE Transactions on, vol. 18, pp. 1449–1459, Sept 2012.

[6] P. Kan and H. Kaufmann, “High-quality Reflections, Refractions, and Caus-

tics in Augmented Reality and Their Contribution to Visual Coherence,” in

Proceedings of the IEEE International Symposium on Mixed and Augmented

Reality (ISMAR ’12), (Washington, DC, USA), pp. 99–108, IEEE Computer

Society, 2012.

45

[7] C. Harris and C. Stennet, “RAPiD – A Video-Rate Object Tracker,” in

Proceedings of the British Machine Vision Conference (BMVC ’90), pp. 73–

77, Sept. 1990.

[8] D. B. Gennery, “Visual Tracking of Known Three-Dimensional Objects,”

International Journal of Computer Vision, vol. 7, no. 3, pp. 243–270, 1992.

[9] A. Comport, E. Marchand, M. Pressigout, and F. Chaumette, “Real-time

Markerless Tracking for Augmented Reality: the Virtual Visual Servoing

Framework,” IEEE Transactions on Visualization and Computer Graphics,

vol. 12, pp. 615–628, July 2006.

[10] P. Bouthemy, “A maximum likelihood framework for determining moving

edges,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 11, pp. 499–511, May 1989.

[11] A. Petit, E. Marchand, and K. Kanani, “A Robust Model-based Tracker

Combining Geometrical and Color Edge Information,” in Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS ’13), pp. 3719–3724, Nov 2013.

[12] H. Wuest, F. Vial, and D. Strieker, “Adaptive Line Tracking with Multiple

Hypotheses for Augmented Reality,” in Proceedings of the 4th IEEE/ACM

International Symposium on Mixed and Augmented Reality (ISMAR ’05),

pp. 62–69, Oct 2005.

[13] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”

International Journal of Computer Vision, vol. 60, pp. 91–110, Nov. 2004.

[14] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust

Features (SURF),” Computer Vision and Image Understanding, vol. 110,

pp. 346–359, June 2008.

[15] E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner

Detection,” in Proceedings of the European Conference on Computer Vision

(ECCV ’06), vol. 1, pp. 430–443, May 2006.

46

[16] E. Rosten, R. Porter, and T. Drummond, “FASTER and Better: A Machine

Learning Approach to Corner Detection,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 32, no. 1, pp. 105–119, 2010.

[17] M. Özuysal, P. Fua, and V. Lepetit, “Fast Keypoint Recognition in Ten Lines

of Code,” in Proceedings of the IEEE Conference on Computing Vision and

Pattern Recognition (CVPR ’07), pp. 1–8, 2007.

[18] V. Lepetit and P. Fua, “Keypoint Recognition Using Randomized Trees,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28,

pp. 1465–1479, Sept. 2006.

[19] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust In-

dependent Elementary Features,” in Proceedings of the 11th European Con-

ference on Computer Vision (ECCV ’10): Part IV, (Berlin, Heidelberg),

pp. 778–792, Springer-Verlag, 2010.

[20] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-

stieg, “Real-Time Detection and Tracking for Augmented Reality on Mo-

bile Phones,” IEEE Transactions on Visualization and Computer Graphics,

vol. 16, no. 3, pp. 355–368, 2010.

[21] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm

for Model Fitting with Applications to Image Analysis and Automated Car-

tography,” Communications of the ACM, vol. 24, pp. 381–395, June 1981.

[22] Qualcomm, Inc., “Vuforia Developer Portal.” https://developer.

vuforia.com/. Accessed: 2014-06-03.

[23] Metaio, GmbH, “Metaio Augmented Reality Products & Solutions.”

http://www.metaio.com/products/sdk/. Accessed: 2014-06-03.

[24] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shot-

ton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon, “KinectFusion:

Real-time 3D Reconstruction and Interaction Using a Moving Depth Cam-

era,” in Proceedings of the 24th Annual ACM Symposium on User Interface

Software and Technology (UIST ’11), (New York, NY, USA), pp. 559–568,

ACM, 2011.

47

https://developer.vuforia.com/
https://developer.vuforia.com/
http://www.metaio.com/products/sdk/

[25] A. Davison, “Real-time Simultaneous Localisation and Mapping with a Sin-

gle Camera,” in Proceedings of the Ninth IEEE International Conference on

Computer Vision (ICCV ’03), vol. 2, pp. 1403–1410, Oct 2003.

[26] The Twenty-Third IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010, IEEE,

2010.

[27] R. Salas-Moreno, R. Newcombe, H. Strasdat, P. Kelly, and A. Davison,

“SLAM++: Simultaneous Localisation and Mapping at the Level of Ob-

jects,” in Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR ’13), pp. 1352–1359, June 2013.

[28] E. Rosten and T. Drummond, “Fusing Points and Lines for High Perfor-

mance Tracking,” in Proceedings of the Tenth IEEE International Confer-

ence on Computer Vision (ICCV ’05), vol. 2, pp. 1508–1515 Vol. 2, Oct

2005.

[29] A. State, G. Hirota, D. T. Chen, W. F. Garrett, and M. A. Livingston,

“Superior Augmented Reality Registration by Integrating Landmark Track-

ing and Magnetic Tracking,” in Proceedings of the 23rd Annual Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH ’96), (New

York, NY, USA), pp. 429–438, ACM, 1996.

[30] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Prob-

lems,” Transactions of the ASME–Journal of Basic Engineering, vol. 82,

no. Series D, pp. 35–45, 1960.

[31] G. Reitmayr and T. Drummond, “Going Out: Robust Model-based Tracking

for Outdoor Augmented Reality,” in Proceedings of the IEEE/ACM Interna-

tional Symposium on Mixed and Augmented Reality (ISMAR ’06), pp. 109–

118, Oct 2006.

[32] G. Klein and T. Drummond, “Tightly Integrated Sensor Fusion for Robust

Visual Tracking,” in Proceedings of the British Machine Vision Conference

(BMVC 02), pp. 787–796, 2002.

48

[33] G. Klein, Visual Tracking for Augmented Reality. PhD thesis, Department

of Engineering, University of Cambridge, 2006.

[34] T. Drummond and R. Cipolla, “Real-time Visual Tracking of Complex Struc-

tures,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 24, no. 7, pp. 932–946, 2002.

[35] Unity Technologies, “Unity - Game Engine.” http://unity3d.com/. Ac-

cessed: 2014-06-08.

[36] ALGLIB Project, “ALGLIB - Cross-platform Numerical Analysis and Data

Processing Library.” http://www.alglib.net/. Accessed: 2014-06-08.

49

http://unity3d.com/
http://www.alglib.net/

Appendix A

Software Packages Used in the

Implementation

A.1 Unity Game Engine

Unity [35] is a commercially available game engine. It simplifies game and applica-

tion development process by streamlining many concepts (Asset import, Physics,

Input management, and so on) and providing built-in solutions. It supports popu-

lar platforms including Windows, Linux, iOS as well as gaming consoles. Because

of its vast mobile device support and ease of use, Augmented Reality framework

that is presented in this thesis is developed in Unity.

Unity provides component-based architecture for game development. Entities

in the game world is simple container objects, called GameObjects. GameObjects

gain functionality through reusable Components. Components have well-defined

responsibilities in subsystems like physics, rendering and audio. Transform, Col-

lider, and Rigidbody are examples of such components. Users can develop their

own components, which are called Monobehaviours. Monebehaviors can be cre-

ated using C# or JavaScript.

50

3D models that are prepared in 3D modeling packages can easily be ex-

ported to Unity. The models used for tracking are prepared in popular 3D

modeling software and exported to the Unity. Unity provides the Mesh

structure to access and modify the structure of the imported models. The

edge extraction process is performed using the Mesh structure.

For visual tracking, the video feed is processed at each frame. Unity provides

WebCamTexture for this purpose. WebCamTexture is a dynamic texture

that is updated when a new image is available through the RGB camera.

WebCamTexture provides interface to access individual pixels and thus al-

lows processing of the video feed.

Unity has a built-in physics engine. It is capable of processing complex

collisions, providing realistic simulations of clothes, hinges, ragdolls, and so

on. Unity Physics Engine also exposes a set of methods to perform efficient

raycasting operations. Visibility tests are performed using raycasting meth-

ods provided by Unity Physics Engine. Physics interaction is realized using

rigidbodies and colliders that are available in the Unity Game Engine.

Unity provides a convenient Prefab system. A Prefab is an asset that stores

a GameObject along with its components and attributes. Such prefabs can

be instantiated to the scene at any time and can be modified simultaneously

by editing the prefabs instance. The AR framework developed provides a

simple drop-in prefab for the tracking camera for the ease of use.

The software produced in this thesis research is provided as a simple drop-in

Unity package that is easy to use.

A.2 ALGLIB

ALGLIB [36] is a cross-platform numerical analysis and data processing library. It

provides many useful packages for data analysis, optimization, nonlinear systems,

linear-squares fitting and other related areas. In this work, ALGLIB is used to

solve the linear system of equations for camera parameter estimation.

51

	Introduction
	Motivation and Scope
	Contributions
	Thesis Organization

	Background and Related Work
	Augmented Reality
	Interaction
	Rendering and Occlusions
	Scene Preparation
	Sound and Haptic Feedback

	Camera Localization
	Vision-based Methods
	Edge-based Tracking
	Keypoint-based Tracking
	Depth-based Tracking

	Inertial Measurement Units
	Hybrid Approaches
	Markers

	Tracking System
	Preprocessing
	Initialization
	Real-time Tracking
	Model Projection and Control Point Generation
	Locating Edges in the Video Feed
	Formulating the Least Squares Problem

	Improved Tracking
	Persistent Control Point Generation and Projection
	Exploiting View-dependent Information for Camera Tracking
	Visibility Information

	Additional Details of the Tracking System
	View Frustum and Occlusion Culling
	Silhouette - Non silhouette Edges
	Motion Prediction
	System Overview

	Evaluation
	Cached Visibility Tests
	Preprocessing
	Tracking

	Sample AR Application

	Experimental Results
	Test Environment
	Cached Visibility Tests
	Preprocessing
	Tracking

	Conclusion
	Bibliography
	Appendices
	Software Packages Used in the Implementation
	Unity Game Engine
	ALGLIB

