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ABSTRACT

METHODS AND TOOLS FOR VISUALIZATION AND
MANAGEMENT OF SBGN PROCESS DESCRIPTION

MAPS

Mecit Sarı

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Doğrusöz

July, 2014

Graphs are commonly used to model relational information in many areas such as

relational databases, software engineering, biological and social networks. In vi-

sualization of graphs, automatic layout, interactive editing and complexity man-

agement of crowded graphs are essential for effective utilization of underlying

information.

Advances in graphical user interfaces have given rise and value to interactive

editing and diagramming techniques in graph visualization. As the size of the

information to be visualized vastly increased, it became harder to analyze such

networks, making use of relational information needed to be acquired. To over-

come this problem, sophisticated and domain-specific complexity management

techniques should be provided.

The Systems Biology Graphical Notation (SBGN) has been developed over

a number of years by biochemists and computer scientists to standardize visual

representation of biochemical and cellular processes. SBGN introduces a concrete,

detailed set of symbols for scientists to represent network of interactions, in a way

that is not open to more than one interpretation. It also describes the manner,

in which such graphical information should be interpreted.

The SBGN Process Description (PD) language shows how entities are influ-

enced by processes, which are represented by several reaction types in a biological

pathway. It can be used to show all the molecular interactions taking place in a

network of biochemical entities, with the same entity appearing multiple times in

the same diagram.
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We developed methods and tools to effectively visualize and manage SBGN-

PD diagrams. Specifically, we introduced new algorithms for proper manage-

ment of complexity of large SBGN-PD diagrams. These algorithms strive to

keep SBGN-PD diagrams intact as complexity management takes places. In ad-

dition, we provided software components and web-based tools that implement

these methods. These tools use state-of-the-art web technologies and libraries.

Keywords: Bioinformatics, Biology, Graph Visualization, Pathways, SBGN, Com-

plexity Management, Visualization Software, Web-based Software.
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TÜRKÇE BAŞLIK
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Bilgisayar Mühendisliği, Yüksek Lisans
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Çizgeler, ilişkisel bilgiyi modellemek amacıyla yazılım mühendisliğinde, ilişkisel

veritabanlarında, sosyal ve biyolojik ağların gösteriminde yaygın olarak kul-

lanılırlar. Bilginin etkin kullanımı için otomatik yerleştirme, interaktif ortamda

değişikliklerin yapılabilmesi ve kalabalık çizgelerin karmaşıklıklarının yönetilmesi,

çizge gösterimi için gerekli yöntemlerdir.

Çizge gösteriminde interaktif ortamda değişiklik yapma ve diyagramlama

teknikleri, grafiksel kullanıcı arabirimlerindeki gelişmelerle birlikte önemli ve

etkin hale geldi. Gösterilmek istenen bilginin artışı ile birlikte, bu ağların analizi

ve elde edilmek istenen ilişkisel verinin kullanımı oldukça zorlaşmaktadır. Bu

problemi çözmek için, karmaşık ve alana özgü karmaşıklık yönetimi tekniklerinin

geliştirilmesi ve sağlanması gerekmektedir.

Systems Biology Graphical Notation (SBGN), biyokimyasal ve hücresel

proseslerin görselleştirilmelerini standart bir şekilde ifade edebilmek amacıyla,

biyokimyacılar ve bilgisayar uzmanları tarafından, yıllardır süregelen bir çalışma

ile geliştirilmektedir. SBGN, etkileşim ağlarının kesin ve belirsizliğe yer vermeye-

cek şekilde gösterimi amacıyla, somut ve detaylı bir sembol listesi sağlayan bir

görsel dil ya da notasyondur. Ayrıca, SBGN bu tarz bir grafiksel bilginin nasıl

yorumlanması gerektiğini de izah eder.

SBGN proses dili, biyolojik yolaklardaki entitilerin, biyolojik reaksiyonları

temsil eden proseslerden nasıl etkilendiğini açıklar. Aynı entitiyi birkaç defa

aynı diyagramda göstererek, biyokimyasal entiti ağında yer alan bütün moleküler

etkileşimlerin gösterimi yapılır.

Bu çalışmada, SBGN-PD diyagramlarının etkin bir şekilde gösterimi ve analizi

için metotlar ve araçlar geliştirdik. Özellikle, büyük SBGN-PD diyagramlarının
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karmaşıklıklarının etkin bir şekilde yönetilmesi amacıyla yeni algoritmalar sun-

duk. Bu algoritmalar, karmaşıklık yönetimi teknikleri uygulandıgında SBGN-PD

diyagramlarının bütünlüğünü koruyacak şekilde tasarlandı. Ek olarak, bu metot-

ların kullanıldığı yazılım bileşenleri ve web tabanlı araçlar üretildi. Bu araçlar

gelişmiş ve modern web teknolojilerini ve kütüphanelerini kullanmaktadırlar.

Anahtar sözcükler : Biyoinformatik, Biyoloji, Çizge Gösterimi, Yolaklar, SBGN,

Karmaşıklık yönetimi, Görselleştirme Yazılımları, Web Tabanlı Yazılım.
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Çağatay, Merve Çakır, Begüm Genç, Muhsin Can Orhan for being my close

friends and the good times in the office.

Special thanks to Bülent Arman Aksoy and Selçuk Onur Sümer for their
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I would like to thank TÜBİTAK for their financial support during my thesis

and to Bilkent University for the environment they have provided.

I would like to thank my parents Necdet and Zekiye for their endless love

and trust. Also, my siblings Fatih, Handan, and Reyhan have given me strength

during my study.

vii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background And Related Work 8

2.1 Graph Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Complexity Management in Graph Visualization . . . . . . . . . . 11

2.3 Systems Biology Standards . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 BioPAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Systems Biology Graphical Notation (SBGN) . . . . . . . 16

2.4 Related Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Cytoscape . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Pathway Commons . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 PCViz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.4 Paxtools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



CONTENTS ix

2.4.5 BioGene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.6 cBioPortal . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.7 CySBGN . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.8 VISIBIOweb . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.9 Biographer . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.10 SBGN-ED . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Methods For Visualizing SBGN-PD Maps 37

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Complexity Management of SBGN-PD Maps . . . . . . . . . . . . 40

3.2.1 Hide Selected Node Group . . . . . . . . . . . . . . . . . . 48

3.2.2 Show Selected Node Group . . . . . . . . . . . . . . . . . 49

3.2.3 Highlight Processes of Selected Node Group . . . . . . . . 50

3.2.4 Highlight Neighbors of Selected Node Group . . . . . . . . 51

3.2.5 Filter by Arbitrary Domain Knowledge . . . . . . . . . . . 52

4 Tools For Visualizing SBGN-PD Maps 54

4.1 SBGNViz.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 SBGNViz.js-SA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 PCViz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Conclusion 63



CONTENTS x

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



List of Figures

1.1 Textual representation of a biological pathway (Recruitment of re-

pair and signaling proteins to double-strand breaks) in Pathway-

Commons [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Visual representation of a biological pathway (Recruitment of re-

pair and signaling proteins to double-strand breaks) in Pathway-

Commons [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Visualization of a biological pathway (ATM Mediated phosphory-

lation of Repair Proteins) in ChiBE [2] . . . . . . . . . . . . . . . 3

1.4 A complex real-life graph from software modeling [3] . . . . . . . 4

1.5 Left: A map of a computer network after a series of complexity

management operations applied. Right: The same network with

certain desired parts revealed for detailed analysis. [3] . . . . . . . 4

2.1 A graph topology where a, b, c, d, e, f, g are vertices and the lines

that connect the vertices are the edges. . . . . . . . . . . . . . . . 8

2.2 A compound graph with multiple levels of nesting . . . . . . . . . 9

2.3 Graph representation of a social network [4] . . . . . . . . . . . . 10

2.4 Graph representation of a biological pathway . . . . . . . . . . . . 10

xi



LIST OF FIGURES xii

2.5 Visualization of the same graph before (left) and after (right) ap-

plying layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Visualization of a complex biological pathway(Activation of Cas-

passes 3 and 7) using PATIKAweb [5] . . . . . . . . . . . . . . . 12

2.7 Same biological pathway with (Figure 2.6) after applying collaps-

ing operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Graph visualization with fisheye view [6] . . . . . . . . . . . . . . 14

2.9 Folding operation on a graph . . . . . . . . . . . . . . . . . . . . 15

2.10 Hiding and ghosting operations on a graph . . . . . . . . . . . . . 15

2.11 Visual representation of SBGN [7] . . . . . . . . . . . . . . . . . . 18

2.12 SBGN Process Description describing metabolic pathways of

MAPK cascade [8]. . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.13 An example SBGN-PD map (left) and its SBGN-ML code (right) 21

2.14 Architecture of Cytoscape.js [9] . . . . . . . . . . . . . . . . . . . 23

2.15 Initialization of a simple graph using Cytoscape.js . . . . . . . . . 24

2.16 Graph model of Cytoscape.js . . . . . . . . . . . . . . . . . . . . . 25

2.17 A sample view from PCViz . . . . . . . . . . . . . . . . . . . . . . 27

2.18 Two cancer studies are loaded to the network of MDM2 neighborhood 28

2.19 PCViz Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.20 Compound structure problem with CySBGN . . . . . . . . . . . . 32

2.21 Desired look of a node with auxiliary units (left), CySBGN look

of nodes with auxiliary units (right) . . . . . . . . . . . . . . . . . 32



LIST OF FIGURES xiii

2.22 VISIBIOWeb is a web based tool to analyze SBGN-PD maps . . . 33

2.23 Members of a compound node must be inside it (left), dragging

causes misbehavior (right) . . . . . . . . . . . . . . . . . . . . . . 34

2.24 Biographer can be used to import, export, edit and create SBGN

diagrams for all of its specifications . . . . . . . . . . . . . . . . . 35

2.25 SBGN-ED is a VANTED plugin used to analyze SBGN diagrams 36

3.1 A complex network visualization looks like an hairball with lots of

edge crossings [10] . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 The visualization of ATM mediated phosphorylation of repair pro-

teins in the context of MRN complex. . . . . . . . . . . . . . . . . 39

3.3 Traditional filtering techniques produce an inconsistent graph

(left), while the desired graph is a valid, complete SBGN map

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 A complex and a neighbor process (with orange border) are asked

to be expanded (left). First, all of their children are added to the

expansion (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 All of the parents of current node group are added to the expansion

because of the 4th principle (left), all components of the complexes

are added to the expansion because of the 5th principle (right). . . 43

3.6 Current expansion have processes (in blue) and neighbor processes

(in red) to add their neighborhood to the expansion. . . . . . . . 44

3.7 All of the neighborhood of the processes and neighbor processes

are added to the expansion. . . . . . . . . . . . . . . . . . . . . . 44



LIST OF FIGURES xiv

3.8 Newly added nodes might be in another parent or they might have

children. So, we must add the parents (left) of the current ex-

panded nodes considering the 4th principle. Also, these parents

might have another children, we add the children of complexes

again because of the 5th principle and complete expansion process

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Expanding non-selected nodes (those inside blue box) would ex-

pand them with unwanted nodes (those with orange border) . . . 46

3.10 The node group to be removed is orange (left), undesired part of

the network is in green box and desired part is in blue one after

the expansion of remaining nodes (right) . . . . . . . . . . . . . . 47

3.11 Expansion of the desired part of the network (blue box in Fig-

ure 3.10 (right)), the blue box includes the nodes to be shown . . 48

3.12 Active RAS is asked to be removed (left), outcome of this operation

in the network (right) . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.13 Inactive RAS is asked to be shown (left), outcome of this operation

in the network (right) . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.14 Active Grb2 is asked to be highlighted with its processes (left),

outcome of this operation in the network (right) . . . . . . . . . . 51

3.15 Active Grb2 is asked to be highlighted with its neighbors (left),

outcome of this operation in the network (right) . . . . . . . . . . 52

4.1 A sample view from SBGNViz.js-SA . . . . . . . . . . . . . . . . 55

4.2 Detailed information of IRF1 is fetched from BioGene . . . . . . . 57

4.3 SBGNViz.js-SA architecture . . . . . . . . . . . . . . . . . . . . . 58

4.4 A process is selected (in magenta) and its details are shown in

Details tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



LIST OF FIGURES xv

4.5 Users click the edge between TP53 and MDM2 to see their detailed

process in SBGN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Detailed process information between MDM2 and TP53 in SBGN-

PD notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Filtering out the processes of NCI Nature from the SBGN-PD di-

agram in Figure 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . 62



Chapter 1

Introduction

A graph is a way of representing a set of objects (nodes) and relations (edges)

between these objects. It is a data structure that could be used to model complex

relational information such as network, communication, and data flow represen-

tation. Using graphs as a formal way to visualize relational information eases

data validation, integration, querying, and visualization.

Although, textual representation of relational information is simple and

straightforward, it generally obstructs deriving information (Figure 1.1). Visual-

ization of information has become a considerable aspect for understanding any

kind of information (Figure 1.2). Information visualization counts on the human

eye’s broad bandwidth pathway and offers techniques for representation of ab-

stract information to allow people to see, explore, and understand large amounts

of data at once and in intuitive ways [11].

The study and analysis of interaction between biological entities with networks

has become a major area in bioinformatics (Figure 1.3). Many of the processes

known to take place in biological cells are analyzed in the form of different types

of networks [12]. The network complexity increases with new information pro-

duced about these processes, which leads to difficulties of analyzing and retrieving

information.
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Figure 1.1: Textual representation of a biological pathway (Recruitment of repair
and signaling proteins to double-strand breaks) in PathwayCommons [1]

Figure 1.2: Visual representation of a biological pathway (Recruitment of repair
and signaling proteins to double-strand breaks) in PathwayCommons [1]
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Figure 1.3: Visualization of a biological pathway (ATM Mediated phosphoryla-
tion of Repair Proteins) in ChiBE [2]

Systems Biology Graphical Notation (SBGN) [13] has been developed by bio-

chemists, modelers, and computer scientists to standardize biological pathway

visualization so that scientists could represent biological pathways in a standard

and unambiguous way. SBGN supports regularity, eliminates ambiguity, and fa-

cilitates software support for transmission of complex information like well known

standard visual languages such as Unified Modeling Language (UML) and Data

Flow Diagrams. SBGN is formed by three languages (process description [14],

entity relationship [15], and activity flow [16]), among which process description

diagrams are arguably most commonly used ones in biology.

As mentioned earlier, size of the information to be visualized could be exces-

sive and cause problems to understand information. The increase in the size of

the information (e.g., size of information databases and the complexity of their

structures) to be visualized forces a demand for more sophisticated complexity

management techniques for many applications [3] (Figure 1.4). Showing, hiding,

and emphasizing some parts of visualized network could dramatically increase

the human comprehension over the visualization (Figure 1.5).
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Figure 1.4: A complex real-life graph from software modeling [3]

Figure 1.5: Left: A map of a computer network after a series of complexity
management operations applied. Right: The same network with certain desired
parts revealed for detailed analysis. [3]
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1.1 Motivation

Many graph visualization software have been developed to visualize pathway in-

formation. While some of these tools are used for simple network visualiza-

tion [17, 18, 19], there are also other alternative tools that support SBGN dia-

grams [20, 21, 22, 23, 24, 25]. However, most of these tools are desktop appli-

cations [21, 23, 26, 25] or plugins for desktop applications [24]. Despite the fact

that there are web based tools that support SBGN [20, 22], they do not sup-

port interactive editing [22] or not available on touch enabled devices [20]. More

importantly these tools also lack full support for compound structures used in

representing molecular complexes and cellular locations / compartments.

In recent years, biological network data exchange format (BioPAX [27]) and

biological pathway visualization standards (SBGN) have been developed and they

take advantage of advanced graph visualization, including compound structure.

All these reasons led us to research and development of visualization and com-

plexity management of complicated biological networks.

Web based technologies have gained importance in recent years and became

commonplace in software development. Along with the development of computing

and storage technologies, users now heavily depend on online services. Besides

that, web based software which has native browser support and does not depend

on third party applications (like Flash) is platform independent and users do not

need to install any other software. Those advantages make web based technologies

an appropriate candidate to provide services to end users.

With the introduction of touch enabled mobile devices and computers, users

have new possibilities to interact with software and applications. Touch feature

required specialized software and hardware in the past, however, nowadays a lot

of manufacturers offer devices and software supporting these new input meth-

ods [28].
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1.2 Contribution

Considering the complexity and the domain of biological pathways and underly-

ing information, we determined the principles and invariants to properly manage

complexity in SBGN-PD diagrams. Then, considering these principles and in-

variants, we proposed algorithms to apply complexity management operations

that involve showing, hiding, and emphasizing certain parts of a network without

destroying the integrity of the pathway. These algorithms can be used when the

user selects an entity group and applies any complexity management operation

or when managing complexity according to an arbitrary domain knowledge is

necessary.

We also developed an extension to Cytoscape.js (an open-source JavaScript

graph library for analysis and visualisation) [9], called SBGNViz.js, to be able to

visualize SBGN-PD diagrams. This extension includes a converter from SBGN-

ML [29] to JSON since Cytoscape.js only accepts the JSON format and SBGN-

ML generator to export the current network in SBGN-ML format. Additionally,

SBGN-PD entities can have dynamic data as described in section 2.3.2.

SBGNViz.js has the advantage of being written purely in JavaScript and in-

herits support for touch enabled devices from Cytoscape.js, enabling use in a

wide variety of devices, from a mobile phone to a desktop computer with a web

browser. Also, SBGNViz.js is highly portable, thus a developer could easily use

SBGNViz.js in any web-based application.

We also created a sample application, called SBGNViz.js-SA, to show the

functionalities of SBGNViz.js and how easy to port it into a web application.

SBGNViz.js-SA takes biological pathways to be visualized in SBGN-ML file for-

mat and display it in SBGN-PD notation. SBGNViz.js inherits features of Cy-

toscape.js scrolling, zooming, hiding and deleting facilities as well as its support

for compound structure for compartments and complexes in SBGN. More im-

portantly, we implemented complexity management operations that we designed.

Furthermore, users could access gene-specific information from EntrezGene [30]

through BioGene [31] facility.

6



Lastly, we integrated SBGNViz.js into PCViz [32], an open-source web-based

network visualization tool that helps users query Pathway Commons [1] and ob-

tain details about genes and their interactions extracted from multiple pathway

resources. Users are able to see the neighborhood of a gene and select an interac-

tion between a pair of genes to see its detailed pathway visualization in SBGN-PD

format on a separate window.
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Chapter 2

Background And Related Work

2.1 Graph Visualization

A graph G = (V,E) consists of a set of vertices V and edges E. An edge e ∈ E

is a pair of vertices (u, v) where u ∈ V and v ∈ V are the endpoints of the edge.

An edge associates its endpoints (Figure 2.1).

In a directed graph, every edge e = (u, v) has direction from u ∈ V to v ∈ V

where u is the source vertex and v is the target vertex. However, there is no sense

of direction for the edges in an undirected graphs.

Figure 2.1: A graph topology where a, b, c, d, e, f, g are vertices and the lines
that connect the vertices are the edges.
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If there is an edge e = (u, v) where u = v, that edge is called a loop or self

edge. Two or more edges connecting the same source and target vertices are

called multi-edges.

An edge e is in the outgoing edge list of a vertex u if u is the source of e;

similarly, e is in the incoming edge list of a vertex u if u is the target of e.

A graph is called a compound graph if it contains any vertex that in turn

includes nodes or edges inside (Figure 2.2). Compound graphs have child-parent

relationship such that a compound vertex v is the parent of the vertices inside of

v and every node inside of vertex v is a child of vertex v. A child node might in

turn be a compound node giving opportunity to define multiple levels of nesting

(Figure 2.2).

Figure 2.2: A compound graph with multiple levels of nesting

Graphs are used to define topological structure of relational information and

they do not provide any geometric information for visualization. However, vi-

sualization of a graph is a vital concept for users to understand the underlying

information in a graph. Since the size and the complexity of information to be

analyzed has been vastly increasing, graph visualization techniques are needed

even more for analysis (Figure 2.3 and Figure 2.4).

Graph visualization is in fact the field of drawing a graph by defining geometry
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Figure 2.3: Graph representation of a social network [4]

Figure 2.4: Graph representation of a biological pathway
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for graph elements such as location, width, height, and border along with its

topological structure. Many cosmetic properties like color, transparency, border

shapes, edge arrow shapes are also considered aspects of graph visualization. In

fact, any visual concept that influences viewers’ comprehension is treated as a

graph visualization concept.

Layout of a graph corresponds to its geometry, aiming visualization with aes-

thetically pleasing results. Although the aesthetic quality of a visualization might

change from one to another, there are some certain aspects to consider while ap-

plying layout like minimizing edge crossing number, total drawing area, total

edge length and increasing uniformity of edge length and reflecting the topologi-

cal symmetry of the graph. A graph visualized with a bad layout could confuse

users whereas a good layout would help to understand the underlying information

and its topology (Figure 2.5).

Figure 2.5: Visualization of the same graph before (left) and after (right) applying
layout

2.2 Complexity Management in Graph Visual-

ization

Complex relational information such as biological and social networks are gen-

erally too large to visualize at once and details become hard to detect resulting

in extra effort of users to understand the network. In visualization of graphs,
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masking unwanted parts of the network and unmasking those parts when needed

are the strategies called complexity management techniques. The techniques like

hiding, folding, ghosting, and nesting have an important role on visualization of

biological networks as well as any other domain.

The practicality of complexity management techniques is variant in the con-

text of the information to be visualized. For example, hiding a child of a com-

pound node is not a good way to manage the complexity if the compound node is

only complete with its components and might have different type or meaning in

its new state. This will be discussed in more detail later in Section 3.1. After all,

some complexity management operations could not be applied blindly without

considering the domain knowledge.

A common complexity management technique for graphs with nested topol-

ogy is collapsing a compound node. It simply shows a compound node as a simple

node and creates meta edges for the node’s children. Using this method, a com-

plex graph (Figure 2.6) could be simplified and currently unnecessary parts of

the topology could be made insignificant in a reversible way (Figure 2.7).

Figure 2.6: Visualization of a complex biological pathway(Activation of Caspasses
3 and 7) using PATIKAweb [5]
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Figure 2.7: Same biological pathway with (Figure 2.6) after applying collapsing
operations

Another popular complexity management technique, called fisheye view, scales

up the center of the view decreasing the level of details towards the boundaries of

the graph [33]. Thus, the user could emphasize the area of interest of the graph

(Figure 2.8). This technique can be used in real time as users change the area of

interest and focus point is updated smoothly and simultaneously.

Folding operation creates a new folder node and puts a group of graph mem-

bers inside of the folder node. The folder node is a simple node and created

in collapsed mode to decrease the graph size. Using this method, currently un-

wanted parts of the network can be collapsed in a folder node, allowing to reverse

the operation on demand by unfolding the node. Also, it can be used to group

the graph components according to some criteria.

Figure 2.9 shows an example of folding operation on a graph. The nodes in

dark blue are asked to be folded in a node and the result of that operation is on

the right. Dark blue nodes and their edges are placed in a newly created folder

node. Meta edges are created between folder node and the rest of the graph,

representing the edges of nodes a and b whose one end is inside the folder.
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Figure 2.8: Graph visualization with fisheye view [6]

Hiding operation could be applied to a graph member by not rendering it

on the display. In that case, the graph member is not displayed in the current

network and it is removed from the graph topology, thus users are unable to

interact with it.

Ghosting technique could be used to deemphasize a graph member by chang-

ing its visual style like opacity, color, and brightness. Ghosting does not remove

any graph member from the graph and the topology, it only looses the focus on

the ghosted graph member and users are able to interact with it.

Figure 2.10 shows an example of hiding and ghosting operations. Nodes a, b,

and their incident edges are hidden in the graph. Additionally, compound node c

and its children with their incident edges are ghosted i.e., transparency of these

nodes is increased.
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Figure 2.9: Folding operation on a graph

Figure 2.10: Hiding and ghosting operations on a graph
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2.3 Systems Biology Standards

2.3.1 BioPAX

BioPAX, short for Biological Pathway Exchange, has been developed as a standard

language to represent biological pathways at molecular and cellular level [27]. It

covers a variety of pathways from signalling to ppi networks. In recent years,

plenteous amount of pathway data has been generated by diverse communities.

Such a development has conceived huge databases and many tools for utilization

of pathway information. However, diversity of tools, databases and notation

across communities have caused inefficiency because of the lack of data integrity.

To overcome this problem, BioPAX has been introduced as a standard to collect,

index, interpret and share pathway information. By courtesy of BioPAX, a huge

amount of pathway data from many types of organisms is now available from an

expanding number of databases.

2.3.2 Systems Biology Graphical Notation (SBGN)

Biology is one of the fields that have highest rate of graphical and textual informa-

tion. Although BioPAX filled a gap in storing and formatting of biological infor-

mation, there was still an ambiguity of a standard graphical notation. To resolve

this problem, Systems Biology Graphical Notation (SBGN), a visual language

developed by a community of biochemists, modelers, and computer scientists,

was introduced [13].

While developing SBGN, scientist’s major concern was to cover almost all

technical and practical needs of the diverse biology community. Therefore, SBGN

is an open source project, and is still improved by a large community. Common

biological objects, their properties and interactions from different biological com-

munities are visually supported with this notation. SBGN is in favor of keeping

notation, number of objects and syntax at a minimum level to increase learning

curve and comprehension of users. Also, it is highly modular to handle large

16



diagrams and complexity easily.

Interactions between biological entities differentiate with their properties. It

is useless and vain to represent all reactions and interactions in the same dia-

gram, resulting in incomprehension and confusion. To solve this problem, three

different styles of notation has been introduced, Process Description [14], Entity

Relationship [15], and Activity Flow [16], to represent only required interactions

of a specific context. Our focus and work was on Process Description (Figure 2.11)

diagrams since it is widely used by the biology community.
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A process diagram represents all the molecular processes and interactions

taking place between biochemical entities and their products [13]. Change is the

aspect of process description describing how entities are processed from one form

to another.

Entity Pool Node (EPN) represents any physical or conceptual entity in a bi-

ological network. The PD includes six EPN that represents physical entities: un-

specified entity, simple chemical, macromolecule, nucleic acid feature, multimer,

and complex. Additionally, source, sink, and perturbing agents are conceptual

entities in PD.

EPNs could contain auxiliary units that provide additional information. They

are placed on the boundaries of the EPN.

• Unit of information is used to show abstract information related to the

functionality of the entity it belongs to.

• State variable shows current state of the entity, corresponds to physical or

informational configuration.

• Clone marker shows whether the entity is cloned, indicates that another

occurrence of that entity can be found in the map.

EPNs are transformed to other EPNs by processes. Different process types

are represented with process, omitted process, uncertain process, association, dis-

sociation, and phenotype as seen in Figure 2.11.

Complex and Compartment are compound nodes in PD maps. Complex node

represents an entity that consists of a number of other entities. A complex has its

own identity and must be considered with all of its components. Compartment

node represents a logical or physical structure composed of entity pool nodes.

For example, in Figure 2.12, RAF macromolecule and ATP enter a process

with the catalysis RAS macromolecule in active state and leave as phosphorylated

RAF and ADP. As it is seen, the overall diagram shows how entities are changed

by different processes.
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Above, we gave an overview of Process Description language. Further details

could be found in Process Description language Level 1 documentation [14].

Figure 2.12: SBGN Process Description describing metabolic pathways of MAPK
cascade [8].

Although SBGN standardizes representation of biological pathway informa-

tion in a concise and unambiguous way, it does not offer any standard for how

the maps should be stored. Because of that, the biological maps produced by

any tool could not be used in another. To overcome this problem, SBGN-ML,

a dedicated, lightweight XML-based file format, was developed[29]. SBGN-ML

includes all necessary information to draw the entities in SBGN and stores the

positions of entities, i.e., layout of the maps (Figure 2.13).
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Figure 2.13: An example SBGN-PD map (left) and its SBGN-ML code (right)

2.4 Related Software

In this section, we will go over related software tools.

2.4.1 Cytoscape

Cytoscape family has three visualization software, Cytoscape, Cytoscape Web, and

its successor Cytoscape.js.

Cytoscape [34] is an open source desktop application to visualize molecular

interaction and biological networks and integrate these networks with additional

data like annotations and gene expressions. Cytoscape was developed for bio-

logical research but it is a general platform for complex network analysis and

visualization nowadays. It offers lots of features for data integration, analysis,

and visualization.
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Cytoscape Web is a web based graph visualization library that depends on

Flex / ActionScript technologies. It can be easily embedded to any web appli-

cation. Additionally, Cytoscape Web offers a JavaScript API to customize and

manipulate the network at client side.

Cytoscape.js has been developed as an open source graph library written in

JavaScript, utilized for analysing and visualizing graphs. It does not depend on

any third-party application like flash and also supports mobile browsers. Along

with all the features of Cytoscape Web, it offers new queries for data management

and takes advantage of latest web technologies. It is funded by NRNB (Natural

Resource for Network Biology) [35] and NIH (National Institutes of Health) [36].

The main difference between Cytoscape’s web and desktop applications is that

Cytoscape is an application for end users, whereas Cytoscape web applications

require to write code using their API.

Cytoscape.js gives users an opportunity to display and manage graphs inter-

actively. It supports both desktop and mobile browsers; thus, it allows users’

interaction with graphs, such as selection, pinch-to-zoom, and panning for both

touch and non-touch operated devices.

Cytoscape.js depends on event-driven model with a core API [9] (Figure 2.14).

The core is the component that offers functions to change the graph as a whole,

like applying layout and panning the graph. Also, it provides lots of functions

for efficient access of graph elements. Additionally, it has some extensions and is

responsible to notify the extensions when needed. Extensions make the necessary

changes on graph elements and notify the core about the changes. The extensions

are non-transparent to the client applications, as clients access Cytoscape.js only

through the core using its API.
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Figure 2.14: Architecture of Cytoscape.js [9]

Cytoscape.js gets graph elements and their style properties, layout options,

and any other graph property as JSON objects during initialization (Figure 2.15).

Style properties follow CSS convention and Cytoscape.js introduces its own style

properties in case CSS properties are insufficient.

Another strong side of Cytoscape.js is that it contains lots of graph analysis

algorithms from graph theory such as breadth first search, depth first search,

minimum spanning tree and Dijkstra’s shortest path. Users are able to obtain

and operate on neighborhood, connected edges, descendants, children, parents,

siblings, etc. of a node group with a single function.

Cytoscape.js provides full support for compound structures and offers useful

functions to access, traverse, and perform operations on compound nodes. This

support makes Cytoscape.js convenient to use in domains where hierarchically

structured information needs to be visualized.

Cytoscape.js adopts the selector facility of JQuery [37] and selectors work

on graph elements. It greatly simplifies traversing and manipulating the nodes

according to some criteria. For example, the user could apply breadth first search
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Figure 2.15: Initialization of a simple graph using Cytoscape.js

on nodes with weight higher than a number, get all descendants of a compound

node with a certain shape and logically combine a couple of criteria together.

Besides, those functions are chainable, users are able to call several functions

on the same graph element consecutively. For example, to get all complexes’

macromolecule children, the user can apply the following function:

cy.nodes(”node[class=’complex’]”)

.descendants(”node[class=’macromolecule’]”)
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As it is seen, selectors and chaining are very useful to apply complexity man-

agement operations on SBGN diagrams.

Cytoscape.js stores the elements (nodes and edges) in an array structure and

uses a map structure to access the elements using their ids. For parent-child

relationship, the parent has an array list of children kept consistent with the

graph state. Accessing an element using its id takes O(logN), where N is the size

of the element array. Also, iterating over elements array costs O(N).

The core of Cytoscape.js offers a couple of functions to access the elements

in the graph. These functions return a Collection, which stores a set of elements

in the graph. Additionally, collections offer a set of functions to filter, edit, and

traverse the collections. Most iteration operations, if not all, cost O(N) on the

list itself but O(1) for accessing the list.

Figure 2.16 shows the class diagram that summarizes graph model of Cy-

toscape.js. Since Cytoscape.js does not have object-oriented design, this diagram

does not show the actual architecture but gives the overall design approach.

Figure 2.16: Graph model of Cytoscape.js
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Cytoscape.js offers a couple of functions to layout graphs. Users are able to

choose a suitable layout algorithm according to the context of their graph. Grid,

Breadth First, Arbor [38], Preset with predefined positions, and CoSE [39] are

some of the layout algorithms that Cytoscape.js support.

2.4.2 Pathway Commons

Pathway Commons [1] is a service that provides publicly available pathway infor-

mation of various organisms. It includes several database sources which support

BioPAX format for biological pathways. Biologists can use web interface of Path-

way Commons’s to access an extensive amount of biological data. They can

specify a gene set and the type of the query such as paths between and neighbor-

hood and obtain the pathway data in various format such as SBGN-ML, BioPAX,

and Simple Interaction Format (SIF).

2.4.3 PCViz

PCViz [32] is an open source web based network visualization tool that offers to

make queries to Pathway Commons to retrieve biological pathway information

for a set of genes from several pathway data providers. It uses these queries

to visualize networks of interaction and acquire information about gene details

(Figure 2.17).

PCViz provides lots of features and advantages for biological network analysis

and visualization. PCViz

• is compatible with almost all web-browsers, including the ones on the mobile

devices (e.g., iPad and devices with Android OS).

• is only human-oriented, does not include information about other organ-

isms.
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Figure 2.17: A sample view from PCViz

• uses Pathway Commons data to be able to visualize thousands of genes and

their interactions.

• allows to add new genes of interest to the current network of interest.

• takes advantage of full BioPAX representation and extract relevant infor-

mation from the complex BioPAX data coming from Pathway Commons.

• reduces the size of the network by filtering genes or interactions based on

different criteria like interaction type, more relevant genes with the genes

of interest

• allows users to load multiple cancer contexts to the network to see the

overall frequency of alteration for each gene and uses this information to

enhance the complexity management. For instance, when cancer context is
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loaded, the nodes that have low frequency of alteration are filtered first.

As mentioned before, PCViz provides cancer context information. It uses

cBioPortal [17] to retrieve cancer information about the genes in the network.

After the network is loaded, users can get a list of all cancer studies and select

one study and get a list of all genomic data types available. When the cancer

data is loaded to the network, PCViz represents this data via visual styles, e.g.

from gray to red gradient color on the nodes (Figure 2.18).

Figure 2.18: Two cancer studies are loaded to the network of MDM2 neighbor-
hood

Figure 2.19 shows PCViz architecture and summarizes its features. Back-end

of PCViz
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• is implemented with Springs MVC framework as a REST service. All ser-

vices provide data in JSON format to the client side. Queries are cached

on the backend side to reduce lag for queries.

• retrieves pathway information of specified genes of interest in BioPAX for-

mat.

• makes a query to BioGene and retrieve the gene information in JSON format

when users click to a gene.

• makes a query to iHOP and retrieve edge annotation data in text format

when users click to an edge.

• makes a query to cBioPortal and fetch cancer study to be loaded in TSV

(tab seperated value) format.

Figure 2.19: PCViz Architecture

Back-end of PCViz converts all data to JSON and passes it to front-end.

PCViz’s front-end
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• is responsible to render the view of PCViz.

• generates a canvas for SIF view and SBGN view using Cytoscape.js. It

uses Backbone.js to structure the view by defining gene names as model

and Cytoscape.js instance on the html dom object as view component. The

network information from Pathway Commons is retrieved in the Backbone

instance using the genes of interest.

• generates Details view in the tabbed menu (Figure 2.18). When users click

a gene, it renders the BioGene information of this gene using Backbone.js.

It uses Backbone.js as SBGNViz.js-SA uses. Additionally, when users click

an edge, it makes a query to iHOP and shows edge annotation data.

• generates Settings view. This view offers filtering according to the interac-

tion types and a smart filtering option that filters the nodes according to

relevance with the genes of interest.

• generates Context view. When users select a cancer study, it makes a query

to cBioPortal and retrieve the alteration frequencies of the genes in the

network.

2.4.4 Paxtools

BioPAX, as mentioned earlier, encapsulates a huge amount of pathway data and

genetic, protein interactions. Since BioPAX includes massive number of classes

and properties, it is grueling to produce and modify such data. Paxtools sorts

this problem out by introducing a java API that transforms BioPAX properties to

Java classes, offering methods and algorithms for utilization of BioPAX proper-

ties. Such methods include reading, writing, searching, merging, comparing, and

transforming pathway information and help scientists to access and use BioPAX

data with proven software since Paxtools is developed by the community [40].

With lots of pathway data providers that support BioPAX, scientists can easily

access data and use it within their software tools for visualization, validation, and

analysis.
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2.4.5 BioGene

BioGene [31] is a simple web service where scientists can query a gene and retrieve

information about its functions and references. It primarily uses Entrez Gene, a

gene database provided by NCBI [30].

2.4.6 cBioPortal

cBioPortal is a web application that allows users to explore, visualize, and analyze

cancer genomics data [17]. Given a set of gene and associated cancer study, it

visualizes the network with alteration frequencies caused by the cancer study in

question. It uses Adobe Flash Based CytoscapeWeb for visualization and cannot

be used in mobile devices.

2.4.7 CySBGN

CySBGN is a Cytoscape plugin that lets users import, modify, and examine

SBGN Diagrams [24]. Since Cytoscape is a desktop application, it can not be

used online, however it supports all major operating systems: Linux, Windows

and MacOs X.

Unfortunately, CySBGN does not support all edge and node shapes in SBGN-

PD. It makes its own conventions for shapes that Cytoscape does not support.

Also, it is not compatible with the latest version of Cytoscape and does not

support compound nodes. Complexes and compartments are drawn with trans-

parency to represent parent-child relations. When the user moves a child, it might

jump out of the compound node in a way that violates the compound structure

(Figure 2.20). Also, some Cytoscape features like layout can not be applied to

any SBGN-PD diagrams since it will ignore the nesting structure.

Another problem with CySBGN is that, it does not have z-index ordering for

nodes. That causes a problem when rendering a node with auxiliary units, since
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Figure 2.20: Compound structure problem with CySBGN

they are rendered as other nodes and connected to its node with an edge. In other

words, a node might be rendered with its auxiliary units behind it, resulting in

unpleasant layouts (Figure 2.21).

Figure 2.21: Desired look of a node with auxiliary units (left), CySBGN look of
nodes with auxiliary units (right)

2.4.8 VISIBIOweb

VISIBIOWeb [22] is a free web service that is used for visualization and layout

of BioPAX pathway models (Figure 2.22). It depends on JavaScript and Google

Maps API [41] and shows a static image of the pathway in SBGN-PD format,

allowing use in both mobile and desktop browsers. It only accepts “.owl“ type files

to load and analyse, however users are able to export the network in SBGN-ML

format.

VISIBIOWeb does not allow users to edit the geometry or the style of the

graph elements since it displays a static image of the pathway; in other words,
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Figure 2.22: VISIBIOWeb is a web based tool to analyze SBGN-PD maps

the visualized network can not be edited interactively. However, nodes could be

clicked on to show their properties as extracted from associated “.owl“ file. Addi-

tionally, basic graph visualization concepts like zooming, panning, and scrolling

are also possible.

2.4.9 Biographer

Biographer is a comprehensive tool developed by Theoretical Biophysics Group

in Berlin and used for visualization and layout of biological networks [20]. It is

formed by three components, layout component written in C++, JavaScript web

component for visualization and server component that composes those compo-

nents and provides network import and visualization.

Layout component of Biographer is a combination of spring and hierarchical
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model. It builds up a layout for overall positioning of the networks, making use

of hierarchical model for layout of individual reactions. Hierarchical layout puts

substrates at the top and products at the bottom, placing other entities to the

left and the right.

Unfortunately, compound structure support of Biographer is not complete.

Although layout component takes compound entities of SBGN into account, user

interaction with compounds does not go with the grain. When a user drags a

compound node, its children also move within it. However, child node goes out

of the boundaries of its parent in case of dragging, making it look like there is

no child-parent relation between them (Figure 2.23). Additionally, users need to

adjust width and height of SBGN compound structures manually to be able to

add children.

Figure 2.23: Members of a compound node must be inside it (left), dragging
causes misbehavior (right)

Biographer also provides an online editor for all of three specifications of

SBGN. Users are able to create their diagram with lots of customization options

(Figure 2.24).
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Figure 2.24: Biographer can be used to import, export, edit and create SBGN
diagrams for all of its specifications

2.4.10 SBGN-ED

SBGN-ED [21] is an extension of VANTED (Visualisation and Analysis of Net-

works containing Experimental Data) developed to create, edit, visualize, and

validate SBGN maps (Figure 2.25). It supports all three types of SBGN.

VANTED [42] is an open source, desktop application, that provides loading,

editing, and analyzing graphs with biological pathway information or functional

hierarchies. VANTED and SBGN-ED can not be used online but works on all

major operating systems with Java support.

Beyond visualization of SBGN-PD diagrams, SBGN-ED offers functional-

ity for data mapping and processing, and statistical analysis. The features of

VANTED and its add-ons are also available for SBGN-ED, allowing users to

broaden the functionality of the software.
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Chapter 3

Methods For Visualizing

SBGN-PD Maps

3.1 Motivation

As mentioned before, biological pathways are generally too large to visualize and

details become obscured. Such networks can be reduced temporarily by removing

or understating the currently unnecessary parts of a network; such examples have

been provided in Section 2.2.

The core of an SBGN-PD diagram is processes and their interactions. Al-

though pathway data is accessed from databases with sophisticated and context-

related queries, such biological information might contain thousands of molecular

entities. Excessive amount of data restricts the capabilities and features of net-

work visualization tools. Visualization of such networks ends up being slow on

interactive analysis and graphs look like an hairball because of the great num-

ber of edge crossings (Figure 3.1). Using complexity management operations like

hiding or folding unwanted parts of the graph and abstraction of the network

in various layers could dramatically lower the size of such network diagrams,

allowing effective visualization.

37



Figure 3.1: A complex network visualization looks like an hairball with lots of
edge crossings [10]

These complexity management techniques fall behind when context and char-

acteristics of process description diagrams are taken into account. It is crucial

that the overall integrity and validation of a biological process network should not

be destroyed while hiding or filtering some parts of that network. For example,

a process node must be filtered out if all of its substrates, products and effectors

are also filtered out. Otherwise, the diagram will remain in an inconsistent state.

For example, users might make a query to show only NBN proteins on such

a network in Figure 3.2. Applying traditional techniques would end up with

inconsistent results. As it is seen in Figure 3.3 (left), processes and their edges

are cleared away and reaction information is lost. Additionally, some of the

components of the complexes are removed although complexes have their own

identity with their components. Consequently, a general complexity management

technique would violate the underlying information and the characteristics of the

entities.
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Considering the characteristics of SBGN-PD, we need to transform the query

to ”show only processes that involve NBN proteins”. Such a query would give

consistent results without violating SBGN-PD rules as seen in Figure 3.3 (right).

Figure 3.2: The visualization of ATM mediated phosphorylation of repair proteins
in the context of MRN complex.

We intend to define all characteristics of SBGN-PD to be able to manage

complexity in large biological networks. Considering these characteristics, we

introduce new algorithms to be able to modify all types of general complexity

management techniques to keep the SBGN-PD maps intact and consistent when

these operations are applied to such diagrams. Additionally, we propose some

techniques to manage complexity according to an arbitrary domain knowledge.
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Figure 3.3: Traditional filtering techniques produce an inconsistent graph (left),
while the desired graph is a valid, complete SBGN map (right)

3.2 Complexity Management of SBGN-PD

Maps

Complexity management operations on SBGN-PD maps generally work in a way

that shows, hides or emphasizes a part of the network. Those operations are

generally applied to a node group that is a set of entities in a biological network.

Unfortunately, as mentioned above, complexity management cannot be done by

only showing or hiding such a node group. For example, a process must be

considered with all of its inputs and outputs. Thus, hiding only one process has

no meaning (some of the entities might be in the map to represent the hidden

process). Similarly, hiding a subset of a complex’s members will leave the network

in an invalid state.

To overcome this problem, we have the following principles / invariants to

satisfy when showing or hiding a node group:

1. If a node has to be shown, it should be displayed.

2. If a non-process node (EPN) has to be shown, all the processes it is involved
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with should be displayed since SBGN-PD shows the transformation of these

biological entities via processes.

3. If a process has to be shown, then all of its inputs, outputs, and effectors

should be displayed too. A process shows the transformation of the biologi-

cal entities and hiding an input, output, or effector might refer to a different

kind of process. Additionally, hiding an input produces inconsistent results

since the outputs are formed according to the inputs.

4. If a node has to be shown, the parent node (complex or compartment)

should be displayed since the complexes are identified with their components

and compartments represents the logical or physical structure that is formed

by its components.

5. A complex molecule should always be displayed with all of its components

since a complex represents a biological entity composed of other biological

entities and the resulting entity has its own identity.

To be more clear, the 5th principle partially applies to the same for compart-

ments. If a compartment is in the node group to be shown, obviously, all of its

components must be displayed too. However, some of the nodes in the node group

to be shown might be in a compartment without the compartment itself being in

the specified group. In that case, only those nodes must be shown, not all of the

components of the compartment. In contrast, all of the complex’s components

must be displayed no matter what.

Thus, when a complexity management operation is performed on a node

group, the group must be expanded according to the principles described above.

Expanding a node group indicates adding other nodes (in the neighborhood of

the node group and need to be added according to the principles) to the node

group. We propose expandNodes algorithm to solve this problem (Algorithm 1).
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Algorithm 1 Expanding node group according to SBGN-PD criteria

procedure ExpandNodes(nodeGroup)
nodeGroup = nodeGroup ∪ nodeGroup.descendants()
nodeGroup = nodeGroup ∪ nodeGroup.parents()
nodeGroup = nodeGroup ∪ nodeGroup(”complex”).descendants()
processes = nodeGroup(”process”)
nonProcesses = nodeGroup(”!process”)
neighborProcesses = nonProcesses.neighborhood(”process”)
nodeGroup = nodeGroup ∪ processes.neighborhood() ∪ neighborProcesses
∪ neighborProcesses.neighborhood()

nodeGroup = nodeGroup ∪ nodeGroup.parents()
nodeGroup = nodeGroup ∪ nodeGroup(”complex”).descendants()
return nodeGroup

end procedure

When a node group needs to be expanded (Figure 3.4 (left)), we first add all

the descendants of the nodes (Figure 3.4 (right)).

Figure 3.4: A complex and a neighbor process (with orange border) are asked to
be expanded (left). First, all of their children are added to the expansion (right).

According to the 4th principle, we need to add all parents of the node group

(Figure 3.5 (left)). Expanding the node group with parents might add new com-

plex nodes, so we add all complexes’ components to the node group because of

the 5th principle (Figure 3.5 (right)).
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Figure 3.5: All of the parents of current node group are added to the expansion
because of the 4th principle (left), all components of the complexes are added to
the expansion because of the 5th principle (right).

Until now, we expand the selection with parents and children of the node

group according to the principles. Now, we need to define three different node

groups:

• processes are all the processes in the node group, we need to add all of their

neighborhood considering 3rd principle.

• nonProcesses are all the non-processes in the node group, we need their

processes because of the 2nd principle.

• neighborProcesses are the processes connected to nonProcesses and not in

the node group currently.

Figure 3.6 shows these node groups with different colors; processes, nonPro-

cesses, and neighborProcesses are in blue, orange, and red, respectively.
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Figure 3.6: Current expansion have processes (in blue) and neighbor processes
(in red) to add their neighborhood to the expansion.

Next, we need to add neighborProcesses and neighborhood of processes and

neighborProcesses (Figure 3.7). Notice that, neighborProcesses and their neigh-

borhood are added to the node group due to 2nd and 5rd principles, respectively.

Figure 3.7: All of the neighborhood of the processes and neighbor processes are
added to the expansion.

Lastly, adding new nodes might bring new parents and complexes, so we add

parents and components of complexes again (Figure 3.8). Finally, node group

has been expanded without destroying the integrity of the network.
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Figure 3.8: Newly added nodes might be in another parent or they might have
children. So, we must add the parents (left) of the current expanded nodes
considering the 4th principle. Also, these parents might have another children,
we add the children of complexes again because of the 5th principle and complete
expansion process (right).

The expandNodes algorithm can be used where users specify a node group and

want to emphasize it somehow (showing, highlighting, etc.). Often times, user

can specify a node group and emphasize the remaining nodes in the network (i.e.,

the specified node group might be deemphasized). In this situation, expanding

the remaining nodes directly does not solve our problem. That approach might

bring unwanted nodes back.

As it is seen in Figure 3.9, the user might ask to hide the selected nodes with

orange border. Expanding the remaining nodes in blue box using expandNodes

algorithm would result the entire graph to be in the node group after the ex-

pansion according to the 2nd and the 3rd principles. Phosphorylated RSK and

phosphorylated ERK have a process in the node group to be hidden and this

process must be hidden with all of its neighbors.
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Figure 3.9: Expanding non-selected nodes (those inside blue box) would expand
them with unwanted nodes (those with orange border)

We propose an expandRemainingNodes algorithm to be able to remove a node

group properly, keeping the above principles in mind (Algorithm 2).

Algorithm 2 Expanding remaining node group according to SBGN-PD princi-
ples

procedure ExpandRemainingNodes(nodeGroup, allNodes)
nodeGroup = expandNodes(nodeGroup)
remainingNodes = allNodes.not(nodeGroup)
remainingNodes = expandNodes(remainingNodes)
return remainingNodes

end procedure

When a node group is somehow needed to be deemphasized, that group must

be expanded first, in line with principles set forth. In other words, we could

not directly hide them since they might contain entities from desired part of the

network because of the expansion. For example, the node group to be removed

might contain a macromolecule connected to a process from the network to be

shown. As it is seen in Figure 3.10 (right), we could not remove phosphorylated

RSK since it has a process within the desired part.
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Figure 3.10: The node group to be removed is orange (left), undesired part of
the network is in green box and desired part is in blue one after the expansion of
remaining nodes (right)

In fact, the problem is that an entity in the graph could possibly participate

in any number of processes. Some of these processes might be in desired parts

of the graph, whereas some might not be. Users probably do not want to see a

group of processes and the remaining processes should be complete. In order to

achieve this, we use expandNodes algorithm again, but on the node group to be

shown. In Figure 3.10 (right), the node group in blue box is the one to be shown

and Figure 3.11 shows the final node group to be shown after expansion.

The expandNodes and expandRemainingNodes algorithms are the bases for

complexity management techniques for SBGN-PD maps. In expandNodes al-

gorithm, we get parents, descendants, and neighborhood of given set of nodes.

Those node groups might end up making up the entire graph, so its worst-case

running time is O(N), where N is the number of nodes. The expandRemainingN-

odes algorithm uses the expandNodes algorithm twice, so its complexity is also

O(N).

In the next section, we present the actual complexity management techniques

implemented in SBGNViz.js, using the algorithms described above. Other than

expanding algorithms, they only perform delete or highlight of the nodes, which
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Figure 3.11: Expansion of the desired part of the network (blue box in Figure 3.10
(right)), the blue box includes the nodes to be shown

cost O(N) at the most.

3.2.1 Hide Selected Node Group

A node group could be selected and asked to be removed from the view. In that

case, the expandRemainingNodes algorithm is applied to the selected node group.

This algorithm returns the nodes to be shown in the network, so we hide the rest

of the network (Algorithm 3).

Algorithm 3 Hide selected node group

procedure hideSelectedNodes(selectedElems)
allElems are all of the elements in the map
elemsToShow = expandRemainingNodes(selectedElems, allElems)
elemsToHide = allElems.not(elemsToShow)
hide(elemsToHide)

end procedure

As it is seen in Figure 3.12, active RAS with orange border is asked to be
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removed from the graph. Such a request would remove all of its processes and all

neighbors of these processes. Since the complex node is in another process from

the desired part of the graph, it stays in the node group to be shown with all of

its components.

Figure 3.12: Active RAS is asked to be removed (left), outcome of this operation
in the network (right)

3.2.2 Show Selected Node Group

A node group could be selected with the purpose of hiding the rest of the network.

We need to use the expandNodes algorithm on selected nodes to obtain the nodes

to be shown. After expanding nodes, we need to hide the rest of the network

(Algorithm 4).

Algorithm 4 Show selected node group

procedure showSelectedNodes(selectedElems)
allElems are all of the elements in the map
elemsToShow = expandNodes(selectedElems)
elemsToHide = allElems.not(elemsToShow)
hide(elemsToHide)

end procedure

In Figure 3.13, inactive RAS is asked to be shown. After expanding the
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selected node, only its processes and involvements are shown in the network.

Figure 3.13: Inactive RAS is asked to be shown (left), outcome of this operation
in the network (right)

3.2.3 Highlight Processes of Selected Node Group

Highlighting a node group emphasizes the node group without removing anything

from the network. It can be done in several ways according to the style conven-

tions of the tool used. We simply assume the opacity of the nodes that are not

in the node group to be decreased for this purpose.

Highlighting processes of selected objects includes highlighting all of the se-

lected processes and immediate neighbors of these processes. In fact, it highlights

exactly the same node group that the expandNodes algorithm returns (Algo-

rithm 5).

Algorithm 5 Highlight Processes of Selected Node Group

procedure highlightProcessesOfSelected(selectedElems)
selectedElems = expandNodes(selectedElems)
highlight(selectedElems)

end procedure

Figure 3.13 shows an example of such an operation. Active Grb2 is asked to
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be highlighted with its processes. Notice that, Grb2 itself is not directly involved

in a process but its parent is a complex and 4th and 5th principles enforce the

selection to be expanded to include the complex.

Figure 3.14: Active Grb2 is asked to be highlighted with its processes (left),
outcome of this operation in the network (right)

3.2.4 Highlight Neighbors of Selected Node Group

Highlighting neighbors of the selected nodes is different from other complexity

management techniques as it partially supports the principles. Since we just want

to highlight neighbors, the 3rd principle is omitted. If a non-process node is se-

lected, only its processes are highlighted instead of highlighting all neighborhood

of those processes. Such an operation would be helpful in a crowded graph where

it is difficult to understand the neighbors because of edge crossings. Hence, we

do not base our Highlight Neighbors of Selected Node Group algorithm on any

expand algorithms (Algorithm 6).

First, complex parents are added to the node group since complexes must be

considered as a whole. Then, we add descendants of these parents since they

may contain other entities. These two steps are very similar to second and third

step of expandNodes algorithm. Next, neighborhood of the node group and their

descendants are added to the node group and highlight operation is applied.
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Algorithm 6 Highlight Neighbors of Selected Node Group

procedure highlightNeighborsOfSelected(selectedElems)
selectedElems = selectedElems ∪ selectedElems.parents(”complex”)
selectedElems = selectedElems ∪ selectedElems.descendants()
selectedElems = selectedElems ∪ selectedElems.neighborhood()
selectedElems = selectedElems ∪ selectedElems.descendants()
highlight(selectedElems)

end procedure

Figure 3.15 shows an example of this operation. Active Grb2 is asked to be

highlighted with its neighbors. Since its parent is a complex, neighbors of that

complex are also shown.

Figure 3.15: Active Grb2 is asked to be highlighted with its neighbors (left),
outcome of this operation in the network (right)

3.2.5 Filter by Arbitrary Domain Knowledge

In addition to highlighting and filtering a user-selected node group, it is essential

to apply such operations in the context of and in line with an arbitrary domain

knowledge. For example, biological pathway data providers like Pathway Com-

mons might offer biological pathways that include processes from various sources.

Some sources might be thought to be highly reliable than others. Also, some bi-

ological pathways have network-context information like alteration frequencies of
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biological entities from a cancer study. Users should be able to eliminate less

affected biological entities from a pathway map without destructing the map’s

integrity. Such queries can be handled by using the expand algorithms described

earlier on the node group to be shown or hidden according to the domain knowl-

edge.
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Chapter 4

Tools For Visualizing SBGN-PD

Maps

In this chapter, we present the software tools that implement our methods pre-

sented earlier.

4.1 SBGNViz.js

SBGNViz.js [43] is developed as an extension of Cytoscape.js [9] to visualize bi-

ological maps represented with SBGN Process Description language. Taking ad-

vantage of Cytoscape.js visualization and gesture facilities, SBGNViz.js supports

all node and edge shapes introduced in SBGN Process Description notation.

Cytoscape.js accepts extensions of several types. An extension can be a core,

collection, layout or renderer extension. Since SBGNViz.js introduces new node

and edge shapes, it registers to Cytoscape.js as a renderer extension.

Developers are allowed to add any property to nodes’ and edges’ data object

in case the properties are needed for an extension. As explained before, along

with the shape, dimensions and label of the entities of SBGN Process Description
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notation, they have other properties like auxiliary units, multimer and port in-

formation. Those SBGN-PD related properties are attached to nodes’ and edges’

data object as JSON objects to be used during initialization of Cytoscape.js and

SBGNViz.js uses this data while rendering SBGN-PD node and edge shapes.

4.2 SBGNViz.js-SA

SBGNViz.js-SA [44], short for SBGNViz.js Sample Application, uses SBGNViz.js

to visualize, analyze, and edit biological pathways represented in SBGN-ML (Fig-

ure 4.1). Along with its support for basic graph visualization features like panning

and zooming, it provides full compound structure support for compartments and

complexes in SBGN-PD notation.

Figure 4.1: A sample view from SBGNViz.js-SA

Since Cytoscape.js only accepts JSON format, a converter from SBGN-ML
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to JSON needed to be implemented. The converter converts the glyph and arc

entities to node and edge data objects, respectively. Then, these data objects are

attached to nodes and edges at initialization so that SBGNViz.js could render

the shapes accordingly.

SBGNViz.js-SA can be used to edit, delete, and reposition the graph elements.

After such operations, one might want to export the current network in SBGN-

ML format. To do this, we added SBGN-ML generator that produces current

graph topology in SBGN-ML format. Additionally, the current drawing of the

model can be saved as a static image in PNG format.

Often times, along with the pathway information, users want to see more

information about the genes in the network. SBGNViz.js-SA provides that infor-

mation using BioGene [9]. It gets a gene’s name as a query and provides detailed

information about the gene’s function and references from EntrezGene [30].

When users left-click on an entity, SBGNViz.js-SA shows its full name in

case the name does not fit into the node shape entirely. Right-clicking on a

gene shows gene-specific detailed information, dynamically retrieved from Bio-

Gene (Figure 4.2). SBGNViz.js-SA uses one of Cytoscape.js plugins, called

Cytoscape.js-qtip [45]. This plugin allows to display any information inside a

tooltip which can be positioned around a node’s body.

Figure 4.3 summarizes the architecture of SBGNViz.js-SA. Back-end of

SBGNViz.js-SA

• accepts files in SBGN-ML format and converts them to JSON model. Then,

the JSON model is attached to the properties of nodes and edges to initialize

Cytoscape.js.

• creates the SBGN-ML map of the current graph in Cytoscape.js. It uses

the core’s functions to get the nodes’ attributes like position, shape, and id.

• allows users to apply any complexity management operations like hide /

show selected, delete selected, and highlight neighbors / processes of se-

lected. It uses Cytoscape.js’s core API to get graph elements, on which to
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Figure 4.2: Detailed information of IRF1 is fetched from BioGene

apply such operations.

• makes a query to BioGene and parses the necessary information to be shown

in properties window.

Backbone.js [46] is a model-view-controller framework that gives structure to

web applications by providing models with key-value binding and custom events.

It allows to abstract the data into models and bind the HTML representation

into views.

Front-end of SBGNViz.js-SA uses the latest JavaScript libraries and generates

the view creating a navigation menu and a canvas for Cytoscape.js. It uses

Backbone.js to structure the BioGene information defining its JSON object as the
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model and properties window as the view component of Backbone.js. Similarly,

Backbone.js is used for Cytoscape.js canvas defining Cytoscape.js instance on the

HTMH div object as view component and the JSON array of graph elements as

model component.

Figure 4.3: SBGNViz.js-SA architecture

As mentioned before, Cytoscape.js accepts various extensions registered to

its core. We used qtip extension to show BioGene information and pan-zoom

extension that lets users to pan and zoom the graph using a widget in the canvas.

Additionally, SBGNViz.js is registered as a renderer to the core component of

Cytoscape.js.
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4.3 PCViz

Using SBGNViz.js, we added SBGN-PD visualization support to PCViz. It of-

fers a better representation of pathways with full mechanistics. This is simply

much better than the simple binary interaction networks, where state information

cannot be shown.

When PCViz is initialized, it first visualizes the simple interaction network of a

random gene. Users could modify the gene list by adding or removing any number

of genes, it automatically loads the new network of interest. Also users could click

an interaction between two genes to see the detailed pathway information between

the two in SBGN-PD on a window using fancybox [47].

PCViz uses BioPAX data for both simple and detailed views of genes of inter-

est. It extracts the necessary information for SIF (Simple Interaction Format) [48]

and SBGN view, converting them to JSON object to visualize using Cytoscape.js.

Along with the information for SIF and SBGN view, PCViz could provide addi-

tional information about genes like source, evidence terms, publications and gene

related comments to provide more detailed information since BioPAX covers a

broad spectrum of information about pathways (Figure 4.4).

Figure 4.4: A process is selected (in magenta) and its details are shown in Details
tab.
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PCViz uses BioGene to retrieve detailed information about a gene’s function

for both simple and SBGN view. However, it does not provide any information

about processes and reactions which are the main aspects of SBGN-PD diagrams.

Fortunately, BioPAX has all information about processes and PCViz extracts this

information for processes together with SBGN-PD related information. Addition-

ally, it uses iHOP [49] to provide edge annotation data, showing how many times

two genes are co-citated and pubmed information.

When users click on an edge, edge annotation data is provided. In addition to

this data, they could click the button that opens the detailed processes between

the source and the target gene in SBGN-PD notation (Figure 4.5 and Figure 4.6).

Figure 4.5: Users click the edge between TP53 and MDM2 to see their detailed
process in SBGN.
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Figure 4.6: Detailed process information between MDM2 and TP53 in SBGN-PD
notation.

Since PCViz uses Pathway Commons, it includes processes from various path-

way resources. In addition to the complexity management operations that were

introduced in SBGNViz.js-SA, PCViz offers filtering facility according to process

sources. In Settings view, it shows the dynamic list of the process sources in the

current network. Users could click a process source to filter out this process from

the network (Figure 4.7).
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Chapter 5

Conclusion

In this study, we determined the principles and invariants for managing complex-

ity in SBGN-PD diagrams. Regarding these rules, we offered some algorithms to

manage the complexity in SBGN-PD diagrams without destroying the integrity

of the network.

We developed SBGNViz.js, an extension to Cytoscape.js, to support and vi-

sualize SBGN-PD notation. Using SBGNViz.js, we created a sample applica-

tion, called SBGNViz.js-SA, to show SBGNViz.js capabilities. In addition to

its capabilities like importing, editing, and saving biological pathways in SBGN-

ML format, users could access gene details and functions which are retrieved

using BioGene. Also, complexity management operations like hide / show se-

lected nodes, highlight neighbors / processes of selected nodes are implemented

in SBGNViz.js-SA using the algorithms described in this study.

We also added SBGN-PD visualization support to PCViz, an open source

network visualization tool. PCViz allows users to see the interaction of a gene

with other genes and select an interaction between a pair of genes to see its

detailed process visualization in SBGN-PD notatioddo
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5.1 Future Work

Although SBGNViz.js and Sample Application provide basic features sufficient

to visualize, edit, and import SBGN-PD diagrams, it can still be improved with

additional features. Some of the possible extensions is listed as follows:

1. Support for other SBGN languages: SBGNViz.js currently supports only

Process Description (PD) language specifications. Other SBGN languages,

Entity Relationship and Activity flow, could be facilitated.

2. SBGN editor: SBGNViz.js-SA only supports importing, editing, and ex-

porting SBGN diagrams. An editor that allows users to generate their own

SBGN diagrams from scratch or by modifying existing models could be

added to SBGNViz.js-SA.

3. Export / Import support: SBGNViz.js-SA currently supports loading a

graph only in SBGN-ML format and saving in SBGN-ML and PNG for-

mat. Support for other formats can be added in order to save the graph

information in various forms such as PDF, SVG, and JSON.

4. Experimental data analysis: Currently, SBGNViz.js-SA does not support

any experimental data to analyze on SBGN-PD diagrams. As a future

extension, SBGNViz.js-SA could make a query to cBioPortal to retrieve

cancer data and show the alteration frequencies in the network.

5.2 Availability

Source code of SBGNViz.js, SBGNViz.js-SA, and PCViz are publicly available.

SBGNViz.js source code is stored in Google Code [43]. For SBGNViz.js-SA, we

created another repository in [43] and named it sampleapp [50]. Also, a demo

web page for SBGNViz.js-SA can be launched using [44].

PCViz has been developed by Pathway Commons team and its source code is
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stored in Google Code [51]. Currently, SBGN-PD support is in a branch, named

as sbgn-view2 [52]. Additionally, PCViz website can be accessed using [32].
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