
İm mMİîi м ш í.íssísw m ш

■№! Ж Ѣ Ш Ш â t t î ü ; . . . - - · - ? » İ C T K i ä t t J Ä S J Ï^ O B iS i

■« i . i Z ^ ¡

3 -V Л ̂ '̂'ilTT̂ D

.ам il J M i< \¡J t. mMt *ni>'» -MM* ~ Ы·.. 4 v m . ·

r* w < . ».«

Т У
/S '? * 5
•Я 83

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52928728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN INTEGER PROGRAMMING BASED ALGORITHM FOR

THE RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL

ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
İsmet Esra Büyüktahtakın

January 2005

Jb; .1 <Г5
’ D . 8

T О

2-Οογ

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as/a thesis for/(he degree of Master of Science.

isst. Prof Mu at Fadiloglu
\

Approved for the Institute of Engineering and Sciences:

Prof Mehmet Baray y ' ,

Director of Institute of Engineering and Sciences

11

ABSTRACT

AN INTEGER PROGRAMMING BASED ALGORITHM FOR THE RESOURCE
CONSTRAINED PROJECT SCHEDULING PROBLEM

İsmet Esra Büyüktahtakm

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Osman Oğuz

January 2005

In this thesis, we study the problem of scheduling the activities of a single project in

order for all resource and precedence relationships constraints to be satisfied with an

objective of minimizing the project completion time. To solve this problem, we propose

an Integer Programming based approximation algorithm, which has two phases. In the

first phase of the algorithm, a subproblem generation technique and enumerative cuts

used to tighten the formulation of the problem are presented. If an optimal solution is

not found within a predetermined time limit, we continue with the second phase that

uses the cuts and the lower bound obtained in the first phase. In order to evaluate the

efficiency of our algorithm, we used the benchmark instances in the literature and

compared the results with the best known solutions available for these instances.

Finally, the computational results are reported and discussed.

Keywords: Project Management, Scheduling, 0-1 Integer Programming

111

ÖZET

KAYNAK KISITLI PROJE ÇİZELGELEME PROBLEMİ İÇİN TAMSAYI

PROGRAMLAMA TABANLI BİR ALGORİTMA

İsmet Esra Büyüktahtakm

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Osman Oğuz

Ocak 2005

Bu tezde, bir projenin faaliyetlerini tüm kaynak ve ön ilişkiler kısıtlayıcılarını

sağlayacak ve projenin bitiş zamanını enazlıyacak şekilde çizelgeleme problemini

çalıştık. Bu problemi çözmek için iki fazlı tamsayı programlama tabanlı bir

yaklaşıklama algoritması önerdik. Algoritmanın ilk fazında alt problem üretme tekniği

ve problem formulasyonunu sıkılaştıraıak için kullanılan birerleyici kesmeler

sunulmuştur. Önceden belirlemniş bir zaman limiti içinde eniyi çözüm bulunamaması

halinde, ilk fazda üretilmiş kesmeleri ve alt sınırı kullanan ikinci faza geçilir.

Algoritmamızın etkinliğini değerlendirebilmek amacıyla literatürdeki denektaşı

niteliğindeki problemleri kullandık ve sonuçları bu problemlerin mevcut en iyi

çözümleriyle kıyasladık. Son olarak, hesaba dayalı sonuçlara ve değerlendinnelere yer

verilmiştir.

Anahtar Kelimeler: Proje Yönetimi, Çizelgeleme, 0-1 tamsayıh programlama

IV

Tb tfie memory of ту Beloved friend Ĥ ßia 9(ayan.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Assoc. Prof. Osman Oğuz for his

supervision and encouragement during my graduate study. His endless patience,

understanding and guidance let this thesis come to an end.

I am indebted to Assoc. Prof Oya Ekin Karaşan, Asst. Prof Hande Yaman and Asst.

Prof Murat Fadıloğlu for accepting to read and review this thesis and for their

valuable comments and suggestions.

I would like to express my sincere thanks to Hayriye Çiçekçi for her friendship,

encouragement and love.

I would like to take this opportunity to thank Duygu Pekbey, Mustafa Rasim Kılıç,

Ayşegül Altın, Hakan Gültekin, Kürşad Derinkuyu and Mehmet AjTancı. I cannot

forget their help and valuable support throughout this thesis work.

I would like to thank to Adife Yapça, Ağcagül Yılmaz, Zümbül Bulut, Gökhan

Metan, Mehmet Oğuz Atan, Yasin Göçgün, Emrah Zarifoğlu and Banu Yüksel for

their friendship and morale support. I am also thankful to my officemates and to all

Industrial Engineering Department staff

Though I cannot list all of their names, there is a group of friends to whom I would

also like to express my appreciation for their friendship and support.

Finally, I would like to express my deepest gratitude to my family. To my father

Adem Büyüktahtakm for his encouragement, understanding, and confidence, to my

mother Ayşe Büyüktahtakm and my brothers Ibrahim and Ömer Büyüktahtakm for

their love and understanding. I feel lucky to have such a wonderful family, and

without them the completion of this thesis would be impossible.

VI

C O N T E N T S

1 INTRODUCTION 1

2 LITERATURE REVIEW 3

2.1 Optimization Procedures ... 4

2.1.1 Integer Programming... 4

2.1.2 Implicit Enumeration..6

2.1.3 Branch and Bound Techniques...7

2.2 Heuristic Approaches.. 11

3 PROBLEM FORMULATION AND SOLUTION PROCEDURE 19

3.1 Problem Fonnulation..19

3.2 Algorithm...23

3.2.1 First Phase of the Algoritlim.. 24

3.2.2 Second Phase of the Algorithm..29

3.3 An example..31

3.4 Remarks..35

Vll

CONTENTS

4 COMPUTATIONAL RESULTS

4.1 Test Data,

36

..36

4.2 Computational Results... 38

5 CONCLUSIONS AND RECOMMENDATIONS 45

BIBLIOGRAPHY 48

vin

3.3: Example test problem with scheduling results.. 31

4.2a: Increase in average CPU time as RS decreases with NC=1.5 and RF=0.25

for J60..42

4.2b: Decrease in average number of problems solved to optimality as RF

increases for N=30...43

4.2c: The change in average number of problems solved to optimality when

NC=1.5, NC=1.8 and NC=2.1 for J30...44

L IS T O F F IG U R E S

IX

L IS T O F T A B L E S

3.3: The integer values of the selected variables as part of the MIP relaxation

solution in each iteration...32

4.2a: PROGEN instances with N=30 and R=4...39

4.2b: PROGEN instances with N=60 and R=4...40

4.2c: PROGEN instances with N=90 and R=4...41

Chapter 1

Introduction

The resource constrained project scheduling is a very popular research topic that

has attracted wide interest of both practitioners and researchers. Its importance

stems from its applications in diverse areas such as production planning and

control, software development, and construction engineering. The resource

constrained project scheduling problem (RCPSP) is beautifully formulated as an

integer program; unfortunately its exact solution is almost impossible to find due

to the fact that it is NP-complete (Blazewicz et al., 1983).

The popularity of project scheduling has been on the rise since the

development of PERT (program evaluation and review technique) and CPM

(critical path method) techniques in the mid 1950s. The major drawback of the

CPM/PERT techniques is that these procedures do not provide feasible schedules

for many real life projects since they assume that there is an infinite amount of

resources available for each activity in the project network. With the introduction

of the resource constraints, the problem becomes an NP-hard optimization

problem and requires more advanced optimization techniques to be solved.

The research on resource constrained project scheduling problem has

grown on various directions. Different versions of this problem can be classified

according to the number of simultaneously scheduled projects (single, multiple),

the nature of the optimizing objective function, the nature of resources and the

activities in the project (Boctor, 1990). In this study we will focus on the classical

resource constrained project scheduling problem in which the activities of a single

project is scheduled subject to precedence and resource constraints with respect to

the makespan minimization objective. Our problem is denoted by PS \prec \ C„,ax

in the notation of Brucker et. al. (1999).

There are quite a few methods in the literature for solving the general

RCPSP as a zero-one integer programming problem. The major drawback of these

models is the excessive number of binary variables and constraints that make the

problem computationally intractable. Many researchers such as Huber (1974) and

Patterson (1984) conclude that zero-one programming is not an effective means of

solving this problem since the early attempts at using IP to solve the exact version

of this problem were unsuccessful. Therefore integer programming is not

considered as an alternative for solving the RCPSP by many researchers. In our

study we aim to show that with the appropriate cuts applied to the problem

formulation, good results can be obtained in reasonable computational times. We

present the enumerative cuts and a two phased approximation algorithm using

Cplex as an IP solver and investigate the perfomiance of our algorithm, which is

based on Integer Programming.

CHAPTER 1. INTRODUCTION 2

The thesis is organized as follows: In Chapter 2, a literature review for the

classical resource constrained problem is provided. In Chapter 3, the problem

formulation, the algorithm and an example problem are given. In Chapter 4,

problem data and computational results are presented. Finally, some conclusions

and remarks for future works are stated in Chapter 5.

Chapter 2

Literature Review

The solution techniques proposed for RCPSP can be divided into two major

categories;

i. Optimization techniques that lead to the best schedule. These

techniques are mathematical programming (linear, integer and

dynamic programming) and enumeration approaches such as implicit

enumeration and branch & bound.

ii. Heuristic or approximation approaches that will not lead to the

optimal but good resource-feasible schedules.

For comprehensive reviews we refer the reader to Davis (1973), Herroelen et. al.

(1997), Patterson (1984), Icmeli et. al. (1995), Elmaghraby (1995), Ozdamar and

Ulusoy (1995) and Brucker et. al. (1999). Below we review exact and heuristic

algorithms designed to solve the classical resource constrained project scheduling

problem (RCPSP).

2.1 Optimization Solution Procedures:

2.1.1 Integer Programming

Pritsker et. al. (1969) propose an effective 0-1 integer programming formulation

for the RCPSP. Their formulation is superior to the other known formulations in

terms of computational tractability since it requires fewer variables and

constraints to represent each scheduling problem. It is also a more general

formulation, which can deal with the real life situations with three different

objectives: the total throughput time minimization for all projects, makespan

minimization and total lateness minimization. The fonnulation of Pritsker et. al.

(1969) precedes and inspires the studies of Patterson and Huber (1974), Patterson

and Talbot (1978), Talbot (1982) and many researchers use the various

adaptations of this 0-1 formulation to represent the project scheduling problem

they consider in their study. It is known that the major drawback of this

formulation is that this formulation can only be used for very small problems

since the number of variables increases very rapidly with the problem size. In our

study, we used the modified version of this formulation with the makespan

minimization objective and showed that this formulation could be used not for

only small size problems but also for large size problems.

CHAPTER 2. LITERATURE REVIEW 4

Deckro et. al. (1991) propose a decomposition approach to solve the

resource constrained multi-project scheduling problem. They model the problem

as a block angular general integer program. They exploit the block angular

structure of the general multi-project resource constrained problem by using the

Sweeney-Murphy decomposition approach, which is a Lagrangean approach to

solve the classical block-angular problem. By using this approach, they

decompose the problem into a master problem, which is a linear program formed

by the resource constraints and non-resource constrained single project

sequencing problems fanned by the individual project constraints. The feasible

solutions to the subproblems are used in the objective function of the master

problem. Since not all of the best solutions to each subproblem are used, the

master problem is a restriction of the original problem thus the optimal solution of

the restricted problem is not necessarily the optimal solution of the original

problem. To overcome this problem, an optimality test is used. The authors report

that the decomposition approach offers a computationally feasible procedure to

solve large and complex multi-project, resource constrained problems.

Icmeli and Rom (1996) present three new models in which they relax the

integrality assumption by imposing continuous activity durations, continuous

resource consumption and continuous project life span. The resource availability

assumptions differentiate each of these models. In the first model the resource

availabilities are assigned to specific time milestones, which divide the project life

span into some predetermined intervals whereas in the second, the resource

availabilities are allocated to time intervals. However, in the third model, each

activity is forced to start and end in the same interval and the resource

availabilities are allocated to the time intervals. Two possible objective functions

are used in the model: minimizing the makespan of the project and maximizing

the net present value of the project cash flows. They use Optimization Subroutine

Library from IBM to solve these models. They report a detailed analysis on a total

of 1400 problems with different parameter settings to determine the factors that

affect the computational efficiency of the code and the models. They also mention

that they solve practical size project scheduling problems as well as MRP

problems with a reasonable computational effort.

CHAPTER 2. LITERATURE REVIEW 5

Carruthers and Battersby (1966) present a dynamic programming problem

formulation, which is an interpretation of the conventional critical path method. In

the disjunctive problem considered here, the activities compete for the same

resource, which is available only for one period. They report that for more

complex, practical problems, the amount of information to be stored in the

dynamic programming method will be significant for the whole network, but

dimensionality could be possibly reduced by the use of Lagrange multipliers.

2.1.2 Implicit Enumeration

The large number of 0-1 variables and constraints has led researchers to develop

numerous enumerative approaches for solving the resource constrained project

scheduling problem optimally.

Balas (1969) proposed an implicit enumeration algorithm, which uses

disjunctive graph concept for solving the job shop scheduling problem. A

disjunctive pair of arcs [(i, j), ()»i)] between operation i and j (performing a job on

a machine is called an operation) expresses the condition that one of the two

operations i, j must be finished before the other one is started. A feasible schedule

is constructed by selecting exactly one arc from each pair with the set of fixed

arcs. The feasible schedules are enumerated by an implicit enumeration algorithm,

which selects the longest path in each feasible schedule as a feasible solution to

the original problem. Among the feasible schedules, the one, with the minimum

longest path, is selected.

Balas (1970) proves the job shop problem proposed in Balas (1969) is

analogous to the project scheduling problem with resource constraints. However,

in this problem the number of available resources may not be equal to one, thus

one arc from each disjunctive pair of arcs need not to be selected. As a result,

there are more possible selections in RCPSP than in the job shop scheduling case

and therefore the problem is more difficult than the job shop scheduling problem.

Balas (1970) gives some stability conditions in order to get a feasible solution.

However, the implementation of the algorithm is not easy.

CHAPTER 2. LITERA TURE REVIEW 6

Patterson et. al. (1976) propose an implicit enumeration (zero-one

programming) algorithm in which several steps in the enumeration tree are

eliminated by exploiting the special structure of the problem. The implicit

enumeration procedure begins by underlining the right most variable, which will

be set to 1, and other variables except this variable are set to 0 for each activity. If

the schedule is not feasible, this is eliminated from the search. If it is feasible and

a schedule length T, which is shorter than the heuristic schedule span HP (project

deadline) is found, the HP-T right most variables in each variable set of each

activity are examined and if not set to 0 and underlined, are set to 0 and

underlined since these variables correspond to schedule durations greater than T.

All non-underlined variables become free at each improved solution and the

algorithm then begins by considering activity start times for activity 1 and

attempts to find a sequence of activities with a schedule duration of T or shorter.

Optimality is then established whenever the left-most variable is complemented

and underlined. They propose an extension of their algorithm to the machine

scheduling (job shop scheduling) problem. They report that their algorithm is a

reliable optimization technique for scheduling multiple-resource projects

involving up to 30 activities with reasonable amount of computer storage.

2.1.3 Branch and Bound Techniques

Most of the exact algorithms for RCPSP are branch and bound procedures in

which the lower bound is obtained by relaxing the resource constraints and by

computing critical path length. Together with this simple lower bound, most of the

branch and bound algorithms use dominance rules to reduce the search space by

eliminating the nodes that cannot lead to the optimal schedule. Generally, these

branch and bound techniques differ from each other by their branching schemes

and pruning rules.

CHAPTER 2. LITERA TURE REVIEW 1

Schräge et al. (1970) presents a bounded enumeration approach, which

generates all active schedules for the resource constrained scheduling problem. A

schedule is denoted “active” if there is no activity that can be started earlier

without changing the start times of any other activities and without violating the

precedence, resource and preemption or non-preemption constraints. The branch

and bound algorithm proposed here implicitly enumerates all active schedules to

select the optimal schedule. The simple resource and precedence-based lower

bounds are used to reduce the search space. The algorithm is applied to a series of

test problems including job shop and two-dimensional cutting stock problems.

Patterson (1984) presents a comparison of exact procedures that are

mentioned to represent the state of art in its respective area for solving the

resource constrained project scheduling problem. They evaluate the Bounded

Enumeration Algorithm of Davis, the Stinson’s Branch and Bound Procedure and

the Implicit Enumeration Algorithm of Talbot with respect to computer storage,

solution time and the number of problems solved optimally within a reasonable

computational time. The Stinson’s Branch and Bound procedure is found to be the

best when computer memory is not limiting.

Davis et al. (1971) propose a branch and bound algorithm based on

Assembly Line Balancing techniques where each activity is represented by a

number of unit duration tasks equivalent to its duration. Nodes of the search tree

represent subsets of tasks. Arcs connect subsets, which could be completed on

adjacent days. Their procedure tries to determine a family of feasible sets, sets of

tasks that could have been processed at a given time. But the number of such sets

grows very rapidly and only small sized problems can be handled.

Talbot (1978) gives an integer programming formulation that avoids using

large numbers of 0-1 variables by representing the problem in structured integer

arrays, which are directly used by the implicit enumeration algorithm. All possible

job finish times are evaluated. He also presents the idea of network cuts that are

developed to discard partial schedules that cannot lead to an optimum solution

earlier in the enumeration phase. The use of these network cuts reduces solution

times further.

Stinson (1978) develops a branch and bound algorithm with a similar

formulation in Talbot (1978) based upon precedence and resource constraints. The

algorithm uses a four-element decision vector at each node that allows a

significant reduction in the search tree and solution times.

CHAPTER 2. LITERA TURE REVIEW 8

Christofides et al. (1987) have developed CAT a depth first branch and

bound algorithm that generates a branch and bound tree. The nodes of this tree

correspond to semi-active feasible partial schedules. Four different lower bounds

are used to reduee the seareh tree and branching is done only to resolve a resource

conflict. Backtracking is done when a schedule is completed or a branch is

fathomed by the lower bound.

Demeulmeester et al. (1994) show that the procedure of Christofides et al.

(1987) does not always produce the optimal solution.

Bell and Park (1990) present an algorithm, which is a best-first search

procedure where each node of the search tree represents a set of precedence

constraints. The starting node of the enumeration tree only eonsists of precedence

constraints expressed in the original problem. Here the resouree eonstraints are

not considered. A child node is generated by imposing a new disjunctive

constraint to repair the resource conflicts. This approach differentiates their

algorithm from the other algorithms that eonstructs detailed schedules by

dispatching activities. The goal node in the search tree is a network, which

satisfies resource constraints as well as preeedence constraints with the minimal

makespan. Two pruning rules are given to reduce the search space. They solve the

110 problem instances of Patterson and report the number of generated and

pruned nodes and CPU time.

Demeulmeester et. al. (1992) develop a depth first branch and bound tree

whose nodes represent resouree and precedence feasible partial schedules.

Branches emanating from a parent node correspond to exhaustive and minimal

eombinations of activities, the delay of which resolves confliets at each parent

node. Precedence and resource based bounds are combined with new dominance

pruning rules to rapidly fathom major portions of the solution tree. They indicate

that their proeedure is 11.6 times faster than the most rapid solution procedure

reported in the literature while requiring less computer storage.

CHAPTER 2. LITERATURE REVIEW 9

An extension of this study is also provided in the study of Demeulmeester

et. al.(1995). In this study the DH-proeedure developed by Demeulmeester and

CHAPTER 2. LITERATURE REVIEW 10

Herroelen (1992) for the classical RCPSP is extended to the generalized resource

constrained project scheduling problem, in which it is assumed that a project

activity is subject to technological precedence diagramming type of precedence

constraints (finish-start, finish-finish, start-start and start-finish) and cannot be

interrupted once begun.

Mingozzi et. al.(1998) present a new 0-1 linear programming formulation

that requires an exponential number of variables, corresponding all feasible

subsets of activities that can be simultaneously executed without violating

resource or precedence constraints. The preemption allowance assumption

differentiates their fonnulation from the previous ones. They present a new tree

search algorithm, BBLB3, based on this formulation that uses new lower bounds

and dominance criteria. They mention that their algorithm can solve the hard

RCPSP instances provided by Kolisch et.al. (1995) that could not be solved by the

DH-procedure of Demeulmeester and Herroelen (1992). They conclude that

BBLB3 is competitive with the DH procedure on hard instances, while it does not

dominate DH on easier problems.

Brucker et al. (1998) present a branch and bound algorithm in which each

node is represented by a feasible schedule. The enumeration tree starts with a

graph consisting of conjunctive arcs between the activities, which have

precedence relations, and disjunctive arcs for all pairs of the activities, which

cannot be processed, in parallel due to the resource constraints. Then the

branching takes place by either introducing disjunctive constraints between pairs

of activities or placing these activities in parallel. In addition, the immediate

selection concept is introduced to analyze the inclusion of conjunctions in each

node of the branch and bound tree. This analysis provides them to obtain new

conjunctions, disjunctions or parallelity relations between the pairs of activities.

The lower bound LB2 of Mingozzi et. al. (1994) and an upper bound obtained by

a tabu search algorithm are used to reduce the search space. They report that 425

of the 480 PROGEN instances with J=30 and 326 of the 480 PROGEN instances

with J=60 are solved by their algorithm within an hour.

CHAPTER 2. LITERATURE REVIEW 11

Domdorf et. al. (2000) present a time-oriented branch and bound algorithm

which enumerates possible activity start times. At a given node of the tree, an

activity selected for branching either must start as early as possible or be delayed.

Instead of using an explicit lower bound procedure, they reduce the search space

by using constraint propagation techniques, which are systematic and

computationally efficient applications of basic consistency tests. These techniques

actively exploit the temporal and resource constraints of the problem. In addition,

the search space is reduced by enforcing some necessary conditions that must be

met by the active schedules. They report that on a data set of over thousand

problem instances with one hundred activities each, their algoritlim finds feasible

solutions for all problems and it solves more problems to optimality than other

exact methods. In addition, they mention that the truncated version of their

algorithm is a very good heuristic.

2.2 Heuristic Approaches:

Even the most powerful exact procedures are not able to find optimal schedules

for highly resource constrained projects with 60 activities or more. The problem

complexity caused by the exact procedures motivated researchers to develop

effective heuristic procedures, which produce “good” feasible solutions.

Wiest (1967) develops a heuristic scheduling model, which determines the

start time of each activity and the assignment of resources to activities in a

project. The model basically assigns the available resources, period by period, to

jobs listed in order of their early start times. The scheduling heuristic used in this

study gives the highest probability of being scheduled first to the most critical

jobs and tries to schedule as many jobs as available resources permit. If an

available job cannot be scheduled in a period, it is postponed to the next period as

to be the most critical job in the priority list of the available jobs. Some resource

leveling techniques are applied to determine the optimum combination of shop

CHAPTER 2. LITERATURE REVIEW 12

resource levels and resulting finish date. The schedule is evaluated by a total cost

function including resource costs, overhead costs, which are directly, related to

the length of the schedule and the costs of changing resource levels. The author

mentions that their model can be applied to different project scheduling problems

with varying constraints and scheduling rules by changing certain parameters and

heuristics in the model. In the evaluation of the model part, the applications of the

model to a number of fictitious and real projects are described.

Davis and Patterson (1975) makes a comparison of the effectiveness of eight

different heuristic scheduling rules selected from the categories above, relative to

an optimum solution which is calculated by a branch and bound algorithm. These

heuristics including those found most effective in previous research on the project

duration minimization with multi-resource problems are;

Minimum Job Slack (MINSLK)

Resource Scheduling Method (RSM)

Minimum Late Finish Time (LFT)

Greatest Resource Demand (GRD)

Greatest Resource Utilization (GRU)

Shortest Imminent Operation (SIO)

Most Jobs Possible (MJP)

Select Jobs Randomly (RAN)

The results of this study show that heuristic performance is dependent on the

problem characteristics and it is quite difficult to predict and to choose the most

efficient one. Davis and Patterson (1975) tried to determine the project and

resource characteristics, which may determine the efficiency of some heuristic

sequencing rules. The minimum slack heuristic, averaging 5.6% above optimum

gave the best overall results.

Cooper (1976) discusses the parallel method, which produces just one

schedule, and the sampling method, which generates a set of schedules using

probabilistic techniques and selects the best schedule from this sample. A variety

of priority rules are tested by these procedures. An experimental investigation of

CHAPTER 2. LITERATURE REVIEW 13

these two heuristic methods, both using priority rules, is performed and the effects

of the heuristic method, the project characteristics and the priority rules are

evaluated. It is reported that with the parallel method the choice of priority rule is

important, but with the sampling method, although it effects the distribution of the

sample, the choice of the rule is not significant. Another result of this study

reported by the author is that the sampling method, even with the relatively small

sample size of 100, generally produces schedules that are at least 7% better than

the corresponding schedules produced by the parallel method.

Holloway (1979) develops and evaluates the multi-pass heuristic project

scheduling procedure, PSP, based on problem decomposition, which is applicable

to single, and multiple project networks. PSP designed to find schedules satisfying

given project due dates is an adaptation of the heuristic scheduling procedure

(HSP) (Holloway, 1973) for the simple job shop model in which each operation

has at most one immediate predecessor and at most one immediate successor. It is

found that this procedure is much less sensitive to problem size than the branch

and bound algorithm. In addition, this procedure is found to be superior in

solution quality to the other procedures compared including the minimum slack

heuristic whose performance is reported by Davis and Patterson (1975).

Kurtuluş and Davis (1982) summarize the important characteristics of the

projects as to be the number of activities, number of parallel paths, activity time

and resource requirement distributions and complexity. They provide a

categorization process based on two project summary measures and the

performance of the rules are classified according to values of these two measures.

The first one of these measures identifies the location of the peak of total resource

requirements and the second one is the rate of utilization of each resource type.

Bell and Han (1991) present a two-phase heuristic solution method, which

is different from the previous researches in repairing resource conflicts rather than

constructing detailed schedules by dispatching alternatives. In the first phase after

a precedence feasible activity network is generated, new arcs are imposed

CHAPTER 2. LITERATURE REVIEW 14

between the activities that violate resource constraints to obtain both resource and

precedence feasible solution. In the second phase, they use a backtracking

procedure, which is called a hill-climbing search post-analysis to find local

improvements in the schedule found in stage one. They report that their heuristic

produces better results than Davis and Heidom (1975).

Sampson and Weiss (1993) propose a local search procedure in which the

precedence feasible solution is represented by a vector that specifies the start

times for each of the activities. A neighborhood solution is obtained by increasing

or decreasing start and finish times of an activity. They consider the resource

infeasibility only through penalizing the objective function. They report that they

find better solutions than the algorithm of the Bell and Han (1991), which gives

the best heuristic results reported to date.

Bala and Oguz (1994) make a comparative study between the special and

general purpose heuristics. Perfomiance of two new integer programming based

heuristics (MIXED-heuristic and The Sciconic Optimization Software) and the

MINSLK, SDFIRST, and LDFIRST-heuristics, which are the applications of

minimum Job Slack Rule given in Patterson (1975), with three alternative

prioritizing rules are tested from a computational point of view. The quality of

solutions of these algorithms and their relative merits are investigated.

Kolisch (1995) considers the so-called parallel and serial method and give

a formal description and an extensive literature review. He proves that the serial

method generates active schedules while the parallel scheduling technique

produces non-delay schedules. After doing some experimental analysis, he reports

that while the parallel scheme is clearly superior for small and hard problems (i.e.

less than 40 generated schedules), the serial scheme shows better results for large

and easy samples. He also mentions that sampling improves the results of single

pass scheduling up to 70% when pure random sampling is avoided.

CHAPTER 2. LITERATURE REVIEW 15

Kolisch and Drexl (1996) propose an adaptive search, which combines

priority rules with random search techniques by means of two types of

adaptations. In the first type adaptation the method selects an appropriate solution

space by choosing the scheduling method, parallel or serial scheduling method,

while in the second type adaptation it controls the searched area of the chosen

solution space. A new priority rule and lower bounding techniques are used to

enhance the general solution scheme. They report that their method is highly

competitive to existing heuristics and can be easily employed to the more realistic

and more complicated project scheduling problems, which incorporate e.g.,

multiple execution modes, deadlines and set-up times.

Lee and Kim (1996) present the priority scheduling procedure in which a

solution is represented by a vector of positive numbers each of which denotes

priority of each activity. Positions of the numbers correspond to indexes of the

activities and the values of the numbers represent priorities of their corresponding

activities. After they determine the priority values of the activities, they generate a

complete schedule with the priority scheduling method that they propose. To find

a good set of priority values, they use simulated annealing, tabu search and

genetic algorithms.

Cho and Lee (1997) mention that the algorithm of Lee and Kim (1996) in

which delay schedules are left out of consideration, always fails to find optimal

solutions of the problems for which only delay schedules are optimal. They

extend the study of Lee and Kim (1996) to develop a priority scheduling based

heuristic which considers delay schedules as well as non-delay schedules. The

method used by Cho and Lee (1997) differs from the algorithm of Lee and Kim

(1996) in that Cho and Lee use negative numbers in the priority vector for the

activities, which are to be delayed intentionally although they can be started. They

call these activities as delayed activities. They use simulated annealing algorithm

to determine how many activities should be included in the set of delayed

activities. They make experiments with Patterson test problems as well as

CHAPTER 2. LITERATURE REVIEW 16

randomly generated problem instances and report that they find better solutions

than those of the algorithms tested on the Patterson test problems so far.

Hartman (1998) provides a genetic algorithm (GA) in which permutation

based genetic encoding is employed and compares it with the two other GA

procedures that apply priority value based and priority rule based representation,

respectively. For these three procedures, although the genetic encodings and

encoding-specific genetic operators are different, the serial scheduling scheme,

which is used to determine the initial schedule, and the genetic operators that are

not encoding specific are the same. In the pennutation based encoding rule the

initial generation is detennined by a random sampling method in which LPT is

used to derive the probabilities of selecting the next job for the activity list. The

priority value based genetic algorithm assigns a priority value to each of the

activity, which is scheduled according to the activity list computed by the serial

scheduling scheme. In the priority rule representation, each priority rule in the list

is assigned to an activity, which is selected from the set of eligible activities. Two

point crossover operator and the 0.05 mutation probability are used for all the

three procedures. The most important result of this study which is pointed out by

the authors is that the choice of an appropriate representation is far more

important than other configuration decisions such as crossover and selection type

and mutation rate.

Hartman and Kolisch (2000) presents a survey in which they summarize

the basic components of heuristic procedures such as schedule generation

schemes, priority rules, schedule representations, operators and search strategies,

the methods combining these operators such as X-pass methods (single pass

methods, multi-pass methods, sampling procedures) and different types of

metaheuristics (simulated annealing, genetic algorithms, and tabu search). They

also evaluate the performance of several state-of-the-art heuristics from the

literature on the basis of a standard set of test instances and point out to the most

promising procedures. The behavior of the heuristics with respect to their

components such as priority rules and metaheuristic strategy is analyzed. In

CHAPTER 2. LITERATURE REVIEW 17

addition, the impact of the problem characteristics such as project size and

resource scarceness on the performance is examined.

These heuristics investigated in this research are:

• Simulated Annealing Algoritlim of Bouleimen and Lecocq (1998)

• Genetic Algorithm of Hartmann (1998)

• Tabu Search of Baar et. al. (1998)

• Adaptive Sampling Technique of Kolisch and Drexel (1996)

• Single pass/ sampling with LFT and WCS rule used by Kolisch (1996)

• Random sampling method of Kolisch (1995)

• Genetic Algorithm of Naphade (1997)

They report that the most successful approaches in their numerical evaluation are

metaheuristics, namely the simulated annealing procedure of Bouleimen and

Lecocq (1998) and the genetic algorithm of Hartmann (1998) both of which use

activity list representation and the serial SGS (schedule generation scheme). They

point out that the solution representation is more important than the metaheuristic

strategy used. They investigate the impact of problem parameters on the problem

complexity.

K. Bouleimen and Lecocq (2003) present a new simulated annealing

algorithm in which all parameters are set after some preliminary statistical

experiments are done on test instances. The solution representation used in this

procedure is the activity list representation in which precedence and resource

feasible solution is represented by an ordered list of activities. As a scheduling

procedure, the serial schedule generation scheme (SGS) based on an alternated

activity and time incrementing process is used to determine the priority and start

time of each activity. A neighborhood is generated by randomly selecting an

activity and moving this activity anywhere between its latest predecessor and

earliest successor. Also all other activities between the new and the old positions

are shifted. The procedure uses multiple cooling chains, where each chain allows

enough time for deep exploration of the path followed by the procedure with

increasing number of visited solutions and decreasing temperature. They make

computational experiments with the benchmark instances in the PSPLIB with 30-

CHAPTER 2. LITERATURE REVIEW 18

90 activities and Patterson problems. They report that they found optimal

solutions for easy or small sized (Patterson set and set with J = 30) with

aceeptable process times. For larger and more eomplex problems, they obtain an

average deviation of less than 1%.

Fleszar and Hindi (2004) propose an algorithm, which is based on variable

neighborhood seareh. Aetivity list representation is applied with the serial

scheduling scheme, which is used to obtain start times of the activities. This serial

scheduler turns the sequences into valid active schedules. Initial solution is

obtained by the one-pass, sampling based priority rules. The neighborhood is

constructed by moving one aetivity to a new position whose margins are

determined by the set of all direct, indirect successors and predecessors of that

activity. Also the activities that do not have any precedence relation with the

moved activity jump to the other side of that activity. The neighborhood search is

done by repeatedly generating a random point from the neighborhood of the

current point until finding a local optimum. The solution space is reduced by

improving lower bound and discovering additional valid precedenees to augment

the existing set. They report that they have improved the best solution in the

PSPLIB for 48 instances and the best known lower bounds for 148 problem

instanees.

Chapter 3

Problem Formulation and

Solution Procedure

In this chapter, we provide the 0-1 formulation of the problem first. Then, we

describe our Integer Programming based approximation algorithm, which has two

phases. The first phase of the algorithm constitutes the main part in which a

subproblem generation technique is used to obtain the enumerative cuts. If an

optimal solution is not found in the first stage, we switch to the second phase that

exploits the cuts and the lower bound obtained in the first phase. Each stage of the

algorithm is explained and an application of the first stage to a small example is

presented.

3.1 Problem Formulation

The formulation used in this study is partially extracted from the study of Oguz

and Bala (1994). This is a modified version of Pritsker et al.’s (1969) formulation

with the following assumptions:

• Single project consisting of a given set of activities.

19

• No activity can start unless all its predecessors are completed,

• Job splitting is not allowed - nonpreemptive case,

• Limited multiple resources,

• Resouree consumptions are constant over the scheduling horizon,

• No substitution between resources.

The definitions related to the formulation are as follows;

CHAPTER 3. PROBLEM FORMULA TION AND SOLUTION PROCEDURE 20

Definitions:

Indices:

]: Activity index; j = l,2,...,N ; N = number of activities in project

k; Resource index; k=l ,2, . . . ,K; K= number of different resouree types

t : Time period; t= 1,2,..., T; T = project due date

Problem parameters:

dj : Duration of activity j

rjk : Amount of resource type k required by activity j

Rkt : Amount of resource type k available in period t

Ij : Earliest possible period by which activity j could be completed

Uj ; Latest possible period by which activity] could be completed

Hj : {set of all immediate predecessors for activity]}

Notes:

1. Ij- and Uj- values are computed through the CPM calculations.

2. We should ensure that the project due date T, should be long enough not to

cause infeasibility.

3. The last activity in the project is the dummy finish activity, N, with

duration 0. In this study, the dummy start activity is not considered in the

calculations.

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION PROCEDURE 21

Decision variables:

Xjt = ^

1 if activity j is completed in period t

0 o.w.

Note that Xjt is set to 0 in periods where t < Ij and t > uj. So, the problem is

formulated as below.

Objective function:

The choice of an appropriate performance measure differs for various scheduling

environments. In our study, the objective is chosen to minimize the project

completion time. That is, we try to schedule the last activity in the project as early

as possible. So, the objective function is to minimize

un

z = E tXN,t
t=lN

(1)

Constraints:

Activity completion:

Each activity has exactly one completion period:

E Xjt = j - l , . . . , N
t=li

(2)

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION PROCEDURE 22

Precedence relationships:

Assume that activity m must precede activity n. Let Tm and Tn denote the

completion periods of activities m and n respectively. Then

Um Un

Tni + dn < Tn where T,n = X tx^t and T,, = 2 tXnt .
t l̂m t~ln

So, the constraint becomes

Un

S t^rnt df, ^ t^nt
t = ln t = ln

Vme Hn and Vn (3)

Resource Constraints:

In any period, the amount of resource k used by all activities cannot exceed the

available resource k. An activity j is being processed in period t if the activity is

completed in period q where t < q < t + dj -1. So, the resource constraints are

written as

N t+dj-1

E E TjkXjq < Rkt
j=l q=t

k= l,...,K t= l,.. . ,T (4)

The above formulation has N activity completion, K-T resource and | |

precedence constraints. Out of the N-T variables, Z ĵ=i (T-Uj+lj-l) variables are set

to 0. Therefore, it makes a total of (N+ K.T+Zn.̂ j | h , |+Z ĵ=i (T-Uj+lj-1))

constraints.

3.2 Algorithm

To solve the resource constrained project scheduling problem whose fonnulation

is given in section 3.1, we apply a two phased algorithm which is based on

enumerative cuts. In the first phase of the algorithm, we generate subproblems by

inserting the integer values of some previously selected variables into the original

problem. Then we try to solve the subproblem. If a feasible solution cannot be

found for the subproblem, we obtain a cut consisting of variables that are fixed to

integer values. We call these cuts as enumerative cuts. The first stage of our

algoritlim seeks to improve the lower bound at each step by adding these cuts into

the formulation. A feasible solution to the subproblem generated by our algorithm

is at the same time an optimal solution to the original problem as stated and

proved in the theorem at the end of section 3.2.1. If any feasible solution is not

found in the first stage within half an hour, we go to the second phase, in which

the cuts obtained in the first phase are added to the modified version of the

original problem. Then we use the IP solver of CPLEX 9.0 to solve this modified

problem including the cuts previously obtained. This procedure at least provides a

lower bound.

CHAPTER 3. PROBLEM FORMULA TIONAND SOLUTION PROCEDURE 23

The detailed description of the algorithm with two stages is given in the following

sections.

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION PROCEDURE 24

3.2.1 First Phase of the Algorithm

In the first stage of the algorithm we consider the 0-1 integer programming

formulation of the resource constrained project scheduling problem proposed in

section 3.1. Firstly, we select three activities with the maximum earliest finish

times. Our purpose for selecting these activies is obtaining a cut consisting of the

variables corresponding to the selected activities since we observe that these cuts

improve the lower bound. One of these three activities should be the dummy

finish activity because it has the maximum earliest finish time, which is equal to

the critical path length. Then we relax the integrality constraints except the

variables corresponding to these selected activities and solve the MIP relaxation

of the original problem. In this way, the variables of the selected activities are

guaranteed to take integer values in the solution of the relaxed problem.

The number of the variables corresponding to the selected activities

determines the partition size since we fix the integer values of these variables

obtained as part of the MIP relaxation solution and by inserting these values into

the original problem we generate a subproblem. If we increase the number of the

fixed variables, the subproblem gets smaller. We select exactly three activities for

any instance since the experimental results show that three is the ideal number of

activities that should be selected. With more than three activities selected, we

observe that the iteration number increases rapidly and the efficiency of the cuts

decreases. With less than three, the s i^ of the subproblem gets larger since the

number of the non-fixed variables increases and Cplex may have difficulties to

solve the subproblem.

After obtaining the subproblem, we solve it by using CPLEX. If it is

feasible, we terminate the algorithm since we find the optimal solution as stated in

the theorem at the end of this section. If the subproblem is infeasible, we realize

that a solution including the integer values of the fixed variables will not lead to a

feasible solution. Thus to eliminate this solution we add a cut consisting of the

fixed variables to the original problem. This cut will be presented in step 5, and

the validity of it will be explained.

The step by step description of the first phase of the algorithm is given below:

Consider the following 0-1 integer programming formulation of the resource

constrained project scheduling problem:

CHAPTER 3. PROBLEM FORMULA TION AND SOL UTION PROCEDURE 25

un

Minimize 2 IXn t
t=lN

(5)

Subject to

Uj

2 Xj.t = 1
t=li

j= l,...,N (6)

Un

X tXm,t + dn ^ S tXn̂ t Vme Hn , Vn
t ~ Im ̂~ 1̂1

(7)

N t+dj-l

E E fj,kXjq < Rk,t t= 1,...,T k=l,...,K
j=l q=t

(8)

Xj.t s {0,1}, j=l,...,N t= l,...,T

1. Calculate the earliest finish time of each activity (ignoring resource

constraints) and order them in an increasing sequence. Select three

activities with the maximum earliest finish times. If there is a tie between

two activities, select the one with greater activity number. Put the indexes

of these selected activities to set S. Define S’ as:

S’ = {j,t| jeS an d t = l j , . . . , U j }

2. Set the value of the incumbent solution Zi„c to oo.

3. Relax the integrality constraints of the above problem except the variables

corresponding to the activities in S. Solve the relaxed problem plus any

cuts generated so far by using the MIP solver of CPLEX. Let X* =

(xi,i*,...,X],t*, X2,i*v,X2,t*v·· xn.i*,—,x N,t*) denote the solution to the MIP

relaxation of the problem. Stop, if the problem is infeasible.

4. Set the variables of the activities in S to their respective integer values in

X*. Partition the problem according to S and solve the associated problem

P(S):

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION PROCEDURE 26

Un

Minimize X tXN,t*
t=İN

(9)

Subject to

£ Xj.t = 1
t=li

jeI\S (10)

U,n Un

Z tXmt* + dn < E tX;
t = l,n t = l

lit msHnnS,ne(I\S) (11)

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION PROCEDURE 27

Um U„

^ tXmt + dn < X tXnt* me HnO (I\S), ne S (12)
t = Im t = In

2] tXmt + dn < Z tXnt me HnO (I\S), ne (I\S) (13)
t = l„ t = ln

t+dj-1 1

Z Z ^jk^jq — ^kt " Z Z Ijk^jq* t= 1,...,T k=l,...,K (14)
je I\S q=t jeS q=t

X jte{0,l} , jeI\S

where I = {1,.",N }

by CPLEX v9.0 in MIP mode.

If a feasible solution is found to P (S), terminate the algorithm. Otherwise

go to 5.

5. Append a new cut to the original problem as,

Z Xj,t+ Z ^ I S’ I-I
j,teS’nS| j.teS’nS,

where S| = {j,t | xj,i* = 1} and S2 - {j,t | xj,t* - 0}

Go to 3.

' The cuts described in section 3.2.1 are adapted from the cuts proposed by Oguz, 2002,’’Search
and Cut: New Class of Cutting Planes for 0-1 Programming”

An explanation for the cut proposed in step 5 is given below:

The following equality X Xj t* + S) = I S’ | holds
j,t€S’nS| j,teS’nS2

for S’ = {j, t | jeS and t = Ij S| = {j,tU.j,i* = 1} and S2 = {jdUj.t* = 0}.

Suppose that the subproblem P (S) is infeasible. Then no solution containing the

fixed variables is feasible for the original problem. And suppose that there exist a

feasible solution to the original problem and it is represented by X = (xi,i,...,xi,t,

X2,i,.-,X2.tv Xn j v A N,t), then

E Xj,t+ E (1-Xj,t) ^ I S’ 1-1
j,teS’nS| j,t€S’nS2

must hold, because at least one Xj_i must be different than Xĵ t’*' for j,t e S’.

Before stating the theorem, we should remind that set S is defined so as to contain

the indexes of the three activities with the maximum earliest finish times, and set

S necessarily contains the dummy finish activity, N since activity N has the

maximum earliest finish time.

Theorem:

For all S C {1,...,N} such that Ng S, a feasible solution to P (S), which is a

subproblem of the original problem, is an optimal solution for the original

problem.

CHAPTER 3. PROBLEM FORMULA TION AND SOLUTION PROCEDURE 28

Proof:

Suppose that is a feasible solution to the subproblem P (S). Then, is also

optimal since the objective function of P (S) is a constant due to fixed variables.

Let Xn ̂ t “ 1 be the part of the optimal solution to the MIP relaxation of the

original problem where t is the completion period of the dummy finish activity, N.

Then t is equal to the optimal objective value of the relaxed problem. Xn,i is set to

1 in the original problem with the variables of the selected activities set to their

corresponding integer values in the optimal solution of the MIP relaxation and

subproblem P (S) is obtained in this way.

Now suppose S* is not optimal for the original problem. Then there should

be t ’ such that Xn, t’ “ 1 and t’< t in the optimal solution to the original problem.

However this contradicts with the fact that the optimal value of the MIP relaxation

of a minimization problem cannot be greater than the optimal value of that

problem.

Thus, S* is optimal for the original problem.

We execute the algorithm presented in this section at most half an hour for

a single instance. If we do not find a feasible solution that is also an optimal

solution within this time limit, we proceed with another algorithm, which will be

explained below.

3.2.2 Second Phase of the Algorithm

In the first part of the algorithm, we generate enumerative cuts and obtain a lower

bound for our problem. By using this lower bound, we add the following cuts to

the cut file including the previous cuts:

XN,t ^ 0 t= In,.··,lb-1

where lb is the lower bound obtained in the first part of the algorithm.

CHAPTER 3. PROBLEM FORMULA TION AND SOLUTION PROCEDURE 29

In the second stage, we modify the objective function of the original

problem whose formulation is given in section 3.1 so as to minimize the

completion time of the activity, which immediately preceeds the dummy finish

activity and has the maximum earliest finish time. Thus here we aim to minimize

the finish time of this activity instead of the dummy finish activity. Constraints

and the binary variables are the same with the original problem. However we add

the cuts obtained in the first stage together with the cuts generated from the lower

bound to the modified problem and solve this modified problem by using Cplex.

A feasible or an optimal solution to the modified problem is a feasible solution for

the original problem since the completion time of the selected activity whose

finish time is minimized cannot be larger than the finish time of the dummy finish

activity in any feasible solution. If the finish times of these two activities are equal

in the optimal solution of the modified problem, the solution is also optimal for

the original problem and thus the optimality is verified.

The step by step description of the second stage of the algorithm is given below:

1. Select the activity with the maximum earliest finish time among the

immediately preceding activities of the dummy finish activity. Modify the

objective function of the original integer problem by minimizing the finish time of

the selected activity instead of dummy finish activity as shown below:

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION PROCEDURE 30

Minimize ^ tXj t
t=lj

(15)

where j is the selected activity.

2. Add the cuts in the cut file to the modified problem.

3. Impose a time limit of 1800 seconds on the CPU time. Solve the associated

problem by CPLEX v9.0 in MIP mode.

4. If an optimal solution is found to the original problem or if the time limit is

exceeded, terminate the algorithm.

CHAPTER 3. PROBLEM FORMULA TION AND SOL UTION PROCEDURE 31

3.3 An Example

Act.

No.

Res.

Req. Duration

Earliest

Finish Time

Act.

No.

Res.

Req. Duration

Earliest

Finish Time

0 (0,0,0,0) 0 0 6 (3,6,4,0) 6 11

1 (4,3,3,8) 4 4 7 (0,8,4,3) 5 10

2 (7,2,6,3) 2 2 8 (1,4,4,0) 7 17

3 (7,5,0,4) 5 5 9 (3,8,0,3) 4 15

4 (7,4,3,8) 3 7 10 (4,0,7,0) 7 18

5 (0,10,2,0) 4 8 11 (0,0,0,0) 0 18

Figure 3.3. Example test problem with scheduling results

A typical problem is illustrated in Figure 3.3. Precedence relationships between

the activities are depicted on the activity-on-nodes (AON) network. Activities 0

and 11 are the dummy start and finish activity with duration 0, respectively. The

durations of the other activities, number of units required by each activity and

resource requirements are shown in the table below the network. There are four

different resource types. Resource availabilities are 27, 18, 25 and 22. Earliest

finish times and the critical path duration are computed by perfonning CPM

calculations in which the resource constraints are not considered. In this example,

critical path is equal to 18. The absolute due date, T is set to 20.

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION PROCEDURE 32

Iter. Activity 8 Activity 10 Activity 11

No
X8,17 X8.18 X8,I9 X8,20 X|0,I8 Xl0,19 Xl0,20 Xll,18 X||,I9 Xll,20

1 0 1 0 0 1 0 0 1 0 0

2 0 0 1 0 1 0 0 0 1 0

3 0 0 1 0 0 1 0 0 1 0

4 0 1 0 0 1 0 0 0 1 0

5 0 1 0 0 0 1 0 0 1 0

6 0 1 0 0 1 0 0 0 0 1

7 0 1 0 0 0 1 0 0 0 1

8 0 1 0 0 0 0 1 0 0 1

9 0 0 0 1 0 0 1 0 0 1

Table 3.3: The integer values of the selected variables as part of the MIP
relaxation solution in each iteration

The IP model of this problem contains 220 variables 155 of which are

previously set to 0 since these variables represent the activity finish times that are

not between earliest and latest finish time periods. There are 11 activity

completion, 18 precedence relationship and 80 resource constraints. We have 155

more constraints due to the variables set to 0. In order to decide which variables

will be fixed to the integer values among the remaining 65 variables, we order the

earliest finish times of the activities in the example and select activity 8, 10 and 11

that have the maximum earliest finish times. These activities have 10 active

variables, which are not set to 0. These 10 variables will be fixed to the

corresponding integer values in the MIP relaxation optimal solution.

We relax the integrality constraints of variables except the fixed variables

of activities 8, 10 and 11. The relaxed problem has a non-integral solution with

the objective value 18. In table 3.3, in the first iteration the integral values of these

variables, which are fixed, are shown. We put these values to the original

problem; we obtain a subproblem, which does not explicitly contain the fixed

variables of the activity 8, 10 and 11. We solve the problem with Cplex MIP

version and it is found infeasible. Therefore, we add the following cut to the

original problem:

- Xg,I7 + XS.18 - X8,I9 - X8,20 + Xl0,18 ' X|0,19 ‘ Xl0,20+ Xl 1,18'Xl 1,19 - Xll,20 ^ 2 (16)

When we resolve the relaxation of our original problem together with the

new cut we added, the solution and the objective value change. The new objective

value is 19. Therefore, lower bound increases by one and becomes 19. The

integral values of the fixed variables as part of the MIP relaxation solution are

shown in the second iteration on table 3.3. We fix these variables to their values

and solve the subproblem. The subproblem is found infeasible. Therefore, we

append one more cut to the original problem:

- X8,I7 -X8,18 + X8,I9 ‘ X8,20 + Xl0,18 ' Xl0,19 ’ Xl0,20- Xl 1,18 + Xl 1,19 - Xll,20^ 2 (17)

The relaxation of the original problem together with these two cuts is

solved. The objective function stays the same in the third iteration. In the same

manner, we generate the subproblem by fixing the values of the variables on the

table, solve it, find the subproblem infeasible and generate a new cut. In this way,

we added the following cuts until we reach the 6"’ iteration.

CHAPTER 3. PROBLEM FORMULA TION AND SOLUTION PROCEDURE 33

- X8,17 -X8,18 + X8,19 ' X8,20 ‘ Xl0,18 + Xl0,19 ' Xl0,20- Xl 1,18 + Xl 1,19 ‘ Xll,20 ^ 2 (18)

- X8,17 + X8,18 - X8,19 " X8,20 + Xl0,18 ' Xl0,19 " Xl0,20- Xll,18 + Xll,19- Xll,20 ^ 2 (19)

-X8,I7+X8,I8 - X8,19 - X8,20-X|0,I8 +X|0,I9 * X|0,20 " Xl 1,18 + Xl 1,19 ‘ X| 1,20 ̂ 2 (20)

In iteration 6, with the cuts added to the problem, the lower bound

becomes 20. Therefore, the lower bound is improved by one.

In iteration 6,7 and 8, we obtain and add the following cuts respectively;

-X8,17 + X8,I8 - X8,19 " X8,20 + Xl0,18 " Xl0,19 ‘ Xl0,20 Xl 1,18 “Xl 1,19 + X| 1,20 ^ 2 (21)

- Xg,|7 + X8,18 - X8,19 -X8,20-Xl0,18 + Xl0,19 ' Xl0,20 ' Xl 1,18 "Xl 1,19 +Xl 1,20 ^ 2 (22)

- Xg,l7 + X8,18 - X8.19 - X8,20-Xl0,18 - Xl0,19 + Xl0,20 " Xl 1,18 ' Xl 1,19+Xl 1,20 ^ 2 (23)

CHAPTER 3. PROBLEM FORMULA TION AND SOL UTION PROCEDURE 34

In iteration 9, we find a feasible solution to the subproblem generated and

thus a feasible solution to the original problem. The objective function of the

solution is 20. Then we stop, since we find the optimal solution in which lower

bound is equal to the upper bound. The optimal solution with schedule length of

20 is X|,4 = 1, X2,2 - 1, X3,5 = 1, X4,13~ 1, Xs,8 = 1, X6,ll ’ 1, X7,13 ~ 1, X8,20= 1,X9,20 =

1, X10,20 = 1, xii,2o = 1 with other variables that are found to be 0. The

computational time needed to solve this problem is 0.46 CPU seconds.

3.4 Remarks

In this chapter, we presented the IP formulation of the problem and the two

phased approximation algorithm. In the first phase, we tried to solve this problem,

which contains a large number of constraints and variables. Since LP relaxation of

the problem is too weak, we tried to add enumerativo cuts proposed in the first

stage of the algorithm to the problem to tighten the formulation and to improve

the lower bound. If we cannot find an upper bound, which will be equal to the

optimal solution in the first stage, we continue with the second stage in which we

make use of the enumerativo cuts and the lower bound obtained in the first stage.

Here, the objective of the problem formulation is modified so as to minimize the

finish time of the activity with the maximum earliest finish time in the set of

immediately preceding activities of the dummy finish activity.

CHAPTER 3. PROBLEM FORMULA TION AND SOLUTION PROCEDURE 35

We think that the search may be extended to the other immediately

preceding activities of the dummy finish activity. We observe that the cuts related

with these activities and the dummy finish activity will be very useful to cut the

search space. In addition, the cuts obtained from the lower bound found at the end

of the second stage may be used with the cuts obtained before to solve the exact

version of the problem. By doing this, we were able to solve some of the instances

in at most two hours while Cplex could not even find a feasible upper bound in

one week. Since the implementation time of the algorithm for a single instance is

limited to 1 hour, we did not present the results with longer than one hour.

Chapter 4

Computational Results

In this chapter, we present some computational results of the algorithm proposed

in Chapter 3. In seetion 4.1, the problem instances used to test the efficiency of

the algorithm are described. In section 4.2, we discuss and analyze the

eomputational results.

4.1 Test data

In order to evaluate the performanee of our algorithm, we used three benchmark

data sets of Kolisch et. al. (1995) and Kolisch and Sprecher (1997), which can be

downloaded from the project scheduling library (PSPLIB) site at the following

address ; http://www.bwl.uni-kiel.de/Prod/psplib/.These benchmark data sets J30,

J60 and J90 consist of RCPSP instances with 30,60 and 90 aetivities, respectively.

To generate these test problems, Kolisch et. al. (1995) and Kolisch and Sprecher

(1997) develop instanee generator PROGEN that produces problem instanees with

controlled difficulty by utilizing previously defined eontrol parameters, i.e. projeet

characteristics. The PROGEN allows generating instances with different number

36

http://www.bwl.uni-kiel.de/Prod/psplib/.These

CHAPTER 4. COMPUTATIONAL RESULTS 37

of activities and resources. The duration and resource consumption of an activity

take integer values that are randomly chosen between 1 and 10.

Three variable problem parameters network complexity (NC), resource

factor (RF), resource strength (RS) are used to obtain different instances. The

network complexity (NC), defines the average number of non-redundant

precedence relations per activity (the precedence relations of the source and sink

activities are treated separately). The resource factor (RF), describes the average

percent of different resource types that are necessary to perfonn a non-dummy

activity. RF = 1 indicates that each activity requires each resource, whereas RF=0

states that activities do not require any resource and therefore there are no

resource constraints. The resource strength (RS), determines the resource

scarceness. If RS = 1, no resource conflict occurs. However if RF = 0, the

resource capacity is equal to the maximum demand for that resource to prevent

infeasibility. RF and RS both affect the complexity caused by the resource

constraints of a problem.

With 10 replications for each combination of NCe{ 1.5,1.8,2.!},

RFg {0.25,0.5,0.75,1}, and RSe{0.2,0.5,0.7,1.0}, a total of 3 · 4 · 4 -10 = 480

instances are generated for J30, J60 and J90. For each instance, four different

resource types are considered. The best known solutions to these benchmark

instances are also available in the PSPLIB site. We compare our results with these

best known results which are compiled from a variety of resources using many

different algorithms.

In our study, we used 6 data files. The first two data files include earliest

and latest finish times of the activities. In order to generate these data files, we

used the precedence relation matrix of the activities presented in the third data

file. The fourth data file includes the durations of the activities. The fifth one

stands for the resource requirements of each activity. In the sixth data file, the

resource availabilities are stated. We set the absolute due date to the best known

solution declared in the PSPLIB site.

-CHAPTER 4. COMPUTATIONAL RESULTS 38

4.2 Computational Results

Our algorithm was implemented in C and executed on a computer equipped with

Intel Celeron 2.80 GHz processor and Red Hat Linux 3.2.2.5. As an IP and MIP

solver we used the MIP version of the Cplex 9.0. For the implementation of each

phase of the algorithm, we give half an hour. Thus for each instance we execute

our algorithm for a total of 1 hour.

The computational results obtained for the 480 PROGEN-instances with

N = 30 and R = 4 are presented in table 4.2a. For each group consisting of 10

problems, the parameters are stated; the number of optimally solved problems (no

o f prb solved) and the number of optimal solutions verified (no o f prb verified) by

our algorithm within 1 hour are indicated in table 4.2a. 379 problems could be

solved to optimality and the optimality of 363 instances is proved by the

algorithm within at most 1 hour.

The computational results obtained for the 480 PROGEN-instances with

N = 60 and R = 4 are presented in table 4.2b. 344 problems could be solved to

optimality within 1 hour. Our algorithm verifies the optimality of 338 of these 344

instances. These results are better than the findings of Brucker et. al. (1998),

whose branch and bound algorithm is known as the best exact algorithm solving

the J60 problems to date. They have found optimal solutions of 326 of 480 J60

instances.

The computational results obtained for the 480 PROGEN-instances with

N = 90 and R = 4 are presented in table 4.2c. 331 problems could be solved to

optimality within 1 hour. Only the optimality of 1 instance out of 331 instances is

not verified by our algorithm. Brucker et. al. (1998) present computational results

only for the first set of PROGEN-instances with 90 activities.

CHAPTER 4. COMPUTATIONAL RESULTS 39

Parameters
Group NC RF RS

No of prb.
Solved

No of prb.
Verified

Average Time
(CPU)

30_1
30_2
30_3
30_4
30_5
30_6
30_7
30_8
30_9
30_10
30_11
30_12
30_13
30_14
30_15
30_16
30_17
30_18
30_19
30_20
30_21
30_22
30_23
30_24
30_25
30_26
30_27
30_28
30_29
30_30
30_31
30_32
30_33
30_34
30_35
30_36
30_37
30_38
30_39
30_40
30_41
30_42
30_43
30_44
30_45
30_46
30_47
30 48

1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.8
1.8
1.8
1.8
1,8
1,8
1.8
1.8
1,8
1.8
1.8
1,8
1.8
1.8
1.8
1.8
2,1
2,1
2,1
2,1
2,1
2,1
2,1
2.1
2,1
2,1
2.1
2,1
2,1
2.1
2,1
2.1

0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00
0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00
0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00

0,2
0,5
0.7
1.0
0.2
0,5
0,7
1.0
0.2
0,5
0.7
1.0
0.2
0.5
0.7
1.0
0.2
0,5
0,7
1.0
0,2
0,5
0,7
1.0
0.2
0,5
0.7
1.0
0.2
0.5
0,7
1.0
0.2
0.5
0.7
1.0
0.2
0.5
0.7
1.0
0.2
0.5
0.7
1.0
0.2
0.5
0.7
1.0

10
10
10
10
1

10
10
10
0
9
10
10
0
8
10
10
10
10
10
10
0
10
10
10
0
10
10
10
0
6
9
10
10
10
10
10
1
10
10
10
0
10
10
10
0
5
10
10

10
10
10
10
0
9
10
10
0
8
10
10
0
6
9
10
9
10
10
10
0
9
10
10
0
10
10
10
0
4
8
10
10
10
10
10
0
10
10
10
0
8
10
10
0
4
9
10

42,948
3,51

12,264
0,123

1872,64
571,507
3,352
0,135

468,283
2,349
0,117

867,4
204,413

0,159
307,852
40,364
1,959
0,089

341,537
2,588
0,183

56,994
0,693
0,169

1359,479
222,59
0,273

344,73
13,767
2,629
0,165
2096

31,673
13,475
0,156

781,471
63,289

0,16

553,348
194,45
0,266

SUM 379 363

Table 4.2a. PROGEN instances with N= 30 and R=4

CHAPTER 4. COMPUTATIONAL RESULTS 40

Group Parameters
NC RF Solved

No of prb.
Solved

No of prb.
Verified

Average Time
(CPU)

60_1
60_2
60_3
60_4
60_5
60_6
60_7
60_8
60_9
60_10
60_11
60_12
60_13
60_14
60_15
60_16
60_17
60_18
60_19
60_20
60_21
60_22
60_23
60_24
60_25
60_26
60_27
60_28
60_29
60_30
60_31
60_32
60_33
60_34
60_35
60_36
60_37
60_38
60_39
60_40
60_41
60_42
60_43
60_44
60_45
60_46
60_47
60 48

1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1,8
1.8
1.8
1.8
1.8
1.8
1,8
1.8
1,8
1.8
1.8
1,8
1.8
1,8
1.8
1,8
2.1
2,1
2,1
2,1
2.1
2.1
2,1
2.1
2,1
2,1
2.1
2,1
2.1
2,1
2,1
2,1

0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00
0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00
0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00

0,2
0,5
0,7
1,0
0,2
0.5
0.7
1.0
0,2
0,5
0,7
1.0
0.2
0,5
0,7
1.0
0,2
0,5
0,7
1.0
0,2
0,5
0,7
1.0
0,2
0,5
0,7
1,0
0.2
0.5
0.7
1.0
0,2
0,5
0.7
1.0
0,2
0,5
0,7
1,0
0.2
0.5
0,7
1,0
0.2
0,5
0,7
1,0

9
10
10
10
0
9
10
10
0
9
10
10
0
5
10
10
9
10
10
10
0
9
10
10
0
4
10
10
0
4
9
10
6
10
10
10
0
7
10
10
0
4
10
10
0
0
10
10

7
9
10
10
0
9
10
10
0
9
10
10
0
5
10
10
7
10
10
10
0
9
10
10
0
4
10
10
0
4
9
10
5
10
10
10
0
7
10
10
0
4
10
10
0
0
10
10

765,45
363,236
8,901
0,407

4,668
0,703
0,53

242,276
0,909
0,75

13,186
1,302
0,737

694,467
181,235
4,516
0,378
5,679

1,552
0,501

4,232
1,001
0,713

489,6825
1,29

0,823
1109,108
367,351
2,726
0,341

3,04
1,216
0,443

452,15
1,917
0,544

214,508
0,739

SUM 344 338

Table 4.2b. PROGEN instances with N= 60 and R=4

CHAPTER 4. COMPUTATIONAL RESULTS 41

Parameters
Group NC RF RS

No of prb.
Solved

No of prb.
Verified

Average Time
(CPU)

90_1
90_2
90_3
90_4
90_5
90_6
90_7
90_8
90_9

90_10
90_11
90_12
90_13
90_14
90_15
90_16
90_17
90_18
90_19
90_20
90_21
90_22
90_23
90_24
90_25
90_26
90_27
90_28
90_29
90_30
90_31
90_32
90_33
90_34
90_35
90_36
90_37
90_38
90_39
90_40
90_41
90_42
90_43
90_44
90_45
90_46
90_47
90 48

1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
2.1
2.1
2,1
2,1
2.1
2.1
2.1
2.1
2,1
2,1
2,1
2.1
2.1
2,1
2.1
2,1

0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00
0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00
0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00

0,2
0,5
0,7
1.0
0,2
0,5
0,7
1,0
0,2
0,5
0,7
1.0
0,2
0.5
0,7
1.0
0,2
0,5
0,7
1,0
0.2
0,5
0.7
1.0
0,2
0,5
0,7
1,0
0.2
0,5
0,7
1.0
0.2
0,5
0.7
1.0
0,2
0,5
0.7
1.0
0.2
0,5
0.7
1.0
0.2
0,5
0,7
1.0

1
10
10
10
0
8
10
10
0
9
10
10
0
9
10
10
5
10
10
10
0
9
10
10
0
4
10
10
0
4
10
10
3
9
10
10
0
6
10
10
0
3
10
10
0
1

10
10

1
10
10
10
0
8
10
10
0
9
10
10
0
9
10
10
5
10
10
10
0
9
10
10
0
4
10
10
0
4
10
10
3
8
10
10
0
6
10
10
0
3
10
10
0
1

10
10

151
1,329
0,92
0,69

5,309
1,353
0,985

221,75
2,183
1,407

233.92
2,597
1,317

1079.12
4,101
1.048
0,636

534,17
1,605
0,925

5,27
2,361
1,529

20.48
2.46
I, 891

890.12
3,17
0,99

0,831

II, 51
5.47
1,05

17,18
2,56
1,41

31.92
162,58
1,40

SUM 331 330

Table 4.2c PROGEN instances with N= 90 and R=4

CHAPTER 4. COMPUTATIONAL RESULTS 42

In our study, we observe the influence of the project characteristics on the

average CPU-time and the number of problems solved to optimality. The effect of

resource strength and the resource factor seems to be highly significant on the

problem difficulty while the network complexity does not affect the difficulty of

the problem too much. Also as we increase the number of the activities, the

solution times get larger and the number of instances optimally solved decreases.

These results confirm the findings of Kolisch et. al. (1995).

Our algorithm needs more time when the resource strenght is small. The

optimum solution of most of the instances with 0.2 resource scarcity could not be

found within a time limit of 1 hour except those instances with a resource factor,

which is equal to 0.25. Since there is a big gap between the lower bound obtained

by our algorithm and the best known solutions for these problems, we conclude

that the problems with RS = 0.2 are the hardest ones. As the RS decreases, the

problem becomes more difficult and needs more time to be solved. This can be

explained by the fact that the scarceness of the resource capacities increases when

the parameter is decreased. The increase in CPU time with the reduction of RS

factor is also shown in figure 4.2a. The y axis of figure 4.2.a corresponds to RS

factor, while the x axis shows the average computation time required for the J60

instances with 1.5 NC and 0.25 RF.

Figure 4.2a: Increase in average CPU time as RS decreases with NC=1.5 and RF=0.25 for J60

CHAPTER 4. COMPUTATIONAL RESULTS 43

While the algorithm generally solves the problems with RS = 0.5, it solves all of

the problems with RS = 0.7 and RS = 1.0. The instances with RS = 1.0 are the

easiest ones since these problems are not resource constrained. For these instances

the optimal solution is equal to the critical path length.

The resource factor is the second most influential parameter. As we

decrease the resource factor, the performance of our algorithm increases in terms

of the number of problems solved to optimality and the CPU-time required by

each group of problems. Therefore, we can conclude that our algorithm is

negatively affected by the increase in the average number of resources requested

per job as shown in figure 4.2b.

50 1

40 -

30 -

20 -

10 -

0,25 0,5 0,75 1

Figure 4.2b; Decrease in average number of problems solved to optimality as RF

increases for N=30

The effect of NC on the problem complexity is rather weak relative to RS

and RF. Nevertheless, we observe a slight decrease in the average solution time

when we increase NC factor from 1.5 to 1.8. However, interestingly the average

solution time increases when NC factor is increased from 1.8 to 2.1 for both of

CHAPTER 4. COMPUTATIONAL RESULTS 44

J30, J60 and J90. In the same manner the number of instances solved to optimality

decreases when we increase NC factor from 1.5 to 1.8. But it increases when NC

factor is increased from 1.8 to 2.1. This can be explained in this way: when

network complexity is small, it is easy to determine the feasible solution set and

thus to find the optimal schedule since there are few compulsory precedence

relations in the activity network. A small increase in the network complexity

increases the problem complexity. When the increase in NC is large, the feasible

solution space is reduced since more precedence relations between the activities

reduce the number of feasible activity sequences. As a result the problem becomes

easier. In figure 4.2c, the change in the average number of problems solved to

optimality with the NC factor is shown.

Figure 4.2c: The change in average number of problems solved to optimality when

NC=1.5,NC=1.8andNC=2.1 forJ30

Chapter 5

Conclusions and Recommendations

In this study, we have developed a two phased, Integer Programming based

approximation algorithm to solve the resource constrained project scheduling

problem. Our aim is to find a feasible schedule, which satisfies the precedence

and resource constraints while minimizing the completion time of the project.

First we provide the 0-1 formulation of the problem. Then for solving this

IP problem, we introduce an algorithm, which tries to add appropriate cuts to

improve the lower bound and find a feasible schedule, which is an optimal

schedule as well. These cuts are obtained from the subproblems generated in each

iteration. We explained this algorithm with an example problem. Since the

problem is very difficult to solve to optimality, in the cases that we could not find

a solution in half an hour, we continue with a different procedure, which tries to

solve the modified version of the IP formulation together with the cuts obtained in

the first stage.

In order to analyze the perfonnance of our algorithm, we applied it to the

PROGEN-instances with 30, 60 and 90 activities. Computational results have

45

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 46

been presented for these instances. The computational results showed that an IP

based algorithm could successfully deal with the different size RCPSP instances

with moderate difficulty and give solutions to these problems in reasonable

amount of computational times. 379 of the 480 test problems with 30 activities,

344 of the 480 test problems with 60 activities and 331 of the 480 test problems

with 90 activities have been solved to optimality within time limit of 1 hour. The

optimality of 340 of the 480 test problems with 30 activities, 338 of the 480 test

problems with 60 activities and 330 of the 480 test problems with 90 activities are

verified by our algorithm.

The computational results also provide some insights into the effects of the

project characteristics. In our study, we examine the influence of the project

characteristics in terms of computational time required and the number of

problems solved to optimality. We observe that the project parameters have a

significant impact on the problem difficulty. The results show that particularly,

the resource strength and the resource factor play highly an important role on the

problem complexity.

In the computational experiments we observe that our algorithm does not

perform well with small capacity factor. For the instances with RS= 0.2 and RS=

0.5, the gap between the lower bound we obtained and the upper bound given by

PSPLIB is large. Therefore it is important to find new efficient formulations,

which will improve the performance of the cuts proposed in this study and thus

the lower bound.

We observe that the cuts including the variables of the activities that

terminate the paths of the activity network, in other words the variables of the

immediately preceding activities of the dummy finish activity, will be very useful

in reducing the search space and improving the lower bound. We think that further

studies investigating the cuts related with these activities would be useful.

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 47

We believe that our cuts can be applied to other IP problems with slight

modifications made in the algorithm. For instance, applications of these cuts to the

job shop scheduling problem, which is a special case of the RCPSP, may give

good results.

Another observation is that as an IP solver, a special purpose branch and

bound algorithm may give better results than Cplex 9.0. As a further research, the

incorporation of the special purpose methods to our algorithm may be conducted.

BIBLIOGRAPHY 48

Bibliography:

[1] Baar, T., Brucker, P., Knust, S. Tabu-search algorithms and lower bounds

for the resource-constrained project scheduling problem, in: S. Voss, S.

Martello, I. Osman, C. Roucairol (Eds.), Meta-Heuristics: Advances and

Trends in Local Search Paradigms for Optimization, Kluwer Academic

Publishers, Boston, 1998, pp. 1-8.

[2] Balas, E., Machine sequencing via disjunctive graphs: An implicit

enumeration algorithm. Operations Research, 1969, 17 / 6,941-957.

[3] Balas, E., Project Scheduling with resource constraints, E.M.L. Beale (ed.).

Application o f Mathematical Programming Techniques, American Elsevier,

Newyork, 1970

[4] Bell C.E. and Han J., A New Heuristic Solution Method in Resource-

Constrained Project Scheduling, Naval research Logistics, 1991, 38,315-

331.

[5] Bell C.E. and Park K., Solving Resource-Constrained Project Scheduling

Problems by A* Search, Naval Research Logistics, 1990, 37, 61-84.

[6] Blazewicz, J., Lenstra, J.K. and Rinnooy Kan, A.H.G., Scheduling subject to

resource constraints: classification and complexity. Discrete Applied

Mathematics, 1983, 5, 11-24.

[7] Blouleimen K. and Lecocq H., A new efficient simulated annealing

algorithm for resource-constrained project scheduling problem and its

multiple mode version, European Journal o f Operational Research, 2003,

149,268-281.

BIBLIOGRAPHY 49

[8] Doctor, F.F., Some efficient multi-heuristic procedures for resource

constrained project scheduling, European Journal o f Operational Research,

1990, 49,3-13.

[9] Brucker P., Knust S., Schoo A. and Thiele O., A branch and bound

algorithm for the resource-constrained project scheduling problem,

European Journal o f Operational Research, 1998, 272-288.

[10] Brucker P., Drexl A., Mohring R., Neumann K. and Pesch E., Resource-

constrained project scheduling: notation, classification, models and methods,

European Journal o f Operational Research, 1999, 112, 3-41.

[11] Carruthers J.A. and Battersby A., Advances in Critical Path Methods,

Operations Research, 1966, 17/4,359-380.

[12] Cho J.-H. and Kim Y.-D., A Simulated Annealing Algorithm for Resource

Constrained Project Scheduling Problems, The Journal o f the Operational

Research Society, 1997,48/7,736-744.

[13] Christofides, N., Alvarez-Valdez, R. Tamarit, J.M., Project scheduling

with resource constraints: A branch and bound approach, European Journal

o f Operational Research, 1987, 29,262-273.

[14] Cooper D.F., Heuristics for scheduling resource-constrained projects: an

experimental investigation. Management Science, 1976, 22 / 11, 1186-1194.

[15] CPLEX 9.0, User’s Manual

BIBLIOGRAPHY 50

[16] Davis, E.W., and Heidom, G.E., An algorithm for optimal scheduling

under multiple resource constraints, Management Science, 1971, 17/12,803-

816.

[17] Davis, E.W., Project scheduling under resource constraints: a historical

review and categorization of the procedures, AIIE Transactions, 1973,

5,297-313.

[18] Davis E.W., Networks resource allocation. Journal o f Industrial

Engineering, 1974, 4, 22-32.

[19] Davis, E.W., and Patterson, J.H., A comparison of heuristic and optimum

solutions in resource-constrained project scheduling. Management Science,

1975,21/8,944-955.

[20] Dekro R. F., Winkofsky E.P., Hebert J.E. and Gagnon R.,A decomposition

approach to multi-project scheduling, European Journal o f Operational

Research,\99\, 51,110-118.

[21] Demeulemeester, E. and Herroelen, W., A branch and bound procedure for

the multiple resource constrained project scheduling problem. Management

Science, 1992,38, 1803-1818.

[22] Demeulemeester, E. and Herroelen, W., A Branch-And-Bound Procedure

for the Generalized Resource-Constrained Project Scheduling Problem,

Operations Research, 1997, 45/2,201-212.

[23] Demeulemeester, E. and Herroelen, W., New benchmark results for the

resource constrained project scheduling problem. Management Science,

1997, 43, 1485-1492.

BIBLIOGRAPHY 51

[24] Doersch R. and Patterson J. H., Scheduling a project to maximize its

present value: a zero-one programming approach, Management Science,

1977, 23/8,882-889.

[25] Domdorf U., Pesch E. and Phan-Huy T., A Time-Oriented Branch-and-

Bound Algorithm for Resource-Constrained Project Scheduling with

Generalized Precedence Constraints, Management Science, 2000, 46/10,

1365-1384.

[26] Elmaghraby, S.E., Activity nets: A guided tour through some recent

developments, European Journal o f Operational Research, 1995, 82, 383-

408.

[27] Fleszar K. and Hindi K.S., Solving the resource-constrained project

scheduling problem by a variable neighbourhood search, European Journal

o f Operational Research, 2004, 155, 402-413.

[28] Hartmann S., A competitive Genetic Algorithm for Resource-Constrained

Project Scheduling, Naval Research Logistics, 1998, 45, 733-750.

[29] Hartmann S. and Kolisch R., Experimental evaluation of state-of-the-art

heuristics for the resource-constrained project scheduling problem,

European Journal o f Operational Research, 2000, 127, 394-407.

[30] Herroelen W., Resource constrained project scheduling—the state of the

art. Operational Research Quarterly, 1972, 23/3, 261-275.

[31] Herroelen, W., and Demeulemeester, E. Resource-constraint project

scheduling: a survey of recent developments. Computers Operations

Research, 1998,25/4,279-302.

BIBLIOGRAPHY 52

[32] Holloway, C.A., Nelson, R.T., and Suraphongschai, V., Comparison of a

multi-pass heuristic decomposition procedure with other resource-

constrained project scheduling procedures. Management Science, 1979,

25/9,862-872.

[33] Icmeli, O., Erenguc, S.S. and Zappe, J.C., Project scheduling problems: A

survey. International Journal o f Production and Operations Management,

1993, 13, 80-91.

[34] Icmeli O. and Rom W. O., Solving the Resource Constrained Project

Scheduling Problem with Optimization Subroutine Library, Computers

Operations Research, 1996, 23 / 8, 801-817.

[35] Kolisch R., Serial and parallel resource-constrained Project scheduling

methods revisited: Theory and computation, European Journal o f

Operational Research, 1995, 90,320-333.

[36] Kolisch, R., Sprecher, A. and Drexel, A., Characterization and generation

of a general class of resource-constrained project scheduling problems.

Management Science, 1995,41,1693-1703.

[37] Kolisch R., Sprecher, A. and Drexel, A., Adaptive Search for Solving Hard

Project Scheduling Problems, Naval Research Logistics, 1996,43,23-40.

[38] Kolisch, R., Sprecher, A., PSPLIB- A Project Scheduling Problem Library,

European Journal o f Operational Research, 1997, 96,205-216.

[39] Kolisch, R., Sprecher, A., PSPLIB- A Project Scheduling Problem Library,

http://www. bwl. uni-kiel.de/Prod/psplib/.

[40] Kurtuluş I., Davis W., Multi-project scheduling: categorization of heuristic

rules performance. Management Science, 1982, 28/2,161-172.

http://www

BIBLIOGRAPHY 53

[41] Lee J. and Kim Y., Search Heuristics for Resource Constrained Project

Scheduling, The Journal o f the Operational Research Society, 1996,

47/5,678-689.

[42] Mingozzi, A., Maniezzo, V., Ricciardelli, S. and Bianco, L., An exact

algorithm for project scheduling with resource constraints based on a new

mathematical fomiulation. Management Science, 1998, 44/5, 714-729.

[43] Naphade, K.S., Wu, S.D., Storer, R.H., Problem space search algorithms

for resource-constrained project scheduling. Annals o f Operations Research,

1997, 70, 307-326.

[44] Oguz O., and Hasan B., A comparative study of computational procedures

for the resource constrained project scheduling problem, European Journal

o f Operational Research, 1992,72,406-416.

[45] Oguz O., Search and Cut: New Class of Cutting Planes for 0-1

Programming,/;///?.//H’WH’.ovtimizationonline.ore/DB HTML/2002/05/484.ht

ml, 2002

[46] Ozdamar L., and Ulusoy G., A survey on the resource-constrained project

scheduling problem, HE Transactions, 1995, 27,574-586.

[47] Patterson, J. H. and Roth G.W., Scheduling a Project under Multiple

Resource Constraints; A Zero-One Programming Approach, AIIE

Transactions, 1976, 8/4,449-455.

[48] Patterson, J. H., A Comparison of exact procedures for solving the

multiple constrained project scheduling problem. Management Science,

1984,30, 854-867.

BIBLIOGRAPHY 54

[49] Patterson, J.H. and Huber, W.D., A horizon-varying zero-one approach to

projeet scheduling. Management Science, 1974, 20,990-998.

[50] Pritsker, A.B., Wattters, L.J. and Wolfe, P.M., Multiproject Scheduling

with limited resources: A zero-one programming approach. Management

Science, 1969, 16/1,93-108.

[51] Sampson S.E. and Weiss E.N., Loeal Seareh Techniques for the

Generalized Resource Constrained Project Scheduling Problem, Naval

Research Logistics, 1993, 40,665-675.

[52] Schräge L., Solving Resource-Constrained Network Problems by Implicit

Enumeration-Nonpreemptive Case, Operations Research, 1970, 18/2,263-

278.

[53] Stinson, J.P., Davis, E.W., and Khumawala, B.M., Multiple resource

constraint scheduling using branch and bound, AIIE Transactions, 1978,

10/3,252-259.

[54] Talbot, B. and Patterson, J.H., An effieient integer programming algorithm

with network cuts for solving resource-constrained scheduling problems.

Management Science, 1978,24, 1163-1174.

[55] Talbot, F.B., Resouree constraint project scheduling with time resource

trade-offs; The non-preemptive ease. Management Science, 1982, 28/10,

1197-1210.

[56] Wiest J.D., A heuristic model for scheduling large projects with limited

resources. Management Science, 1967, 13/6,359-377.

