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ABSTRACT

AN INTEGER PROGRAMMING BASED ALGORITHM FOR THE RESOURCE 
CONSTRAINED PROJECT SCHEDULING PROBLEM

İsmet Esra Büyüktahtakm 

M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. Osman Oğuz 

January 2005

In this thesis, we study the problem of scheduling the activities of a single project in 

order for all resource and precedence relationships constraints to be satisfied with an 

objective of minimizing the project completion time. To solve this problem, we propose 

an Integer Programming based approximation algorithm, which has two phases. In the 

first phase of the algorithm, a subproblem generation technique and enumerative cuts 

used to tighten the formulation of the problem are presented. If an optimal solution is 

not found within a predetermined time limit, we continue with the second phase that 

uses the cuts and the lower bound obtained in the first phase. In order to evaluate the 

efficiency of our algorithm, we used the benchmark instances in the literature and 

compared the results with the best known solutions available for these instances. 

Finally, the computational results are reported and discussed.

Keywords: Project Management, Scheduling, 0-1 Integer Programming
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ÖZET

KAYNAK KISITLI PROJE ÇİZELGELEME PROBLEMİ İÇİN TAMSAYI 

PROGRAMLAMA TABANLI BİR ALGORİTMA

İsmet Esra Büyüktahtakm 

Endüstri Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Osman Oğuz 

Ocak 2005

Bu tezde, bir projenin faaliyetlerini tüm kaynak ve ön ilişkiler kısıtlayıcılarını 

sağlayacak ve projenin bitiş zamanını enazlıyacak şekilde çizelgeleme problemini 

çalıştık. Bu problemi çözmek için iki fazlı tamsayı programlama tabanlı bir 

yaklaşıklama algoritması önerdik. Algoritmanın ilk fazında alt problem üretme tekniği 

ve problem formulasyonunu sıkılaştıraıak için kullanılan birerleyici kesmeler 

sunulmuştur. Önceden belirlemniş bir zaman limiti içinde eniyi çözüm bulunamaması 

halinde, ilk fazda üretilmiş kesmeleri ve alt sınırı kullanan ikinci faza geçilir. 

Algoritmamızın etkinliğini değerlendirebilmek amacıyla literatürdeki denektaşı 

niteliğindeki problemleri kullandık ve sonuçları bu problemlerin mevcut en iyi 

çözümleriyle kıyasladık. Son olarak, hesaba dayalı sonuçlara ve değerlendinnelere yer 

verilmiştir.

Anahtar Kelimeler: Proje Yönetimi, Çizelgeleme, 0-1 tamsayıh programlama
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Chapter 1

Introduction

The resource constrained project scheduling is a very popular research topic that 

has attracted wide interest of both practitioners and researchers. Its importance 

stems from its applications in diverse areas such as production planning and 

control, software development, and construction engineering. The resource 

constrained project scheduling problem (RCPSP) is beautifully formulated as an 

integer program; unfortunately its exact solution is almost impossible to find due 

to the fact that it is NP-complete (Blazewicz et al., 1983).

The popularity of project scheduling has been on the rise since the 

development of PERT (program evaluation and review technique) and CPM 

(critical path method) techniques in the mid 1950s. The major drawback of the 

CPM/PERT techniques is that these procedures do not provide feasible schedules 

for many real life projects since they assume that there is an infinite amount of 

resources available for each activity in the project network. With the introduction 

of the resource constraints, the problem becomes an NP-hard optimization 

problem and requires more advanced optimization techniques to be solved.



The research on resource constrained project scheduling problem has 

grown on various directions. Different versions of this problem can be classified 

according to the number of simultaneously scheduled projects (single, multiple), 

the nature of the optimizing objective function, the nature of resources and the 

activities in the project (Boctor, 1990). In this study we will focus on the classical 

resource constrained project scheduling problem in which the activities of a single 

project is scheduled subject to precedence and resource constraints with respect to 

the makespan minimization objective. Our problem is denoted by PS \prec \ C„,ax 

in the notation of Brucker et. al. (1999).

There are quite a few methods in the literature for solving the general 

RCPSP as a zero-one integer programming problem. The major drawback of these 

models is the excessive number of binary variables and constraints that make the 

problem computationally intractable. Many researchers such as Huber (1974) and 

Patterson (1984) conclude that zero-one programming is not an effective means of 

solving this problem since the early attempts at using IP to solve the exact version 

of this problem were unsuccessful. Therefore integer programming is not 

considered as an alternative for solving the RCPSP by many researchers. In our 

study we aim to show that with the appropriate cuts applied to the problem 

formulation, good results can be obtained in reasonable computational times. We 

present the enumerative cuts and a two phased approximation algorithm using 

Cplex as an IP solver and investigate the perfomiance of our algorithm, which is 

based on Integer Programming.

CHAPTER 1. INTRODUCTION 2

The thesis is organized as follows: In Chapter 2, a literature review for the 

classical resource constrained problem is provided. In Chapter 3, the problem 

formulation, the algorithm and an example problem are given. In Chapter 4, 

problem data and computational results are presented. Finally, some conclusions 

and remarks for future works are stated in Chapter 5.



Chapter 2

Literature Review

The solution techniques proposed for RCPSP can be divided into two major 

categories;

i. Optimization techniques that lead to the best schedule. These 

techniques are mathematical programming (linear, integer and 

dynamic programming) and enumeration approaches such as implicit 

enumeration and branch & bound.

ii. Heuristic or approximation approaches that will not lead to the 

optimal but good resource-feasible schedules.

For comprehensive reviews we refer the reader to Davis (1973), Herroelen et. al. 

(1997), Patterson (1984), Icmeli et. al. (1995), Elmaghraby (1995), Ozdamar and 

Ulusoy (1995) and Brucker et. al. (1999). Below we review exact and heuristic 

algorithms designed to solve the classical resource constrained project scheduling 

problem (RCPSP).



2.1 Optimization Solution Procedures:

2.1.1 Integer Programming

Pritsker et. al. (1969) propose an effective 0-1 integer programming formulation 

for the RCPSP. Their formulation is superior to the other known formulations in 

terms of computational tractability since it requires fewer variables and 

constraints to represent each scheduling problem. It is also a more general 

formulation, which can deal with the real life situations with three different 

objectives: the total throughput time minimization for all projects, makespan 

minimization and total lateness minimization. The fonnulation of Pritsker et. al. 

(1969) precedes and inspires the studies of Patterson and Huber (1974), Patterson 

and Talbot (1978), Talbot (1982) and many researchers use the various 

adaptations of this 0-1 formulation to represent the project scheduling problem 

they consider in their study. It is known that the major drawback of this 

formulation is that this formulation can only be used for very small problems 

since the number of variables increases very rapidly with the problem size. In our 

study, we used the modified version of this formulation with the makespan 

minimization objective and showed that this formulation could be used not for 

only small size problems but also for large size problems.

CHAPTER 2. LITERATURE REVIEW 4

Deckro et. al. (1991) propose a decomposition approach to solve the 

resource constrained multi-project scheduling problem. They model the problem 

as a block angular general integer program. They exploit the block angular 

structure of the general multi-project resource constrained problem by using the 

Sweeney-Murphy decomposition approach, which is a Lagrangean approach to 

solve the classical block-angular problem. By using this approach, they 

decompose the problem into a master problem, which is a linear program formed 

by the resource constraints and non-resource constrained single project 

sequencing problems fanned by the individual project constraints. The feasible 

solutions to the subproblems are used in the objective function of the master



problem. Since not all of the best solutions to each subproblem are used, the 

master problem is a restriction of the original problem thus the optimal solution of 

the restricted problem is not necessarily the optimal solution of the original 

problem. To overcome this problem, an optimality test is used. The authors report 

that the decomposition approach offers a computationally feasible procedure to 

solve large and complex multi-project, resource constrained problems.

Icmeli and Rom (1996) present three new models in which they relax the 

integrality assumption by imposing continuous activity durations, continuous 

resource consumption and continuous project life span. The resource availability 

assumptions differentiate each of these models. In the first model the resource 

availabilities are assigned to specific time milestones, which divide the project life 

span into some predetermined intervals whereas in the second, the resource 

availabilities are allocated to time intervals. However, in the third model, each 

activity is forced to start and end in the same interval and the resource 

availabilities are allocated to the time intervals. Two possible objective functions 

are used in the model: minimizing the makespan of the project and maximizing 

the net present value of the project cash flows. They use Optimization Subroutine 

Library from IBM to solve these models. They report a detailed analysis on a total 

of 1400 problems with different parameter settings to determine the factors that 

affect the computational efficiency of the code and the models. They also mention 

that they solve practical size project scheduling problems as well as MRP 

problems with a reasonable computational effort.

CHAPTER 2. LITERATURE REVIEW 5

Carruthers and Battersby (1966) present a dynamic programming problem 

formulation, which is an interpretation of the conventional critical path method. In 

the disjunctive problem considered here, the activities compete for the same 

resource, which is available only for one period. They report that for more 

complex, practical problems, the amount of information to be stored in the 

dynamic programming method will be significant for the whole network, but 

dimensionality could be possibly reduced by the use of Lagrange multipliers.



2.1.2 Implicit Enumeration

The large number of 0-1 variables and constraints has led researchers to develop 

numerous enumerative approaches for solving the resource constrained project 

scheduling problem optimally.

Balas (1969) proposed an implicit enumeration algorithm, which uses 

disjunctive graph concept for solving the job shop scheduling problem. A 

disjunctive pair of arcs [(i, j), ()»i)] between operation i and j (performing a job on 

a machine is called an operation) expresses the condition that one of the two 

operations i, j must be finished before the other one is started. A feasible schedule 

is constructed by selecting exactly one arc from each pair with the set of fixed 

arcs. The feasible schedules are enumerated by an implicit enumeration algorithm, 

which selects the longest path in each feasible schedule as a feasible solution to 

the original problem. Among the feasible schedules, the one, with the minimum 

longest path, is selected.

Balas (1970) proves the job shop problem proposed in Balas (1969) is 

analogous to the project scheduling problem with resource constraints. However, 

in this problem the number of available resources may not be equal to one, thus 

one arc from each disjunctive pair of arcs need not to be selected. As a result, 

there are more possible selections in RCPSP than in the job shop scheduling case 

and therefore the problem is more difficult than the job shop scheduling problem. 

Balas (1970) gives some stability conditions in order to get a feasible solution. 

However, the implementation of the algorithm is not easy.

CHAPTER 2. LITERA TURE REVIEW 6

Patterson et. al. (1976) propose an implicit enumeration (zero-one 

programming) algorithm in which several steps in the enumeration tree are 

eliminated by exploiting the special structure of the problem. The implicit 

enumeration procedure begins by underlining the right most variable, which will 

be set to 1, and other variables except this variable are set to 0 for each activity. If 

the schedule is not feasible, this is eliminated from the search. If it is feasible and



a schedule length T, which is shorter than the heuristic schedule span HP (project 

deadline) is found, the HP-T right most variables in each variable set of each 

activity are examined and if not set to 0 and underlined, are set to 0 and 

underlined since these variables correspond to schedule durations greater than T. 

All non-underlined variables become free at each improved solution and the 

algorithm then begins by considering activity start times for activity 1 and 

attempts to find a sequence of activities with a schedule duration of T or shorter. 

Optimality is then established whenever the left-most variable is complemented 

and underlined. They propose an extension of their algorithm to the machine 

scheduling (job shop scheduling) problem. They report that their algorithm is a 

reliable optimization technique for scheduling multiple-resource projects 

involving up to 30 activities with reasonable amount of computer storage.

2.1.3 Branch and Bound Techniques

Most of the exact algorithms for RCPSP are branch and bound procedures in 

which the lower bound is obtained by relaxing the resource constraints and by 

computing critical path length. Together with this simple lower bound, most of the 

branch and bound algorithms use dominance rules to reduce the search space by 

eliminating the nodes that cannot lead to the optimal schedule. Generally, these 

branch and bound techniques differ from each other by their branching schemes 

and pruning rules.

CHAPTER 2. LITERA TURE REVIEW 1

Schräge et al. (1970) presents a bounded enumeration approach, which 

generates all active schedules for the resource constrained scheduling problem. A 

schedule is denoted “active” if there is no activity that can be started earlier 

without changing the start times of any other activities and without violating the 

precedence, resource and preemption or non-preemption constraints. The branch 

and bound algorithm proposed here implicitly enumerates all active schedules to 

select the optimal schedule. The simple resource and precedence-based lower 

bounds are used to reduce the search space. The algorithm is applied to a series of 

test problems including job shop and two-dimensional cutting stock problems.



Patterson (1984) presents a comparison of exact procedures that are 

mentioned to represent the state of art in its respective area for solving the 

resource constrained project scheduling problem. They evaluate the Bounded 

Enumeration Algorithm of Davis, the Stinson’s Branch and Bound Procedure and 

the Implicit Enumeration Algorithm of Talbot with respect to computer storage, 

solution time and the number of problems solved optimally within a reasonable 

computational time. The Stinson’s Branch and Bound procedure is found to be the 

best when computer memory is not limiting.

Davis et al. (1971) propose a branch and bound algorithm based on 

Assembly Line Balancing techniques where each activity is represented by a 

number of unit duration tasks equivalent to its duration. Nodes of the search tree 

represent subsets of tasks. Arcs connect subsets, which could be completed on 

adjacent days. Their procedure tries to determine a family of feasible sets, sets of 

tasks that could have been processed at a given time. But the number of such sets 

grows very rapidly and only small sized problems can be handled.

Talbot (1978) gives an integer programming formulation that avoids using 

large numbers of 0-1 variables by representing the problem in structured integer 

arrays, which are directly used by the implicit enumeration algorithm. All possible 

job finish times are evaluated. He also presents the idea of network cuts that are 

developed to discard partial schedules that cannot lead to an optimum solution 

earlier in the enumeration phase. The use of these network cuts reduces solution 

times further.

Stinson (1978) develops a branch and bound algorithm with a similar 

formulation in Talbot (1978) based upon precedence and resource constraints. The 

algorithm uses a four-element decision vector at each node that allows a 

significant reduction in the search tree and solution times.

CHAPTER 2. LITERA TURE REVIEW 8

Christofides et al. (1987) have developed CAT a depth first branch and 

bound algorithm that generates a branch and bound tree. The nodes of this tree



correspond to semi-active feasible partial schedules. Four different lower bounds 

are used to reduee the seareh tree and branching is done only to resolve a resource 

conflict. Backtracking is done when a schedule is completed or a branch is 

fathomed by the lower bound.

Demeulmeester et al. (1994) show that the procedure of Christofides et al. 

(1987) does not always produce the optimal solution.

Bell and Park (1990) present an algorithm, which is a best-first search 

procedure where each node of the search tree represents a set of precedence 

constraints. The starting node of the enumeration tree only eonsists of precedence 

constraints expressed in the original problem. Here the resouree eonstraints are 

not considered. A child node is generated by imposing a new disjunctive 

constraint to repair the resource conflicts. This approach differentiates their 

algorithm from the other algorithms that eonstructs detailed schedules by 

dispatching activities. The goal node in the search tree is a network, which 

satisfies resource constraints as well as preeedence constraints with the minimal 

makespan. Two pruning rules are given to reduce the search space. They solve the 

110 problem instances of Patterson and report the number of generated and 

pruned nodes and CPU time.

Demeulmeester et. al. (1992) develop a depth first branch and bound tree 

whose nodes represent resouree and precedence feasible partial schedules. 

Branches emanating from a parent node correspond to exhaustive and minimal 

eombinations of activities, the delay of which resolves confliets at each parent 

node. Precedence and resource based bounds are combined with new dominance 

pruning rules to rapidly fathom major portions of the solution tree. They indicate 

that their proeedure is 11.6 times faster than the most rapid solution procedure 

reported in the literature while requiring less computer storage.

CHAPTER 2. LITERATURE REVIEW 9

An extension of this study is also provided in the study of Demeulmeester 

et. al.(1995). In this study the DH-proeedure developed by Demeulmeester and



CHAPTER 2. LITERATURE REVIEW 10

Herroelen (1992) for the classical RCPSP is extended to the generalized resource 

constrained project scheduling problem, in which it is assumed that a project 

activity is subject to technological precedence diagramming type of precedence 

constraints (finish-start, finish-finish, start-start and start-finish) and cannot be 

interrupted once begun.

Mingozzi et. al.(1998) present a new 0-1 linear programming formulation 

that requires an exponential number of variables, corresponding all feasible 

subsets of activities that can be simultaneously executed without violating 

resource or precedence constraints. The preemption allowance assumption 

differentiates their fonnulation from the previous ones. They present a new tree 

search algorithm, BBLB3, based on this formulation that uses new lower bounds 

and dominance criteria. They mention that their algorithm can solve the hard 

RCPSP instances provided by Kolisch et.al. (1995) that could not be solved by the 

DH-procedure of Demeulmeester and Herroelen (1992). They conclude that 

BBLB3 is competitive with the DH procedure on hard instances, while it does not 

dominate DH on easier problems.

Brucker et al. (1998) present a branch and bound algorithm in which each 

node is represented by a feasible schedule. The enumeration tree starts with a 

graph consisting of conjunctive arcs between the activities, which have 

precedence relations, and disjunctive arcs for all pairs of the activities, which 

cannot be processed, in parallel due to the resource constraints. Then the 

branching takes place by either introducing disjunctive constraints between pairs 

of activities or placing these activities in parallel. In addition, the immediate 

selection concept is introduced to analyze the inclusion of conjunctions in each 

node of the branch and bound tree. This analysis provides them to obtain new 

conjunctions, disjunctions or parallelity relations between the pairs of activities. 

The lower bound LB2 of Mingozzi et. al. (1994) and an upper bound obtained by 

a tabu search algorithm are used to reduce the search space. They report that 425 

of the 480 PROGEN instances with J=30 and 326 of the 480 PROGEN instances 

with J=60 are solved by their algorithm within an hour.



CHAPTER 2. LITERATURE REVIEW 11

Domdorf et. al. (2000) present a time-oriented branch and bound algorithm 

which enumerates possible activity start times. At a given node of the tree, an 

activity selected for branching either must start as early as possible or be delayed. 

Instead of using an explicit lower bound procedure, they reduce the search space 

by using constraint propagation techniques, which are systematic and 

computationally efficient applications of basic consistency tests. These techniques 

actively exploit the temporal and resource constraints of the problem. In addition, 

the search space is reduced by enforcing some necessary conditions that must be 

met by the active schedules. They report that on a data set of over thousand 

problem instances with one hundred activities each, their algoritlim finds feasible 

solutions for all problems and it solves more problems to optimality than other 

exact methods. In addition, they mention that the truncated version of their 

algorithm is a very good heuristic.

2.2 Heuristic Approaches:

Even the most powerful exact procedures are not able to find optimal schedules 

for highly resource constrained projects with 60 activities or more. The problem 

complexity caused by the exact procedures motivated researchers to develop 

effective heuristic procedures, which produce “good” feasible solutions.

Wiest (1967) develops a heuristic scheduling model, which determines the 

start time of each activity and the assignment of resources to activities in a 

project. The model basically assigns the available resources, period by period, to 

jobs listed in order of their early start times. The scheduling heuristic used in this 

study gives the highest probability of being scheduled first to the most critical 

jobs and tries to schedule as many jobs as available resources permit. If an 

available job cannot be scheduled in a period, it is postponed to the next period as 

to be the most critical job in the priority list of the available jobs. Some resource 

leveling techniques are applied to determine the optimum combination of shop
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resource levels and resulting finish date. The schedule is evaluated by a total cost 

function including resource costs, overhead costs, which are directly, related to 

the length of the schedule and the costs of changing resource levels. The author 

mentions that their model can be applied to different project scheduling problems 

with varying constraints and scheduling rules by changing certain parameters and 

heuristics in the model. In the evaluation of the model part, the applications of the 

model to a number of fictitious and real projects are described.

Davis and Patterson (1975) makes a comparison of the effectiveness of eight 

different heuristic scheduling rules selected from the categories above, relative to 

an optimum solution which is calculated by a branch and bound algorithm. These 

heuristics including those found most effective in previous research on the project 

duration minimization with multi-resource problems are;

Minimum Job Slack (MINSLK)

Resource Scheduling Method (RSM)

Minimum Late Finish Time (LFT)

Greatest Resource Demand (GRD)

Greatest Resource Utilization (GRU)

Shortest Imminent Operation (SIO)

Most Jobs Possible (MJP)

Select Jobs Randomly (RAN)

The results of this study show that heuristic performance is dependent on the 

problem characteristics and it is quite difficult to predict and to choose the most 

efficient one. Davis and Patterson (1975) tried to determine the project and 

resource characteristics, which may determine the efficiency of some heuristic 

sequencing rules. The minimum slack heuristic, averaging 5.6% above optimum 

gave the best overall results.

Cooper (1976) discusses the parallel method, which produces just one 

schedule, and the sampling method, which generates a set of schedules using 

probabilistic techniques and selects the best schedule from this sample. A variety 

of priority rules are tested by these procedures. An experimental investigation of
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these two heuristic methods, both using priority rules, is performed and the effects 

of the heuristic method, the project characteristics and the priority rules are 

evaluated. It is reported that with the parallel method the choice of priority rule is 

important, but with the sampling method, although it effects the distribution of the 

sample, the choice of the rule is not significant. Another result of this study 

reported by the author is that the sampling method, even with the relatively small 

sample size of 100, generally produces schedules that are at least 7% better than 

the corresponding schedules produced by the parallel method.

Holloway (1979) develops and evaluates the multi-pass heuristic project 

scheduling procedure, PSP, based on problem decomposition, which is applicable 

to single, and multiple project networks. PSP designed to find schedules satisfying 

given project due dates is an adaptation of the heuristic scheduling procedure 

(HSP) (Holloway, 1973) for the simple job shop model in which each operation 

has at most one immediate predecessor and at most one immediate successor. It is 

found that this procedure is much less sensitive to problem size than the branch 

and bound algorithm. In addition, this procedure is found to be superior in 

solution quality to the other procedures compared including the minimum slack 

heuristic whose performance is reported by Davis and Patterson (1975).

Kurtuluş and Davis (1982) summarize the important characteristics of the 

projects as to be the number of activities, number of parallel paths, activity time 

and resource requirement distributions and complexity. They provide a 

categorization process based on two project summary measures and the 

performance of the rules are classified according to values of these two measures. 

The first one of these measures identifies the location of the peak of total resource 

requirements and the second one is the rate of utilization of each resource type.

Bell and Han (1991) present a two-phase heuristic solution method, which 

is different from the previous researches in repairing resource conflicts rather than 

constructing detailed schedules by dispatching alternatives. In the first phase after 

a precedence feasible activity network is generated, new arcs are imposed
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between the activities that violate resource constraints to obtain both resource and 

precedence feasible solution. In the second phase, they use a backtracking 

procedure, which is called a hill-climbing search post-analysis to find local 

improvements in the schedule found in stage one. They report that their heuristic 

produces better results than Davis and Heidom (1975).

Sampson and Weiss (1993) propose a local search procedure in which the 

precedence feasible solution is represented by a vector that specifies the start 

times for each of the activities. A neighborhood solution is obtained by increasing 

or decreasing start and finish times of an activity. They consider the resource 

infeasibility only through penalizing the objective function. They report that they 

find better solutions than the algorithm of the Bell and Han (1991), which gives 

the best heuristic results reported to date.

Bala and Oguz (1994) make a comparative study between the special and 

general purpose heuristics. Perfomiance of two new integer programming based 

heuristics (MIXED-heuristic and The Sciconic Optimization Software) and the 

MINSLK, SDFIRST, and LDFIRST-heuristics, which are the applications of 

minimum Job Slack Rule given in Patterson (1975), with three alternative 

prioritizing rules are tested from a computational point of view. The quality of 

solutions of these algorithms and their relative merits are investigated.

Kolisch (1995) considers the so-called parallel and serial method and give 

a formal description and an extensive literature review. He proves that the serial 

method generates active schedules while the parallel scheduling technique 

produces non-delay schedules. After doing some experimental analysis, he reports 

that while the parallel scheme is clearly superior for small and hard problems (i.e. 

less than 40 generated schedules), the serial scheme shows better results for large 

and easy samples. He also mentions that sampling improves the results of single

pass scheduling up to 70% when pure random sampling is avoided.
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Kolisch and Drexl (1996) propose an adaptive search, which combines 

priority rules with random search techniques by means of two types of 

adaptations. In the first type adaptation the method selects an appropriate solution 

space by choosing the scheduling method, parallel or serial scheduling method, 

while in the second type adaptation it controls the searched area of the chosen 

solution space. A new priority rule and lower bounding techniques are used to 

enhance the general solution scheme. They report that their method is highly 

competitive to existing heuristics and can be easily employed to the more realistic 

and more complicated project scheduling problems, which incorporate e.g., 

multiple execution modes, deadlines and set-up times.

Lee and Kim (1996) present the priority scheduling procedure in which a 

solution is represented by a vector of positive numbers each of which denotes 

priority of each activity. Positions of the numbers correspond to indexes of the 

activities and the values of the numbers represent priorities of their corresponding 

activities. After they determine the priority values of the activities, they generate a 

complete schedule with the priority scheduling method that they propose. To find 

a good set of priority values, they use simulated annealing, tabu search and 

genetic algorithms.

Cho and Lee (1997) mention that the algorithm of Lee and Kim (1996) in 

which delay schedules are left out of consideration, always fails to find optimal 

solutions of the problems for which only delay schedules are optimal. They 

extend the study of Lee and Kim (1996) to develop a priority scheduling based 

heuristic which considers delay schedules as well as non-delay schedules. The 

method used by Cho and Lee (1997) differs from the algorithm of Lee and Kim 

(1996) in that Cho and Lee use negative numbers in the priority vector for the 

activities, which are to be delayed intentionally although they can be started. They 

call these activities as delayed activities. They use simulated annealing algorithm 

to determine how many activities should be included in the set of delayed 

activities. They make experiments with Patterson test problems as well as
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randomly generated problem instances and report that they find better solutions 

than those of the algorithms tested on the Patterson test problems so far.

Hartman (1998) provides a genetic algorithm (GA) in which permutation 

based genetic encoding is employed and compares it with the two other GA 

procedures that apply priority value based and priority rule based representation, 

respectively. For these three procedures, although the genetic encodings and 

encoding-specific genetic operators are different, the serial scheduling scheme, 

which is used to determine the initial schedule, and the genetic operators that are 

not encoding specific are the same. In the pennutation based encoding rule the 

initial generation is detennined by a random sampling method in which LPT is 

used to derive the probabilities of selecting the next job for the activity list. The 

priority value based genetic algorithm assigns a priority value to each of the 

activity, which is scheduled according to the activity list computed by the serial 

scheduling scheme. In the priority rule representation, each priority rule in the list 

is assigned to an activity, which is selected from the set of eligible activities. Two 

point crossover operator and the 0.05 mutation probability are used for all the 

three procedures. The most important result of this study which is pointed out by 

the authors is that the choice of an appropriate representation is far more 

important than other configuration decisions such as crossover and selection type 

and mutation rate.

Hartman and Kolisch (2000) presents a survey in which they summarize 

the basic components of heuristic procedures such as schedule generation 

schemes, priority rules, schedule representations, operators and search strategies, 

the methods combining these operators such as X-pass methods (single pass 

methods, multi-pass methods, sampling procedures) and different types of 

metaheuristics (simulated annealing, genetic algorithms, and tabu search). They 

also evaluate the performance of several state-of-the-art heuristics from the 

literature on the basis of a standard set of test instances and point out to the most 

promising procedures. The behavior of the heuristics with respect to their 

components such as priority rules and metaheuristic strategy is analyzed. In
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addition, the impact of the problem characteristics such as project size and 

resource scarceness on the performance is examined.

These heuristics investigated in this research are:

• Simulated Annealing Algoritlim of Bouleimen and Lecocq (1998)

• Genetic Algorithm of Hartmann (1998)

• Tabu Search of Baar et. al. (1998)

• Adaptive Sampling Technique of Kolisch and Drexel (1996)

• Single pass/ sampling with LFT and WCS rule used by Kolisch (1996)

• Random sampling method of Kolisch (1995)

• Genetic Algorithm of Naphade (1997)

They report that the most successful approaches in their numerical evaluation are 

metaheuristics, namely the simulated annealing procedure of Bouleimen and 

Lecocq (1998) and the genetic algorithm of Hartmann (1998) both of which use 

activity list representation and the serial SGS (schedule generation scheme). They 

point out that the solution representation is more important than the metaheuristic 

strategy used. They investigate the impact of problem parameters on the problem 

complexity.

K. Bouleimen and Lecocq (2003) present a new simulated annealing 

algorithm in which all parameters are set after some preliminary statistical 

experiments are done on test instances. The solution representation used in this 

procedure is the activity list representation in which precedence and resource 

feasible solution is represented by an ordered list of activities. As a scheduling 

procedure, the serial schedule generation scheme (SGS) based on an alternated 

activity and time incrementing process is used to determine the priority and start 

time of each activity. A neighborhood is generated by randomly selecting an 

activity and moving this activity anywhere between its latest predecessor and 

earliest successor. Also all other activities between the new and the old positions 

are shifted. The procedure uses multiple cooling chains, where each chain allows 

enough time for deep exploration of the path followed by the procedure with 

increasing number of visited solutions and decreasing temperature. They make 

computational experiments with the benchmark instances in the PSPLIB with 30-
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90 activities and Patterson problems. They report that they found optimal 

solutions for easy or small sized (Patterson set and set with J = 30) with 

aceeptable process times. For larger and more eomplex problems, they obtain an 

average deviation of less than 1%.

Fleszar and Hindi (2004) propose an algorithm, which is based on variable 

neighborhood seareh. Aetivity list representation is applied with the serial 

scheduling scheme, which is used to obtain start times of the activities. This serial 

scheduler turns the sequences into valid active schedules. Initial solution is 

obtained by the one-pass, sampling based priority rules. The neighborhood is 

constructed by moving one aetivity to a new position whose margins are 

determined by the set of all direct, indirect successors and predecessors of that 

activity. Also the activities that do not have any precedence relation with the 

moved activity jump to the other side of that activity. The neighborhood search is 

done by repeatedly generating a random point from the neighborhood of the 

current point until finding a local optimum. The solution space is reduced by 

improving lower bound and discovering additional valid precedenees to augment 

the existing set. They report that they have improved the best solution in the 

PSPLIB for 48 instances and the best known lower bounds for 148 problem 

instanees.



Chapter 3

Problem Formulation and 

Solution Procedure

In this chapter, we provide the 0-1 formulation of the problem first. Then, we 

describe our Integer Programming based approximation algorithm, which has two 

phases. The first phase of the algorithm constitutes the main part in which a 

subproblem generation technique is used to obtain the enumerative cuts. If an 

optimal solution is not found in the first stage, we switch to the second phase that 

exploits the cuts and the lower bound obtained in the first phase. Each stage of the 

algorithm is explained and an application of the first stage to a small example is 

presented.

3.1 Problem Formulation

The formulation used in this study is partially extracted from the study of Oguz 

and Bala (1994). This is a modified version of Pritsker et al.’s (1969) formulation 

with the following assumptions:

• Single project consisting of a given set of activities.

19



• No activity can start unless all its predecessors are completed,

• Job splitting is not allowed - nonpreemptive case,

• Limited multiple resources,

• Resouree consumptions are constant over the scheduling horizon,

• No substitution between resources.

The definitions related to the formulation are as follows;
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Definitions:

Indices:

]: Activity index; j = l,2,...,N ; N = number of activities in project

k; Resource index; k=l ,2, . . . ,K; K= number of different resouree types

t : Time period; t= 1,2,..., T; T = project due date

Problem parameters: 

dj : Duration of activity j

rjk : Amount of resource type k required by activity j

Rkt : Amount of resource type k available in period t

Ij : Earliest possible period by which activity j could be completed

Uj ; Latest possible period by which activity] could be completed

Hj : {set of all immediate predecessors for activity]}

Notes:

1. Ij- and Uj- values are computed through the CPM calculations.

2. We should ensure that the project due date T, should be long enough not to 

cause infeasibility.

3. The last activity in the project is the dummy finish activity, N, with 

duration 0. In this study, the dummy start activity is not considered in the 

calculations.
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Decision variables:

Xjt =  ^

1 if activity j is completed in period t

0 o.w.

Note that Xjt is set to 0 in periods where t < Ij and t > uj. So, the problem is 

formulated as below.

Objective function:

The choice of an appropriate performance measure differs for various scheduling 

environments. In our study, the objective is chosen to minimize the project 

completion time. That is, we try to schedule the last activity in the project as early 

as possible. So, the objective function is to minimize

un

z =  E  tXN,t 
t=lN

(1)

Constraints:

Activity completion:

Each activity has exactly one completion period:

E Xjt = j - l , . . . , N
t=li

(2)
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Precedence relationships:

Assume that activity m must precede activity n. Let Tm and Tn denote the 

completion periods of activities m and n respectively. Then

Um Un

Tni + dn < Tn where T,n = X  tx^t and T,, = 2  tXnt .
t l̂m t~ln

So, the constraint becomes

Un

S  t^rnt df, ^  t^nt
t = ln t = ln

Vme Hn and Vn (3)

Resource Constraints:

In any period, the amount of resource k used by all activities cannot exceed the 

available resource k. An activity j is being processed in period t if the activity is 

completed in period q where t < q < t + dj -1. So, the resource constraints are 

written as

N t+dj-1

E  E  TjkXjq < Rkt 
j=l q=t

k= l,...,K  t= l,.. . ,T (4)

The above formulation has N activity completion, K-T resource and | |

precedence constraints. Out of the N-T variables, Z ĵ=i (T-Uj+lj-l) variables are set 

to 0. Therefore, it makes a total of (N+ K.T+Zn.̂ j | h , |+Z ĵ=i (T-Uj+lj-1)) 

constraints.



3.2 Algorithm

To solve the resource constrained project scheduling problem whose fonnulation 

is given in section 3.1, we apply a two phased algorithm which is based on 

enumerative cuts. In the first phase of the algorithm, we generate subproblems by 

inserting the integer values of some previously selected variables into the original 

problem. Then we try to solve the subproblem. If a feasible solution cannot be 

found for the subproblem, we obtain a cut consisting of variables that are fixed to 

integer values. We call these cuts as enumerative cuts. The first stage of our 

algoritlim seeks to improve the lower bound at each step by adding these cuts into 

the formulation. A feasible solution to the subproblem generated by our algorithm 

is at the same time an optimal solution to the original problem as stated and 

proved in the theorem at the end of section 3.2.1. If any feasible solution is not 

found in the first stage within half an hour, we go to the second phase, in which 

the cuts obtained in the first phase are added to the modified version of the 

original problem. Then we use the IP solver of CPLEX 9.0 to solve this modified 

problem including the cuts previously obtained. This procedure at least provides a 

lower bound.
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The detailed description of the algorithm with two stages is given in the following 

sections.
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3.2.1 First Phase of the Algorithm

In the first stage of the algorithm we consider the 0-1 integer programming 

formulation of the resource constrained project scheduling problem proposed in 

section 3.1. Firstly, we select three activities with the maximum earliest finish 

times. Our purpose for selecting these activies is obtaining a cut consisting of the 

variables corresponding to the selected activities since we observe that these cuts 

improve the lower bound. One of these three activities should be the dummy 

finish activity because it has the maximum earliest finish time, which is equal to 

the critical path length. Then we relax the integrality constraints except the 

variables corresponding to these selected activities and solve the MIP relaxation 

of the original problem. In this way, the variables of the selected activities are 

guaranteed to take integer values in the solution of the relaxed problem.

The number of the variables corresponding to the selected activities 

determines the partition size since we fix the integer values of these variables 

obtained as part of the MIP relaxation solution and by inserting these values into 

the original problem we generate a subproblem. If we increase the number of the 

fixed variables, the subproblem gets smaller. We select exactly three activities for 

any instance since the experimental results show that three is the ideal number of 

activities that should be selected. With more than three activities selected, we 

observe that the iteration number increases rapidly and the efficiency of the cuts 

decreases. With less than three, the s i^  of the subproblem gets larger since the 

number of the non-fixed variables increases and Cplex may have difficulties to 

solve the subproblem.

After obtaining the subproblem, we solve it by using CPLEX. If it is 

feasible, we terminate the algorithm since we find the optimal solution as stated in 

the theorem at the end of this section. If the subproblem is infeasible, we realize 

that a solution including the integer values of the fixed variables will not lead to a 

feasible solution. Thus to eliminate this solution we add a cut consisting of the



fixed variables to the original problem. This cut will be presented in step 5, and 

the validity of it will be explained.

The step by step description of the first phase of the algorithm is given below:

Consider the following 0-1 integer programming formulation of the resource 

constrained project scheduling problem:
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un

Minimize 2  IXn t 
t=lN

(5)

Subject to

Uj

2  Xj.t = 1
t=li

j= l,...,N (6)

Un

X  tXm,t + dn ^  S  tXn̂ t Vme Hn , Vn 
t ~ Im  ̂~ 1̂1

(7)

N t+dj-l

E  E  fj,kXjq < Rk,t t= 1,...,T k=l,...,K
j=l q=t

(8)

Xj.t s  {0,1}, j=l,...,N  t= l,...,T

1. Calculate the earliest finish time of each activity (ignoring resource 

constraints) and order them in an increasing sequence. Select three



activities with the maximum earliest finish times. If there is a tie between 

two activities, select the one with greater activity number. Put the indexes 

of these selected activities to set S. Define S’ as:

S’ = {j,t| jeS an d t = l j , . . . , U j }

2. Set the value of the incumbent solution Zi„c to oo.

3. Relax the integrality constraints of the above problem except the variables 

corresponding to the activities in S. Solve the relaxed problem plus any 

cuts generated so far by using the MIP solver of CPLEX. Let X* = 

(xi,i*,...,X],t*, X2,i*v,X2,t*v·· xn.i*,—,x N,t*) denote the solution to the MIP 

relaxation of the problem. Stop, if the problem is infeasible.

4. Set the variables of the activities in S to their respective integer values in 

X*. Partition the problem according to S and solve the associated problem 

P(S):
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Un

Minimize X  tXN,t* 
t=İN

(9)

Subject to

£  Xj.t = 1 
t=li

jeI\S (10)

U,n Un

Z  tXmt* + dn < E  tX;
t =  l,n t = l

lit msHnnS,ne(I\S) (11)
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Um U„

^  tXmt + dn < X  tXnt* me HnO (I\S), ne S (12)
t = Im t = In

2] tXmt + dn < Z tXnt me HnO (I\S), ne (I\S) (13)
t = l„ t = ln

t+dj-1 1

Z  Z  ^jk^jq — ^kt " Z  Z  Ijk^jq* t= 1,...,T k=l,...,K (14)
je I\S q=t jeS q=t

X jte{0,l} , jeI\S

where I = {1,.",N } 

by CPLEX v9.0 in MIP mode.

If a feasible solution is found to P (S), terminate the algorithm. Otherwise 

go to 5.

5. Append a new cut to the original problem as,

Z  Xj,t+ Z  ^  I S’ I-I
j,teS’nS| j.teS’nS,

where S| = {j,t | xj,i* = 1} and S2 -  {j,t | xj,t* -  0}

Go to 3.

' The cuts described in section 3.2.1 are adapted from the cuts proposed by Oguz, 2002,’’Search 
and Cut: New Class of Cutting Planes for 0-1 Programming”



An explanation for the cut proposed in step 5 is given below:

The following equality X  Xj t* +  S  ) = I S’ | holds
j,t€S’nS| j,teS’nS2

for S’ = {j, t | jeS  and t = Ij S| = {j,tU.j,i* = 1} and S2 = {jdUj.t* = 0}.

Suppose that the subproblem P (S) is infeasible. Then no solution containing the 

fixed variables is feasible for the original problem. And suppose that there exist a 

feasible solution to the original problem and it is represented by X = (xi,i,...,xi,t, 

X2,i,.-,X2.tv  Xn j v A N,t), then

E  Xj,t+ E  (1-Xj,t) ^  I S’ 1-1
j,teS’nS| j,t€S’nS2

must hold, because at least one Xj_i must be different than Xĵ t’*' for j,t e S’.

Before stating the theorem, we should remind that set S is defined so as to contain 

the indexes of the three activities with the maximum earliest finish times, and set 

S necessarily contains the dummy finish activity, N since activity N has the 

maximum earliest finish time.

Theorem:

For all S C  {1,...,N} such that Ng S, a feasible solution to P (S), which is a 

subproblem of the original problem, is an optimal solution for the original 

problem.
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Proof:

Suppose that is a feasible solution to the subproblem P (S). Then, is also 

optimal since the objective function of P (S) is a constant due to fixed variables. 

Let Xn  ̂ t “  1 be the part of the optimal solution to the MIP relaxation of the 

original problem where t is the completion period of the dummy finish activity, N. 

Then t is equal to the optimal objective value of the relaxed problem. Xn,i is set to 

1 in the original problem with the variables of the selected activities set to their



corresponding integer values in the optimal solution of the MIP relaxation and 

subproblem P (S) is obtained in this way.

Now suppose S* is not optimal for the original problem. Then there should 

be t ’ such that Xn, t’ “  1 and t’< t in the optimal solution to the original problem. 

However this contradicts with the fact that the optimal value of the MIP relaxation 

of a minimization problem cannot be greater than the optimal value of that 

problem.

Thus, S* is optimal for the original problem.

We execute the algorithm presented in this section at most half an hour for 

a single instance. If we do not find a feasible solution that is also an optimal 

solution within this time limit, we proceed with another algorithm, which will be 

explained below.

3.2.2 Second Phase of the Algorithm

In the first part of the algorithm, we generate enumerative cuts and obtain a lower 

bound for our problem. By using this lower bound, we add the following cuts to 

the cut file including the previous cuts:

XN,t ^ 0  t=  In,.··,lb-1

where lb is the lower bound obtained in the first part of the algorithm.

CHAPTER 3. PROBLEM FORMULA TION AND SOLUTION PROCEDURE 29

In the second stage, we modify the objective function of the original 

problem whose formulation is given in section 3.1 so as to minimize the 

completion time of the activity, which immediately preceeds the dummy finish 

activity and has the maximum earliest finish time. Thus here we aim to minimize 

the finish time of this activity instead of the dummy finish activity. Constraints 

and the binary variables are the same with the original problem. However we add 

the cuts obtained in the first stage together with the cuts generated from the lower



bound to the modified problem and solve this modified problem by using Cplex. 

A feasible or an optimal solution to the modified problem is a feasible solution for 

the original problem since the completion time of the selected activity whose 

finish time is minimized cannot be larger than the finish time of the dummy finish 

activity in any feasible solution. If the finish times of these two activities are equal 

in the optimal solution of the modified problem, the solution is also optimal for 

the original problem and thus the optimality is verified.

The step by step description of the second stage of the algorithm is given below:

1. Select the activity with the maximum earliest finish time among the 

immediately preceding activities of the dummy finish activity. Modify the 

objective function of the original integer problem by minimizing the finish time of 

the selected activity instead of dummy finish activity as shown below:
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Minimize ^  tXj t
t=lj

(15)

where j is the selected activity.

2. Add the cuts in the cut file to the modified problem.

3. Impose a time limit of 1800 seconds on the CPU time. Solve the associated 

problem by CPLEX v9.0 in MIP mode.

4. If an optimal solution is found to the original problem or if the time limit is 

exceeded, terminate the algorithm.
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3.3 An Example

Act.

No.

Res.

Req. Duration

Earliest 

Finish Time

Act.

No.

Res.

Req. Duration

Earliest 

Finish Time

0 (0,0,0,0) 0 0 6 (3,6,4,0) 6 11

1 (4,3,3,8) 4 4 7 (0,8,4,3) 5 10

2 (7,2,6,3) 2 2 8 (1,4,4,0) 7 17

3 (7,5,0,4) 5 5 9 (3,8,0,3) 4 15

4 (7,4,3,8) 3 7 10 (4,0,7,0) 7 18

5 (0,10,2,0) 4 8 11 (0,0,0,0) 0 18

Figure 3.3. Example test problem with scheduling results

A typical problem is illustrated in Figure 3.3. Precedence relationships between 

the activities are depicted on the activity-on-nodes (AON) network. Activities 0 

and 11 are the dummy start and finish activity with duration 0, respectively. The 

durations of the other activities, number of units required by each activity and 

resource requirements are shown in the table below the network. There are four



different resource types. Resource availabilities are 27, 18, 25 and 22. Earliest 

finish times and the critical path duration are computed by perfonning CPM 

calculations in which the resource constraints are not considered. In this example, 

critical path is equal to 18. The absolute due date, T is set to 20.
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Iter. Activity 8 Activity 10 Activity 11

No
X8,17 X8.18 X8,I9 X8,20 X|0,I8 Xl0,19 Xl0,20 Xll,18 X||,I9 Xll,20

1 0 1 0 0 1 0 0 1 0 0

2 0 0 1 0 1 0 0 0 1 0

3 0 0 1 0 0 1 0 0 1 0

4 0 1 0 0 1 0 0 0 1 0

5 0 1 0 0 0 1 0 0 1 0

6 0 1 0 0 1 0 0 0 0 1

7 0 1 0 0 0 1 0 0 0 1

8 0 1 0 0 0 0 1 0 0 1

9 0 0 0 1 0 0 1 0 0 1

Table 3.3: The integer values of the selected variables as part of the MIP 
relaxation solution in each iteration

The IP model of this problem contains 220 variables 155 of which are 

previously set to 0 since these variables represent the activity finish times that are 

not between earliest and latest finish time periods. There are 11 activity 

completion, 18 precedence relationship and 80 resource constraints. We have 155 

more constraints due to the variables set to 0. In order to decide which variables 

will be fixed to the integer values among the remaining 65 variables, we order the 

earliest finish times of the activities in the example and select activity 8, 10 and 11 

that have the maximum earliest finish times. These activities have 10 active



variables, which are not set to 0. These 10 variables will be fixed to the 

corresponding integer values in the MIP relaxation optimal solution.

We relax the integrality constraints of variables except the fixed variables 

of activities 8, 10 and 11. The relaxed problem has a non-integral solution with 

the objective value 18. In table 3.3, in the first iteration the integral values of these 

variables, which are fixed, are shown. We put these values to the original 

problem; we obtain a subproblem, which does not explicitly contain the fixed 

variables of the activity 8, 10 and 11. We solve the problem with Cplex MIP 

version and it is found infeasible. Therefore, we add the following cut to the 

original problem:

- Xg,I7 + XS.18 - X8,I9 - X8,20 + Xl0,18 '  X|0,19 ‘ Xl0,20+ Xl 1,18'Xl 1,19 - Xll,20 ^ 2 (16)

When we resolve the relaxation of our original problem together with the 

new cut we added, the solution and the objective value change. The new objective 

value is 19. Therefore, lower bound increases by one and becomes 19. The 

integral values of the fixed variables as part of the MIP relaxation solution are 

shown in the second iteration on table 3.3. We fix these variables to their values 

and solve the subproblem. The subproblem is found infeasible. Therefore, we 

append one more cut to the original problem:

- X8,I7 -X8,18 + X8,I9 ‘ X8,20 + Xl0,18 '  Xl0,19 ’ Xl0,20- Xl 1,18 + Xl 1,19 - Xll,20^ 2 (17)

The relaxation of the original problem together with these two cuts is 

solved. The objective function stays the same in the third iteration. In the same 

manner, we generate the subproblem by fixing the values of the variables on the 

table, solve it, find the subproblem infeasible and generate a new cut. In this way, 

we added the following cuts until we reach the 6"’ iteration.
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- X8,17 -X8,18 + X8,19 '  X8,20 ‘ Xl0,18 + Xl0,19 '  Xl0,20- Xl 1,18 + Xl 1,19 ‘ Xll,20 ^ 2 (18)

- X8,17 + X8,18 - X8,19 " X8,20 + Xl0,18 '  Xl0,19 " Xl0,20- Xll,18 + Xll,19- Xll,20 ^ 2 (19)



-X8,I7+X8,I8 - X8,19 - X8,20-X|0,I8 +X|0,I9 * X|0,20 " Xl 1,18 + Xl 1,19 ‘ X| 1,20 ̂  2 (20)

In iteration 6, with the cuts added to the problem, the lower bound

becomes 20. Therefore, the lower bound is improved by one.

In iteration 6,7 and 8, we obtain and add the following cuts respectively;

-X8,17 + X8,I8 - X8,19 " X8,20 + Xl0,18 " Xl0,19 ‘ Xl0,20 Xl 1,18 “Xl 1,19 + X| 1,20 ^ 2  (21)

- Xg,|7 + X8,18 - X8,19 -X8,20-Xl0,18 + Xl0,19 '  Xl0,20 '  Xl 1,18 "Xl 1,19 +Xl 1,20 ^ 2 (22)

- Xg,l7 + X8,18 - X8.19 - X8,20-Xl0,18 - Xl0,19 + Xl0,20 " Xl 1,18 '  Xl 1,19+Xl 1,20 ^ 2  (23)
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In iteration 9, we find a feasible solution to the subproblem generated and 

thus a feasible solution to the original problem. The objective function of the 

solution is 20. Then we stop, since we find the optimal solution in which lower 

bound is equal to the upper bound. The optimal solution with schedule length of 

20 is X|,4 = 1, X2,2 -  1, X3,5 = 1, X4,13~ 1, Xs,8 = 1, X6,ll ’ 1, X7,13 ~ 1, X8,20= 1,X9,20 = 

1, X10,20 = 1, xii,2o = 1 with other variables that are found to be 0. The 

computational time needed to solve this problem is 0.46 CPU seconds.



3.4 Remarks

In this chapter, we presented the IP formulation of the problem and the two 

phased approximation algorithm. In the first phase, we tried to solve this problem, 

which contains a large number of constraints and variables. Since LP relaxation of 

the problem is too weak, we tried to add enumerativo cuts proposed in the first 

stage of the algorithm to the problem to tighten the formulation and to improve 

the lower bound. If we cannot find an upper bound, which will be equal to the 

optimal solution in the first stage, we continue with the second stage in which we 

make use of the enumerativo cuts and the lower bound obtained in the first stage. 

Here, the objective of the problem formulation is modified so as to minimize the 

finish time of the activity with the maximum earliest finish time in the set of 

immediately preceding activities of the dummy finish activity.
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We think that the search may be extended to the other immediately 

preceding activities of the dummy finish activity. We observe that the cuts related 

with these activities and the dummy finish activity will be very useful to cut the 

search space. In addition, the cuts obtained from the lower bound found at the end 

of the second stage may be used with the cuts obtained before to solve the exact 

version of the problem. By doing this, we were able to solve some of the instances 

in at most two hours while Cplex could not even find a feasible upper bound in 

one week. Since the implementation time of the algorithm for a single instance is 

limited to 1 hour, we did not present the results with longer than one hour.



Chapter 4

Computational Results

In this chapter, we present some computational results of the algorithm proposed 

in Chapter 3. In seetion 4.1, the problem instances used to test the efficiency of 

the algorithm are described. In section 4.2, we discuss and analyze the 

eomputational results.

4.1 Test data

In order to evaluate the performanee of our algorithm, we used three benchmark 

data sets of Kolisch et. al. (1995) and Kolisch and Sprecher (1997), which can be 

downloaded from the project scheduling library (PSPLIB) site at the following 

address ; http://www.bwl.uni-kiel.de/Prod/psplib/.These benchmark data sets J30, 

J60 and J90 consist of RCPSP instances with 30,60 and 90 aetivities, respectively. 

To generate these test problems, Kolisch et. al. (1995) and Kolisch and Sprecher 

(1997) develop instanee generator PROGEN that produces problem instanees with 

controlled difficulty by utilizing previously defined eontrol parameters, i.e. projeet 

characteristics. The PROGEN allows generating instances with different number
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of activities and resources. The duration and resource consumption of an activity 

take integer values that are randomly chosen between 1 and 10.

Three variable problem parameters network complexity (NC), resource 

factor (RF), resource strength (RS) are used to obtain different instances. The 

network complexity (NC), defines the average number of non-redundant 

precedence relations per activity (the precedence relations of the source and sink 

activities are treated separately). The resource factor (RF), describes the average 

percent of different resource types that are necessary to perfonn a non-dummy 

activity. RF = 1 indicates that each activity requires each resource, whereas RF=0 

states that activities do not require any resource and therefore there are no 

resource constraints. The resource strength (RS), determines the resource 

scarceness. If RS = 1, no resource conflict occurs. However if RF = 0, the 

resource capacity is equal to the maximum demand for that resource to prevent 

infeasibility. RF and RS both affect the complexity caused by the resource 

constraints of a problem.

With 10 replications for each combination of NCe{ 1.5,1.8,2.!}, 

RFg {0.25,0.5,0.75,1}, and RSe{0.2,0.5,0.7,1.0}, a total of 3 · 4 · 4 -10 = 480 

instances are generated for J30, J60 and J90. For each instance, four different 

resource types are considered. The best known solutions to these benchmark 

instances are also available in the PSPLIB site. We compare our results with these 

best known results which are compiled from a variety of resources using many 

different algorithms.

In our study, we used 6 data files. The first two data files include earliest 

and latest finish times of the activities. In order to generate these data files, we 

used the precedence relation matrix of the activities presented in the third data 

file. The fourth data file includes the durations of the activities. The fifth one 

stands for the resource requirements of each activity. In the sixth data file, the 

resource availabilities are stated. We set the absolute due date to the best known 

solution declared in the PSPLIB site.
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4.2 Computational Results

Our algorithm was implemented in C and executed on a computer equipped with 

Intel Celeron 2.80 GHz processor and Red Hat Linux 3.2.2.5. As an IP and MIP 

solver we used the MIP version of the Cplex 9.0. For the implementation of each 

phase of the algorithm, we give half an hour. Thus for each instance we execute 

our algorithm for a total of 1 hour.

The computational results obtained for the 480 PROGEN-instances with 

N = 30 and R = 4 are presented in table 4.2a. For each group consisting of 10 

problems, the parameters are stated; the number of optimally solved problems (no 

o f prb solved) and the number of optimal solutions verified (no o f prb verified) by 

our algorithm within 1 hour are indicated in table 4.2a. 379 problems could be 

solved to optimality and the optimality of 363 instances is proved by the 

algorithm within at most 1 hour.

The computational results obtained for the 480 PROGEN-instances with 

N = 60 and R = 4 are presented in table 4.2b. 344 problems could be solved to 

optimality within 1 hour. Our algorithm verifies the optimality of 338 of these 344 

instances. These results are better than the findings of Brucker et. al. (1998), 

whose branch and bound algorithm is known as the best exact algorithm solving 

the J60 problems to date. They have found optimal solutions of 326 of 480 J60 

instances.

The computational results obtained for the 480 PROGEN-instances with 

N = 90 and R = 4 are presented in table 4.2c. 331 problems could be solved to 

optimality within 1 hour. Only the optimality of 1 instance out of 331 instances is 

not verified by our algorithm. Brucker et. al. (1998) present computational results 

only for the first set of PROGEN-instances with 90 activities.
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Parameters
Group NC RF RS

No of prb. 
Solved

No of prb. 
Verified

Average Time 
(CPU)

30_1
30_2
30_3
30_4
30_5
30_6
30_7
30_8
30_9
30_10
30_11
30_12
30_13
30_14
30_15
30_16
30_17
30_18
30_19
30_20
30_21
30_22
30_23
30_24
30_25
30_26
30_27
30_28
30_29
30_30
30_31
30_32
30_33
30_34
30_35
30_36
30_37
30_38
30_39
30_40
30_41
30_42
30_43
30_44
30_45
30_46
30_47
30 48

1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 
1.8 
1.8 
1.8 
1.8 
1,8 
1,8 
1.8 
1.8 
1,8 
1.8 
1.8 
1,8 
1.8 
1.8 
1.8 
1.8 
2,1 
2,1 
2,1 
2,1 
2,1 
2,1 
2,1 
2.1 
2,1 
2,1 
2.1 
2,1 
2,1 
2.1 
2,1 
2.1

0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00
0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00
0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00

0,2
0,5
0.7
1.0
0.2
0,5
0,7
1.0
0.2
0,5
0.7
1.0
0.2
0.5
0.7
1.0
0.2
0,5
0,7
1.0
0,2
0,5
0,7
1.0
0.2
0,5
0.7
1.0
0.2
0.5
0,7
1.0
0.2
0.5
0.7
1.0
0.2
0.5
0.7
1.0
0.2
0.5
0.7
1.0
0.2
0.5
0.7
1.0

10
10
10
10
1

10
10
10
0
9
10 
10 
0 
8 
10 
10 
10 
10 
10 
10 
0
10
10
10
0
10
10
10
0
6
9
10 
10 
10 
10 
10 
1
10
10
10
0
10
10
10
0
5
10
10

10
10
10
10
0
9
10 
10 
0 
8 
10 
10 
0 
6
9
10
9
10 
10 
10 
0
9
10 
10 
0
10
10
10
0
4
8
10
10
10
10
10
0
10
10
10
0
8
10
10
0
4
9
10

42,948
3,51

12,264
0,123

1872,64
571,507
3,352
0,135

468,283
2,349
0,117

867,4
204,413

0,159
307,852
40,364
1,959
0,089

341,537
2,588
0,183

56,994
0,693
0,169

1359,479
222,59
0,273

344,73
13,767
2,629
0,165
2096

31,673
13,475
0,156

781,471
63,289

0,16

553,348
194,45
0,266

SUM 379 363

Table 4.2a. PROGEN instances with N= 30 and R=4
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Group Parameters
NC RF Solved

No of prb. 
Solved

No of prb. 
Verified

Average Time 
(CPU)

60_1 
60_2 
60_3 
60_4 
60_5 
60_6 
60_7 
60_8 
60_9 
60_10 
60_11 
60_12 
60_13 
60_14 
60_15 
60_16 
60_17 
60_18 
60_19 
60_20 
60_21 
60_22 
60_23 
60_24 
60_25 
60_26 
60_27 
60_28 
60_29 
60_30 
60_31 
60_32 
60_33 
60_34 
60_35 
60_36 
60_37 
60_38 
60_39 
60_40 
60_41 
60_42 
60_43 
60_44 
60_45 
60_46 
60_47 
60 48

1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 
1,8 
1.8 
1.8 
1.8 
1.8 
1.8 
1,8 
1.8 
1,8 
1.8 
1.8 
1,8 
1.8 
1,8 
1.8 
1,8 
2.1 
2,1 
2,1 
2,1 
2.1 
2.1 
2,1 
2.1 
2,1 
2,1 
2.1 
2,1 
2.1 
2,1 
2,1 
2,1

0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00
0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00
0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00

0,2
0,5
0,7
1,0
0,2
0.5
0.7
1.0
0,2
0,5
0,7
1.0
0.2
0,5
0,7
1.0
0,2
0,5
0,7
1.0
0,2
0,5
0,7
1.0
0,2
0,5
0,7
1,0
0.2
0.5
0.7
1.0
0,2
0,5
0.7
1.0
0,2
0,5
0,7
1,0
0.2
0.5
0,7
1,0
0.2
0,5
0,7
1,0

9
10 
10 
10 
0
9
10 
10 
0
9
10 
10 
0
5 
10 
10
9
10 
10 
10 
0
9
10 
10 
0 
4 
10 
10 
0 
4
9
10
6 
10 
10 
10 
0 
7
10
10
0
4
10
10
0
0
10
10

7
9
10 
10 
0
9
10 
10 
0
9
10 
10 
0 
5 
10 
10 
7
10
10
10
0
9
10 
10 
0 
4 
10 
10 
0
4
9
10
5 
10 
10 
10 
0 
7
10
10
0
4
10
10
0
0
10
10

765,45
363,236
8,901
0,407

4,668
0,703
0,53

242,276
0,909
0,75

13,186
1,302
0,737

694,467
181,235
4,516
0,378
5,679

1,552
0,501

4,232
1,001
0,713

489,6825
1,29

0,823
1109,108
367,351
2,726
0,341

3,04
1,216
0,443

452,15
1,917
0,544

214,508
0,739

SUM 344 338

Table 4.2b. PROGEN instances with N= 60 and R=4
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Parameters
Group NC RF RS

No of prb. 
Solved

No of prb. 
Verified

Average Time 
(CPU)

90_1 
90_2 
90_3 
90_4 
90_5 
90_6 
90_7 
90_8 
90_9 

90_10 
90_11 
90_12 
90_13 
90_14 
90_15 
90_16 
90_17 
90_18 
90_19 
90_20 
90_21 
90_22 
90_23 
90_24 
90_25 
90_26 
90_27 
90_28 
90_29 
90_30 
90_31 
90_32 
90_33 
90_34 
90_35 
90_36 
90_37 
90_38 
90_39 
90_40 
90_41 
90_42 
90_43 
90_44 
90_45 
90_46 
90_47 
90 48

1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 
1.8 
1.8 
1.8 
1.8 
1.8 
1.8 
1.8 
1.8 
1.8 
1.8 
1.8 
1.8 
1.8 
1.8 
1.8 
1.8 
2.1 
2.1 
2,1 
2,1 
2.1 
2.1 
2.1 
2.1 
2,1 
2,1 
2,1 
2.1 
2.1 
2,1 
2.1 
2,1

0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00
0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00
0,25
0,25
0,25
0,25
0,50
0,50
0,50
0,50
0,75
0,75
0,75
0,75
1,00
1,00
1,00
1,00

0,2
0,5
0,7
1.0
0,2
0,5
0,7
1,0
0,2
0,5
0,7
1.0
0,2
0.5
0,7
1.0
0,2
0,5
0,7
1,0
0.2
0,5
0.7
1.0
0,2
0,5
0,7
1,0
0.2
0,5
0,7
1.0
0.2
0,5
0.7
1.0
0,2
0,5
0.7
1.0
0.2
0,5
0.7
1.0
0.2
0,5
0,7
1.0

1
10
10
10
0
8
10
10
0
9
10 
10 
0
9
10 
10
5
10
10
10
0
9
10 
10 
0 
4 
10 
10 
0 
4 
10 
10 
3
9
10 
10 
0
6
10
10
0
3
10
10
0
1

10
10

1
10
10
10
0
8
10
10
0
9
10 
10 
0
9
10 
10
5
10
10
10
0
9
10 
10 
0 
4 
10 
10 
0 
4 
10 
10 
3 
8
10
10
0
6
10
10
0
3
10
10
0
1

10
10

151
1,329
0,92
0,69

5,309
1,353
0,985

221,75
2,183
1,407

233.92 
2,597 
1,317

1079.12 
4,101
1.048 
0,636

534,17
1,605
0,925

5,27
2,361
1,529

20.48
2.46
I, 891

890.12 
3,17 
0,99 

0,831

II, 51
5.47 
1,05

17,18
2,56
1,41

31.92 
162,58
1,40

SUM 331 330

Table 4.2c PROGEN instances with N= 90 and R=4
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In our study, we observe the influence of the project characteristics on the 

average CPU-time and the number of problems solved to optimality. The effect of 

resource strength and the resource factor seems to be highly significant on the 

problem difficulty while the network complexity does not affect the difficulty of 

the problem too much. Also as we increase the number of the activities, the 

solution times get larger and the number of instances optimally solved decreases. 

These results confirm the findings of Kolisch et. al. (1995).

Our algorithm needs more time when the resource strenght is small. The 

optimum solution of most of the instances with 0.2 resource scarcity could not be 

found within a time limit of 1 hour except those instances with a resource factor, 

which is equal to 0.25. Since there is a big gap between the lower bound obtained 

by our algorithm and the best known solutions for these problems, we conclude 

that the problems with RS = 0.2 are the hardest ones. As the RS decreases, the 

problem becomes more difficult and needs more time to be solved. This can be 

explained by the fact that the scarceness of the resource capacities increases when 

the parameter is decreased. The increase in CPU time with the reduction of RS 

factor is also shown in figure 4.2a. The y axis of figure 4.2.a corresponds to RS 

factor, while the x axis shows the average computation time required for the J60 

instances with 1.5 NC and 0.25 RF.

Figure 4.2a: Increase in average CPU time as RS decreases with NC=1.5 and RF=0.25 for J60
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While the algorithm generally solves the problems with RS = 0.5, it solves all of 

the problems with RS = 0.7 and RS = 1.0. The instances with RS = 1.0 are the 

easiest ones since these problems are not resource constrained. For these instances 

the optimal solution is equal to the critical path length.

The resource factor is the second most influential parameter. As we 

decrease the resource factor, the performance of our algorithm increases in terms 

of the number of problems solved to optimality and the CPU-time required by 

each group of problems. Therefore, we can conclude that our algorithm is 

negatively affected by the increase in the average number of resources requested 

per job as shown in figure 4.2b.

50 1

40 -

30 -

20 -

10 -

0,25 0,5 0,75 1

Figure 4.2b; Decrease in average number of problems solved to optimality as RF 

increases for N=30

The effect of NC on the problem complexity is rather weak relative to RS 

and RF. Nevertheless, we observe a slight decrease in the average solution time 

when we increase NC factor from 1.5 to 1.8. However, interestingly the average 

solution time increases when NC factor is increased from 1.8 to 2.1 for both of
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J30, J60 and J90. In the same manner the number of instances solved to optimality 

decreases when we increase NC factor from 1.5 to 1.8. But it increases when NC 

factor is increased from 1.8 to 2.1. This can be explained in this way: when 

network complexity is small, it is easy to determine the feasible solution set and 

thus to find the optimal schedule since there are few compulsory precedence 

relations in the activity network. A small increase in the network complexity 

increases the problem complexity. When the increase in NC is large, the feasible 

solution space is reduced since more precedence relations between the activities 

reduce the number of feasible activity sequences. As a result the problem becomes 

easier. In figure 4.2c, the change in the average number of problems solved to 

optimality with the NC factor is shown.

Figure 4.2c: The change in average number of problems solved to optimality when 

NC=1.5,NC=1.8andNC=2.1 forJ30
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Conclusions and Recommendations

In this study, we have developed a two phased, Integer Programming based 

approximation algorithm to solve the resource constrained project scheduling 

problem. Our aim is to find a feasible schedule, which satisfies the precedence 

and resource constraints while minimizing the completion time of the project.

First we provide the 0-1 formulation of the problem. Then for solving this 

IP problem, we introduce an algorithm, which tries to add appropriate cuts to 

improve the lower bound and find a feasible schedule, which is an optimal 

schedule as well. These cuts are obtained from the subproblems generated in each 

iteration. We explained this algorithm with an example problem. Since the 

problem is very difficult to solve to optimality, in the cases that we could not find 

a solution in half an hour, we continue with a different procedure, which tries to 

solve the modified version of the IP formulation together with the cuts obtained in 

the first stage.

In order to analyze the perfonnance of our algorithm, we applied it to the 

PROGEN-instances with 30, 60 and 90 activities. Computational results have

45
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been presented for these instances. The computational results showed that an IP 

based algorithm could successfully deal with the different size RCPSP instances 

with moderate difficulty and give solutions to these problems in reasonable 

amount of computational times. 379 of the 480 test problems with 30 activities, 

344 of the 480 test problems with 60 activities and 331 of the 480 test problems 

with 90 activities have been solved to optimality within time limit of 1 hour. The 

optimality of 340 of the 480 test problems with 30 activities, 338 of the 480 test 

problems with 60 activities and 330 of the 480 test problems with 90 activities are 

verified by our algorithm.

The computational results also provide some insights into the effects of the 

project characteristics. In our study, we examine the influence of the project 

characteristics in terms of computational time required and the number of 

problems solved to optimality. We observe that the project parameters have a 

significant impact on the problem difficulty. The results show that particularly, 

the resource strength and the resource factor play highly an important role on the 

problem complexity.

In the computational experiments we observe that our algorithm does not 

perform well with small capacity factor. For the instances with RS= 0.2 and RS= 

0.5, the gap between the lower bound we obtained and the upper bound given by 

PSPLIB is large. Therefore it is important to find new efficient formulations, 

which will improve the performance of the cuts proposed in this study and thus 

the lower bound.

We observe that the cuts including the variables of the activities that 

terminate the paths of the activity network, in other words the variables of the 

immediately preceding activities of the dummy finish activity, will be very useful 

in reducing the search space and improving the lower bound. We think that further 

studies investigating the cuts related with these activities would be useful.
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We believe that our cuts can be applied to other IP problems with slight 

modifications made in the algorithm. For instance, applications of these cuts to the 

job shop scheduling problem, which is a special case of the RCPSP, may give 

good results.

Another observation is that as an IP solver, a special purpose branch and 

bound algorithm may give better results than Cplex 9.0. As a further research, the 

incorporation of the special purpose methods to our algorithm may be conducted.
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